
HYPERCUBIC SORTING NETWORKS∗

TOM LEIGHTON† AND C. GREG PLAXTON‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 1–47, February 1998 001

Abstract. This paper provides an analysis of a natural d-round tournament over n = 2d players
and demonstrates that the tournament possesses a surprisingly strong ranking property. The ranking
property of this tournament is used to design efficient sorting algorithms for several models of parallel
computation:

(i) a comparator network of depth c · lgn, c ≈ 7.44, that sorts the vast majority of the n!
possible input permutations;

(ii) an O(lgn)-depth hypercubic comparator network that sorts the vast majority of permuta-
tions;

(iii) a hypercubic sorting network with nearly logarithmic depth;
(iv) an O(lgn)-time randomized sorting algorithm for any hypercubic machine (other such

algorithms have been previously discovered, but this algorithm has a significantly smaller
failure probability than any previously known algorithm); and

(v) a randomized algorithm for sorting n O(m)-bit records on an (n lgn)-node omega machine
in O(m+ lgn) bit steps.

Key words. parallel sorting, sorting networks, hypercubic machines

AMS subject classifications. 68P10, 68Q22, 68Q25, 68R05

PII. S0097539794268406

1. Introduction. A comparator network is an n-input, n-output acyclic circuit
made up of wires and 2-input, 2-output comparator gates. The input wires of the
network are numbered from 0 to n − 1, as are the output wires. The input to the
network is an integer vector of length n where the ith component of the vector is
received on input wire i, 0 ≤ i < n. The two outputs of each comparator gate are
labeled “min” and “max,” respectively, while the two inputs are not labeled. On
input x and y, a comparator gate routes min{x, y} to its “min” output and routes
max{x, y} to its “max” output. It is straightforward to prove (by induction on the
depth of the network) that any comparator network induces some permutation of the
input vector on the n output wires. We say that a given comparator network sorts a
particular vector if and only if the value routed to output i is less than or equal to
the value routed to output i+ 1, 0 ≤ i < n− 1.

An n-input comparator network is a sorting network if and only if it sorts every
possible input vector. It is straightforward to prove that any n-input comparator
network that sorts the n! permutations of {0, . . . , n − 1} is a sorting network. In
fact, any n-input comparator network that sorts the 2n possible 0-1 vectors of length

∗ Received by the editors May 25, 1994; accepted for publication (in revised form) November 22,
1995. This article combines results that appeared in preliminary form as A (fairly) simple circuit
that usually sorts, in Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Science Press, Los Alamitos, CA, 1990, pp. 264–274 and as A Hypercubic
sorting network with nearly logarithmic depth, in Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, ACM, New York, 1992, pp. 405–416.

http://www.siam.org/journals/sicomp/27-1/26840.html
† Department of Mathematics and Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139 (ftl@math.mit.edu). The research of this author was supported
by AFOSR contract F49620-92-J-0125 and DARPA contracts N00014-91-J-1698 and N00014-92-J-
1799.

‡ Department of Computer Science, University of Texas at Austin, Austin, TX 78712 (plaxton@
cs.utexas.edu). The research of this author was supported by NSF Research Initiation Award CCR-
9111591 and the Texas Advanced Research Program under grant 91-003658-480. Part of this work
was done while this author was visiting the MIT Laboratory for Computer Science.

1

2 TOM LEIGHTON AND C. GREG PLAXTON

n is a sorting network. The latter result is known as the 0-1 principle for sorting
networks [11, section 5.3.4].

It is natural to consider the problem of constructing sorting networks of optimal
depth. Note that at most bn/2c comparisons can be performed at any given level of
a comparator network. Hence the well-known Ω(n lgn) sequential lower bound for
comparison-based sorting implies an Ω(lgn) lower bound on the depth of any n-input
sorting network. An elegant O(lg2 n)-depth upper bound is given by Batcher’s bitonic
sorting network [4]. For small values of n, the depth of bitonic sort either matches or is
very close to matching that of the best constructions known (a very limited number of
which are known to be optimal) [11, section 5.3.4]. Thus, one might suspect the depth
of Batcher’s bitonic sorting network to be optimal to within a constant factor or per-
haps even to within a lower-order additive term. Consider Knuth’s Exercise 5.3.4.51
(posed as an open problem; see [11]): Prove that the asymptotic value of Ŝ(n) is not
O(n · lgn), where Ŝ(n) denotes the minimal size (number of comparator gates) of an
n-input sorting network of any depth. The source of the difficulty of this particular
exercise was subsequently revealed by Ajtai, Komlós, and Szemerédi [2], who provided
an optimal O(lgn)-depth construction known as the AKS sorting network.

While the AKS sorting network represents a major theoretical breakthrough, it
suffers from two significant shortcomings. First, the multiplicative constant hidden
within the O-notation is sufficiently large that the result remains impractical. Second,
the structure of the network is sufficiently “irregular” that it does not seem to map
efficiently to common interconnection schemes. In fact, Cypher proved that any em-
ulation of the AKS network on the cube-connected cycles requires Ω(lg2 n) time [7].
The latter issue is of significant interest, since a primary motivation for considering
the problem of constructing small-depth sorting networks is to obtain a fast parallel
sorting algorithm for a general-purpose parallel computer. In other words, it would
be highly desirable to identify a small-depth sorting network that could be imple-
mented efficiently on a topology that is also useful for performing operations other
than sorting.

In this paper we pursue a new approach to the problem of designing small-depth
sorting networks with “regular” structure. Our notion of regularity is enforced by
restricting the set of permutations that can be used to connect successive levels of
gates in a comparator network. In particular, we say that a comparator network
is hypercubic if and only if successive levels are connected either by a shuffle or an
unshuffle (inverse shuffle) permutation. (These terms are defined more precisely in
section 3.) Knuth’s Exercise 5.3.4.47 [11], posed as an open problem, may be viewed
as asking for the depth complexity of shuffle-only sorting networks, in which every
pair of adjacent levels is connected by a shuffle permutation. Batcher’s bitonic sort
provides an O(lg2 n) upper bound for this problem, and recently, Plaxton and Suel [17]
established an Ω(lg2 n/ lg lgn) lower bound. (The same lower bound holds for the class
of unshuffle-only sorting networks.)

From a practical point of view, Knuth’s shuffle-only requirement would seem to
be overly restrictive. It is motivated by a certain correspondence between hypercu-
bic comparator networks and the class of hypercubic machines (e.g., the hypercube,
butterfly, cube-connected cycles, omega, and shuffle-exchange). This correspondence
allows any shuffle-only comparator network to be efficiently emulated (i.e., with con-
stant slowdown) on any hypercubic machine. (We remark that “hypercubic machines”
are more commonly referred to as “hypercubic networks” [12, Chapter 3]. We pre-
fer the term “hypercubic machines” in the present context only because we use the

HYPERCUBIC SORTING NETWORKS 3

term “networks” to refer to comparator networks.) However, the class of hypercu-
bic machines is most often characterized in terms of efficient emulation of so-called
“normal” hypercube algorithms [12, Chapter 3], which effectively allow the data to
be either shuffled or unshuffled at each step. (More formally, a hypercube algorithm
is “normal” if it satisfies the following two conditions: (i) in any given step of the
computation, communication occurs across a single dimension; and (ii) in any pair of
successive steps, communication occurs across an adjacent pair of dimensions.) Thus,
hypercubic comparator networks, as defined above, would seem to represent the most
natural class of comparator networks corresponding to hypercubic machines.

Our approach to the design of efficient hypercubic sorting networks is based on the
following d-round no-elimination tournament defined over n = 2d players, d ≥ 0. For
d = 0, the tournament has 0 rounds; no matches are played. For d > 0, n/2 matches
are played in the first round according to an arbitrary pairing of the n players. The
next d − 1 rounds are defined by recursively running a no-elimination tournament
among the n/2 winners and (in parallel) a disjoint no-elimination tournament among
the n/2 losers. (We chose to call this a “no-elimination” tournament to contrast it
with the more usual “single-elimination” or “double-elimination” formats in which a
player drops out of the tournament after suffering one or two losses.)

In a no-elimination tournament, each player achieves a unique sequence of match
outcomes (wins and losses, 1’s and 0’s) of length d. Let player i be the player that
achieves a win-loss sequence corresponding to the d-bit number i; for example, in a 5-
round tournament the sequence WLLWL would correspond to i = 100102 = 18. Assume
that the outcomes of all matches are determined by an underlying total order. Further
assume that there are n distinct amounts of prize money available to be assigned to the
n possible outcome sequences. How should these amounts be assigned? Clearly the
largest amount of money should be assigned to player n−1 = Wd, who is guaranteed to
be the best player. Similarly, the smallest prize should be awarded to player 0 = Ld.
On the other hand, it is not clear how to rank the remaining n−2 win-loss sequences.
For instance, in an 8-round tournament, should the sequence WLWLLWLL be rated above
or below the sequence LLLWWWWW? Intuition and standard practice say that the player
with the 5–3 record should be ranked above the player with the 3–5 record. As we will
show in section 5, however, this is not true for the sequences WLWLLWLL and LLLWWWWW.
In fact, we will see that the standard practice of matching and ranking players based
on numbers of wins and losses is not very good. Rather we will see that it is better to
match and rank players based on their precise sequences of previous wins and losses.

The analysis of section 5 not only implies that WLWLLWLL is a better record than
LLLWWWWW but also provides an efficient algorithm for computing a fixed permutation π
of {0, . . . , n−1} such that with probability at least 1−2−n

ε

, for some constant ε > 0,
the actual rank of all but a small, fixed subset of the players is well approximated by
π(i), 0 ≤ i < n. (See Theorem 5.1 for a more precise formulation of this result.)

Why does the no-elimination tournament admit such a strong ranking property?
Intuitively, a comparison will yield the most information if it is made between players
expected to be of approximately equal strength; the outcome of a match between a
player whose previous record is very good and one whose previous record is very bad is
essentially known in advance, and hence will normally provide very little information.
The no-elimination tournament has the property that when two players meet in the
ith round, they have achieved the same sequence of outcomes in two independent
no-elimination tournaments T0 and T1 of order i − 1. By symmetry, exactly half of
the n! possible input permutations will lead to a win by the player representing T0

4 TOM LEIGHTON AND C. GREG PLAXTON

and half will lead to a win by the player representing T1.

The remainder of the paper is organized as follows. In section 2 we discuss our
applications of the no-elimination tournament. In section 3 we provide a number of
definitions. In section 4 we present several basic lemmas. In section 5 we analyze the
sorting properties of the no-elimination tournament. Note that section 5.3 contains a
number of important technical definitions related to the no-elimination tournament.
In sections 6–11 we present the applications of the no-elimination tournament dis-
cussed in section 2. In section 12 we offer some concluding remarks.

2. Overview of applications. In sections 6–11 we use the strong ranking prop-
erty of the no-elimination tournament to design efficient sorting algorithms for a va-
riety of different models of parallel computation. Most of our results are probabilistic
in nature; for such results, the success probability is expressed in the form

1− 2−2f(d)

for some function f(d). (The parameter d is equal to lgn, where n is the input size.)
For the purposes of this introduction, it will be convenient to define a number of
substantially different levels of “high probability” in terms of the function f(d). Let
us say that an event occurs with very high probability if f(d) = lg d+O(1), with very 2

high probability if f(d) = Θ(
√
d), with very 3 high probability if

f(d) =
d

2Θ(
√

lg d)

with very 4 high probability if f(d) = Θ(d
(lg d)·lg∗ d), and with very 5 high probability if

f(d) can be set to any function that is o(d). Note that an event occurs with very high
probability if and only if the corresponding failure probability is polynomially small
in terms of n. As it happens, all of the main probabilistic claims made in this paper
hold with very2 high probability or better. We have defined the very high probability
threshold only for the purpose of contrasting the results of section 10 with those of
previous authors.

We now survey the applications of sections 6–11. In section 6 we define a compara-
tor network of depth c · lgn, c ≈ 7.44 that sorts a randomly chosen input permutation
with very5 high probability (see Theorem 6.1). (We remark that this comparator
network is not hypercubic. A hypercubic version of the construction is discussed
in the next paragraph.) At the expense of allowing the network to fail on a small
fraction of the n! possible input permutations, this construction improves upon the
asymptotic depth of the best previously known sorting networks by several orders of
magnitude [2, 15]. We make use of the AKS construction as part of our network. How-
ever, the use of the AKS construction can be avoided at the expense of decreasing the
success probability from very5 to very3 high. (The depth bound remains unchanged.)
The topology of our very3 high probability network is quite simple and does not make
use of expanders.

In section 7 we present a hypercubic version of the construction of section 6. In
particular, we define an O(lgn)-depth hypercubic comparator network that sorts a
randomly chosen input permutation with very3 high probability (see Theorem 7.1).
We have not calculated the constant factor within the O(lgn)-depth bound, which
is moderately larger than the constant of approximately 7.44 associated with our
nonhypercubic construction.

HYPERCUBIC SORTING NETWORKS 5

In sections 8 and 9 we provide a general method for constructing a sorting network
from a comparator network that sorts most permutations. More specifically, section 8
describes how to construct a (hypercubic) high-order merging network from a (hyper-
cubic) comparator network that sorts most input permutations. In section 9, we make
use of a hypercubic high-order merging network to develop a recurrence for the depth
complexity of hypercubic sorting networks. The analysis of this recurrence, presented
in Appendix A, yields the main nonprobabilistic claim of our paper, namely, that
there exist hypercubic sorting networks of depth

2
O
(√

lg lg n
)
· lgn.

Note that this bound is o(lg1+ε n) for any constant ε > 0. (See Theorem 9.1 for a
more precise form of the upper bound.) Given the aforementioned Ω(lg2 n/ lg lgn)
lower bound of Plaxton and Suel [17], our upper bound establishes a surprisingly
strong separation between the power of shuffle-only comparator networks and that of
hypercubic comparator networks.

Unfortunately, each of the network constructions given in sections 6, 7, and 9
is nonuniform in the following sense: No deterministic polynomial-time algorithm is
known for generating the family of networks for which existence has been established.
On the positive side, existence of a randomized polynomial-time generation algorithm
for each of these network families is a straightforward consequence of our results.

In section 10, an optimal O(lgn)-time randomized sorting algorithm is given
for any hypercubic machine. The algorithm runs in O(lgn) time on every input
permutation with very4 high probability and uses only O(1) storage at each processor.
Furthermore, a very2 high probability version of the algorithm has no more than 2
records at the same processor (where the “2” is only necessary for implementing
compare-interchange operations) and requires essentially no auxiliary variables. (A
global OR operation involving a single bit at each processor is used to check whether
or not the sort has been completed.) A number of optimal-time randomized sorting
algorithms were previously known for certain hypercubic machines. For example, the
Flashsort algorithm of Reif and Valiant [19] is in this category. However, none of
these algorithms has a success probability better than “very high.” Probability of
failure aside, Flashsort requires more storage than our algorithm, since it makes use
of a Θ(lgn)-sized priority queue at each processor. On the other hand, a very high
probability sorting algorithm with constant size queues has been given previously by
Leighton et al. [13]. Like Batcher’s O(lg2 n) bitonic sorting algorithm, the very2 high
probability version of our sorting algorithm is nonadaptive in the sense that it can
be described solely in terms of oblivious routing and compare-interchange operations;
there is no queueing. (The very4 high probability version is adaptive because it makes
use of the Sharesort algorithm of Cypher and Plaxton as a subroutine [9].)

Note that the permutation routing problem, in which each processor has a packet
of information to send to another processor, and no two packets are destined to the
same processor, is trivially reducible to the sorting problem. (The idea is to sort
the packets based on their destination addresses.) Hence, our sorting bounds also
apply to that fundamental routing problem. In fact, standard reductions [12, section
3.4.3] allow us to apply our sorting algorithm to efficiently solve a variety of other
routing problems as well (e.g., many-to-one routing with combining). Interestingly,
all previously known optimal-time algorithms for permutation routing on hypercubic
machines [13, 18, 20] are randomized, and do not achieve a success probability better
than “very high.” Thus, the results of section 10 provide a permutation routing

6 TOM LEIGHTON AND C. GREG PLAXTON

Table 1
Type conventions.

Symbol Type Symbol Type

a, b, d, i, j, k,m, n integer N comparator network
c real constant α, β binary string

f, g, h function ε empty string
p, q real number in [0, 1] π permutation

u, v, w, z real number Π set of permutations
x, y various φ 0-1 vector

A,B,C set Φ set of 0-1 vectors
E probabilistic event o, ω,O,Θ,Ω asymptotic symbol

X,Y random variable Σ summation symbol
D probability distribution γc, µc, υc defined constant
M parallel machine other Greek letters real number/function

algorithm for hypercubic machines with a much smaller probability of failure than
any previously known O(lgn)-time algorithm.

Our final application is described in section 11, where we give a randomized
algorithm for sorting n O(m)-bit records on an (n · lgn)-node omega machine in
O(m + lg n) bit steps with very2 high probability. This is a remarkable result in
the sense that the time required for sorting is shown to be no more than a constant
factor larger than the time required to examine a record (assuming, as is typical, that
m = Ω(lgn)). The only previous result of this kind that does not rely on the AKS
sorting network is the recent work of Aiello et al. [1], which provides a randomized
bit-serial routing algorithm that runs in optimal time with very high probability on
the hypercube. That paper does not address either the combining or sorting problems,
however, and does not apply to any of the bounded-degree hypercubic machines (e.g.,
the butterfly, cube-connected cycles, omega, and shuffle-exchange). All previously
known algorithms for routing and sorting on bounded-degree hypercubic machines,
and for sorting on the hypercube, require Ω(lg2 n) bit steps.

A defect of the randomized sorting algorithms described in sections 10 and 11 is
that each requires a table of permutation information to be precomputed and stored
in the nodes of the machine before the algorithm is executed. Fortunately, this defect
may be viewed as a relatively minor one since: (i) the table needs to be computed
only once for a given machine size n (i.e., the same table can be used to sort all n!
possible input permutations in the time bounds stated above); (ii) the table occupies
only a constant number of words per machine node; and (iii) there is a deterministic
polynomial-time (in n) algorithm for computing the table. For the purposes of this
paper, it is convenient to define such a “table-based” randomized sorting algorithm
as polynomial-time uniform if and only if it satisfies properties (i), (ii), and (iii). All
of the randomized sorting algorithms presented in this paper are polynomial-time
uniform. (In fact, the tables used by our algorithms can be easily computed in NC.)

3. Definitions. In the sections that follow, we present basic definitions related to
notational conventions, vectors, permutations, 0-1 vectors, (hypercubic) comparator
networks, randomness, network composition, and network families. A number of
definitions related to our analysis of the 0-1 no-elimination tournament are postponed
until section 5.

3.1. Notational conventions. Our type conventions and defined constants are
summarized in Tables 1 and 2, respectively. (We remark that primed and subscripted

HYPERCUBIC SORTING NETWORKS 7

Table 2
Constants.

Symbol Constant

e 2.7182818 . . .
γc see equation (7)
µc see equation (8)
υc see equation (9)

variables have the same type as their unprimed and unsubscripted counterparts.)

The functions lg x and pow(x) denote log2 x and 2x, respectively.

For all nonnegative integers a and i, let ai denote bit i in the binary representation
of a. (Bit 0 is the least significant bit.)

3.2. Vectors. A d-vector, d ≥ 0, is an integer vector of length pow(d). For any
d-vector x, we index the components of x from 0 through pow(d)− 1 and denote the
ith component x(i).

A d-vector x is sorted if and only if x(i) ≤ x(i+ 1), 0 ≤ i < pow(d)− 1.

For any d-vector x, the ith a-cube of d-vector x, 0 ≤ a ≤ d, 0 ≤ i < pow(d− a),
is the a-vector y such that y(j) = x(i · pow(a) + j), 0 ≤ j < pow(a).

3.3. Permutations. A permutation π of length k, k ≥ 0, is a vector of length k
satisfying the following condition: For each i, 0 ≤ i < k, there is a j, 0 ≤ j < k, such
that π(j) = i. If length-k permutation π is applied to length-k vector x, the resulting
length-k vector x′ is such that x′(π(i)) = x(i), 0 ≤ i < k.

For all length-k permutations π and π′, the length-k permutation obtained by
applying π to π′ is denoted π ◦ π′.

A d-permutation, d ≥ 0, is a permutation of length pow(d).

Let Π(d) denote the set of all pow(d)! d-permutations.

For 0 ≤ a ≤ d, let Π(d, a) denote the pow(a)! d-permutations π in Π(d) such that:
(i) π permutes within a-cubes; and (ii) π applies the same a-permutation within each
a-cube.

The shuffle d-permutation, denoted ←↩d, has ith component id−2 · · · i0id−1, 0 ≤
i < pow(d). The k-shuffle d-permutation, denoted←↩kd, is the d-permutation obtained
by composing k shuffle d-permutations.

The unshuffle d-permutation, denoted ↪→d, has ith component i0id−1 · · · i1, 0 ≤
i < pow(d) and is equal to the inverse of the shuffle d-permutation. Thus, ↪→d=←↩−1

d .
The k-unshuffle d-permutation, denoted ↪→k

d, is the d-permutation obtained by com-
posing k unshuffle d-permutations. Note that ←↩kd=↪→−k

d for all k.

3.4. 0-1 Vectors. A 0-1 d-vector is a d-vector over {0, 1}. Let Φ(d) denote the
set of all pow(pow(d)) 0-1 d-vectors.

For 0 ≤ k ≤ pow(d), let Φ(d, k) denote the set of all

(
pow(d)

k

)

0-1 d-vectors with k 0’s and (pow(d)− k) 1’s.

A 0-1 d-vector is trivial if and only if it belongs to Φ(d, 0) ∪ Φ(d, pow(d)). (Oth-
erwise, it is nontrivial.)

8 TOM LEIGHTON AND C. GREG PLAXTON

For any d-permutation π, and all k such that 0 ≤ k ≤ pow(d), we define the kth
0-1 d-vector corresponding to d-permutation π, denoted φkπ, as follows:

φkπ(i) =

{
0 if 0 ≤ π(i) < k,
1 if k ≤ π(i) < pow(d).

Note that φkπ belongs to Φ(d, k).
For any d-permutation π, let Φπ = ∪0≤k≤pow(d)φ

k
π.

Let φ be a 0-1 d-vector, i be the maximum index for which φ(i) = 0 (or −1 if φ
belongs to Φ(d, 0)), and j be the minimum index for which φ(j) = 1 (or pow(d) if φ
belongs to Φ(d, pow(d))). We say that φ has a dirty region of size i−j+1 corresponding
to the sequence of components 〈φ(j), . . . , φ(i)〉. Observe that φ is sorted if and only
if i = j − 1. (Thus, the dirty region of a sorted 0-1 vector is defined to be empty and
has size 0.)

A 0-1 d-vector is a-sorted, 0 ≤ a ≤ d, if and only if it has a dirty region of size at
most pow(a).

For nonnegative integers a and b, let ΦM (a, b) denote the set of all 0-1 (a + b)-
vectors φ such that every a-cube of φ is sorted.

We remark that if 0-1 d-vector φ is a-sorted, then the 0-1 d-vector φ′ obtained by
applying ↪→a

d to φ belongs to ΦM (d− a, a). Furthermore, each (d− a)-cube of φ′ has
the same number of 0’s to within 1.

3.5. (Hypercubic) comparator networks. This paper studies the depth com-
plexity of certain classes of comparator networks. For the sake of brevity, we will use
the term “network” to mean “comparator network” throughout the remainder of the
paper.

For nonnegative integers a and d, a depth-a d-network consists of a disjoint levels,
numbered from 0 to a−1, each of which has pow(d) associated input and output wires.
(Note that every depth-0 d-network is the empty network.) The input and output
wires of each level are numbered from 0 to pow(d)− 1. Output wire j on level i and
input wire j on level i + 1 represent the same wire, 0 ≤ i < a − 1, 0 ≤ j < pow(d).
The level 0 input wires (resp., level a− 1 output wires) of a given network N are also
referred to as the input wires (resp., output wires) of N .

In order to complete our definition of a network, it remains only to define the
structure and behavior of a single level. If d = 0, each level consists of a single wire,
and the lone input is passed directly to the output. For d > 0, each level consists of
two phases: a permutation phase followed by an operation phase.

In the permutation phase, some d-permutation π is applied to the pow(d) input
wires of the level. We refer to the resulting ordered set of pow(d) wires as the interme-
diate wires of the level. In an execution of the permutation phase, the values received
by the input wires are passed to the intermediate wires according to d-permutation
π: Intermediate wire π(j) receives its value from input wire j, 0 ≤ j < pow(d).

In the operation phase, the values carried by the pow(d) intermediate wires are
passed through a set of pow(d − 1) 2-input, 2-output gates, numbered from 0 to
pow(d − 1) − 1. Intermediate wires (resp., output wires) 2 · j and 2 · j + 1 are input
to (resp., output from) the jth gate of the level. There are five kinds of gates in
our d-networks: “0,” “1,” “+,” “−,” and “?.” The action of each of these gates is
described below.

“0”: On input (x, y), a “0” gate produces output (x, y).
“1”: On input (x, y), a “1” gate produces output (y, x).
“+”: On input (x, y), a “+” gate produces output (min{x, y},max{x, y}).

HYPERCUBIC SORTING NETWORKS 9

“−”: On input (x, y), a “−” gate produces output (max{x, y},min{x, y}).
“?”: On input (x, y), a “?” gate produces output (x, y) with probability 1/2, and

output (y, x) with probability 1/2. This gate is only used in sections 10 and
11.

A d-network is hypercubic if and only if the d-permutation applied in each level
of the d-network is either ←↩d or ↪→d.

3.6. Randomness. A d-network N is deterministic if and only if N satisfies the
following conditions: (i) the d-permutation applied in the permutation phase of each
level is fixed; (ii) the type of each gate is fixed; and (iii) no gate is of type “?.”

In general, we allow our d-networks to be random. A depth-a d-network N is
random if and only if N is given by some fixed probability distribution over the set
of all deterministic depth-a d-networks. (Each time an input vector is passed to a
random network N , the network behaves as a randomly chosen deterministic network
drawn from the distribution defining N .)

We have introduced the notion of a random network primarily as a technical
convenience, since the random aspects of any construction can be eliminated using
Lemma 4.8. Unfortunately, reliance on Lemma 4.8 leads to network constructions
that are not polynomial-time uniform.

In sections 10 and 11, we make use of the “?” gate. A d-network N is coin-tossing
if and only if N satisfies the following conditions: (i) the d-permutation applied
in the permutation phase of each level is fixed; and (ii) the type of each gate is
fixed. Note that: (i) “?” gates are allowed in a coin-tossing d-network; and (ii) every
deterministic d-network is a coin-tossing d-network. (We do not consider random
coin-tossing networks in any of our applications. Rather we view the “?” gate as an
alternative to the form of randomness introduced above.)

A d-vector is a-random, 0 ≤ a ≤ d, if and only if it is chosen from a probability
distribution that assigns the same probability to any pair of d-vectors related by some
d-permutation in Π(d, a).

Let ΠR(d) and ΠR(d, a) denote the uniform distributions over Π(d) and Π(d, a),
respectively.

Let ΦR(d, k) denote the uniform distribution over Φ(d, k).
For all p in [0, 1], let ΦB(d, p) denote the distribution that assigns probability

pk · (1− p)pow(d)−k

to each 0-1 d-vector in Φ(d, k). Note that a random 0-1 d-vector drawn from this distri-
bution corresponds to the sequence of outcomes of d independent, p-biased Bernoulli
trials.

If D (resp., D′) is the probability distribution over Φ(d) that assigns probability
pi (resp., p′i) to the d-bit binary string id−1 · · · i0, 0 ≤ i < pow(d) = n, then define
D ≤ D′ if and only if there exist real numbers xij in [0, 1], 0 ≤ i < n, 0 ≤ j < n, such
that:

(i)
∑

0≤i<n xij = 1, 0 ≤ j < n;
(ii) p′i =

∑
0≤j<n xij · pj , 0 ≤ i < n; and

(iii) xij > 0 only if ik ≥ jk, 0 ≤ k < d.
Note that conditions (i) and (ii) ensure that

∑
0≤i<n pi =

∑
0≤i<n p

′
i = 1. Informally,

D ≤ D′ if and only if it is possible to sample from D by first sampling from D′
and then changing (according to a probability distribution that may depend on the
particular sample chosen from D′) a randomly chosen subset of the 1’s to 0’s.

10 TOM LEIGHTON AND C. GREG PLAXTON

3.7. Network composition. The main goal of this paper is to provide efficient
(i.e., small-depth) constructions of d-networks having certain sorting-related proper-
ties. In simple cases, we present our constructions by explicitly specifying the per-
mutation phase and operation phase of each level of the d-network. However, this
approach would be too cumbersome for some of our more complicated constructions.

In general, we present a given d-network as the “composition” of a sequence
of explicitly specified d-networks, explicitly specified d-permutations, and recursively
specified d-networks. The following mechanical procedure can be used to convert such
a sequence into a d-network.

1. “Unwind” the recurrence to obtain a sequence of explicitly specified d-networks
and d-permutations.

2. Repeatedly apply the composition rules specified below to adjacent pairs in
the sequence until the sequence has been reduced to either (i) a single d-
network N or (ii) a d-network N followed by a d-permutation π. (The com-
position rules are easily seen to be associative; hence, the order of application
is immaterial.) In case (i), N is the desired d-network. In case (ii), the de-
sired d-network N ′ is obtained by appending a single level to N , where: (i)
the permutation π is applied in the permutation phase and (ii) the operation
phase consists of pow(d− 1) “0” gates.

We now specify the three composition rules (network-network, permutation-net-
work, and permutation-permutation) that can be applied in step 2 above.

1. Let N and N ′ denote d-networks of depth a and b, respectively. Then the
composition of the pair (N ,N ′) is the depth-(a+ b) d-network N ′′ such that:
(i) the first a levels of N ′′ are given by N and (ii) the last b levels of N ′′ are
given by N ′.

2. For any depth-a d-network N and d-permutation π, the composition of the
pair (π,N) is the depth-a d-network N ′ obtained from N by replacing the
permutation π′ applied in the permutation phase of level 0 with the permu-
tation π ◦ π′.

3. For all d-permutations π and π′, the composition of the pair (π, π′) is π ◦ π′.
Our recursive d-network constructions employ recursion over a-cubes for some a

such that 0 ≤ a ≤ d. To achieve efficient performance, it is desirable for the the
depth of a recursive construction over a-cubes to be a function of a, and not d. The
following definitions are extremely helpful for establishing results of this kind.

A d-network N is a-partitionable, 0 ≤ a ≤ d, if and only if N can be partitioned
into pow(d − a) disjoint a-networks Ni, 0 ≤ i < pow(d − a), where the input (resp.,
output) wires of Ni correspond to the ith input (resp., output) a-cube of N .

Let N denote an a-partitionable d-network and define Ni as in the preceding
paragraph, 0 ≤ i < pow(d− a). Then N is a (d, a)-network, 0 ≤ a ≤ d, if and only if
the Ni’s are all identical.

We remark that: (i) every d-network is a (d, d)-network; (ii) the set of (d, a)-
networks is closed under composition; (iii) for all (d, a)-networksN and d-permutations
π in Π(d, a), the composition of the pair (π,N) is a (d, a)-network; and (iv) Lemma 4.10
provides a useful alternative characterization of the class of a-partitionable hypercubic
d-networks.

3.8. Network families. It is straightforward to prove by induction on the lev-
eled structure of any d-network that the output d-vector is related to the input d-vector
by some d-permutation. We say that a d-network is a sorting network if and only if,
in addition, every possible input d-vector leads to a sorted output d-vector. (In the

HYPERCUBIC SORTING NETWORKS 11

case of a random d-network, a given input d-vector may not always produce the same
output d-vector. We say that a given input vector is sorted by a random network N if
and only if it is guaranteed to be sorted by N .) As indicated in section 1, a d-network
N is a sorting network if and only if: (i) N sorts all d-permutations in Π(d) or (ii) N
sorts all 0-1 d-vectors in Φ(d). Because of these facts, we will often find it useful to
restrict our attention to inputs drawn from Π(d) or Φ(d).

For any d-network N , let Sort(N) denote the set of all integer d-vectors sorted
by N .

For any (d, a)-network N , let Sort(N , a) denote the set of all integer input d-
vectors to N for which every output a-cube is sorted.

The depth-a shuffle-“+” d-network is the depth-a hypercubic d-network in which
every level consists of the d-permutation←↩d followed by a set of pow(d−1) “+” gates.
We define other networks similarly; for example, each level of a depth-a unshuffle-“0”
d-network consists of the d-permutation ↪→d followed by a set of pow(d−1) “0” gates.

A d-network N is in SortN (d, ε) if and only if the output of N is sorted with
probability at least 1− ε on any d-random 0-1 input d-vector.

A (d, a)-network N is in SortN (d, a, ε) if and only if each output a-cube of N is
sorted with probability at least 1− ε on any a-random 0-1 input d-vector.

A (d, a)-network N is in SortN (d, a, b, ε), 0 ≤ b ≤ a, if and only if each output
a-cube of N is b-sorted with probability at least 1 − ε on any a-random 0-1 input
d-vector.

A 0-1 d-vector φ is a-mostly-sorted with respect to permutation π, 0 ≤ a ≤ d,
if and only if after applying d-permutation π, the length-(pow(d)− pow(a)) prefix of
the resulting 0-1 d-vector is a-sorted.

A (d, a)-network N is in MostN (d, a, b, ε), 0 ≤ b ≤ a, if and only if there exists a
d-permutation π in Π(d, a) such that each output a-cube of N is b-mostly-sorted with
respect to π with probability at least 1− ε on any a-random 0-1 input d-vector.

For nonnegative integers a and b, an (a, b)-merge operation takes as input pow(b)
sorted lists of length pow(a) and produces a single sorted list of length pow(a+ b).

A (d, a + b)-network N is in MergeN (d, a, b) if and only if N performs an (a, b)-
merge operation on each (a + b)-cube. We assume the following input convention
within each (a + b)-cube A: The ith sorted input list is provided in ascending order
in a-cube i of A, 0 ≤ i < pow(b).

A d-insertion operation, d ≥ 0, takes as input a sorted list of length pow(d) − 1
and one additional input, and produces a sorted list of length pow(d).

A (d, a)-network N is in InsertN (d, a), 0 ≤ a ≤ d, if and only if N performs
an a-insertion operation on each a-cube. We assume the following input convention
within each a-cube: The sorted list is provided in ascending order on input wires 0
through pow(a)− 2 of the a-cube, and the additional input is provided on input wire
pow(a)− 1 of the a-cube.

In the preceding paragraphs we defined a number of network families. In each
case, the name of the family is subscripted by the letter “N” (for “network”). For
any particular family FN , we define FD as the minimum depth of any network in
FN . (For example, SortD(d, a, b, ε) denotes the minimum depth of any network in
SortN (d, a, b, ε).) Furthermore, we let FhN denote the set of all hypercubic networks
in FN , and FhD denote the minimum depth of any network in FhN .

4. Basic lemmas. In this section, we present a number of basic lemmas.
Lemma 4.1. A d-network N is a sorting network if and only if

Φ(d) ⊆ Sort(N).

12 TOM LEIGHTON AND C. GREG PLAXTON

Proof. This lemma is known as the 0-1 principle for sorting networks and is
proven in [11, section 5.3.4]. (The proof is given in the context of deterministic
networks. The extension to random networks is immediate, however, since a random
network N is a sorting network if and only if every deterministic network that is
assigned a nonzero probability by the distribution associated with N is a sorting
network.)

Lemma 4.2. For any d-network N and d-permutation π, we have

π ∈ Sort(N)⇐⇒ Φπ ⊆ Sort(N).

Proof. This result follows from a slight modification to the proof of the 0-1 prin-
ciple cited above.

Lemma 4.3. For all a and d such that 0 < a ≤ d, we have

MergeD(d, a− 1, 1) ≤ a,
MergehD(d, a− 1, 1) = O(a).

Proof. These bounds are established by Batcher’s bitonic merge network [4]. For
a hypercubic construction, additional depth is required in order to conform with the
input and output conventions adopted in section 3. (Our input and output conventions
have been chosen to simplify the presentation and not to minimize the constant factors
associated with our hypercubic constructions.) This is accomplished by preceding
Batcher’s bitonic merge network with an appropriate fixed permutation π. (Note
that such a fixed permutation does not contribute to the depth of a nonhypercubic
construction.)

The role of the fixed permutation π is twofold: (i) to reverse one of the two
sorted input lists within each a-cube, as required by Batcher’s bitonic merge, and
(ii) to “compensate” for the series of a shuffle permutations accompanying the merge
(as described below). It is straightforward to implement an appropriate permutation
π with an O(a)-depth hypercubic d-network. (We could use Lemma 4.7 for this
purpose, although the permutation π is simple enough to implement directly.) A
depth-a shuffle-“+” d-network can then be used to implement Batcher’s bitonic merge
network within each a-cube.

Lemma 4.4. For all a and d such that 0 ≤ a ≤ d, we have

InsertD(d, a) ≤ a,
InserthD(d, a) = O(a).

Proof. This bound is also established by Batcher’s bitonic merge network [4].
In contrast with the construction of Lemma 4.3, no list reversal is required since the
input is already in bitonic form. (We remark that in the classic sorting network model,
where a given level may contain fewer than pow(d− 1) gates, it is possible to match
this depth bound while achieving size pow(d)−1 instead of d·pow(d) [14] (also see [12,
section 3.5.4]). The basic idea is to use a tree-like network.)

Lemma 4.5. For all a and d such that 0 ≤ a ≤ d, we have

SorthD(d, a, 0) = O(a2).

Proof. This bound is due to Batcher [4] and follows from repeated application of
Lemma 4.3.

HYPERCUBIC SORTING NETWORKS 13

Lemma 4.6. For all a and d such that 0 ≤ a ≤ d, we have

SortD(d, a, 0) = O(a).

Proof. This bound is due to Ajtai, Komlós, and Szemerédi [2]. Unfortunately, the
constant factor associated with the AKS sorting network is impractically
large.

Lemma 4.7. For each d-permutation π in Π(d, a) there is a hypercubic (d, a)-
network N with the following properties: (i) N implements the permutation π; (ii)
N has depth exactly 2 · a; (iii) the d-permutation ↪→d is applied in the permutation
phase of each of the first a levels of N ; (iv) the d-permutation ←↩d is applied in
the permutation phase of each of the last a levels of N ; and (v) every gate of N is
either “0” or “1.” Furthermore, the gate assignments of N can be computed in time
polynomial in pow(a).

Proof. This is a straightforward consequence of the work of Beneš [5]. In particu-
lar, for a = d, the Beneš permutation network corresponds to a hypercubic d-network
satisfying properties (i), (iii), and (v). Furthermore, properties (ii) and (iv) are very
nearly satisfied by the same construction; the d-network has depth 2 ·d−1 and applies
the d-permutation ←↩d in the last d − 1 levels. It follows trivially that the claim of
the lemma holds for a = d. (We can simply append a dummy shuffle level to the
depth-(2 · d − 1) Beneš permutation network corresponding to an unshuffled version
of π.)

For implementing a permutation in Π(d, a), we apply our modified Beneš con-
struction to each a-cube via the corresponding (d, a)-network of depth 2 · a. (The
original Beneš construction could not be used in this manner; for 0 < a < d, it would
not map input a-cubes to output a-cubes.)

Lemma 4.8. Let D denote an arbitrary probability distribution over the set of
all d-vectors and N denote a random coin-tossing depth-a d-network. If N sorts
a random d-vector drawn from D with probability at least p, then there exists some
deterministic depth-a d-network N ′ with the same property.

Proof. A simple averaging argument. (Note that N is drawn from some fixed
probability distribution over the set of all deterministic depth-a d-networks.)

Lemma 4.9. Let random 0-1 d-vector φ be drawn from an arbitrary probability
distribution over Φ(d) and π be a random d-permutation drawn from ΠR(d, a). Then
the 0-1 d-vector φ′ obtained by applying π to φ is a-random.

Proof. The proof is straightforward.
Lemma 4.10. Let N denote a depth-b hypercubic d-network, and for each i,

0 ≤ i ≤ b, let f+(i) (resp., f−(i)) denote the number of levels j of N , 0 ≤ j < i, such
that ↪→d (resp., ←↩d) is applied in the permutation phase. Let f(i) = f+(i) − f−(i),
0 ≤ i ≤ b. For all a such that 0 ≤ a < d, N is a-partitionable if and only if (i)
0 ≤ f(i) ≤ a, 0 ≤ i < b, and (ii) f(b) = 0.

Proof. Let g+(i) = max0≤j≤i f(j) and g−(i) = min0≤j≤i f(j), 0 ≤ i ≤ b. Note
that g+(i) ≥ 0 and g−(i) ≤ 0, 0 ≤ i ≤ b.

Let Ai,j denote the set of level i output wires y of N such that there is a path to
y from some input wire x in the jth input a-cube, 0 ≤ i < b, 0 ≤ j < pow(d− a).

It is straightforward to prove by induction on i that

Ai,j = {y : jk−a = yk−f(i), max{a, g+(i)} ≤ k < d− g−(i)}.(1)

Thus,

|Ai,j | = pow(min{d,max{a, g+(i)} − g−(i)}).(2)

14 TOM LEIGHTON AND C. GREG PLAXTON

Note that if |Ai,j | > pow(a) for some i and j, 0 ≤ i < b, 0 ≤ j < pow(d − a), then
N is not a-partitionable. It follows from equation (2) that N is not a-partitionable if
g+(b) > a or g−(b) < 0.

It remains to prove that if g−(b) = 0 and g+(b) ≤ a, then N is a-partitionable
if and only if f(b) = 0. Accordingly, assume that g−(b) = 0 and g+(b) ≤ a. By
equation (1), Ab,j corresponds to the jth output subcube if and only of f(b) = 0,
0 ≤ j < pow(d− a), completing the proof.

Lemma 4.11. Let N be a random coin-tossing depth-a d-network, and p (resp.,
p′) denote the probability that a particular output wire x receives a 0 when the input
to N is a d-vector drawn from the probability distribution D (resp., D′). If D ≤ D′
then p ≥ p′.

Proof. If N is deterministic, the claim follows easily from consideration of the
following “monotone” property of deterministic networks: When the value passed to
a single input wire is changed from 0 to 1 (resp., from 1 to 0) no output changes from
1 to 0 (resp., 0 to 1).

If N is not deterministic, then it is given by some fixed probability distribution
D′′ over the set of all deterministic depth-a d-networks. Since the claim holds for
every deterministic network, we can prove that the claim holds for N by averaging
over D′′.

5. Analysis of the no-elimination tournament. Let us define a 0-1 no-
elimination (d, p)-tournament, d ≥ 0, as an execution of the depth-d shuffle-“+”
d-network on a random 0-1 input d-vector drawn from the distribution ΦB(d, p). In
this section, we analyze the behavior of the 0-1 no-elimination tournament. Our
analysis culminates with Lemma 5.16, which establishes that the 0-1 no-elimination
tournament has a surprisingly strong ranking property. This ranking property is used
to carry out the applications of subsequent sections. (It is noteworthy that the depth-
d shuffle-“+” d-network is equivalent to Batcher’s bitonic merge network. We have
chosen not to adopt Batcher’s terminology because we plan to expose a property of
the network that is largely unrelated to merging.)

The central idea underlying the proof of Lemma 5.16 is that for almost all output
wires x of a 0-1 no-elimination (d, p)-tournament, the probability that x receives a 0
(which is a function of p) exhibits sharp threshold behavior; there is a probability q
(which depends on x) such that x is extremely unlikely (resp., likely) to receive a 0
whenever p is at least a bit smaller (resp., larger) than q. Thus, if we permute the
output wires of the 0-1 no-elimination (d, p)-tournament according to the sorted order
of their associated threshold probabilities, we will tend to produce an approximately
sorted 0-1 output vector.

The proof of Lemma 5.16 is rather lengthy and is organized into a number of
sections. In section 5.1 we define and analyze certain output probability polynomials.
In section 5.2 we study the inverse functions associated with these output probability
polynomials. In section 5.3 we provide a number of auxiliary definitions. In section
5.4 we present several technical lemmas. In section 5.5 we complete the proof of
Lemma 5.16.

5.1. The output polynomials. In this section we analyze the probability that
each wire in a 0-1 no-elimination (d, p)-tournament carries a 0. We define the output
probability polynomials σα(p) and prove two basic lemmas concerning these polyno-
mials.

Lemma 5.1. Let x0 and x1 denote the two intermediate wires associated with
some gate in a 0-1 no-elimination (d, p)-tournament. Then the events E0 = “x0

HYPERCUBIC SORTING NETWORKS 15

receives a 0” and E1 = “x1 receives a 0” are independent.
Proof. Assume without loss of generality that: (i) x0 is intermediate wire 2 · j on

level i; and (ii) x1 is intermediate wire 2·j+1 on level i, 0 ≤ i < d, 0 ≤ j < pow(d−1).
Note that the index of every level 0 input wire with a path to x0 has a 0 in bit position
d− i− 1. Similarly, the index of every level 0 input wire with a path to x1 has a 1 in
bit position d− i− 1. Thus, wires x0 and x1 depend on disjoint subsets of the level 0
input wires, and the claim of the lemma follows.

With each binary string α, we associate the function σα(p), defined inductively
as follows:

(i) σε(p) = p;
(ii) σα0(p) = 2 · σα(p)− σα(p)2; and
(iii) σα1(p) = σα(p)2.

One may easily verify that for each binary string α, the following conditions hold: (i)
σα(0) = 0; (ii) σα(1) = 1; (iii) σα(p) is monotonically increasing for p in [0, 1]; (iv)
σα(p) is a degree-pow(|α|) polynomial in p. Conditions (i), (ii), and (iii) imply that
σα(p) is in [0, 1] for all p in [0, 1].

Lemma 5.2. Output wire j of a 0-1 no-elimination (d, p)-tournament receives a
0 with probability σα(p), where α = jd−1 · · · j0.

Proof. We prove instead the following stronger claim for all i and j such that
0 ≤ i < d, 0 ≤ j < pow(d):

(i) Input wire j at level i receives a 0 with probability σα(p), where α = ji−1 · · · j0.
(ii) Intermediate wire j at level i receives a 0 with probability σα(p), where α =

ji · · · j1.
(iii) Output wire j at level i receives a 0 with probability σα(p), where α = ji · · · j0.

For i = 0, part (i) of the claim is immediate since σε(p) = p. Now let us assume
that part (i) of the claim holds for some i, 0 ≤ i < d. Then part (ii) of the claim
holds for i since the value received by input wire j is passed to intermediate wire
jd−2 · · · j0jd−1. Similarly, it is easy to show that if part (iii) of the claim holds for
some i, 0 ≤ i < d − 1, then part (i) holds for i + 1, since output wire j at level i is
the same as input wire j at level i+ 1.

It remains only to prove that if part (ii) of the claim holds for some i, 0 ≤ i < d,
then part (iii) holds for i. Accordingly, let x0 and x1 denote the pair of intermediate
wires associated with some gate y at level i, assume that part (ii) of the claim holds
for these wires, and that the associated d-bit indices of x0 and x1 are βα0 and βα1,
respectively, where |α| = i. Then

Pr{x0 receives a 0} = Pr{x1 receives a 0} = σα(p),

and these probabilities are independent by Lemma 5.1. Hence, the “min” output of
gate y (i.e., the output wire with index βα0 at level i) receives a 0 with probability

2 · σα(p)− σα(p)2 = σα0(p),

and the “max” output of gate y (i.e., the output wire with index βα1 at level i)
receives a 0 with probability

σα(p)2 = σα1(p),

as required.
Let α and β denote the binary sequences corresponding to the win-loss sequences

WLWLLWLL and LLLWWWWW mentioned in section 1. We can easily calculate that σα(1/2) ≈

16 TOM LEIGHTON AND C. GREG PLAXTON

0.796 and σβ(1/2) ≈ 0.882, suggesting that the player with record α should be rated
above the player with record β.

Lemma 5.3. For all binary strings α and β, and all p in [0, 1],

σβα(p) = σα(σβ(p)).

Proof. For α = ε, the result is immediate since σε(p) = p. For |α| > 0, we prove
the result by induction on |α|. For the base case, assume that α = x where x is either
0 or 1. Since σ0(p) = 2 · p − p2 and σ1(p) = p2, we find that σβx(p) = σx(σβ(p)),
as required. Our induction hypothesis is that the claim holds for all α and β with
|α| ≤ i, for some i ≥ 1. For the induction step, we will prove that the claim holds for
all α, β with α = α′x, x equal to 0 or 1, and |α′| = i. The proof follows from three
applications of the induction hypothesis, since

σβα(p) = σβα′x(p) = σx(σβα′(p)) = σx(σα′(σβ(p))) = σα′x(σβ(p)) = σα(σβ(p)).

5.2. The inverses of the output polynomials. In order to better understand
the behavior of the output polynomial σα, it will be useful to study its inverse function.
In particular, for any binary string α, we define Γα(z) to be the function such that

Γα(σα(p)) = p

for all p in [0, 1]. Unlike σα, Γα is not a polynomial for |α| ≥ 1. However, like σα,
there is a simple inductive scheme for computing Γα. This is demonstrated by the
following lemma.

Lemma 5.4. For all binary strings α, and all z in [0, 1],

Γε(z) = z,

Γ0α(z) = 1−
√

1− Γα(z),

Γ1α(z) =
√

Γα(z).

Proof. Since σε(p) = p for all p in [0, 1], σε is the identity function, and thus Γε
is also the identity function. Hence Γε(z) = z for all z in [0, 1].

By Lemma 5.3, we have

σ0α(p) = σα(σ0(p))

= σα(2 · p− p2)

for all p in [0, 1]. Setting p = Γ0α(z), we find that

σα(2 · Γ0α(z)− Γ0α(z)2) = σ0α(Γ0α(z))

= z

= σα(Γα(z)).

Since σα is a monotonically increasing function, we have

2 · Γ0α(z)− Γ0α(z)2 = Γα(z).

Solving for Γ0α(z), we obtain

Γ0α(z) = 1−
√

1− Γα(z),

HYPERCUBIC SORTING NETWORKS 17

as desired.
The proof that Γ1α(z) =

√
Γα(z) proceeds in a similar fashion. By Lemma 5.3,

we have

σ1α(p) = σα(σ1(p))

= σα(p2)

for all p in [0, 1]. Setting p = Γ1α(z), we find that

σα(Γ1α(z)2) = σ1α(Γ1α(z))

= z

= σα(Γα(z)).

Since σα is a monotonically increasing function, we have

Γ1α(z)2 = Γα(z)

and thus

Γ1α(z) =
√

Γα(z),

as desired.
Let α and β denote the binary sequences corresponding to the win-loss sequences

WLWLLWLL and LLLWWWWW mentioned in section 1. We can easily calculate that Γα(1/2) ≈
0.437 and Γβ(1/2) ≈ 0.381, suggesting that the player with record α should be rated
above the player with record β.

Note that Γα(0) = 0 and Γα(1) = 1 for all binary strings α. The following lemma
is analogous to Lemma 5.3.

Lemma 5.5. For all binary strings α and β, and all z in [0, 1],

Γβα(z) = Γβ(Γα(z)).

Proof. The proof is similar to that of Lemma 5.3.

5.3. Auxiliary definitions. In this section, we state a number of definitions
related to the analysis of the no-elimination tournament. These definitions are used
primarily in sections 5.4 and 5.5, but also appear in subsequent sections.

For all x < y in [0, 1], λ ≥ 1, and d ≥ 0, let

∆(x, y) = lg
y · (1− x)
(1− y) · x,(3)

hα(x, y) =
∆(Γα(x),Γα(y))

∆(x, y)
,(4)

Hλ(x, y, d) =
∑

α:|α|=d
hα(x, y)λ,(5)

η(λ) = sup
0<x<y<1

{
h0(x, y)

λ + h1(x, y)
λ
}
,(6)

γc = inf
λ≥1

lg η(λ) + λ

λ+ 1
≈ 0.822,(7)

µc = sup
λ≥1

1− lg η(λ)

λ
= lg(4− 2 ·

√
2) ≈ 0.228,(8)

υc = −2 · lgµc = −2 · lg lg(4− 2 ·
√

2) ≈ 4.260.(9)

18 TOM LEIGHTON AND C. GREG PLAXTON

Informally, we think of ∆(x, y) as a measure of the “distance” between x and y for
x < y in [0, 1]. The function hα(x, y) may then be viewed as the fractional decrease in
the distance between x and y that results from applying Γα to both x and y. In section
5.4, we use an inductive potential argument, with potential function H(x, y, d), to
show that hα(x, y) is very small for most α. The function η(λ) arises in the process
of bounding the size of the potential function. The constants γc and µc are related to
the notion of an admissible triple, which we define below. (Note that the constant γc
and µc appear in the statements of Lemmas 5.6 and 5.7, respectively.) The constant
υc appears in the exponent of the depth bound of section 9.

Setting λ = 3, we can use Lemma 5.11 and elementary calculus to show that

η(3) =
10 + 7 · √2

16
,

which is attainable for z = 1/2. This implies γc ≤ [lg(10 + 7 · √2)− 1]/4 ≈ 0.829 and
µc ≥ [5 − lg(10 + 7 · √2)]/3 = lg(4 − 2 · √2) ≈ 0.228. Using numerical calculations,
it can be shown that γc ≈ 0.822, which is attained for λ ≈ 3.609 and η(λ) ≈ 1.133.
On the other hand, the supremum of (1 − lg η(λ))/λ, λ ≥ 1, is actually achieved for
λ = 3, so µc = lg(4− 2 · √2).

Definition 5.1. A triple (γ, ε, d), where 0 < γ < 1, 0 ≤ ε < 1/2, and d ≥ 0, is
defined to be admissible if and only if

γ · d · (λ+ 1) ≥ d · lg η(λ) + λ · [d+ lg lg(1/ε) + 2− lg(1− 2 · ε)]

for some λ ≥ 1.
Definition 5.1 is somewhat messy to apply directly. The following pair of technical

lemmas characterize two classes of admissible triples that arise in our applications.
Lemma 5.6. For each function ε(d) = pow(−pow(O(d))), there is a function

f(d) = O(lg lg(1/ε(d)))/d

such that (γ, ε(d), d) is an admissible triple for all d ≥ 0 and γc + f(d) ≤ γ < 1.
Proof. This follows from routine calculations involving Definition 5.1 and equation

(7).
Lemma 5.7. For each function ε(d) = pow(−pow(µ ·d)), where µ(d) = µc− 1

f(d)

with f(d) = ω(1) and f(d) = o(d), there is a function g(d) = o(1) such that(
1− 3− g(d)

4 · f(d)
, ε(d), d

)

is an admissible triple for all d ≥ 0.
Proof. This follows from routine calculations involving Definition 5.1 and equation

(8).

5.4. Several technical lemmas. In this section, we prove a number of technical
lemmas that are used only in section 5.5 of the paper. Lemma 5.8 shows that the
notion of “distance” associated with the function ∆(x, y) is always at least twice
the difference y − x. Lemma 5.9 provides a useful method for recursively rewriting
expressions of the form hβα(x, y). Lemma 5.10 gives a maximization result that is
used within Lemma 5.11 to obtain a simplified definition of η(λ). Lemma 5.12 proves
that the potential function H(x, y, d) is bounded from above by η(λ)d. Lemma 5.13

HYPERCUBIC SORTING NETWORKS 19

shows that for certain small values of ε, the difference Γα(1− ε)− Γα(ε) is small for
most binary strings α.

Lemma 5.8. For all x < y in [0, 1],

y − x ≤ ∆(x, y)/2.

Proof. Define

ρ(z) =
1

4
· ln z

1− z − z

for z in [0, 1]. Since

dρ(z)

dz
=

1

4
·
(

1

z
+

1

1− z
)
− 1 ≥ 0

for z in [0, 1], we know that ρ(z) is a nondecreasing function of z. Hence,

∆(x, y)

4 · lg e − (y − x) =
lg y·(1−x)

(1−y)·x
4 · lg e − y + x

= ρ(y)− ρ(x)
≥ 0,

and thus

y − x ≤ ∆(x, y)

4 lg e
≤ ∆(x, y)/2.

Lemma 5.9. For all x < y in [0, 1], we have (i) hε(x, y) = 1, and (ii) for all
binary strings α and β,

hβα(x, y) = hβ(Γα(x),Γα(y)) · hα(x, y).

Proof. Since Γε is the identity function, hε(x, y) = 1 for all x < y in [0, 1]. We
prove the second part of the lemma by observing that

hβα(x, y) =
∆(Γβα(x),Γβα(y))

∆(x, y)

=
∆(Γβα(x),Γβα(y))

∆(Γα(x),Γα(y))
· ∆(Γα(x),Γα(y))

∆(x, y)

=
∆(Γβ(Γα(x)),Γβ(Γα(y)))

∆(Γα(x)Γα(y))
· hα(x, y)

= hβ(Γα(x),Γα(y)) · hα(x, y),

where the second last equation follows from Lemma 5.5.
Lemma 5.10. Let f0, f1, and f denote strictly increasing and continuously dif-

ferentiable functions on (0, 1), and set

g(x, y, λ) =

(
f0(y)− f0(x)
f(y)− f(x)

)λ
+

(
f1(y)− f1(x)
f(y)− f(x)

)λ

20 TOM LEIGHTON AND C. GREG PLAXTON

for 0 < x ≤ y < 1 and λ ≥ 1. Then for all x ≤ y in (0, 1),

g(x, y, λ) ≤ sup
z∈(0,1)

g(z, z, λ).

Proof. Note that because f0, f1, and f are strictly increasing and differentiable,
l’Hôpital’s rule implies that g(x, y, λ) is well defined even if x = y.

Given any x < y in (0, 1), we prove below that there exists a p such that x < p < y
and

max{g(x, p, λ), g(p, y, λ)} ≥ g(x, y, λ).

This is sufficient to prove that the maximum of g(x, y, λ) occurs for x ∼ y.
Choose p so that

f(p) =
f(x) + f(y)

2
.

We can always find such a p between x and y since f is a continuous function. Then
set

u0 = f0(p)− f0(x),
u1 = f0(y)− f0(p),
v0 = f1(p)− f1(x),
v1 = f1(y)− f1(p),
w = f(p)− f(x)

= f(y)− f(p).

Note that u0, u1, v0, v1, and w are all strictly positive since f0, f1, and f are strictly
increasing.

By definition,

g(x, p, λ) =
(u0

w

)λ
+
(v0
w

)λ
,

g(p, y, λ) =
(u1

w

)λ
+
(v1
w

)λ
,

g(x, y, λ) =

(
u0 + u1

2 · w
)λ

+

(
v0 + v1
2 · w

)λ
.

For λ ≥ 1, the function zλ is convex, and thus

zλ0 + zλ1
2

≥
(
z0 + z1

2

)λ

for all z0 and z1. Hence,

(u0

w

)λ
+
(u1

w

)λ
≥ 2 ·

(
u0 + u1

2 · w
)λ

,

(v0
w

)λ
+
(v1
w

)λ
≥ 2 ·

(
v0 + v1
2 · w

)λ
.

HYPERCUBIC SORTING NETWORKS 21

Summing the preceding pair of inequalities, we find that

g(x, p, λ) + g(p, y, λ) ≥ 2 · g(x, y, λ),

and hence max{g(x, p, λ), g(p, y, λ)} ≥ g(x, y, λ), as desired.
Lemma 5.11. For all λ ≥ 1,

η(λ) = sup
0≤z≤1

[(
1 +
√
z

2

)λ
+

(
1 +
√

1− z
2

)λ]
.

Proof. We have

h0(x, y)
λ + h1(x, y)

λ

=

(
∆(Γ0(x),Γ0(y))

∆(x, y)

)λ
+

(
∆(Γ1(x),Γ1(y))

∆(x, y)

)λ

=

 lg Γ0(y)·(1−Γ0(x))

(1−Γ0(y))·Γ0(x)

lg y·(1−x)
(1−y)·x

λ

+

 lg Γ1(y)·(1−Γ1(x))

(1−Γ1(y))·Γ1(x)

lg y·(1−x)
(1−y)·x

λ

=

 lg Γ0(y)

1−Γ0(y)
− lg Γ0(x)

1−Γ0(x)

lg y
1−y − lg x

1−x

λ

+

 lg Γ1(y)

1−Γ1(y)
− lg Γ1(x)

1−Γ1(x)

lg y
1−y − lg x

1−x

λ

=

(
f0(y)− f0(x)
f(y)− f(x)

)λ
+

(
f1(y)− f1(x)
f(y)− f(x)

)λ
,

where

f0(z) = lg
Γ0(z)

1− Γ0(z)

= lg
1−√1− z√

1− z ,

f1(z) = lg
Γ1(z)

1− Γ1(z)

= lg

√
z

1−√z ,

f(z) = lg
z

1− z .

It is easily verified that f0(z), f1(z), and f(z) are strictly increasing and con-
tinuously differentiable in (0, 1). By Lemma 5.10, this means that the supremum of
h0(x, y)

λ +h1(x, y)
λ occurs for x ∼ y. Using l’Hôpital’s rule and elementary calculus,

we can show that

lim
ε→0

h0((1− ε) · y, y) =
df0(y)/dy

df(y)/dy

=
1 +
√

1− y
2

.

Reasoning in a similar fashion, we can also show that

lim
ε→0

h1((1− ε) · y, y) =
df1(y)/dy

df(y)/dy

22 TOM LEIGHTON AND C. GREG PLAXTON

=
1 +
√
y

2
.

The proof of the lemma now follows from the definition of η(λ).
Lemma 5.12. For all x < y in [0, 1], λ ≥ 1, and d ≥ 0, we have

Hλ(x, y, d) ≤ η(λ)d.

Proof. For d = 0, the result is immediate since Hλ(x, y, 0) = 1. For d > 0,
Lemma 5.9 implies that

Hλ(x, y, d) =
∑

α:|α|=d−1

(
h0α(x, y)λ + h1α(x, y)λ

)

=
∑

α:|α|=d−1

(
h0(Γα(x),Γα(y))λ + h1(Γα(x),Γα(y))λ

) · hα(x, y)λ

≤
∑

α:|α|=d−1

η(λ) · hα(x, y)λ

= η(λ) ·Hλ(x, y, d− 1).

Hence, Hλ(x, y, d) ≤ η(λ)d, as required.
Lemma 5.13. For any admissible triple (γ, ε, d), there are at most pow(γ · d)

length-d binary strings α such that

Γα(1− ε)− Γα(ε) > (1− 2 · ε) · pow((γ − 1) · d)/4.
Proof. By Lemma 5.8, the definition of hα, and the definition of ∆, we have

Γα(1− ε)− Γα(ε) ≤ ∆(Γα(ε),Γα(1− ε))/2
= hα(ε, 1− ε) ·∆(ε, 1− ε)/2
≤ hα(ε, 1− ε) · lg(1/ε).

Hence, it is sufficient to prove that at most pow(γ ·d) length-d binary strings α satisfy

hα(ε, 1− ε) > (1− 2 · ε) · pow((γ − 1) · d)
4 · lg(1/ε)

.

Suppose the latter claim were false. Then

Hλ(ε, 1− ε, d) > pow(γ · d) ·
[
(1− 2 · ε) · pow((γ − 1) · d)

4 · lg(1/ε)

]λ
= pow(γ · d · (λ+ 1)− λ · [d+ lg lg(1/ε) + 2− lg(1− 2 · ε)])
≥ η(λ)d,

which contradicts Lemma 5.12.

5.5. The no-elimination tournament theorem. In this section, we complete
the proof of Lemma 5.16.

Lemma 5.14. For any admissible triple (γ, ε, d), there exists a set A of at least
pow(d) − pow(γ · d) output wires of the depth-d shuffle-“+” d-network, and a fixed
permutation π of A, such that for each p the set A can be partitioned into three sets
B, A−, and A+ where:

HYPERCUBIC SORTING NETWORKS 23

(i) the set of output wires B is mapped to a contiguous interval by the permutation
π,

(ii) |B| < pow(γ · d),
(iii) A− (resp., A+) is the set of all output wires in A \ B mapped to positions

lower (resp., higher) than B by π, and
(iv) after execution of a 0-1 no-elimination (d, p)-tournament, each output wire

in A− (resp., A+) receives a 1 (resp., 0) with probability less than ε.
Proof. Let (γ, ε, d) denote a given admissible triple, and choose A to be the set

(guaranteed to exist by Lemma 5.13) of at least pow(d) − pow(γ · d) output wires
indexed by length-d binary strings α such that

Γα(1− ε)− Γα(ε) ≤ δ,
where δ = (1 − 2 · ε) · pow((γ − 1) · d)/4. (Note that 0 < δ < 1/4 since (γ, ε, d) is
an admissible triple.) We remark that, using Lemma 5.4, Γα(z) can be computed in
O(|α|) arithmetic operations (counting square root as a single operation) for any z in
[0, 1]. Hence, the set A can be computed in O(d · pow(d)) operations. (This may be
viewed as a relatively efficient time bound since, for example, it is linear in the size
of the depth-d shuffle-“+” d-network.)

In fact, we can compute an appropriate permutation π within the same asymptotic
time bound: We set π to the permutation of set A that sorts the Γα(ε) values in
ascending order. Ties may be broken arbitrarily. It remains to prove that our choice
of A and π satisfies the requirements of the lemma.

Let p− = max{0, p − δ} and p+ = min{1, p + δ}. (Recall that p is the 0-1 no-
elimination tournament input parameter.) Let B denote the set of binary strings
α in A for which Γα(ε) is contained in [p−, p]. Because the σα’s are monotonically
increasing, and using linearity of expectation, we have∑

α:|α|=d
|σα(p+)− σα(p−)| =

∑
α:|α|=d

(
σα(p+)− σα(p−)

)

=

 ∑
α:|α|=d

σα(p+)

−

 ∑
α:|α|=d

σα(p−)

= (p+ − p−) · pow(d)

≤ 2 · δ · pow(d).

For each α in B we have σα(p−) ≤ ε. (If p− = 0 then σα(p−) = σα(0) = 0, and if
p− = p − δ then σα(p−) ≤ σα(Γα(ε)) = ε.) Furthermore, for each α in B we have
σα(p+) ≥ 1 − ε. (If p+ = 1 then σα(p+) = σα(1) = 1, and if p+ = p + δ then
σα(p+) ≥ σα(Γα(1− ε)) = 1− ε.) Hence,

|σα(p+)− σα(p−)| ≥ 1− 2 · ε.
The preceding inequalities imply that

|B| ≤ 2 · δ · pow(d)/(1− 2 · ε)
< pow(γ · d).

Note that the set of binary strings B satisfies conditions (i) and (ii) of the lemma.
For the given choice of B, define sets A− and A+ to satisfy condition (iii). It remains
only to address condition (iv).

24 TOM LEIGHTON AND C. GREG PLAXTON

Let α denote the binary string associated with an arbitrary output in A−. Thus,
Γα(ε) < p−, which implies Γα(1 − ε) < p. Hence, σα(p) > 1 − ε. (The probability
that output α receives a 1 is less than ε.)

Similarly, let α denote the binary string associated with some output in A+.
Thus, Γα(ε) > p and hence σα(p) < ε. (The probability that output α receives a 0 is
less than ε.)

Lemma 5.15. Let d, k, n, and p be such that d ≥ 0, n = pow(d), 0 ≤ k < n,
and p = k/n. Let N denote an arbitrary d-network, and assume that output wire x
of N receives a 0 (resp., 1) with probability q ≤ ε when the input to N is drawn from
ΦB(d, p). Further assume that output wire x receives a 0 (resp., 1) with probability qi
when the input is drawn from ΦR(d, i), 0 ≤ i < n. Then qk ≤ 2 · ε.

Proof. Informally, the lemma states that network N behaves similarly on inputs
drawn from ΦB(d, p) and ΦR(d, k). Note that

q =
∑

0≤i<n

(
n

i

)
pi(1− p)n−iqi

≥
∑

k≤i<n

(
n

i

)
pi(1− p)n−iqi

≥ qk
∑

k≤i<n

(
n

i

)
pi(1− p)n−i

≥ qk/2,
where the last two inequalities follow from Lemma 4.11 and Theorem B.1, res-
pectively.

Lemma 5.16. For any admissible triple (γ, ε, d), we have

MosthD(d, d, bγ · dc, O(pow(d) · ε)) ≤ d.
Proof. Let N denote the depth-d shuffle-“+” d-network. It follows from Lem-

mas 5.14 and 5.15 that N belongs to MosthN (d, d, bγ · dc, O(pow(d) · ε)), justifying the
claimed inequality.

(We have opted to omit the detailed proof of the above claim, which is straightfor-
ward but tedious. An outline of the proof is as follows. First, we rewrite the proof obli-
gation by successively expanding the definitions of MosthN (d, d, bγ · dc, O(pow(d) · ε)),
bγ · dc-mostly-sorted, and bγ · dc-sorted. Having done this, we arrive at a new proof
obligation in which the input to network N is assumed to be drawn from ΦR(d, k),
0 ≤ k < pow(d). Furthermore, the new proof obligation is such that it would fol-
low immediately from Lemma 5.14 if only the input were assumed to be drawn from
ΦB(d, p) instead of ΦR(d, k). Lemma 5.15 is then used to complete the proof by re-
lating the behavior of network N on inputs drawn from ΦB(d, p) to its behavior on
inputs drawn from ΦR(d, k).)

Lemma 5.17. For any admissible triple (γ, ε, a) and all d, 0 ≤ a ≤ d, we have

MostD(d, a, bγ · ac, O(pow(a) · ε)) ≤ a,
MosthD(d, a, bγ · ac, O(pow(a) · ε)) = O(a).

Proof. It follows easily from Lemma 5.16 that the (d, a)-network consisting of
the d-permutation ↪→a

d followed by the depth-a shuffle-“+” d-network has the desired
properties. The additional depth required to implement the d-permutation ↪→a

d is

HYPERCUBIC SORTING NETWORKS 25

min{a, d− a} ≤ a for a hypercubic construction and 0 for a nonhypercubic construc-
tion.

Lemma 5.16 formalizes a central claim of the paper, namely, that the 0-1 no-
elimination tournament has a surprisingly strong ranking property. Though stated
in the 0-1 domain, Lemma 5.16 can easily be interpreted in the permutation domain.
Such an interpretation is provided by the following theorem, which is stated without
proof. (We remark that the extra factor of pow(d) in the error bound arises because
|Φπ| = pow(d)+1 for any d-permutation π. Also, Lemma 5.17, and not Theorem 5.1,
is used to derive the results of subsequent sections.)

Theorem 5.1. Let (γ, ε, d) be an admissible triple, and define set A and per-
mutation π as in the proof of Lemma 5.14. Let a random d-permutation drawn
from ΠR(d) be input to a depth-d shuffle-“+” d-network, and let π′ denote the
permutation induced on the output wires of A. Then the permutation obtained by
applying π to π′ is sorted to within pow(γ · d) positions with probability at least
1−O(pow(2 · d) · ε).

Finally, we remark that the factors of pow(d), pow(a), and pow(2 ·d) appearing in
the error bounds associated with Lemmas 5.16 and 5.17 and Theorem 5.1 are not best
possible. Lowering these factors would require a much more careful analysis, however,
and from a theoretical point of view, would yield essentially no improvement in the
results of subsequent sections. (Our applications make use of Lemma 5.17 with ε set
far smaller than pow(−c · d) for any constant c > 0.) Of course, from a practical
standpoint, it would be interesting to pin down the error bounds more accurately.
For sufficiently small values of d, we remark that a computer program can be used to
obtain very accurate error estimates.

6. A small-constant-factor network that sorts most inputs. Given Lemma
5.16, it is now a relatively simple task to design a logarithmic-depth network that sorts
a random 0-1 input vector with high probability. The transformation consists of two
basic components informally outlined below:

1. A procedure for augmenting the network of Lemma 5.16, which guarantees
that all but a small fixed subset of the outputs are approximately sorted on
a random 0-1 input vector with high probability, to obtain a network which
guarantees that the entire output vector is approximately sorted on a random
0-1 input vector with high probability.

2. Recursive application of the network obtained from the previous step, with
occasional merge operations in order to correct for items that fall into the
wrong recursive subproblem due to boundary effects.

If the network of Lemma 5.16 worked on all 0-1 input vectors, and if we didn’t care
about constant factors, then it would be straightforward to devise a logarithmic-depth
sorting network using the approach described above. Since we do care about constant
factors and have to worry about probabilities, however, our solution will be somewhat
more involved, and the proof will be somewhat more tedious. Nevertheless, we will
still follow the basic approach outlined above in order to establish Lemma 6.1, the
main technical result of this section.

Lemma 6.1. For all a and d such that 0 ≤ a ≤ d, and each function ε(d) =
pow(−pow(o(d))), there is a function f(d) = o(1) such that

SortD(d, a, ε(a)) ≤ 2− γ2
c + f(a)

1− γc · a.

Furthermore, there is a deterministic d-network that achieves this bound.

26 TOM LEIGHTON AND C. GREG PLAXTON

Note that (2− γ2
c)/(1− γc) ≈ 7.44. The following theorem provides an interpre-

tation of Lemma 6.1 in the permutation domain.
Theorem 6.1. For each function ε(d) = pow(−pow(o(d))), there is a function

f(d) = o(1) and a deterministic d-network of depth

2− γ2
c + f(d)

1− γc · d

that sorts a random d-permutation drawn from ΠR(d) with probability at least 1−ε(d).
Proof. Let n = pow(d). If π is a random d-permutation drawn from ΠR(d), then

φkπ is drawn at random from ΦR(d, k), 0 ≤ k ≤ n. By Lemma 6.1 (with a = d), there
is a deterministic d-network N of the desired depth that sorts a random 0-1 d-vector
drawn from ΦR(d, k), 0 ≤ k ≤ n, with probability at least 1− ε(d) for each function
ε(d) = pow(−pow(g(d)))/(n + 1) with g(d) = o(d). By Lemma 4.2, d-network N
sorts d-permutation π if and only if it sorts the n+1 0-1 d-vectors in Φπ. This occurs
with probability at least 1− (n+1) · ε(d) = 1−pow(−pow(g(d))), as required.

Lemma 6.2. For all a, b, and d such that 0 ≤ b ≤ a ≤ d, and all ε and ε′ in
[0, 1], we have

SortD(d, a, ε+ 2 · ε′) ≤ SortD(d, a, b, ε) + SortD(d, b, ε′) + 2 ·MergeD(d, b, 1).

Proof. We may assume that a > b, since the claim is trivial otherwise. We
argue that a (d, a)-network in SortN (d, a, ε+ 2 · ε′) can be constructed by composing
the following: (a) any (d, a)-network in SortN (d, a, b, ε); (b) a random d-permutation
drawn from ΠR(d, b); (c) any (d, a)-network in SortN (d, b, ε′); (d) any (d, b + 1)-
network in MergeN (d, b, 1); (e) the d-permutation π in Π(d, a) that maps wire i to
wire (i+ pow(b)) mod pow(a), 0 ≤ i < pow(a), within each a-cube; (f) any (d, b+ 1)-
network in MergeN (d, b, 1); (g) the d-permutation π−1; and (h) the d-permutation in
Π(d, a) that exchanges the lowest and highest b-cubes within each a-cube. (Note that
this construction does indeed give a (d, a)-network.)

We may assume that the input is an a-random 0-1 d-vector. Consider an arbitrary
a-cube A. After stage (a) of the construction, A is b-sorted with probability at least
1− ε. The output of stage (b) is b-random by Lemma 4.9. Hence, each b-cube of A is
sorted with probability at least 1− ε′ after stage (c). Furthermore, with probability
at least 1− ε, no two nonconsecutive b-cubes of A receive nontrivial input.

In what follows, we complete the proof by showing that A is sorted after stage (h)
whenever (i) A is b-sorted after stage (a), and (ii) every b-cube of A is sorted after
stage (c). (Note that these conditions are satisfied with probability at least 1−ε−2·ε′.)

Accordingly, assume that conditions (i) and (ii) hold. Then A is sorted after
stage (c) with the exception of at most two nontrivial b-cubes of A. If A contains
0 or 1 nontrivial b-cubes after stage (c), then A is easily seen to be sorted after
stages (c), (d), and (h). If there are 2 nontrivial b-cubes in A after stage (c) then
they are adjacent. If b-cubes 2 · j and 2 · j + 1 are nontrivial for some integer j,
0 ≤ j < pow(a− b− 1), then A is sorted after stages (d) and (h). If b-cubes 2 · j + 1
and 2 ·j+2 are nontrivial for some integer j, 0 ≤ j < pow(a−b−1)−1, then stage (d)
has no effect and the output of stage (h) is sorted.

Lemmas 4.3, 4.6, and 6.2 together imply that

SortD(d, a, ε) ≤ SortD(d, a, b, ε) +O(b)(10)

for all a, b, and d such that 0 ≤ b ≤ a ≤ d, and all ε in [0, 1].

HYPERCUBIC SORTING NETWORKS 27

Lemma 6.3. For all a, b, and d such that 0 ≤ b ≤ a ≤ d, and all ε in [0, 1], we
have

SortD(d, a, b+ 1, ε) ≤ MostD(d, a, b, ε) + InsertD(d, a− b).
Proof. We argue that a (d, a)-network in SortN (d, a, b+ 1, ε) can be constructed

by composing the following: (a) any (d, a)-network in MostN (d, a, b, ε); (b) an appro-
priate d-permutation π in Π(d, a); (c) the d-permutation ↪→b

d; (d) any (d, a−b)-network
in InsertN (d, a− b); and (e) the d-permutation←↩bd. (Note that this construction does
indeed give a (d, a)-network.)

We may assume that the input is an a-random 0-1 d-vector. By the definition of
MostN (d, a, b, ε), there is some d-permutation π in Π(d, a) such that each a-cube is
b-mostly-sorted with respect to π with probability at least 1− ε after stage (a). This
is the desired stage (b) d-permutation π. Consider an arbitrary a-cube A. In what
follows, we complete the proof by showing that if A is b-mostly-sorted with respect
to π after stage (a), then A is (b+ 1)-sorted after stage (e).

Accordingly, let us assume that A is b-mostly-sorted with respect to π after
stage (a). Then each (a− b)-cube of A contains an insertion instance after stage (c).
Thus, each (a − b)-cube of A is sorted after stage (d). Furthermore, note that each
(a − b)-cube of A contains the same number of 0’s to within 2. Hence A has a dirty
region of size at most 2 · pow(b) = pow(b+ 1) after stage (e), as desired.

Lemma 6.4. For all a, b, and d such that 0 ≤ b ≤ a ≤ d, and all γ, ε, and ε′ in
[0, 1], we have

SortD(d, a, b′ + 3, ε+ 2 · ε′) ≤ SortD(d, a, b, ε) + SortD(d, b+ 2, b′ + 1, ε′)
+ MergeD(d, b− b′, 1),

where b′ = bγ · (b+ 2)c.
Proof. We may assume that b > b′ + 3 and a > b + 2, since the claim is

trivial otherwise. Let m = pow(a − b − 2). We argue that a (d, a)-network in
SortN (d, a, b′ + 3, ε+ 2 · ε′) can be constructed by composing the following: (a) any
(d, a)-network in SortN (d, a, b, ε); (b) a random d-permutation drawn from ΠR(d, b+
2); (c) any (d, b + 2)-network in SortN (d, b+ 2, b′ + 1, ε′); (d) an appropriate d-
permutation π in Π(d, a); (e) any (d, b−b′+1)-network in MergeN (d, b− b′, 1); and (f)
an appropriate d-permutation π′ in Π(d, a). (Note that this construction does indeed
give a (d, a)-network.)

We may assume that the input is an a-random 0-1 d-vector. By the definition of
SortN (d, a, b, ε), each a-cube is b-sorted with probability at least 1− ε after stage (a).
The output of stage (b) is (b+ 2)-random by Lemma 4.9. Hence, each (b+ 2)-cube is
(b′ + 1)-sorted with probability at least 1 − ε′ after stage (c). Consider an arbitrary
a-cube A, and let Bi denote the ith (b+ 2)-cube of A, 0 ≤ i < m.

After stage (c), note that the following claims hold with probability at least
1−ε−2·ε′: (i) the dirty region of A has size at most pow(b)+2·pow(b′+1) ≤ pow(b+1),
and (ii) every Bi is (b′ + 1)-sorted. Let B−

i (resp., B+
i) denote (b+ 1)-cube 0 (resp.,

1) of Bi. (In other words, B−
i and B+

i are the “low half” and “high half” of Bi,
respectively.) If condition (i) holds, then the dirty region of A is either confined to
some Bi, or to some (B+

i−1, B
−
i) pair, 0 < i < m. Let us say that case 1 holds if,

after stage (c), the dirty region of A is confined to some Bi and conditions (i) and
(ii) hold. Similarly, case 2 holds if, after stage (c), the dirty region of A is confined to
some (B+

i−1, B
−
i) pair and conditions (i) and (ii) hold. Otherwise, case 3 holds. Note

that case 3 holds with probability at most ε+ 2ε′.

28 TOM LEIGHTON AND C. GREG PLAXTON

We now define the d-permutation π to be applied in stage (d). Break each (b+1)-
cube B+

i (resp., B−
i) into pow(b′ + 1) equal-sized sets B+

i,j (resp., B−
i,j) by applying

the (b + 1)-permutation ↪→b′+1
b+1 and then partitioning into (b − b′)-cubes. (In other

words, the set B+
i,j consists of those wires in B+

i with indices congruent to j modulo

pow(b′+1), 0 ≤ j < pow(b′+1).) In the arguments that follow, let Ci denoteB+
i−1∪B−

i

and Cj
i denote the jth (b− b′ + 1)-cube of Ci, 0 < i < m, 0 ≤ j < pow(b′ + 1). The

d-permutation π is defined in such a way that: (i) the wires in B−
0 and B+

m−1 are left

alone, and (ii) for each (B+
i−1, B

−
i) pair, 0 < i < m, the wires of B+

i−1,j and B−
i,j are

brought into opposite halves of (b− b′ + 1)-cube Cj
i in preparation for the merge step

of stage (e), 0 ≤ j < pow(b′ + 1).
If either case 1 or case 2 holds after stage (c), note that the following claims hold

after stage (d), 0 < i < m; (i) all of the B+
i−1,j ’s and B−

i,j ’s are sorted, and (ii) all of

the B+
i−1,j ’s (resp., B−

i,j ’s) have the same number of 0’s to within 2.
If either case 1 or case 2 holds after stage (c), note that the following claims hold

after stage (e), 0 < i < m: (i) every Cj
i is sorted, and (ii) all of the Cj

i ’s have the
same number of 0’s to within 4.

We now define the d-permutation π′ of stage (f) so that: (i) the wires in B−
0 and

B+
m−1 are left alone, and (ii) for each i, 0 ≤ i < m − 1, the Cj

i ’s are interleaved (in

place) by applying the (b+ 1)-permutation ←↩b′+1
b+1 .

Let C0 = B−
0 , Cm = B+

m−1, and assume that either case 1 or case 2 held after
stage (c). Then the following conditions hold after stage (f): (i) Ci has a dirty region
of size at most 4 ·pow(b′+1) = pow(b′+3), 0 ≤ i ≤ m, and (ii) no two nonconsecutive
Ci’s are nontrivial. If 0 or 1 of the Ci’s are nontrivial then A is (b′ + 3)-sorted, and
we are done. Otherwise, we can assume that Ci and Ci+1 are nontrivial for some
particular i, 0 ≤ i < m. It follows easily that case 2 held after stage (c), and that the
output of A after stage (f) is the same as after stage (c); hence, the dirty region of A
has size at most pow(b′ + 1) after stage (f).

Lemmas 4.4, 5.17, and 6.3 together imply that

SortD(d, a, bγ · ac+ 1, O(pow(a) · ε)) ≤ 2 · a− bγ · ac
for any admissible triple (γ, ε, a) and all d such that 0 ≤ a ≤ d. Lemma 5.6 implies
that for any function ε(a) = pow(−pow(o(a))), there is a function f(a) = o(1) such
that (γc + f(a), ε, a) is an admissible triple for all a ≥ 0. Hence,

SortD(d, a, bγ(a) · ac+ 1,pow(−pow(o(a)))) ≤ 2 · a− bγ(a) · ac,(11)

with γ(a) = γc + o(1). Substituting the bounds of equation (11) (with a = b+ 2) and
Lemma 4.3 (with (a, d) = (b− bγ · (b+ 2)c+ 1, d)) into the inequality of Lemma 6.4,
we find that

SortD(d, a, b(γc + o(1)) · (b+ 2)c+ 3,pow(−pow(o(b))) + ε′)
≤ SortD(d, a, b, ε′) + (3− 2 · γc + o(1)) · b,

for all ε′ in [0, 1]. Starting with equation (11), and then iteratively applying the
preceding inequality (with b ≈ γ · a, γ2 · a, γ3 · a, . . .), until equation (10) can be
“inexpensively” applied (e.g., with b = o(a)) we find that

SortD(d, a,pow(−pow(o(a)))) ≤ 2− γ2
c + o(1)

1− γc · a

HYPERCUBIC SORTING NETWORKS 29

for all a and d such that 0 ≤ a ≤ d. Using Lemma 4.8 to eliminate the random
aspects of the preceding construction, the proof of Lemma 6.1 is now complete. (We
remark that randomization has not been used in the operation phase of any level in
our construction. Furthermore, the only nontrivial probability distributions used in
the permutation phase of any level are the ΠR(d, a) distributions, 0 < a ≤ d.)

Note that we have used the AKS sorting network as part of our construction. It
should be emphasized, however, that the AKS sorting network is only used to allow
the function ε(d) of Lemma 6.1 to be set as small as possible. For example, one
could prove Lemma 6.1 with ε(d) = pow(−pow(o(

√
d))) by cutting off the preceding

recurrence at b = o(
√
d) and applying bitonic sort, instead of cutting it off at b = o(d)

and applying the AKS sorting network.

7. An optimal-depth hypercubic network that sorts most inputs. In
this section, we establish the existence of a depth-O(d), hypercubic d-network that
sorts most inputs. Once again we make use of the high-level strategy described at the
beginning of section 6, except that we make use of Lemma 5.17 instead of Lemma 5.16.
In contrast with section 6, however, we do not concern ourselves with constant factor
issues. This leads to a much simpler construction. In particular, we do not require a
hypercubic analogue of Lemma 6.4.

Lemma 7.1. Let ψ(a) be any function such that SorthD(d, ψ(a), 0) = O(d), 0 ≤
a ≤ d. For each function ε(d) = pow(−pow(ψ(d))), we have

SorthD(d, a, ε(a)) = O(a).

Furthermore, there is a deterministic d-network that achieves this bound.
By Lemma 4.5, the function ψ appearing in the statement of Lemma 7.1 is Ω(

√
d).

In fact, by Theorem 9.1, we have

ψ(d) = Ω

(
d

pow(
√
υc · lg d) · lg d

)
.(12)

The following theorem provides an interpretation of Lemma 7.1 in the permutation
domain.

Theorem 7.1. Let the function ψ be as defined in Lemma 7.1. For each function
ε(d) = pow(−pow(ψ(d))), there is a deterministic hypercubic d-network of depth
O(d) that sorts a random d-permutation drawn from ΠR(d) with probability at least
1− ε(d).

Proof. The proof is similar to that of Theorem 6.1.
Lemma 7.2. For all a, b, and d such that 0 ≤ b ≤ a ≤ d, and all ε and ε′ in

[0, 1], we have

SorthD(d, a, ε+ 2 · ε′) ≤ SorthD(d, a, b, ε) + SorthD(d, b, ε′) + 2 ·MergehD(d, b, 1) +O(a).

Proof. The proof is similar to that of Lemma 6.2. The only difference is that we
use an O(a)-depth hypercubic (d, a)-network (guaranteed to exist by Lemma 4.7) to
implement each of the d-permutations of stages (b), (e), (g), and (h). This accounts
for the additive O(a) term on the right-hand side of the inequality.

Lemma 7.3. For all a, b, and d such that 0 ≤ b ≤ a ≤ d, and all ε in [0, 1], we
have

SorthD(d, a, b+ 1, ε) ≤ MosthD(d, a, b, ε) + InserthD(d, a− b) +O(a).

30 TOM LEIGHTON AND C. GREG PLAXTON

Proof. The proof is similar to that of Lemma 6.3. The only difference is that we
use an O(a)-depth hypercubic (d, a)-network (guaranteed to exist by Lemma 4.7) to
implement each of the d-permutations of stages (b), (c), and (e). This accounts for
the additive O(a) term on the right-hand side of the inequality.

Lemmas 4.4, 5.17, and 7.3 together imply that

SorthD(d, a, bγ · ac+ 1, O(pow(a) · ε)) = O(a)(13)

for all d and any admissible triple (γ, ε, a) such that 0 ≤ a ≤ d. Let δ be any
constant, 0 < δ < 1 − γc. By Lemma 5.6, there is a function g(d) = Θ(d) such that
(γc + δ, pow(−pow(g(a))), a) is an admissible triple for all a ≥ 0. Hence,

SorthD(d, a, bγ · ac+ 1,pow(−pow(Θ(a)))) = O(a),

with γ = γc + δ, and 0 ≤ a ≤ d. Lemmas 4.3 and 7.2 (with b = bγ · ac+ 1) now give

SorthD(d, a,pow(−pow(Θ(a))) + 2 · ε′) ≤ SorthD(d, bγ · ac+ 1, ε′) +O(a).

for all ε′ in [0, 1]. Iteratively applying the preceding inequality, we find that

SorthD(d, a,pow(−pow(Θ(b)))) ≤ SorthD(d, b, 0) +O(a)

for all a, b, and d such that 0 ≤ b ≤ a ≤ d. Substituting ψ(a) for b, where the function
ψ is as defined in the statement of Lemma 7.1, we obtain

SorthD(d, a,pow(−pow(ψ(a)))) = O(a)

for all a and d such that 0 ≤ a ≤ d. Using Lemma 4.8 to eliminate the random
aspects of the preceding construction, the proof of Lemma 7.1 is now complete. (We
remark that randomization has not been used in the operation phase of any level in
our construction. Furthermore, the only use of randomization in the permutation
phase arises from applying Lemma 4.7 to implement random d-permutations drawn
from ΠR(d, a), 0 < a ≤ d.)

8. Deterministic merging. Many sorting algorithms, both sequential as well
as parallel, are based on merging. For instance, sequential merge sort and Batcher’s
bitonic sorting network are both based on 2-way merging. Since merging two sorted
lists of length pow(d) requires Ω(d) depth, one cannot hope to obtain a o(d2)-depth
sorting network (hypercubic or otherwise) by repeated 2-way merging. This section
describes how to use a network N that sorts most inputs to construct a high-order
merging network N ′, that is, an m-way merging network for some m� 2. A similar
technique has recently been used by Ajtai, Komlós, and Szemerédi as part of an
improved version of their original sorting network construction [3]. The multiplicative
constant associated with the new construction is significantly lower than the constant
established by Paterson [15], though it remains impractical.

The main idea underlying the results of this section may be informally outlined as
follows. An n-input network is an m-way merging network if and only if it correctly
merges all possible input vectors consisting of m sorted vectors of length n/m. But
as in the case of sorting networks, we can easily prove the following 0-1 principle
for merging networks: Any n-input network that correctly merges every input vector
consisting of m sorted 0-1 vectors of length n/m is an m-way merging network. A
key observation is that the total number of 0-1 vectors which can be obtained by

HYPERCUBIC SORTING NETWORKS 31

concatenating m sorted 0-1 vectors of length n/m is (n/m + 1)m, which is fairly
small (compared to 2n, the total number of 0-1 vectors, for example) when m is not
too large. As a result, we can use an averaging argument to prove that, given any
network N which for all k sorts a sufficiently high fraction (dependent on m) of the(
n
k

)
0-1 vectors with k 0’s and n − k 1’s, there exists a permutation π such that the

network N ′ obtained by composing π with N sorts all of the (n/m+ 1)m 0-1 vectors
consisting of m sorted 0-1 vectors of length n/m; in other words, N ′ is an m-way
merging network with the same size and depth as network N .

Lemma 8.1. Let N denote a (hypercubic) (d, a)-network that sorts each a-cube
with probability at least 1 − ε on any a-random 0-1 input d-vector, m = pow(d − a),
Φ denote a subset of Φ(d), Φ(i) ⊆ Φ(a) denote the projection of the ith a-cube of
Φ onto Φ(a), 0 ≤ i < m, and Φ′ = ∪0≤i<mΦ(i). If |Φ′| < 1/ε, then there exists a
d-permutation π in Π(d, a) such that the (hypercubic) (d, a)-network N ′ obtained by
composing π with N satisfies

Φ ⊆ Sort(N ′, a).

Proof. By definition, (hypercubic) (d, a)-network N can be partitioned along in-
put a-cubes into m disjoint, identical a-networks Na. Thus, it is sufficient to construct
an a-permutation π′ such that the (hypercubic) a-network N ′

a obtained by composing
π′ with Na satisfies

Φ′ ⊆ Sort(N ′
a).

To determine a suitable a-permutation π′, we construct the undirected bipartite
graph with vertex sets U = Φ′ and V = Π(a), and an edge from vertex φ in U to
vertex π in V if and only if the 0-1 a-vector φ is sorted by the a-network obtained
by composing a-permutation π with Na. The degree of every vertex in U is at least
(1 − ε) · (pow(a))!, and so the sum of the degrees of the vertices in U is at least
(1− ε) · |U | · (pow(a))!. This sum is identical to that attained over V , so some vertex
π′ in V has degree at least (1 − ε) · |U | > |U | − 1. Since the degree of π′ is an
integer, vertex π′ is connected to every vertex in U . Thus, the a-network obtained by
composing a-permutation π′ with network Na sorts every element of Φ′.

Lemma 8.2. For nonnegative integers a′ and b′, let N be defined as in Lemma 8.1
with a = a′ + b′ and

(pow(a′) + 1)pow(b′) < 1/ε.

Let Φ denote the set of all 0-1 d-vectors φ such that each a-cube of φ belongs to
ΦM (a′, b′). Then there exists a d-permutation π in Π(d, a) such that the (hypercubic)
(d, a)-network N ′ obtained by composing π with N satisfies

Φ ⊆ Sort(N ′, a).

Proof. We can apply Lemma 8.1 (with Φ′ = ΦM (a′, b′)) since

|ΦM (a′, b′)| = (pow(a′) + 1)pow(b′)

< 1/ε.

Note that in Lemmas 8.1 and 8.2, the depth of N ′ exceeds that of N only by
the depth required to implement a d-permutation in Π(d, a). By Lemma 4.7, this
additional depth is at most 2 · a for a hypercubic construction. (For a nonhypercubic
construction, no additional depth is required to implement a fixed permutation.)

32 TOM LEIGHTON AND C. GREG PLAXTON

9. A near-optimal hypercubic sorting network. In this section, we con-
struct a hypercubic sorting network with nearly logarithmic depth. At a high level,
the construction is simply based on recursive high-order merging: the input is parti-
tioned into some number of equal-sized lists, each of these lists is sorted recursively,
and the resulting set of sorted lists are merged together. The recursion is cut off
by applying bitonic sort on subproblems that are sufficiently small. The primary
question that remains to be addressed is how to perform the merge step efficiently.
Lemmas 9.1 and 9.2 make use of the results of section 8 (specifically, Lemma 8.2) to
reduce the merge step to a smaller sorting problem.

Lemma 9.1. Let ν(d) be any function such that ν(d) = ω(1) and ν(d) = o(d),
and let ε(d) = pow(−pow(µ(d) · d)) where µ(d) = µc − 1

ν(d) . For all a, b, and d such

that 0 ≤ b ≤ a ≤ d, we have

SorthD(d, a,O(pow(b) · ε(b))) ≤ SorthD(d, b, 0) +O(a · ν(a)).
Proof. By Lemma 5.7, there exists a function γ(d) = 1 − 3−o(1)

4·ν(d) such that

(γ(a), ε(a), a) is an admissible triple for all a ≥ 0. For such an admissible triple,
equation (13) then implies

SorthD(d, a, bγ(a) · ac+ 1, O(pow(a) · ε(a))) = O(a).

Lemmas 4.3 and 7.2 now give

SorthD(d, a,O(pow(a) · ε(a)) + 2 · ε′) ≤ SorthD(d, bγ(a) · ac+ 1, ε′) +O(a),

for all ε′ in [0, 1]. Iteratively applying the preceding inequality, we find that

SorthD(d, a,O(pow(b) · ε(b))) ≤ SorthD(d, b, 0) +O(a · ν(a))
for all a, b, and d such that 0 ≤ b ≤ a ≤ d.

Lemma 9.2. Let the function ν be as defined in Lemma 9.1, and let µ(d) =
µc − 2

ν(d) . Then

MergehD(d, a− bµ(b) · bc, bµ(b) · bc) ≤ SorthD(d, b, 0) +O(a · ν(a))
for all a, b, and d such that (2 + lg a) · ν(b) ≤ b ≤ a ≤ d.

Proof. Let ε(d) = pow(−pow(µ′(d) · d)) where µ′(d) = µc− 1
ν(d) . By Lemma 9.1,

SorthD(d, a,O(pow(b) · ε(b))) ≤ SorthD(d, b, 0) +O(a · ν(a))
for all a, b, and d such that 0 ≤ b ≤ a ≤ d. Hence, for b sufficiently large, there exists
a hypercubic (d, a)-network N of depth SorthD(d, b, 0) + O(a · ν(a)) that sorts each
a-cube with probability at least 1− ε′ on any a-random 0-1 input d-vector, where

ε′ = pow(2 · b) · ε(b)
= pow(pow(1 + lg b)− pow(µ′(b) · b))
< pow(−pow(µ′(b) · b− 1)).

The result now follows from Lemma 8.2 since

(pow(a− bµ(b) · bc) + 1)
pow(bµ(b)·bc)

< pow(2 · a · pow(µ(b) · b))
= pow(pow(µ(b) · b+ 1 + lg a))

= pow(pow(µ′(b) · b+ 1 + lg a− b/ν(b)))
≤ pow(pow(µ′(b) · b− 1))

< 1/ε′.

HYPERCUBIC SORTING NETWORKS 33

A recurrence for SorthD(d, a, 0) can be developed using the preceding lemma. Note
that

SorthD(d, a, 0) ≤ min
0≤b≤a

SorthD(d, a− b, 0) + MergehD(d, a− b, b)

for all a, b, and d such that 0 ≤ b ≤ a ≤ d. (This inequality is immediate, since we can
always sort a-cubes by: (i) sorting (a− b)-cubes, and (ii) merging the sorted (a− b)-
cubes within each a-cube.) Let the functions ν and µ be as defined in Lemma 9.2.
Applying Lemma 9.2 to the preceding inequality, we obtain

SorthD(d, a, 0) ≤ min
(2+lg a)·ν(b)≤b≤a

SorthD(d, a− bµ(b) · bc, 0)+SorthD(d, b, 0)+O(a ·ν(a))

for all a, b, and d such that 0 ≤ b ≤ a ≤ d. Fixing d and letting S(a) = SorthD(d, a, 0),
we can write this recurrence more simply as

S(a) ≤ min
(2+lg a)·ν(b)≤b≤a

S(a− bµ(b) · bc) + S(b) +O(a · ν(a)).

In Appendix A it is proven that

S(a) = O(a · pow(
√
υc · lg a) · lg a).

(The constant υc is defined in equation (9).) The preceding bound is proven with
ν(d) = Θ(

√
lg d), and seems to be the best upper bound obtainable using this recur-

rence. Setting a = d, we obtain a proof of the following theorem.
Theorem 9.1. For all d ≥ 0, we have

SorthD(d, 0) = O(d · pow(
√
υc · lg d) · lg d).

10. An optimal randomized hypercubic sorting algorithm. In section 7,
we constructed a depth-O(d) hypercubic sorting network that sorts most d-permuta-
tions. In the present section, we modify that result to obtain a polynomial-time
uniform O(d)-depth, coin-tossing hypercubic network that sorts every d-permutation
(and hence, every d-vector) with high probability. We then use this coin-tossing
network to develop a polynomial-time uniform hypercubic algorithm that sorts every
d-vector in O(d) time with high probability.

We define a hypercubic algorithm as any normal hypercube algorithm. (See [12,
section 3.1.3], for example, for a definition of the class of normal hypercube algo-
rithms.) Every depth-a hypercubic sorting d-network corresponds to a (possibly
nonuniform) hypercubic sorting algorithm that runs in O(a) time on any pow(d)-
processor hypercubic machine. Of course, the converse is not true in general; most of
the basic operations allowed within a normal hypercube algorithm (e.g., the usual set
of arithmetic operations) cannot be performed by a hypercubic sorting network.

A sorting network is hard-wired and has a fixed depth, or “running time,” that
is independent of the input. On the other hand, a sorting algorithm can have an
arbitrarily large gap between its worst-case and average-case running times. For
example, consider a sorting algorithm with the following structure:

1. Apply a random d-permutation drawn from ΠR(d) to the input d-vector.
2. Attempt to sort the resulting d-vector using a time-T (d) method that cor-

rectly sorts most d-permutations.

34 TOM LEIGHTON AND C. GREG PLAXTON

3. Check whether step 2 was successful. If so, halt. If not, return to step 1.

The worst-case running time of such an algorithm is infinite, while the average-case
running time could be as low as O(T (d)). One might attempt to develop a hyper-
cubic sorting algorithm with this structure by using the d-network of Theorem 7.1
to implement step 2 with T (d) = O(d). Step 3 is trivial to implement in O(d) time.
However, two difficulties remain to be addressed.

The first difficulty is that step 1 is not easily implemented by a hypercubic al-
gorithm. We will overcome this difficulty by making use of a depth-d shuffle-“?”
d-network to randomly permute the input data. Although the d-permutation π ap-
plied by such a d-network is not d-random, we prove in Lemma 10.2 below that π is
sufficiently random for our purposes.

The second difficulty is that the hypercubic algorithm corresponding to Theo-
rem 7.1 is not polynomial-time uniform. This undesirable characteristic stems from
our use of Lemma 4.8 to remove the random aspects of our hypercubic network con-
struction. As discussed at the end of section 7, there is only one source of ran-
domness in our construction: Whenever we apply the shuffle-“+” (d, a)-network of
Lemma 5.17, we first apply an a-random d-permutation. We overcome the second
difficulty by replacing such a-random d-permutations with a depth-a unshuffle-“0”
d-network followed by a depth-a shuffle-“?” d-network.

Lemmas 10.2 and 10.3 below prove that we can approximately sort every d-
permutation with high probability by applying a depth-d shuffle-“?” d-network fol-
lowed by a depth-dd/2e shuffle-“+” d-network. Lemma 10.1 widens the range of input
distributions for which the analysis of section 5 can be applied. (Recall that the σα
functions were defined in section 5.1.)

Lemma 10.1. Let N denote a coin-tossing d-network, and assume that for each
length-d binary string α, input wire α is set to 0 with probability pα, and to 1 otherwise.

Further assume that the set of events Eα
def
= “input wire α receives a 0” are mutually

independent. Then the output wire with index α receives a 0 with probability at least
σα(p−) and at most σα(p+), where p− = minα pα and p+ = maxα pα.

Proof. The proof is immediate from Lemma 4.11.

Lemma 10.2. Let a, b, and d denote nonnegative integers such that d = a + b,
(γ, ε, a) be an admissible triple,

δ = (1− 2 · ε) · pow((γ − 1) · a)/4,
ε′ = 2 · e−2·δ2·pow(b),

and N denote the depth-(a + d) d-network obtained by composing the following: (i)
a depth-d shuffle-“?” d-network, and (ii) a depth-a shuffle-“+” d-network. Then
there exists a set A of at least pow(d) − pow(γ · a + b) output wires of N , and a
fixed permutation π of A, such that the following condition holds with probability at
least 1 − pow(d) · ε − pow(a) · ε′ after execution of N on any 0-1 input d-vector φ:
If permutation π is applied to A, then the resulting length-|A| 0-1 output vector is
(γ · a+ b)-sorted.

Proof. Let the 0-1 vector φ in Φ(d, k) be input to d-network N , and set p =
k/ pow(d). Throughout this proof, the symbols α and β will be used to denote binary
strings of length a and b, respectively. A random execution will refer to an execution
of d-network N on input φ.

For each β, define C0(β) (resp., C2(β), C3(β)) as the set of pow(a) level-0 input
wires (resp., level-d input wires, level-(a + d − 1) output wires) with indices of the

HYPERCUBIC SORTING NETWORKS 35

form αβ (resp., αβ, βα) for some α. For each α, define C1(α) as the set of pow(b)
level-(a− 1) output wires with indices of the form βα for some β.

For each β, define pβ to be the fraction of 0’s induced by input φ on C0(β) (i.e., the
number of 0’s assigned to C0(β) divided by pow(a)). Note that p = (

∑
β pβ)/ pow(b).

For each α, let Xα denote the random variable corresponding to the number of 0’s
received by the wires of C1(α) in a random execution, and let qα = Xα/ pow(b). Note
that, unlike the pβ ’s, each qα is a random variable. Furthermore, the random variable
Xα is easily seen to be the sum of pow(b) independent Bernoulli trials, where trial β
has success probability pβ . Thus, a standard Chernoff-type argument [6] implies

Pr{|Xα − p · pow(b)| ≥ ϑ · pow(b)} ≤ 2 · e−2·ϑ2·pow(b)(14)

for all ϑ ≥ 0. Define a random execution to be δ-balanced if

p− δ ≤ qα ≤ p+ δ

for all α. By equation (14), a random execution is δ-balanced with probability at
least 1− pow(a) · ε′ (set ϑ = δ.)

Note that the last a levels of d-network N form a (d, a)-network. Hence, these
levels can be partitioned into pow(b) disjoint depth-a shuffle-“+” a-networks Nβ ,
where the input and output wires of Nβ correspond to C2(β) and C3(β), respectively.
Let Eαβ denote the event that input α of Nβ (i.e., level-d input wire αβ of N) receives
a 0 in a random execution. Let fαβ(p) denote the probability that Eαβ occurs in a
random δ-balanced execution. Let gβα(p) denote the probability that output α of
Nβ (i.e., output βα of N) receives a 0 in a random δ-balanced execution. Note that
fαβ(p) = qα, since wire α of C2(β) receives the value of a wire chosen uniformly at
random from C1(α). Furthermore, since the sets C1(α) are mutually disjoint, we find
that for each β and for each fixed setting of the qα values, the pow(a) events Eαβ are
mutually independent. Lemma 10.1 can therefore be applied to each a-network Nβ
and yields

σα(p− δ) ≤ gβα(p) ≤ σα(p+ δ)

for all α and β.
Define A to be the set (guaranteed to exist by Lemma 5.13) of at least pow(d)−

pow(γ · a+ b) output wires of N indexed by length-d binary strings βα such that

Γα(1− ε)− Γα(ε) ≤ δ.
We set π to the permutation of set A that sorts the Γα(ε) values in ascending order.
Ties may be broken arbitrarily. (As discussed in the proof of Lemma 5.14, the set A
and permutation π can be computed efficiently.) It remains to prove that our choice
of A and π satisfies the requirements of the lemma.

Let p− = max{0, p − 2 · δ}, p+ = min{1, p + 2 · δ}, and B denote the set of
binary strings α in A for which Γα(ε) is contained in [p−, p+ δ]. Because the σα’s are
monotonically increasing, and using linearity of expectation, we have∑

α

|σα(p+)− σα(p−)| =
∑
α

(
σα(p+)− σα(p−)

)

=

(∑
α

σα(p+)

)
−
(∑

α

σα(p−)

)

= (p+ − p−) · pow(a)

≤ 4 · δ · pow(a).

36 TOM LEIGHTON AND C. GREG PLAXTON

For each α in B we have σα(p−) ≤ ε, σα(p+) ≥ 1− ε, and hence

|σα(p+)− σα(p−)| ≥ 1− 2 · ε.
The preceding inequalities imply that

|B| ≤ 4 · δ · pow(a+ b)/(1− 2 · ε)
= pow(γ · a+ b).

Note that the set of binary strings B is mapped to a contiguous interval by permu-
tation π. Let A− (resp., A+) denote the set of all binary strings in A \B mapped to
positions lower (resp., higher) than B by π.

Let βα denote the binary string associated with an arbitrary output in A−. Thus
Γα(ε) < p− (so p− > 0 and p − δ > 0), which implies Γα(1 − ε) < p − δ and hence
σα(p− δ) > 1− ε. Combining this inequality with the lower bound of equation (10),
we find that gβα(p) > 1− ε. (The probability that output βα receives a 1 is less than
ε.)

Similarly, let α denote the binary string associated with some output in A+. Thus
Γα(ε) > p+ δ (so p+ δ < 1), which implies σα(p+ δ) < ε. Combining this inequality
with the upper bound of equation (10), we find that gβα(p) < ε. (The probability
that output βα receives a 0 is less than ε.)

We conclude that if permutation π is applied to A, the resulting length-|A| 0-
1 vector has a dirty region of size at most |B| = pow(γ · a + b) with probability at
least 1− pow(d) · ε− pow(a) · ε′.

Lemma 10.3. Let N , A, and π be defined as in Lemma 10.2, with a = dd/2e
and b = bd/2c. Then there exist constants γ and ε in (0, 1) such that the following
condition holds with probability at least 1 − O(pow(−pow(ε · d))) after execution of
N on any 0-1 input vector φ: If permutation π is applied to A, then the resulting
length-|A| 0-1 output vector is (γ · d)-sorted.

Proof. This is a straightforward consequence of Lemmas 5.6 and 10.2.
Given Lemma 10.3, we can easily prove an analogue of Lemma 7.3 that uses “?”

gates instead of random permutations. (It is important to note that the (d, a)-network
associated with the construction of Lemma 10.3 is composed of the following four
stages: (a) a depth-a unshuffle-“0” d-network; (b) a depth-a shuffle-“?” d-network; (c)
a depth-da/2e unshuffle-“0” d-network; and (d) a depth-da/2e shuffle-“+” d-network.)
We can then use the scheme of section 7 to prove Theorem 10.1 below with

ε(d) = pow(−pow(Θ(
√
d))).

Unfortunately, we cannot take advantage of the improvement associated with equa-
tion (12) because the construction of section 9 is not polynomial-time uniform.

Theorem 10.1. For each function ε(d) = pow(−pow(O(
√
d))), there is a poly-

nomial-time uniform O(d)-depth coin-tossing hypercubic d-network that sorts any in-
put d-vector probability at least 1− ε(d).

The scheme of section 7 can also be used to prove Theorem 10.1 below with the
function ε as defined in Theorem 10.2. In this case, we can dramatically decrease the
failure probability by making use of the Sharesort algorithm of Cypher and Plaxton [9].
Sharesort is a polynomial-time uniform hypercubic sorting algorithm with worst-case
running time O(d · lg2 d) [9]. Note that Sharesort runs in O(d) time on O(d/ lg2 d)-
cubes. Hence, we can modify the scheme of section 7 by cutting off the sorting
recurrence at Θ(d/ lg2 d)-cubes instead of Θ(

√
d)-cubes (as allowed by bitonic sort).

HYPERCUBIC SORTING NETWORKS 37

Unfortunately, Sharesort does not correspond to a hypercubic sorting network since,
for example: (i) Sharesort makes copies of keys, and (ii) Sharesort performs a variety
of arithmetic operations on auxiliary integer variables. For these reasons, we have not
been able to make use of Sharesort in previous sections of the paper.

A small improvement to the Sharesort bound is known when polynomial-time
“preprocessing” (to compute certain look-up tables) is allowed. In particular, the
running time of Sharesort can be improved to O(d · (lg d) · lg∗ d) in that case [8].
This improvement has been incorporated into the ε(d) bound of Theorem 10.2. If
exponential preprocessing is allowed, the running time of Sharesort can be improved
further to O(d · lg d) [8]. However, it is not clear whether the latter result could be
used to improve the ε(d) bound of Theorem 10.2. (The lack of uniformity can be
eliminated through randomization. However, the failure probability of the resulting
algorithm seems to be strictly higher than that given by Theorem 10.2.)

Theorem 10.2. Let f(d) = Θ(d
(lg d)·lg∗ d). For each function

ε(d) = pow(−pow(f(d))),

there is a polynomial-time uniform randomized hypercubic sorting algorithm that runs
in O(d) time (on any input d-vector) with probability at least 1− ε.

11. An optimal bit-serial randomized hypercubic sorting algorithm.
An order-d omega machine is a ((d + 1) · pow(d))-processor machine, d ≥ 0. Each
processor has an associated ID of the form (i, j), 0 ≤ i ≤ d, 0 ≤ j < pow(d). We
define the ith level of a given order-d omega machine as the set of pow(d) processors
with IDs of the form (i, j), 0 ≤ j < pow(d). The processors of an order-d omega
machine are interconnected according to the following rules:

1. There is no wire between any pair of processors in nonconsecutive levels.
2. For all i such that 0 ≤ i < d, there is a wire connecting processor (i, j) to

processor (i+ 1, j′) if and only if jk = j′k+1, 0 ≤ k < d− 1.
Omega machines belong to the class of butterfly-like machines discussed in [12, section
3.8.1].

Observe that there is a close correspondence between an order-d omega machine
M and a depth-d shuffle d-network N . In particular, consider the 1-1 function f(i, j)
that maps processor (i, j) of M to the following: (i) level-i input wire j of N , 0 ≤
i < d, and (ii) level-(i − 1) output wire j of N , 0 < i ≤ d. (Recall that level-i input
wire j and level-(i − 1) output wire j represent the same wire, 0 < i < d. Hence, f
is indeed a function.) Then there is a wire between processors (i, j) and (i+ 1, j′) in
M if and only if wires f(i, j) and f(i + 1, j′) in N are connected to a common gate
x, with f(i, j) as an input wire and f(i+ 1, j′) as an output wire.

In the bit model, it is assumed that a processor can only perform one bit op-
eration per time step. Thus, b bit steps are required to send a b-bit message to an
adjacent processor. Similarly, b bit steps are required to compare two b-bit operands
located at the same processor. In this section, we provide a bit-serial polynomial-
time uniform randomized algorithm for sorting pow(d) O(b)-bit records on an order-d
omega machine in O(b + d) bit steps. This time bound is easily seen to be optimal.
For b = Ω(d), the processor bound is also optimal. Our algorithm can be adapted to
achieve the same asymptotic performance on any butterfly-like machine.

Definition 11.1. A bit-serial omega emulation scheme for a depth-a word-size-b
d-network N is a bit-serial algorithm that (i) runs on an order-d omega machine, (ii)
emulates the execution of N on any d-vector of b-bit integers, and (iii) receives (resp.,

38 TOM LEIGHTON AND C. GREG PLAXTON

produces) the jth component of the input (resp., output) d-vector at processor (d, j),
0 ≤ j < pow(d).

We remark that the somewhat unnatural input-output convention used in the
preceding definition (level d is used instead of level 0) is not essential. We could easily
modify the results of this section to hold if the input and output are provided at
level 0.

Definition 11.2. A depth-(2 · b) hypercubic d-network N is a-pass, 0 ≤ b ≤
a ≤ d, if and only if the d-permutation ↪→d (resp., ←↩d) is applied in the permutation
phase of the first (resp., last) b levels of N .

Lemma 11.1. There is an O(a + b)-bit-step bit-serial omega emulation scheme
for any coin-tossing a-pass word-size-b d-network.

Proof. The proof is straightforward. (Note that each of our five gate types can
be implemented in a bit-serial fashion. For the “+” and “−” gates, such a bit-serial
implementation requires that the inputs be provided most-significant-bit first.)

Definition 11.3. A depth-O(a) hypercubic d-network N is a-multipass, 0 ≤
a ≤ d, if and only if N can be decomposed into an O(1)-length sequence of a-pass
networks.

Lemma 11.2. There is an O(a + b)-bit-step bit-serial omega emulation scheme
for any coin-tossing a-multipass word-size-b d-network.

Proof. This follows from a constant number of applications of Lemma 11.1. Note
that only levels d through d−a of the order-d omega machine are used by the emulation
scheme.

Definition 11.4. A hypercubic d-network N is (γ, a, k)-geometric, γ ≥ 0, 0 ≤
a ≤ d, k ≥ 0, if and only if N can be decomposed into a length-k sequence of d-
networks 〈Ni〉 such that: (i) 0 ≤ γ ≤ 1 and Ni is bγi+1 · ac-multipass, 0 ≤ i < k, or
(ii) γ > 1 and Ni is bγi−k · ac-multipass, 0 ≤ i < k.

Definition 11.5. A (γ, a, k)-geometric d-network is compact if and only if∑
0≤i<k

(bγi+1 · ac+ 1
) ≤ d.

Lemma 11.3. There is an O(b + d)-bit-step bit-serial omega emulation scheme
for any coin-tossing compact (γ, a, k)-geometric word-size-b d-network N .

Proof. We give the proof for the case 0 ≤ γ ≤ 1. The case γ > 1 is similar. (Note
that if we “reverse” a (γ, a, k)-geometric d-network, we obtain a (1/γ, a, k)-geometric
d-network.)

Decompose the given d-network N into a sequence of networks 〈Ni〉 as in Defini-
tion 11.4. Thus, network Ni is (f(a, i)− 1)-multipass where

f(a, i) =
⌊
γi+1 · a⌋+ 1,

0 ≤ i < k. Let M denote an order-d omega machine, and

g(i) = d−
∑

0≤j<i
f(a, j),

0 ≤ i < k. To obtain an efficient bit-serial omega emulation scheme for network N ,
we use Lemma 11.2 to emulate Ni on the contiguous set of levels Ai = {g(i), g(i) −
1, . . . , g(i+1)+1} ofM, 0 ≤ i < k. (The input to Ni is provided at level g(i). Hence,
Lemma 11.2 implies that the output to network Ni is produced at level g(i).) Note
that (i) the Ai’s are well defined (i.e., each is a set of level numbers in the range 0 to

HYPERCUBIC SORTING NETWORKS 39

d) since N is compact, and (ii) the Ai’s are pairwise disjoint. Property (ii) ensures
that the emulation schemes associated with distinct Ni’s do not interfere with one
another.

It remains to prove that we can efficiently communicate the output of network
Ni, which is produced at level g(i), to level g(i+ 1), 0 ≤ i < k− 1. (Once the output
of Ni reaches level g(i + 1), the emulation of Ni+1 over the set of levels Ai+1 can
begin.) For example, it would suffice to efficiently map the value on wire j of level
g(i) to wire j of level g(i+ 1), 0 ≤ j < pow(d). Unfortunately, it is very expensive to
implement such an identity d-permutation on the machineM.

The key observation, however, is that we do not need to implement the identity
d-permutation between levels g(i) and g(i + 1). Because the f(a, i)’s form a non-
increasing sequence, 0 ≤ i < k, there is no interaction between distinct f(a, i + 1)-
cubes in any d-network Nj such that i+1 ≤ j < k. Hence, it is sufficient to implement
a d-permutation π such that: (i) level-g(i) f(a, i+1)-cubes are mapped to level-g(i+1)
f(a, i+ 1)-cubes, and (ii) the identity f(a, i+ 1)-permutation is applied within each
f(a, i+ 1)-cube.

We now prove that a d-permutation π of the desired form can be implemented in
O(f(a, i) + f(a, i+ 1)) bit steps while using only levels Ai ∪Ai+1 ofM. (The reader
may wonder why the preceding O-bound does not depend on b. This bound refers only
to the “additional” number of bit steps required to implement the d-permutation π.
Because our entire emulation scheme is pipelined bit-serially, we can account for the
word size by adding O(b) at the end of our analysis.) In particular, the d-permutation
π that we apply from level g(i) to level g(i+ 1) satisfies

π(j) = jf(a,i)+f(a,i+1)−1 · · · jf(a,i+1)jd−1 · · · jf(a,i)+f(a,i+1)jf(a,i+1)−1 · · · j0,
0 ≤ j < pow(d). The d-permutation π can easily be implemented in O(f(a, i) +
f(a, i + 1)) additional bit steps as follows. First, within level g(i), we apply the
d-permutation π′ defined by

π′(j) = jd−1 · · · jf(a,i)+f(a,i+1)jf(a,i+1)−1 · · · j0jf(a,i)+f(a,i+1)−1 · · · jf(a,i+1),

0 ≤ j < pow(d). Note that π′ belongs to Π(d, f(a, i)+ f(a, i+1)). By Lemma 4.7, π′

can be implemented in O(f(a, i)+f(a, i+1)) bit steps using only levels Ai∪Ai+1 ofM.
We now complete the implementation of d-permutation π by repeatedly unshuffling
the data from level g(i) to level g(i + 1). (This takes f(a, i) bit steps and uses only
the set of levels Ai.)

The total running time of our emulation scheme is easily seen to be

O

b+

∑
0≤i<k

f(a, i)

 = O(b+ d− g(k − 1))

bit steps. However, one final detail remains to be addressed, since our emulation
scheme leaves the output at level g(k − 1) instead of level d. We can move the
output to level d by applying an appropriate fixed permutation π′ from level g(k− 1)
to level d. The entire machine M can be used for this purpose. Thus, the Beneš
routing technique of Lemma 4.7 yields an immediate O(b + d) bound. In fact, an
O(b+ d− g(k − 1)) bound can easily be achieved by (i) shuffling the data from level
g(k−1) to level d, and (ii) applying an appropriate permutation π′′ in Π(d, d−g(k−1)).

Thus, the total running time of our revised emulation scheme is O(b+d−g(k−1)),
which is O(b+ d) since N is compact.

40 TOM LEIGHTON AND C. GREG PLAXTON

Theorem 11.1. There is a polynomial-time uniform O(b+ d)-bit-step bit-serial
omega emulation of the family {Nd} of coin-tossing d-networks of Theorem 10.1.

Proof. Examining the construction of Theorem 10.1, we find that Nd can be
decomposed into the following: (a) a (1, d, 1)-geometric coin-tossing d-network; (b) a
(1/3, d, O(lg d))-geometric coin-tossing d-network; (c) a (1, O(

√
lg d), O(

√
lg d))-

geometric deterministic d-network; (d) a (3, d, O(lg d))-geometric coin-tossing d-network;
and (e) a (1, d, 1)-geometric coin-tossing d-network. (Note that the constants 1/3 and
3 appearing above are somewhat arbitrarily chosen. The “slack” in our definitions
creates a range of acceptable values.)

The coin-tossing d-networks of stages (a), (b), (d), and (e) are easily seen to
be compact. Stage (c) corresponds to the use of bitonic sort to cut off the sorting
recurrence at O(

√
lg d)-cubes. Note that we are free to choose the constant within

the O(
√

lg d) bound arbitrarily small. Hence, we can ensure that the deterministic d-
network of stage (c) is also compact. The theorem then follows by Lemma 11.3. (The
emulation is polynomial-time uniform since (i) the family of coin-tossing networks of
Theorem 10.1 is polynomial-time uniform, and (ii) the emulation scheme underlying
Lemma 11.3 is polynomial-time uniform.)

Theorem 11.2. For each function ε(d) = pow(−pow(O(
√
d))), there is a poly-

nomial-time uniform O(b+ d)-bit-step randomized bit-serial algorithm for an order-d
omega machine that sorts any input d-vector of b-bit integers with probability at least
1− ε(d).

Proof. The claim is an immediate consequence of Theorems 10.1 and 11.1.

12. Concluding remarks. We have defined the class of “hypercubic” sorting
networks and established a nearly logarithmic upper bound on the depth complexity
of such networks. Of course, it would be very interesting to close the remaining
gap. Given the techniques developed in this paper, the problem of constructing an
optimal O(lgn)-depth hypercubic sorting network has been reduced to the problem
of constructing an O(lgn)-depth comparator network that sorts a randomly chosen
input permutation with probability at least 1− 2−n

ε

for some constant ε > 0.

One unfortunate characteristic of our hypercubic sorting network construction is
its lack of uniformity. In particular, no deterministic polynomial-time algorithm is
known for generating the family of networks for which existence has been established.
On the positive side, existence of a randomized polynomial-time generation algorithm
is a straightforward consequence of our results.

While the multiplicative constant of approximately 7.44 established for the sorting
network construction of section 6 appears to be quite reasonable, the construction
remains impractical. This is due to the fact that there is a trade-off between the
value of the multiplicative constant and the success probability (the probability that
a random input permutation is sorted by the network); for practical values of n, a
significant increase in the constant is required in order to prove any reasonable success
probability.

Appendix A. Analysis of the sorting recurrence. Let c1 be a positive con-
stant, let a0 and c2 denote sufficiently large positive constants (to be determined),
and consider the function T (a), a ≥ 0, defined by the following recurrence. Let
T (a) = O(1) for a ≤ a0, and

T (a) = min
(2+lg a)·ν(b)≤b≤a

T (a− bµ(b) · bc) + T (b) + c1 · a · ν(a)(A.15)

HYPERCUBIC SORTING NETWORKS 41

for a > a0, where

ν(d) = c2 ·
√

lg d,

µ(d) = µc − 2

ν(d)
.

Note that our choice of the function ν(d) satisfies the requirements of Lemma 9.2,
since ν(d) = ω(1) and ν(d) = o(d). Furthermore, the function µ(d) is defined as in
Lemma 9.2. Hence, any upper bound for T (a) is also an upper bound for the function
S(a) defined towards the end of section 9. In this section, we prove that

T (a) = O(a · pow(
√
υc · lg a) · lg a).

(The constant υc is defined in equation (9).) We prove two technical lemmas before
analyzing the recurrence of equation (A.15).

Lemma A.1. For every pair of real numbers x and y such that 0 ≤ x ≤ y, we
have

√
x · y −

√
x · y − x · √x · y ≥ x/2.

Proof. Examining the Taylor series expansion of
√

1− ε, we find that

√
1− ε ≤ 1− ε/2

for all ε in [0, 1]. Hence,

√
x · y −

√
x · y − x · √x · y =

√
x · y −√x · y ·

√
1−

√
x/y

≤ √x · y −√x · y ·
(

1−
√
x

2 · √y
)

= x/2.

Lemma A.2. For any a > a0, let

a′ = a− bµ(b′) · b′c ,

where

b′ =

⌊
a

pow(
√
υc · lg a)

⌋
.

For a sufficiently large choice of the constant a0, the following bounds hold:

(i) 1 < a′ ≤ a− µ(b′)·a
pow(
√
υc·lg a)

+ 2 < a,

(ii) µ(b′) ≥ µc − 4

c2·
√

lg a
,

(iii) 2 · pow(
√
υc · lg a) = o(a/

√
lg a),

(iv) 1 < (2 + lg a) · ν(b′) ≤ b′ < a, and

(v)
√
υc · lg a−

√
υc · lg a− υc ·

√
υc · lg a > υc/2.

Proof. Part (v) follows from Lemma A.1. The remaining inequalities follow from
straightforward asymptotic estimates.

42 TOM LEIGHTON AND C. GREG PLAXTON

Theorem A.1. There is a positive constant c0 such that

T (a) ≤ c0 · a · pow(
√
υc · lg a) · lg a

for all a > 1.
Proof. We prove the claim of the lemma by induction on a. The claim is trivial

for 1 < a ≤ a0, since we are free to choose the constant c0 arbitrarily large. Now fix
a > a0 and assume the claim holds for all smaller values of a. Define a′ and b′ as in
Lemma A.2.

By part (i) of Lemma A.2, we can apply the induction hypothesis to bound T (a′)
since 1 < a′ < a. Using parts (i), (ii), and (iii) of Lemma A.2, we find that

T (a′) ≤ c0 · a′ · pow(
√
υc · lg a′) · lg a′

≤ c0 ·
(
a− µ(b′) · a

pow(
√
υc · lg a)

+ 2

)
· pow(

√
υc · lg a) · lg a

≤ c0 · a · pow(
√
υc · lg a) · lg a− c0 · µc · a · lg a+ c0 ·

(
4

c2
+ o(1)

)
· a ·

√
lg a.

By part (iv) of Lemma A.2, we can apply the induction hypothesis to bound T (b′)
since 1 < b′ < a. Using part (v) of Lemma A.2 and equation (9), we find that

T (b′) ≤ c0 · b′ · pow(
√
υc lg b′) · lg b′

≤ c0 · a · pow

(√
υc · lg a− υc ·

√
υc · lg a−

√
υc · lg a

)
·
(
lg a−

√
υc · lg a

)
≤ c0 · µc · a · lg a− c0 · µc · a ·

√
υc · lg a.

By part (iv) of Lemma A.2, we can set b = b′ in the recurrence of equation (A.15)
since (2 + lg a) · ν(b′) ≤ b′ < a. Thus,

T (a) ≤ T (a′) + T (b′) + c1 · a · ν(a)
≤ c0 · a · pow(

√
υc · lg a) · lg a

+

[
c0 ·

(
4

c2
+ o(1)− µc · √υc

)
+ c1 · c2

]
· a ·

√
lg a.

For a0 sufficiently large, we can choose the constants c0 and c2 so that the coefficient
of a
√

lg a is negative, yielding

T (a) ≤ c0 · a · pow(
√
υc · lg a) · lg a,

as required.

Appendix B. Locating the “median” of the binomial distribution. The
purpose of this appendix is to establish Theorem B.1, which is used in the proof of
Lemma 5.15.

Lemma B.1. Let k and n be integers such that 0 ≤ k ≤ n, p be a real number
in [0, 1] such that np = k, and X be a random variable drawn from B(n, p) (i.e., the
binomial distribution with parameters n and p). Let Y be a random variable corre-
sponding to the number of successes in n independent Bernoulli trials with associated
success probabilities pi, 0 ≤ i < n, such that

∑
0≤i<n pi = k. Then

Pr(X < k) ≥ Pr(Y < k),

Pr(X > k) ≥ Pr(Y > k).

HYPERCUBIC SORTING NETWORKS 43

Proof. These inequalities are established (in a more general form) by Hoeffding
in [10, Theorem 4].

Lemma B.2. Let k, n, p, and X be as defined in Lemma B.1. If 0 ≤ p ≤ 1/2,
then let Y ′ and Y ′′ be random variables drawn from B(2k, 1/2) and B(n − 2k, 0),
respectively. Otherwise, let Y ′ and Y ′′ be random variables drawn from B(2(n −
k), 1/2) and B(2k − n, 1), respectively. Let Y = Y ′ + Y ′′. If

Pr(X = k) ≥ Pr(Y = k)/2,

then

min{Pr(X ≤ k),Pr(X ≥ k)} ≥ 1/2.

Proof. By symmetry, Pr(Y ≤ k) = Pr(Y ≥ k) = [1 + Pr(Y = k)]/2. The claimed
inequality then follows easily using Lemma B.1.

Lemma B.3. For each pair of integers k and n such that 0 ≤ k ≤ n, let

uk,n =

(
n

k

)(
k

n

)k (
1− k

n

)n−k
.

(If n = k, then uk,n = 1.) Then uk,n ≥ kk

ekk!
.

Proof. Fix k ≥ 0, and let vn = uk,n for n ≥ k. It is sufficient to prove that the
sequence 〈vn〉 is nonincreasing for n ≥ k and that

lim
n→∞ vn =

kk

ekk!
.(B.16)

To see that the sequence 〈vn〉 is nonincreasing for n ≥ k, note that

vk+1

vk
=

(
k

k + 1

)k
≤ 1,

and for n > k we have

vn+1

vn
=

(
1 +

1

n− k
)n−k/(

1 +
1

n

)n
≤ 1.

(The preceding inequality follows from the fact that the function f : R→ R defined
by f(x) = (1 + 1

x)x is strictly increasing for all x ≥ 1.)
To verify equation (B.16), note that

vn =
n!

k!(n− k)! ·
kk

nk
· (n− k)

n−k

nn−k

=
kk

k!
· n!

(n− k)! ·
(n− k)n−k

nn

∼ kk

k!

(
1− k

n

)n

∼ kk

ekk!
.

44 TOM LEIGHTON AND C. GREG PLAXTON

Lemma B.4. For each nonnegative integer k, let

wk =
kk+122kk!

(k + 1)ek(2k)!
.

Then the sequence 〈wk〉 is nondecreasing for k ≥ 1.
Proof. Note that

wk+1

wk
=

2(1 + 1
k)k(k + 1)3

ek(k + 2)(2k + 1)

and

lim
k→∞

wk+1

wk
= 1.

Thus, it is sufficient to prove that the function f : R→ R defined by

f(x) =
(1 + 1

x)x(x+ 1)3

x(x+ 2)(2x+ 1)

is nonincreasing for x ≥ 1. One may easily verify that

df(x)

dx
=

(x+ 1)2(1 + 1
x)x

x2(x+ 2)2(2x+ 1)2
· g(x),

where

g(x) = −x2 − 6x− 2 + x(x+ 1)(x+ 2)(2x+ 1)

[
ln

(
1 +

1

x

)
− 1

x+ 1

]
.

Hence, for x > 0, df(x)
dx ≤ 0 if and only if g(x) ≤ 0. For x ≥ 1, we have ln(1 + 1

x) ≤
1
x − 1

2x2 + 1
3x3 , and hence

g(x) ≤ −x2 − 6x− 2 + x(x+ 1)(x+ 2)(2x+ 1)

(
1

x(x+ 1)
− 1

2x2
+

1

3x3

)

= −23x

6
− 7

6
+

4

3x
+

2

3x2

< 0.

Lemma B.5. For all nonnegative integers k, we have

kk

ekk!
>

(
2k

k

)
2−2k−1.

Proof. It is easy to verify that the claim holds for 0 ≤ k ≤ 2. For k ≥ 3, consider
the sequence 〈wk〉 defined in Lemma B.4. By Lemma B.4, wk ≥ w3 ≈ 0.538 > 1/2
for k ≥ 3. Hence

kk

ekk!
>
k + 1

k

(
2k

k

)
2−2k−1

>

(
2k

k

)
2−2k−1.

HYPERCUBIC SORTING NETWORKS 45

Lemma B.6. Let k, n, p, X, and Y be as defined in Lemma B.2. Then

Pr(X = k) > Pr(Y = k)/2.

Proof. If 0 ≤ p ≤ 1/2, then

Pr(X = k) =

(
n

k

)(
k

n

)k (
1− k

n

)n−k

≥ kk

ekk!

>

(
2k

k

)
2−2k−1

= Pr(Y = k)/2,

where the two inequalities follow from Lemmas B.3 and B.5, respectively.
Similarly, if 1/2 < p ≤ 1, we have

Pr(X = k) =

(
n

k

)(
k

n

)k (
1− k

n

)n−k

=

(
n

n− k
)(

n− k
n

)n−k (
1− n− k

n

)n−(n−k)

≥ (n− k)n−k
en−k(n− k)!

>

(
2(n− k)
n− k

)
2−2(n−k)−1

= Pr(Y = k)/2.

Lemma B.7. Let k, n, p, and X be as defined in Lemma B.1. Then

min{Pr(X ≤ k),Pr(X ≥ k)} ≥ 1/2.

Proof. The proof is immediate from Lemmas B.2 and B.6.
Theorem B.1. Let n be a nonnegative integer, p be a real number in [0, 1], and

X be a random variable drawn from B(n, p). Then

min{Pr(X ≥ bnpc),Pr(X ≤ dnpe)} ≥ 1/2.

Proof. Define real numbers p− and p+ so that np− = bnpc and np+ = dnpe.
Let X− (resp., X+) denote a random variable drawn from B(n, p−) (resp., B(n, p+)).
Note that for all real numbers x, we have

Pr(X ≥ x) ≥ Pr(X− ≥ x),
Pr(X ≤ x) ≥ Pr(X+ ≤ x).

Combining these inequalities with the bound of Lemma B.7, we obtain

Pr(X ≥ bnpc) ≥ Pr(X− ≥ bnpc) ≥ 1/2,

Pr(X ≤ dnpe) ≥ Pr(X+ ≤ dnpe) ≥ 1/2.

46 TOM LEIGHTON AND C. GREG PLAXTON

Acknowledgments. Thanks to Rostislav Caha, Don Coppersmith, Ming Kao,
Sheralyn Listgarten, Yuan Ma, Bruce Maggs, and Torsten Suel for valuable discus-
sions. We would also like to thank the anonymous referees who provided numerous
valuable comments for improving the presentation of the paper.

REFERENCES

[1] W. Aiello, F. T. Leighton, B. Maggs, and M. Newman, Fast algorithms for bit-serial
routing on a hypercube, Math. Systems Theory, 24 (1991), pp. 253–271.

[2] M. Ajtai, J. Komlós, and E. Szemerédi, Sorting in c logn parallel steps, Combinatorica, 3
(1983), pp. 1–19.

[3] M. Ajtai, J. Komlós, and E. Szemerédi, Halvers and expanders, in Proceedings of the 33rd
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1992, pp. 686–692.

[4] K. E. Batcher, Sorting networks and their applications, in Proceedings of the AFIPS Spring
Joint Computer Conference, 32 (1968), pp. 307–314.

[5] V. E. Beneš, Optimal rearrangeable multistage connecting networks, Bell System Technical
Journal, 43 (1964), pp. 1641–1656.

[6] H. Chernoff, A measure of the asymptotic efficiency for tests of a hypothesis based on the
sum of observations, Ann. Math. Statist., 23 (1952), pp. 493–509.

[7] R. E. Cypher, Theoretical aspects of VLSI pin limitations, SIAM J. Comput., 22 (1993),
pp. 58–63.

[8] R. E. Cypher and C. G. Plaxton, Techniques for Shared Key Sorting, Tech. Report RJ 7347,
Computer Science Department, IBM Almaden Research Center, San Jose, CA, 1990.

[9] R. E. Cypher and C. G. Plaxton, Deterministic sorting in nearly logarithmic time on the
hypercube and related computers, J. Comput. Systems Sci., 47 (1993), pp. 501–548.

[10] W. Hoeffding, On the distribution of the number of successes in independent trials,
Ann. Math. Statist., 27 (1956), pp. 713–721.

[11] D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA,
1973.

[12] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and
Hypercubes, Morgan-Kaufmann, San Mateo, CA, 1991.

[13] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao, Randomized routing and
sorting on fixed-connection networks, J. Algorithms, 17 (1994), pp. 157–205.

[14] F. T. Leighton and C. G. Plaxton, A (fairly) simple circuit that (usually) sorts, in Pro-
ceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 264–274.

[15] M. S. Paterson, Improved sorting networks with O(logN) depth, Algorithmica, 5 (1990),
pp. 75–92.

[16] C. G. Plaxton, A hypercubic sorting network with nearly logarithmic depth, in Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, ACM, New York, 1992,
pp. 405–416.

[17] C. G. Plaxton and T. Suel, A lower bound for sorting networks based on the shuffle permu-
tation, Math. Systems Theory, 27 (1994), pp. 491–508.

[18] A. G. Ranade, How to emulate shared memory, J. Comput. Systems Sci., 42 (1991), pp. 307–
326.

[19] J. H. Reif and L. G. Valiant, A logarithmic time sort for linear size networks, J. Assoc.
Comput. Mach., 34 (1987), pp. 60–76.

[20] L. G. Valiant and G. J. Brebner, Universal schemes for parallel communication, in Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing, ACM, New York,
1981, pp. 263–277.

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2∗

JOHAN HÅSTAD†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 48–64, February 1998 002

Abstract. We prove that if we hit a de Morgan formula of size L with a random restriction
from Rp, then the expected remaining size is at most O(p2(log 1

p
)3/2L + p

√
L). As a corollary we

obtain an Ω(n3−o(1))-formula-size lower bound for an explicit function in P . This is the strongest
known lower bound for any explicit function in NP .

Key words. lower bounds, formula size, random restrictions, computational complexity

AMS subject classification. 68Q25

PII. S0097539794261556

1. Introduction. Proving lower bounds for various computational models is of
fundamental value to our understanding of computation. Still, we are very far from
proving strong lower bounds for realistic models of computation, but at least there is
more or less constant progress. In this paper we study formula size for formulas over
the basis ∧, ∨, and ¬. Our technique is based on random restrictions which were first
defined and explicitly used in [2], although some earlier results can be formalized in
terms of this type of random restrictions.

To create a random restriction in the space Rp we, independently for each variable,
keep it as a variable with probability p and otherwise assign it the value 0 or 1 with
equal probabilities 1−p

2 . Now suppose we have a function given by a de Morgan
formula of size L. What will be the expected formula size of the induced function
when we apply a random restriction from Rp? The obvious answer is that this size
will be at most pL.

Subbotovskaya [11] was the first to observe that actually formulas shrink more.
Namely, she established an upper bound

O(p1.5L+ 1)(1)

on the expected formula size of the induced function. This result allowed her to derive
an Ω(n1.5) lower bound on the de Morgan formula size of the parity function.

This latter bound was superseded by Khrapchenko [12, 13], who, using a different
method, proved a tight Ω(n2) lower bound for the parity function. His result implied
that the parity function shrinks by a factor θ(p2), and provided an upper bound Γ ≤ 2
on the shrinkage exponent Γ, defined as the least upper bound of all γ that can replace
1.5 in (1).

New impetus for research on the expected size of the reduced formula was given
by Andreev [9] who, based upon Subbotovskaya’s result, derived an n2.5−o(1) lower
bound on the de Morgan formula size for a function in P . An inspection of the proof
reveals that his method actually gives the bound nΓ+1−o(1) for the same function.

New improvements of the lower bound on Γ followed. Nisan and Impagliazzo

[5] proved that Γ ≥ 21−√73
8 ≈ 1.55. Paterson and Zwick [6], complementing the

technique from [5] with very clever and natural arguments, pushed this bound further

to Γ ≥ 5−√3
2 ≈ 1.63.

∗ Received by the editors January 14, 1994; accepted for publication (in revised form) December
18, 1995.

http://www.siam.org/journals/sicomp/27-1/26155.html
† Royal Institute of Technology, Stockholm, Sweden (johanh@nada.kth.se).

48

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 49

One can also define the corresponding notion for read-once formulae. For such
formulas it was established in [3] that Γro = 1/ log2(

√
5− 1) ≈ 3.27. This result was

made tight in [1], in that a polylogarithmic factor in the bounds was removed.

In this paper we continue (and possibly end) this string of results by proving that
Γ = 2. To be more precise we prove that the remaining size is O(p2(log 1

p)3/2L+p
√
L).

As discussed above, this gives an Ω(n3−o(1)) lower bound for the formula size of the
function defined by Andreev.

Our proof is shown by a sequence of steps. We first analyze the probability of
reducing the formula to a single literal. When viewing the situation suitably, this
first lemma gives a nice and not very difficult generalization of Khrapchenko’s [12, 13]
lower bounds for formula size. As an illustration of the power of this lemma we next
show, without too much difficulty, how to establish the desired shrinkage when the
formula is balanced. The general case is more complicated due to the fact that we
need to rely on more dramatic simplifications. Namely, suppose that φ = φ1 ∧φ2 and
φ1 is much smaller than φ2. Then, from an intuitive point of view, it seems like we
are in a good position to prove that we have substantial shrinkage since it seems quite
likely that φ1 is reduced to the constant 0 and we can erase all of φ2. The key new
point in the main proof is that we have to establish that this actually happens. In
the balanced case, we did not need this mechanism. The main theorem is established
in two steps. First we prove that the probability that a formula of size at least 2
remains after we have applied a restriction from Rp is small, and then we prove that
the expected remaining size is indeed small.

It is curious to note that all except our last and main result are proved under
arbitrary but “favorable” conditioning, while we are not able to carry this through
for the main theorem.

2. Notation. A de Morgan formula is a binary tree in which each leaf is labeled
by a literal from the set {x1, . . . , xn, x̄1, . . . , x̄n} and each internal node v is labeled by
an operation which is either ∧ or ∨. The size of a formula φ is defined as the number
of leaves and is denoted by L(φ). The depth D(φ) is the depth of the underlying tree.
The size and the depth of a Boolean function f are, respectively, the minimal size and
depth of any de Morgan formula computing f in the natural sense. For convenience
we define the size and depth of a constant function as 0.

A restriction is an element of {0, 1, ∗}n. For p ∈ [0, 1] a random restriction ρ
from Rp is chosen by randomly and independently setting each variable to ∗ with
probability p and to 0, 1 with equal probabilities 1−p

2 . The interpretation of giving
the value ∗ to a variable is that it remains a variable, while in the other cases the
given constant is substituted as the value of the variable.

All logarithms in this paper are to the base 2. We use the notation xεi to denote
xi when ε = 0 and x̄i when ε = 1. We also need the concept of a filter.

Definition 2.1. A set of restrictions ∆ is a filter if, when ρ ∈ ∆ and ρ(xi) = ∗,
then for ε ∈ {0, 1} the restriction ρ′ obtained by setting ρ′(xj) = ρ(xj), for every j 6= i
and ρ′(xi) = ε also belongs to ∆.

For any event E we will use Pr[E|∆] as shorthand for Pr[E|ρ ∈ ∆]. Note that
the intersection of two filters is a filter.

3. Preliminaries. We analyze the expected size of a formula after it has been
hit with a restriction from Rp. The variables that are given values are substituted
into the formula after which we use the following rules of simplification:

50 JOHAN HÅSTAD

• If one input to a ∨-gate is given the value 0, we erase this input and let the
other input of this gate take the place of the output of the gate.

• If one input to a ∨-gate is given the value 1 we replace the gate by the constant
1.

• If one input to a ∧-gate is given the value 1, we erase this input and let the
other input of this gate take the place of the output of the gate.

• If one input to a ∧-gate is given the value 0, we replace the gate by the
constant 0.

• If one input of a ∨-gate is reduced to the single literal xi (x̄i), then xi = 0 (1)
is substituted in the formula, giving the other input to this gate. If possible
we do further simplifications in this subformula.

• If one input of a ∧-gate is reduced to the single literal xi (x̄i), then xi = 1 (0)
is substituted in the formula, giving the other input to this gate. If possible
we do further simplifications in this subformula.

We call the last two rules the one-variable simplification rules. All rules preserve the
function that the formula is computing. Observe that the one-variable simplification
rules are needed to obtain a nontrivial decrease of the size of the formula, as can be
seen from the pathological case in which the original formula consists of an ∨ (or ∧)
of L copies of a single variable xi. If these rules did not exist, then with probability p
the entire formula would remain and we could get an expected remaining size which is
pL. Using the above rules we prove that instead we always get an expected remaining
size which is at most slightly larger than p2L.

In order to be able to speak about the reduced formula in an unambiguous way,
let us be more precise about the order in which we do the simplification. Suppose that
φ is a formula and that φ = φ1 ∧ φ2. We first make the simplification in φ1 and φ2

and then only later make the simplifications which are connected with the top gate.
This implies that the simplified φ will not always consist of a copy of simplified φ1

and a copy of simplified φ2, since the combination might give more simplifications. In
particular, this will happen if φ1 is simplified to one variable xi since xi = 1 will be
substituted in the simplified φ2. Whenever a one-variable simplification rule actually
results in a change in the other subformula, we say that a one-variable simplification
is active at the corresponding gate.

We let φdρ denote a formula that results when the above simplifications are done
to φ. As usual, L(φdρ) denotes the size of this formula.

It is important to note that simplifications have a certain commutativity property.
We say that two restrictions ρ1 and ρ2 are compatible if they never give two different
constant values to the same xi. In other words, for any xi the pair (ρ1(xi), ρ2(xi)) is
one of the pairs (∗, ∗), (∗, 0), (∗, 1), (0, ∗), (0, 0), (1, ∗), or (1, 1). For compatible restric-
tions we can define the combined restriction ρ1 ◦ ρ2 which, in the mentioned seven
cases, takes the values ∗, 0, 1, 0, 0, 1, 1, respectively. This combined restriction is the
result (on the variable level) of first doing ρ1 and then doing ρ2 on the variables given
∗ by ρ1. Note that the fact that ρ1 and ρ2 are compatible makes the combining op-
erator commutative. We need to make sure that combination also acts in the proper
way on formulas.

Lemma 3.1. Let ρ1 and ρ2 be two compatible restrictions. Then for any φ,

(φdρ1
)dρ2

= (φdρ2
)dρ1

= φdρ1◦ρ2
.

Proof. Let ρ denote ρ1 ◦ ρ2. Clearly, we need only establish (φdρ1)dρ2= φdρ since
the other equality follows by symmetry. We proceed by induction over the size of

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 51

φ. When the size is 1 the claim is obvious. For the general case we assume that
φ = φ1 ∧ φ2 (the case φ = φ1 ∨ φ2 being similar) and we have two cases:

1. Some one-variable simplification rule is active at the top gate when defining
φρ1

.
2. This is not the case.

In the second case, there is no problem since there is no interaction between φ1

and φ2 until after both ρ1 and ρ2 have been applied. Namely, by induction φjdρ=
(φjdρ1

)dρ2
for j = 1, 2, and since we do all simplification to the subformulas before

we do any simplification associated with the top gate, the result will be the same in
both cases.

In the first case, assume that φ1dρ1
= xεj . This means that xj = ε̄ is substituted in

φ2dρ1
. Viewing this as a restriction ρ(j) giving a non-∗ value to only one variable, φ2

is simplified to (φ2dρ1)dρ(j) . Now we have three possibilities depending on the value
of ρ2 on xj .

When ρ2(xj) = ε, then (φ1dρ1)dρ2≡ 0 and by induction φ1dρ≡ 0 and hence
(φdρ1

)dρ2
= φdρ≡ 0.

When ρ2(xj) = ε̄, then by induction (φ1dρ1
)dρ2

= φ1dρ≡ 1, and since ρ(j) is
compatible with (even a subassignment of) ρ2 we have

(φdρ1)dρ2= ((φ2dρ1)dρ(j))dρ2= (φ2dρ1)dρ2= φ2dρ= φdρ,

where we again used the induction hypothesis.

When ρ2(xj) = ∗ and since (by induction) φ1dρ= (φ1dρ1
)dρ2

= xεj when simplifying

by ρ, φ2 will also be simplified by the restriction ρ(j) and will be (φ2dρ)dρ(j), which, by
induction, is equal to φ2dρ◦ρ(j) . On the other hand, when simplifying by ρ1 and then
by ρ2, φ2 reduces to ((φ2dρ1)dρ(j))dρ2 which, by applying the induction hypothesis

twice, is equal to φ2dρ1◦ρ(j)◦ρ2
. Since ρ1 ◦ρ(j) ◦ρ2 = ρ◦ρ(j), the lemma follows.

We will need the above lemma in the case of analyzing what happens when we
use the one-variable simplification rules. In that case the restriction ρ2 will just give
a non-∗ value to one variable. Since the lemma is quite simple and natural, we will
not always mention it explicitly when we use it.

Two examples to keep in mind during the proof are the following:

1. Suppose that φ computes the parity of m variables and is of size m2. Then
if p is small, the probability that φ will depend on exactly one variable is
about pm = p

√
L(φ), and if p is large, we expect that the remaining formula

will compute the parity of around pm variables and thus be of size at least
(pm)2 = p2L(φ).

2. Suppose that φ is the ∧ of L/2 copies of x1∨x2. By our rules of simplification,
this will not be simplified if both x1 and x2 are given the value ∗ by the
restriction. Hence, with probability p2 the entire formula remains and we get
expected remaining size of at least p2L.

4. Reducing to size 1. We start by estimating the probability that a given
formula reduces to size one. For notational convenience we set q = 2p

1−p . This will be
useful since we will change the values of restrictions at individual points and, if we
change a non-∗ value to ∗, we multiply the probability by q. Since we are interested
in the case when p is small, q is essentially 2p.

52 JOHAN HÅSTAD

Lemma 4.1. Let φ be a formula of size L and ρ be a random restriction in Rp.
Let Eδ be the event that φ is reduced to the constant δ by ρ for δ = 0, 1. Furthermore
let ∆ be any filter. Then Pr[L(φdρ) = 1|∆] is bounded by

q (LPr[E0|∆]Pr[E1|∆])
1/2

.

Remark. Most of the time the implied bound q
√
L/4 (which follows from x(1−

x) ≤ 1/4) will be sufficient.

Proof. Let ρ be a restriction that satisfies L(φdρ) = 1 and belongs to ∆ and
suppose that ρ makes φ into the literal xεi . By definition, ρ(xi) = ∗ and we have two
fellow restrictions ρδ, δ = 0, 1, where ρδ is obtained by changing ρ(xi) to xor(ε, δ). ρδ

contributes to the event Eδ and by the definition of a filter belongs to ∆. Hence, we
can identify the set of restrictions we are interested in with edges between restrictions
that reduce the formula to the constants 0 and 1, respectively, and we are on familiar
ground.

Let A be the set of restrictions that satisfy E0 and belong to ∆, and let B be the
set of restrictions that satisfy E1 and belong to ∆. We partition A×B into rectangles
Aj × Bj , where for each j there is some variable xij which takes a different value in
Aj and Bj . This was first done in [10] (also see [7]), but here we will need a slight
generalization and thus we choose to use the more intuitive framework introduced by
Karchmer and Wigderson [4].

In the normal KW-game P1 gets an input, x, from f−1(1) while P0 gets an input,
y, from f−1(0) and their task is to find a coordinate i such that xi 6= yi. This is
solved by tracing the formula from the output to an input maintaining the property
that the two inputs give different values to the gates on the path. This is achieved in
the following way. At an ∧-gate, P0 points to the input of this gate that evaluates to
0 on y. Similarly, at an ∨-gate P1 points to the input that evaluates to 1 on x.

We extend this game by giving Pδ a restriction ρδ that simplifies the formula to
the constant δ. The task is to find an xi on which the two restrictions take different
values (we allow answers where one restriction takes the value ∗ and the other takes
the value 0 or 1).

To solve this game, both players start by setting ρδ(xj) = 1 for each j such that
ρδ(xj) = ∗. After this they play the standard KW-game. If the path ends at literal
xεi , then in the extended restrictions ρδ(xi) = xor(δ, ε). Note that if ρδ(xi) = 0, then
this was the initial value (since we only change values to 1), while if ρδ(xi) = 1 then
the initial value was 1 or ∗. In either case we solve the problem.

The extended KW-game creates a partition of A × B and let Aj × Bj be the
inputs that reach leaf j. Note that the fact that the set of inputs that reach a certain
leaf is a product set follows from the fact that each move of the game is determined
by one of the players based only on his own input. Let Cj be the set of restrictions ρ
that satisfy L(φdρ) = 1 and belong to ∆ and such that the pair (ρ0, ρ1) reaches leaf
j. By necessity the literal that appears at leaf j is the literal to which ρ reduced the
formula. Now, note that the probability of Cj is bounded by q times the probability
of Aj . This follows since the mapping ρ 7→ ρ0 gives a one-to-one correspondence of Cj

with a subset of Aj and that Pr(ρ) = qPr(ρ0) for each ρ. We have the same relation
between Cj and Bj ; hence

Pr[L(φdρ) = 1|∆] =
∑
j

Pr[Cj |∆] ≤
∑
j

q (Pr[Aj |∆]Pr[Bj |∆])
1/2

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 53

≤ q

∑

j

1

1/2
∑

j

Pr[Aj |∆]Pr[Bj |∆]

1/2

= q (LPr[A|∆]Pr[B|∆])
1/2

where we used the Cauchy–Schwarz inequality.
Remark. Please note that the theorem of Khrapchenko is indeed a special case of

this lemma. Khrapchenko starts with A ⊆ f−1(0), B ⊆ f−1(1), and C which is a set
of edges of the form (a, b) where a ∈ A, b ∈ B, and the hamming distance between a
and b is one. As noted above, each such edge naturally corresponds to a restriction ρ
by setting ρ(xi) = ai when ai = bi and ρ(xi0) = ∗ for the unique coordinate i0 such
that ai0 6= bi0 . Abusing notation, we can identify the restriction and the edge. Now
setting ∆ = A ∪B ∪ C we get a filter, and since

Pr[C]

q|C| =
Pr[A]

|A| =
Pr[B]

|B| ,

the lemma reduces to Khrapchenko’s theorem, i.e.,

L ≥ |C|2
|A| · |B| .

5. The balanced case. In the general case we cannot hope to have an estimate
which depends on the probability of reducing to either constant. The reason is because
formulas that describe tautologies do not always reduce to the constant 1.

It remains to take care of the probability that the remaining formula is of size
greater than 1.

Definition 5.1. Let L2(φ) be the expected size of the remaining formula where
we ignore the result if it is of size 1, i.e., L2(φ) =

∑∞
i=2 iPr[L(φdρ) = i]. Furthermore,

let L2(φ|∆) be the same quantity conditioned on ρ ∈ ∆. Here we think of ρ as taken
randomly from Rp and thus L2(φ) depends on the parameter p. We will, however,
suppress this dependence.

To familiarize the reader with the ideas involved in the proof, we first prove the
desired result when the formula is balanced. Here we will take the strictest possible
definition of “balanced,” namely that the formula is a complete binary tree, and just
establish the size of the reduced formula as a function of its original depth.

Theorem 5.2. Let φ be a formula of depth d and ρ a random restriction in Rp.
Let ∆ be any filter and assume that q ≤ (d21+d/2)−1; then

L2(φ|∆) ≤ q2d2d−1.

Proof. The proof is by induction over the depth. The base case (d = 1) is obvious.
Now suppose φ = φ1 ∧ φ2 (the ∨-case is similar), where the depth of each φi is d− 1
and hence the size is bounded by 2d−1. We need to consider the following events:

1. L(φidρ) ≥ 2 for i = 1 or i = 2.
2. L(φ1dρ) = 1, and the size of φ2 after the simplification by ρ and the applica-

tion of the one-variable simplification rule is at least 1.
3. L(φ2dρ) = 1, and the size of φ1 after the simplification by ρ and the applica-

tion of the one-variable simplification rule is at least 1.
The estimate for L2(φ|∆) is now

2 · q2(d− 1)2d−2 + Pr[case 2] + Pr[case 3].

54 JOHAN HÅSTAD

The first term comes from any subformula of size at least 2 appearing in either of the
three cases, while the other two terms cover the new contribution in the respective
cases.

Let us analyze the probability of case 2. Let pεi be the probability that φ1 reduces
to xεi . We know from Lemma 4.1 that∑

pεi ≤ q2(d−3)/2.

Now consider the conditional probability that, given that φ1 reduces to xεi , φ2 does
not reduce to a constant. The condition that φ1 reduces to xεi can be written as
“ρ ∈ ∆′ ∧ ρ(xi) = ∗” for some filter ∆′. The reason for this is that if ρ reduces φ1

to xεi , then changing any ρ(xj), j 6= i from ∗ to a constant the resulting restriction
still reduces φ1 to xεi . This follows by Lemma 3.1. Thus we should work with the
conditioning ρ ∈ ∆

⋂
∆′ ∧ ρ(xi) = ∗. Now we substitute xi = ε̄ in φ2 and we can

forget the variable xi and just keep the restrictions in ∆
⋂

∆′ that satisfy ρ(xi) = ∗
(as restrictions on the other n−1 variables). This yields a filter ∆

′′
. Thus we want to

estimate the conditional probability that φ2dxi=ε does not reduce to a constant given
that ρ ∈ ∆

′′
. Now we are in position to apply induction, and hence this probability

can be estimated by

q2(d−3)/2 +
1

2
q2(d− 1)2d−2,

where the first term is given by Lemma 4.1 and the second term is a bound on
1
2L

2(φ2|∆′′
). Using q ≤ (d21+d/2)−1 we get the total bound q2d/2−1. This implies

that the total probability of case 2 is bounded by∑
pεiq2

d/2−1 ≤ q22d−5/2.

The probability of case 3 can be bounded the same way and finally

2 · q2(d− 1)2d−2 + q22d−3/2 ≤ q2d2d−1,

and the proof is complete.
It is not difficult to extend Theorem 5.2 to larger d, but we leave the details to

the reader.

6. The probability of size at least 2 remaining. The reason why things are
so easy in the balanced case is that we need not rely on very complicated simplifica-
tions. In particular, we did not need the fact that a subformula can kill its brother.
This will be needed in general, and we start with the following lemma.

Lemma 6.1. Let φ be a formula of size L and ρ be a random restriction in Rp.
Let ∆ be any filter, and assume that q ≤ (2

√
L logL)−1. Then the probability that

L(φdρ) ≥ 2 conditioned on ρ ∈ ∆ is at most q2L(logL)1/2.
Proof. We prove the lemma by induction over the size of the formula. It is not

hard to see that the lemma is correct when L ≤ 2. Suppose that φ = φ1 ∧ φ2 (the
∨-case is similar) where L(φi) = Li, L1 + L2 = L, and L1 ≤ L2. We divide the event
in question into the following pieces:

1. L(φ1dρ) ≥ 2.
2. L(φ1dρ) = 1, and even after the one-variable simplification rule is used the

size of the simplified φ2 is at least 1.
3. φ1 is reduced to the constant 1 by ρ and L(φ2dρ) ≥ 2.

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 55

The probability of the first event is by induction bounded by q2L1(logL1)
1/2.

Suppose the probability, conditioned on ρ ∈ ∆, that φ1 is reduced to the constant 1 is
Q. Call the corresponding set of restrictions ∆′. Note that ∆′ is a filter. Then using
the induction hypothesis with the conditioning ∆

⋂
∆′ we get the probability of the

third event to be bounded by

Qq2L2(logL2)
1/2.

Let us now estimate the probability of the second case. The probability that L(φ1dρ) =

1 is, by Lemma 4.1, bounded by q (L1Q(1−Q))
1/2

. To estimate the conditional
probability that, given L(φ1dρ) = 1, φ2 remains to be of size at least 1, we reason
exactly as in the proof of Theorem 5.2. Hence, this probability can be estimated by

q
√
L2/4 + q2L2(logL2)

1/2,

where the first term comes from an application of Lemma 4.1 and the second term
from the inductive assumption. Thus, for the second case we get the total bound

q (L1Q(1−Q))
1/2 ×

(
q
√
L2/4 + q2L2(logL2)

1/2
)

≤ q2 (L1L2Q(1−Q))
1/2 ≤ q2 (L1L2(1−Q))

1/2
,

where we used q ≤ (2
√
L logL)−1 ≤ (2

√
L2 logL2)

−1. We want to bound the sum of
the estimates for probabilities of cases 2 and 3. Differentiating

QL2(logL2)
1/2 + (L1L2(1−Q))

1/2

with respect to Q yields

L2(logL2)
1/2 − 1

2

(
L1L2

1−Q

)1/2

.

Thus the derivative is 0 when

(1−Q) =
L1

4L2 logL2
,

and this corresponds to a maximum since the second derivative is negative. Using
this optimal value for Q we get a total estimate which is

q2L1 (logL1)
1/2

+ q2L2 (logL2)
1/2 − q2

4
L1(logL2)

−1/2 +
q2

2
L1(logL2)

−1/2

= q2L1 (logL1)
1/2

+ q2L2 (logL2)
1/2

+
q2

4
L1(logL2)

−1/2,

and we need to prove that this is less than q2L (logL)
1/2

when L1 ≤ L2 and L =
L1 + L2. This is only calculus, but let us give the proof.

First note that logL2 ≥ log dL/2e ≥ 1
2 logL when L ≥ 3; hence it is sufficient to

bound

q2L1 (logL1)
1/2

+ q2L2 (logL2)
1/2

+
q2

2
L1(logL)−1/2.

56 JOHAN HÅSTAD

Now if we set H(x) = x(log x)1/2 it is not difficult to see that H ′′(x) is positive for
x ≥ 2 and hence the above expression is convex for L1 ≥ 2. This means that it is
maximized either for L1 = 1, 2 or L1 = L2. The first two cases correspond to the
inequalities

(L− 1)(log (L− 1))1/2 +
1

2
(logL)−1/2 ≤ L(logL)1/2

and

2 + (L− 2)(log (L− 2))1/2 + (logL)−1/2 ≤ L(logL)1/2

which are easily seen to hold for L ≥ 3 and L ≥ 4, respectively. To check the required
inequality when L1 = L2 we need to prove that

L (logL/2)
1/2

+
L

4
(logL)−1/2 ≤ L (logL)

1/2
.

This follows from
√
x−√

x− 1 ≥ 1
2
√
x
, which is valid for all x ≥ 1.

7. Main shrinkage theorem. We are now ready for our main theorem.
Theorem 7.1. Let φ be a formula of size L and ρ be a random restriction in Rp.

Then the expected size of φdρ is bounded by

O

(
p2

(
1 +

(
log

(
min

(
1

p
, L

)))3/2
)
L+ p

√
L

)
.

Crucial to this theorem is the following lemma.
Lemma 7.2. Let φ be a formula of size L and ρ be a random restriction in Rp.

If q ≤ (2
√
L logL)−1, then

L2(φ) ≤ 30q2L(logL)3/2,

while if 1
2 ≥ q ≥ (4

√
L logL)−1, then

L2(φ) ≤ 200q2L(log q−1)3/2.

First note that Theorem 7.1 follows from Lemma 7.2 together with Lemma 4.1;
thus it is sufficient to prove Lemma 7.2. Also note that Lemma 7.2 and Theorem 7.1
do not consider conditional probabilities. There are two reasons for this. It is not
needed and the proof does not seem to allow it.

Proof of Lemma 7.2. The hard part of the lemma is the case when q is small.
We will start by establishing this case. As before we proceed by induction. The base
case (L = 1) is obvious. Suppose that φ = φ1 ∧ φ2 (the ∨-case is similar), where
L(φi) = Li, L1 + L2 = L, and L1 ≤ L2.

Our basic estimate for L2(φ) is L2(φ1) + L2(φ2), which by induction can be
bounded by

S(L1, L2) = 30q2L1(logL1)
3/2 + 30q2L2(logL2)

3/2.

We need to revise this estimate, and in particular, we need to consider the events
which contribute either to the event described by the basic estimate (L(φidρ) ≥ 2 for
i = 1, or i = 2) or to the event we are trying to estimate (L(φdρ) ≥ 2):

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 57

1. We have L(φidρ) ≥ 2 for i = 1 and i = 2.
2. L(φidρ) = 1 for i = 1 or i = 2, and the one-variable simplification rule was

active at the top gate.
3. L(φ1dρ) = L(φ2dρ) = 1, and the one-variable simplification rule was not

active at the top gate.
4. L(φ1dρ) = 1, L(φ2dρ) ≥ 2, and the one-variable simplification rule was not

active at the top gate.
5. L(φ2dρ) = 1, L(φ1dρ) ≥ 2, and the one-variable simplification rule was not

active at the top gate.
6. The function φ1 is reduced to the constant 0 while L(φ2dρ) ≥ 2.
7. The function φ1 is reduced to the constant 1 while L(φ2dρ) ≥ 2.
8. The function φ2 is reduced to the constant 0 while L(φ1dρ) ≥ 2.
9. The function φ2 is reduced to the constant 1 while L(φ1dρ) ≥ 2.

Let us first investigate what corrections we need to make to our basic estimate in the
various cases.

Case 1. The basic estimate is correct.
Case 2. Suppose that φ1 reduces to xεi . If the resulting formula is of size at least

2, then φ2 was of size at least 2 before we did the simplification of substituting ε̄ for
xi. This reduced the size of φ2 by at least one. This means that the formula size of
φ is at most the formula size of φ2 before we did this simplification. However, in our
basic estimate we have not taken this simplification into account, and thus we need
not add anything to our basic estimate in this case.

Case 3. In this case we need to add 2 to our basic estimate. We will need to do
some work to estimate the probability of this case.

Case 4. In this case we need to add 1 to our basic estimate. Also, the probability
of this event needs a little bit of work.

Case 5. In this case we need to add 1 to our basic estimate. From our previous
work we can estimate the probability of this event simply by the probability that the
remaining size of φ1 is at least 2 and that by Lemma 6.1 this probability is bounded
by

q2L1(logL1)
1/2.

Cases 6 and 8. In these cases we can subtract at least 2 from our original estimate.
This follows since in these cases we erase a formula of size at least 2 which contributed
needlessly to the basic estimate. We will use only Case 6.

Cases 7 and 9. The basic estimate is correct.
The above reasoning gives the total bound

S(L1, L2) + 2Pr[case 3] + Pr[case 4] + Pr[case 5]− 2Pr[case 6].

We have already bounded Pr[case 5], and for the other probabilities we will establish
the following lemmas.

Lemma 7.3. If q ≤ (2
√
L1 logL1)

−1, then

Pr[case 3] ≤ 20q2L1 +
1

2
q2L1(logL1)

1/2 +
1

2
Pr[case 6].

Lemma 7.4. If q ≤ (2
√
L1 logL1)

−1, then

Pr[case 4] ≤ q2L1 + Pr[case 6].

58 JOHAN HÅSTAD

Let us check that this is sufficient to prove Lemma 7.2 in the case where q is
small.

S(L1, L2) + 2Pr[case 3] + Pr[case 4] + Pr[case 5]− 2Pr[case 6]

≤ S(L1, L2) + 41q2L1 + q2L1(logL1)
1/2.

We need to prove that this is bounded by 30q2L(logL)3/2 for all possible L1. Sub-
stituting L2 = L− L1 and differentiating twice we see that this is a convex function
of L1 when 2 ≤ L1 ≤ L/2. This means that it is maximized either for L1 = 1, 2 or
L1 = L2.

For L1 = 1 we need to establish

30(L− 1)(log (L− 1))3/2 + 41 ≤ 30L(logL)3/2,

which is easily checked to be true for L = 2 and L = 3. For L ≥ 4 the inequality
follows from

L(logL)3/2 ≥ (L− 1)(logL)3/2 + 2.

For L1 = 2 we need to check

30(L− 2)(log (L− 2))3/2 + 60 + 82 + 1 ≤ 30L(logL)3/2,

which for L ≥ 4 follows from

L(logL)3/2 ≥ (L− 2)(logL)3/2 + 2 · 23/2

and 60 · 23/2 > 143.
Finally, for L1 = L/2 we need to estimate

30L(logL/2)3/2 + L/2(41 + (logL/2)1/2),

and using the inequality x3/2 − (x − 1)3/2 ≥ x1/2, which is valid for any x ≥ 1, this
can be bounded by

30L(logL)3/2 − 30L(logL)1/2 +
43

2
L(logL)1/2 ≤ 30L(logL)3/2.

Thus we are done.
Hence we need only establish Lemmas 7.3 and 7.4. The basic principle is to start

with a set of restrictions that contributes to the bad case (cases 3 and 4, respectively)
and create a set of restrictions that contribute to the good case, namely case 6. In this
process there will be some “spills” and hence we need the additive terms. Lemma 7.4
is by far easier, and since the basic outline is the same, we start with this lemma.

Proof of Lemma 7.4. Let C be the set of restrictions such that φ1 reduces to
exactly one variable or its negation and such that the reduced φ2 does not contain
this variable. Let A be the set of restrictions that is formed by setting the variable
that remains in φ1 in such a way to make φ1 reduce to the constant 0, and let B be
the corresponding set that makes φ1 reduce to 1. Each element in C corresponds to
an edge between A and B and we can (as in the proof of Lemma 4.1) let this define a
path in φ1. Thus each leaf in φ1 corresponds to a set Aj ×Bj which reaches this leaf
and a subset Cj of C such that for any ρ ∈ Cj , its neighbors belong to Aj and Bj ,

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 59

respectively. The sets Aj × Bj form a partition of A × B. Further suppose that the
literal at leaf j of φ1 is x

εj
dj

. Note that this implies that if ρ ∈ Cj , then ρ simplifies φ1

to x
εj
dj

.
Let qj be the conditional probability that, when ρ is chosen uniformly from Cj ,

L(φ2dρ) ≥ 2. The probability of case 4 is then given by∑
j

Pr[Cj]qj .

If we take any restriction ρ contributing to this event and change the value of ρ at
xdj to εj then we get a restriction ρ′ contributing to Case 6. This follows since xdj
does not appear in the reduced φ2. The set of restrictions created at leaf j will be of
total probability q−1Pr[Cj]qj and we seem to be in good shape. However, the same
restriction ρ′ might be created at many leaves and hence we would be overcounting if
we would just sum these probabilities for various j. In addition, note that ρ′ belongs
to A, and if it is created at leaf j, then it belongs to Aj . Now, since Aj ×Bj forms a
partition of A×B, we have for any ρ ∈ A∑

j|ρ∈Aj

Pr[Bj] = Pr[B] ≤ 1.

This means that if we multiply the total probability of restrictions created at leaf j
by Pr[Bj], we avoid overcounting. Thus the sure contribution to the probability of
Case 6 is ∑

j

q−1Pr[Cj]Pr[Bj]qj .

We need to compare this to
∑

j Pr[Cj]qj . For the j for which Pr[Bj] ≥ q, the
term in the sum for Case 6 is bigger than the corresponding term for Case 4, while
for other j, we use that Pr[Cj] ≤ qPr[Bj] ≤ q2; thus summing over those j gives a
contribution of at most q2L1. We have proved Lemma 7.4.

Next we turn to Lemma 7.3. This will be more complicated, mainly because the
restrictions contributing to Case 6 are more difficult to construct.

Proof of Lemma 7.3. Let Aj , Bj , and Cj be as in the previous proof. For fixed j
let rj be the conditional probability that L(φ2dρ) = 1 given that ρ ∈ Cj . We divide
the leaves into two cases depending on whether rj ≤ 20qPr[Bj]

−1. If we restrict the
summation to those j that satisfy this inequality, then∑

j

Pr[Cj]rj ≤
∑
j

qPr[Bj]20qPr[Bj]
−1 ≤ 20q2L1

and this gives the first term on the right-hand side of Lemma 7.3. We thus concentrate
on the case when rj ≥ 20qPr[Bj]

−1.
Let A2,j and B2,j be the subsets of Cj which reduce φ2 to 0 and 1, respectively.

Let ρ be a restriction that belongs to Cj and contributes to Case 3. Assume that ρ
reduces φ2 to xεd. We can obtain a restriction ρ′ in A2,j (if ε = 1) or B2,j (if ε = 0)
by setting ρ′(xk) = ρ(xk) for k 6= d and ρ′(xd) = 1. To see that ρ′ ∈ Cj , note that
before we play the KW-game we give all variables given the value ∗ by ρ the value 1.
Thus the executions on ρ and ρ′ are identical and ρ′ ∈ Cj . Also, clearly ρ′ forces φ2

to ε̄. Now suppose that ∑
ρ|ρ′∈A2,j

Pr[ρ] ≥
∑

ρ|ρ′∈B2,j

Pr[ρ](2)

60 JOHAN HÅSTAD

(the other case being symmetric). Suppose that A2,j consists of the restrictions
ρ1 . . . ρk. For ρi we define a set of critical variables, and xk is in this set if

• ρi(xk) = 1.
• creating the restriction ρ′i by setting ρ′i(xl) = ρi(xl) for every l 6= k while
ρ′i(xk) = ∗ creates a restriction in C and φ2dρ′

i
reduces to x̄k.

Note that, as observed above, ρ′ ∈ C in fact implies that ρ′ ∈ Cj since ρ ∈ Cj ,
and we go from ρ′ to ρ by changing the value on a variable from ∗ to 1.

Suppose that there are si critical variables for ρi. By definition, each restric-
tion contributing to the conditional probability rj gives one critical variable for one
ρi ∈ A2,j exactly when φ2 is reduced to a negated variable; otherwise it gives no
contribution. By (2) the first case happens in at least half the cases and hence we
have

rj = αPr[Cj]
−1
∑
i

qsiPr[ρi]

for some α satisfying 1 ≤ α ≤ 2. We now create a set of restrictions in the following
way. We obtain

(
si
2

)
new restrictions from ρi by choosing two critical variables for ρi,

and for each such choice (s, t) create a restriction ρ
(s,t)
i by setting ρ

(s,t)
i (xk) = ρi(xk)

for every k 6∈ {s, t} while ρ
(s,t)
i (xs) = ρ

(s,t)
i (xt) = ∗. This way, we get a set of

restrictions of total probability q2
(
si
2

)
Pr[ρi].

Let us relate the total probability of these constructed restrictions to rj . Note
that

r2
j =

(
αPr[Cj]

−1
∑
i

(qsiPr[ρi])

)2

≤ α2

(
Pr[Cj]

−1
∑
i

(q2s2iPr[ρi])

)
·
(
Pr[Cj]

−1
∑
i

Pr[ρi]

)

= α2Pr[Cj]
−1Pr[A2,j |Cj]

∑
i

q2s2iPr[ρi],

where the inequality comes from the Cauchy–Schwarz inequality. Now

∑
i

q2

(
si
2

)
Pr[ρi] =

∑
i

1

2
q2s2iPr[ρi]−

∑
i

1

2
q2siPr[ρi]

≥ r2
jPr[Cj]

2α2Pr[A2,j |Cj]
− q

2α
rjPr[Cj]

≥
(

1

2α2
− 1

40α

)
r2
jPr[Cj] ≥ 1

10
r2
jPr[Cj],

since α ≤ 2 and rj ≥ 20q.
Remark. Note that the constructed restrictions need not be in Cj . The reason is

that there is no control when a variable is changed from being fixed to being ∗. In
particular, if we were trying to estimate a conditional expectation, we would be in
deep trouble, since it need not be the case that these recently constructed restrictions
satisfy the condition.

Let us look more closely at these obtained restrictions. They give the value ∗ to
the variable xdj since the restriction that we started with belonged to Cj . They also
give the value ∗ to the two special variables xs and xt.

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 61

We now change the value at xdj to εj in an attempt to force φ1 to 0. Note that
this attempt might not always be successful since, once xs and xt become unassigned,
φ1 might also depend on those variables (as well as on others). We leave this problem
for the time being. Let us analyze the set of restrictions created in this way.

At leaf j we created a set of restrictions of total probability at least q−1 1
10Pr[Cj]r

2
j .

However, the same restriction might appear many times and we need to adjust for
this fact. Take any restriction ρ created from ρi ∈ A2,j . First note that ρ determines
the identity of the two special variables xs and xt. These are, namely, the only
variables xk given the value ∗ by ρ with the property that setting ρ(xk) = 1 makes
φ2 depend on only one variable. This follows since we recreate a restriction from Cj

with the additional property that xdj is set, but since we are considering cases when
φ2 was independent of xdj , setting a value to xdj does not matter. To complete the
characterization of xs and xt, note that after setting any other variable xk to any
value it is still true that φ2 depends on both xs and xt.

Let xs be the variable with lower index of the variables xs and xt which we
just have identified. Consider the restriction ρ′ obtained by setting ρ′(xs) = 1 while
ρ′(xk) = ρ(xk) for every xk 6= xs. We claim that ρ′ belongs to Aj . Remember
that Aj × Bj was the set of inputs reaching leaf j when playing the KW-game on
the formula φ1. To see this claim let ρ′′ be obtained by setting ρ′′(xk) = ρ′(xk) for
xk 6= xdj while ρ′′(xdj) = ∗. By the conditions for xt being a critical variable for ρi,
ρ′′ ∈ Cj and hence ρ′ ∈ Aj .

Thus, starting with ρ we have created a unique restriction ρ′ such that whenever
ρ is created at leaf j then ρ′ ∈ Aj . Thus, reasoning as in the proof of Lemma 7.4, if
we multiply the probability of the restrictions produced at leaf j by Pr[Bj], then we
avoid making an overestimate. This means that we have created a set of restrictions
of total probability at least ∑

j

1

10
q−1Pr[Cj]r

2
jPr[Bj].

The created restrictions are of two types: either they do reduce the formula φ1 to 0
or they do not. In the former case they contribute to Case 6 (since φ2 depends on xs
and xt), and we have to estimate the probability of the latter case. We claim that
in this case the reduced φ1 contains both the variables xs and xt. This follows, since
setting ρ(xs) = 1 or ρ(xt) = 1 simplifies φ1 to 0 which in its turn is basically the fact
ρ′ ∈ Aj established above. By Lemma 6.1 it follows that the probability of this case
is bounded by q2L1(logL1)

1/2. Summing up we have

Pr[case 3] =

L1∑
j=1

Pr[Cj]rj =
∑

j|rj small

Pr[Cj]rj +
∑

j|rj large

Pr[Cj]rj

≤ 20q2L1 +
1

20

∑
j

q−1Pr[Cj]r
2
jPr[Bj]

≤ 20q2L1 +
1

2

(
Pr[case 6] + q2L1(logL1)

1/2
)
,

where the first inequality uses the bound for rj and the last inequality is based on the
above reasoning. The proof of Lemma 7.3 is complete.

All that remains is to complete the proof of Lemma 7.2 when q ≥ (4
√
L logL)−1.

To simplify the calculations we will, in this case, prove the slightly stronger bound

L2(φ) ≤ 200q2L(log q−1)3/2 − 2.

62 JOHAN HÅSTAD

First note that when (4
√
L logL)−1 ≤ q ≤ (2

√
L logL)−1, the second bound follows

from the first bound since

200q2L(log q−1)3/2 ≥ 200q2L(1/2 logL)3/2 ≥ 62q2L(logL)3/2

≥ 30q2L(logL)3/2 + 32(4
√
L logL)−2L(logL)3/2

≥ 30q2L(logL)3/2 + 2.

It remains to establish the second bound when q ≥ (2
√
L logL)−1, and we do this

by induction over L. Assume that φ = φ1 ∧ φ2, (the ∨-case being similar) where
L(φi) = Li, L1 + L2 = L, and L1 ≤ L2. This implies that we can always use the
second bound when bounding L2(φ2). We have two cases, depending on whether or
not q ≤ (4

√
L1 logL1)

−1. If q ≥ (4
√
L1 logL1)

−1 then, using the induction hypothesis
and L2(φ) ≤ L2(φ1) + L2(φ2) + 2, the result follows immediately.

To take care of the other case, notice that our estimates for the corrections to the
basic estimates depended only on L1. This means that in this case we get the total
bound

L2(φ1) + L2(φ2) + 41q2L1 + q2L1(logL1)
1/2,

and using the induction hypothesis (the first case for φ1 and the second for φ2) we
can bound this by

30q2L1(logL1)
3/2 + (200q2L2(log q−1)3/2 − 2) + q2L1(41 + (logL1)

1/2)

≤ 90q2L1(log q−1)3/2 + (200q2L2(log q−1)3/2 − 2) + 43q2L1(log q−1)1/2

≤ 200q2L(log q−1)3/2 − 2,

and the proof is complete.

8. Application to formula-size lower bounds. As mentioned in the intro-
duction, it is well known that shrinkage results can be used to derive lower bounds on
formula size. Let us briefly recall the function which seems to be the most appropriate
for this purpose. The input bits are of two types. For notational simplicity assume
that we have 2n input bits and that logn is an integer that divides n. The first n
bits define a Boolean function H on logn bits. The other n bits are divided into logn
groups of n/ logn bits each. If the parity of the variables in group i is yi then the
output is H(y). We call this function A as it was first defined by Andreev [9].

Theorem 8.1. The function A requires formulas of size

Ω

(
n3

(logn)7/2(log logn)3

)
.

Proof. Assume that we have a formula of size S which describes A. We know ([8,
Chapter 4, Theorem 3.1]) that there is a function of logn variables which requires a
formula size which is

Ω

(
n

log logn

)
.

We fix the first set of values to describe such a function. This might decrease the size of
the formula, but it is not clear by how much, and hence we just note that the resulting
formula is of size at most S. Apply an Rp-restriction with p = 2 log n log log n

n on the

THE SHRINKAGE EXPONENT OF DE MORGAN FORMULAS IS 2 63

remaining formula. By our main theorem the resulting formula will be of expected
size at most O(Sn−2(logn)7/2(log logn)2 + 1). The probability that all variables in a
particular group are fixed is bounded by

(1− p)
n

logn ≤ e−
pn

logn ≤ (logn)−2.

Since there are only logn groups, with probability 1 − o(1) there remains at least
one live variable in each group. Now since a positive random variable is at most
twice its expected size with probability at least 1/2, it follows that there is a positive
probability that we have at most twice the expected remaining size and some live
variable in each group. It follows that

O
(
Sn−2(logn)7/2(log logn)2

)
≥ Ω

(
n

log logn

)
,

and the proof is complete.
We note that there are indeed formulas for the function A of size O(n3(logn)−1),

and hence our bounds are close to optimal.

9. Conclusions. There remain two interesting questions on shrinking:
• What is the shrinkage exponent for monotone formulas? In some sense we

have established that it is 2; namely, one of the two examples given in the
introduction is monotone and shrinks only by a factor p2. This is the example
of L/2 copies of x1∧x2. This is not a natural example, and if it is the only one,
we are asking the wrong question. We can get around this example by using
2-variable and 3-variable simplification rules. We could also ask a slightly
different question, namely, what is the minimal α such that for arbitrary
small p there is a monotone formula of size O(p−α) that is trivialized by a
restriction from Rp with probability at most 1/2?

Apart from its inherent interest, a successful answer to this question
would in most cases (depending on the exact form of the answer) lead to an
ω(n2) lower bound for monotone formulas for the majority function.

• Are these annoying log factors really needed? This is really of minor impor-
tance. If they were indeed needed it would be surprising.

Acknowledgments. I am most grateful to Sasha Razborov and V.N. Lebedev
for catching gaps in the proofs in previous versions of this paper. Together with Andy
Yao, Sasha Razborov was also very helpful in giving ideas in the initial stages of
this research. Finally, I am most grateful to two anonymous referees for their careful
reading of the manuscript.

REFERENCES

[1] M. Dubiner and U. Zwick, How do read-once formulae shrink?, Combin. Prob. Comput., 3
(1994), pp. 455–469.

[2] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits and the polynomial time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–27.

[3] J. Håstad, A. Razborov, and A. Yao, On the shrinkage exponent for read-once formulae,
Theoret. Comput. Sci., 141 (1995), pp. 269–282.

[4] M. Karchmer and A. Wigderson, Monotone circuits for connectivity require super-
logarithmic depth, SIAM J. Discrete Math., 3 (1990), pp. 255–265.

[5] N. Nisan and R. Impagliazzo, The effect of random restrictions on formulae size, Random
Structures Algorithms, 4 (1993), pp. 121–134.

64 JOHAN HÅSTAD

[6] M. S. Paterson and U. Zwick, Shrinkage of de Morgan formulae under restriction, Random
Structures Algorithms, 4 (1993), pp. 135–150.

[7] A. Razborov, Applications of matrix methods to the theory of lower bounds in computational
complexity, Combinatorica, 10 (1990), pp. 81–93.

[8] I. Wegener, The Complexity of Boolean Function, John Wiley, New York, 1987.
[9] A. E. Andreev, On a method for obtaining more than quadratic effective lower bounds for the

complexity of π-schemes, Moscow Univ. Math. Bull., 42 (1987), pp. 63–66 (in Russian).
[10] K. L. Rychkov, A modification of Khrapchenko’s method and its application to bounding

the complexity of Π-networks for coding functions, in Methods of Discrete Analysis in
the Theory of Graphs and Circuits, Institut Matematiki SOAN SSSR, Novosibirsk, 1985,
pp. 91–98 (in Russian).

[11] B. A. Subbotovskaya, Realizations of linear functions by formulas using +, ∗,−, Soviet Math.
Dokl., 2 (1961), pp. 110–112 (in Russian).

[12] V. M. Khrapchenko, Complexity of the realization of a linear function in the class of π-
circuits, Math. Notes Acad. Sci. USSR, 9 (1971), pp. 21–23 (in Russian).

[13] V. M. Khrapchenko, A method of determining lower bounds for the complexity of Π-schemes,
Math. Notes Acad. Sci. USSR, 10 (1971), pp. 474–479 (in Russian).

SHARED MEMORY CONSISTENCY CONDITIONS FOR
NONSEQUENTIAL EXECUTION: DEFINITIONS AND

PROGRAMMING STRATEGIES∗

HAGIT ATTIYA† , SOMA CHAUDHURI‡ , ROY FRIEDMAN§ , AND JENNIFER L. WELCH¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 65–89, February 1998 003

Abstract. To enhance performance on shared memory multiprocessors, various techniques have
been proposed to reduce the latency of memory accesses, including pipelining of accesses, out-of-
order execution of accesses, and branch prediction with speculative execution. These optimizations
can, however, complicate the user’s model of memory. This paper attacks the problem of simplifying
programming on two fronts.

First, a general framework is presented for defining shared memory consistency conditions that
allows nonsequential execution of memory accesses. The interface at which conditions are defined
is between the program and the system and is architecture-independent. The framework is used
to generalize three consistency conditions—sequential consistency, hybrid consistency, and weak
consistency—for nonsequential execution. Thus, familiar consistency conditions can be precisely
specified even in optimized architectures.

Second, three techniques are described for structuring programs so that a shared memory that
provides the weaker (and more efficient) condition of hybrid consistency appears to guarantee the
stronger (and more costly) condition of sequential consistency. The benefit of these techniques is
that sequentially consistent executions are easier to reason about. The first technique statically
classifies accesses based on their type. This approach is extremely simple to use and leads to a
general technique for writing efficient synchronization code. The third technique is to avoid data
races in the program, which was previously studied in a somewhat different setting.

Precise, yet short and comprehensible, proofs are provided for the correctness of the programming
techniques. Such proofs shed light on the reasons these techniques work; we believe that the insight
gained can lead to the development of other techniques.

Key words. distributed shared memory, consistency conditions, sequential consistency

AMS subject classifications. 68-02, 68M07, 68Q10, 68Q60, 68Q65,

PII. S0097539794278396

1. Introduction.

1.1. Overview. Shared memory multiprocessors are an interesting alternative
to message-passing distributed computer systems. The parallelism in multiprocessors

∗ Received by the editors December 9, 1994; accepted for publication (in revised form) Decem-
ber 18, 1995. An extended abstract of this paper appeared in the Proceedings of the 5th ACM
Symposium on Parallel Algorithms and Architectures, ACM, New York, 1993, pp. 241–250. This
work was supported by United States–Israel Binational Science Foundation (BSF) grant 92-0233;
Technion V.P.R. Argentinian Research Fund for the promotion of research in the Technion; NSF
grants CCR-89-15206, CCR-9010730, and CCR-9308103; DARPA contracts N00014-89-J-1988 and
N00014-92-J-4033; ONR contract N00014-91-J-1046; a grant from the ISU Graduate College; an
IBM Faculty Development Award; NSF Presidential Young Investigator Award CCR-9158478; and
TAMU Engineering Excellence funds.

http://www.siam.org/journals/sicomp/27-1/27839.html
† Department of Computer Science, The Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il).
‡ Department of Computer Science, Iowa State University, Ames, IA 50011 (chaudhur@

cs.iastate.edu). Much of this research was completed while this author was with the Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

§ Department of Computer Science, Cornell University, Ithaca, NY 14853 (roy@cs.cornell.edu).
This research was completed while the author was with the Department of Computer Science, Tech-
nion, Haifa 32000, Israel.

¶ Department of Computer Science, Texas A&M University, College Station, TX 77843-3112
(welch@cs.tamu.edu). Much of this research was completed while this author was with the Depart-
ment of Computer Science, University of North Carolina, Chapel Hill, NC.

65

66 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

offers the potential of greatly increased performance, and shared memory is an attrac-
tive communication paradigm. Unfortunately, access to shared memory locations is a
major bottleneck for the performance of multiprocessors. The high latency of memory
operations is due to the amount of time needed to execute memory operations locally
and to the interprocessor communication delay, which increases with the number of
processors.

Many uniprocessor architecture techniques have been developed and implemented
to hide the latency of memory operations by allowing operations to overlap. These
techniques include performing memory accesses in parallel, pipelining memory ac-
cesses, initiating accesses out of order, and speculative execution (in which the system
predicts the outcome of future conditional branches and begins memory accesses for
the predicted branch). Specific instances include [1, 20, 24, 34, 35, 37, 39, 40]. Since
these techniques deviate from the sequential order of memory accesses specified by
the program, we call them “nonsequential.”

In multiprocessors, memory is often replicated and distributed to compensate for
the interprocessor communication delay. A consistency condition for shared memory
specifies what guarantees are provided about the values returned in the presence
of concurrent accesses to different copies of the memory. A variety of consistency
conditions have previously been proposed for shared memory architectures, e.g., [3,
4, 8, 9, 12, 18, 19, 21, 23, 25, 28, 29]. Clearly, the consistency condition limits the
optimizations that can be implemented.

A natural question is how to define consistency conditions that allow nonsequen-
tial execution of memory accesses, in a manner that admits optimized systems. A
further question is how to program these optimized systems with these generalized
consistency conditions in a safe and effective manner.

In this paper, we focus on the interface between programs and the shared mem-
ory under consistency conditions that allow nonsequential execution. We present a
framework for defining such conditions as properties of executions, rather than as
properties of hardware implementations. We hope that this aspect of our framework
will elucidate these somewhat complex conditions for algorithm designers, program-
mers, and perhaps compiler designers. We demonstrate our framework by extending
three consistency conditions to allow for nonsequential execution of memory accesses.
For one particular condition that allows efficient implementations, we present and
prove the correctness of three programming techniques that provide the illusion of a
stronger and more natural condition. The first approach is based on a static labeling
of the memory accesses in the program according to their type. The second approach
is to access shared data only inside appropriately protected critical sections. The third
approach is to avoid data races, an approach pioneered in [3, 4, 22, 23] for hardware
implementations.

1.2. Detailed description. Our first contribution is a framework for defining
consistency conditions that is general enough to allow nonsequential execution of
memory operations. This framework combines the following two features: (1) The
interface at which conditions are specified in our model is between the program and
the system instead of being specified as the internal behavior of the system. This
is the interface used in [12, 25, 28] and, in our opinion, is the natural one to use
for specification to be independent of implementation. (2) The framework allows for
arbitrary optimizations by the system, including especially speculative execution of
memory accesses. Recent experiments have shown that if the program has complex
control flow then only moderate speedup can be achieved by parallelism without
speculative execution (e.g., [26, 41]).

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 67

�

-

mcs process

application

program

run-time

environment Response

Call

node

Fig. 1. A node.

The framework is then used to extend three known consistency conditions for non-
sequential execution. Our extensions have two pleasing properties: (1) The conditions
are defined for all programs, not just programs that satisfy certain conditions. (2)
We give a formal, yet intuitive, treatment of explicit control instructions, which are
crucial for expressing the flow of control in a program and in analyzing its correctness
on nonsequential implementations.

Our framework assumes a system consisting of a collection of nodes. At each
node there is an application program, a memory consistency system (mcs) process,
and a run-time environment. An illustration of a node is given in Figure 1. An
application program contains instructions to access shared memory and conditional
branch instructions. The mcs processes at all the nodes collectively implement the
shared objects that are manipulated by the application programs. The run-time
environment at a node executes the shared memory instructions by interacting with
the local mcs process; its decision as to which instructions to execute relies on the
application program at that node. (We use the term run-time environment to refer to
the combination of the functionality of a compiler, which sees the whole program, and
a conventional run-time system, which makes decisions dynamically based on partial
knowledge.) In our framework, consistency conditions are specified as a guarantee on
the run-time environments at all nodes with respect to the program at each node. It
is the responsibility of both the mcs process and the run-time environment to provide
this guarantee.

A straightforward run-time environment would simply submit operations to the
mcs one at a time in the order specified by the program. To achieve various opti-
mizations, however, the run-time environment might submit operations out of order,
might have multiple operations pending at a time, and might anticipate branches
(sometimes incorrectly). We do not address the specific algorithm used by the run-
time environment. (That is another very interesting problem, beyond the scope of
this paper.) Instead, our goal is to model the run-time environment sufficiently ab-
stractly so that any of a large number of specific run-time environments can fit into
this framework. Obviously the run-time environment cannot do just anything—the
optimizations that it performs should be transparent to the application program. The

68 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

strongest condition we require of a correct run-time environment is that there exist
a way (after the fact) to take a subset of the operations performed by the run-time
environments at all the nodes and order them to be consistent with some “sequential
execution” of the programs at all the nodes. (Some of the operations performed by
the run-time environment might end up not being used; for instance, if they resulted
from an incorrect prediction about a branch. These operations can be ignored when
determining whether there is a corresponding sequential execution.) We emphasize
that the order in which operations appear to execute is what is important, not the
order in which they actually execute.

Our framework incorporates rollback and compensating operations in an implicit
manner. In particular, we allow the run-time environment to communicate with
the mcs in order to perform other operations on the data that are not part of the
application programs but that are necessary for achieving the desired consistency
condition (for example, operations to restore the state of the shared variables due to
incorrect predictions). These operations are ignored when the subset of operations
consistent with a sequential execution is taken.

Given this framework, we generalize three known consistency conditions: sequen-
tial consistency, weak consistency, and hybrid consistency.

Our second contribution addresses the issue of writing programs for hybrid con-
sistency and formally proving their correctness. Hybrid consistency is an efficient and
expressive consistency condition [12]; it captures some of the essential features of sev-
eral other consistency conditions appearing in the literature [3, 15, 18, 19]. Memory
access operations are classified as either strong or weak. This classification is crucial to
the following definition of the consistency condition, as observed by the programmer:
A global ordering is imposed on strong operations at different processes, but little
is guaranteed about the ordering of weak operations at different processes beyond
what is implied by their interleaving with the strong operations. The classification
also provides hints to the run-time environment concerning which optimizations can
be applied to which accesses. Clever use of the classification can improve the perfor-
mance of programs.

Unfortunately, it is more difficult to program memories that support hybrid con-
sistency than to program memories that support sequential consistency, since the
guarantees provided by the former are weaker than those provided by the latter. For
instance, how should the programmer decide which accesses should be strong and
which should be weak in order to improve performance yet still ensure correctness? A
way to cope with this problem is to develop rules and transformations for executing
programs that were written for sequentially consistent memories on hybrid consistent
memories. The benefit is that sequentially consistent executions are easier to reason
about while hybrid consistency can be implemented more efficiently. We consider sev-
eral techniques for turning programs written for sequential consistency into programs
that work for hybrid consistency. Precise, yet short and comprehensible, proofs are
provided for the correctness of the programming techniques. Such proofs shed light
on the reasons these techniques work; we believe that the insight gained can lead to
the development of other techniques.

The first approach we present is based on statically labeling specific accesses as
strong according to their type. We prove that programs in which all writes are strong
run on hybrid consistent shared memory implementations as if they were sequentially
consistent. There is a symmetric result that every hybrid consistent execution of a
program in which all reads are strong is sequentially consistent [11]. This theorem
requires further assumptions on the execution; although these assumptions are shown

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 69

to be necessary, they make the strong read technique impractical.
The second approach is based on the mutual exclusion paradigm and uses the

first approach as a tool. One proposed way to program with hybrid-like consistency
conditions [18, 21] is to protect accesses to shared data with critical sections and then
to use strong operations in the mutual exclusion code and weak operations inside
the critical section. When the critical sections are significant in size, the extra cost
to execute the strong operations in the mutual exclusion algorithm is more than
compensated for by the efficiency of the weak operations in the critical sections.
We take a careful look at this paradigm for hybrid consistency and show that it is
applicable, although care must be taken. Specifically, we show that many mutual
exclusion algorithms designed to work on a sequentially consistent memory can be
modified to work correctly on a hybrid consistent memory. The modification is to
label all writes in the entry and exit sections as strong and all other operations as weak
and to insert a dummy write in an appropriate place. However, this transformation
only works for noncooperative algorithms in which processes do not participate in the
mutual exclusion protocol unless they are actively vying for entry into the critical
section.

The third approach for programming with hybrid consistency is to run data-race-
free programs. This approach was pioneered by [3, 4, 21, 22, 23] in the context of
hardware implementations. (See section 2 for a more detailed discussion.) A data
race occurs when two accesses to the same location occur, at least one is a write, and
there is no synchronization between them. Data races in a program are considered
bad practice; they add to the uncertainty of concurrent programs, beyond what is
already implied by the fact that different processes may run at different rates and
memory accesses may have variable duration. (Some debuggers even regard data races
as bugs in the program.) Methods have been developed to detect and report data
races, also called access anomalies; e.g., [6, 16, 18, 17, 30, 32, 33]. It is reasonable to
assume that data-race-free programs account for a substantial portion of all concurrent
programs. We formally prove that data-race-free programs run on hybrid consistent
shared memory implementations as if they were sequentially consistent; this result is
shown in our programmer-oriented framework.

Although many parallel programs are expected to be data-race-free, we cannot
ignore the drawbacks of these programs. Proving that a program is data-race-free,
even for restricted cases, is co-NP-hard [31]. Also, it is sometimes difficult to find
the exact location of the data race in the program [32]. Our static methods provide
an alternative and show that it is not necessary to make a program data-race-free
in order to guarantee correct behavior. These methods are especially well suited to
applications in which reads greatly outnumber writes (or vice versa).

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 describes our system model. The modified definitions of sequential consis-
tency, weak consistency, and hybrid consistency are given in section 4. The static
methods for programming with hybrid consistency are discussed in section 5. Data-
race-free programs are discussed in section 6. We conclude with a discussion of the
results in section 7.

2. Related work. Many existing formal treatments of memory consistency con-
ditions [12, 23, 25, 28, 38] assume that memory operations are executed sequentially—
one at a time and in program order. Several recent papers proposed formalisms to
allow some nonsequential optimizations [3, 4, 21, 22, 23]. In this section, we compare
our work with these formalisms.

Gibbons, Merritt, and Gharachorloo developed a framework for defining consis-

70 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

tency condition which is based on a series of I/O automata, and used this framework
to define release consistency, a formalization of the Stanford DASH shared memory
model [22, 23]. This definition, as well as the definition of weak ordering [18, 19], is
given at the interface between the mcs and the network. Hence, the resulting consis-
tency conditions are not convenient for programmers and theoreticians. In particular,
the definitions in [22, 23] are very detailed and complex. In contrast, in our frame-
work as well as in [12, 25, 28], consistency conditions are defined at the interface
between the application program and the system; consistency conditions are defined
by describing the way operations are viewed (or ordered) and not the way operations
are executed. Hence, our approach is more programmer oriented.

Adve and Hill developed another programmer oriented formalism, called SCNF
[2, 5], using the assumption that programmers always want to work assuming sequen-
tially consistent memories. In this approach, a consistency condition is a contract
between software and hardware. That is, hardware must behave as if it was sequen-
tially consistent for all programs that obey certain properties; various consistency
conditions differ in the properties they require from programs. Examples of such con-
ditions include, e.g., DRF0 [3], DRF1 [4], PLpc1, and PLpc2 [2]. For each of these
programming models, Adve and Hill introduce sufficient conditions for hardware;
hardware that follows these conditions executes programs that obey the correspond-
ing programming model as if it was sequentially consistent. The problem with this
approach is that the resulting consistency conditions are not defined for programs
that do not obey the required properties. This limits the programming style, even in
cases where other programming styles could yield better performance. The sufficient
conditions introduced by Adve and Hill for DRF0, DRF1, PLpc1, and PLpc2 [2] extend
the definition of these conditions for all programs. The approach taken by Adve and
Hill is to develop a programming model and then suggest how to tailor the hardware
to support it. We take the complementary approach, first developing a consistency
condition, and then developing programming methods for it.

Our framework includes an explicit model of the program, including control in-
structions. Our notion of the control flow of the program is derived syntactically
from the code. Adve and Hill’s sufficient conditions for DRF0, DRF1, PLpc1, and
PLpc2 [2], which permits nonsequential execution of memory operations, is based on
the notion of a read operation controlling a write operation by the same processor.
It is not obvious that this notion captures all the possible ways one operation can
control another. Other previous work on specifying consistency conditions has either
totally ignored control instructions [7, 12, 14, 25, 28] or has only made the informal
requirement that uniprocessor control dependencies are preserved [3, 21, 23].

Gibbons and Merritt [22] present a framework that deals formally with pipelining
of memory operations. Their framework, recast in our terms, is based on the run-time
environment submitting the memory accesses to the mcs, together with a partial order
restricting the allowable reorderings of the accesses. Because the interaction between
the run-time environment and the mcs is based on partial orders, their framework
does not encompass arbitrary out-of-order or speculative execution of operations and
it seems difficult to extend it to do so. We have taken a complementary approach and
focused on modeling the program and its behavior, leaving unspecified the details of
the interaction between the run-time environment and the mcs. Consequently, our
framework allows arbitrary out-of-order and speculative execution of operations.

The idea that data-race-free programs can be executed on more relaxed imple-
mentations of shared memory as if they were sequentially consistent was pioneered in
[2, 3, 4]. Similar results for other consistency conditions were also proved in [10, 22, 23].

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 71

We have applied this approach for hybrid consistency, using our framework. Admit-
tedly, hybrid consistency may disallow some optimizations considered in several of the
above papers. However, we believe the accessibility of our technical development pro-
vides insight concerning the interplay between conditions on the program and memory
consistency conditions.

Another approach was taken by Shasha and Snir [37]. They consider multiproces-
sor programs, written assuming sequential consistency, and investigate where to insert
memory barrier operations (fences) so that if operations are executed in pipeline, but
the fences are obeyed, then the result is as if the programs were executed sequen-
tially. Their results are based on a partial order that has to hold between instruction
instances, representing program order and causality. The execution is sequentially
consistent only if this order is acyclic. Therefore, they insert the minimal amount of
fences that will make the induced partial order acyclic.

Singh proved sufficient conditions for executions generated by optimized hard-
ware, e.g., pipelined RAM, causal memory, and hybrid consistency, to be sequentially
consistent [38]. Unlike the approach taken in this paper and by other researchers in
this area, e.g., [2, 3, 4, 10, 22, 23], the approach taken by Singh examines the execu-
tions generated by the optimized hardware and not the programs that should be run
on it.

The framework developed in this paper was extended in [13] to formally define
alpha consistency, capturing the semantics provided by DEC-Alpha based multipro-
cessors (see section 4.1). Two programming methodologies similar to the ones de-
veloped in this paper are presented in [13]: (a) every data-race-free program runs
on an alpha consistent memory as if it was sequentially consistent, and (b) any non-
cooperative mutual exclusion algorithm based on sequential consistency can be trans-
formed into a correct solution based on alpha consistency. However, since the Alpha
does not support strong operations in the same sense as hybrid consistency (or release
consistency),1 the definition of data-race-free programs and the method for handling
mutual exclusion algorithms in [13] are different from those in this paper.

3. Framework. In this section, we present our formal definitions.

3.1. System components. An application program consists of a sequence of
instructions, each with a unique label. There are two (disjoint) types of instructions:
(shared) memory instructions and control instructions. A memory instruction speci-
fies an access to a shared object. The specific kind of access depends on the data type
of the object.2 A control instruction consists of a condition (a boolean function of the
process’ local state) and a branch (jump to the instruction with the given label).

The memory consistency system (mcs) implements the shared objects that are
manipulated by the application programs. It consists of a process at each node as
well as possibly other hardware. Every object is assumed to have a serial specifica-
tion (cf. [25]) defining a set of (memory) operations, which are ordered pairs of calls
and responses, and a set of (memory) operation sequences, which are the allowable
sequences of operations on that object. For example, in the case of a read/write ob-
ject, the ordered pair [Readi(x), Returni(x, v)] forms an operation (pi reads v from
x) for any pi, x, and v, as does [Writei(x, v), Acki(x)] (pi writes v to x). The set of
operation sequences consists of all sequences in which every read operation returns

1 The memory-barrier operation of the Alpha does not impose any interprocess ordering of
operations.

2 Our framework does not restrict the data types; however, our programming techniques deal only
with read/write operations.

72 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

the value of the latest preceding write operation (the usual read/write semantics).
The interface to the mcs consists of calls (also called invocations) and responses on
particular objects.

The run-time environment at a node takes as input the application program and
executes instructions on the mcs. An operation is a specific instance of an execution of
an instruction. A memory operation consists of two parts: a call (to the mcs process)
and a matching response (from the mcs process). A control operation consists of an
evaluation of its condition. A control operation is represented by the result (true
or false) of the evaluation. Thus the run-time environment must keep track of the
local state of the application process in order to perform the evaluation. The run-
time environment and mcs process may also communicate concerning issues, such as
rollback and compensating operations, necessary to implement certain optimizations.
This communication can be modeled with calls to and responses from the mcs process.

An event is a call, response, or control operation (condition evaluation). An
execution (of the system) is a sequence of events such that there is a correspondence
between calls and responses (matching object and process), and each response follows
its corresponding call.

3.2. Sequential executions. Although an execution is a sequence of events, it
can also be viewed as containing operations. Each control operation is itself an event.
The memory operations in an execution are obtained by matching up correspond-
ing call and response events; we assume that the run-time environment matches the
call and response events defining the memory operations. We also assume that the
run-time environment identifies, possibly after the fact, a subset of all the operations
executed. This subset consists of the operations that we want to consider as “really
happening,” and there must be an ordering of this subset that satisfies certain prop-
erties. Two important properties, which we present next, are satisfying the serial
specifications of the objects (called “legal”) and being consistent with a sequential
execution of the program (called “admissible”).

First, we give a piece of notation. If τ is a sequence of operations and opi precedes
opj in τ , we write:

opi
τ- opj .

A sequence τ of operations is legal if for each object x, τ |x, the subsequence of τ
consisting of exactly the operations involving x, is in the serial specification of x.

The notion of a sequential execution of the program is formalized with the notion
of a flow control sequence for a process pi. We build up inductively an execution of
pi’s program in which every instruction finishes executing before the next one begins.
Given process pi’s program, a flow control sequence, fcsi, is a sequence of operations
defined as follows. The first element of fcsi is an instance of the first instruction
in pi’s program. Suppose the kth element of fcsi, denoted by op, is an instance of
instruction I in the program. If op is a control operation and its condition evaluates
to true, then the (k+1)st element of fcsi is an instance of the instruction whose label
is the branch of instruction I. Otherwise the (k + 1)st element of fcsi is an instance
of the instruction immediately after I in the program. A flow control sequence can
be either finite or infinite (for nonterminating programs). Note that the flow control
sequence implies a total order on the operations appearing in it; we denote this order

by
fcsi
=⇒.
Let fcsi be a flow control sequence for pi. A sequence τ of memory operations

is fully fcsi-admissible if τ |i, the subsequence of τ consisting exactly of operations

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 73

involving pi, is equal to the subsequence of fcsi consisting exactly of the memory
operations. Intuitively, this implies that the ordering of operations by pi in τ agrees
with some flow control sequence fcsi for pi and does not end unless the program
terminates. A sequence τ of memory operations is partially fcsi-admissible if τ |i is a
prefix of the subsequence of memory operations in fcsi. Intuitively, this implies that,
so far, the ordering implied by the flow control sequence is obeyed by τ , but it is not
necessarily completed yet.

A sequence τ of memory operations is fully (resp., partially) admissible with re-
spect to a set of flow control sequences {fcsi}ni=1, one for each pi, if it is fully (resp.,
partially) fcsi-admissible for all i.

A sequence of memory operations is a sequential execution if it is legal and fully
admissible (with respect to some set of flow control sequences).

Claim 3.1. Any legal, partially admissible sequence of memory operations is a
prefix of a sequential execution and vice versa.

3.3. Weak and strong operations. In some consistency conditions it is pos-
sible to mark certain instructions in a program as strong; all other instructions are
weak. An instance of a strong instruction is a strong operation and an instance of
a weak instruction is a weak operation. (Strong and weak operations provide differ-
ent levels of consistency and are part of the definition of hybrid consistency.) In the
case of read/write objects this means that it is possible to use strong reads, strong
writes, weak reads, and weak writes. In the rest of the paper, we use opi to denote an
operation invoked by pi (weak or strong), and by sopi we denote a strong operation
invoked by process pi. We use superscripts, e.g., op1

i , op
2
i , . . ., to distinguish between

operations invoked by the same process (note that the superscript does not imply any
ordering of the operations). We sometimes use a shorthand notation for read and
write operations and denote by ri(x, v) a read operation (weak or strong) invoked
by process pi returning v from x; we denote by wi(x, v) a write operation (weak or
strong) invoked by process pi writing v to x. Similarly, sri(x, v) is a strong read op-
eration invoked by process pi returning v from x; swi(x, v) is a strong write operation
invoked by process pi writing v to x.

3.4. Control operations and the influence relation. When defining and
analyzing consistency conditions, it is important to take into account the effects of
control operations. A specific example of the pitfalls associated with failing to do so
appears in section 4, where we present our new consistency conditions. To capture the
effect of control operations, we define a partial order on operations in a flow control
sequence; this partial order is featured in the consistency conditions presented below.
Based on the relation fcsi we define a partial order

coi=⇒ called the control order.
Formally, for any two memory operations op1

i and op2
i , op

1
i

coi=⇒ op2
i if there exists a

control operation op3
i such that op1

i
fcsi
=⇒ op3

i
fcsi
=⇒ op2

i .

We now formalize the notion of one operation influencing another, which relies
on the control order. Let τ be a sequence of memory operations and let coi be a
partial order on the operations that is consistent with τ , for each pi. An operation
op1

j directly influences an operation op2
k in τ (with respect to the coi’s) if one of the

following holds:

1. op1
j

coj
=⇒ op2

k and op1
j is a read. (Note that j = k in this case.) That is, op1

j

is a read operation which could affect the execution of op2
k through a control

operation.

2. op2
k = rk(y, v), op

1
j = wj(y, v), op

1
j

τ- op2
k and there does not exist wh(y, u)

74 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

such that u 6= v and wj(y, v)
τ- wh(y, u)

τ- rk(y, v). That is, op2
k is a

read of the value written by op1
j and there is no intervening write of a different

value.

The influence relation is the transitive closure of direct influence. Thus the in-
fluence relation is also defined with respect to a set of partial orders. Although we
will not usually explicitly mention these partial orders, the influence relation will be
used with admissible operation sequences and the relevant partial orders will be the
control orders for the corresponding flow control sequences.

Note that an operation directly influences another operation only if it is ordered
before it in τ . Since the influence relation is the transitive closure of direct influence,
we have the following claim.

Claim 3.2. If op1
j influences op2

k in τ , then op1
j

τ- op2
k.

The following lemma captures the intuition that if a read operation op1
j = rj(x, v)

does not influence operation op2
k, then op2

k would have been generated even if op1
j had

read a value other than v.

Lemma 3.3. Let τ be a sequence of memory operations that is partially admissible
with respect to a set of flow control sequences {fcsi}ni=1. Let operation op1

j in τ be a
read rj(x, v) that does not influence any operation in τ . Let τ ′ be the result of taking
τ and changing op1

j to be rj(x,w) for some w 6= v. Then τ ′ is partially admissible for

some set of flow control sequences {fcs′i}ni=1.

4. Defining nonsequential consistency conditions. In this section, we de-
fine three consistency conditions that generalize previously known ones for the non-
sequential case. The reason they are generalizations is that in nonoptimized systems,
where operations at each process are invoked in program order and only one operation
may be pending at a time, fcsi is simply the sequence of operations in the order they
were invoked. We then discuss (by an example) the importance of considering control
operations (e.g., if-statements) when specifying consistency conditions.

Sequential consistency [28] is a strong consistency condition stating that there
exists a sequential execution that is consistent with the way the actual execution ap-
pears to every process. Sequential consistency allows one to reason about a concurrent
system using familiar uniprocessor techniques. Since uniprocessor systems are easier
to reason about than concurrent systems, this is helpful. Thus many systems (try
to) provide sequential consistency. However, providing sequential consistency can
incur some costs. For instance, providing sequential consistency in message-based
systems requires the response time of some operations to depend on the end-to-end
message delay [14, 29]. Later in this paper, we show several programming techniques
for achieving sequential consistency when the system only provides a weaker, and
preferably cheaper, condition.

Definition 4.1 (sequential consistency). An execution R is sequentially consis-
tent if there exists a subset S of the memory operations in R, a set {fcsi}ni=1 of flow
control sequences, and a legal permutation τ of S such that τ is fully admissible with
respect to {fcsi}ni=1.

Note that since τ is a permutation of S, and since τ is fully admissible with respect
to {fcsi}ni=1, S must include all operations that appear in all flow control sequences.
Hence, S cannot just be chosen arbitrarily. In particular, unless the program is empty,
S cannot be empty.

Weak consistency [12, 29] is a very relaxed condition; it does not impose any
global ordering on any kind of operations. Its importance lies in the fact that it may
be implemented very efficiently, and despite its weakness, there is a large class of

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 75

programs for which it suffices. It requires that there exist a subset of the memory
operations in the execution and a set of flow control sequences such that for each
process, there is a legal permutation of those operations that is consistent with the
process’ own flow control sequence. Note that each processor may have a different
permutation, or “view,” of the operations.

Definition 4.2 (weak consistency). An execution R is weakly consistent if there
exist a subset S of the memory operations in R and a set of flow control sequences
{fcsi}ni=1, one for each pi, such that for each pi, there exists a legal permutation τi
of S that is fully fcsi-admissible.

Hybrid consistency [12] is intermediate between sequential and weak consistency;
it combines the expressiveness of the former and the efficiency of the latter. Hybrid
consistency distinguishes between two types of operations—strong and weak. It states
that there must be a subset of the memory operations in the execution, a total order
on the strong operations among them, and a set of flow control sequences satisfying
the following. For each process, there is a legal permutation of the operations in the
subset that is consistent with four orders: the process’ own flow control sequence,
every other process’ control order, the total order on the strong operations, and the
relative order of every pair of strong and weak operations by another process in that
process’ flow control sequence. Furthermore, all accesses of the same process to the
same location will be viewed by all the processes in the same order. It is possible to
implement hybrid consistency in such a way that weak operations are extremely fast
[12].

Definition 4.3 (hybrid consistency). An execution R is hybrid consistent if
there exist a subset S of the memory operations in R, a set of flow control sequences
{fcsi}ni=1, and a permutation ρ of the strong operations in S such that for each process
pi, there exists a legal permutation τi of S with the following properties:

1. τi is fully fcsi-admissible, i.e., it is consistent with the process’ own flow
control sequence.

2. If op1
j

coj
=⇒ op2

j , then op1
j

τi- op2
j , for any j, i.e., it is consistent with every

other process’ control order.3

3. If op1
j

fcsj
=⇒ op2

j and at least one is strong, then op1
j

τi- op2
j , for any j,

i.e., it is consistent with the relative order of every pair of strong and weak
operations by another process in that process’ flow control sequence.

4. If op1
j

ρ- op2
k (implying both are strong), then op1

j

τi- op2
k, for any j and

k, i.e., it is consistent with the total order on the strong operations.

5. If op1
j

fcsj
=⇒ op2

j and op1
j and op2

j access the same location, then op1
j

τi- op2
j ,

for any j, i.e., all accesses of the same process to the same location will be
viewed by all the processes in the same order.

We now discuss the last property in more detail. It states that all operations
on the same object by the same process pj are viewed by every other process in the
same order as they are viewed by pj . This property does not appear in the original
definition of hybrid consistency [12]; however, it is necessary in order for some of
our results to hold, as is shown in section 6.3. Evidence suggests it is a reasonable
assumption, since some previous authors make the even stronger assumption that all
processes view all operations on the same object, no matter which process invoked
them, in the same order.4

3 This condition is not part of the original definition of hybrid consistency [12], which did not
include control operations.

4 In [3, 22, 23], a total order on all the writes to the same location is assumed. In addition, it is

76 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

To illustrate the problem that occurs if hybrid consistency were defined without
considering control operations, consider the following example, assuming x and y are
initially 0 and all instructions are weak:

p1’s program p2’s program

tmp1 := read(x); tmp2 := read(y);
if tmp1 = 5 then if tmp2 = 5 then

write(y, 5); write(x, 5);

In this program, the values returned by the reads affect the decision of whether to
invoke the writes, and the invocations of the writes affect the possible values returned
by the reads. For example, assume this program is being executed on a hybrid con-
sistent memory and all operations are weak. If we ignore the existence of control
instructions, the definition would allow the following execution R:

R|p1 = r1
1(x, 5), w2

1(y, 5),

R|p2 = r1
2(y, 5), w2

2(x, 5).

To show R is hybrid consistent we take

τ1 = w2
2(x, 5), r1

1(x, 5), w2
1(y, 5), r1

2(y, 5),

τ2 = w2
1(y, 5), r1

2(y, 5), w2
2(x, 5), r1

1(x, 5).

Note that condition 2 is not satisfied, since the sequences do not preserve the order
of operations separated by control operations.

The program for p1 allows the read(x) to return 5, whereas x could have taken
the value 5 only if p1 writes 5 to y, which will happen only if p1 reads 5 in x. It
is important to eliminate such executions with circular inference relations, where the
prediction about the result of a control operation could affect its actual result.5 If
such behavior is allowed, then writing programs and arguing about them becomes
almost impossible.

One might want to allow the programmer to choose whether or not a control op-
eration should enforce an ordering. This can be done in a manner similar to the dis-
tinction we make between strong and weak memory operations. Introducing “weak”
control operations in this manner further complicates the programming model; there-
fore, we have decided not to include them in our model.

4.1. Discussion of the definitions.

Viewing order vs. execution order. We would like to emphasize that the order in
which operations may be viewed by different processes need not reflect the order in
which they are executed. For example, consider the program in Figure 2. Due to the
control order, every process must view the write to z after the read from x. On the
other hand, a sophisticated run-time environment (or compiler) could detect that the
write to z would be invoked regardless of the outcome of the read from x. Therefore,

assumed that a value read from a specific location can be uniquely identified with a write operation.
Thus, all the processes view all the writes to the same location in the same order. Since a value read
from a specific location can be uniquely identified with a write operation, each read is viewed by all
the processes to be between the same writes to that location. These two assumptions imply that all
the processes view all the operations on the same object in the same order.

5 See [37] for more discussion of circular relations in the execution of programs.

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 77

p1’s program
tmp := read(x);
if tmp = v then

write(y, u);
write(z, w);

Fig. 2. Viewing order vs. execution order.

p1’s program p2’s program

*tmp1 := read(&x); *tmp2 := read(&y);

Fig. 3. Limitations of the framework.

the run-time environment can invoke the write to z before the read from x. This is
allowed by the definition of hybrid consistency since it is possible to order the write
to z after the read from x (even if they were executed in reverse order).

Limitations of the framework. Our framework for defining consistency conditions
does not support dependencies through registers and indirect addressing. For example,
the program in Figure 3 is not handled by our framework. (We use & and * for indirect
addressing in the style of C/C++.) Followup work [13] extends the framework to
include RISC-type addressing, i.e., registers can be used to provide the data or the
address for an operation (instead of just constants, as in this paper). It shows that
all the results of this paper hold in the extended framework as well, although the
definitions are slightly more complicated.

Programmability vs. hardware optimizations. The definition of hybrid consistency
includes several choices which reflect our opinions about the guarantees required by
programmers from a consistency condition. These choices may disallow some hard-
ware optimizations. We would like to stress, however, that these choices are not
an inherent part of the framework. Specifically, if a particular choice we make does
not allow an invaluable hardware optimization, then the definition of the consistency
condition can be easily changed to support this optimization.

As an example, consider the program in Figure 4. In this program, the two writes
by p1 are labeled as strong, while the two reads of p2 are labeled as weak; assume
that the initial values of x and y are 0. The definition of hybrid consistency requires
that every process views its own weak reads in the same order as they appear in its
flow control sequence. Hence, if the first read by p2 returns 1 from y, then the second
read by p2 cannot return 0 from x.

We believe that this is the semantics expected by programmers. However, this
implies that an implementation of hybrid consistency cannot afford to execute weak
reads out of order unless it provides rollback. This happens due to the fact that when
the run-time system decides on the execution order for two weak reads by the same
process, it may not know whether there are concurrent strong writes to the same
objects (as in Figure 4). Yet, if it important to allow hardware optimizations that
require a process to view its own weak reads out of order; then the definition of hybrid
consistency can be easily changed by removing the first condition in Definition 4.3.
We remark that in this case, the result about running data-race-free programs (Theo-
rem 6.6) remains correct, but the programming techniques developed in section 5 are

78 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

p1’s program p2’s program

swrite(x, 1); read(y);
swrite(y, 1); read(x);

Fig. 4. The ordering of weak reads.

no longer valid.

5. Static approach. In this section, we present techniques for writing programs
for hybrid consistent shared memories that are based on statically classifying accesses
according to their type (read or write) and the object they access. In section 5.1,
we show that every hybrid consistent execution of a program in which all writes are
strong is sequentially consistent. This result is used to develop an efficient synchro-
nization code in section 5.2. In [11], we present the symmetric result that every hybrid
consistent execution of a program in which all reads are strong is sequentially consis-
tent. In order to prove this theorem, further assumptions on the execution must be
made. Although these assumptions are shown to be necessary, they make the result
impractical.

5.1. Strong writes. We prove the following theorem.
Theorem 5.1. Every hybrid consistent execution of a program in which all writes

are strong and all reads are weak is sequentially consistent.
Proof. Let R be such an execution. Let S be a subset of memory operations

in R, fcsi for each pi be a flow control sequence, ρ be a permutation of the strong
operations (namely, the writes) in S, and τi for each pi be a legal permutation of S
as guaranteed by the definition of hybrid consistency. We will insert the (weak) read
operations into ρ to construct τ , a legal permutation of S that is fully admissible with
respect to the fcsi’s.

A read by process pi is inserted after any write that precedes it in τi and before
any write that follows it in τi. This can be done since τi agrees with ρ on the order of
strong operations. Furthermore, it will be inserted after any read by pi that precedes
it in τi and before any read by pi that follows it in τi. The ordering of read operations
by different processes is unimportant.

Clearly, τ is a permutation of S. Since τi preserves the ordering of operations by
pi, it follows that τ is fcsi-admissible for all i.

The fact that τ is legal follows from the fact that τi is legal, that τi agrees with
ρ on the order of strong operations, and from the construction of τ .

5.2. Using strong writes to program with critical sections. Theorem 5.1
is useful for designing and proving correctness of programs which rely on hybrid con-
sistency. A simple way to use it is to take a program which is designed for sequential
consistency, label each write as a strong write and each read as a weak read, and
run it on a hybrid consistent memory. However, there is even a more efficient way
to employ the above theorem. If the program has explicit synchronization code ded-
icated to coordinating memory access operations, while the rest of the code ignores
synchronization issues, then it is possible to apply Theorem 5.1 only to the synchro-
nization code and label all other memory accesses—both reads and writes—as weak.
We demonstrate this method for mutual exclusion. Given a mutual exclusion algo-
rithm designed for sequentially consistent memories, we produce a modified algorithm
by adding one strong write (to a location which is never read from) to the entry section
and by labeling all the writes in the synchronization part of the code as strong, while

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 79

all other memory accesses are labeled as weak. We prove that the modified algorithm
guarantees mutual exclusion (in a strong sense) on hybrid consistent memories.

Several papers on relaxed consistency conditions refer to the common method of
programming with critical sections as a justification for the separation of strong and
weak operations. In [21, p. 19], it is argued that

for example, a large class of programs are written such that accesses
to shared data are protected within critical sections. Such programs
are called synchronized programs, whereby writes to shared locations
are done in a mutually exclusive manner (no other reads or writes
can occur simultaneously). In a synchronized program, all accesses
(except accesses that are part of the synchronization constructs) can
be labeled as ordinaryL.

Our result shows that there is a more efficient way to utilize synchronized programs.
If the mutual exclusion algorithm is noncooperative, then it is not necessary to label
reads that are part of the synchronization constructs (i.e., entry and exit sections) as
strong (provided that an extra write is added).

We remind the reader that an algorithm for mutual exclusion consists of four
disjoint sections for each process—entry, critical, exit, and remainder (cf. [36]). In the
entry section, a process tries to gain access to the critical section; the exit section is
executed by each process upon leaving the critical section; the remainder section is the
rest of the code. Processes cycle through the four sections of their code. Informally,
an algorithm guarantees mutual exclusion provided that the following hold:

Mutual exclusion: no two processes are inside the critical section at the same
time, and

Deadlock freedom: if there exists a process that is continually in its entry section
from some point on, then there exists another process that enters (and leaves)
its critical section infinitely often.

A mutual exclusion algorithm provides code for the entry and exit sections. It should
treat the code in the critical and remainder sections as black boxes (with some re-
strictions, as discussed below).

The above definition of mutual exclusion assumes that the order in which op-
erations are executed reflects the order in which they are viewed by the processes.
However, our formalism for defining consistency conditions puts restrictions only on
the order in which operations are viewed, which may not correspond directly to the
order in which they are executed. To be able to cope with these conditions, we define
logical mutual exclusion as follows. Given a mutual exclusion algorithm (program),
consider a flow control sequence for process pi, and let CSk

i be the set of operations
invoked by process pi during the kth time that pi executes the critical section in this
sequence.

Algorithm A guarantees logical mutual exclusion based on a consistency condition
C provided that the following hold. Let σ be an execution of A that is allowed by C
and let {τr}nr=1 be a set of sequences as required in the definition of C (the views of

the different processes). Consider the CSk
i ’s induced by

fcsi
=⇒.

Logical mutual exclusion: For any four operations op1
i , op

2
i ∈ CSk

i and op1
j , op

2
j

∈ CSl
j , op

1
i

τq- op1
j if and only if op2

i

τs- op2
j , for all processes pq and

ps. As before, this implies that there is a total order on all critical section
executions; furthermore, this ordering is the same in all τr’s.

Deadlock freedom: For every process pq, if τq is infinite and there exists a process
pi that is in its entry section from some point on in τq, then there is another

80 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

process pj that enters (and leaves) its critical section infinitely often in τq.
In the rest of this section we mean logical mutual exclusion whenever we refer to

mutual exclusion.
Our result assumes that the mutual exclusion algorithm does not communicate

with the algorithm that is executed inside the critical section or remainder section.
Specifically, we assume that variables that are accessed in the entry or exit section are
not accessed in the critical or remainder sections. To capture this property, let the
exclusion set of a mutual exclusion algorithm A be the set of shared variables read in
the entry or exit sections of A; this set is denoted exc(A).

Definition 5.2. A mutual exclusion algorithm A is noncooperative if every
process which executes the critical section or the remainder section of A does not
write any variable in exc(A); otherwise, the algorithm is cooperative.6

We assume that the mutual exclusion algorithm is designed to run with any code
in the critical section (subject to the above restriction) and that it can be run in
asynchronous systems (i.e., the algorithm does not depend on any timing behavior).

Claim 5.3. There is at least one write to a variable in exc(A) in the exit section
of every noncooperative mutual exclusion algorithm based on sequential consistency.

Proof. Assume, by way of contradiction, that there exists a noncooperative mutual
exclusion algorithm A such that there is no write to any of the variables of exc(A) in
the exit section of A. Assume that we run the algorithm with the following critical
section (for every process pi), under the assumption that x is initially 0:

tmpi = r(x),
tmpi := tmpi + 1,
w(x, tmpi).

Recall that tmpi and x are not accessed in the entry and exit sections of A.
Consider now a sequentially consistent execution R of A with this critical section in
which p0 starts at time 0 and runs until it enters the critical section, completes it,
and exits; then p1 starts and runs until it enters the critical section, completes it, and
exits. Denote by t the time at which p0 completes the read operation from x.

We claim that there is a sequentially consistent execution R′ of A with this critical
section in which p0 starts at time 0 and runs until time t, when it completes the read
operation; then p1 starts and runs until it enters the critical section, completes it, and
exits; then p0 completes its critical section and exits. R′ exists because we assumed
that the algorithm is asynchronous. Note that there is no write in the exit section of
A and there is no write to variables in exc(A) in the critical section of p0. Thus, all
the values read by p1 in its entry section in R′ are equal to the values it reads in its
entry section in R; since, in R, p1 must eventually enter the critical section (to avoid
deadlock), it must eventually enter the critical section in R′.

Clearly, R′ violates the definition of mutual exclusion, since p0 and p1 are inside
the critical section at the same time. Furthermore, note that in R′ both p0 and
p1 read the value 0 from x and thus the final value of x at the end of R′ is 1.
This final value could not be obtained in any execution that preserves logical mutual
exclusion.

Given a noncooperative algorithm A for the mutual exclusion problem based on
sequential consistency, label every write in the entry and exit sections as strong and

6 The definition of noncooperative algorithms given in [12] allows processes that are executing
the critical section to access variables in exc(A). The additional requirement made here seems quite
reasonable, since we usually want to treat the mutual exclusion algorithm as a general solution,
independent of the rest of the code, and to use it as a subroutine. This is also the approach taken in
many of the known solutions to the mutual exclusion problem [36]. A more detailed discussion and
motivation for noncooperative mutual exclusion algorithms appears in [12].

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 81

every read in the entry and exit sections as weak; operations inside the critical section
or remainder section are labeled as weak. Next, add a strong write to some object
nac(A) that is not accessed elsewhere in the program such that this write will be the
last instruction executed (in a flow control sequence) before each critical section. Call
this modified algorithm A′.

In order to prove thatA′ guarantees mutual exclusion based on hybrid consistency,
we have to show that it is free of deadlocks and that it guarantees logical mutual
exclusion.

Lemma 5.4. A′ guarantees deadlock freedom based on hybrid consistency.

Proof. Assume, by way of contradiction, that there exists a hybrid consistent
execution σ of A′ that has a deadlock. Denote by {τj}nj=1 the set of sequences of
operations as guaranteed by the definition of hybrid consistency. Let σ′ be the exe-
cution that results by eliminating from σ all operations that are not invoked inside
(w.r.t. the flow control sequences) the entry or exit section of A′. Since the algorithm
is noncooperative, there are no writes to variables in exc(A′) outside (w.r.t. the flow
control sequences) the entry and exit sections of A′. Thus, σ′ includes all the writes
(in σ) to variables in exc(A′), and thus, σ′ is hybrid consistent. Specifically, define
for each j a flow control sequence fcs′j by eliminating from fcsj all the operations
of pj that do not appear in σ′. Thus, the set of sequences {τ ′j}nj=1 that results from
eliminating all the operations that do not appear in σ′ from {τj}nj=1 obeys all the
requirements in the definition of hybrid consistency (w.r.t. the {fcs′j}nj=1). Note that
all the writes in σ′ are strong, and thus, by Theorem 5.1, σ′ is sequentially consistent.
Furthermore, in σ′ there is a deadlock. Since there are no reads from nac(A), the
execution σ′′ that results from eliminating all the writes to nac(A) is also sequentially
consistent and there is a deadlock in σ′′. Note that σ′′ is an execution of A in the
case of an empty critical section. Thus, there is a sequentially consistent execution of
A that has a deadlock. This is a contradiction.

Lemma 5.5. A′ guarantees logical mutual exclusion based on hybrid consistency.

Proof. Recall that a sequential execution is a sequence of operations. Hence, each
sequential execution of a program can be viewed by itself as a sequence τ of operations
that obeys the requirements in the definition of sequential consistency. Therefore,
since A guarantees mutual exclusion based on sequential consistency, every sequential
execution of A must guarantee logical mutual exclusion as defined above. We will
show that if A′ does not guarantee mutual exclusion based on hybrid consistency, we
may build a sequential execution of A in which mutual exclusion is violated.

Let σ be a hybrid consistent execution of an instance of A′ in which every ex-
ecution of the critical section consists of two writes, and let {τj}nj=1 be the set of
sequences of operations as guaranteed in the definition of hybrid consistency.

Call the last operation executed by a process before entering the critical section
the entry point. Note that the entry point is a write operation on nac(A). By Claim
5.3, there is at least one write in the exit section. Call the first write in the exit section
the exit point. Each pair of matching entry and exit points is called a critical pair.
We now show that in each τi all the critical pairs are ordered in a nonoverlapping
way, which gives the result for critical section executions.

Assume, by way of contradiction, that there exists a sequence τj in which two
critical pairs overlap. Assume that [op1

k, op
2
k] and [op1

l , op
2
l] are critical pairs that

overlap, and assume, without loss of generality, that op2
k

τj- op2
l . Let σ′ be the

execution that results by eliminating from σ all operations that are not invoked inside
entry and exit sections of A′. Since the algorithm is noncooperative, σ′ includes all the
writes (in σ) to variables in exc(A′), and thus, σ′ is hybrid consistent. By Theorem

82 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

5.1, σ′ is sequentially consistent. Thus, we may build a legal sequence of operations
τ in the same way as in the proof of Theorem 5.1. That is, the strong writes are
ordered in τ in the order they appear in any sequence τi. A read by process pi is
inserted after any write that precedes it in τi and before any write that follows it in
τi. Furthermore, it will be inserted after any read by pi that precedes it in τi and
before any read by pi that follows it in τi. The ordering of read operations by different
processes in unimportant. Note that τ is a sequential execution of A′ in the case of
an empty critical section.

By the construction of τ , and since we assumed that [op1
k, op

2
k] and [op1

l , op
2
l]

are overlapping in τj , the latest of op1
k and op1

l precedes both op2
k and op2

l in τ .
Consider the prefix τ ′ of τ that ends with the latest of op1

k and op1
l . Note that any

operation in τ ′ that is invoked during the exit sections that correspond to [op1
k, op

2
k]

and [op1
l , op

2
l] is a read. Remember that there are no reads from nac(A). Thus, τ ′′,

the result of eliminating from τ ′ all reads that are invoked during the exit sections
that corresponds to [op1

k, op
2
k] and [op1

l , op
2
l] and all writes to nac(A), is a prefix of a

sequential execution of A. Denote the writes in the critical section that corresponds
to [op1

k, op
2
k] by w1

k and w2
k and the writes in the critical section that corresponds to

[op1
l , op

2
l] by w1

l and w2
l . Add w1

k, w
1
l , w

2
k, and w2

l in this order to τ ′′ to form τ ′′′. Since
all operations that were added to τ ′′ are writes, τ ′′′ is legal and is therefore a prefix of

a sequential execution. Moreover, w1
k

τ ′′′
- w1

l but w1
l

τ ′′′
- w2

k, which is a violation
of logical mutual exclusion. Thus, τ ′′′ can be extended to a sequential execution of A
that violates mutual exclusion. This is a contradiction to the assumption that every
sequential execution of A guarantees logical mutual exclusion.

Thus, we have shown that all critical pairs appear in every sequence τj in a
nonoverlapping manner. Since the exit points are strong writes, all the processes
agree (in the τj ’s) on the same nonoverlapping order for the critical pairs. Hence, we
need only to show that the order in which critical pairs are ordered in every sequence
τj is unique.

Let cp, cp′, and cp′′ be three critical pairs such that cp is ordered before cp′ and
after cp′′ in any τi. Since the exit point of cp is a strong operation, and since it is
ordered before the entry point of cp′, all the operations of cp are ordered before the
entry point of cp′. Since the entry point of cp is a strong operation, and since it is
ordered after the exit point of cp′′, all the operations of cp are ordered after cp′′. Thus,
(logical) mutual exclusion is also guaranteed by the algorithm.

Note that, in cooperative algorithms, a process that participates in the mutual
exclusion protocol, but does not wish to enter the critical section, can access variables
in the exclusion set while executing the remainder section. If these accesses are labeled
as weak, the solution might not be correct anymore. A simple example (of a token
passing mutual exclusion algorithm) is detailed in [11].

6. Running data-race-free programs. In this section we prove that data-
race-free programs behave on hybrid consistent memory implementations as if they
were sequentially consistent. Hybrid consistency is a weaker condition than sequential
consistency, and can be implemented more efficiently [12, 14, 29]. Clearly, having data-
race-free programs behave on hybrid consistent memory implementations as if they
were sequentially consistent is a desirable property, since many concurrent programs
attempt to be data-race-free. In our opinion, the proofs in this section are more
transparent than proofs of similar results using other formalisms [22, 23]. This also
demonstrates the usefulness of our framework for investigating and proving properties
of consistency conditions in general (cf. [13]).

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 83

6.1. Definition of data-race-free programs. Let op1
i and op2

j be two opera-
tions appearing in some sequence of memory operations α. Then

• op1
i

po
=⇒ op2

j if i = j and op1
i

α- op2
j .

• op1
i

so
=⇒ op2

j if both op1
i and op2

j are strong operations and op1
i

α- op2
j .

The relation happens before, denoted by
hb

=⇒, is the transitive closure of the union

of
po

=⇒ and
so

=⇒. This definition is similar to the definition of happens before in [3]
and is closely related to the definition of happened before defined by Lamport [27] for
message passing systems.

Two memory accesses conflict if they both access the same memory location and
at least one of them is a write. A data race occurs in a sequence of memory operations
when two conflicting memory accesses are not ordered by the happens before relation.

Definition 6.1. A program is data-race-free if none of its sequential executions
contains a data race.

These definitions are modeled after those in [3].

6.2. Running data-race-free programs on hybrid consistent memory.
We prove that every hybrid consistent execution of a data-race-free program is se-
quentially consistent.

To prove this result, we consider a legal sequence of memory operations τi, as
guaranteed for some process pi in the definition of hybrid consistency, that is minimal
with respect to the number of switched operations (operations by the same process
pj whose order in τi is not consistent with pj ’s flow control sequence). We show that
if τi is not fully admissible (i.e., a sequential execution), then there exists a prefix
of a sequential execution of the program that contains a data race. If τi is not fully
admissible, it must contain at least one pair of switched operations. We locate the
“first” pair of switched operations in τi, such that no other pair of switched operations
is ordered between them. Because τi is minimal we know this pair was switched to
preserve legality. This fact is used to show that there is a data race between some pair
of operations that precedes this switched pair. Our main problem is to place these
two operations (and the data race between them) in a legal and partially admissible
sequence. This is done by taking the two operations and the operations that influence
them and ordering them as in τi, and adding any operations necessary to preserve the
flow control sequences of all processes. The key point to prove about the resulting
sequence is its legality. In doing so, we either change the value that a read returns
(and invoke Lemma 3.3), or, if this does not help, we show that there is a data race
earlier in the sequence. Thus we have constructed a prefix of a sequential execution
with a data race, which is a contradiction. The details follow.

Fix a data-race-free program Prog, a hybrid consistent execution R of Prog, and
as guaranteed by the definition of hybrid consistency, a subset S of the memory
operations and a flow control sequence fcsi for each process pi.

Fix an arbitrary process pi. Let T be the set of all operation sequences τi that
satisfy Definition 4.3 (hybrid consistency). For τi in T , an ordered pair of operations

of pj , 〈op2
j , op

1
j 〉, is switched in τi if op2

j

τi- op1
j , but op1

j

fcsj
=⇒ op2

j .

Let τi be some element of T with a minimal set of switches. That is, there does
not exist τ ′i ∈ T , such that the set of pairs of switched operations of all processes in
τ ′i is strictly contained in the set of pairs of switched operations of all processes in τi.

We prove the main theorem of this section by way of contradiction, using the
following lemma.

Lemma 6.2. If τi is not fully admissible, then there exists a prefix of a sequential

84 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

execution of Prog which contains a data race.

Proof. Assume that τi is not fully admissible. We first prove the following claim,
which locates the pair of operations that is a candidate for a data race.

Claim 6.3. There exist two operations op2
j (x, v) and op1

k(x,w) in τi such that

1. op2
j (x, v)

τi- op1
k(x,w),

2. there is a data race between op2
j (x, v) and op1

k(x,w) in τi, and

3. there is no pair of switched operations in τi up to op1
k(x,w).

Proof. Since τi is not fully admissible, there exists at least one pair of switched
operations in τi. Let 〈op2

j (x, v), op
1
j (y, u)〉 be the first ordered pair of switched oper-

ations, i.e., there is no other pair of switched operations which is completely ordered
before op1

j (y, u) in τi. If there is more than one ordered pair that share the same

second operation (namely, op1
j), then choose the pair whose first operation is latest.

Since τi is minimal, op2
j (x, v) and op1

j (y, u) are switched in order to preserve
legality.

Since the operations are by the same process pj , and since the order of operations
by the same process to the same object is preserved (last property in Definition 4.3),
it follows that x 6= y. Thus, there exists an operation op1

k(x,w) which conflicts with

op2
j (x, v) and op2

j (x, v)
τi- op1

k(x,w)
τi- op1

j (y, u).

If there is a strong operation by pj between op2
j and op1

j (including one of them),
then the third property in Definition 4.3 implies that they cannot be switched. There-
fore, there are no strong operations by pj between op2

j and op1
j in τi, including op2

j

and op1
j .

It is also the case that j 6= k. Suppose otherwise. Either op2
j and op1

k are switched

or else op1
k and op1

j are switched. In the first case, 〈op2
j , op

1
k〉 would have been the pair

chosen and in the second case, 〈op1
k, op

1
j 〉 would have been the pair chosen.

Since j 6= k, op2
j and op1

k conflict, and there is no strong operation by pj between

them, there is a data race between op2
j and op1

k in τi. Thus the claim is shown.

Let I be the set of operations in τi that influence either op2
j or op1

k (including op2
j

and op1
k themselves). Let τ ′i be the shortest prefix of τi that includes every operation

in I. Let π be the subsequence of τ ′i which contains exactly the set of all operations

in I. The following claim shows that π is consistent with
fcsl
=⇒ for all l.

Claim 6.4. For every pair of operations op1
l and op2

l , if op1
l

π- op2
l , then

op1
l

fcsl
=⇒ op2

l .

Proof. By Claim 3.2, the influence relation is consistent with
τi- . Therefore,

no operation in I follows op1
k in τi, implying that op1

k is the last operation in τ ′i . By
condition 3 in Claim 6.3, τ ′i does not include any pair of switched operations, and
neither does π.

Now, we construct a new partially admissible (with respect to the fcsi’s) sequence

π′ by adding to π every operation op1
l not in π, such that op1

l

fcsl
=⇒ op2

l and op2
l is in π,

for each process l, as follows. For every such operation that was originally in τ ′i , add it
in the same place as in τ ′i . For all other operations, add them arbitrarily, maintaining

consistency with
fcsl
=⇒, for all l. By the definition of hybrid consistency, every added

operation op1
l that is not in τ ′i must be weak. This is because op1

l precedes op2
l in

fcsl
=⇒, but follows op2

l in τi, a possibility precluded of any strong operation by hybrid
consistency (condition 3 in Definition 4.3).

We would now like to determine if π′ is a legal sequence. By the definition of the

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 85

influence relation and τi, π is a legal sequence. In particular, all reads in π are legal.
Thus, if there are illegal reads in π′, then each illegal read is either a read that was
added to π, or a read that became illegal because of some write that was added to π.

Consider every illegal read rl in π′ that was added to π. We claim that rl does
not influence any operation in π′, with respect to the coi’s. Suppose it does. Since rl
is a read, it must influence an operation through a control relation, i.e., rl

col=⇒ opl,
for some l. Since rl is not in I, opl is not in I. Thus opl was included in π′ because

there exists op′l in I such that opl
fcsl
=⇒ op′l. This implies that rl

col=⇒ op′l and that r is
in I. We therefore have a contradiction.

Now, for each of the illegal reads in π′ that were added to π, change its value to
match the value of the most recent write to the same object. (Note that this can be
done since an illegal read in π′ does not influence any other operation in π′.) Call
this sequence π′′. Apply Lemma 3.3 successively for each fixed-up read, starting with
π′, to deduce that π′′ is partially admissible with respect to some set of flow control
sequences {fcs′l}nl=1. So, if there are no illegal reads in π′′, then π′′ is legal and it
follows that it is a prefix of a sequential execution of Prog.

To complete the proof of the lemma where π′′ is legal, we now show that π′′

contains a data race between op2
j (x, v) and op1

k(x,w). By Claim 6.3, there is no

strong operation by pj between op2
j and op1

k inclusive in τ ′i ; also, note that no strong

operation was added to π. Also, j 6= k; thus op2
j and op1

k are not ordered by the
happens-before relation.

We are left with the case in which there is an illegal read in π′′. It became illegal
due to the insertion of some write. Let r1

q(z, v1) be the first illegal read in π′′, and
let w1

p(z, v2), v1 6= v2 be the corresponding inserted write. Denote by σ the shortest
prefix of π′′ which includes r1

q(z, v1). Let σ′ be the same sequence where r1
q(z, v1) is

replaced by r2
q(z, v2). We complete the proof by showing the following claim.

Claim 6.5. σ′ is a prefix of a sequential execution of Prog which contains a data
race between r2

q and w1
p.

Proof. We first show that r1
q

τi- w1
p. Assume otherwise that w1

p

τi- r1
q .

Since w1
p is not in I, it must not influence r1

q in τi. Therefore, there is another write
w2
r(z, v1) ordered between w1

p and r1
q which influences r1

q in τi. But then w1
p, w

2
r , and

r1
q would be ordered similarly in π′. This gives a contradiction to the assumption

that r1
q becomes illegal due to the insertion of w1

p.

So we can assume that r1
q

τi- w1
p; it follows that w1

p is not in τ ′i , implying that

w1
p is weak. We claim that p 6= q. Otherwise, if p = q, then w1

p(z, v2)
fcsp
=⇒ r1

q(z, v1).

By the last property of hybrid consistency, it follows that w1
p(z, v2)

τi- r1
q(z, v1),

which is a contradiction. Therefore p 6= q.
We now show that r1

q(z, v1) and w1
p(z, v2) are not ordered by the happens before

relation in π′′, and hence, they are not ordered by the happens before relation in σ.
Suppose they were. Then, there is a strong operation sopp in between w1

p and r1
q in

π′′. Therefore, w1
p

fcsp
=⇒ sopp and thus w1

p

τi- sopp. Therefore, sopp is not in τ ′i
since w1

p is not in τ ′i , and hence is weak, which is a contradiction. Therefore, r1
q(z, v1)

and w1
p(z, v2) are not ordered by the happens before relation in π′′, and hence, in σ.

Thus, there exists a data race between r1
q(z, v1) and w1

p(z, v2) in σ. It follows that σ′

contains a data race.
Now, σ′ is a legal sequence of operations due to the change in the value returned

by the read, implied by replacing r1
q with r2

q . Since r2
q(z, v2) is the last operation in

σ′, it clearly does not influence any operation in σ′. By Lemma 3.3, σ′ is partially

86 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

admissible for some set of flow control sequences {fcs′′l }nl=1. Therefore, σ′ is a prefix
of sequential execution of Prog which contains a data race between r2

q(z, v2) and
w1
p(z, v2), as needed.

Hence, we have shown that if τi is not fully admissible, then there exists a prefix
of a sequential execution of Prog which contains a data race.

The proof of the following theorem is now immediate.
Theorem 6.6. Every hybrid consistent execution of a data-race-free program is

sequentially consistent.
Proof. Let R be a hybrid consistent execution of a data-race-free program Prog.

Fix a subset S of the memory operations in R and a set of flow control sequences fcsi
from the definition of hybrid consistency. Choose a process pi. Let τi be a minimal
legal permutation of S as guaranteed by the definition of hybrid consistency. Since
Prog is data-race-free, no sequential execution has a data race. Then by Lemma 6.2,
τi is fully admissible. Thus, R is a sequentially consistent execution of Prog.

6.3. Reordering process’ operations. The original definition of hybrid con-
sistency in [12] did not include the last property, i.e., that all writes by the same
process to the same object appear in the views of all other processes in the order
implied by the flow control sequence of their invoking process. (The original defi-
nition also did not consider control operations.) Thus two weak operations by the
same process pi accessing the same location could be viewed by other processes in
a different order from the order in which they appear in fcsi. We show that under
this behavior it is not true that every hybrid consistent execution of a data-race-free
program is sequentially consistent.

Consider the following data-race-free program, assuming x and y are initially 0
and all instructions are weak:

p1’s program p2’s program

tmp1 := read(x); tmp2 := read(y);
write(x, 5); write(y, 5);
if tmp1 = 5 then if tmp2 = 5 then

write(y, 5); write(x, 5).

Consider the following execution R:

R|p1 = r1
1(x, 5), w2

1(x, 5), w3
1(y, 5),

R|p2 = r1
2(y, 5), w2

2(y, 5), w3
2(x, 5).

Although R is not sequentially consistent (we leave it to the reader to verify this),
it is hybrid consistent:

τ1 = w2
2(y, 5), r1

2(y, 5), w3
2(x, 5), r1

1(x, 5), w2
1(x, 5), w3

1(y, 5),

τ2 = w2
1(x, 5), r1

1(x, 5), w3
1(y, 5), r1

2(y, 5), w2
2(y, 5), w3

2(x, 5).

7. Discussion. As the demand for powerful computers grows faster than the
technology to develop new processors, the need for highly parallel multiprocessors
increases. However, in order to fully utilize such machines, convenient paradigms
for writing concurrent programs must be developed. These paradigms should allow
the user to enjoy the same simple model of the world as in uniprocessors, without
sacrificing the performance of the whole system. These two goals are somewhat con-
tradictory. Recent results indicate that there is a tradeoff between the similarity of a
distributed shared memory to real shared memory, and the efficiency of the hardware.

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 87

In this paper we have tried to bridge these two contradictory goals. We presented
a general framework which encompasses the functionality of the compiler and the run-
time system and models their interaction with the memory consistency system. Our
framework allows the definition of known consistency conditions to be combined with
implementations that exploit optimizations for reducing the latency of memory ac-
cesses. To the best of our knowledge, our definitions are unique in explicitly modeling
the whole program, rather than just looking at the memory operations in isolation.

We also characterized requirements on programs that guarantee that they will
behave on hybrid consistent memories as if they are sequentially consistent. This
allows programmers to reason about certain classes of programs assuming sequential
consistency, yet run them on more efficient hardware. The approaches we studied were
(1) labeling all writes as strong and all reads as weak, (2) using the previous scheme to
implement efficient mutual exclusion, and (3) running data-race-free programs. Note
that the first two approaches do not necessarily yield data-race-free programs.

In this paper, we have assumed that the application program at each node is a
serial code or, in other words, consists of a single thread of execution. We believe
our framework and results can be naturally extended to support multithreading as
well. We briefly outline one approach. Instead of a flow control sequence, define a
flow control (partial) order based on two new control operations, fork and join. A fork
operation splits the code into several parallel threads of execution and a join operation
joins several parallel threads of execution into one thread of execution. Operations
that belong to the same thread of execution are ordered as in a flow control sequence
and after the previous fork operation (if there exists one). Operations that belong
to different parallel threads are not ordered by the flow control order. All operations
that belong to threads that were joined by a join operation are ordered before the
join operation that joined their threads. The definitions of the consistency conditions
remain the same, with the one exception that we use the flow control orders instead
of the flow control sequences.

This work is part of an ongoing attempt to understand consistency conditions
and their implications on programming, compiler design, and architecture. Much
research is still needed before this goal can be met. While more efficient, fault-
tolerant algorithms for implementing various consistency conditions still need to be
developed, our paper takes a complementary approach; it provides a clean and formal
framework for investigating systematic methods, rules, and compiler techniques to
transform programs written for strong consistency conditions into correct programs
for weaker consistency conditions.

Acknowledgments. We would like to thank Kourosh Gharachorloo, Phil Gib-
bons, Martha Kosa, and Michael Merritt for helpful comments. The anonymous
referees made helpful comments which improved the presentation.

REFERENCES

[1] R. Acosta, J. Kjelstrup, and H. Torng, An instruction issuing approach to enhancing
performance in multiple functional unit processors, IEEE Trans. Comput., C-35 (1986),
pp. 815–828.

[2] S. Adve, Designing Memory Consistency Models for Shared-Memory Multiprocessors, Tech-
nical Report 1198, Ph.D. thesis, Computer Science Department, University of Wisconsin,
Madison, WI, 1993.

[3] S. Adve and M. Hill, Weak ordering—a new definition, in Proc. of the 17th International
Symposium on Computer Architecture, ACM, New York, 1990, pp. 2–14.

[4] S. Adve and M. Hill, A Unified Formalization of Four Shared-Memory Models, Technical
Report 1051, Computer Science Department, University of Wisconsin, Madison, WI, 1991.

88 H. ATTIYA, S. CHAUDHURI, R. FRIEDMAN, AND J. L. WELCH

[5] S. Adve and M. Hill, Sufficient Conditions for Implementing the Data-Race-Free-1 Memory
Model, Technical Report 1107, Computer Science Department, University of Wisconsin,
Madison, WI, 1992.

[6] S. Adve, M. Hill, B. Miller, and R. Netzer, Detecting data races on weak memory systems,
in Proc. of the 18th International Symposium on Computer Architecture, ACM, New York,
1991, pp. 234–243.

[7] Y. Afek, G. Brown, and M. Merritt, A lazy cache algorithm, ACM Trans. Programming
Lang. Systems, 15 (1993), pp. 182–205.

[8] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger, The power of processor consis-
tency, in Proc. of the 5th ACM Symposium On Parallel Algorithms and Architectures,
ACM, New York, 1993, pp. 251–260.

[9] M. Ahamad, J. Burns, P. Hutto, and G. Neiger, Causal Memory, in Proc. 5th International
Workshop on Distributed Algorithms, Greece, 1991, Lecture Notes in Comput. Sci. 579,
Springer-Verlag, New York, pp. 9–30.

[10] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto, Causal memory: Definitions,
implementation, and programming, Distrib. Comput., 9 (1993), pp. 37–49.

[11] H. Attiya, S. Chaudhuri, R. Friedman, and J. Welch, Shared Memory Consistency Con-
ditions for Nonsequential Execution: Definitions and Programming Strategies, Technical
Report LPCR 9306, Department of Computer Science, Technion, Israel, 1993.

[12] H. Attiya and R. Friedman, A Correctness Condition for High-Performance Multiproces-
sors, Technical Report 767, Department of Computer Science, Technion, Israel. SIAM J.
Comput., 27 (1998), to appear.

[13] H. Attiya and R. Friedman, Programming DEC-alpha based multiprocessors the easy way, in
Proc. 6th ACM Symposium on Parallel Algorithms and Architectures, ACM, New York,
1994, pp. 157–166. Technical Report LPCR 9411, Department of Computer Science, Tech-
nion, Israel.

[14] H. Attiya and J. Welch, Sequential consistency versus linearizability, ACM Trans. Comput.
Systems, 12 (1994), pp. 91–122.

[15] R. Bisiani, A. Nowatzyk, and M. Ravishankar, Coherent shared memory on a distributed
memory machine, in Proc. International Conference on Parallel Processing, Penn. State
Univ. Press, Philadelphia, PA, 1989, pp. I–133–141.

[16] J.-D. Choi and S. L. Min, Race frontier: Reproducing data races in parallel program debugging,
in Proc. of the 3rd ACM Symposium on Principles and Practice of Parallel Programming,
ACM, New York, 1991, pp. 145–154.

[17] A. Dinning and E. Schonberg, Detecting access anomalies in programs with critical sections,
in Proc. of the ACM Workshop on Parallel and Distributed Debugging, ACM, New York,
1991, pp. 85–96.

[18] M. Dubois and C. Scheurich, Memory access dependencies in shared-memory multiproces-
sors, IEEE Trans. Software Engrg., 16 (1990), pp. 660–673.

[19] M. Dubois, C. Scheurich, and F. A. Briggs, Synchronization, coherence and event ordering
in multiprocessors, IEEE Comput., 21 (1988), pp. 9–21.

[20] J. Fisher, Very long instruction word architectures and the ELI-512, in Proc. of the 10th
International Symposium on Computer Architecture, ACM, New York, 1991, pp. 140–150.

[21] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
Memory consistency and event ordering in scalable shared-memory multiprocessors, in
Proc. of the 17th International Symposium on Computer Architecture, ACM, New York,
1990, pp. 15–26.

[22] P. Gibbons and M. Merritt, Specifying non-blocking shared memories, in Proc. of the
4th ACM Symposium on Parallel Algorithms and Architectures, ACM, New York, 1992,
pp. 306–315.

[23] P. Gibbons, M. Merritt, and K. Gharachorloo, Proving sequential consistency of high-
performance shared memories, in Proc. of the 3rd ACM Symposium on Parallel Algorithms
and Architectures, ACM, New York, 1991, pp. 292–303.

[24] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers Inc., San Mateo, CA, 1990, pp. 251–349.

[25] M. Herlihy and J. Wing, Linearizability: A correctness condition for concurrent objects,
ACM Trans. Programming Lang. Systems, 12 (1990), pp. 463–492.

[26] M. S. Lam and R. P. Wilson, Limits of control flow on parallelism, in Proc. of the 19th
International Symposium on Computer Architecture, ACM, New York, 1992, pp. 46–57.

[27] L. Lamport, Time, clocks and the ordering of event in a distributed system, Comm. ACM, 21
(1978), pp. 558–565.

[28] L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess
programs, IEEE Trans. Comput., C-28 (1979), pp. 690–691.

CONSISTENCY CONDITIONS FOR NONSEQUENTIAL EXECUTION 89

[29] R. Lipton and J. Sandberg, PRAM: A Scalable Shared Memory, Technical Report CS-TR-
180-88, Computer Science Department, Princeton University, Princeton, NJ, 1988.

[30] J. Mellor-Crummey, On-the-fly detection of data races for programs with nested fork-join
parallelism, Proc. Supercomputer Debugging Workshop, Los Alamitos Natl. Lab, Albu-
querque, NM, 1991, pp. 24–33.

[31] R. Netzer, Race Condition Detection for Debugging Shared-Memory Parallel Programs, Tech-
nical Report 1039, Ph.D. thesis, Computer Science Department, University of Wisconsin,
Madison, WI, 1991.

[32] R. Netzer and B. Miller, Improving the accuracy of data race detection, in Proc. of the 3rd
ACM Symposium on Principles and Practice of Parallel Programming, ACM, New York,
1991, pp. 133–144.

[33] R. Netzer and B. Miller, What are race conditions? Some issues and formalizations, ACM
Lett. Programming Lang. Systems, 1 (1992), pp. 74–88.

[34] Y. Patt, W. Hwu, and M. Shebanow, HPS, a new microarchitecture: Rationale and in-
troduction, in Proc. of the 18th Annual Microprogramming Workshop, ACM, New York,
1985, pp. 103–108.

[35] A. Peleg and U. Weiser, Future trends in microprocessors: Out-of-order execution, specu-
lative branching and their CISC performance models, in Proc. of the 17th Convention of
Electrical and Electronics Engineers in Israel, IEEE Computer Society Press, Los Alamitos,
CA, 1991, pp. 263–266.

[36] M. Raynal, Algorithms for Mutual Exclusion, MIT Press, Cambridge, MA, 1986.
[37] D. Shasha and M. Snir, Correct and efficient execution of parallel programs that share mem-

ory, ACM Trans. Programming Lang. Systems, 10 (1988), pp. 282–312.
[38] A. Singh, A Framework for Programming Using Non-Atomic Variables, Technical Report

TRCS-93-11, Department of Computer Science, University of California at Santa Barbara,
1993.

[39] B. Smith, A massively parallel shared memory computer, in 3rd ACM Symposium on Parallel
Algorithms and Architectures, ACM, New York, 1991, p. 123.

[40] J. Smith, Dynamic instruction scheduling and the astronautics ZS-1, IEEE Comput., 22 (1989),
pp. 21–35.

[41] R. N. Zucker and J.-L. Baer, A performance study of memory consistency models, in Proc.
of the 19th International Symposium on Computer Architecture, ACM, New York, 1992,
pp. 2–12.

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS∗

AMIHOOD AMIR† AND GARY BENSON‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 90–106, February 1998 004

Abstract. String matching is rich with a variety of algorithmic tools. In contrast, multidimen-
sional matching has had a rather sparse set of techniques. This paper presents a new algorithmic
technique for two-dimensional matching: periodicity analysis. Its strength appears to lie in the fact
that it is inherently two-dimensional.

Periodicity in strings has been used to solve string matching problems. Multidimensional peri-
odicity, however, is not as simple as it is in strings and was not formally studied or used in pattern
matching. In this paper, we define and analyze two-dimensional periodicity in rectangular arrays.
One definition of string periodicity is that a periodic string can self-overlap in a particular way. An
analogous concept is true in two dimensions. The self-overlap vectors of a rectangle generate a reg-
ular pattern of locations where the rectangle may originate. Based on this regularity, we define four
categories of periodic arrays—nonperiodic, lattice periodic, line periodic, and radiant periodic—and
prove theorems about the properties of the classes.

We give serial and parallel algorithms that find all locations where an overlap originates. In
addition, our algorithms find a witness proving that the array does not self-overlap in any other
location. The serial algorithm runs in time O(m2) (linear time) when the alphabet size is finite,
and in O(m2 logm) otherwise. The parallel algorithm runs in time O(logm) using O(m2) CRCW
processors.

Key words. string matching, two-dimensional, periodicity, witness, sequential algorithm, par-
allel algorithm

AMS subject classification. 68Q25

PII. S0097539795298321

1. Introduction. String matching is a field rich with a variety of algorithmic
ideas. The early string matching algorithms were mostly based on constructing a
pattern automaton and subsequently using it to find all pattern appearances in a given
text ([KMP-77, AC-75, BM-77]). Recently developed algorithms [G-85, V-85, V-91]
use periodicity in strings to solve this classic string matching problem. Lately, there
has been interest in various two-dimensional approximate matching problems, largely
motivated by low-level image processing ([KS-87, AL-91, AF-91, ALV-90]). Unlike
string matching, the methods for solving multidimensional matching problems are
scant. This paper adds a new algorithmic tool to the rather empty tool chest of
multidimensional matching techniques: two-dimensional periodicity analysis.

String periodicity is an intuitively clear concept and the properties of a string pe-
riod are simple and well understood. Two-dimensional periodicity, however, presents
some difficulties. Periodicity in the plane is easy to define. However, we seek the pe-
riod of a finite rectangle. We have chosen to concentrate on a periodicity definition
that implies the ability for self-overlap. In strings, such an overlap allows definition of

∗ Received by the editors April 17, 1995; accepted for publication (in revised form) December
19, 1995. A preliminary version of this paper was presented at the 3rd ACM-SIAM Symposium
on Discrete Algorithms, Orlando, FL, SIAM, Philadelphia, 1992, pp. 440–452. This research was
partially supported by NSF grant IRI-9013055.

http://www.siam.org/journals/sicomp/27-1/29832.html
† College of Computing, Georgia Institute of Technology, Atlanta, GA 30332 (amir@gatech.edu).

This author was partially supported by NSF grant CCR-95-31939 and the Israel Ministry of Science
and the Arts grants 6297 and 8560.

‡ Department of Biomathematical Sciences, Mount Sinai Medical Center, New York, NY 10029
(benson@ecology.biomath.mssm.edu). This author was partially supported by NSF grant CCR-
9623532.

90

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 91

a smallest period whose concatenation produces the entire string. The main contribu-
tion of this paper is showing that for rectangles also, the overlap produces a “smallest
unit” and a regular pattern in which it appears in the array. The main differences are
that this “smallest unit” is a vector rather than a subblock of the array, and that the
pattern is not a simple concatenation. Rather, based on the patterns of vectors that
can occur, there are four categories of array periodicity: nonperiodic, line periodic,
radiant periodic, and lattice periodic. As in string matching, this regularity can be
exploited.

The strength of periodicity analysis appears to lie in the fact that it is inher-
ently a two-dimensional technique, whereas most previous work on two-dimensional
matching has reduced the matrix problem to a problem on strings and then applied
one-dimensional string matching methods. The two-dimensional periodicity analy-
sis has already proven useful in solving several multidimensional matching problems
[ABF-94, ABF-93, ABF-97, KR-94]. We illustrate with two examples.

The original motivation for this work was our research in image preserving com-
pression. We wanted to solve the following problem: given a two-dimensional pattern
P and a two-dimensional text T which has been compressed, find all occurrences of P
in T without decompressing the text. The goal is a sublinear algorithm with respect
to the size of the original uncompressed text. Some initial success in this problem was
achieved in [ALV-90], but those authors’ algorithm, being automaton based, seems to
require a large amount of decompression. In [AB-92b, ABF-97], we used periodicity
to find the first optimal pattern matching algorithm for compressed two-dimensional
texts.

Another application is the two-dimensional exact matching problem. Here the
text is not compressed. Baker [B-78] and, independently, Bird [Bi-77] used the Aho
and Corasick [AC-75] dictionary matching algorithm to obtain a O(n2 log |Σ|) algo-
rithm for this problem. This algorithm is automaton based, and therefore the running
time of the text scanning phase is dependent on the size of the alphabet. In [ABF-94]
we used periodicity analysis to produce the first two-dimensional exact matching al-
gorithm with a linear time alphabet independent text scanning phase.

Since the work presented here first appeared [AB-92a], the analysis of radiant-
periodic patterns has been strengthened [GP-92, RR-93], and periodicity analysis has
additionally proven useful in providing optimal parallel two-dimensional matching
algorithms [ABF-93, CCG+93], as well as in solving a three-dimensional matching
problem [KR-94].

This paper is organized as follows. In section 2, we review periodicity in strings
and extend this notion to two dimensions. In section 3, we give formal definitions,
describe the classification scheme for the four types of two-dimensional periodicity,
and prove some theorems about the properties of the classes. In section 4 we present
serial and parallel algorithms for detecting the type of periodicity in an array. The
complexity of the serial algorithm is O(m2) (linear time) when the alphabet size is
finite, and O(m2 logm) otherwise. The parallel algorithm runs in time O(logm) with
O(m2) CRCW processors. In addition to knowing where an array can self-overlap,
knowing where it cannot and why is also useful. If an overlap is not possible, then
the overlap produces some mismatch. Our algorithms find a single mismatch location
or witness for each self-overlap that fails.

2. Periodicity in strings and arrays. In a periodic string, a smallest period
can be found whose concatenation generates the entire string. In two dimensions, if
an array were to extend infinitely so as to cover the plane, the one-dimensional notion

92 AMIHOOD AMIR AND GARY BENSON

m

m

ba

Fig. 1. (a) A periodic pattern. (b) A suffix matches a prefix.

of a period could be generalized to a unit cell of a lattice. But a rectangular array is
not infinite and may cut a unit cell in many different ways at its edges.

Instead of defining two-dimensional periodicity on the basis of some subunit of
the array, we instead use the idea of self-overlap. This idea applies also to strings. A
string w is periodic if the longest prefix p of w that is also a suffix of w is at least half
the length of w. For example, if w = abcabcabcabcab, then p = abcabcabcab, and since
p is over half as long as w, w is periodic. This definition implies that w may overlap
itself starting in the fourth position.

The preceding idea easily generalized to two dimensions as illustrated in
Figure 1.

Definition 2.1. Let A be a two-dimensional array. Call a prefix of A a rectan-
gular subarray that contains one corner of A. (In the figure, the upper left corner.)
Call a suffix of A a rectangular subarray that contains the diagonally opposite corner
of A (in the figure, the lower right corner). We say A is periodic if the largest prefix
that is also a suffix has dimensions at least as large as some fixed percentage d of the
dimensions of A.

In the figure, if d ≤ 5
6 , then A is periodic. As with strings, if A is periodic, then A

may overlap itself if the prefix of one copy of A is aligned with the suffix of a second
copy of A. Notice that both the upper left and lower left corners of A can define
prefixes, giving A two directions in which it can be periodic. As we will describe in
the next section, the classification of periodicity type for A is based on whether it is
periodic in either or both of these directions.

3. Classifying arrays. Our goal here is classifying an array A into one of four
periodicity classes. For clarity of presentation we concentrate on square arrays. We
later show how to generalize all results to rectangles. We begin with some definitions
of two-dimensional periodicity and related concepts (Figure 2).

Definition 3.1. Let A[0 . . .m− 1, 0 . . .m− 1] be an m×m square array. Each
element of A contains a symbol from an alphabet Σ. A subarray of A is called a
block. Blocks are designated by their first and last row and column. Thus, the block
A[0 . . .m − 1, 0 . . .m − 1] is the entire array. Each corner of A defines a quadrant.
Quadrants are labeled counterclockwise from upper left, quadrants I, II, III, and IV.

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 93

cba

quadrant I source

quadrant II source

quadrant I symmetry vector

quadrant II symmetry vector

II III

IVI

Fig. 2. Two overlapping copies of the same array. (a) A quadrant I source. (b) A quadrant
II source. (c) The symmetry vectors.

Each quadrant has size q, where 1 ≤ q ≤ dm2 e. (Quadrants may share part of a row
or column.) Quadrant I is the block A[0 . . . q − 1, 0 . . . q − 1]. The choice of q may
depend on the application. For this paper, q = dm3 e.

Definition 3.2. Suppose we have two copies of A, one directly on top of the
other. The copies are said to be in register because some of the elements overlap (in
this case, all the elements) and overlapping elements contain the same symbol. If the
two copies can be repositioned so that A[0, 0] overlaps A[r, c] (r ≥ 0, c > 0) and the
copies are again in register, then we say that the array is quadrant I symmetric, that
A[r, c] is a quadrant I source, and that vector ~v = r~y + c~x is a quadrant I symmetry
vector. Here, ~y is the vertical unit vector in the direction of increasing row index and
~x is the horizontal unit vector in the direction of increasing column index. If the two
copies can be repositioned so that A[m− 1, 0] overlaps A[r, c] (r < m− 1, c ≥ 0) and
the copies are again in register, then we say that the array is quadrant II symmetric,
that A[r, c] is a quadrant II source, and that ~v = (r −m + 1)~y + c~x is a quadrant II
symmetry vector.

Analogous definitions exist for quadrants III and IV, but by symmetry, if ~v is
a quadrant III(IV) symmetry vector, then −~v is a quadrant I(II) symmetry vector.
We will usually indicate a vector ~v = r~y + c~x by the ordered pair (r, c). Note that
symmetry vector (r, c) defines a mapping between identical elements, that is, (r, c) is
a symmetry vector iff A[i, j] = A[i + r, j + c] wherever both elements are defined. In
particular, if (r, c) is a symmetry vector, then it maps the block A[i . . . j, k . . . l] to the
identical block A[i + r . . . j + r, k + c . . . l + c].

In the remainder of this paper, we use the terms source and symmetry vector
interchangeably.

Definition 3.3. The length of a symmetry vector is the maximum of the absolute
values of its coefficients. A lexicographic ordering of quadrant I vectors (quadrant II
vectors) is accomplished by sorting the vectors first by length, and then, for vectors
of the same length, by reverse sorting them by column coefficient and then sorting
them by row coefficient (by reverse sorting them by absolute value of row coefficient
and then sorting them by column coefficient). A shortest vector is the smallest in its
lexicographic ordering. The basis vectors for array A consist of the shortest quadrant

94 AMIHOOD AMIR AND GARY BENSON

X

X

X

III

X

X

X

X

X

X

X

X

X

X

X

X

I IV

II

Fig. 3. Nonperiodic array.

I vector (r1, c1) (if any) and the shortest quadrant II vector (r2, c2) (if any). If the
length of a symmetry vector is < p where p = dm3 e then the vector is periodic.

We are now ready to classify a square array A into one of four periodicity classes
based on the presence or absence of periodic vectors in quadrants I and II. Following
the classification, we prove some theorems about the properties of the classes. In
section 4 we present algorithms for finding all the sources in an array.

The four classes of two-dimensional periodicity are (Figures 3–6)
• nonperiodic — the array has no periodic vectors.
• lattice periodic — the array has periodic vectors in both quadrants. All

quadrant I sources which occur in quadrant I fall on the nodes of a lattice
which is defined by the basis vectors. The same is true for quadrant II sources
in quadrant II. Specifically, let ~v1 = (r1, c1) and ~v2 = (r2, c2) be the periodic
basis vectors in quadrants I and II, respectively. Then, an element in quadrant
I is a quadrant I source iff it occurs at index A[ir1 + jr2, ic1 + jc2] for integers
i, j. An element in quadrant II is a quadrant II source iff it occurs at index

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 95

X

X

X

X
X

X

X
X

X

XX

X
X

X

X

X
X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

XX

X
X

X

X

X
X

X

X

X

X
X

X
X

X

X

X

III

I IV

II

X

X

X

X
X

X
X

X

X

X

X
X

X

X

X
X

X X

X

X
X

X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

XX

X
X

X

X

X
X

X

X

X

X
X

X
X

X

X

X

X

X

X

X
X

X

X
X

X

XX

X
X

X

X

X
X

X

X

X

X
X

X
X

X

X

X

Fig. 4. Lattice-periodic array.

A[m− 1 + ı̂r1 + ̂r2, ı̂c1 + ̂c2] for integers ı̂, ̂.
• line periodic — the array has a periodic vector in only one quadrant and the

sources in that quadrant all fall on one line.
• radiant periodic — this category is identical to the line periodic category,

except that in the quadrant with the periodic vector, the sources fall on several
lines which all radiate from the quadrant’s corner. We do not describe the
exact location of the sources for this class; see [GP-92] for a detailed analysis
of the source locations.

Next, we prove some theorems about the properties of the classes. All the theo-
rems are stated in terms of square arrays for clarity. At the end of the theorems we
explain how they can be modified to apply to any n×m rectangular array.

In Lemmas 3.4–3.6, we establish the fact that if we have symmetry vectors for
both quadrants I and II, and they meet a pair of constraints on the sum of their
coefficients, then every linear combination of the vectors defines another symmetry
vector.

Lemma 3.4. If (r1, c1) and (r2, c2) are symmetry vectors from quadrants I and
II, respectively, and c1 + c2 < m and r1 + |r2| < m, then (r1 + r2, c1 + c2) is either a

96 AMIHOOD AMIR AND GARY BENSON

X

X
X

X
X

X

III

X

X
X

X
X

X

X

X
X

X
X

X

X

X
X

X
X

X
X

X
X

X
X

X

I IV

II

Fig. 5. Line-periodic array.

quadrant I symmetry vector (r1 ≥ |r2|) or a quadrant II symmetry vector (r1 < |r2|).
Proof. We prove for the case r1 ≥ |r2|. The proof for the other case is similar.

We show that S = (r1 + r2, c1 + c2) is a quadrant I source. First, by the constraint
on the ci, the fact that r2 is negative and the assumption that r1 ≥ |r2|, S is an
element of A. Next, we show via two pairs of mappings that the quadrant I prefix
block A[0 . . .m − r1 − r2 − 1, 0 . . .m − c1 − c2 − 1] is identical to the suffix block
A[r1 + r2 . . .m− 1, c1 + c2 . . .m− 1].

First pair: (r1, c1) maps block A[0 . . .m − r1 − 1, 0 . . .m − c1 − c2 − 1] to block
A[r1 . . .m − 1, c1 . . .m − c2 − 1]. (r2, c2) maps the resultant block to block A[r1 +
r2 . . .m + r2 − 1, c1 + c2 . . .m− 1].

Second pair: (r2, c2) maps block A[m− r1 . . .m− r1− r2− 1, 0 . . .m− c1− c2− 1]
to A[m− r1 + r2 . . .m− r1 − 1, c1 . . .m− c2 − 1]. (r1, c1) maps the resultant block to
A[m + r2 . . .m− 1, c1 + c2 . . .m− 1].

Lemma 3.5. If (r1, c1) and (r2, c2) are two quadrant k symmetry vectors (k = I,
II) and |r1| + |r2| < m and c1 + c2 < m, then (r1 + r2, c1 + c2) is also a quadrant k
symmetry vector.

Proof. We prove for quadrant I. The proof for the other quadrant is similar. We

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 97

X
X

X

X
X

X

X
X

X
X

X
X
O

X
X

X
X

X
X

X
X X

X

X

X

X
X

O

X

III

X
X

X

X
X

X

X
X

X
X

X
X
O

X
X

X
X

X
X

X
X X

X

X

X

X
X

O

X

X
X

X

X
X

X

X
X

X
X

X
X
O

X
X

X
X

X
X

X
X X

X

X

X

X
X

O

X

X
X

X

X
X

X

X
X

X
X

X
X
O

X
X

X
X

X
X

X
X X

X

X

X

X
X

O

X

X

O
X

X

X

X

X
XX

X
X

X

X
X

X
X

O
X

X
X

X

X
X

X

X
X

X
X

X

I IV

II

*
*

*

Fig. 6. Radiant-periodic array. Three noncolinear sources are starred.

show that S = (r1 + r2, c1 + c2) is a quadrant I source. First, by the restraints on
the ri and the ci, S is an element of A. Next, by a pair of mappings, we show that
the quadrant I prefix block A[0 . . .m− r1 − r2 − 1, 0 . . .m− c1 − c2 − 1] is identical to
the suffix block A[r1 + r2 . . .m− 1, c1 + c2 . . .m− 1]. Recall that both r1 and r2 are
positive.

First mapping: (r1, c1) maps the block A[0 . . .m−r1−r2−1, 0 . . .m−c1−c2−1]
to the block A[r1 . . .m− r2 − 1, c1 . . .m− c2 − 1]. Second mapping: (r2, c2) maps the
resultant block to the block A[r1 + r2 . . .m− 1, c1 + c2 . . .m− 1].

Lemma 3.6. If ~v1 =(r1, c1) and ~v2 =(r2, c2) are symmetry vectors from quadrants
I and II, respectively, and c1 + c2 < m and r1 + |r2| < m, then for all integers i, j
such that A[ir1 + jr2, ic1 + jc2] is an element of A, (ir1 + jr2, ic1 + jc2) is a quadrant
I symmetry vector. Similarly, for all ı̂, ̂ such that A[m− 1 + ı̂r1 + ̂r2, ı̂c1 + ̂c2] is an
element of A, (̂ır1 + ̂r2, ı̂c1 + ̂c2) is a quadrant II symmetry vector.

Proof. We prove for vector (ir1 + jr2, ic1 + jc2), equivalent to source Si,j =
A[ir1 + jr2, ic1 + jc2]. The proof for the other vector is similar. Consider the lattice
of elements in A defined by the quadrant I and II vectors and with one element at

98 AMIHOOD AMIR AND GARY BENSON

A

l

lj+1

e2

S

~v2

~v1

e4

e1

Fig. 7. A candidate source S in Lemma 3.6. Here |r1| ≥ |r2|.

A[0, 0]. (The lattice elements correspond exactly to the elements Si,j .) Consider the
line l that extends from element A[0, 0] through elements Si,0 = A[ir1, ic1]. We prove
the lemma only for those lattice elements on or to the right of l. The remaining
elements are treated similarly.

Case 1. Si,0 is on line l. For S1,0, i = 1 and (r1, c1) is a symmetry vector by
hypothesis. Now, by induction on i, assume that (ir1, ic1) is a symmetry vector.
Since (r1, c1) and (ir1, ic1) are both quadrant I symmetry vectors, by Lemma 3.5
((i + 1)r1, (i + 1)c1) is a quadrant I symmetry vector.

Case 2. Si,j j ≥ 1 to the right of line l. Elements Si,j fall on lines lj which are
parallel to line l. We show that the uppermost element Si,j is a source. By application
of Lemma 3.5, as in Case 1, the remaining sources on lj are established.

Consider a cell of the lattice with sides (r1, c1) and (r2, c2) and corners

e1 = A[ir1 + jr2, ic1 + jc2],

e2 = A[ir1 + (j + 1)r2, ic1 + (j + 1)c2],

e4 = A[(i + 1)r1 + jr2, (i + 1)c1 + jc2],

S = A[(i + 1)r1 + (j + 1)r2, (i + 1)c1 + (j + 1)c2],

where S is the uppermost lattice element on line lj+1 (Figure 7). The following are
always true:

• e2 is not an element of A. Otherwise e2—not S—is the top element on its
line.

• e4 is an element of A. Otherwise S is not in A, S is not to the right of line l
or r1 + |r2| ≥ m.

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 99

e1

e2

e3

e4

S

~v2

~v1

Fig. 8. One of the vectors from e1 to S or S to e2 is a quadrant II vector shorter than ~v2.

Two possibilities remain. Either e1 is an element of A or it is not. Our proof is
by induction on i and j. For the base cases we use ~v1 (i = 1, j = 0), ~v2 (i = 0, j = 1),
and ~v3 = ~v1 +~v2 which is either a quadrant I vector (r1 ≥ |r2|) or a quadrant II vector
(r1 < |r2|) by Lemma 3.4.

Subcase A. r1 ≥ |r2|.
• e1 is not an element of A. By the induction hypothesis, ~ve4 = (i+1)~v1+j~v2 is

a symmetry vector. Since e1 is not on A, re4 < r1. That is, the row coefficient
in ~ve4 is smaller than the row coefficient in ~v1. Apply Lemma 3.4 to ~ve4 and
~v2 and S is a source.

• e1 is an element of A. By the induction hypothesis, ~ve1 = i~v1 + j~v2 is a
quadrant I symmetry vector. From the base case, ~v3 = ~v1 + ~v2 is a quadrant
I symmetry vector. Apply Lemma 3.5 to ~ve1 and ~v3 and S is a source.

Subcase B. r1 < |r2|.
• e1 is not an element of A. It is impossible, else S is not in A or S is not right

of l.
• e1 is an element of A. Note that S is above row r1 or else e2 is on the

array. The vector ~ve2 = i~v1 + (j + 1)~v2 is a quadrant II symmetry vector
(because re2 is negative) by application of Subcase A to quadrant II. Now,
re2 + r1 =(the row index of S)≥ 0, so r1 ≥ −re2 or |re2 | ≤ r1. By hypothesis,
r1 < |r2| and therefore |re2 | < |r2|. Apply Lemma 3.5 to ~v1 and ~ve2 and S is a
source.

The proof of Theorem 3.9 is simplified by the following easily proven observation.

Observation 3.7. Let (r1, c1) and (r2, c2) be symmetry vectors from quadrants
I and II, respectively, and c1 + c2 < m and r1 + |r2| < m, and let L be an infinite
lattice of points on the xy-plane also with basis vectors (r1, c1) and (r2, c2). If we put
one copy of A on each lattice point by aligning element A[0, 0] with the lattice point,
then the copies are in register and completely cover the plane.

The next lemma establishes that for a given lattice of elements in A, an element

100 AMIHOOD AMIR AND GARY BENSON

mismatch

i+r
i

j j+c

Fig. 9. The witness table gives the location of a mismatch (if one exists) for two overlapping
patterns: Witness[i, j] = [r, c].

not on the lattice has a shorter vector to some lattice point than the corresponding
basis vector for the lattice. (Note that a simplified version of the proof appeared in
[GP-92], and we use essentially that same proof here.)

Lemma 3.8. Let L be an infinite lattice in the xy-plane with basis vectors
~v1 =(r1, c1) and ~v2 =(r2, c2) (quadrants I and II symmetry vectors, respectively),
where all the ri and ci are integers. Then, for any point S = (x, y) that is not a
lattice element, where x and y are integers, there exists a lattice point e such that the
vector ~v from e to S (or S to e) is a quadrant I vector shorter than ~v1 or a quadrant
II vector shorter than ~v2.

Proof. Let S be an element that does not fall on a lattice point. Consider the
unit cell of the lattice containing S (Figure 8) with nodes labeled e1, e2, e3, and e4,
where

e4 = e1 + ~v1,

e2 = e1 + ~v2,

e3 = e1 + ~v1 + ~v2.

Connect S to the four corners of the unit cell to get four triangles. At least one of
these triangles has a right or obtuse angle. W.l.o.g., let the triangle be on points
e1, e2, and S. Then both the vector from e1 to S and the vector from e2 to S is
shorter than the vector from e1 to e2. Since at least one of the two is a quadrant II
vector, we have a quadrant II vector shorter than ~v2.

Our first main result is the following theorem. It establishes that if an array has
basis vectors in both quadrants, then in a certain block of the array, which depends
on the coefficients of the basis vectors, all symmetry vectors are linear combinations
of the basis vectors. We state the theorem in terms of quadrant I for simplicity. Since
the array can be rotated so that any quadrant becomes quadrant I, it applies to all
quadrants.

Theorem 3.9. Let A be an array with basis vectors (r1, c1) and (r2, c2) in quad-
rants I and II, respectively, with c1 + c2 < m and r1 + |r2| < m. Let L be an infinite
lattice with the same basis vectors and containing the element A[0, 0]. Then, in the
block A[0 . . .m− r1 − |r2|, 0 . . .m− c1 − c2], an element is a quadrant I source iff it is
a lattice element.

Proof. By Lemma 3.6, if S = A[r, c] is a lattice element, then it is a source.
Suppose that S is not a lattice element, but that it is a quadrant I source. We will

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 101

show that S cannot occur within block A[0 . . .m− r1 − |r2|, 0 . . .m− c1 − c2].
By way of contradiction, assume S does occur in prefix block A[0 . . .m − r1 −

|r2|, 0 . . .m − c1 − c2]. There is a quadrant I vector ~v associated with S that is not
a linear combination of ~v1 and ~v2. By Observation 3.7, copies of A can be aligned
with the points of lattice L and the copies will be in register and cover the plane.
Let A′ = A[r . . .m− 1, c . . .m− 1], i.e., the suffix block originating at element A[r, c].
Because S is a source, ~v maps A[0 . . .m− r − 1, 0 . . .m− c− 1] to A′. For each copy
of A, remove all but A′. The copies of A′ are in register. Since A′ has dimensions at
least r1 + |r2| by c1 +c2, it is at least as large as a unit cell of the lattice and therefore,
the copies of A′ also cover the plane. Now every element of the plane is mapped by ~v
from an identical element, and there is a complete copy of A at S. S falls within some
cell of lattice L. By Lemma 3.8, there is a quadrant I or quadrant II vector ~v3 from S
to some corner e of the cell (or from e to S) which is shorter than the corresponding
basis vector of L. Since there are complete copies of A at S and e, ~v3 is a symmetry
vector and therefore, ~v1 and ~v2 are not both basis vectors of A as assumed.

Since our quadrants are of size dm3 e × dm3 e, they are no greater in size than the
smallest block that can contain only lattice point sources. The region that contains
only lattice point sources can be larger than the block described in Theorem 3.9
(see [GP-92]). Next, we prove the following important trait about radiant-periodic
arrays that facilitates their handling in matching applications [AB-92b, ?, KR-94].
Origins (A[0, 0]) of complete copies of a radiant-periodic array A that overlap without
mismatch can be ordered monotonically.

Definition 3.10. A set of elements of an array B can be ordered monotonically
if the elements can be ordered so that they have column index nondecreasing and row
index nondecreasing (ordered monotonically in quadrant I) or row index nonincreasing
(ordered monotonically in quadrant II).

Our theorem is stated in terms of quadrant I, but generalizes to quadrant II.
Theorem 3.11. Let A be a radiant-periodic array with periodic vector in quadrant

I. Let S1, . . . , Sj be quadrant I sources occurring within quadrant I. On each source,
place one copy of A by aligning A[0, 0] with the source. If every pair of copies is in
register, then the sources can be ordered monotonically in quadrant I.

Proof. Suppose two sources A[c1, r1] and A[c2, r2] cannot be ordered monotoni-
cally. That is, c1 < c2 but r2 < r1. If there is no mismatch in the copies of A at these
sources, then by the fact that c2 − c1 <

m
3 and r1 − r2 <

m
3 , ~v = (r2 − r1, c2 − c1) is a

periodic, quadrant II symmetry vector and by definition, A is lattice periodic, which
is a contradiction.

As stated earlier, our classification scheme applies to any rectangular array. The
major modification is a new definition of length.

Definition 3.12. The length of a symmetry vector of a rectangular array is
the maximum of the absolute values of its coefficients scaled to the dimensions of the
array. Let A be n rows by m columns with m ≥ n. Let ~v = (r, c) be a symmetry vector
in A. Then the length of ~v scaled to the dimensions of the array is max(r · mn , c).

4. Periodicity and witness algorithms. In this section, we present two algo-
rithms, one serial and one parallel for finding all sources in an array A. In addition,
for each location in A which is not a source, our algorithms find a witness that proves
that the overlapping copies of A are not in register.

We want to fill out an array Witness[−m − 1 . . .m − 1, 0 . . .m − 1]. For each
location A[i, j] that is a quadrant I source, Witness[i, j] = [m,m]. Otherwise,
Witness[i, j] = [r, c] where [r, c] identifies some mismatch. Specifically, A[r, c] 6=

102 AMIHOOD AMIR AND GARY BENSON

Fig. 10. Representing a block of the array by a string. Tj = t0 . . . tm−1 is the text and
Wj = w0 . . . wm−1 is the pattern.

A[i + r, j + c] (Figure 9). For each location A[i, j] that is a quadrant II source,
Witness[i − (m − 1), j] = [m,m], otherwise Witness[i − (m − 1), j] = [r, c], where
A[r, c] 6= A[i− (m− 1) + r, j + c].

4.1. The serial algorithm. Our serial algorithm (Algorithm A) makes use of
two algorithms (Algorithms 1 and 2) from [ML-84] which are themselves variations
of the KMP algorithm [KMP-77] for string matching. Algorithm 1 takes as input a
pattern string w of length m and builds a table lppattern[0 . . .m−1] where lppattern[i]
is the length of the longest prefix of w starting at wi. Algorithm 2 takes as input a
text string t of length n and the table produced by Algorithm 1 and produces a table
lptext[0 . . . n− 1] where lptext[i] is the length of the longest prefix of w starting at ti.

The idea behind Algorithm A is the following: we convert the two-dimensional
problem into a problem on strings (Figure 10). Let the array A be processed column
by column and suppose we are processing column j. Assume we can convert the
suffix block A[0 . . .m−1, j . . .m−1] into a string Tj = t0 . . . tm−1 where ti represents
the suffix of row i starting in column j. This will serve as the text string. Assume
also that we can convert the prefix block A[0 . . .m − 1, 0 . . .m − j − 1] into a string
Wj = w0 . . . wm−1, where wi represents the prefix of row i of length m − j. This
will serve as the pattern string. Now, use Algorithm 1 to produce the table lppattern
for Wj and Algorithm 2 to produce the table lptext for Tj . If a copy of the pattern
starting at ti matches in every row to tm−1, then lptest[i] = m − i and A[i, j] is a
source. If the pattern doesn’t match and the first pattern row to mismatch is row
k < m−i, then lptext[i] = k and A[i, j] is not a source. The mismatch occurs between
the prefix of pattern row k and the suffix of text row i + k. We need merely locate
the mismatch to obtain the witness.

In order to treat the suffix and prefix of a row as a single character, we will build
a suffix tree for the array. A suffix tree is a compacted trie of suffixes of a string
S = s1 · · · sn [W-73]. Each node v has associated with it the indices [a,b] of some

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 103

Fig. 11. P1 is a prefix of ti . . . tm−1 and S1 is a suffix of w0 . . . wm−i−1.

substring S(v) = sa · · · sb of S. If u is the least common ancestor (LCA) of two nodes
v and w, then S(u) is the longest common prefix of S(v) and S(w) [LV-85]. A tree
can be preprocessed in linear time to answer LCA queries in constant time [HT-84].
Thus, we can answer questions about the length of S(u) in constant time.

Algorithm A. Serial algorithm for building a witness array and deciding peri-
odicity class.

Step A.1: Build a suffix tree by concatenating the rows of the array. Preprocess
the suffix tree for least common ancestor queries in order to answer questions
about the length of the common prefix of any two suffixes.
Step A.2: For each column j, fill out Witness[0 . . .m− 1, j] (quadrant I):

Step A.2.1: Use Algorithm 1 to construct the table lppattern for Wj =
w0 . . . wm−1. Character wi is the prefix of row i of length m − j. We
can answer questions about the equality of two characters by consulting the
suffix tree. If the common prefix of the two characters has length at least
m− j then the characters are equal.
Step A.2.2: Use Algorithm 2 to construct table lptext for Tj = t0 . . . tm−1.
Character ti is the suffix of row i starting in column j (also of length m−j).
Again we test for equality by reference to the suffix tree.
Step A.2.3: For each row i, if lptext[i] = m − i then we have found a
quadrant I source and Witness[i, j] = [m,m]; otherwise, using the suffix
tree, compare the suffix of text row i + lptext[i] starting in column j with
the prefix of pattern row lptext[i]. The length l of the common prefix will
be less than m− j, and Witness[i, j] = [lptext[i], l + 1].

Step A.3: Repeat Step A.2 for Witness[−m+1 . . . 0, j] (quadrant II) by building
the automata and processing the columns from the bottom up.
Step A.4: Select quadrant I and quadrant II basis vectors from Witness if they
exist.
Step A.5: Use the basis vectors to decide to which of four periodicity classes the
pattern belongs.

Theorem 4.1. Algorithm A is correct and runs in time O(m2 log |Σ|).
Proof. The correctness of Algorithm A follows from the correctness of Algorithms

1 and 2 of [ML-84]. The suffix tree construction [W-73] takes time O(m2 log |Σ|)
while the preprocessing for least common ancestor queries [HT-84] can be done in

104 AMIHOOD AMIR AND GARY BENSON

time linear in the size of the tree. Queries to the suffix tree are processed in constant
time. The tables lppattern and lptext can be constructed in time O(m) [ML-84]. For
each of m columns, we construct two tables so the total time for Steps A.2 and A.3
is O(m2). Step A.4 can be done in one scan through the witness array and Step A.5
requires comparing all vectors to the basis vectors in order to distinguish between the
radiant- and line-periodic classes, so the time for Steps A.4 and A.5 is O(m2). The
total complexity of the pattern preprocessing is therefore O(m2 log |Σ|).

Recently, [GP-92] gave an O(m2) (linear time) serial algorithm for the witness
computation.

4.2. The parallel algorithm. Our parallel algorithm (Algorithm B) makes use
of the parallel string matching algorithm (Algorithm 3) from [V-85]. Algorithm 3 takes
as input a pattern string w of length m and a text string t of length n and produces
a boolean table match[0 . . . n −m − 1], where match[i] = true if a complete copy of
the pattern starts at ti. Algorithm 3 first preprocesses the pattern and then processes
the text.

First, for a text of length m, we show how to modify Algorithm 3 to compute
match[0 . . .m− 1], where match[i] = true if ti . . . tm−1 is a prefix of the pattern. For
simplicity, we assume m is a power of 2.

Let

Pk = w0 . . . wbm−1

2k
c,

Sk = tm−1−bm−1

2k
c . . . tm−1,

k = 0, 1, . . . , logm.

For example, P1 is the prefix of w of length m
2 and S1 is a suffix of t of the same

length. The following observation embodies the key idea (Figure 11).
Observation 4.2. If ti . . . tm−1 is a prefix of w of length between m and m

2 , then
P1 is a prefix of ti . . . tm−1 and S1 is a suffix of w0 . . . wm−i−1. Similarly, if ti . . . tm−1

is a prefix of w of length between m
2 and m

4 , then the prefix and suffix are P2 and S2,
etc.

Now, for each k ≥ 1, we attempt to match Pk in Sk−1 and Sk in Pk−1. If a
matched prefix begins at ti and a matched suffix ends at wm−i−1 then ti . . . tm−1 is a
prefix of w.

Using Algorithm 3, we first preprocess the Pk and Sk as patterns and then use
these to process the appropriate segments as text. We can additionally modify Algo-
rithm 3 so that at every index where a prefix or suffix does not match, we obtain the
location of a mismatch. Since the sum of the lengths of the Pi and Si are no more than
a linear multiple of the length of w, the modification does not increase the complexity
of the algorithm and therefore the time complexity of the modified Algorithm 3 is
O(logm) using O(m

logm) CRCW processors—the same as the unmodified algorithm

[V-85]. In our parallel algorithm, only Step 2 differs from the serial algorithm.
Algorithm B. Parallel algorithm for finding sources and building a witness

array.
Step B.2: For each column j, fill out Witness[0 . . .m− 1, j] (quadrant I):

Step B.2.1: For each k = 1, . . . , logm:
Step B.2.1.1: Use Wj to form Pk and Pk−1 and Tj to form Sk and
Sk−1. Use modified Algorithm 3 to match Pk in Sk−1 and Sk in Pk−1.
As in the serial algorithm, use the suffix tree to answer questions about
equality.

TWO-DIMENSIONAL PERIODICITY IN RECTANGULAR ARRAYS 105

Step B.2.1.2: For each row i for m− 1− m−1
2k−1 ≤ i < m− 1− m−1

2k
. If

Pk matches beginning at ti and Sk matches ending at wm−i−1, then
Witness[i, j] = [m,m]. Otherwise, using the row r of mismatch from
modified Algorithm 3, refer to the suffix tree to find the column c of
mismatch and set Witness[i, j] = [r, c].

Theorem 4.3. Algorithm B is correct and runs in time O(logm) using O(m2)
CRCW processors.

Proof. The suffix tree construction [AILSV-87] and preprocessing for LCA queries
[SV-88] are done in time O(logm) using O(m2) CRCW processors. Step B.2 is

done in time O(logm) using O(m2

logm) CRCW processors [V-85]. Finding the basis

vectors is done by prefix minimum [LF-80] in time O(logm) using O(m2

logm) proces-
sors. Distinguishing the line and radiant periodic cases can be done in constant time
using O(m2) processors. The total complexity is therefore O(logm) time using O(m2)
CRCW processors.

REFERENCES

[AB-92a] A. Amir and G. Benson, Two-dimensional periodicity and its application, in 3rd
ACM-SIAM Symposium on Discrete Algorithms, Orlando, FL, SIAM, Philadel-
phia, 1992, pp. 440–452.

[AB-92b] A. Amir and G. Benson, Efficient two-dimensional compressed matching, in Proc.
Data Compression Conference, Snowbird, Utah, IEEE Computer Society Press,
Los Alamitos, CA, 1992, pp. 279–288.

[ABF-93] A. Amir, G. Benson, and M. Farach, Optimal parallel two dimensional text search-
ing on a CREW PRAM, in Proc. 5th Annual Symposium on Parallel Algorithms
and Architectures, ACM, New York, 1993, pp. 79–85.

[ABF-94] A. Amir, G. Benson, and M. Farach, An alphabet independent approach to two-
dimensional matching, SIAM J. Comput., 23 (1994), pp. 313–323.

[ABF-97] A. Amir, G. Benson, and M. Farach, Optimal two dimensional compressed match-
ing, J. Algorithms, 24 (1997), pp. 354–379.

[AC-75] A. V. Aho and M. J. Corasick, Efficient string matching, Comm. ACM, 18 (1975),
pp. 333–340.

[AF-91] A. Amir and M. Farach, Efficient 2-dimensional approximate matching of non-
rectangular figures, in Proc. 1st ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, CA, SIAM, Philadelphia, 1990, pp. 212–223.

[AL-91] A. Amir and G. M. Landau, Fast parallel and serial multidimensional approximate
array matching, Theoret. Comput. Sci., 81 (1991), pp. 97–115.

[ALV-90] A. Amir, G. M. Landau, and U. Vishkin, Efficient pattern matching with scaling,
in Proc. 1st ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA,
SIAM, Philadelphia, 1990, pp. 344–357.

[AILSV-87] A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin,
Parallel construction of a suffix tree with applications, Algorithmica, 3 (1988),
pp. 347–365.

[B-78] T. P. Baker, A technique for extending rapid exact-match string matching to arrays
of more than one dimension, SIAM J. Comput., 7 (1978), pp. 533–541.

[Bi-77] R. S. Bird, Two-dimensional pattern matching, Inform. Process. Lett., 6 (1977),
pp. 168–170.

[BM-77] R. S. Boyer and J. S. Moore, A fast string searching algorithm, Comm. ACM, 20
(1977), pp. 762–772.

[CCG+93] R. Cole, M. Crochemore, Z. Galil, L. Ga̧sieniec, R. Harihan, S. Muthukr-
ishnan, and K. Park, Optimally fast parallel algorithms for preprocessing and
pattern matching in one and two dimensions, in Proc. 34th IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1993, pp. 248–258.

[CR-92] M. Crochemore and W. Rytter, On two-dimensional pattern matching by optimal
parallel algorithms, Theoret. Comput. Sci., 132 (1994), pp. 403–414.

106 AMIHOOD AMIR AND GARY BENSON

[G-85] Z. Galil, Optimal parallel algorithms for string matching, Inform. and Control, 67
(1985), pp. 144–157.

[GP-92] Z. Galil and K. Park, Truly alphabet independent two-dimensional pattern match-
ing, in Proc. 33rd IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1992, pp. 247–256.

[HT-84] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput., 13 (1984), pp. 338–355.

[KR-94] M. Karpinski and W. Rytter, Alphabet independent optimal parallel search for
3-dimensional patterns, in Proc. 5th Annual Symposium on Combinatorial Pat-
tern Matching, Lecture Notes in Comput. Sci. 807, Springer-Verlag, Berlin, 1994,
pp. 125–135.

[KMP-77] D. E. Knuth, J. H. Morris, and V. R. Pratt, Fast pattern matching in strings,
SIAM J. Comput., 6 (1977), pp. 323–350.

[KS-87] K. Krithivasan and R. Sitalakshmi, Efficient two-dimensional pattern matching in
the presence of errors, Inform. Sci., 47 (1987), pp. 169–184.

[LF-80] R. E. Ladner and M. J. Fischer, Parallel prefix computation, J. ACM, 27 (1980),
pp. 831–838.

[LV-85] G. M. Landau and U. Vishkin, Efficient string matching in the presence of errors, in
Proc. 26th IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1985, pp. 126–136.

[ML-84] M. G. Main and R. J. Lorentz, An O(n logn) algorithm for finding all repetitions
in a string, J. Algorithms, 5 (1984), pp. 422–432.

[RR-93] M. Regnier and L. Rostami, A unifying look at d-dimensional periodicities and space
coverings, in Proc. 4th Symposium on Combinatorial Pattern Matching, Lecture
Notes in Comput. Sci. 684, Springer-Verlag, New York, 1993, pp. 215–227.

[SV-88] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification
and parallelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[V-85] U. Vishkin, Optimal parallel pattern matching in strings, Inform. and Control, 67
(1985), pp. 91–113.

[V-91] U. Vishkin, Deterministic sampling—a new technique for fast pattern matching,
SIAM J. Comput., 20 (1991), pp. 303–314.

[W-73] P. Weiner, Linear pattern matching algorithms, in Proc. 14th IEEE Symposium on
Switching and Automata Theory, IEEE Computer Society Press, Los Alamitos,
CA, 1973, pp. 1–11.

A FAST DISCRETE APPROXIMATION ALGORITHM
FOR THE RADON TRANSFORM∗

MARTIN L. BRADY†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 107–119, February 1998 005

Abstract. This paper addresses fast parallel methods for the computation of the Radon (or
Hough) transform. The Radon transform of an image is a set of projections of the image taken at
different angles. Its computation is important in image processing and computer vision for problems
such as pattern recognition and reconstruction of medical images. A unique new method for com-
bining partial results is presented, from which an algorithm is constructed that computes a provably
good approximation to the discrete Radon transform. The approximate discrete Radon transform
(ADRT) algorithm computes 4N − 4 projections through an N × N image in time O(N2lgN) (the
majority of previous algorithms are O(N3)). The method is quite simple and easy to parallelize.
A parallel version of the ADRT requires only O(lgN) parallel steps on O(N2) processors, ignoring
communication time. An additional property of the algorithm is that it can be applied directly to
compute the backprojection step of the inverse RT.

Key words. Radon transform, Hough transform, approximation algorithms, image processing,
image reconstruction

AMS subject classifications. 68Q20, 68U10

PII. S0097539793256673

1. Introduction. The problem of computing projections of two-dimensional
data arises in numerous applications in image processing and computer graphics.
The Radon transform (RT) of an image is a set of projections of the image along lines
taken at different angles (i.e., a mapping from image space to projection space, or
“Radon space”). For discrete image data, a projection is computed by summation of
all data points that lie within specified unit-width strips. The Hough transform is a
restricted form of the discrete RT (DRT) in which the input is taken to be discrete
binary data [9]. The Hough transform is an essential component of many methods
for pattern recognition and parameter extraction [12], and it has been applied to
problems such as line and curve detection [5], [1].

The standard computation of the RT of an N × N image at M different angles
requires time O(N2M). In this paper, we present a new approach to the problem
and develop an algorithm that computes a good approximation to the DRT. This
algorithm computes the RT for a specific set of 4N − 4 projection angles in only
O(N2lgN) time.1 The algorithm is extremely simple, and the approximation is very
good even for large images. The maximum sampling error grows only as lg N times
a small constant (< 1).

The inversion of the RT is also of importance in image processing. It is essential
in reconstructing images collected by projective techniques; for instance, it is used
in computer tomography to reconstruct medical images from data collected with X
rays (e.g., computed tomography (CT), or magnetic resonance imaging (MRI)); (see
[11]). The inversion (reconstruction of an image from its projections) of the RT can
be achieved by a fixed convolution, followed by backprojection (the inversion formula

∗Received by the editors October 8, 1993; accepted for publication (in revised form) December
30, 1995. This work was supported in part by a grant from IBM under the Technical Interchange
Program and by Lockheed Missiles and Space Co., Inc. internal research funds.

http://www.siam.org/journals/sicomp/27-1/25667.html
†Microcomputer Research Labs, Intel Corp., Santa Clara, CA 95052 (Martin Brady@ccm.sc.intel.

com).
1In this paper “lg” denotes a base 2 logarithm.

107

108 MARTIN L. BRADY

was discovered by J. Radon [15]). Backprojection is similar to the RT projection
computation, except that the projections do not usually follow straight lines. However,
our algorithm produces nonuniformly sampled linogram Radon data. A consequence
is that data, sampled as in our forward RT algorithm, can be backprojected using the
same algorithm. As a result, our algorithm for the DRT is also useful in computing
the inverse DRT.

In the next section we give some definitions and describe previous work done in
the area. Section 3 contains the description of our new algorithm. In section 4 we
describe the application of the algorithm to the computation of the inverse of the RT.
In section 5 we conclude with a summary of the results as well as observations about
other problems to which our method can be applied.

2. Description of the RT. The two-dimensional RT of an image defined in
(x, y) coordinate space is a set of projections of the image taken by integrating along
the set of lines defined by x cos θ + y sin θ = d for 0 ≤ θ < π. Parameterized in this
way, θ is the angle of the line with respect to the positive y-axis and d represents its
distance from the origin. An image in (x, y) space is thus transformed into “Radon
space” (d, θ).

When working with digital images, a discretized form of the RT is required. A
digital image I(x, y) is an N ×N array of pixels (x, y) ∈ Z

2, 0 ≤ x, y ≤ N − 1, each
representing the average gray level of a unit square in the image.2 The gray levels
can be taken to be nonnegative reals I(x, y): R

2 → R>0 (although in practice gray
levels are often restricted to eight bit integers, 0 ≤ I(x, y) ≤ 255). A line integral
along x cos θ + y sin θ = d is approximated by a summation of the pixels lying in the
one-pixel-wide strip d − 1

2 ≤ x cos θ + y sin θ < d + 1
2 (see Figure 1). Since strips

have unit width, d can be restricted to integer values, and for a given θ at most
√

2N
strips are needed. The number of angles is defined to be M , and we assume here that
M = Θ(N). The set of M angles is often defined to be uniformly distributed between
0 and π (however, we will explore the benefits of a nonuniform distribution in this
paper).

The DRT can be computed as follows. For any given angle θ, each of the pixels
lies in exactly one strip. Therefore, for each pixel we simply determine the strip to
which it belongs (d relative to θ) and add the pixel’s value to the current total for
strip (d, θ). This procedure is repeated for each value of θ. A simple pseudocode
description of this algorithm is given in Algorithm 1. The complexity of this method
is O(N2M)(= O(N3) under the assumption that M = Θ(N)).

ALGORITHM 1. Standard DRT calculation.

Initialization:

R(d, θ) = 0 for all (d, θ);

DRT computation:

for θ = 0 to (M−1)π
M step π

M

{ for x = 0 to N − 1

{ for y = 0 to N − 1

2Actually, the image can be more generally defined as an N1 × N2 array of pixels, where N1 is
not necessarily equal to N2. However, the discussion is greatly simplified by limiting it to square
arrays. The extension to nonsquare images could most easily be handled by zero-padding the image
in the smaller dimension.

APPROXIMATION ALGORITHM FOR THE RADON TRANSFORM 109

1 unit

R(4,.35)

d =4

θ =.35

(0,0)

N(0, –1)

(–1,0)N

(–1, –1)N N

y

x

Fig. 1. Representation of the set of strips for summation along a single direction, θ. Each strip
represents a single Radon data point (the sum of the pixels in the shaded strip represents Radon
data point (d, θ) = (4, .35)).

{ d = bx cos θ + y sin θ + 1
2c;

R(d, θ) = R(d, θ) + I(x, y);

}
}

}
Due to the complexity of computing the RT and its importance in image process-

ing and other fields, much research has been devoted to speeding it up by mapping the
problem into parallel processing architectures. Implementations that require O(N)
time on an N ×N mesh-connected array of processors were discovered independently
by Cypher, Sanz, and Snyder [4] and Guerra and Hambrush [8]. Pan and Chuang
[14] give an O(lgN) time algorithm for a hypercube with O(N4) processors, and
Jenq and Sahni [10] presented a collection of algorithms for reconfigurable meshes.
Many special-purpose parallel architectures have also been proposed; e.g., a pipeline
architecture solution was given by Sanz and Hinkle [17].

Our new approach is to construct a simple sequential approximation algorithm
that is both asymptotically and practically more efficient than the standard algorithm.
It requires only O(N2lgN) time to compute projections along 4N − 4 angles in an
N ×N image—a sequential speedup of Θ(N/lgN). This large speedup is obtained at

110 MARTIN L. BRADY

Fig. 2. The large amount of overlap between strips at neighboring angles is illustrated. Dashed
lines trace out the sets of points that compose individual strips. Notice that groups of four points
are common to one strip at each of the two angles.

the cost of computing only a fixed, nonuniformly distributed set of angles and com-
puting only an approximation to the desired strip sums. We describe our approximate
discrete Radon transform (ADRT) algorithm in section 3.

3. The ADRT algorithm. In Algorithm 1, each point (d, θ) in Radon space
is computed independently by summing the pixels within each strip (d, θ). However,
the computation can be sped up by observing that for discrete images, the compu-
tations for different points in the discrete Radon space are not entirely independent;
specifically, observe that for neighboring angles, large subsets of pixels may be shared
by different strips, as illustrated in Figure 2. Thus, one could potentially save time
by computing such shared partial sums only once for use in two or more lines. One
approach is to attempt to derive the optimal ordering of computations for a given
problem size to make maximum use of partial terms. Unfortunately, there does not
appear to be much structure to these sets of partial sums, and it may be more diffi-
cult to calculate the proper subsets and order the computations accordingly than to
simply calculate the DRT data independently. Instead, we construct an algorithm to
compute an approximation to the DRT which is designed to take maximum advantage
of intermediate terms in a structured manner. We define a specific set of angles and
distances and define a set of approximate discrete lines which make full use of partial
sums. The number of sample points (d, θ) that we compute is sufficiently dense so that
arbitrary data points in Radon space can be extracted by interpolation, if desired.
(The accuracy of this approximation is discussed in section 3.3.)

In order to simplify the discussion, let N be a power of two. The extension
to arbitrary N can be achieved by either zero-padding the data or by complicating
the algorithm’s handling of image boundaries, without increasing the asymptotic run
time.

3.1. General strategy. We first describe the general strategy of our algorithm.
Partial sums of the gray levels of consecutive pixels, representing short discrete line
segments, will be computed. We refer to these sets of pixels as segments and to the

APPROXIMATION ALGORITHM FOR THE RADON TRANSFORM 111

sum of the gray levels of the pixels in a segment as the value of the segment. In the
first pass, the values of a large set of two-point segments are computed. Next, pairs of
two-point segments are combined to form a set of four-point segments. In successive
passes, the values of 2i-point segments are computed using only the values of the
2i−1-point segments from the previous pass. After lgN passes, the values of N -point
segments have been computed, each representing the sum of a strip of N pixels from
the original image. These sums constitute the approximate DRT data.

The computation is divided into four parts which correspond to four equal-sized
ranges of angles π

4 r ≤ θ ≤ π
4 (r + 1) for r = 0, 1, 2, 3. Within a range of 45 degrees,

the angles are similar enough to derive benefit from sharing intermediate terms. The
algorithm will be described for a single group of angles 0 ≤ θ ≤ π/4; each of the other
three ranges can be computed symmetrically.

Central to our method is the specification of a set of segments which are simply
defined yet closely approximate straight lines. Let the two end points of a segment
be labeled (x1, y1) and (x2, y2). The x-displacement of the segment is defined as
|x1 − x2| (the y-displacement is defined analogously). First, we specify the set of
segments computed in each pass i by their end points. We then explain how the
segments in pass i + 1 are approximated using the pass i segments. The segments
computed as pass i have the following properties.

1. Both end points of each segment lie on pixels in the image space (i.e., the end
points have integral (x, y) values).

2. The value of each segment computed in pass i represents the sum of 2i pixels.
One pixel is taken from each of 2i consecutive rows. Thus, the y-displacement of each
segment is 2i − 1 and the x-displacement determines the segment’s angle.

3. The number of different angles represented by the segments computed in pass
i is 2i. As noted above, a segment’s angle depends solely on its x-displacement.
Since the angles are between 0 and π/4, the x-displacements are between 0 and
2i − 1. All end points are integer, and therefore the set of x-displacements at pass i
is {0, 1, 2, . . . , 2i − 1}. The set of angles for pass i can be calculated as follows:

(1) θ = tan−1

(
a

2i − 1

)
for a = 0, 1, 2, . . . , 2i − 1.

4. In the y-direction, segments start only on every 2ith row, i.e., rows y such that
y ≡ 0 (mod 2i). Within this set of rows, all pixels are valid starting points. Thus,
the lowest set of segments spans rows 0 through 2i − 1, the next set spans 2i through
2i+1 − 1, etc. More specifically, the set of segments computed in pass i begins at
y = j(2i) and ends at y = (j + 1)(2i) − 1, for j = 0, 1, 2, . . . , (N/2i) − 1, and spans
all x-values. The segments constructed in the first three passes of the algorithm are
illustrated for an 8× 8 portion of an image in Figure 3.

The properties given above describe the situation for strips that have their lower
and upper end points at the bottom and top rows of the image, respectively. However,
some strips “fall off” the left or right boundaries of the image and therefore do not
sum an entire set of N pixels. A simple way to handle these boundary conditions is
to pad the image with zeros and construct the segments in cyclic fashion. Specifically,
the image is padded with zeros in the range N ≤ x < 2N , 0 ≤ y < N into an N × 2N
image, and all x-values are taken modulo 2N . Strips that “fall off” of the left side
of the image wrap around to sum zeros from the padded right half, and some of the
strips that begin in the zero-padded right half of the image eventually enter the left
half and complete the sum for a line that falls off of the right half. As a result, all of

112 MARTIN L. BRADY

Pass 3Pass 2Pass 1

Fig. 3. Illustration of the segments computed in the first three passes of the ADRT algorithm.

the strips in the cyclically defined image consist of exactly N pixels. Strips that fall
off of an edge take the balance of their N pixels from the set of padded zeros. Since
the maximum x-displacement is N−1, a strip that moves into the padded zeros never
passes all the way through to reenter the image from the other side.

3.2. Algorithm specification. In pass i, two segments of the same angle,

tan−1(ba/2c
2i−1−1), are adjoined to create a segment that is about twice as long whose

angle is tan−1(a
2i−1). Let Ri(x, y, a) represent the value of the segment constructed

in pass i with lower end point at (x, y) and x-displacement a. Then Ri(x, y, a) is
computed as the sum of the values of two (2i−1)-point segments from pass i − 1 as
follows (recall that x is taken modulo 2N):

(2) Ri(x, y, a) = Ri−1(x, y, ba/2c) + Ri−1(x− da/2e, y + 2i−1, ba/2c)
for x = 0, 1, 2, . . . , 2N − 1, for y = j(2i) such that j = 0, 1, 2, . . . , (N/2i) − 1, and
for a = 0, 1, 2, . . . , 2i − 1. Note that the ranges of both y and a are dependent on i.
Their product is exactly N , for all i, and therefore within each pass a total of exactly
2N2 data values are maintained. At each consecutive pass, the number of different
starting point y-values is halved, but the number of different angles per starting point
doubles.

The ADRT algorithm is summarized below in Algorithm 2. The image I(x, y) is
represented as R0(x, y, 0). After lgN passes, the DRT data R(d, θ) are obtained from
RlgN (x, 0, a), i.e., R(d, θ) = RlgN (x, 0, a) for θ = tan−1(a

N−1) and d = x cos θ.
ALGORITHM 2. ADRT computation for 0 ≤ θ ≤ π/4.
Initialize R0:

R0(x, y, 0) = I(x, y) for 0 ≤ x, y < N
R0(x, y, 0) = 0 for N ≤ x < 2N, 0 ≤ y < N

Approximate DRT computation:
for i = 1 to lgN
{ for a = 0 to 2i − 1

{ for y = 0 to N − 2i step 2i

{ for x = 0 to 2N − 1
{ Ri(x, y, a) = Ri−1(x, y, ba/2c)+Ri−1(x−da/2e, y+2i−1, ba/2c)
}

}
}

}

APPROXIMATION ALGORITHM FOR THE RADON TRANSFORM 113

A total of O(N2lgN) simple arithmetic calculations dominate the computation
time in Algorithm 2. Three more applications of symmetric variations of Algorithm 2
are performed to calculate the DRT data for angles in the range π/4 through π.
The basic computation at a single step is extremely simple, requiring only a few
additions and divisions by 2. All of the 2N2 segment sums in a given pass i can
be performed independently, so a PRAM implementation on 2N2 processors would
require O(lgN) time. Hence, this algorithm is both asymptotically and practically
fast and should yield efficient sequential and parallel implementations. (References
[16] and [13] describe sequential and parallel ADRT implementations, respectively;
mappings into various parallel architectures are discussed in [3].)

3.3. Analysis of the ADRT. By their construction, the segments computed
by Algorithm 2 are “crooked” approximations of the desired strips. Each pass of
Algorithm 2 introduces some deviation, and these errors may be compounded in each
pass. In this section, we derive an upper bound on the deviation of a pixel that is used
to compute R(d, θ) from the line (d, θ). (Recall that in the standard DRT specified
in Algorithm 1, all pixels used to compute a line (d, θ) are within 1

2 unit of the line.)
Consider the construction of a parent segment S in pass i by adjoining two child

segments S1 and S2. Assume for now that S1 and S2 are exactly represented, i.e.,
that all samples lie on the child segments. Observe that each child segment intersects
the parent at one of its end points and reaches its maximum distance from S near the
parent’s center (see Figure 4). We refer to the maximum separation between two line
segments taken in the x-direction as their horizontal separation.

Lemma 1. The horizontal separation of a segment S constructed by Algorithm 2
from either of the two subsegments S1 and S2 used to construct it is less than 1

2 unit.
Proof. Consider w.l.o.g. a segment S with a lower end point at (0, 0) and x-

displacement a, constructed in pass i. Its children S1 and S2 are adjoined either
diagonally or vertically, depending upon whether a is odd or even, as shown in Fig-
ure 4.

Case 1. a odd (diagonally joined). This case is illustrated in Figure 4a. The
coordinates of the upper end point of S1 are (−(a − 1)/2, 2i−1 − 1). Since the slope

of S is − 2i−1
a , at y = 2i−1 − 1 segment S has x-coordinate x = −a(2i−1−1)

2i−1 . The
horizontal separation of S1 and S is therefore

− a− 1

2
− −a(2i−1 − 1)

2i − 1
= −a

2
+

1

2
+ a

(
2i−1 − 1

2i − 1

)
< −a

2
+

1

2
+ a

1

2
=

1

2
.

Since S1 and S2 are symmetric, the horizontal separation of S2 and S is also less than
1/2.

Case 2. a even (vertically joined). This case is illustrated in Figure 4b. Here the
upper end point of S1 is at (−a/2, 2i−1−1) and the x-coordinate of S at y = 2i−1−1

is again x = −a(2i−1−1)
2i−1 . The horizontal separation of S1 and S is

−a(2i−1 − 1)

2i − 1
−
(
−a

2

)
= − a

2(2i − 1)
.

At pass i, a ≤ 2i − 1 in general, and since a is even, a 6= 2i − 1, so the horizontal

separation is strictly less than 2i−1
2(2i−1) = 1

2 . (Again S1 and S2 are symmetric, so the

bound holds for S2 as well.)
Lemma 1 bounds the error between a parent segment and two exactly represented

child segments used to construct it. But in the ADRT, the children are approximations

114 MARTIN L. BRADY

1/2

S

S

S

1

2

(0,0)

(–a, 2 –1)i

S

S

S

1

2

(0,0)

(–a, 2 –1)

1/2

i

1/2 1/2

Fig. 4. The values of two 2i−1-point segments S1 and S2 of x-displacement ba/2c are added
to create a 2i-point segment of x-displacement a starting at (0, 0). When a is odd, S2 starts one
unit above and one unit to the left of the upper end point of S2; if a is even, S2 starts just one unit
above the upper end point of S2.

themselves and contain some error in their constructions and so forth. The maximum
total horizontal error (the horizontal distance of the N -point line segment S from the
points used to construct it) can be bounded by repeated application of Lemma 1. In
the first pass, simple two-point segments are created, incurring no error. Next, these
segments are combined to form four-point segments, whose points lie within 1

2 unit
in the x-direction from the intended line. In the next pass, these four-point segments
are combined to form eight-point segments, and an additional error of less than 1

2
unit in the x-direction is incurred. That is, the maximum horizontal separation of the
eight-point segments from the (exactly represented) child four-point segments is at
most 1

2 , and the separation of these four-point segments from the two-point segments
used to construct them is an additional 1

2 . The 1
2 -unit horizontal error bound is

invoked for each pass of the algorithm from 2 to lgN . Some of the errors may offset
each other, but in the worst case all horizontal errors could be incurred in the same
direction, so the maximum total horizontal distance of a pixel from one of the lines
to which it contributes is 1

2 (lg N − 1). The total perpendicular distance is therefore
1
2 (lg N − 1) cos θ ≤ 1

2 (lg N − 1).

The following theorem summarizes the performance of Algorithm 2.

Theorem 1. Algorithm 2 produces a set of approximate DRT data points (d, θ)
for θ = tan−1(a/(N−1)), a = 0, 1, 2, . . . , N−1, and d = dx cos θ, dx = 0, 1, 2, . . . , 2N−
1, such that all pixels used to generate (d, θ) are within 1

2 (lgN − 1) cos θ units of the
line parameterized by (d, θ). The algorithm requires O(N2 lgN) time on a sequential
machine, and O(lgN) parallel steps using O(N2) processors on an EREW PRAM.

Note that the error bound is somewhat pessimistic; no single error actually reaches

APPROXIMATION ALGORITHM FOR THE RADON TRANSFORM 115

Table 1
Calculated maximum horizontal and perpendicular sampling errors in the ADRT.

Maximum Maximum
N horizontal error perpendicular error

4 0.333 0.316

8 0.429 0.424

16 0.667 0.632

32 0.774 0.764

64 1.000 0.949

128 1.110 1.095

256 1.333 1.265

512 1.444 1.425

1024 1.667 1.581

2048 1.778 1.754

4096 2.000 1.897

1
2 unit, and it is not possible for a single point to receive the maximum error at every
iteration. Numerical calculations suggest that the maximum horizontal error may in
fact be bounded by lgN

6 (see Table 1).
Notice that the Radon data produced by Algorithm 2 are not uniformly dis-

tributed in either d or θ. However, the 2N2 data points are extremely dense for an
N × N image. Spacing between adjacent lines ranges from one pixel (for θ = 0) to
1/
√

2 pixels (for θ = π/4). These lines are as densely spaced as the individual pixels;
there is little to be gained by increasing their density without resorting to interpo-
lation. Furthermore, the line spacings are optimized to the geometry of the data
points, in that line segments start and end centered on pixels and become more dense
at angles in which pixels appear more densely distributed. Similarly, the angles are
not uniformly distributed but are dense. For example, the consecutive angles 0 and
tan−1(1

N−1) (i.e., a = 0 and a = 1) with the same starting point share 50% of their
data points. It is therefore unlikely that the Radon data computed by Algorithm 2 is
too sparse.

It may be the case that specific data points are desired. In this case, it would be
reasonable to calculate the desired points from the Algorithm 2 data by interpolation,
or to simply select the nearest ADRT data points. There is always an ADRT line
within 1

2 unit of horizontal separation of the desired line. Consider the range 0 ≤ θ ≤
π/4, for example. Since all integer x-coordinates on y = 0 and y = N − 1 are valid
starting and ending points for ADRT lines, one can always select an ADRT sample
whose end points are both within 1

2 unit in the x-direction of the desired line. The
maximum horizontal separation will be at one of the end points and is thus bounded
by 1

2 . Thus, the ADRT data can be used to approximate any Radon data point with
a maximum perpendicular error of 1

2 lgN units.

3.4. Reducing the approximation error. The maximum error in the data
points used to compute the ADRT grows very slowly with the size of the image.
This fact can be used to further reduce the error with only a small factor increase in
computation time. The general method is as follows. First, the image is expanded by
a factor k in both dimensions (k must be a power of 2), and then the ADRT is applied.
The maximum error incurred for the kN × kN image is 1

2 (lg kN)—only 1
2 (1 + lg k)

units greater than that of an N ×N image. When the RT data is contracted back to
its original size, the effective error is reduced by nearly a factor of k.

116 MARTIN L. BRADY

Define an expanded image Î(x, y) of size kN × kN as follows:

(3) Î(x, y) =

{
I(b(x/k) + 1/2c, by/kc) if y ≡ 0 (mod k),

0 otherwise.

The expanded image is stretched horizontally so that each data point is repeated in k
consecutive columns. Vertically every kth row contains image data, while the rest are
padded with zeros. Consider the application of the ADRT to this expanded image.
Since each line sum uses exactly one data point from each row, the line sums R̂(d, θ),
computed for Î(x, y), involve exactly one element from each row of the original image.

To complete the transform, we contract the Radon data by selecting every kth
distance coordinate d = j · k, j = 0, 1, 2, . . . , 2N − 1. In addition, we must discard all
but N different angles, selecting those which most closely match the ones produced
by the algorithm on the original N ×N -sized images. Note that the angles computed
on the expanded image do not, in general, contain those that would be computed
in the initial image. Consider a line in I with x-displacement a. The slope of the
corresponding line in Î should be approximately−N−1

a . Thus the line’s x-displacement

â in Î should be such that −kN−1
â = −N−1

a , i.e., â = kN−1
N−1 · a = (k + k−1

N−1)a. The

closest such x-displacement available in R̂ is (k + b k−1
N−1 + 1

2c)a. Thus, if the lines
are parameterized by their x-intercept dx and x-displacement a, then contraction is
defined as

(4) R̃(dx, a) = R̂

(
kd,

(
k +

⌊
k − 1

N − 1
+

1

2

⌋)
a

)

for dx = 0, 1, 2, . . . , 2N − 1, a = 0, 1, 2, . . . , N − 1. The horizontal separation of this
line from one of slope −N−1

a is at most 1/2 unit in Î.

Theorem 2. Algorithm 2 can be used to produce a set of DRT data points
(d, θ) for θ = tan−1(a/(N − 1)), a = 0, 1, 2, . . . , N − 1, and d = dx cos θ, dx =
0, 1, 2, . . . , 2N − 1, such that all pixels used to generate (d, θ) are within lg kN

k + 1
2

units of the line parameterized by (d, θ). The algorithm requires O(N2k2 lg kN) time
on a sequential machine and O(lg kN) parallel steps using O(N2k2) processors on an
EREW PRAM.

Proof. Consider a line L, parameterized by (dx, a), to be sampled using the
expand-ADRT-contract procedure described above with an expansion of factor k.
We want to bound the horizontal distance between a point (x, y) on L from the
corresponding sample point used in the ADRT. L corresponds to an “ideal” line L̂
of the same slope in the expanded image, parameterized by (kdx, (k + k−1

N−1)a), and

corresponding point (kx, ky) lies on L̂. From Theorem 1, the ADRT sample point for
(kx, ky) in the expanded image is Î(kx + e, ky), where |e| < lg kN . This is the value
I(bkx+ek + 1

2c, y) from the original image (see equation (3)). Therefore, the maximum

possible error in the x-direction is bounded by e/k + 1
2 ≤ lg kN

k + 1
2 .

The time is dominated by the ADRT computation on the kN × kN expanded
image. This is obtained by substituting kN for N in Theorem 1.

Note that many of the computations in the expanded image are obviously unnec-
essary (e.g., segments consisting of padded zeroes, segments that will be discarded),
and a careful implementation might greatly reduce the actual amount of computa-
tion. Furthermore, one might obtain a better approximation by interpolating the
image data during the expansion rather than simply replicating it.

APPROXIMATION ALGORITHM FOR THE RADON TRANSFORM 117

4. Approximate inverse of the DRT. The inverse of the RT is used in the
reconstruction of medical images. A discrete version of Radon’s inversion formula is
as follows:

(5) I(x, y) =
π

M

M∑
i=1

Q(x cos θi + y sin θi, θi).

Q(d, θ) represents the filtered projection data, which is computed from the Radon
data R(d, θ) by convolving each row of data R(d, θi) with a filter h(t), whose impulse
response is |ω| in the frequency domain, where ω represents the frequency. A row of
Q for fixed angle θi can be computed in the Fourier domain by

(6) Q(d, θi) = FFT−1(FFT(R(d, θi)) · |ω|).
This first step, which computes Q(d, θ), is called filtering, and the second step, rep-
resented by equation (5), is called backprojection. The computation of a single image
pixel, I(x, y), is done by summing the values of the M lines (one at each different angle)
which pass through (x, y). This amounts to selecting one data point from each row,
θi, whose d value is the closest to x cos θi+y sin θi. If both d and θ are uniformly sam-
pled, then the M pixels used to compute I(x, y) trace out a curve d = x cos θ+ y sin θ
in discrete Radon space. To compute the complete image, we must sum along the
family of sinusoidal curves {d = x cos θ + y sin θ} for x, y = 0, 1, 2, . . . , N − 1.

Notice that the backprojection step is quite similar to the computation of the
forward RT, except that points in image space trace out sinusoids in uniform Radon
space rather than lines. Recall, however, that the data produced by the ADRT is
not uniformly distributed in d or θ. (Angles in the range 0 − π/4 are sampled at
tan−1(a

N−1) for a = 0, 1, 2, . . . , N − 1, and distances are taken at x cos θi for x =
0, 1, 2, . . . , N − 1.) It turns out that for Radon data sampled in this manner, points
(x, y) trace out lines in the discrete Radon space. (More precisely, (x, y) traces out
four separate lines corresponding to the ranges π

4 r ≤ θ ≤ π
4 (r + 1), r = 0, 1, 2, 3.)

Furthermore, the set of image points (x, y), when x and y are integers between 0 and
N − 1, trace out exactly the set of lines that are computed by the ADRT algorithm.
Therefore, the ADRT algorithm can be used to compute an approximation to the
backprojection of Q(d, θ). The algorithm is applied separately to each of the four
groups of N angles, and the four resulting arrays are added to produce I(x, y). (Note
that angles 0, π/4, π/2, and 3π/4 are necessarily doubly represented in the set of four
ranges of Radon data. One must therefore zero their values in one of the two ranges
in which each appears before performing backprojection.) The following theorem
summarizes the application of the ADRT to the group of angles 0 ≤ θ ≤ π/4.

Theorem 3. Given a set of filtered RT data points Q(d, θ) for θ = tan−1(a/(N−
1)), a = 0, 1, 2, . . . , N − 1, and d = x cos θ, x = 0, 1, 2, . . . , N − 1, Algorithm 2 can be
used to produce the backprojection of the data I(x, y), x, y = 0, 1, 2, . . . , N − 1, such
that all RT data points used to reconstruct pixel (x, y) are within 1

2 (lgN − 1) units of
the line d = x cos θ + y sin θ. The algorithm requires O(N2 lgN) time on a sequential
machine and O(lgN) parallel steps using O(N2) processors on an EREW PRAM.

Proof. The maximum error and execution times follow from the forward RT de-
scription in section 3; we must show that the lines computed by the ADRT correspond
to the curves traced out by (x, y) in the nonuniformly sampled Radon space. First
we show that the set of Radon space points (d, θ) corresponding to lines which pass
through (x, y) is collinear. Recall that the angles are taken at a = 0, 1, 2, . . . , N − 1,
where θ = tan−1(a

N−1), so the angles are uniform in the x-displacement variable a.

118 MARTIN L. BRADY

Similarly, the distances are sampled at unit intervals horizontally. Letting h represent
the horizontal distance from the origin of line (d, θ), we have d = h cos θ. Thus, in
the (h, a) coordinate system, the samples represent h, a = 0, 1, 2, . . . , N − 1. Consider
the pixel (x, y), which traces out the curve d = x cos θ + y sin θ in the Radon data.
Substituting for d, we obtain

(7) h cos θ = x cos θ + y sin θ,

(8) h = x + y

(
sin θ

cos θ

)
= x + y tan θ.

Since tan θ = (a
N−1), we have

(9) h = x +

(
y

N − 1

)
a,

which implies a line in (h, a) space (since x, y, and N are constant for a given image
pixel).

Finally, we show that the lines defined in equation (9) are exactly the ones com-
puted by the ADRT, by demonstrating that all such lines begin and end on grid points
in (h, a). We need to show that in the top and bottom rows, a = 0 and a = N − 1,
the necessary h is an integer. Substituting into equation (9), at a = 0 we have h = x,
and thus h is an integer in the range 0 to N − 1. At a = N − 1, h = x+ y, so we have
h an integer in the range 0 to 2N − 1.

The quality of the approximation can be improved as before, by expanding and
then contracting the Radon data set, as explained in section 3.4.

Corollary 1. Given a set of filtered RT data points Q(d, θ) for θ = tan−1(a/(N−
1)), a = 0, 1, 2, . . . , N − 1, and d = x cos θ, x = 0, 1, 2, . . . , N − 1, Algorithm 2 can be
used to produce the backprojection of the data I(x, y), x, y = 0, 1, 2, . . . , N − 1, such
that all RT data points used to reconstruct pixel (x, y) are within (lg kN/k) + 1/2
units of the line d = x cos θ + y sin θ. The algorithm requires O(N2k2 lg kN) time on
a sequential machine and O(lg kN) parallel steps O(N2k2) processors on an EREW
PRAM.

5. Conclusions. This paper presents a fundamentally new approach to com-
puting the DRT and HT, taking advantage of the overlap in discrete lines to reduce
the total number of computations. The ADRT algorithm yields an asymptotic factor
of N/ lgN speedup and due to its simplicity should lead to faster practical implemen-
tations as well. While the algorithm computes only an approximation to the desired
transform, for realistic-sized images the maximum error is only a few units. This
small error can be further reduced, with only a small factor increase in running time,
by the expand/contract method described.

For appropriately sampled data (i.e., linograms), the ADRT can be directly ap-
plied to approximate the backprojection step of image reconstruction with Θ(N/lgN)
speedup over standard methods. Since the filtering step can already be computed
in O(N2 lgN) time (in the Fourier domain, using the fast Fourier transform (FFT)),
the entire image reconstruction computation time is reduced to O(N2 lgN). An en-
tirely different method which computes the image reconstruction from linograms in
O(N2 lgN) time has recently been discovered (see [6], [7]).

It is important to note that the general strategy of taking advantage of the overlap
of near-parallel lines through discrete data can be applied to other important prob-
lems. For instance, three-dimensional volume visualization utilizes projections along

APPROXIMATION ALGORITHM FOR THE RADON TRANSFORM 119

lines to compute two-dimensional views, and rotation of the views requires repeated
computations along lines at neighboring angles. We are currently extending these
ideas to develop fast approximation algorithms for volume visualization [18], [2].

Acknowledgments. The author has benefited from helpful discussion with
Raghu Raghayan, Dave Swanson, and Tony Ticknor of Lockheed Missiles and Space
Co., Inc., Palo Alto, California, during the course of this research.

REFERENCES

[1] D. H. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern Recog-
nition, 10 (1978), pp. 129–143.

[2] M. Brady, W. Higgins, K. Ramaswamy, and R. Srinivasan, Interactive navigation inside 3D
radiological images, in Proc. Biomedical Visualization ’95, Atlanta, GA, IEEE Computer
Society Press, Los Alamitos, CA, pp. 33–40; 85.

[3] M. Brady and W. Yong, Fast parallel discrete approximation algorithms for the Radon trans-
form, in Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, ACM, New York,
1992, pp. 91–99.

[4] R. E. Cypher, J. L. C. Sanz, and L. Snyder, The Hough transform has O(N) complexity on
N ×N mesh connected computers, SIAM J. Comput., 19 (1990), pp. 805–820.

[5] R. O. Duda and P. E. Hart, Use of the Hough transform to detect lines and curves in pictures,
Comm. ACM, 15 (1972), pp. 11–15.

[6] P. R. Edholm and G. T. Herman, Linograms in image reconstruction from projections, IEEE
Trans. Medical Imaging, 6 (1987), pp. 301–307.

[7] P. R. Edholm and G. T. Herman, Image reconstruction from linograms: Implementation and
evaluation, IEEE Trans. Medical Imaging, 7 (1988), pp. 239–246.

[8] C. Guerra and S. Hambrush, Parallel algorithms for line detection on a mesh, J. Parallel
Distrib. Comput., 6 (1989), pp. 1–19.

[9] P. V. C. Hough, Method and means of recognizing complex patterns, U.S. Patent 3069654,
1962.

[10] J.-F. Jenq and S. Sahni, Reconfigurable algorithms for the Hough transform, in Proc. 1991
Intl. Conf. on Parallel Processing, St. Charles, IL, CRC Press, Boca Raton, FL, 1991,
pp. 34–41.

[11] A. C. Kak, Guest ed., Computerized Medical Images, special issue of IEEE Trans. Biomed.
Eng., BME-28 (Feb. 1981).

[12] J. Kittler and J. Illingworth, A survey of the Hough transform, Comput. Vision, Graphics
Image Proc., 44 (1988), pp. 87–116.

[13] H. Liu, Parallel Implementation of a Fast Radon Transform Algorithm, M.S. thesis, Dept. of
ECE, The Pennsylvania State University, University Park, PA, 1993.

[14] Y. Pan and Y. H. Chuang, Parallel Hough transform algorithms on SIMD hypercube arrays,
in Proc. 1990 Intl. Conf. on Parallel Processing, St. Charles, IL, Penn. State Univ. Press,
University Park, PA, 1990, pp. 83–86.

[15] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
Mannigfaltigkeiten, Math.-Phys. Kl., 69 (1917), Berichte Saechsische Akademie der Wis-
senschaften, Leipzig, pp. 262–277.

[16] J. Ramakrishnan, Approximate Fast Radon Transform Algorithm for Image Reconstruction—
Implementation and Analysis, M.S. Thesis, Dept. of ECE, The Pennsylvania State Uni-
versity, University Park, PA, 1993.

[17] J. L. C. Sanz and E. B. Hinkle, Computing projections of digital images in image processing
pipeline architectures, IEEE Trans. ASSP, ASSP-35 (1987), pp. 198–207.

[18] T.-K. Wu and M. Brady, Parallel approximate computation of projection for animated vol-
ume rendered displays, in Proc. 1993 Parallel Rendering Symp., pp. 61–66; The Visual
Computer, to appear.

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS
GF(22m)∗

THOMAS W. CUSICK†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 120–131, February 1998 006

Abstract. This paper shows that there is a connection between the crosscorrelation functions of
certain binary m-sequences and the value sets of the polynomials xk(1+x)2

m−1 for k ∈ {±1,±2, 4},
where x is in the finite field GF (22m). In particular, the size of such value sets is determined by
using finite field theory and known results about crosscorrelation functions.

Key words. finite field, polynomial, value set

AMS subject classifications. 68Q40, 11T06, 12E20

PII. S0097539794270352

1. Introduction. Let GF (q) denote the finite field with q elements, and let f(x)
be a polynomial of degree n in the ring GF (q)[x]. Define the value set V (f) of f(x)
by

V (f) = {f(x) : x ∈ GF (q)}.
The problem of estimating the number of elements |V (f)| in the value set was first
given prominence by Chowla [2].

A polynomial f(x) for which |V (f)| = q is called a permutation polynomial, and
such polynomials have been studied extensively (see Lidl and Niederreiter [6, pp. 347–
368] for references up to 1983 and Mullen [7] for a survey of more recent work).

Birch and Swinnerton-Dyer [1] defined “general” polynomials over GF (q) and
proved that if f(x) is such a polynomial of degree n, then

|V (f)| = q

 n∑

j=1

(−1)j−1

j!

+ 0 (q1/2).

Uchiyama [10] proved that if the degree n is at least 4 and f(x) satisfies certain mild
conditions, then |V (f)| > 1

2q. Recent work on value sets develops these ideas (see
Gomez-Calderon [3], Knopfmacher and Knopfmacher [5], Voloch [11], and von zur
Gathen [12]), but the number of results on value sets is still relatively small.

The purpose of this paper is to show that for various values of k, the value sets
of the special polynomials

f (k)
m (x) = xk(1 + x)2

m−1, x ∈ GF (22m),

can be counted for all positive integers m. If k = 1 or 2, use of the theory of the finite
fields GF (2n) is enough to give the results. For other values of k, we also use known
results on the crosscorrelation functions of certain binary m-sequences, which will be
explained later. On the other hand, it turns out that results about certain value sets
can be used to deduce new information about some crosscorrelation functions. This
issue will be discussed in another paper.

∗Received by the editors June 27, 1994; accepted for publication (in revised form) December 30,
1995. This research was supported by National Security Agency grant MDA904-94-H-2016.

http://www.siam.org/journals/sicomp/27-1/27035.html
†Department of Mathematics, State University of New York–Buffalo, Buffalo, NY 14214-3093

(cusick@acsu.buffalo.edu).

120

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS 121

The polynomials considered in this paper have a special form, which is dictated
by the methods of proof used below. However, there is reason to believe that the
polynomials studied here are worthy of special attention, apart from the fact that
their value sets can be counted. The case k = 1 (Theorem 1 below) provides the first
examples of polynomials of arbitrarily large degree which attain an upper bound due
to Wan [13] on the size of the value set of a polynomial which is not a permutation
polynomial. Wan proved that if f(x) is a polynomial of degree n over GF (q) which
is not a permutation polynomial, then

|V (f)| ≤ [q − n−1(q − 1)]

(here [x] denotes the greatest integer not exceeding x). It follows from Theorem 1

that the polynomials f
(1)
m (x) meet this bound when q = 22m.

We begin with the simplest cases, k = 1 and 2, where only finite field theory is
used. It is convenient to define

S(k)
m = {xk(1 + x)2

m−1 : x 6= 0 or 1, x ∈ GF (22m)}.

Of course this is just the value set V (f
(k)
m) with 0 omitted. We take f

(k)
m (0) = 0 even

if k is negative, since xk = x2n−1+k in GF (2n).

2. Cases k = 1 and 2. For k = 1 and 2, we obtain not only a count of S
(k)
m

but also detailed information about the elements of these sets. We shall often use the
fact that

(1 + x)2
m−1 =

2m−1∑
j=0

xj for x ∈ GF (22m),(1)

which is true since all of the binomial coefficients (2
m−1
j) are odd.

Theorem 1. Let τ generate the multiplicative group of nonzero elements of
GF (22m). The sequence

aj = τ j(1 + τ j)2
m−1, 1 ≤ j ≤ 22m − 2,

is made up of 2m elements 1, which occur when 2m− 1 divides j, and one occurrence
of each of the 22m − 2m − 2 elements of GF (22m) which are nonzero and are not
(2m + 1)st roots of one.

COROLLARY. For each m ≥ 1, |S(1)
m | = 22m − 2m − 1.

Proof. First we show that for nonzero x and y in GF (22m), we can have

x(1 + x)2
m−1 = y(1 + y)2

m−1, x 6= y,(2)

only if x and y are (2m + 1)st roots of one. Taking the (2m + 1)st power in (2) gives

x2m+1 = y2m+1.(3)

Now (1), (2), and (3) imply

x + x2 + · · ·+ x2m+1 = y + y2 + · · ·+ y2m+1

or (if x 6= 1 and y 6= 1)

x(x2m+1 + 1)(x + 1)−1 = y(y2m+1 + 1)(y + 1)−1.(4)

122 THOMAS W. CUSICK

By (3), if x2m+1 6= 1 then (4) implies x = y.
Hence if (2) holds, then both x and y are (2m +1)st roots of one. In that case we

have (for x 6= 1)

x(1 + x)2
m−1 = x(x2m+ 1)(x + 1)−1 = (x2m+1 + x)(x + 1)−1 = 1.

Thus a 1 occurs in the sequence aj exactly when τ j is a (2m + 1)st root of one, i.e.,
when 2m − 1 divides j.

Finally, it is easy to see that if x is not a (2m + 1)st root of one, then neither is
x(1 + x)2

m−1. This completes the proof of Theorem 1.
Theorem 2. Let τ generate the multiplicative group of nonzero elements of

GF (22m). The sequence

aj = τ2j(1 + τ j)2
m−1, 1 ≤ j ≤ 22m − 2,

is made up of one occurrence of each of the 2m (2m + 1)st roots of one other than 1;
one occurrence of each of the 2m − 2 elements of GF (2m) other than 0 or 1; and two

occurrences of those 22m−1− 2m elements of GF (22m) which are values of f
(2)
m (x) for

x not in GF (2m) and not a (2m + 1)st root of 1. In these last cases we have

f (2)
m (x) = f (2)

m (y) for y = (x2m+1 + x)(x + 1)−1 6= x.

COROLLARY. For each m ≥ 1, |S(2)
m | = 22m−1 + 2m − 2.

Proof. We must analyze the consequences of assuming

x2(1 + x)2
m−1 = y2(1 + y)2

m−1, x 6= y.(5)

Taking the (2m + 1)st power in (5) gives x2(2m+1) = y2(2m+1) and so

x2m+1 = y2m+1.(6)

Now (1), (5), and (6) imply

x2 + x3 + · · ·+ x2m = y2 + y3 + · · ·+ y2m

or (x2m+1 + x2)(x + 1)−1 = (y2m+1 + y2)(y + 1)−1. Crossmultiplying in this last
equation and using (6) give

x2 + y2 = (x + y)x2m+1 + (x + y)xy.

Now dividing by x + y gives x + y = x2m+1 + xy, so for x 6= 1 we have

y = (x2m+1 + x)(x + 1)−1 = x(x2m+ 1)(x + 1)−1.(7)

Equation (7) is inconsistent with our assumption that x 6= y if and only if
(x2m+ 1)(x + 1)−1 = 1, which is equivalent to x2m = x, i.e., x ∈ GF (2m). Since

f (2)
m (x) = x2(x2m+ 1)(x + 1)−1 = x2 for x ∈ GF (2m),

this shows that the 2m − 2 elements of GF (2m) other than 0 and 1 each occur once
as values of aj , when τ j is in GF (2m).

We have assumed that (5) and (7) hold with x 6= 1, which implies y 6= 1. Thus
the cases where x2m+1 = 1 (and so y = 1 in (7)) are not covered. In these cases

f (2)
m (x) = x(x2m+1 + x)(x + 1)−1 = x,

so the 2m solutions x 6= 1 of x2m+1 = 1 each occur once as values of aj . This completes
the proof of the assertions in Theorem 2.

To prove our results for other values of k, we use some known results on the cross-
correlation functions for some binary m-sequences. The facts we need are developed
in the next section.

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS 123

3. Known results on crosscorrelation functions. A binary sequence gener-
ated by a linear recursion of order n and having the maximum period 2n−1 is called a
binary m-sequence (here “m” stands for “maximum period”). Crosscorrelation prop-
erties of such sequences have been studied extensively because of their importance in
communications applications. In 1980, a survey of results in this area was given by
Sarwate and Pursley [9].

It is well known that if {aj : j = 1, 2, . . .} and {bj : j = 1, 2, . . .} are two binary
m-sequences with period 2n−1, then there exists an integer d relatively prime to 2n−1
and an integer t such that bj+t = adj for all j. Thus the study of the crosscorrelation
between two binary m-sequences involves the functions

Cd(t) =
2n−2∑
j=0

(−1)aj+t+adj (0 ≤ t ≤ 2n − 2).(8)

It will be convenient for us to define the crosscorrelation function Fd,n(t) = Fd(t) of
order n by

Fd(t) = Cd(t) + 1 (0 ≤ t ≤ 2n − 2).

The set of values taken on by Fd(t) for 0 ≤ t ≤ 2n − 2, together with a count of the
number of times each values occurs, is called the crosscorrelation spectrum. It is well
known (see [9, p. 602]) that the crosscorrelation spectrum depends only on d and not
on the choice of the m-sequence {aj}.

For later use, we introduce the trace function Trn1 from GF (2n) to GF (2) by

Trn1 (x) = x + x2 + x22

+ · · ·+ x2n−1

,

where x ∈ GF (2n). If the field GF (2n) is understood, we may write Tr in place of
Trn1 . We remark that the crosscorrelation function is given by

Fd,n(t) =
∑

x∈GF (2n)

(−1)Tr(xτ
t+xd),(9)

where τ generates the multiplicative group of nonzero elements of GF (2n) (to see this,
take aj = Tr(τ j) in (8) and let x = τ j).

We prepare for the proof of our first theorem on crosscorrelation functions by
giving three elementary lemmas.

Lemma 1. If α is an element of GF (2n), then

∑
x∈GF (2n)

(−1)Tr(αx) =

{
0 if α 6= 0,

2n if α = 0.

Proof. The result follows from the fact that half of the elements of GF (2n) have
trace 0 and the other half have trace 1.

Lemma 2. Every nonzero element x in GF (22m) can be represented uniquely as
x = αβ, where α is in GF (2m) and β is a (2m + 1)st root of one in GF (22m).

Proof. We let α = x2m−1(2m+1) and β = x2m−1(2m−1).
Lemma 3. If α is in GF (2m) and β is in GF (22m), then

Tr2m
1 (αβ) = Trm1 (α(β + β2m)).

124 THOMAS W. CUSICK

Proof. We have

Tr2m
1 (αβ) =

2m−1∑
j=0

(αβ)2
j

=
m−1∑
j=0

(αβ)2
j

+
m−1∑
j=0

(αβ)2
m+j

=
m−1∑
j=0

(α(β + β2m))2
j

= Trm1 (α(β + β2m)).

The following theorem and proof are given in the thesis of Niho [8, pp. 40–41]
under the supervision of L. R. Welch. Apparently the theorem was never published,
so we repeat the proof here for the reader’s convenience.

Theorem 3. Let τ generate the multiplicative group of nonzero elements of
GF (22m). If n = 2m, d is relatively prime to 2n − 1, d ≡ 2r mod 2m − 1 for some
r(0 ≤ r ≤ m− 1) and d ≡ s mod 2m + 1, then

Fd,n(t) = 2m(N(µ)− 1),(10)

where µ = τ t and N(µ) is the number of distinct solutions x in GF (22m) to the system
of equations

µx + x2−rs + µ2mx−1 + x−2−rs = 0, x2m+1 = 1.(11)

Proof. Given x 6= 0 in GF (22m), let x = αβ be the representation in Lemma 2;
then we can write (9) as

Fd,n(t) = 1 +
∑

β∈GF (22m)

β2m+1=1

∑
α∈GF (2m)

α6=0

(−1)Tr(αβµ+αdβd).(12)

By our hypotheses, we have (using Tr(x2) = Tr(x))

Tr(αβµ + αdβd) = Tr(αβµ + (α2rβs)2
2m−r

) = Tr(αβµ + αβ2−rs).

Substituting this into (12) and introducing terms with α = 0 into the inner sum gives

Fd,n(t) = −2m +
∑

β∈GF (22m)

β2m+1=1

∑
α∈GF (2m)

(−1)Tr(αβµ+αβ2−rs).(13)

By Lemma 3, the trace in (13) is

Tr2m
1 (α(βµ + β2−rs)) = Trm1 (α(βµ + β2−rs + µ2mβ−1 + β−2−rs)).

Substituting this into (13) and applying Lemma 1 to the inner sum give the desired
formula (10).

Lemma 4. If d and d1 are positive integers which satisfy dd1 ≡ 2r mod 2n−1 for
some r ≥ 0, then the functions Fd,n(t) and Fd1,n(t) have the same crosscorrelation
spectra.

Proof. A computation gives Fd,n(t) = Fd1,n(−dt).
Later we shall require the following theorems which evaluate particular crosscor-

relation spectra. For these theorems, it is convenient to extend the domain of Fd,n(t)
to all of GF (2n) by defining

Fd,n(−∞) = 0.

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS 125

Table 1

Value Number of times given value occurs
N(µ) of Fd(t) m odd m even

4 3 · 2m 1

3
(22m−3 − 2m−2)

1

3
(22m−3 − 2m−1)

3 2m+1 2m−1 2m−1

2 2m 22m−2 − 2m−1 22m−2

1 0
1

3
(22m + 5 · 2m−1)

1

3
(22m + 2m−1)

0 −2m 3(22m−3 − 2m−2) 3 · 22m−3 − 2m−1

Table 2

Value Number of times
N(µ) of Fd(t) given value occurs

3 2m+1 1

3
(22m−1 − 2m−1)

2 2m 2m

1 0 22m−1 − 2m−1

0 −2m
1

3
(22m − 2m)

Theorem 4. Let n = 2m with m ≥ 2, and let d = 2m + 3. Then the crosscorre-
lation spectrum for Fd,n(t) is given by Table 1. Here N(µ) is the number of solutions
of the system (11) with r = 2 = s.

Proof. Niho [8, Thm. 3.8, p. 51] proved that when d = 2m+3, N(µ) ≤ 4 must hold
in Theorem 3 above. Niho [8, p. 55] also conjectured the crosscorrelation spectrum as
given above, and Helleseth [4, Thm. 4.8, pp. 221–222] proved this conjecture. Note
that for m = 2, Fd(t) = 12 occurs zero times. In every other case Fd(t) actually takes
on five different values.

Theorem 5. Let n = 2m with m even and m ≥ 2. Let d = 2m+1 − 1. Then the
crosscorrelation spectrum for Fd,n(t) is given by Table 2. Here N(µ) is the number of
solutions of the system (11) with r = 0 and s = −3.

Proof. This is a result of Niho [8, Thm. 3.6, p. 43].

We remark that the proofs of Theorems 4 and 5 involve detailed analyses of the
solutions of certain equations over finite fields.

4. The cases k = −2 and 4. For k = −2 and 4, we are unable to obtain the

kind of specific information about the elements of the sets S
(k)
m that was achievable

for k = 1 and 2 (see section 2 above); however, we can obtain an exact count for these

sets S
(k)
m .

Theorem 6. For k = −2 and 4, we have for each m ≥ 2

|S(−2)
m | = |S(4)

m | = 5 · 22m−3 + 2m−1 − 2 if m is even

and

|S(−2)
m | = |S(4)

m | = 5 · 22m−3 +
1

3
(2m−2 − 2)− 1 if m is odd .

For later reference, it is convenient to have the following trivial lemma.

Lemma 5. If β ∈ GF (22m) and β2m+1 = 1, then β(1 + β)2
m−1 = 1.

126 THOMAS W. CUSICK

Proof. We have

β(1 + β)2
m−1 = β(β2m + 1)(β + 1)−1 = 1,

where the first equality follows from (1).
In proving Theorem 6, we shall deal first with the case k = 4. We take d = 3·2m−1

in Theorem 3, so r = 1, s = −4, and the system (11) becomes

µx + x−2 + µ2mx−1 + x2 = 0, x2m+1 = 1

or

x4 + µx3 + µ2mx + 1 = 0, x2m+1 = 1.(14)

Suppose that (14) has a solution x = β for a given µ, and define γ by µ = βγ.
Then, provided that γ 6= 1, the first equation in (14) gives, using (1),

β4 = (γ2m + 1)(γ + 1)−1 = (1 + γ)2
m−1,

so

µ4 = β4γ4 = γ4(1 + γ)2
m−1 ∈ S(4)

m .

Conversely, given γ ∈ GF (22m) we can define µ by

µ4 = γ4(1 + γ)2
m−1 ∈ S(4)

m

and β by β = µ/γ. Then, provided γ 6= 1,

β4 = (1 + γ)2
m−1 = (γ2m+ 1)(γ + 1)−1,

and the system (14) is satisfied by x = β, because (1 + γ)2
m−1 (and hence its unique

fourth root β) is clearly a (2m + 1)st root of 1 in GF (22m). If we define

Hm = {µ : µ ∈ GF (22m) and the system (14) has at least one solution},
then we can establish the following lemma.

Lemma 6. For each m ≥ 2,

|Hm| − |S(4)
m | = 2 if m is even

and

|Hm| − |S(4)
m | = 1

3
(2m+1 + 2) + 1 if m is odd .

Proof. By the argument in the paragraph preceding the lemma, there is a one-to-

one correspondence between Hm and S
(4)
m except that 0, and possibly some elements

µ = βγ in Hm which have γ = 1, are missing from S
(4)
m . In fact we have shown that,

apart from the missing elements just mentioned, S
(4)
m is made up of fourth powers of

elements of Hm. Thus, the elements of Hm that are not in S
(4)
m are 0 and also those

(2m + 1)st roots of 1 which are not in S
(4)
m .

If β is a (2m + 1)st root of 1 and f
(4)
m (x) = β, then x is also a (2m + 1)st root of

1. Also, by Lemma 5

β2m+1 = 1 implies β4(1 + β)2
m−1 = β3.

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS 127

Hence

S(4)
m ∩ {β : β2m+1 = 1} = {β3 : β2m+1 = 1}.(15)

Since the set on the right-hand side in (15) is {β : β(2m+1)/3 = 1}, this proves Lemma 6

for m odd (the elements of Hm not in S
(4)
m are 0 and the (2m+1 + 2)/3 (2m + 1)st

roots of 1 which are not in the set just mentioned). For m even, it is clear that 1 is

not in S
(4)
m , so the set on the left-hand side of (15) is simply the set of all (2m + 1)st

roots of 1 except 1. This proves Lemma 6 for m even (the elements of Hm not in S
(4)
m

are just 0 and 1).
The system (14) was obtained by taking d = 3 · 2m − 1 in Theorem 3. Since

(3 · 2m − 1)(2m + 3) ≡ 2m+3 mod 22m − 1,

it follows from Lemma 4 that Table 1 is also valid for d = 3 · 2m − 1. Hence |Hm| in
Lemma 6 is simply 22m minus the entry for N(µ) = 0 in Table 1. If we plug in those
values for |Hm|, Lemma 6 immediately gives Theorem 6 for k = 4.

Now we turn to the case k = −2 of Theorem 6. We take d = 2m+3 in Theorem 3,
so r = 2, s = 2, and the system (11) becomes

µx + x
1
2 + µ2mx−1 + x−

1
2 = 0, x2m+1 = 1

or (squaring the first equation and changing notation by replacing µ2 by µ)

µx4 + x3 + x + µ2m = 0, x2m+1 = 1.(16)

Suppose that (16) has a solution x = β for a given µ, and define γ by µ = β−1γ.
Then, provided that γ 6= 1, the first equation in (16) gives, using (1),

β2 = (γ2m+ 1)(γ + 1)−1 = (1 + γ)2
m−1,

so

µ−2 = β2γ−2 = γ−2(1 + γ)2
m−1 ∈ S(−2)

m .

If we define

Gm = {µ : µ ∈ GF (22m) and the system (16) has at least one solution},

then by the above remarks there is a one-to-one correspondence between Gm and

S
(−2)
m except that 0, and possibly some elements µ = β−1γ in Gm which have γ = 1,

are missing from S
(−2)
m . In fact apart from the missing elements, S

(−2)
m is made up

of squares of reciprocals of elements of Gm. This enables us to prove the following
lemma.

Lemma 7. For each m ≥ 2,

|Gm| − |S(−2)
m | = 2 if m is even

and

|Gm| − |S(−2)
m | = 1

3
(2m+1 + 2) + 1 if m is odd .

128 THOMAS W. CUSICK

Proof. The argument is very similar to the proof of Lemma 6. By Lemma 5,

β2m+1 = 1 implies β−2(1 + β)2
m−1 = β−3.

Hence (15) holds with S
(−2)
m in place of S

(4)
m . Now the proof of Lemma 7 is completed

as in the proof of Lemma 6.
The system (16) was obtained by taking d = 2m + 3 in Theorem 3. Hence,

as before we can evaluate Gm by using Theorem 4 and we see that |Gm| = |Hm|.
Therefore, by Lemmas 6 and 7 we have |S(−2)

m | = |S(4)
m | for m ≥ 2 and the proof of

Theorem 6 is complete.

5. The cases k = −1 and 3. We are able to get an exact count of S
(−1)
m when

m is even. The corresponding problem with m odd seems to be more difficult, for
reasons which we will examine below.

Theorem 7. For each even m ≥ 2, we have

|S(−1)
m | = 1

3
(22m+1 + 2m)− 2.

To begin the proof of Theorem 7, we take d = 2m+1 − 1 in Theorem 3 (note d is
relatively prime to 22m − 1 since m is even), so r = 0, s = −3, and the system (11)
becomes

µx + x−3 + µ2mx−1 + x3 = 0, x2m+1 = 1

or (multiplying the first equation by x3, changing notation by replacing µ by µ2, and
taking the square root of the first equation)

x3 + µx2 + µ2mx + 1 = 0, x2m+1 = 1.(17)

We define

gµ(x) = g(x) = x3 + µx2 + µ2mx + 1 (µ ∈ GF (22m))

and

hξ(x) = h(x) = ξx3 + x2 + x + ξ2m (ξ ∈ GF (22m)).

Our next lemma shows that when m is even, the system (17) involving gµ(x) and the
system

ξx3 + x2 + x + ξ2m = 0, x2m+1 = 1(18)

involving hξ(x) have identical patterns of numbers of solutions. To state the lemma,
we define

N
(g)
j (m) = N

(g)
j = |{µ ∈ GF (22m) : (17) has exactly j solutions x ∈ GF (22m)}|

and

N
(h)
j (m) = N

(h)
j = |{ξ ∈ GF (22m) : (18) has exactly j solutions x ∈ GF (22m)}|.

Lemma 8. If m is even, then N
(g)
j (m) = N

(h)
j (m) for all j, and N

(g)
j (m) is

nonzero if and only if 0 ≤ j ≤ 3.

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS 129

Proof. If we let x = µ2m−1y (µ 6= 0) in gµ(x), then we obtain

µ2m−2y3 + y2 + y + µ−2m+1+1 = 0.

Since (µ2m−2)2
m

= µ−2m+1+1, we can define ξ = µ2m−2 and get

hξ(y) = ξy3 + y2 + y + ξ2m = 0.

Since x2m+1 = (µ2m−1y)2
m+1 = y2m+1 and

gcd(2m − 2, 22m − 1) =

{
1,m even,

3,m odd,

for m even ξ = µ2m−2 gives a one-to-one correspondence between ξ and µ, and the
systems (17) and (18) have exactly the same number of solutions except possibly when
µ = 0 or ξ = 0. It is easy to see that for m even, (17) and (18) each have exactly one

solution (x = 1) when µ = ξ = 0. Thus N
(g)
j (m) = N

(h)
j (m) holds for all j when m is

even.
For the final assertion in the lemma we appeal to Theorem 5, which says that

N
(g)
j (m) is nonzero for m even if and only if 0 ≤ j ≤ 3.

Now we can complete the proof of Theorem 7. Suppose that (18) has a solution
x = β for a given ξ, and define γ by ξ = β−1γ. Then, provided that γ 6= 1, the first
equation in (18) gives, using (1),

β = (γ2m + 1)(γ + 1)−1 = (1 + γ)2
m−1,

so

ξ−1 = βγ−1 = γ−1(1 + γ)2
m−1 ∈ S(−1)

m .

If we define

Im = {ξ : ξ ∈ GF (22m) and the system (18) has at least one solution},

then by the above remarks there is a one-to-one correspondence between Im and S
(−1)
m

except that 0, 1, and possibly some other elements ξ = β−1γ in Im which have γ = 1,

are missing from S
(−1)
m . In fact, we can prove in our next lemma that the only missing

elements are 0 and 1.
Lemma 9. For each m ≥ 1,

|Im| − |S(−1)
m | = 2.

Proof. The argument is very similar to the proofs of Lemmas 6 and 7. Here there
is no distinction between m even and m odd, because Lemma 5 gives

β2m+1 = 1 implies β−1(1 + β)2
m−1 = β−2;

hence for all m, S
(−1)
m contains all of the (2m + 1)st roots of 1 except 1.

We know from Theorem 5 that for m even

|Im| = 22m −N
(g)
0 (m) = 22m − 1

3
(22m − 2m).

130 THOMAS W. CUSICK

Table 3

i N
(g)
i (m) N

(h)
i (m)

3
1

3
(22m−1 − 2m−1 + 2)

1

3
(22m−1 − 2m−1 − 1)

2 2m − 2 2m

1 22m−1 − 2m−1 + 2 22m−1 − 2m−1 + 1

0
1

3
(22m − 2m − 2)

1

3
(22m − 2m − 2)

Now Lemma 9 gives Theorem 7.
We make the following conjecture.
CONJECTURE 1. For each odd m ≥ 1, we have Table 3.
By Lemma 9, Conjecture 1 implies the following conjecture.
CONJECTURE 2. For each odd m ≥ 1, we have

|S(−1)
m | = 1

3
(22m+1 + 2m − 4).

Of course, to prove Conjecture 2 it would be enough to prove the formula for

N
(g)
0 (m) given in Conjecture 1; we would not need the rest of Conjecture 1. Unfortu-

nately, we can prove only the following lemma.
Lemma 10. For each odd m ≥ 1, we have

N
(g)
2 (m) = 2m − 2 and N

(h)
2 (m) = 2m.

Proof. Niho [8, pp. 44–46] proved N
(g)
2 (m) = 2m for even m ≥ 2 by a direct count

of the number of µ for which gµ(x) = 0 can have a repeated root of multiplicity 2.
Analogous arguments suffice to prove Lemma 10. We omit the rather tedious details.

We can also prove that if m is odd, then 3 divides N
(g)
3 (m)− 1 and N

(g)
i (m) for

i = 0, 1, 2 (all this follows from Conjecture 1); we omit the details since we make no
use of the result.

Now we turn to the case k = 3, where we have the following conjecture.

CONJECTURE 3. For each odd m ≥ 1, |S(3)
m | = |S(−1)

m |.
We show how this conjecture can be reduced to

N
(g)
0 (m) = N

(h)
0 (m) for odd m ≥ 1,(19)

which is part of Conjecture 1.
Suppose that (17) has a solution x = β for a given µ and define γ by µ = βγ.

Then, provided that γ 6= 1, the first equation in (17) gives, using (1),

β3 = (γ2m+ 1)(γ + 1)−1 = (1 + γ)2
m−1,

so

µ3 = β3γ3 = γ3(1 + γ)2
m−1 ∈ S(3)

m .

If we define

Jm = {µ : µ ∈ GF (22m) and the system (17) has at least one solution x},

VALUE SETS OF SOME POLYNOMIALS OVER FINITE FIELDS 131

then we can prove

|Jm| − |S(3)
m | = 2 for odd m ≥ 1.(20)

This follows because for m odd, µ3 = β3γ3 has a unique cube root µ = βγ in GF (22m).
Therefore (as in the proofs of Lemmas 6 and 7) there is a one-to-one correspondence

between Jm and S
(3)
m (made up of cubes of elements of Jm), except that 0 and 1 are

in Jm but not in S
(3)
m .

If (19) is true, then |Im| = |Jm| for odd m ≥ 1. Now Conjecture 3 follows from
(20) and Lemma 9.

Conjecture 3 is certainly false for even m, since then 3 divides 2m − 1 and the
one-to-one correspondence used to prove (20) is certainly false. For m even, every

element γ3(1+γ)2
m−1 of S

(3)
m is a 1

3 (22m−1)st root of 1 in GF (22m). It is reasonable

to conjecture that all of these roots of 1 are actually in S
(3)
m , which gives our last

conjecture.

CONJECTURE 4. For each even m ≥ 2, |S(3)
m | = 1

3 (22m − 1).

REFERENCES

[1] B. J. Birch and H. P. F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arith.,
5 (1959), pp. 417–423.

[2] S. Chowla, The Riemann zeta function and allied functions, Bull. Amer. Math. Soc., 58 (1952),
pp. 287–305.

[3] J. Gomez-Calderon, On the cardinality of value set of polynomials with coefficients in a finite
field, Proc. Japan Acad. Ser. A Math. Sci., 68 (1992), pp. 338–340.

[4] T. Helleseth, Some results about the cross-correlation function between two maximal linear
sequences, Discrete Math., 16 (1976), pp. 209–232.

[5] A. Knopfmacher and J. Knopfmacher, The distribution of values of polynomials over a
finite field, Linear Algebra Appl., 134 (1990), pp. 145–151.

[6] R. Lidl and H. Niederreiter, Finite Fields, Addison–Wesley, Reading, MA, 1983.
[7] G. L. Mullen, Permutation polynomials over finite fields, in Finite Fields, Coding Theory and

Advances in Communications and Computing, G. L. Mullen and P. Shiue, eds., Marcel
Dekker, New York, 1993, pp. 131–151.

[8] Y. Niho, Multi-valued Cross-correlation Functions Between Two Maximal Linear Recursive
Sequences, Ph.D. thesis, USCEE Report 409, Dept. Elec. Eng., Univ. Southern California,
Los Angeles, CA, 1972.

[9] D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related
sequences, Proc. IEEE, 68 (1980), pp. 593–619.

[10] S. Uchiyama, Sur le nombre des valeurs distinctes d’un polynome a coefficients dans un corps
fini, Proc. Japan. Acad., 30 (1954), pp. 930–933.

[11] J. P. Voloch, On the number of values taken by a polynomial over a finite field, Acta Arith.,
52 (1989), pp. 197–201.

[12] J. von zur Gathen, Values of polynomials over finite fields, Bull. Austral. Math. Soc.,
43 (1991), pp. 141–146.

[13] D. Wan, A p-adic lifting lemma and its applications to permutation polynomials, in Finite
Fields, Coding Theory and Advances in Communications and Computing, G. L. Mullen
and P. Shiue, eds., Marcel Dekker, New York, 1993, pp. 209–216.

OPTIMAL UPWARD PLANARITY TESTING
OF SINGLE-SOURCE DIGRAPHS∗

PAOLA BERTOLAZZI† , GIUSEPPE DI BATTISTA‡ , CARLO MANNINO§ ,
AND ROBERTO TAMASSIA¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 132–169, February 1998 007

Abstract. A digraph is upward planar if it has a planar drawing such that all the edges are
monotone with respect to the vertical direction. Testing upward planarity and constructing upward
planar drawings is important for displaying hierarchical network structures, which frequently arise
in software engineering, project management, and visual languages. In this paper we investigate
upward planarity testing of single-source digraphs; we provide a new combinatorial characterization
of upward planarity and give an optimal algorithm for upward planarity testing. Our algorithm tests
whether a single-source digraph with n vertices is upward planar in O(n) sequential time, and in
O(logn) time on a CRCW PRAM with n log logn/ logn processors, using O(n) space. The algorithm
also constructs an upward planar drawing if the test is successful. The previously known best result
is an O(n2)-time algorithm by Hutton and Lubiw [Proc. 2nd ACM–SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1991, pp. 203–211]. No efficient parallel algorithms for upward
planarity testing were previously known.

Key words. graph drawing, planar graph, upward drawing, triconnected components, parallel
algorithm

AMS subject classifications. 68Q20, 68R10, 68U05, 05C10, 06A99

PII. S0097539794279626

1. Introduction. The upward planarity of digraphs is a fundamental issue in
the area of graph drawing and has been extensively investigated. A digraph is upward
planar if it has a planar upward drawing, i.e., a planar drawing such that all the edges
are monotone with respect to the vertical direction (see Figure 1a). Planarity and
acyclicity are necessary but not sufficient conditions for upward planarity, as shown
in Figure 1b.

Testing upward planarity and constructing upward planar drawings are impor-
tant for displaying hierarchical network structures, which frequently arise in a wide
variety of areas. Key areas of application include software engineering, project man-
agement, and visual languages. Especially significant in a number of applications are
single-source digraphs, such as subroutine-call graphs, is-a hierarchies, and organiza-
tion charts. Also, upward planarity of single-source digraphs has deep combinatorial

∗Received by the editors December 6, 1994; accepted for publication (in revised form) January
4, 1996. An extended abstract of this paper was presented at the First European Symposium on
Algorithms (ESA ’93), Bonn, Germany, Lecture Notes in Comput. Sci. 726, Springer-Verlag, New
York, 1993, pp. 37–48. This research was performed in part while Roberto Tamassia was visiting
IASI–CNR. This research was supported in part by the National Science Foundation under grant
CCR-9423847, by the NATO Scientific Affairs Division under collaborative research grant 911016,
by the Italian National Research Council (CNR) under Progetto Finalizzato Sistemi Informatici
e Calcolo Parallelo, Sottoprogetto 6, Infokit and under grant 95.00459.CT12, and by the ESPRIT II
Basic Research Actions Program of the European Community (project Algorithms and Complexity).

http://www.siam.org/journals/sicomp/27-1/27962.html
†IASI–CNR, Viale Manzoni, 30, 00185 Roma, Italy (bertola@iasi.rm.cnr.it).
‡Dipartimento di Informatica e Automazione, Università degli Studi di Roma Tre, Via della

Vasca Navale, 79, 00146 Roma, Italy (dibattista@iasi.rm.cnr.it).
§IASI–CNR, Viale Manzoni, 30, 00185 Roma, Italy and Dipartimento di Informatica e Sis-

temistica, Università di Roma “La Sapienza,” Via Buonarroti, 12, 00185 Roma, Italy (mannino@
iasi.rm.cnr.it).

¶Department of Computer Science, Brown University, Providence, RI 02912-1910 (rt@cs.
brown.edu).

132

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 133

implications in the theory of ordered sets. Namely, the orders defined by the transitive
closure of upward planar single-source digraphs have bounded dimension [34] so that
they can be compactly represented.

Fig. 1. Examples of planar acyclic digraphs: (a) upward planar; (b) not upward planar.

A survey on algorithms for planarity testing and graph drawing can be found in
[7]. Previous work on upward planarity is as follows.

Combinatorial results on upward planarity for covering digraphs of lattices were
first given in [22, 26]. Further results on the interplay between upward planarity
and ordered sets are surveyed by Rival [30]. Lempel, Even, and Cederbaum [23]
relate the planarity of biconnected undirected graphs to the upward planarity of st-
digraphs. A combinatorial characterization of upward planar digraphs is provided in
[21, 9]; namely, a digraph is upward planar if and only if it is a subgraph of a planar
st-digraph.

Di Battista, Tamassia, and Tollis [9, 12] give algorithms for constructing upward
planar drawings of st-digraphs and investigate area bounds and symmetry display.
Tamassia and Vitter [32] show that the above drawing algorithms can be efficiently
parallelized. Upward planar drawings of trees and series-parallel digraphs are studied
in [29, 31, 6, 13, 15] and [1, 2], respectively.

In [8] it is shown that for the special case of bipartite digraphs, upward planarity
is equivalent to planarity. In [3, 4] a polynomial-time algorithm is given for testing
the upward planarity of digraphs with a prescribed embedding. Thomassen [33] char-
acterizes the upward planarity of single-source digraphs in terms of forbidden circuits.
Hutton and Lubiw [19] combine Thomassen’s characterization with a decomposition
scheme to test the upward planarity of an n-vertex single-source digraph in O(n2)
time. Very recently, Papakostas [25] has given a polynomial-time algorithm for up-
ward planarity testing of outerplanar digraphs, and Garg and Tamassia [16] have
shown that upward planarity testing is NP-complete for general digraphs.

In this paper we investigate upward planarity testing of single-source digraphs.
Our main results are summarized as follows:

• We provide a new combinatorial characterization of upward planarity within a
given embedding in terms of a forest embedded in the face-vertex incidence graph.

• We reduce the upward planarity testing problem to that of finding a suitable
orientation of a tree that synthetically represents the decomposition of a graph into
its triconnected components.

• We show that the above combinatorial results yield an optimal O(n)-time
upward planarity testing algorithm for single-source digraphs. The algorithm also
constructs an upward planar drawing if the test is successful. Our algorithm is an
improvement over the previously known best result [19] by an O(n) factor in the time

134 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

complexity. Our algorithm is easy to implement and does not require any complex
data structure.

• We efficiently parallelize the above algorithm to achieve O(logn) time on a
CRCW PRAM with n log logn/ logn processors. Hence, we provide the first efficient
parallel algorithm for upward planarity testing. Our parallel time complexity is the
same as that of the best parallel algorithm for planarity testing [28, 27].

• Finally, as a side effect we provide an optimal parallel algorithm for testing
acyclicity of a planar n-vertex single-source digraph in O(logn) time with n/ logn
processors on an EREW PRAM.

Open problems include the following:
• devising efficient dynamic algorithms for upward planarity testing of single-

source digraphs;
• exploring the area requirements of upward planar drawings of single-source

digraphs;
• reducing the time complexity of upward planarity testing of planar digraphs

with a prescribed embedding; and
• identifying additional classes of planar digraphs for which upward planarity

can be tested in polynomial time.
The remainder of this paper is organized as follows. Section 2 contains prelim-

inary definitions and results. The problem of testing upward planarity for planar
single-source digraphs with a prescribed embedding is investigated in section 3. A
combinatorial characterization of upward planarity for single-source digraphs
is given in sections 4, 5, and 6. The complete upward planarity testing algorithm
for single-source digraphs is presented in section 7. Also in section 7, two examples
of application of the algorithm are illustrated. In the first example the considered
digraph is not upward drawable; in the second example an upward drawable digraph
is considered.

2. Preliminaries. In this section we recall some terminology and basic results
on upward planarity. We also review the SPQR-tree, introduced in [10, 11], and the
combinatorial characterization of upward planarity for embedded planar digraphs,
shown in [3, 4]. We assume the reader’s familiarity with planar graphs.

2.1. Drawings and embeddings. A drawing of a graph maps each vertex to
a distinct point of the plane and each edge (u, v) to a simple Jordan curve with
endpoints u and v. A polyline drawing maps each edge into a polygonal chain. A
straight-line drawing maps each edge into a straight-line segment.

A drawing is planar if no two edges intersect except, possibly, at common end-
points. A graph is planar if it has a planar drawing. Two planar drawings of a planar
graph G are equivalent if, for each vertex v, they have the same circular clockwise
sequence of edges incident on v. Hence, the planar drawings of G are partitioned into
equivalence classes. Each such class is called an embedding of G. An embedded planar
graph is a planar graph with a prescribed embedding. A triconnected planar graph
has a unique embedding up to a reflection. A planar drawing divides the plane into
topologically connected regions delimited by circuits, called faces. The external face
is the boundary of the unbounded region. Two drawings with the same embedding
have the same faces. Hence, one can speak of the faces of an embedding.

Let G be a digraph, i.e., a directed graph. A source of G is a vertex without
incoming edges. A sink of G is a vertex without outgoing edges. An internal vertex
of G has both incoming and outgoing edges. An sT -digraph is an acyclic digraph with
exactly one source.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 135

Let f be a face of planar drawing (or embedding) of a digraph. A source-switch
(sink-switch) of f is a source (sink) of f . Note that a source-switch (sink-switch) is
not necessarily a source (sink) of G.

An upward drawing of a digraph is such that all the edges are represented by
directed curves increasing monotonically in the vertical direction. A digraph has an
upward drawing if and only if it is acyclic. A digraph is upward planar if it admits
a planar upward drawing. Note that a planar acyclic digraph does not necessarily
have a planar upward drawing, as shown in Fig. 1b. An upward planar digraph also
admits a planar upward straight-line drawing [21, 9]. A planar st-digraph is a planar
digraph with exactly one source s and one sink t, connected by edge (s, t). A digraph
is upward planar if and only if it is a subgraph of a planar st-digraph [21, 9].

A planar embedding of a digraph is candidate if the incoming (outgoing) edges
around each vertex are consecutive. The planar embedding underlying an upward
drawing is candidate.

An upward embedding of a digraph G is an embedding of G such that
• each source- and sink-switch of each face of G is labeled small or large;
• there exists a planar straight-line upward drawing of G where each switch

labeled small corresponds to an angle with measure < π, and each switch labeled
large has measure > π.

Finally, the following lemma is due to Hutton and Lubiw.
Lemma 1 (see [19]). If a digraph has a single source, then it is upward planar if

and only if its biconnected components are upward planar.
Due to this result, in the remainder of the paper we will consider only biconnected

digraphs.

2.2. SPQR-trees. In the following we summarize SPQR-trees. For more de-
tails see [10, 11]. SPQR-trees are closely related to the classical decomposition of
biconnected graphs into triconnected components [17].

Let G be a biconnected graph. A split pair of G is either a separation pair or a
pair of adjacent vertices. A split component of a split pair {u, v} is either an edge
(u, v) or a maximal subgraph C of G such that C contains u and v, and {u, v} is not
a split pair of C. Note that a vertex w distinct from u and v belongs to exactly one
split component of {u, v}.

Let {s, t} be a split pair of G. A maximal split pair {u, v} of G with respect to
{s, t} is a split pair of G distinct from {s, t} such that, for any other split pair {u′, v′}
of G, there exists a split component of {u′, v′} containing vertices u, v, s, and t.

Let e(s, t) be an edge of G, called reference edge. The SPQR-tree T of G with
respect to e describes a recursive decomposition of G induced by its split pairs. Tree
T is a rooted ordered tree whose nodes are of four types: S, P, Q, and R. Each node µ
of T has an associated biconnected multigraph, called the skeleton of µ, and denoted
by skeleton(µ). Also, it is associated with an edge of the skeleton of the parent ν of
µ, called the virtual edge of µ in skeleton(ν). Tree T is recursively defined as follows.

Trivial case. If G consists of exactly two parallel edges between s and t, then T
consists of a single Q-node whose skeleton is G itself.

Parallel case. If the split pair {s, t} has at least three split components G1, . . . ,
Gk (k ≥ 3), the root of T is a P-node µ. Graph skeleton(µ) consists of k parallel
edges between s and t, denoted e1, . . . , ek, with e1 = e.

Series case. Otherwise, the split pair {s, t} has exactly two split components,
one of them is the reference edge e, and we denote with G′ the other split com-
ponent. If G′ has cutvertices c1, . . . , ck−1 (k ≥ 2) that partition G into its blocks

136 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

G1, . . . , Gk, in this order from s to t, the root of T is an S-node µ. Graph skeleton(µ)
is the cycle e0, e1, . . . , ek, where e0 = e, c0 = s, ck = t, and ei connects ci−1 with
ci (i = 1, . . . , k).

Rigid case. If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs of G with respect to {s, t} (k ≥ 1), and for i = 1, . . . , k, let Gi

be the union of all the split components of {si, ti} except for the one containing the
reference edge e. The root of T is an R-node µ. Graph skeleton(µ) is obtained from
G by replacing each subgraph Gi with the edge ei between si and ti.

Except for the trivial case, µ has children µ1, . . . , µk in this order such that
µi is the root of the SPQR-tree of graph Gi ∪ ei with respect to reference edge
ei (i = 1, . . . , k). Edge ei is said to be the virtual edge of node µi in skeleton(µ) and
of node µ in skeleton(µi). Graph Gi is called the pertinent graph of node µi, and of
edge ei.

The tree T so obtained has a Q-node associated with each edge of G, except the
reference edge e. We complete the SPQR-tree by adding another Q-node, representing
the reference edge e, and making it the parent of µ so that it becomes the root.
Observe that we are defining SPQR-trees of graphs; however, the same definition can
be applied to digraphs. An example of SPQR-tree is shown in Figure 2.

Let µ be a node of T . We have the following:

• if µ is an R-node, then skeleton(µ) is a triconnected graph;

• if µ is an S-node, then skeleton(µ) is a cycle;

• if µ is a P-node, then skeleton(µ) is a triconnected multigraph consisting of a
bundle of multiple edges;

• if µ is a Q-node, then skeleton(µ) is a biconnected multigraph consisting of two
multiple edges.

The skeletons of the nodes of T are homeomorphic to subgraphs of G. The SPQR-
trees of G, with respect to different reference edges, are isomorphic and are obtained
one from the other by selecting a different Q-node as the root. Hence, we can define
the unrooted SPQR-tree of G without ambiguity.

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes and
O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons stored
at the nodes of T is O(n).

A graph G is planar if and only if the skeletons of all the nodes of the SPQR-tree
T of G are planar. An SPQR-tree T rooted at a given Q-node represents all the
planar drawings of G having the reference edge (associated with the Q-node at the
root) on the external face (see Figure 2). Namely, such drawings can be constructed
by the following recursive procedure:

• construct a drawing of the skeleton of the root ρ with the reference edge of the
parent of ρ on the external face;

• for each child µ of ρ
– let e be the virtual edge of µ in skeleton(ρ), and let H be the pertinent

graph of µ plus edge e;
– recursively draw H with the reference edge e on the external face;
– in skeleton(ρ), replace virtual edge e with the above drawing of H minus

edge e.

2.3. Upward planarity testing of embedded digraphs. In the remainder
of this section we recall the combinatorial characterization of upward planarity for
planar digraphs with a fixed embedding, given in [3, 4], which will be used extensively
in this paper.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 137

Fig. 2. (a) A planar biconnected digraph G. (b) SPQR-tree T of G, where the Q-nodes are
represented by squares. (c) Skeletons of the R-nodes.

In [3, 4], the problem of testing whether an embedded planar digraph G admits a
planar upward drawing is formulated as a perfect c-matching problem on a bipartite
graph derived from G. To introduce this formulation we need some notation and
definitions.

Let Γ be a planar straight-line upward drawing of an embedded upward planar
digraph G. (As shown in [21, 9], every upward planar digraph admits a planar upward
straight-line drawing.) We say that a sink t (source s) of G is assigned to a face f
of Γ if the angle defined by the two edges of f incident on t (s) is greater than π.
Informally speaking, t (s) is assigned to f if it “penetrates” into face f . Clearly, each
sink (source) can be assigned only to one face, while an internal vertex is not assigned
to any face. In [3, 4], it is shown that the number of vertices assigned to a face f in

138 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

any upward drawing is equal to the capacity c(f) of the face itself, which is defined as
follows. Let nf be the number of sink-switches of f (nf is also equal to the number of
source-switches of f). We set c(f) = nf − 1 if f is an internal face and c(f) = nf + 1
if f is the external face. In the following, we associate to each vertex x and each face
f the quantity Z(x, f), where Z(x, f) = 1 if x is a switch of f , Z(x, f) = 0 otherwise.
Clearly, we have that 2nf =

∑
x∈f Z(x, f).

This intuitive idea of assignment of vertices to faces can be formally expressed as
a perfect c-matching problem [24]. Namely, given a planar digraph G with a candidate
planar embedding Ψ, we associate with G and Ψ the bipartite network N(L1, L2, EN)
with vertex set L1 ∪ L2 and edge-set EN , where (i) the vertices of L1 represent the
sources and sinks of G; (ii) the vertices of L2 represent the faces of Ψ; and (iii) EN

has an edge (v, f) if and only the vertex of G represented by v ∈ L1 lies on the face
of Ψ represented by f ∈ L2. The c-matching problem for G and Ψ is described by
the following equations:

∑

(v,f)∈EN
xvf = c(f), ∀f ∈ L2,

∑

(v,f)∈EN
xvf = 1, ∀v ∈ L1,

where xvf = 1 indicates that vertex v is assigned to face f and xvf = 0 indicates
otherwise. A solution of this c-matching problem is called an upward consistent as-
signment of the variables xvf and is denoted by A. The equations of the first set are
called capacity equations.

Lemma 2 (see [3, 4]). Let G be a digraph with a candidate planar embedding Ψ.
Then Ψ is an upward embedding of G if and only if the c-matching problem associated
with G and Ψ admits an upward consistent assignment.

If A is an upward consistent assignment for Ψ, and f is a face of Ψ, we denote
by A(f) the set of vertices of G assigned to f in A.

3. Embedded digraphs. In this section we give a new combinatorial charac-
terization of upward planarity for planar single-source digraphs with a prescribed
embedding. This characterization yields an optimal algorithm for testing whether an
embedded planar single-source digraph has an upward planar drawing that preserves
the embedding.

Given a planar single-source digraph G and an upward embedding Γ of G, from
the first condition on the capacity equations of the perfect matching problem and from
the fact that G has a unique source, the following properties can be easily derived
(see Figure 3).

Fact 1. The source of G is the bottommost vertex of Γ.
Fact 2. For the external face h of Γ, all the sink-switches are sinks of G and are

assigned to h. (See Figure 3a.)
Fact 3. For each internal face f , at most one sink-switch (the topmost vertex

of f in Γ) is not a sink of G and all but one sink switches are assigned to f . (See
Figure 3b.)

We shall also use the following result about cycles in planar single-source digraphs.
Lemma 3. Let G and G′ be planar single-source digraphs such that G′ is obtained

from G by means of one of the following operations:
• adding a new vertex v and a new edge (u, v) or (v, u), connecting v to a vertex

u of G;

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 139

Fig. 3. Schematic illustration of (a) the external face; (b) an internal face of an upward planar
drawing of a planar single-source digraph.

Fig. 4. Illustration of the proof of Lemma 3.

• adding a directed edge between the source and a sink on the same face in some
embedding of G;

• adding a directed edge between two sink-switches on the same face in some em-
bedding of G.

Then G is acyclic if and only if G′ is acyclic.

Proof. The acyclicity is trivially preserved by the first two operations. Regarding
the third operation, consider an embedding of G with the source on the external face,
and assume, for a contradiction, that G is acyclic and that adding the edge (t′, t′′)
between sink-switches t′ and t′′ of face f causes the resulting graph G′ to have a cycle
γ (see Figure 4). Cycle γ must consist of edge (t′, t′′) and a directed path π′ in G
from t′′ to t′. Let v be the neighbor of t′′ in f inside γ, and let π′′ be a directed path
from the source of G to v. Since the source is external to cycle γ, path π′′ must have
at least a vertex in common with path π′. Let u be the last vertex of π′′ that is also
on π′. We have that G has a cycle consisting of edge (v, t′′), the subpath of π′ from
t′′ to u, and the subpath of π′′ from u to v, which is a contradiction.

Given an embedded planar single-source digraph G, the face-sink graph F of G
is the incidence graph of the faces and the sink-switches of G (see Figures 5a and 6).

140 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

Fig. 5. (a) An embedded planar single-source digraph G and its face-sink graph. (b)–(c) Upward
drawings of G that preserve the embedding, with different external faces.

Namely,
• the vertices of F are the faces and the sink-switches of G;
• graph F has an edge (f, v) if v is a sink-switch on face f .
Theorem 1. Let G be an embedded planar single-source digraph and let h be a

face of G. Digraph G has an upward planar drawing that preserves the embedding
with external face h if and only if all of the following conditions are satisfied:

1. graph F is a forest;
2. there is exactly one tree T of F with no internal vertices of G, while the re-

maining trees have exactly one internal vertex;
3. h is in tree T; and
4. the source of G is in the boundary of h.
Also, if the above conditions are satisfied, then an embedded planar st-digraph G′

containing G as an embedded subgraph is obtained as follows:
1. root tree T at h and each remaining tree of F at its (unique) internal vertex;

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 141

Fig. 6. An embedded planar single-source digraph that does not have an upward drawing that
preserves the embedding.

2. orient F by directing edges toward the roots;

3. prune the leaves from every tree of F; and

4. add the resulting forest F̂ and the edge (s, h) to G.

Proof. Only if. Let Γ be any planar upward drawing of G that preserves the
original planar embedding and has external face h. By Fact 1, condition 4 is verified.
Orient the face-sink graph F of G by directing edge (v, f) from v to f if v is a sink
assigned to face f , and from f to v otherwise. By Facts 2–3, each vertex of F has
at most one outgoing edge. Specifically, each internal face and each sink has exactly
one outgoing edge, while each internal vertex and the external face have no outgoing
edges. Now, label the vertices of F as follows: the label of a sink-switch is its y-
coordinate in Γ; the label of an internal face f is y(v)− ε, where v is the sink-switch
not assigned to f , and ε is a suitably small positive real value, and the label of the
external face h is +∞. Since Γ is an upward drawing, the edges of F are directed by
increasing labels. We conclude that F is a forest of sink-trees. One tree is rooted at
h, while the other trees are rooted at internal vertices. This shows conditions 1–2.
Condition 3 follows from Fact 1.

If. We show that, if F satisfies the conditions of the theorem, then G is a subgraph
of a planar st-digraph G′, which is obtained as the union of G and F̂ . This implies
that G is upward planar. Planarity is preserved since a star is inserted in each face.
Also, G′ has exactly one source (s) and one sink (h) connected by a directed edge.
It remains to be shown that G′ is acyclic. By the construction of G′ and Lemma 3,
we have that G′ is acyclic if and only if G is acyclic. Assume, for a contradiction,
that G is not acyclic. Let γ be a cycle of G that does not enclose any other cycle.
Note that the source s must be outside γ. If γ is a face of G, then F has an isolated
vertex associated with face γ, which is a contradiction. Otherwise (γ is not a face of
G), the subgraph F̂ ′ of F̂ enclosed by γ consists of a forest of trees, each with exactly
one internal vertex. Let H be the digraph obtained from the subgraph of G enclosed
by γ by removing the edges of γ, and adding a new vertex s′ together with edges
from s′ to all the vertices of γ. By our choice of cycle γ, H is a planar single-source
digraph. Adding F̂ ′ to H yields a planar single-source digraph without sinks, and
hence a digraph with cycles. By Lemma 3, H must also have cycles, which is again a
contradiction.

Theorem 1 is illustrated in Figures 5–6. The following algorithm tests whether
an embedded planar single-source digraph G is upward planar, and reports all the
faces of G that can be external in an upward planar drawing of G with the prescribed
embedding.

ALGORITHM. Embedded-Test.

1. Construct the face-sink graph F of G.

2. Check conditions 1 and 2 of Theorem 1. If these conditions are not verified,

142 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

then return “not-upward-planar” and stop.
3. Report the set of faces of G that contain vertex s in their boundaries and

are associated with nodes of tree T . If such a set of faces is empty, then return
“not-upward-planar”; else return “upward-planar.”

For the example of Figure 5, Algorithm Embedded-Test returns “upward-planar”
and reports two faces.

Theorem 2. Let G be an embedded planar single-source digraph with n ver-
tices. Algorithm embedded test determines whether G has an upward planar drawing
that preserves the embedding and reports all the admissible external faces. It runs in
O(n) sequential time and in O(logn) time on a CRCW PRAM with n · α(n)/ logn
processors, using O(n) space.

Proof. The correctness of the algorithm follows directly from Theorem 1. All the
steps can be performed sequentially in O(n) time with straightforward methods.

Regarding the parallel complexity, steps 1 and 3 take O(logn) time on a CREW
PRAM with n/ logn processors, using list-ranking [5]. Step 2 can be executed by
computing a spanning forest of the face-sink graph, which takes O(logn) time on a
CRCW PRAM with n · α(n)/ logn processors [5], and thus determines the parallel
time complexity.

4. Upward planarity and SPQR-trees. Let G be a biconnected single-source
digraph. In this section we give a combinatorial characterization of the upward pla-
narity of G using SPQR-trees.

4.1. Basic definitions and main result. A digraph is expanded if each internal
vertex has exactly one incoming edge or one outgoing edge. The expansion of a digraph
is obtained by replacing each internal vertex v with two new vertices v1 and v2, which
inherit the incoming and outgoing edges of v, respectively, and the edge (v1, v2).
Observe that a digraph is acyclic if and only if its expansion is acyclic. A planar
embedding of an expanded digraph is candidate. In the remainder of this section we
consider only expanded digraphs because of the following property.

Fact 4. A digraph is upward planar if and only if its expansion is upward planar.
Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two digraphs. The union of G′ and G′′,

denoted by G′∪G′′, is a digraph G = (V,E) with V = V ′∪V ′′ and E = E′∪E′′, i.e.,
G is obtained from G′ and G′′ by identifying the vertices in V ′ and V ′′ with common
labels.

Let {u, v} be a separation pair of G that decomposes G into p split components
J1, . . . , Jp. We call a component separated by {u, v} or simply a component any
digraph obtained as the union of q of the split components in {J1, . . . , Jp}, with
0 < q < p.

We call peak a digraph consisting of three vertices a, b, and t, and two directed
edges (a, t) and (b, t). See Figure 7b.

Let K be a component of G with respect to the separation pair {u, v}. In the
following, we denote with G−K the digraph obtained from G by deleting every vertex
belonging to K, except for the vertices u and v, and by K◦ the digraph obtained from
K by deleting vertices u and v. Also, for simplicity we write G−K1−K2− · · ·−Km

instead of (· · · ((G−K1)−K2) · · · −Km).
Finally, we associate with a component K of G either a directed edge or a peak

(see Figures 7a–b) according to the following rules.
Rule 1. u and v are sources of K: a peak with a ≡ u and b ≡ v.
Rule 2. u is a source of K and v is a sink of K.

(a) s 6∈ K◦: a directed edge (u, v).

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 143

Fig. 7. (a) Directed edge; (b) peak; (c) valley; (d) zig-zag.

(b) s ∈ K◦: a peak with a ≡ u and b ≡ v.

Rule 3. u is a source of K and v is an internal vertex of K.

(a) v is a source of G−K and s 6∈ K◦: a directed edge (u, v).

(b) v is not a source of G−K or s ∈ K◦: a peak with a ≡ u and b ≡ v.

Rule 4. u and v are not sources of K.

(a) u is a source of G−K: a directed edge (u, v).

(b) u is not a source of G−K: a directed edge (v, u).

The digraph associated to K by the above rules is called directed-virtual-edge and
will be denoted by d(K,G−K). Observe that the choice of the directed-virtual-edge
depends, in general, both on K and on G−K.

We call minor of G either G itself or the digraph

G−K1 − · · · −Km ∪ d(K1, G−K1) ∪ · · · ∪ d(Km, G−Km),

where K1, . . . ,Km,m ≥ 1, are components of G with the property that no two com-
ponents share a common edge. In other words, the digraph G − K1 − · · · − Km ∪
d(K1, G−K1)∪· · ·∪d(Km, G−Km) is obtained from G by replacing K1, . . . ,Km with
the corresponding directed-virtual-edges (see Figure 8). Observe that, in general, a
minor of a minor of G is not a minor of G.

Let G be a planar single-source digraph, and let T be its SPQR-unrooted tree.
The sT -skeleton of a node µ of T , denoted by sT -skeleton(µ), is the minor of G
obtained from the skeleton of µ by replacing each virtual edge with the directed-
virtual-edge associated to its pertinent digraph. The reference directed-virtual-edge is
the directed-virtual-edge associated with the pertinent digraph of the reference edge
of µ. Examples of sT -skeletons are shown in Figure 9.

The main result of this section is summarized in the following theorem.

Theorem 3. A biconnected acyclic single-source digraph G is upward planar if
and only if there exists a rooting of the SPQR-tree T of the expansion of G at a ref-
erence edge containing the source, such that the sT-skeleton of each node µ of T has
a planar upward drawing with the reference directed-virtual-edge on the external face.

The proof of Theorem 3 is given in the next two sections. Section 5 shows the
only-if part, while section 6 shows the if part. Here we give some preliminary lemmas
that will be used in the next sections.

4.2. Preliminary lemmas. In the following, SG, TG, and IG will denote the
set of sources, sinks, and internal vertices of G, respectively. If G has exactly one
source, we denote such source by s(G) (or simply by s, when no confusion arises).

144 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

Fig. 8. Construction of a minor.

Fig. 9. The sT-skeletons of the R-nodes of the digraph of Figure 2.

We will make use of the following operations defined on an edge e = (x, y) of a
digraph G:

• Contraction (denoted by G/e) transforms G into a digraph G′ obtained from
G by removing edge e and by identifying vertices x and y.

• Direct subdivision transforms G into a digraph G′ obtained from G by removing
edge e and by adding a vertex z and edges (x, z) and (z, y).

We say that digraphs G1 and G2 are homeomorphic if both can be obtained by
performing a finite number of direct subdivisions of a digraph G. Observe that we
can have G1 = G or G2 = G.

We call valley a digraph consisting of three vertices s′, a, and b, and two directed
edges (s′, a) and (s′, b) (see Figure 7c). Also, we call zig-zag a digraph consisting
of four vertices s′, t, a, and b, and three directed edges (s′, t), (s′, b), and (a, t) (see
Figure 7d).

We denote by x → y a path from vertex x to vertex y. A vertex u is said to be
dominated by vertex v if there is a path v → u. We say that vertices x and y are

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 145

incomparable in G, denoted by x ‖ y, if there exists in G neither a path x → y nor a
path x→ y.

Fact 5. Let G be an sT -digraph. Then every vertex of G is dominated by s.

Fact 6. Let G be an acyclic digraph. G contains a source.

Lemma 4 (see [19]). If G is an sT-digraph with u ‖ v in G, then there exists in
G a subgraph homeomorphic to a valley, with a ≡ u and b ≡ v.

Lemma 5 (see [19]). Let G be a connected acyclic digraph with exactly two sources
u and v. Then there exists in G a subgraph homeomorphic to a peak, with a ≡ u and
b ≡ v.

Fact 7. Let G be a biconnected digraph and let {u, v} be a separation pair of G.
Neither u nor v is a cut-vertex of any component of G with respect to {u, v}.

Lemma 6. Let G be an sT-digraph and let {u, v} be a separation pair of G. Let
K be a component with respect to {u, v} such that v ∈ IK and K has exactly one
source u. Then digraph K contains a subgraph homeomorphic to a peak, with a ≡ u
and b ≡ v.

Proof. Let w be a vertex of K such that there exist two vertex disjoint directed
paths u → w and v → w contained in K. The subgraph of K consisting of all edges
and vertices belonging to the two paths is homeomorphic to a peak. Suppose w does
not exist. Let Vv be the set of all vertices dominated by v in K (except v).

Let V̄v be the set of all vertices not dominated by v in K. Observe that both Vv
and V̄v are nonempty and disjoint. Also, Vv ∪ V̄v ∪ {v} is the set of vertices of K.
Since v is not a cut-vertex of K, there is an edge connecting a vertex x of Vv with a
vertex y of V̄v. If such an edge is (x, y), then y belongs to Vv, which is a contradiction.
If such an edge is (y, x), then x is dominated by both v and u, and x = w, which is a
contradiction.

Finally, the following fact and lemmas concerning the embeddings of G will be
used in the proof of the main theorem.

Fact 8. Let G be a digraph and let G′ be a digraph homeomorphic to a subgraph
G′′ of G. We have that

(i) if G is acyclic, then G′ is acyclic.
(ii) if G is expanded, then G′ is expanded.
(iii) if G is upward planar, then G′ is upward planar.
(iv) if G′′ is an sT-digraph, then G′ is an sT-digraph.

Lemma 7 (see [19]). Let G be a digraph, let (u, v) be an edge of G, and let vertex
u(v) have out-degree (in-degree) 1 in G. Let G′ = G/(u, v). We have that

(i) if G is acyclic then G′ is acyclic.
(ii) if G is upward planar, then G′ is upward planar.

Lemma 8. Let G be an upward planar sT-digraph, and let ΨG be an upward
embedding of G. Let e = (s, u) be an edge of G embedded on the external face α of
ΨG. Let G′ = G − e ∪ P where P is a valley, i.e., P is the path {(s′, s), (s′, u)}.
Then G′ is an sT-digraph and has an upward embedding ΨG′ , with P embedded on the
external face.

Proof. From ΨG we simply derive a candidate planar embedding ΨG′ of G′ by
replacing the edge (s, u) of G with the path P (see Figure 10).

We now show that ΨG′ is an upward embedding. This is done by deriving an
upward consistent assignment A′ associated to ΨG′ from the upward consistent as-
signment A associated to ΨG.

Let β be the internal face of ΨG containing the edge (s, u). We denote by γ1, . . . , γp
the faces of ΨG different from α and β.

146 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

Fig. 10. Construction of ΨG′ .

Clearly, there is a one-to-one correspondence between the faces of ΨG and the
faces of ΨG′ . We denote by α′, β′, γ′1, . . . , γ

′
p the faces of ΨG′ corresponding to

α, β, γ1, . . . , γp.

Also, it is γ′i = γi, for i = 1, . . . , p, and thus c(γ′i) = c(γi), for i = 1, . . . , p. We
show that c(α′) = c(α) and c(β′) = c(β).

Following the notation introduced in section 2.3, we have that 2nα′ = 2nα −
Z(s, α) +Z(s, α′)−Z(u, α) +Z(u, α′) +Z(s′, α′). Since the edge (s, u) of α has been
replaced by the edge (s′, u) of α′, it is Z(u, α′) = Z(u, α). It is easy to see that
Z(s, α) = 1, Z(s, α′) = 0, and Z(s′, α′) = 1. Thus, 2nα′ = 2nα and then c(α′) = c(α).
In the same fashion, we can prove that c(β′) = c(β).

Let S (S′) and T (T ′) be the set of sources and sinks of G (G′), respectively.
Clearly S′ = S − {s} ∪ {s′}, and T ′ = T . Observe that, by Theorem 1, s ∈ A(α). A′

is derived from A in the following way:

• A′(γ′i) = A(γi) for i = 1, . . . , p;

• A′(α′) = A(α)− {s} ∪ {s′}; and

• A′(β′) = A(β).

It is straightforward to prove that |A′(f)| = c(f) for each face f ∈ ΨG′ . Since
ΨG′ is a candidate embedding and A′ is upward consistent, by Lemma 2, G′ is upward
planar.

5. Proof of necessity for Theorem 3.

Lemma 9. Let G be a planar expanded sT-digraph G, {u, v} a separation pair of
G, and K a component with respect to {u, v}. Let H = G−K and let dK = d(K,H)
be the directed-virtual-edge associated to K with respect to G. Finally, let H ′ be the
minor H ∪ dk. We have that

(i) H ′ is an expanded, acyclic sT-digraph.
(ii) if G is upward planar, then H ′ is upward planar.
(iii) if G is upward planar and s(G) ∈ K◦, then H ′ has an upward embedding with

dk on the external face.

Proof. The following cases are possible, each corresponding to one of Rules 1–4
(in each case, the proof of (iii) is trivial and thus omitted).

1. u and v are sources of K.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 147

Fig. 11. Various cases in the proof of Lemma 9.

By Lemma 5, there is in K a path PK homeomorphic to a peak, with a ≡ u
and b ≡ v (see Figure 11). Thus, H ′ = H ∪ dK is homeomorphic to a subgraph
of G.

(i) By Fact 8, H ′ is an expanded acyclic digraph. We show now that
it contains only one source. Vertices u and v are not both sources in H; other-
wise G would contain two sources. Suppose one of u, v (say, u) is a source of H.
Then u ≡ s(G) and u ≡ s(H ′); thus u is the only source of H ′. Suppose neither
u nor v is a source in H; then s(G) ∈ H◦ and s is the only source of H ′.

(ii) By Fact 8, H ′ is upward planar.
2(a) u is a source of K and v is a sink of K and s 6∈ K◦.

Since s 6∈ K◦, u is the only source of K and there exists in K a path u → v. Thus
there is in K a path PK homeomorphic to the directed edge (u, v), and then there is
in G a subgraph homeomorphic to H ′ = H ∪ dK (see Figure 11).

(i) By Fact 8, H ′ is an acyclic expanded digraph. Because of the existence
of edge (u, v), v is not a source of H ′. If u ∈ SH , then s(G) ≡ u; thus u is the
only source of H ′. If u 6∈ SH , s(G) ∈ H◦, and s(G) ≡ s(H ′).

(ii) By Fact 8, H ′ is upward planar.
2(b) u is a source of K and v is a sink of K and s ∈ K◦.

Since s ∈ K◦, s 6= u and, by Lemma 5, there is a vertex t distinct from s and u,

148 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

and two vertex disjoint paths s → t and u → t. Note that u is not a source of H;
otherwise u is a source of G, which is a contradiction. So v is the only source of H
and since there is in G a path s → v, we have that there is a path s → v in K.
Moreover, since v is the only source of H, there is a path v → u in H and thus there
is a path v → u in G. This implies that the path s → v and the path u → t are
node-disjoint; otherwise there would be a path u → v and G would contain a cycle,
which is a contradiction.

Let P1 and P2 be a path s→ v and a path s→ t, respectively. Let z be the last
vertex common to paths P1 and P2. Note that z 6= t, since P1 and any path u→ t are
disjoint. Thus there exists in K a path PK homeomorphic to a zig-zag, and then there
is in G a subgraph homeomorphic to H ′′ ≡ H ∪ (z, v) ∪ (z, t) ∪ (u, t) (see Figure 11).

Observe that in H ′′, vertex v has in-degree 1. If we contract the edge (z, v) we
obtain H ′′/(z, v) ≡ H ∪ dK = H ′.

(i) By Fact 8 H ′′ is acyclic and expanded; thus, by Lemma 7 H ′ is acyclic.
Note that every vertex except v has the same in- and out-degrees in H ′′ and H ′.
Since H ′′ is expanded and v is a source of H ′, H ′ is an expanded digraph. More-
over, since v is the only source of H, v is the only source of H ′.

(ii) By Fact 8 H ′′ is upward planar; thus, by Lemma 7 H ′ is upward planar.

3(a) u is a source of K and v is an internal vertex of K; v is a source of G −K
and s 6∈ K◦.
Since u is the only source of K, there is a path u → v in K and the proof is

analogous to that of case 2(a).

3(b) u is a source of K and v is an internal vertex of K; v is not a source of G−K
or s ∈ K◦.

1. If s ∈ K◦, then s 6= u and K contains two sources; the proof is as in
case 2(b).

2. If s 6∈ K◦, then u is the only source of K and, by Lemma 6, K contains
a path PK homeomorphic to a peak, with u ≡ a and v ≡ b. Then H ′ = H ∪ dK
is homeomorphic to a subgraph of G.

(i) By Fact 8 H ′ is an expanded, acyclic digraph. If u = s(G), then vertex
u is the only source of H ′. If u 6= s(G), then u is not a source of H (otherwise
G contains two sources, which is a contradiction), and s(G) is the only source
of H ′. Thus, H ′ is an sT -digraph.

(ii) By Fact 8 H ′ is upward planar.

4. u and v are not sources of K.

Since u and v are not sources of K, we have that s(G) ∈ K◦. Then either u or
v (or both) is a source of H. We discuss only the case where u is a source of H and
Rule 4(a) is applied. In fact, if u is not a source of H, then v is a source of H and
Rule 4(b) is applied; that is, the roles of u and v are interchanged. Three cases are
possible.

1. If there exists a path u→ v in K, then there is in K a path PK homeomorphic
to the directed edge (u, v) (see Figure 11).

(i) By Fact 8 H ′ is an expanded, acyclic digraph. Because of the existence of the
edge (u, v), u is the only source of H ′.

(ii) By Fact 8 H ′ is upward planar.

2. If u and v are incomparable in K, by Lemma 4 there exists in K a path
PK homeomorphic to a valley with a ≡ u and b ≡ v (see Figure 11). Thus, H ′′ ≡
H ∪ (s, v)∪ (s, u) is homeomorphic to a subgraph of G. Observe that in H ′′, vertex u
has in-degree 1. If we contract the edge (s, u) we obtain H ′′/(s, u) ≡ H ∪ dK = H ′.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 149

(i) By Fact 8 H ′′ is acyclic and expanded; thus by Lemma 7 H ′ is acyclic. Note
that all vertices except u have the same in- and out-degrees in H ′′ and H ′. Since H ′′

is expanded and u is a source of H ′, then H ′ is an expanded digraph. Moreover, since
s(G) ∈ K◦, u is the only source of H ′.

(ii) By Fact 8 H ′′ is upward planar; thus, by Lemma 7 H ′ is upward planar.

3. If there exists a path PK from v to u in K, then v is also a source of H (see
Figure 11). Otherwise u would be the only source of H, so there would be a path
u → v in H and thus a path u → v in G, which is a contradiction. So both u and v
are sources of H.

(i) Since H is an expanded, acyclic digraph, and since both vertices u and v are
sources of H, H ′ = H ∪ (u, v) is expanded and acyclic. Furthermore, it contains only
one source u.

(ii) Let H ′′ be the digraph H∪(v, u). Digraph H ′′ is homeomorphic to a subgraph
of G and thus, by Fact 8, there exists an upward embedding ΨH′′ of H ′′, with (v, u)
on the external face. Furthermore, v is the only source of H ′′, and H ′′ is an expanded
sT -digraph.

H ′ can be obtained from H ′′ by the means of the following operations:

1. Construct H̄ from H ′′ by adding a vertex s′ and replacing the edge (v, u) with
the valley {(s′, v), (s′, u)}.

2. Construct H ′ from H̄ by contracting the edge (s′, u).

By Lemma 8, H̄ has an upward embedding with the valley {(s′, v), (s′, u)} on the
external face. By Lemma 7, H ′ has an upward embedding with the edge (u, v) on the
external face.

Following the developments of the previous proof, for each case a particular path
PK is detected in the component K. These paths and the corresponding cases will
play a central role in the next section.

The previous lemma refers to a particular minor of G obtained by replacing
exactly one component, but it can be easily extended to any minor of G. Before
proving the next lemma, we must observe a property of sources in minors. Suppose
u is a source of G. Then u is a source in every component of G that contains u. By
a simple inspection of Rules 1–4 we have the following.

Fact 9. Let G be a digraph and K be a component of G with respect to the
separation pair {u, v}. Let G′ be a minor of G such that K ⊂ G′. If u is a source of
G−K, then u is a source in G′ −K.

Lemma 10. Let G be an expanded sT-digraph and let H̃ ′ = G−K1− · · · −Km ∪
dK1

· · · ∪ dKm
be a minor of G, where dKi

= d(Ki, G−Ki). Then

(i) H̃ ′ is an expanded sT-digraph.
(ii) if G is upward planar, then H̃ ′ is upward planar.
(iii) if G is upward planar and s(G) ∈ K◦

i , 1 ≤ i ≤ m, then H ′ has an upward

embedding with dKi
on the external face.

Proof. The proof is by induction. When m = 1, the minor is H̃ ′ = G − K1 ∪
d(K1, G−K1), and by Lemma 9 the basis of the induction holds. Now, suppose that
the minor G̃ = G−K1−· · ·−Kl−1∪dK1

∪· · ·∪dKl−1
is an expanded sT -digraph and

is upward planar. We show that the minor J̃ ′ = G−K1 − · · · −Kl ∪ dK1
∪ · · · ∪ dKl

is an expanded sT -digraph and is upward planar.

Note first that J̃ ′ = G̃ −Kl ∪ dKl
. If we can prove that dKl

= d(Kl, G −Kl) is
equal to d(Kl, G̃−Kl), then the thesis follows by Lemma 9. In other words, we have
to prove that the directed-virtual-edge which substitutes Kl remains the same when
Rules 1–4 are applied to the pair (Kl, G̃−Kl) rather than to the pair (Kl, G−Kl).

150 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

When Rules 1 and 2 are applied, the directed-virtual-edge depends only on the
component Kl, and dK = d(Kl, G−Kl) = d(Kl, G̃−Kl). Hence we have to consider
only Rules 3 and 4.

3(a) u is a source of Kl and v is an internal vertex of Kl, v is a source of G−Kl

and s(G) 6∈ K◦
l .

By Fact 9, v is a source in G̃ − Kl. Moreover, since s(G) 6∈ K◦
l we have that

s(G̃) 6∈ K◦
l , and Rule 3(a) must be applied to the pair (Kl, G̃−Kl).

3(b) u is a source of Kl and v is an internal vertex of Kl; v is not a source of
G−Kl or s(G) ∈ K◦

l .

If s ∈ K◦
l , Rule 3(b) must be applied to the pair (Kl, G̃−Kl).

Suppose that v is not a source of G −Kl and s 6∈ K◦
l . Note that v is a sink in

G−Kl (v cannot be internal in G−Kl since v is internal in Kl and G is expanded).
If v is not a source of G̃ − Kl then Rule 3(b) must be applied to the pair

(Kl, G̃−Kl).
Suppose v is a source of G̃−Kl; then there exists a component Kq of G−Kl, with

0 < q < l, with Kq 6∈ G̃ −Kl, having v and uq as poles, whose directed-virtual-edge
is either a peak or the edge (v, uq). Observe that v is a sink of Kq. If s 6∈ K◦

q then
uq is the only source of Kq. Hence Rule 2(a) is applied to the pair (Kq, G−Kq) and
d(Kq, G−Kq) is the edge (uq, v), which is a contradiction.

If s ∈ K◦
q then uq is a source of G − Kq (since v is internal in Kl ∈ G − Kq).

Thus uq is not a source of Kq; otherwise G contains two sources. Then Rule 4(a) is
applied to the pair (Kq, G − Kq) and d(Kq, G − Kq) is the edge (uq, v), which is a
contradiction.

4(a) u and v are not sources of Kl; u is a source of G − Kl. By Fact 9, u is a
source of G̃−Kl and Rule 4(a) can be applied to the pair (Kl, G̃−Kl).

4(b) u and v are not sources of Kl; u is a not a source of G − Kl. Since u is
not a source in G − Kl and s(G) ∈ Kl, then v is a source in G − Kl and v is a
source in G̃−Kl. So Rule 4(a) can be applied to the pair (Kl, G̃−Kl), with v and u
interchanged.

The proof of the necessity of Theorem 3 is now a simple corollary of Lemma 10.
In fact, for each node µ of tree T , the sT -skeleton of µ is a minor of G.

6. Proof of sufficiency for Theorem 3.
Lemma 11. Let G be a planar expanded sT-digraph, {u, v} a separation pair of

G, and K a component with respect to {u, v} such that s(G) ∈ K. Let H = G −K
and let dK = d(K,H) and dH = d(H,K) be the directed-virtual-edges associated to K
and H (with respect to G), respectively. Finally, let H ′ be the minor H ∪ dK and K ′

be the minor K ∪ dH . If K ′ is upward planar and H ′ has an upward embedding with
dK on the external face, then G is upward planar.

Before proving the above lemma, we need some preliminary results, namely, the
following Lemmas 12–16.

We remind the reader that in the proof of Lemma 9, in correspondence with each
case of the proof, a path PK is detected in the component K. Such a path PK will
be used in the following lemma (see Figure 12).

Lemma 12. Let G be a planar expanded sT-digraph G, {u, v} a separation pair of
G, and K a component with respect to {u, v}. Let H = G−K and let dK = d(K,H) be
the directed-virtual-edge associated to K with respect to G. Let H ′ be the minor H ∪ dK
and let H̄ = H ∪ PK . Suppose H ′ has an upward embedding ΨH′ , with dK embedded
on the external face if s(G) ∈ K◦. Denote by ΨH ⊂ ΨH′ the upward embedding of H
contained in ΨH′ and let αH be the face of ΨH in which dK is embedded. We have that

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 151

Fig. 12. Illustration of the statement of Lemma 12.

(i) H̄ = H ∪ PK is an expanded, acyclic digraph.
(ii) H̄ is an sT-digraph and has an upward embedding ΨH̄ , with ΨH ⊂ ΨH̄ and

PK embedded in face αH of ΨH .
Proof. Since H̄ is a subgraph of G then it is expanded and acyclic and (i) holds.
We now prove (ii). Since both dK and PK depend on the component K, we

distinguish the following four cases, each corresponding to the cases of the proof of
Lemma 9.

1. PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8, the
lemma holds.

2.(a) PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8,
the lemma holds.

(b) Since s ∈ K◦, dK is embedded on the external face of ΨH′ . Observe that H̄
can be obtained from H ′ substituting the edge (v, t) with a path homeomorphic to a
valley. Thus, by Lemma 8 and by Fact 8, the lemma holds.

152 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

3.(a) PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8,
the lemma holds.

(b) If s ∈ K◦ then the proof is as in case 2(b). If s 6∈ K◦ then PK is homeomorphic
to dK ; hence H̄ is homeomorphic to H ′. By Fact 8, the lemma holds.

4. (1) PK is homeomorphic to dK ; hence H̄ is homeomorphic to H ′. By Fact 8,
the lemma holds.

(2) Since s ∈ K◦, dK is embedded on the external face of ΨH′ . Observe that H̄
can be obtained from H ′ substituting the edge (u, v) with a path homeomorphic to a
valley. Thus, by Lemma 8 and by Fact 8, the lemma holds.

(3) Observe that H̄ can be obtained from H ′ by reversing edge (u, v) and by
direct subdivision. Thus, following the proof of case 4.3 of Lemma 9, and by Fact 8,
the lemma holds.

Suppose K, H, K ′, and H ′ satisfy the conditions of Lemma 11. Let PK and PH
be the paths associated with dK and dH , respectively (see Figures 13(a), (b)). Except
for the common endpoints u and v, PK and PH are disjoint paths of G, since they lie
in different components. Thus, C = PK ∪ PH is a simple (undirected) cycle of G.

Let K̄ = K ∪PH and H̄ = H ∪PK (see Figures 13(c), (d)). Since K ′ and H ′ are
upward planar, by the previous lemma, K̄ and H̄ are upward planar. Let ΨK̄ and
ΨH̄ be two upward embeddings of K̄ and H̄, respectively, and let αK̄ and αH̄ be the
corresponding external faces. Now, let K∗(H∗) be the subgraph of K̄(H̄) embedded
inside C in ΨK̄(ΨH̄) (see Figures 13(e), (f)). We have the following lemma.

Lemma 13. Let s∗ be a source of K∗ (H∗). Then s∗ ∈ C.

Proof. Suppose s∗ 6∈ C. Then s∗ is a source of K̄ embedded inside C in ΨK̄ .
Since K̄ is an sT -digraph, s∗ is the only source of K̄ and is embedded on the external
face of every upward embedding of K̄, and thus cannot be embedded inside C in ΨK̄ ,
which is a contradiction.

Lemma 14. The digraph K∗ (H∗) is an expanded sT-digraph.

Proof. Since K∗ is a subgraph of G, then it is acyclic and expanded. By
Lemma 13, all of the sources of K∗ belong to C = PK ∪ PH . In order to prove
the existence of a single source, we have to consider the “shapes” of PK and PH . Ob-
serve that PK (PH) can be homeomorphic to an edge, a peak, a valley, or a zig-zag.
If both PK and PH are homeomorphic to the edge (u, v) ((v, u)), then s(K∗) is either
u or v. Suppose now that PK is not homeomorphic to an edge. We consider the
following cases.

1. PK is homeomorphic to a peak. Clearly, if PH is homeomorphic to (u, v)
or (v, u) or a valley, then C has only one source. We now show that PH is not
homeomorphic to a peak or to a zig-zag. Since PK is a peak, then K is in case 1 or
in case 3b.2 of the proof of Lemma 9.

Suppose PH is a peak. Then H is in case 1 or in case 3b.2.

(a) PK as in case 1. If H is in case 1, then G contains two sources, which is a
contradiction. If H is in case 3b.2, then v is not a source of K, which is a contradiction.

(b) PK as in case 3b.2. If H is in case 1, then the proof is as above. If H is in
case 3b.2, then v is internal both in H and in K, which is a contradiction.

Suppose PH is homeomorphic to a zig-zag. Then H is in case 2.b or in case 3b.1.

(a) PK as in case 1. If H is in case 2.b or in case 3b.1, then s(G) ∈ H◦. Since u
is source both in K and in H then G contains two sources, which is a contradiction.

(b) PK as in case 3b.2. The proof is as above.

2. PK homeomorphic to a zig-zag (w.l.o.g., we can suppose a ≡ u and b ≡ v).
Clearly, if PH is homeomorphic to (v, u), then C has only one source. If PH is

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 153

Fig. 13. Construction of ΨG.

homeomorphic to a peak, the proof is as for the case PH homeomorphic to a zig-zag
and PK homeomorphic to a peak. We now show that PH is not homeomorphic to the
edge (u, v), to a valley, or to a zig-zag. Since PK is a zig-zag, then K is in case 2(b)
or case 3b.1; thus s(G) ∈ K◦ and u is a source of K.

Suppose PH is homeomorphic to the edge (u, v). Then H is in case 2(a) or case
3(a) or case 4.1. If H is in case 2(a) or case 3(a), then u is a source of G and G
contains two sources, which is a contradiction. If H is in case 4.1, then s(G) ∈ H◦,
which is a contradiction.

Suppose PH is homeomorphic to a valley. Then H is in case 4.2 and s(G) ∈ H◦,
which is a contradiction.

Suppose PH is homeomorphic to a zig-zag. Then H is in cases 2(b) and 3b.1 and
s(G) ∈ H◦, which is a contradiction.

3. PK is homeomorphic to a valley. Clearly, if PH is homeomorphic to the edge
(u, v), to the edge (v, u), or to the peak, then C has only one source. If PH is

154 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

homeomorphic to a zig-zag, the proof is as for the case where PH is homeomorphic
to a valley and PK is homeomorphic to a zig-zag. We now show that PH is not
homeomorphic to a valley.

Since both PK and PH are homeomorphic to a valley, then both K and H are in
case 4.2; thus s(G) ∈ K◦ and s(G) ∈ H◦, which is a contradiction.

The proof of the next lemma can be found in [3, 4].

Lemma 15. Let G be digraph, let ΨG be a candidate planar embedding of G,
and let face δ ∈ ΨG. Finally, let A be an assignment of the sinks and the sources
of G to the faces of ΨG. If |A(f)| = c(f) for each face f ∈ ΨG, with f 6= δ, then
|A(δ| = c(δ).

Suppose G, K, H, K ′, and H ′ satisfy the conditions of Lemma 11. In the following
we give a constructive procedure to derive an embedding ΨG of G from two upward
embeddings ΨH′ and ΨK′ of H ′ and K ′, respectively. We then show ΨG to be
upward.

Let K̄, H̄, K∗, H∗, ΨK∗ , ΨH∗ be as defined for Lemmas 13 and 14 and let ΨK∗ ⊆
ΨK̄(ΨH∗ ⊆ ΨH̄) be the upward embedding of K∗ (H∗) contained in ΨK̄ (ΨH̄). Denote
by αK∗ and αH∗ the external faces of ΨK∗ and ΨH∗ , respectively (see Figures 13(e),
(f)). Recall that αK∗ = αH∗ = C.

Let G∗ = K∗ ∪ H∗ (see Figure 13(g)). ΨG∗ is a planar embedding of G∗ such
that ΨK∗ ⊂ ΨG∗ , ΨH∗ ⊂ ΨG∗ , and PK and PH lie on the external face αG∗ of ΨG∗

(i.e., αG∗ = C).

We denote by γG∗ the other face of ΨG∗ (besides αG∗) containing both edges of
K∗ and edges of H∗.

Lemma 16. Let G∗ and ΨG∗ be defined as above. Then

(i) G∗ is an expanded sT-digraph.
(ii) ΨG∗ is an upward embedding.

Proof. (i) Since G∗ is a subgraph of G, then G∗ is expanded and acyclic. Since
G∗ is acyclic, it contains at least one source. Suppose G∗ contains two sources s1 and
s2. Since K∗ (H∗) is an sT -digraph, both s1 and s2 cannot belong to K∗ (H∗). Thus,
w.l.o.g., s1 ∈ K∗ and s2 ∈ H∗. Furthermore, by Lemma 13, s1 and s2 lie on cycle C,
so they are both contained in K∗ and H∗, which is a contradiction. In the following,
we denote by s∗ the source of G∗.

(ii) We derive an upward consistent assignment AG∗ from the upward consistent
assignments AK∗ and AH∗ associated with ΨK∗ and ΨH∗ .

First note that AK∗(αK∗) = AH∗(αH∗). In fact, let T ∗ be the set of sink-switches
of C = αK∗ = αH∗ . Since ΨK∗ and ΨH∗ are upward embeddings of sT -digraphs, by
Fact 2, each sink-switch on αK∗ and αH∗ is a sink of K∗ and H∗, respectively, and they
are all assigned to αH∗ and αK∗ . We have that AK∗(αK∗) = AH∗(αH∗) = T ∗ ∪ {s∗}.

For each face f ∈ ΨG∗ , with f 6= γG∗ and f 6= αG∗ , we have that f belongs to ΨK∗

or f belongs to ΨH∗ , but not both. It is trivial to see that the following assignment
to the faces of ΨG∗ − {γG∗} is feasible (i.e., the number of vertices assigned to each
face equals the capacity of the face):

• AG∗(αG∗) = AK∗(αK∗) = AH∗(αH∗);
• AG∗(f) = AK∗(f), for f 6= αG∗ and f ∈ ΨK∗ ;
• AG∗(f) = AH∗(f), for f 6= αG∗ and f ∈ ΨH∗ .

Observe that all the sinks of ΨG∗ not assigned by the above assignment lie on face
γG∗ , and so they can be assigned to it in A∗

G. Since ΨG∗ is a candidate embedding
and, for each face f ∈ ΨG∗ − {γG∗}, it is |AG∗(f)| = c(f), by Lemma 15 we have
that AG∗(γG∗) = c(γG∗). Thus, AG∗ is an upward consistent assignment and G∗ is

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 155

upward planar.

We are now able to give the proof of Lemma 11.

Proof of Lemma 11. A planar embedding ΨG of G can be obtained from the
upward embeddings ΨK̄ and ΨH̄ in such a way that ΨG∗ ⊆ ΨG. Each face of ΨG

belongs either to ΨK̄ or to ΨH̄ , except for two faces which share edges both of K̄
and H̄. One of these two faces coincides with face γG∗ of ΨG∗ , and thus it is internal
in ΨG∗ ; we denote it by γG and denote the other face by βG (see Figure 13(h)).
Conversely, all the faces of ΨK̄ (ΨH̄), except for the two faces sharing PH (PK),
belong to ΨG.

We now derive an assignment AG from the upward consistent assignments AK̄ ,
AH̄ , and AG∗ in the following way:

• AG(γG) = AG∗(γG∗);

• AG(f) = AK̄(f), for f ∈ ΨK̄ ;

• AG(f) = AH̄(f), for f ∈ ΨH̄ ;

• it is easy to see that all remaining sinks and (eventually) the source of G stay
on face βG and so they are assigned to βG in AG.

In order to prove that AG is upward consistent we have to show that

(i) every sink and the source of G is assigned to exactly one face of ΨG;
(ii) every internal vertex of G is not assigned to any face of ΨG;
(iii) the number of vertices assigned to each face equals the capacity of the face.

Observe first that since PK is embedded in the external face αH̄ of ΨH̄ , αH̄ is not
a face of ΨG. Moreover, since γG∗ is not the external face of ΨG∗ , u and v are not
assigned to it in AG∗ (they both lie on the external face) and, in turn, in AG.

We first prove (i). It is easy to see that each sink (source) of G is assigned to at
least one face. We have to prove that each sink (source) of G is assigned to at most
one face. Let x be a vertex assigned to two faces f1 and f2 in AG (f1 6= f2). From
the definition of AG, f1 ∈ ΨK̄ and f2 ∈ ΨH̄ . This is not possible if x 6= u or x 6= v. If
x = u (x = v) then it is assigned to the external face αH̄ = f2 of ΨH̄ in AH̄ and thus
f2 6∈ ΨG, which is a contradiction.

(ii) Let x be an internal vertex of G and suppose it is assigned to a face f of ΨG.
Again x = u or x = v. Assume, w.l.o.g., x = v. Observe that f is not a face of ΨH̄ (v
is eventually assigned to its external face, which is not a face of ΨG). Furthermore,
f 6= γG, since neither u nor v is assigned to it in AG. So f is a face of ΨK̄ .

Let us denote by βK̄ the face of ΨK̄ sharing the path PK and not embedded inside
cycle C (see Figure 13(c)). Face βK̄ is not a face of ΨG, and thus f 6= βK̄ . Since v
is not assigned to βK̄ in AK̄ , βK̄ is internal in ΨK̄ . So, both βK̄ and γK̄ are internal
faces of ΨK̄ and hence ΨH is embedded in a face of ΨK in ΨG. This implies that
s(K̄) = s(G) ∈ K̄.

Suppose now that x = v is a sink in K̄ and v is not a sink in G.

Since v is a sink of K̄, then PH has an incoming edge into v, and PH is homeo-
morphic to the edge (u, v) or to a zig-zag or to a valley. If PH is homeomorphic to
edge (u, v), then H is in case 2(a), 3(a), or 4.1 of the proof of Lemma 9. In case 2(a),
v is a sink of H and thus u is a sink of G, which is a contradiction. In case 3(a), v
is a source of K and thus it is not a sink in K̄, which is a contradiction. If H is in
case 4.1 then s ∈ H◦, which is a contradiction.

If PH is homeomorphic to a valley, then H is in case 4.2 and s(G) ∈ H◦, which
is a contradiction.

If PH is homeomorphic to a zig-zag, then H is in case 2(b) or 3b.2. In both cases,
s(G) ∈ H◦, which is a contradiction.

156 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

(iii) Since G is an expanded digraph, every planar embedding is candidate. By
Lemma 15, the capacity equation for face βG is satisfied, and AG is upward
consistent.

Lemma 11 refers to digraph G. We extend the result to a minor G̃ of G. This
is done by showing that, under certain restrictions, the directed-virtual-edges substi-
tuting components can be chosen independently one from another. In particular, this
is true if the source s of G belongs to its minor. Note that in this case a minor of a
minor of G is a minor of G.

Lemma 17. Let G̃ be a minor of G such that s(G̃) = s(G). Let {u, v} be a split
pair of G̃ such that {u, v} is also a split pair of G. Let K̃ be a component of G̃ w.r.t.
{u, v} and let K be the corresponding component of G, i.e., K is obtained from K̃ by
replacing each directed-virtual-edge of K̃ with its associated component of G. Then it
is d(K̃, G̃− K̃) = d(K,G−K).

Proof. In the following we denote by H the digraph G−K and by H̃ the digraph
G̃−K̃. Observe that, for each component J of G such that J 6∈ G̃ (i.e., J is substituted
by its directed-virtual-edge), since s(G) ∈ G̃, then s(G) 6∈ J◦.

We examine the following four cases corresponding to the substitution Rules 1–4
applied to components K and K̃.

1. Since u and v are sources of K, by Fact 9, u and v are sources of K̃. Then
d(K̃, H̃) is a peak and the lemma holds.

2(a) u is a source of K, v is a sink of K, and s(G) 6∈ K◦. By Fact 9, u is a source of
K̃. Since s(G̃) = s(G) then s(G) 6∈ K◦. We now show that v is a sink of K̃. In fact, v
is a sink of all the components having v as a pole. By the substitution rules, whenever
a component J ∈ K has v as a sink then the associated directed-virtual-edge has an
edge incoming into v except for Rules 2(b) and 4(b). But, in both cases, s(G) ∈ J◦,
contradicting that s 6∈ K◦. Then Rule 2(a) is applied to K̃ and d(K̃, H̃) is the edge
(u, v).

2(b) u is a source of K, v is a sink of K, and s(G) ∈ K◦. By Fact 9, u is a source
of K̃. Furthermore, s(G̃) ∈ K̃◦.

If v is a sink of K̃, then Rule 2(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is internal of K̃, then Rule 3(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is a source of K̃, then K̃ has three sources and the minor G̃ is not an sT -
digraph (it contains at least two sources), which is a contradiction.

3(a) u is a source of K, v is internal of K, s(G) ∈ H, and v is a source of H. By
Fact 9, u is a source of K̃ and v is a source of H̃.

If v is internal in K̃, then Rule 3(a) is applied to K̃ and d(K̃, H̃) is the edge (u, v).

If v is a sink of K̃, then Rule 2(a) is applied to K̃ and d(K̃, H̃) is the edge (u, v).

If v is a source of K̃, then v is a source of G̃. Since s(G̃) = s(G) 6= v, then G̃ has
two sources, which is a contradiction.

3(b) u is a source of K and v is internal in K, s(G) ∈ K◦ or v is not a source
of H.

By Fact 9, u is a source of K̃. Two cases are possible.

(i) s(G) ∈ K◦. Then v is the only source of H. In fact, if u is a source of
H, then u is a source of G, which is a contradiction. By Fact 9, v is a source
of H̃.

If v is internal in K̃, then Rule 3(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is a sink of K̃, then Rule 2(b) is applied to K̃ and d(K̃, H̃) is a peak.

If v is a source of K̃, then v is a source of G̃. Since s(G̃) = s(G) 6= v, then G̃ has
two sources, which is a contradiction.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 157

(ii) v is not a source of H and s(G) ∈ H. Since G is expanded, v is a sink of H.

If v is a source of K̃, then Rule 1 is applied to K̃ and d(K̃, H̃) is a peak.

If v is internal in K̃ and v is not a source of H̃, then Rule 3(b) is applied to K̃
and d(K̃, H̃) is a peak. If v is a source of H̃, there exists a component J of H, with
J 6∈ H̃, having v and uJ as poles, whose directed-virtual-edge is either a peak or the
edge (v, uJ). Observe that v is a sink of J and uJ is the source of J (since s(G) 6∈ J◦).
But in this case, Rule 2(a) is applied to J and d(J,G− J) is the edge (uJ , v), which
is a contradiction.

If v is a sink of K̃, since v is internal in K, there exists a component J , with
J ∈ K and J 6∈ K̃, having v and uJ as poles, whose directed-virtual-edge is the edge
(uJ , v). Furthermore, v is an internal vertex or a source of J . If v is a source of J
then d(J,G− J) is not the edge (uJ , v). If v is internal in J , then Rules 3(a) or 4(b)
must be applied in order to have d(J,G− J) = (uJ , v). Rule 3(a) implies that v is a
source of G− J ; hence v is a source of K, which is a contradiction. Rule 4(a) implies
that s(G) ∈ J◦, which is a contradiction.

4. u and v are not sources of K. s ∈ K◦. Either u or v (or both) is a source of
H. Suppose, w.l.o.g., that u is a source of H. u is not a source of K̃; otherwise the
minor G̃ has two sources. By Fact 9, u is a source of H̃.

If v is not a source of K̃, Rule 4(a) can be applied and d(K̃, H̃) is the edge (u, v).

If v is a source of K̃, there exists a component J of K, with J 6∈ K̃, having v and
uJ as poles, such that v is a nonsource of J , and its directed-virtual-edge is either a
peak or the edge (v, uJ). Observe that, since s(G) 6∈ J◦, uJ is the source of J . If v is
a sink of J , Rule 2(a) is applied to J and d(J,G − J) is the edge (uJ , v), which is a
contradiction. If v is internal in J , Rule 3(b) is applied and, since s(G) 6∈ J◦, v is a
sink of G− J and hence it is a sink in all components of K − J . Now, v is a source in
the digraph K̃−d(J,G−J). Then there exists a component Z of K, with Z 6= J and
Z 6∈ K̃, having v and uZ as poles, such that v is a source in d(Z,G−Z). Since v is a
sink of Z and s(G) 6∈ Z◦ (since s(G) ∈ K̃), uZ is a source of Z and then Rule 2(a) is
applied. But then d(Z,G− Z) is the edge (uZ , v), which is a contradiction.

We are now able to prove the sufficiency part of Theorem 3.

Proof of sufficiency of Theorem 3. Let T be the rooted SPQR-tree associated
with the graph G, and let µ1, . . . , µm be the sequence of nodes of T deriving from a
depth-first-search (DFS) visit of T , starting at its root. Let Skel(µi), i = 1, . . . ,m be
the sT -skeleton associated with µ, . . . , µm.

For each node µi, let dci be the directed virtual edge of µi in the skeleton associated
with the parent of µi, and let dpi be the directed-virtual-edge of the parent of µi in
Skel(µi). Clearly, if µi = µ1 is the root, then dpi = dp1 = {∅}. Finally, let G̃i =
Skel(µ1)− dc2 ∪ (Skel(µk)− dp2)− dc3 ∪ (Skel(µ3)− dp3)− · · · − dci ∪ (Skel(µi)− dpi).

We show that G̃i is a minor of G, with s(G) ∈ G̃i, and that G̃i is upward planar.

For i = 1 we have that G̃1 = Skel(µ1) and the claim trivially holds. Suppose that
G̃l−1 is a minor of G with s(G) ∈ G̃l−1, and that G̃l−1 is upward planar. We show
that G̃l is a minor of G, with s(G) ∈ G̃l, and that G̃l is upward planar.

Let H be the pertinent graph of dcl and K be the pertinent graph of dpl . Recall
that K∪H = G and that K and H share exactly two vertices. Moreover dpl = d(K,H)
and dcl = d(H,K).

Let J1, . . . , Jq be components of G contained in K, such that

G̃l−1 = G−H − J1 − · · · − Jq ∪ d(H,K) ∪ d(J1, G− J1) ∪ · · · ∪ d(Jq, G− Jq)

= K − J1 − · · · − Jq ∪ d(H,K) ∪ d(J1, G− J1) ∪ · · · ∪ d(Jq, G− Jq),

158 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

and let Z1, . . . , Zr be split components of G contained in H, such that

Skel(µl) = G−K − Z1 − · · · − Zr ∪ d(K,H) ∪ d(Z1, G− Z1) ∪ · · · ∪ d(Zr, G− Zr)

= H − Z1 − · · · − Zq ∪ d(K,H) ∪ d(Z1, G− Z1) ∪ · · · ∪ d(Zr, G− Zr).

The digraph G̃l = K ∪H − J1 − · · · − Jq − Z1 − · · · − Zq ∪ d(J1, G− J1) ∪ · · · ∪
d(Jq, G − Jq) ∪ d(Z1, G − Z1) ∪ · · · ∪ d(Zr, G − Zr) is a minor of G. In fact, since
Ji ∈ K, i = 1, . . . , q, and Zt ∈ H, t = 1, . . . , r, it follows that Ji and Zt do not share
any edge, for i = 1, . . . , q and t = 1, . . . , r.

Since s(G) ∈ G̃l−1, then s(G) ∈ G̃l.
Let K̃ = G̃l−1 − dcl and H̃ = Skel(µl)− dpl . Clearly G̃l = K̃ ∪ H̃. By Lemma 17,

d(K̃, H̃) = d(K,H) = dpl and d(H̃, K̃) = d(H,K) = dcl . Since K̃ ∪ d(H̃, K̃) = G̃l−1

is upward planar and H̃ ∪ d(K̃, H̃) = Skel(µl) is upward planar with d(K̃, H̃) = dpl
embedded on the external face, then by Lemma 11, G̃l is upward planar.

We now show that G̃m = G. By induction G̃m is a minor of G. Suppose G̃m 6= G;
then there exists a component J of G such that J 6∈ G̃m and d(J,G− J) ∈ G̃m. Let
µj be the node of T such that d(J,G− J) ∈ Skel(µj). d(J,G− J) is associated with
either the parent of µj or one of the children of µj . Since the tree T has been entirely

visited then d(J,G− J) has been substituted, and thus d(J,G− J) 6∈ G̃m, which is a
contradiction.

7. Algorithm for general single-source digraphs. Let G be a biconnected
single-source digraph. In this section we present an algorithm for testing whether G
is upward planar.

ALGORITHM. Test.
1. Construct the expansion G′ of G.
2. Test whether G′ is planar. If G′ is not planar, then return “not-upward-planar”

and stop; else, construct an embedding for G′.
3. Test whether G′ is acyclic. If G′ is not acyclic, then return “not-upward-

planar” and stop.
4. Construct the SPQR-tree T of G′ and the skeletons of its nodes.
5. For each virtual edge e of a skeleton, classify each endpoint of e as a source,

sink, or internal vertex in the pertinent digraph of e. Also, determine if the pertinent
digraph of e contains the source.

6. For each node µ of T , compute the sT -skeleton of µ.
7. For each R-node µ of T
(a) test whether the sT -skeleton of µ is upward planar by means of algorithm

Embedded-Test. If Embedded-Test returns “not-upward-planar,” then return “not-
upward-planar” and stop.

(b) mark the virtual edges of the skeleton of µ whose endpoints are on the external
face in some upward drawing of the sT -skeleton of µ.

(c) for each unmarked virtual edge e of the skeleton of µ, constrain the tree edge
of T associated with e to be directed towards µ.

(d) if the source is not in skeleton(µ), let ν be the node neighbor of µ whose
pertinent digraph contains the source, and constrain the tree edge (µ, ν) to be directed
towards ν.

8. Determine whether T can be rooted at a Q-node in such a way that orienting
edges from children to parents satisfies the constraints of steps 7(c)–(d). If such a
rooting exists then return “upward-planar”; else return “not-upward-planar.”

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 159

For single-source digraphs that are not biconnected we apply the above algorithm
to each biconnected component.

Theorem 4. Upward planarity testing of a single-source digraph with n vertices
can be done in O(n) time using O(n) space.

Proof. Steps 1 and 3 can be trivially performed in O(n) time. Planarity testing
in step 2 can also be done in O(n) time [18]. The construction of the SPQR-tree and

the skeletons of its nodes (step 4) takes time O(n) using a variation of the algorithm
of [17]. The preprocessing of step 5 consists essentially of a visit of T and can be done
in O(n) time. Let nµ be the number of vertices of the skeleton of µ. The information
collected in step 5 allows us to perform step 6 in O(n) time and step 7(d) in O(nµ)
time. By Theorem 2, step 7(a) takes O(nµ) time. The output of step 7(a) allows us
to perform steps 7(b)–(c) in O(nµ) time. Since

∑
µ nµ = O(n), the total complexity

of step 7 is O(n). Finally, step 8 consists of a visit of T and takes O(n) time.

To parallelize Algorithm Test, we need an efficient way of testing in parallel
whether a planar single-source digraph with n vertices is acyclic. For this purpose,
we can use the algorithm of [20], which runs in O(log3 n) time on a CRCW PRAM
with n processors. However, the particular structure of planar single-source digraphs
allows us to perform this test optimally. The following characterization is inspired by
some ideas in [20].

Let G be an embedded, expanded, planar single-source digraph. The clockwise
subgraph of G is obtained by taking the first incoming edge of each internal vertex,
in clockwise order. The counterclockwise subgraph of G is similarly obtained by tak-
ing the first incoming edge of each internal vertex, in counterclockwise order. Such
subgraphs of G have all vertices with in-degree 1 or 0.

Theorem 5. An embedded, expanded single-source digraph G is acyclic if and
only if both the clockwise and counterclockwise subgraphs of G are acyclic.

Proof. The only-if part is trivial. For the if part, assume for contradiction that G
is not acyclic, and consider an arbitrary drawing of G with the prescribed embedding
and with the source on the external face. We will show the existence of a cycle in
either the clockwise or counterclockwise subgraph. Let γ be a cycle of G that does
not enclose any other cycle. Since the source of G must be outside γ, all the edges
incident on vertices of γ and inside γ must be outgoing edges. Hence, γ is contained
in the clockwise or counterclockwise subgraph depending on whether it is a clockwise
or counterclockwise cycle.

The structure of each connected component of the clockwise and counterclockwise
subgraphs is either a source tree, or a collection of source trees with their roots
connected in a directed cycle. Hence, one can test whether such subgraphs are acyclic
using standard parallel techniques. Since expansion preserves acyclicity, we have the
following theorem.

Theorem 6. Given an embedded planar single-source digraph G with n vertices,
one can test if G is acyclic in O(logn) time with n/ logn processors on an EREW
PRAM.

By applying the result of Theorem 6 and various parallel techniques (in particular
[14, 28, 27]) we can efficiently parallelize algorithm Test.

Theorem 7. Upward planarity testing of a single-source digraph with n vertices
can be done in O(logn) time on a CRCW PRAM with n log logn/ logn processors
using O(n) space.

As a consequence of Theorems 1 and 3, algorithm Test can be easily extended
such that if the n-vertex digraph G is found to be upward planar, a planar st-digraph

160 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

G′ with O(n) vertices is constructed that contains G as a subdigraph. Hence, by
applying the planar polyline upward drawing algorithm of Di Battista, Tamassia, and
Tollis [12] to G′ and then removing the vertices and edges of G′ that are not in G, we
obtain a planar polyline upward drawing of G.

Theorem 8. Algorithm Test can be extended so that it constructs a planar
polyline upward drawing if the digraph is upward planar. The complexity bounds stay
unchanged.

7.1. Examples of application of algorithm Test . In this subsection we use
two examples to illustrate the behavior of algorithm Test in performing the upward
planarity testing. In the first example, the algorithm is applied to a graph which is
not upward drawable; in the second example, the algorithm is applied to an upward
drawable graph.

Example 1. In this example we consider the graph G of Figure 2a. We apply
algorithm Test step by step.

1. The expansion graph G′ of G is shown in Figure 14.
2. By a simple inspection it is possible to verify that G′ is planar.
3. Again, by a simple inspection, it is possible to verify that G′ is acyclic.
4. The SPQR-tree T of G′ is shown in Figure 15. The skeletons of the nodes of

T are shown in Figure 16 (the skeletons of the Q nodes are omitted).
5. Consider, for example, the virtual edge (2, 15) in skeleton µ1 of Figure 16,

which is the virtual edge of µ4. The pertinent graph of µ4 is subgraph G′
4 of G′

induced by the node set V (G′)− {13, 14, 24, 25}. By simple inspection, it is possible
to verify that node 2 is internal in G′

4, while node 15 is a sink in G′
4. In addition,

the source 1 of G′ is contained in G′
4. In the same way, all other endnodes of virtual

edges can be classified.
6. The sT -skeletons corresponding to the skeletons of Figure 16 are shown in

Figure 17. Consider, for example, the sT -skeleton of µ2. The pertinent graph G′
1

associated with the virtual edge (2, 13) of the skeleton of µ2 (Figure 16) is the subgraph
of G′ induced by the node set V (G′)−{24}. Using the classification performed in the
preceding step, it is easy to verify that: (i) 2 is internal in G′

1 and 13 is a source in
G′

1. In addition, the source 1 of G′ belongs to G′◦
1 , hence, by Rule 3b the directed-

virtual-edge associated with G′
1 is a peak. The pertinent graph associated with the

virtual edge (2, 24) of µ2 is the directed edge (2, 24). If is easy to see that the
directed-virtual-edge associated with an edge u, v, is the edge (u, v) (Rule 3a). Thus,
the directed-virtual-edge associated with the directed edge 2, 24 is again (2, 24). The
same holds for edge (24, 13).

7. Now we perform Steps 7(a)–7(d) on all the R-nodes of T .
(a) In Figure 18 we show the face-sink graphs associated with the sT -skeletons

of the R-nodes µ1, µ5, and µ12 (the vertices associated with the faces are represented
by squares). It is easy to verify that they all satisfy the conditions of Theorem 1;
thus the algorithm Embedded Test will return “upward-planar” for every R-node. It
also returns, for each R-node, the set of faces that can be external faces in an upward
drawing of the associated sT -skeleton. In the figure, the nodes associated with these
faces are indicated by black squares.

(b) By inspection of Figure 18, the unmarked edges are the following:
• µ1: {(13, 14)}.
• µ5: {(2, 5), (5, 8), (5, 11), (6, 8), (7, 8), (9, 11), (10, 11)}.
• µ12: {(1, 3), (2, 3), (3, 4)}.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 161

Fig. 14. Expansion graph of graph G of Figure 2a.

Fig. 15. The SPQR-tree T of G′.

162 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

FIG. 16. The skeletons of the nodes of T . FIG. 17. The sT-skeletons of the nodes of T .

(c) In Figure 19, the edges of the SPQR-tree T associated with unmarked vir-
tual edges are oriented. For example, the tree-edge associated with the directed
virtual edge (13, 14) of the sT -skeleton of µ1 is oriented toward µ1. Analogously, the
tree-edge (µ5, µ10) associated with the directed-virtual-edge (2, 5) of sT -skeleton of
µ5 is directed toward µ5.

Fig. 18. The face-sink graphs of the sT-skeletons of the R-nodes of T .

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 163

Fig. 19. Partial orientation of T .

(d) Since the skeleton of µ1 does not contain the source 1 of G′, and the pertinent
graph G′

4 associated with µ4 contains the source 1, then the tree-edge µ1, µ4 is oriented
toward µ4. Analogously, the tree-edge µ5, µ10 is oriented towards µ10.

8. Since the tree-edge (µ5, µ10) is constrained to be oriented in both directions,
it follows that it is not possible to find a rooting of T at a Q-node containing the
source. Hence algorithm Test returns “not-upward-planar.”

Example 2. In this example, we consider a graph H obtained from graph G of
Figure 2a by contracting edge (12, 15).

1. In Figure 20 we show the expansion graph H ′ of H.
2. By a simple inspection it is possible to verify that H ′ is planar.
3. By a simple inspection it is possible to verify that H ′ is acyclic.
4. In Figure 21 we show the SPQR-tree TH of H ′ and in Figure 22 the skeletons

of the nodes of TH (the skeletons of the Q-nodes are omitted).
5. In the same way as in step 5 of the previous example, all the endnodes of the

virtual edges can be classified.
6. The sT -skeletons corresponding to the skeletons of Figure 22 are shown in

Figure 23.
7. (a) In Figure 24 we show the face-sink graphs associated with the sT -skeletons

of the R-nodes µ1, µ4, and µ11 (the vertices associated with the faces are represented
by squares). It is easy to verify that they all satisfy the conditions of Theorem 1;

164 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

Fig. 20. Expansion graph of graph H.

Fig. 21. The SPQR-tree TH of H′.

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 165

Fig. 22. The skeletons of the nodes of TH .

Fig. 23. The sT-skeletons of the nodes of TH .

166 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

Fig. 24. The face-sink graphs of the sT-skeletons of the R-nodes of TH .

Fig. 25. Orientation of TH .

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 167

Fig. 26. Upward drawing of H′.

thus the algorithm Embedded Test will return “upward-planar” for every R-node. It
also returns, for each R-node, the set of faces that can be external faces in an upward
drawing of the associated sT -skeleton. In the figure, the nodes associated with these
faces are indicated by black squares.

(b) By inspection of Figure 24, the unmarked edges are the following:
• µ1: {(13, 14)}.
• µ4: {(7, 8), (10, 11)}.
• µ11: {(1, 3), (2, 3), (3, 4)}.

(c) In Figure 25, the edges of the SPQR-tree TH associated with unmarked virtual
edges are oriented; their orientations are represented by bold arrows.

(d) Since the skeleton of µ1 does not contain the source 1 of H ′, and the pertinent
graph H ′

4 associated with µ4 contains the source 1, then the tree-edge (µ1, µ4) is
oriented toward µ4. Analogously, the tree-edge (µ4, µ9) is oriented toward µ9. Again,
in Figure 25 these fixed orientations are represented by bold arrows.

8. By simple inspection, it is possible to find a rooting of TH at the Q-node
associated with the edge (1, 4) (see Figure 25). Hence algorithm Test returns “upward-
planar.”

An upward drawing of the expansion H ′ of graph H is shown in Figure 26.

168 P. BERTOLAZZI, G. DI BATTISTA, C. MANNINO, AND R. TAMASSIA

REFERENCES

[1] P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis, How to draw
a series-parallel digraph, in Proc. 3rd Scand. Workshop Algorithm Theory, Lecture Notes
in Comput. Sci. 621, Springer-Verlag, Berlin, 1992, pp. 272–283.

[2] P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis, How to draw
a series-parallel digraph, Internat. J. Comput. Geom. Appl., (4) 1994, pp. 385–402.

[3] P. Bertolazzi and G. Di Battista, On upward drawing testing of triconnected digraphs, in
Proc. 7th Annual ACM Sympos. Comput. Geom., 1991, ACM, New York, pp. 272–280.

[4] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino, Upward drawings of tricon-
nected digraphs, Algorithmica, 12 (1994), pp. 476–497.

[5] R. Cole and U. Vishkin, Approximate and exact parallel scheduling with applications to list,
tree, and graph problems, in Proc. 27th IEEE Symp. on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1986, pp. 478–491.

[6] P. Crescenzi, G. Di Battista, and A. Piperno, A note on optimal area algorithms for
upward drawings of binary trees, Comput. Geom. Theory Appl., 2 (1992), pp. 187–200.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for drawing graphs:
an annotated bibliography, Comput. Geom. Theory Appl., 4 (1994), pp. 235–282.

[8] G. Di Battista, W. P. Liu, and I. Rival, Bipartite graphs upward drawings and planarity,
Inform. Process. Lett., 36 (1990), pp. 317–322.

[9] G. Di Battista and R. Tamassia, Algorithms for plane representations of acyclic digraphs,
Theoret. Comput. Sci., 61 (1988), pp. 175–198.

[10] G. Di Battista and R. Tamassia, On-line graph algorithms with spqr-trees, in Automata,
Languages and Programming (Proc. 17th ICALP), Lecture Notes in Comput. Sci. 442,
Springer-Verlag, New York, 1990, pp. 598–611.

[11] G. Di Battista and R. Tamassia, On-line maintenance of triconnected components with
SPQR-trees, Algorithmica, 15 (1996), pp. 302–318.

[12] G. Di Battista, R. Tamassia, and I. G. Tollis, Area requirement and symmetry display of
planar upward drawings, Discrete Comput. Geom., 7 (1992), pp. 381–401.

[13] P. Eades, T. Lin, and X. Lin, Minimum size h-v drawings, in Advanced Visual Interfaces
(Proc. AVI ’92), World Scientific Series in Computer Science 36, World Scientific, River
Edge, NJ, 1992, pp. 386–394.

[14] D. Fussell, V. Ramachandran, and R. Thurimella, Finding triconnected components by lo-
cal replacements, in Automata, Languages and Programming (Proc. 16th ICALP), Lecture
Notes in Comput. Sci. 372, Springer-Verlag, New York, 1989, pp. 379–393.

[15] A. Garg, M. T. Goodrich, and R. Tamassia, Area-efficient upward tree drawings, in Proc.
9th Annual ACM Sympos. Comput. Geom., ACM, New York, 1993, pp. 359–368.

[16] A. Garg and R. Tamassia, On the computational complexity of upward and rectilinear pla-
narity testing, in Proc. Graph Drawing ’94, Lecture Notes in Comput. Sci. 894, Springer-
Verlag, New York, 1995, pp. 286–297.

[17] J. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J. Com-
put., 2 (1973), pp. 135–158.

[18] J. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (1974), pp. 549–568.
[19] M. D. Hutton and A. Lubiw, Upward planar drawing of single source acyclic digraphs, in

Proc. 2nd ACM–SIAM Sympos. Discrete Algorithms, San Francisco, CA, SIAM, Philadel-
phia, 1991, pp. 203–211.

[20] M.-Y. Kao and G. E. Shannon, Local reorientations, global order, and planar topology, in
Proc. 30th IEEE Symp. on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1989, pp. 286–296.

[21] D. Kelly, Fundamentals of planar ordered sets, Discrete Math., 63 (1987), pp. 197–216.
[22] D. Kelly and I. Rival, Planar lattices, Canad. J. Math., 27 (1975), pp. 636–665.
[23] A. Lempel, S. Even, and I. Cederbaum, An algorithm for planarity testing of graphs, in

Theory of Graphs: Internat. Symposium, Rome, 1966, Gordon and Breach, New York,
1967, pp. 215–232.

[24] L. Lovasz and M. D. Pummer, Matching Theory, Ann. Discrete Math. 29, North–Holland,
Amsterdam, 1986.

[25] A. Papakostas, Upward planarity testing of outerplanar dags, in Proc. Graph Drawing ’94,
Lecture Notes in Comput. Sci. 894, Springer-Verlag, New York, 1995, pp. 298–306.

[26] C. Platt, Planar lattices and planar graphs, J. Combin. Theory Ser. B, 21 (1976), pp. 30–39.
[27] V. Ramachandran and J. Reif, Planarity Testing in Parallel, Tech. Report TR-90-15, De-

partment of Computer Science, University of Texas at Austin, 1990.
[28] V. Ramachandran and J. H. Reif, An optimal parallel algorithm for graph planarity, in

OPTIMAL UPWARD PLANARITY TESTING OF sT -DIGRAPHS 169

Proc. 30th Annual IEEE Sympos. Found. Comput. Sci., IEEE Computer Society Press,
Los Alamitos, CA, 1989, pp. 282–293.

[29] E. Reingold and J. Tilford, Tidier drawing of trees, IEEE Trans. Software Eng., SE-7(1981),
pp. 223–228.

[30] I. Rival, Reading, drawing, and order, in Algebras and Orders, I. G. Rosenberg and G.
Sabidussi, eds., Kluwer Academic Publishers, Norwell, MA, 1993, pp. 359–404.

[31] K. J. Supowit and E. M. Reingold, The complexity of drawing trees nicely, Acta Inform.,
18 (1983), pp. 377–392.

[32] R. Tamassia and J. S. Vitter, Parallel transitive closure and point location in planar struc-
tures, SIAM J. Comput., 20 (1991), pp. 708–725.

[33] C. Thomassen, Planar acyclic oriented graphs, Order, 5 (1989), pp. 349–361.
[34] W. T. Trotter and J. Moore, The dimension of planar posets, J. Combin. Theory Ser. B.,

22 (1977), pp. 54–67.

LINEAR AND O(n logn) TIME MINIMUM-COST MATCHING
ALGORITHMS FOR QUASI-CONVEX TOURS∗

SAMUEL R. BUSS† AND PETER N. YIANILOS‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 170–201, February 1998 008

Abstract. Let G be a complete, weighted, undirected, bipartite graph with n red nodes, n′ blue
nodes, and symmetric cost function c(x, y). A maximum matching for G consists of min{n, n′} edges
from distinct red nodes to distinct blue nodes. Our objective is to find a minimum-cost maximum
matching, i.e., one for which the sum of the edge costs has minimal value. This is the weighted
bipartite matching problem or, as it is sometimes called, the assignment problem.

We report a new and very fast algorithm for an abstract special case of this problem. Our first
requirement is that the nodes of the graph are given as a “quasi-convex tour.” This means that they
are provided circularly ordered as x1, . . . , xN , where N = n+ n′, and that for any xi, xj , xk, x`, not
necessarily adjacent but in tour order, with xi, xj of one color and xk, x` of the opposite color, the
following inequality holds:

c(xi, x`) + c(xj , xk) ≤ c(xi, xk) + c(xj , x`).

If n = n′, our algorithm then finds a minimum-cost matching in O(N logN) time. Given an
additional condition of “weak analyticity,” the time complexity is reduced to O(N). In both cases
only linear space is required. In the special case where the circular ordering is a line-like ordering,
these results apply even if n 6= n′.

Our algorithm is conceptually elegant, straightforward to implement, and free of large hidden
constants. As such we expect that it may be of practical value in several problem areas.

Many natural graphs satisfy the quasi-convexity condition. These include graphs which lie on
a line or circle with the canonical tour ordering, and costs given by any concave-down function of
arclength — or graphs whose nodes lie on an arbitrary convex planar figure with costs provided by
Euclidean distance.

The weak-analyticity condition applies to points lying on a circle with costs given by Euclidean
distance, and we thus obtain the first linear-time algorithm for the minimum-cost matching problem
in this setting (and also where costs are given by the L1 or L∞ metrics).

Given two symbol strings over the same alphabet, we may imagine one to be red and the other blue
and use our algorithms to compute string distances. In this formulation, the strings are embedded in
the real line and multiple independent assignment problems are solved, one for each distinct alphabet
symbol.

While these examples are somewhat geometrical, it is important to remember that our conditions
are purely abstract; hence, our algorithms may find application to problems in which no direct
connection to geometry is evident.

Key words. assignment problem, bipartite weighted matching, computational geometry,
concave penalty function, convexity, linear time, Monge property, quadrangle inequality, string com-
parison

AMS subject classifications. 05C70, 05C85, 05C90, 52A37, 68Q20, 68R10, 68U15, 90C27

PII. S0097539794267243

1. Introduction. The above abstract gives a short overview of the contents of
the paper, and we shall give an in-depth discussion of our definitions, results, and
algorithm below. However, we first give a quick review of prior related work on

∗Received by the editors May 9, 1994; accepted for publication (in revised form) January 7, 1996.
A preliminary version of this paper appeared in the Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, Arlington, VA, SIAM, Philadelphia, 1994, pp. 65–76.

http://www.siam.org/journals/sicomp/27-1/26724.html
†Department of Mathematics, University of California, San Diego, La Jolla, CA 92092-0112

(sbuss@ucsd.edu). The research of this author was supported in part by NSF grants DMS-9205181
and DMS-9503247.

‡NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 and Department of Computer
Science, Princeton University, 35 Olden Street, Princeton, NJ 08544-2087 (pny@research.nj.nec.com).

170

QUASI-CONVEX MATCHING 171

matching. We shall consider graphs G which have N nodes; the nodes are partitioned
into a set of n red nodes and n′ blue nodes with N = n + n′. G is balanced if it
has equal numbers of red and blue nodes. There is a symmetric cost function c(x, y),
which gives the cost of an edge from node x to node y, with x and y of distinct colors.
A matching is a set of edges with no endpoints in common that match all the nodes
of one color with the same number of nodes of the opposite color. The cost of a
matching is the sum of the costs of its edges. The problem of finding a minimal-cost
matching for a general bipartite graph is known to have an O(N3) time algorithm (see
Lawler [18] for this and other background on matching), and for graphs with nodes in
the plane with the Euclidean distance as cost function, there is a O(N2.5 logN) time
algorithm due to Vaidya [22].

The minimum-cost matching problem is substantially easier in the case where the
nodes are in line-like order or are circularly ordered. The simplest versions of line-
like/circular orderings are where the points lie on a line or lie on a curve homeomorphic
to a circle, and the cost c(x, y) of an edge between x and y is equal to the shortest
arclength distance between the nodes. The matching problem for this arclength cost
function has been studied by Karp and Li [14], Aggarwal et al. [1], Werman et al. [23],
and others, and is the “skis and skiers” problem of Lawler [18]. Karp and Li have given
linear time algorithms for this matching problem; Aggarwal et al. have generalized
the linear time algorithm to the transportation problem.

A more general version of the matching problem for graphs in line-like order has
been studied by Gilmore and Gomory [10] (see [18]). In this version, the cost of an
edge from a red node x forward to a blue node y is defined to equal

∫ y
x
f , and from a

blue node x forward to a red node y to equal
∫ y
x
g, for some functions f and g. This

matching problem has a linear time algorithm provided f + g ≥ 0.

Another version of the matching problem for line-like graphs is considered by Ag-
garwal et al. [1]; they use graphs which satisfy a “Monge” property which states that
the inequality (1.1) below holds except with the inequality sign’s direction reversed.
They give a linear time algorithm for the matching problem for (unbalanced) Monge
graphs.

In the prior work most closely related to this paper, Marcotte and Suri [20] con-
sider the matching problem for a circularly ordered, balanced tour in which the nodes
are the vertices of a convex polygon and the cost function is equal to Euclidean
distance. This matching problem is substantially more complicated than the compar-
atively simple “skis and skiers” type problems; nonetheless, Marcotte and Suri give an
O(N logN) time algorithm which solves this minimum-cost matching problem. For
the case where the nodes are the vertices of a simple polygon and the cost function is
equal to the shortest Euclidean distance inside the polygon, they give an O(N log2N)
time algorithm.

The main results of this paper apply to all of the above matching problems on
circularly ordered or line-like tours, with the sole exception of unbalanced, Monge
graphs. For the “skis and skiers” and the problems of Gilmore and Gomory, Theo-
rem 1.9 gives new linear time algorithms that find minimum-cost matchings which are
different than the traditional minimum-cost matchings (and our algorithms are more
complicated than is necessary for these simple problems). Our algorithms subsume
those of Marcotte and Suri and give some substantial improvements. First, with the
weak analyticity condition, we have linear time algorithms for many important cases,
whereas Marcotte and Suri’s algorithm takes O(N logN) time. Second, our assump-
tion of quasi convexity is considerably more general than their planar geometrical

172 SAMUEL R. BUSS AND PETER N. YIANILOS

setting and allows diverse applications. Third, our algorithms are conceptually sim-
pler than the divide-and-conquer methods used by Marcotte and Suri, and we expect
that our algorithms are easier to implement.

All of our algorithms have been implemented as reported in [5]; a brief overview
of this implementation is given in section 3.4.

We list some sample applications of our algorithms in the examples numbered 1–8
below. One example of a matching problem solution is shown in Figure 1.1. For this
figure, a 74-node bipartite graph was chosen with nodes on the unit circle. For this
matching problem, the cost of an edge is equal to the Euclidean distance between its
endpoints. The edges shown form a minimum-cost matching.

Fig. 1.1. The minimum-cost matching for a 74-node graph on the circle with Euclidean distance
as the cost function.

Our quasi-convex property is equivalent to the “inverse quadrangle inequality”
used, for instance, by [8] but is weaker than the similar “inverse Monge property”
of [4]. In fact, we show below that any Monge matching problem may be trivially
transformed into a quasi-convex matching problem, but not vice-versa.

Dynamic programming problems based on cost functions which satisfy the (in-
verse) quadrangle inequality, and some closely related matrix-search problems, have
been studied by many authors including [2, 3, 4, 7, 8, 9, 12, 15, 16, 17, 19, 24, 25].
However, we have discovered no direct connection between our quasi-convex matching
problem and the problems solved by these authors.

The notion of a Monge array [13] is related to that of quasi convexity, but the
Monge condition is stronger (i.e., quasi convexity is strictly more general). Because of
the similarity between the definitions of both properties, we take the time to illustrate
this point in detail. To understand the Monge property in our bipartite setting,
imagine the cost function to be an array, and impose the restriction that its first

QUASI-CONVEX MATCHING 173

argument select a red point and the second a blue point. The array is Monge provided
that for all i, j, k, ` satisfying 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n′, we have

c(Ri, Bk) + c(Rj , B`) ≤ c(Ri, B`) + c(Rj , Bk).

Now given a graph with a Monge cost array, we convert it (in linear time) to a
quasi-convex tour by simply visiting the red vertices first, in Monge order, followed
by the blue vertices, in reverse Monge order. The quasi-convexity inequality is then
an immediate consequence of the Monge property and our reverse ordering of the
blue vertices. This reversal is necessary because the sense of the Monge inequality is
opposite that of quasi convexity.

However, not every quasi-convex tour can be rearranged to form a Monge array.
We will now exhibit such a quasi-convex tour. Its nodes lie along the real line, and
costs are given by the square root of internode distance; tour order is from left to right.
Given a subtour of the form RiRjBaBb, then it is easily shown that in any Monge
reordering, Ba ≺ Bb iff Rj ≺ Ri. Similarly, given a tour of the form RjBaBbRi,
Ba ≺ Bb iff Rj ≺ Ri. Our counterexample then consists of any tour having a sub-
tour of the form RBBRRBB. To understand why, we attach subscripts resulting in
RiBaBbRjRkBcBd and proceed to apply the two rules above to get the implications

Ba ≺ Bb =⇒ Ri ≺ Rj =⇒ Bd ≺ Bc =⇒ Rj ≺ Rk.

Also,

Ba ≺ Bb =⇒ Rk ≺ Rj ,

which is a contradiction. Symmetrically the same conclusion is reached if one begins
instead with Bb ≺ Ba, whence no Monge rearrangement exists.

We now give the definitions necessary to state the main results of this paper. We
think of the nodes of the graph G as being either a line-like or circular tour of the
graph; in the case of a circular tour, we think of the node x1 as following again after
xN .

Definition 1.1. A sequence of nodes xi1 , xi2 , . . . , xi` are in input order if and
only if i1 < i2 < · · · < i`. The nodes are defined to be in tour order if and only if
there exists a k such that the sequence xik , . . . , xi` , xi1 , . . . , xik−1

is in input order.
Definition 1.2. The nodes x1, . . . , xN form a quasi-convex tour if and only if,

whenever xi, xj , xk, x` are in tour order, with xi and xj of one color and xk and x`
of the other color, then

c(xi, x`)− c(xi, xk) ≤ c(xj , x`)− c(xj , xk).(1.1)

Reordering terms in (1.1) gives

c(xi, x`) + c(xj , xk) ≤ c(xi, xk) + c(xj , x`).

To give a geometric intuition to quasi convexity, note that when xi, xj , xk, x` are
the vertices of a quadrilateral, the inequality states that the sum of the lengths of
diagonals is greater than or equal to the sum of the lengths of two of the sides.

Definition 1.3. The tour x1, . . . , xN of G is line-like if and only if the following
holds: For all i < j < k, we have

c(xi, xj) ≤ c(xi, xk)

174 SAMUEL R. BUSS AND PETER N. YIANILOS

if xi is of opposite color from xj and xk, and we have

c(xi, xk) ≥ c(xj , xk)

if xk is of opposite color from xi and xj.

The property of quasi convexity is defined independently of the starting point of
the tour; i.e., the nodes of the tour can be “rotated” without affecting quasi convexity.
Obviously, the definition of line-like tours is sensitive to the choice of starting point
of the tour.

Our main theorems give either O(N logN) or O(N) time algorithms for all of the
following examples, with the exception of example 7:

1. Let the nodes x1, . . . , xN be sequentially ordered points on a line (e.g., they
are real numbers indicating points on the x-axis), and let ||xj − xi|| be the Euclidean
distance from xi to xj . Let f be any concave-down function, so f ′′(x) ≤ 0 for all x.
If the cost function is defined by

c(xi, xj) = f(||xj − xi||),(1.2)

then x1, . . . , xN form a quasi-convex tour. Prior work for examples 1 and 2 gave linear
time matching algorithms only for the case where f(x) is a linear function [14, 1].

2. Now let the points x1, . . . , xN lie on a smooth curve C which is homeomorphic
to a circle, with the points listed in, say, counterclockwise order. And let ||xj − xi||
equal the shortest arclength along C from xi to xj . Again let f(x) be any concave
down function. With the cost function given by equation (1.2), the nodes x1, . . . , xN
form a quasi-convex tour.

3. Suppose x1, . . . , xN lie, in that order, on a circle. Let c(xi, xj) equal the
Euclidean distance from xi to xj . Since Euclidean distance is a concave-down function
of the circular arclength, this is a special case of example 2 and the nodes form a
quasi-convex tour. In this case, the weak analyticity condition always holds and Main
Theorem 1.9 gives an O(N) time algorithm. The best prior algorithm was O(N logN)
time [20].

4. More generally, if x1, . . . , xN are the vertices of a convex polygon listed in,
say, counterclockwise order, and if the cost function is equal to Euclidean distance,
then the nodes form a quasi-convex tour. The prior algorithm for this case was
O(N logN) time [20] and our algorithms are either O(N) or O(N logN) time de-
pending on whether the weak analyticity condition holds.

5. Some nonconvex polygons also have vertices which form a quasi-convex tour.
For example, in a polygon shaped as in Figure 1.2, the vertices A,B,C,D will form
a quasi-convex tour, provided the angle θ not too large. (This is why we use “quasi-
convex” instead of “convex” to describe tours which satisfy equation (1.1).)

6. Examples 4 and 5 are also quasi-convex under other distance metrics such as
the L1 and L∞ metrics.

7. Marcotte and Suri consider graphs where the nodes are the vertices of a
simple polygon and the cost function is equal to the length of the shortest connecting
path inside the polygon. The nodes of such a polygon form a quasi-convex tour.
The prior algorithm and the algorithm of this paper are O(N log2N) time for this
example, since the cost function requires O(logN) time to compute.

8. In string matching algorithms, the cost of shifting a character’s position is
specified as a function of the distance shifted. The authors have worked in the past
on string matching algorithms [26, 27] in which the cost function is a linear function

QUASI-CONVEX MATCHING 175

θA C

B

D

●●

●

●

Fig. 1.2. A quasi-convex polygon which is not geometrically convex.

of distance. These prior algorithms have been quite successfully used in commer-
cial applications, especially natural language search, and we expect that the use of a
concave-down distance function will significantly improve the matching quality. As
we discuss in section 5, the setting of example 1 above is precisely what is needed to
allow (near) linear time string matching algorithms with concave-down cost functions.
A number of authors, including [7, 8], have studied concave-down cost functions for
string matching; their string matching algorithms are based on least-edit-distance
and, in this regard, are quite different from ours. Least-edit-distance string matching
algorithms are widely used because they provide rich and flexible string comparison
functions; on the other hand, the best general algorithms for computing least-edit-
distance require O(N2) time (see [21]). Our string matching algorithms are not as
flexible but can be tailored to work well for many applications; they have the advan-
tage of being linear time computable.

Main Theorem 1.4.
(i) There is an O(N logN) time algorithm for the minimum-cost matching prob-

lem for line-like quasi-convex tours.
(ii) There is an O(N logN) time algorithm for the minimum-cost matching prob-

lem for balanced quasi-convex tours.
Remark. The running times of the algorithms are given in terms of the number N

of nodes, even though the input size may in some cases need to be Ω(N2) to fully
specify the values of the cost function. However, in all the examples above, the input
size is O(N) since the cost function is specified by the nodes’ positions on a line, on
a curve, or in the plane. In any event, our runtime analysis assumes that any value
c(xi, xj) of the cost function can be computed in constant time. If this is not the case,
then the runtimes are to be multiplied by the time needed to compute a value of the
cost function; this is the situation in example 7 above.

We next define a “weak analyticity” condition which will allow even faster algo-
rithms.

Definition 1.5. Suppose that xi and xj are red (blue) nodes, that δ ≥ 0, and
that there is a blue (respectively, red) node xk such that

c(xi, xk)− c(xj , xk) < δ.

The δ-crossover point of xi and xj is defined to be the first such xk, where “first”
means in tour order starting from xj and ending at xi. If no such xk exists, then the
δ-crossover point does not exist.

It is not hard to see that the property of quasi convexity implies that, if the
δ-crossover point xk exists, then c(xi, x`) − c(xj , x`) ≥ δ whenever xi, xj , x`, xk are
in tour order and c(xi, x`) − c(xj , x`) < δ whenever xi, xj , xk, x` are in tour order.
Thus binary search provides an O(logN) time procedure which, given xi, xj , and δ,
will determine if xk exists and, if so, which node is xk. This is the approach taken in

176 SAMUEL R. BUSS AND PETER N. YIANILOS

the algorithms of Theorem 1.4 and is the source of the logN factor in the runtime.
However, in some cases, xk can be found in constant time and we define the following.

Definition 1.6. A quasi-convex tour satisfies the strong analyticity condition
provided there is a constant-time algorithm which can determine if the δ-crossover
point of xi and xj exists and, if so, can determine which node it is.

A quasi-convex tour satisfies the analyticity condition provided there is a constant-
time algorithm which can answer the following question (as a function of similarly
colored nodes xi, xj , xk in tour order and of ε, δ > 0, where the δ-crossover of xi and xj
is known to exist):

“Do xj and xk have an ε-crossover point which either equals or pre-
cedes in tour order the δ-crossover point of xi and xj?”

Even the analyticity condition is too strong to be satisfied in many situations, so
we also define a “weak analyticity condition” as follows.

Definition 1.7. Let x be a node and y and z be denotations of nodes. We write
y ≺x z to denote that either (i) y and z exist and are distinct and y precedes z in the
tour order beginning at x, or (ii) y exists and z does not.

A relative crossover procedure is a procedure Ω such that, given ε, δ, xi, xj, and
xk as input, and letting y be the δ-crossover of xi and xj, and z be the ε-crossover of
xj and xk, then

(i) If y ≺xj z, then Ω outputs “Yes.”
(ii) If z ≺xj y, then Ω outputs “No.”
(iii) Otherwise Ω may output either answer.

Note that Ω is not required to determine y and z. The difference between weak analyt-
icity and ordinary analyticity is that when condition (iii) holds, Ω may output either
answer.

Definition 1.8. The weak analyticity condition is said to hold provided there is
a constant-time relative crossover procedure.

Clearly the strong analyticity condition implies the analyticity condition, which
in turn implies the weak analyticity condition. In most applications, we do not have
the analyticity or strong analyticity conditions, but the weak analyticity condition
does hold in many natural situations. In particular, examples 1, 2, 3, and 4 do satisfy
the weak analyticity condition provided that the concave-down function is sufficiently
natural. Consider, for instance, example 1 with the concave-down function f(x) = x,
f(x) =

√
x, or f(x) = log x, etc. For example 1, the input nodes x1, . . . , xN are given

with a sequence of real numbers r1 ≤ r2 ≤ · · · ≤ rN which are the positions of the
nodes on the real line. Given nodes xi, xj and δ > 0, the first possible position for the
δ-crossover of xi and xj can be found by solving the equation f(y−ri) = δ+f(y−rj)
for y; since we assume that arithmetic operations take constant time, the solution
y can be found in constant time. Note that y is only the theoretical crossover point;
the actual crossover is the first node xk such that y ≤ rk. Unfortunately, even after y is
known, it will not be possible to determine xk in constant time unless some additional
information is given about the distribution of the nodes on the real line. Thus, the
analyticity condition and strong analyticity conditions do not hold in general for
example 1. The reason the analyticity condition does not hold is that, if the theoretical
ε-crossover point occurs after the theoretical δ-crossover point, then the analyticity
algorithm must output “No” if there is a node after the theoretical δ-crossover point
and before or at the theoretical ε-crossover point, and must output “Yes” otherwise
(because in the latter case the two actual crossover points coincide). Unfortunately,
there is no general way to decide this in constant time, so the analyticity condition

QUASI-CONVEX MATCHING 177

is false. However, the weak analyticity condition does hold, since the function Ω may
operate by computing the theoretical δ-crossover of xi and xj and the theoretical
ε-crossover of xj and xk and outputting “Yes” if the former is less than the latter.

For similar reasons, example 3 satisfies the weak analyticity condition; in this
case, since the nodes lie on a circle and the cost function is Euclidean distance, the
theoretical crossover position is computed (in constant time) as the intersection of
a hyperbola and the circle. Likewise, the weak analyticity condition also holds for
example 2 if the concave-down function is sufficiently nice, and it holds for example 6,
where nodes lie on a circle under the L1 and L∞ metrics. Example 4, where the nodes
form the vertices of a convex polygon, does not seem to satisfy the weak analyticity
condition in general; however, some important special cases do. For example, if the
vertices of the convex polygon are known to lie on a polygon with a bounded number
of sides, on an oval, or on a branch of a hyperbola, then the weak analyticity condition
does hold.

The analyticity condition has been implicitly used by Hirschberg and Larmore [12]
who defined a Bridge function which is similar to our Ω function. They give a special
case in which Bridge is constant-time computable and thus the analyticity condition
holds. Later, Galil and Giancarlo [8] defined a “closest zero property” which is equiv-
alent to our strong analyticity condition.1 As we illustrated above, the analyticity
and strong analyticity conditions rarely hold. Thus it is interesting to note that the
algorithms of Hirschberg and Larmore and of Galil and Giancarlo will still work, with
only minor modifications, if only the weak analyticity condition holds.

Our second main theorem implies that these examples which satisfy the weak
analyticity condition have linear time algorithms for minimum-cost matching.

Main Theorem 1.9.

(i) There is an O(N) time algorithm for the minimum-cost matching problem
for line-like quasi-convex tours which satisfy the weak analyticity condition.

(ii) There is an O(N) time algorithm for the minimum-cost matching problem
for balanced quasi-convex tours which satisfy the weak analyticity condition.

Remark. In order to achieve the linear time algorithms, it is necessary that nodes
of the graph be input in their tour order. This assumption is necessary, since without
it, it is possible to give a linear time reduction of sorting to the matching problem for
line-like tours.

Our main theorems also apply to minimum-cost matchings for some nonbipartite
quasi-convex tours. If a nonbipartite graph G has N nodes and cost function c, then
a matching for G is a set of b1

2Nc edges with all endpoints distinct. Part (i) of Main
Theorems 1.4 and 1.9 hold also for nonbipartite graphs which are line-like quasi-convex
tours. And part (ii) of Main Theorems 1.4 and 1.9 hold also for nonbipartite graphs
which are quasi-convex tours with an even number of nodes. The nonbipartite cases
are discussed in section 4; the algorithms are simple modifications of the algorithms
for the bipartite tours.

It is apparent that our algorithms can be parallelized, but we have not investigated
the precise runtime and processor count that is needed for a parallel implementation.
He [11] has given a PRAM implementation of Marcotte and Suri’s algorithm which
uses N processors and O(log2N) time and it is clear that our algorithm can be

1The definition of the “closest zero property” is misstated in [8]; it should be defined as saying
that it is possible to find the first r such that w(l, r)− w(k, r)− a ≤ 0 (note their w corresponds to
our cost function c, and a is a real). However, their algorithm explicitly uses the correct definition
of “closest zero property” (see their Fact 2).

178 SAMUEL R. BUSS AND PETER N. YIANILOS

computed with the same number of processors with the same time bounds using He’s
methods.

Our algorithms apply to unbalanced tours only if they are line-like. This is because
in the line-like case the leveling process, described in the next section, induced by
choosing the first node as starting point, is guaranteed to decompose the problem into
alternating color subproblems, which may be independently solved and reassembled
to produce an overall solution. Now, some of these subproblems may be unbalanced,
but again using the line-like property, we are able to force balance by adding a dummy
node when necessary. These then are two different uses of the line-like property.

In balanced, unimodal tours2 such as the circle, the leveling concept of section 2
holds in a weaker form. However, we have been unable to extend our results to the
unbalanced unimodal case. As an example of the difficulty of this, consider the highly
eccentric ellipse of Figure 1.3; the bipartite tour containing its four nodes is unbalanced
and is neither line-like nor unimodal. Notice that no starting point induces a leveling
which places R2 and B1 at the same level, despite the fact that the minimum-cost
matching consists of an edge between them. The path to extending our methods to
such cases is therefore less clear.

R2

R3R1

B1

Fig. 1.3. A bipartite, unbalanced, unimodal tour for which no leveling process works.

2. Reductions and lemmas.

2.1. Reduction to tours of alternating colors. The first step to giving our
minimum-cost matching algorithms is to reduce to the special case of tours in which
the colors of the nodes alternate. In other words, we will be able to assume w.l.o.g.
that x1, x3, x5, . . ., are red and that x2, x4, x6, . . ., are blue.

Definition 2.1. Let xi and xj be nodes. We write [xi, xj] to denote the sequence
of nodes obtained by starting with xi and advancing in tour order to xj. We write
(xi, xj], [xi, xj), and (xi, xj) for this sequence minus the starting node, the ending
node, or both.

If x is a node, let d(x) denote the number of red nodes in [x1, x) minus the number
of blue nodes in [x1, x). The level of x, level(x), is equal to d(x) if x is blue and is
equal to d(x) + 1 if x is red. We write x ∼ y to mean that level(x) = level(y);
obviously, ∼ is an equivalence relation. It is easy to see that if y is the first node
after x in input order such that x ∼ y, then x and y are of opposite colors. Also,
if x ∼ y and x, y are in input order and are of opposite colors, then (x, y) contains
equal number of red and blue nodes. For balanced tours, the ∼-equivalence relation is
invariant under circular rotation of the nodes in the tour.

Given a matching on the nodes of a graph, we write xi ↔ xj to indicate the
presence of an edge between xi and xj in the matching. We say that xj immediately

2In unimodal tours, the cost function from any node rises and then falls as the tour is traversed.

QUASI-CONVEX MATCHING 179

follows xi in tour order if j = i+ 1 or if i = N and j = 1. Two nodes xi and xj are
adjacent if and only if one of them immediately follows the other. An edge xi ↔ xj is
called a jumper if xi and xj are not adjacent. Two jumpers are said to cross if they
are of the form xi ↔ xk and xj ↔ x` with xi, xj , xk, x` in tour order.

Lemma 2.2. Let G be either a line-like quasi-convex tour or a balanced quasi-
convex tour. Then G has a minimum-cost matching in which every edge xi ↔ xj
satisfies xi ∼ xj. In other words, some minimum-cost matching for G can be obtained
as a union of minimum-cost matchings on the ∼-equivalence classes of G.

To prove Lemma 2.2 we use the following lemma.
Lemma 2.3. G has a minimum-cost matching in which no jumpers cross.
Sketch of proof. If a minimum-cost matching does have a pair of jumpers which

cross, the quasi-convexity property allows them to be “uncrossed” without increasing
the total cost. Repeatedly uncrossing jumpers will eventually yield a minimum-cost
matching with no crossing jumpers. (See Lemma 1 of [1] for a detailed proof of this.)

Lemma 2.2 is proved by noting that a minimum-cost matching with no crossing
jumpers must respect the ∼-equivalence classes. This is because, if a jumper xi ↔ xj
is in a crossing-free matching with i < j, then the nodes in the interval (xi, xj) must
be matched with each other and thus (xi, xj) must have equal numbers of red and
blue nodes. In the unbalanced, line-like case, this also depends on the fact that,
w.l.o.g., there is no jumper which crosses an unmatched node (this is an immediate
consequence of the line-like condition).

By Lemma 2.2, in order to find a minimum-cost matching, it suffices to extract
the ∼-equivalence classes and find minimum-cost matchings for each equivalence class
independently. It is an easy matter to extract the ∼-equivalence classes in linear time
by using straightforward counting. Each equivalence class consists of an alternating
color subtour; in the balanced case, there are an even number of nodes in each equiv-
alence class, and in the line-like condition case, there may be an even or odd number
of nodes. Thus, to give (near) linear time algorithms for finding matchings, it will
suffice to restrict our attention to tours in which the nodes are of alternating colors.

In view of Lemma 2.3, we may restrict our attention to matchings which contain
no crossing jumpers. Such a matching will be called crossing-free.

Finally, we can assume w.l.o.g. that the tour is balanced. To see why we can
assume this, suppose that x1, . . . , xN is an unbalanced, line-like tour of alternating
colors. This means that x1 and xN are the same color, say red. We can add a new
node xN+1 to the end of the tour, label it blue, and let c(xi, xN+1) = 0 for all red xi.
These N + 1 nodes no longer form a line-like tour; however, they do form a balanced
quasi-convex tour. Solving the matching problem for the N + 1 nodes immediately
gives a solution to the matching problem on the original N nodes.

2.2. Some important lemmas. Since we are now working only with balanced
quasi-convex tours of alternating colors, we shall often change the names of the nodes
to R1, B1, . . . , RM , BM ; so Ri and Bj refer to the ith red node and the jth blue node
in the tour, respectively. (So x2i−1 is the same as Ri and x2i is the same as Bi.) Note
that this means N = 2M . To simplify notation, we define

ci = c(Ri, Bi) and c′i = c(Bi, Ri+1).

A greedy matching is a matching which contains no jumpers, i.e., every node is
matched to an adjacent node. There are two greedy matchings, namely, the one
containing all edges Ri ↔ Bi and the one containing all edges Bi−1 ↔ Ri and the
edge BM ↔ R1. For xi and xj nodes of opposite color, a matching σ is said to

180 SAMUEL R. BUSS AND PETER N. YIANILOS

be greedy on (xi, xj) provided it contains as a submatching the unique matching of
adjacent nodes contained in the interval (xi, xj). We similarly define the notion of σ
being greedy on a balanced interval I, where I is one of the intervals [xi, xj), [xi, xj],
or (xi, xj], but with the additional provisos that xi ↔ xi+1 is in σ in the first two
cases and that xj−1 ↔ xj is in σ in the second two cases.3

The notation [Ri, Bj] has already been defined. In addition, the notation [i, j]
denotes the interval of integers i, i + 1, . . . , j if i < j, or the (circular) interval i, i +
1, . . . ,M, 1, 2, . . . , j if j < i ≤M . We also use the notations (i, j], [i, j), and (i, j) for
the intervals with one or both of the endpoints omitted.

Definition 2.4. Let Ri and Bj be nodes; we write Ri → Bj to denote a directed
edge going from Ri forward (in tour order) to Bj. That is, we think of Ri → Bj
jumping over the nodes Ri, Bi, Ri+1, . . . , Rj , Bj. We say that Ri → Bj is a candidate
(meaning, a candidate for a jumper), if

c(Ri, Bj) +
∑
`∈[i,j)

c′` <
∑
`∈[i,j]

c`.

The intuitive meaning of Ri → Bj being a candidate is that it would be of lower cost
to use the jumper Ri ↔ Bj, plus the greedy matching of adjacent nodes in (Ri, Bj),
in place of just the greedy matching of adjacent nodes in [Ri, Bj].

A similar definition is used to define what it means for an edge Bi → Rj to be a
candidate; namely, Bi → Rj is a candidate if and only if

c(Bi, Rj) +
∑
`∈(i,j)

ci <
∑
`∈[i,j)

c′i.

Candidates always have endpoints of opposite colors and are directed. It is pos-
sible to have both Ri → Bj and Bj → Ri be (distinct) candidates or to have one or
neither of them candidates.

It is an easy observation that if there are no candidates, then the greedy assign-
ment(s) are minimum-cost matchings. To prove this, suppose σ is a minimum-cost
matching which contains a jumper; by Lemma 2.3, σ may be picked to contain no
crossing jumpers. Since there are no crossing jumpers, σ must contain a jumper
xi ↔ xj such that σ is greedy on (xi, xj) (namely, pick the jumper so as to minimize
the tour-order distance from xi to xj). Let σ′ be the matching which is the same
as σ except greedy on [xi, xj]. Clearly σ′ has one fewer jumper than σ, and since
xi → xj is not a candidate, σ′ has cost no greater than σ. Iterating this construction
shows that at least one of the jumperless greedy matchings must be minimum-cost.
To show they are both minimum-cost, let σ0 and σ1 be the greedy matchings which
contain the edges x1 ↔ x2 and x1 ↔ xN , respectively. Then σ0 cannot have cost lower
than (respectively, higher than) the cost of σ1 since otherwise, x2 → x1 (x1 → xN ,
respectively) would be a candidate.

Definition 2.5. A candidate xi → xj is a minimal candidate if and only if there
is no other candidate xk → x` in its interior; that is to say, there is no candidate
xk → x` with [xk, x`] a proper subset of [xi, xj].

Lemma 2.6. Consider a balanced quasi-convex tour of alternating colors.

3Note that, of the two greedy matchings for G, one is greedy on [x1, xN] and the other is greedy
on [x2, x1].

QUASI-CONVEX MATCHING 181

(i) Suppose Ra → Bb is a minimal candidate. Then every minimum-cost,
crossing-free matching is greedy on the interval (Ra, Bb). That is to say, every
minimum-cost, crossing-free matching contains the edges B`−1 ↔ R` for all ` ∈ (a, b].

(ii) Suppose Ba → Rb is a minimal candidate. Then every minimum-cost,
crossing-free matching is greedy on the interval (Ba, Rb). That is to say, every
minimum-cost, crossing-free matching contains the edges R` ↔ B` for all ` ∈ (a, b).

Note that Lemma 2.6 says only that the edges connecting adjacent nodes in the
interior of the minimal candidate are in every minimum-cost matching; it does not
say that the minimal candidate itself is a jumper in any minimum-cost matching. The
proof of Lemma 2.6 is fairly involved and we postpone it until section 2.3. Lemma 2.6
also holds for line-like tours with alternating colors for candidates x→ y with x, y in
input order.

Lemma 2.6 suggests an algorithm for finding a minimum-cost matching. Namely,
if there is a minimal candidate, greedily assign edges in its interior according to
Lemma 2.6. This induces a matching problem on the remaining unassigned nodes,
and it is clear that any minimum-cost matching on this smaller problem will lead to
a minimum-cost matching for the original problem. Iterating this, one can continue
removing nodes in the interiors of minimal candidates and reducing the problem size.
Eventually a matching problem with no candidates will be reached; in this case, it
suffices to greedily match the remaining nodes.

Unfortunately, this algorithm suggested by Lemma 2.6 is not linear time (yet);
thus we need to refine Lemma 2.6 somewhat with the following definition.

Definition 2.7. We define

Bnft[Ra, Bb] =

 ∑
i∈[a,b]

ci −
∑
i∈[a,b)

c′i

− c(Ra, Bb),

Bnft[Ba, Rb] =

 ∑
i∈[a,b)

c′i −
∑
i∈(a,b)

ci

− c(Ba, Rb),

and, for x and y the same color, Bnft[x, y] = −∞.

It is immediate that Bnft[x, y] > 0 if and only if x → y is a candidate; in fact,
Bnft[x, y] measures the benefit (i.e., the reduction in cost) of using x↔ y as a minimal
jumper instead of the greedy matching on [x, y].

The next lemma forms the basis for the correctness of the algorithm given in
section 3 for the serial transitive closure problem. The general idea is that the algo-
rithm will scan the nodes in tour order until at least one candidate is found and then,
according to Lemma 2.8, the algorithm will choose an interval (x`, xk) to greedily
match. Once the interval (`, k) has been greedily matched, the algorithm need only
solve the induced matching problem on the remaining nodes.

Lemma 2.8. Let G be a balanced quasi-convex tour matching problem. Let 1 <
k ≤ N and suppose Bnft[xi, xj] ≤ 0 for all 1 ≤ i < j < k. Further suppose that

m
def
= max{Bnft[xi, xk] : i < k} > 0 and let `

def
= max{i < k : Bnft[xi, xk] = m}. Then

every minimum-cost, crossing-free matching is greedy on (x`, xk).

Proof. The proof is, in essence, an iteration of Lemma 2.6. We argue by
induction on k. Let G, k, m, and ` satisfy the hypothesis of the lemma. Let
s = max{i < k : Bnft[xi, xk] > 0}, so xs → xk is a minimal candidate. By Lemma 2.6,
any minimum-cost, crossing-free solution for G is greedy on the interval (xs, xk).

182 SAMUEL R. BUSS AND PETER N. YIANILOS

Hence, it will suffice to let G′ be the matching problem obtained from G by discard-
ing the nodes xs+1, . . . , xk−1 and prove that any minimum-cost, crossing-free solution
for G′ is greedy on (x`, xs]. If ` = s, there is nothing to prove, so we assume ` < s.
Note that xk is now the (s+ 1)st node in the G′ tour order. We use Bnft′ to denote
the Bnft function for G′.

We claim the following:
(i) If 1 ≤ i < j ≤ s, Bnft′[xi, xj] = Bnft[xi, xj].
(ii) If 1 ≤ i ≤ s, Bnft′[xi, xk] = Bnft[xi, xk]− Bnft[xs, xk].

Claim (i) is immediate from the definition of Bnft. The intuitive meaning of (ii) is that
the benefit of using the jumper xi ↔ xk is reduced by the benefit already obtained
from the jumper xs ↔ xk. We formally prove (ii) for the case that xi and xs are
red and xk is blue; the opposite colored case has a similar proof. Assume xi = Ra,
xs = Rb, and xk = Bc. Then

Bnft′[Ra, Bc] =
∑
`∈[a,b)

ci + c(Rb, Bc)−
∑
`∈[a,b)

c′i − c(Ra, Bc),

Bnft[Ra, Bc] =
∑
`∈[a,c]

ci −
∑
`∈[a,c)

c′i − c(Ra, Bc),

Bnft[Rb, Bc] =
∑
`∈[b,c]

ci −
∑
`∈[b,c)

c′i − c(Rb, Bc).

From these three equations claim (ii) follows immediately.
Now let m′ = max{Bnft′[xi, xk] : i < s}. By claim (ii), m′ = m − Bnft[xs, xk];

since ` < s, m′ > 0. Likewise, ` = max{i < s : Bnft′[xi, xk] = m′}. Thus, by
the induction hypothesis, any minimum-cost solution for G′ is greedy on (x`, xs] and
Lemma 2.8 is proved.

Definition 2.9. The ∆ function is defined by

∆[Ra, Rb] =
∑
`∈[a,b)

c` −
∑
`∈[a,b)

c′`,

∆[Ba, Bb] =
∑
`∈[a,b)

c′` −
∑
`∈(a,b]

c`.

Lemma 2.10.
(i) Bnft[Ra, Bc] > Bnft[Rb, Bc] if and only if c(Ra, Bc)−c(Rb, Bc) < ∆[Ra, Rb].
(ii) Bnft[Ba, Rc] > Bnft[Bb, Rc] if and only if c(Ba, Rc)−c(Bb, Rc) < ∆[Ba, Bb].

Lemma 2.10 follows immediately from the definitions.
Lemma 2.11. Let u, v, x, y be in tour order with nodes u and v of one color and

x and y of the other color. Then

Bnft[u, x] > Bnft[v, x] ⇒ Bnft[u, y] > Bnft[v, y].

Proof. By Lemma 2.10, Bnft[u, x] > Bnft[v, x] is equivalent to c(u, x)− c(v, x) <
∆[u, v], and Bnft[u, y] > Bnft[v, y] is equivalent to c(u, y) − c(v, y) < ∆[u, v]. Now,
by quasi convexity, c(u, x) − c(v, x) ≥ c(u, y) − c(v, y), which suffices to prove the
lemma.

Let Ra and Rb be distinct red nodes. The previous two lemmas show that if
there is any node Bc (with Ra, Rb, and Bc in tour order) such that Bnft[Ra, Bc] is
greater than Bnft[Rb, Bc], then the first such Bc is the ∆[Ra, Rb]-crossover point of

QUASI-CONVEX MATCHING 183

Ra and Rb. We shall denote this first Bc, if it exists, by χ[Ra, Rb]; if it does not
exist, then χ[Ra, Rb] is said to be undefined. Similarly, χ[Ba, Bb] is defined to the
be the ∆[Ba, Bb]-crossover point of Ba and Bb, and, if defined, is the first Rc where
Bnft[Ba, Rc] is greater than Bnft[Bb, Rc].

We now assume that we have a procedure Ω(x, y, z), which, given nodes x, y, z in
tour order, returns “True” if χ[x, y] ≺y χ[y, z] and returns “False” if χ[y, z] ≺y χ[x, y].
(If neither condition holds, then Ω(x, y, z) may return an arbitrary truth value.) If
the weak analyticity condition holds, then Ω is constant-time computable. Without
this assumption, Ω is O(logN) time computable since Lemma 2.11 allows χ[−,−] to
be computable by binary search.

The general idea of the algorithm given in section 3 below is that it will scan the
nodes in tour order searching for candidates. Whenever a node is reached that is the
head of a candidate, the algorithm will take the candidate specified in Lemma 2.8 (the
one that was denoted x` → xk) and greedily match the nodes in its interior. The greed-
ily matched nodes are then dropped from consideration and the algorithm resumes
its search for a candidate. Suppose the u and v are two nodes already scanned in this
process that are being remembered as potential endpoints of candidates. Lemma 2.10
tells us that if a node x is found where Bnft[u, x] > Bnft[v, x], then at all succeeding
nodes y, Bnft[u, y] > Bnft[v, y]. By the criterion of Lemma 2.8, this means that after
the node x is found, there is no further reason to consider candidates that begin at
node v, since any candidate v → y would be subsumed by the better candidate u→ y.

To conclude this section we describe the algorithm in very general terms; in
section 3 we give the precise specification of the algorithm. The algorithm scans nodes
(starting with node x1, say) and maintains three lists. The first list, M, contains the
nodes in tour order which have been examined so far. The second list, L-1, contains
all the red nodes that need to be considered as potential endpoints of candidates (so
L-1 is guaranteed to contain all the nodes satisfying the criterion of Lemma 2.8).
The third list, L1, similarly contains all the blue nodes that need to be considered as
potential endpoints of candidates. At any point during the scan, the lists will be of
the form

M = x1, . . . , xr−1,

L-1 = Ra1 , . . . , Rap ,

L1 = Bb1 , . . . , Bbq ,

with L-1 and L1 subsequences of M. The following five conditions will be maintained
during execution:

(i) x1, . . . , xr−1 are the nodes scanned but not matched and are in tour order,
and there are no candidates xi → xj with 1 ≤ i < j < r.

(ii) xr−1 precedes χ[Rap−1
, Rap] in tour order.

(iii) For all 1 ≤ i ≤ p− 2, Ω(Rai , Rai+1
, Rai+2

) is false.
(iv) For all 1 ≤ i ≤ q − 2, Ω(Bbi , Bbi+1 , Bbi+2) is false.
(v) At any possible future node xk following xr−1 such that xk is the first

point where a candidate is discovered; if the x` which satisfies Lemma 2.8 is among
x1, . . . , xr−1 then it is already on the list L-1 or L1 (depending on which color it is).
When scanning the next node xr, the algorithm must do the following (we assume xr
is blue; similar actions are taken for red nodes):

(β) While p ≥ 2 and Bnft[Rap−1 , xr] > Bnft[Rap , xr], pop Rap from L-1 and
decrement p.

184 SAMUEL R. BUSS AND PETER N. YIANILOS

(γ) If Bnft[Rap , xr] > 0, greedily match nodes in the interval (Rap , xr). The

matched nodes are discarded from the lists M, L-1, and L1 (the remaining
nodes are to be implicitly renumbered at this point).

(δ) While q ≥ 2 and Ω(Baq−1
, Baq , xr), pop Baq from L1 and decrement q.

Then push xr onto the end of L1 (and increment q).

Step (β) is justified by recalling that if xr is past χ[Rap−1 , Rap], then Rap may be
removed from consideration as an endpoint of a candidate (by Lemma 2.8).

Step (δ) is justified as follows: suppose Ri = χ[Baq−1 , Baq] equals or precedes
Rj = χ[Baq , xr] (using tour order, beginning at Baq). Then at any future candidate
endpoint xk, either xk follows or equals Ri, in which case Bnft[Baq−1

, xk] is greater
than Bnft[Baq , xk], or xk precedes Rj , in which case, Bnft[xr, xk] is greater than
Bnft[Baq , xk]. Thus Baq will never be the starting endpoint of a candidate satisfying
the criteria of Lemma 2.8, and we may drop it from consideration.

To justify step (γ) we must show that the candidate Rap → xr satisfies the criteria
from Lemma 2.8; in view of the correctness of the rest of the algorithm, for this it
will suffice to show that Bnft[Rai , xr] ≤ Bnft[Rap , xr] for all 1 ≤ i < p. For this, note
that step (β) and condition (iii) above ensure that xr precedes χ[Rai , Rai+1

] for all
1 ≤ i < p. This, in turn, implies Bnft[Rai , xr] ≤ Bnft[Rai+1

, xr] for all i, which proves
the desired inequality.

After the algorithm has scanned all the nodes once, it will have found and pro-
cessed all candidates xi → xj where i < j. However, since the tour is circular, it is
necessary to process candidates xi → xj with i > j. At the end of the first scan,
the list M consists of all nodes x1, . . . , xn which have not been matched yet and
L-1 and L1 contain nodes Ra1

, . . . , Rap and Bb1 , . . . , Bbq , as usual. During the second
scan, the algorithm is searching for any candidates of the form Rai → Bj with j < ai
or of the form Bai → Rj with j ≤ ai (and only for such candidates). To process a
node during the second scan, the algorithm pops x1 off the left end of M, implicitly
renames x1 to xn and the rest of the nodes xi to xi−1, sets r = n, and does step (α)
(still assuming xr is blue):

(α) If xr equals Bb1 , then pop Bb1 from the list L1 and implicitly renumber L1,
decrementing q.

It then does steps (β)–(δ), except that in step (δ), the node xr is not added to the end
of L1. The reason for step (α) is that once a node Bbi is encountered on the second
scan, Bbi is no longer a possible starting endpoint for a candidate. The reason for not
adding xr to the end of L1 in step (δ) is that it cannot be the starting endpoint of a
candidate, because any such candidate would have already been found earlier.

The second scan will stop as soon as both L lists become empty. At this point
no candidates remain and a greedy matching may be used for the remaining nodes in
the M list.

The actual description of the algorithm with an efficient implementation is given
in section 3, and it is there proved that the algorithm is linear time with the weak
analyticity condition and O(N logN) time otherwise. Although we described steps
(α)–(δ) only for blue xr above, the algorithm in section 3 uses a toggle ψ to handle
both colors with the same code. Finally, one more important feature of the algorithm
is the way in which it computes the values of the Bnft function and of the ∆[x, y]
function; it uses intermediate values I[x] which are defined as follows.

Definition 2.12. The I[x] function is defined by

I[Ra] = ∆[R1, Ra],

QUASI-CONVEX MATCHING 185

I[Ba] = I[Ra] + c(Ra, Ba).

Note that I[Ra+1] = I[Ba]− c(Ba, Ra+1).
It is immediate from the definitions that, if x, y are tour order (starting from x1),

then

∆[x, y] = I[y]− I[x] for x and y red,

∆[x, y] = I[x]− I[y] for x and y blue,

Bnft[x, y] = I[y]− I[x]− c(x, y) for x red, y blue,

Bnft[x, y] = I[x]− I[y]− c(x, y) for x blue, y red.

These equalities permit the values of ∆ and Bnft to be computed in constant
time from the values of I[−]. Also, it is important to note that only the relative I[−]
values are needed; in other words, it is OK if the I[−] values are shifted by a constant
additive constant, since we always use the difference between two I[−] values.

The I[−] function is not only easy to compute but also provides an intuitive
graphical means of understanding the above lemmas and algorithm description. For
example, in Figure 2.1, R1 → B3 is a (minimal) candidate whereas R1 → B1 and
R1 → B2 are not candidates. In Figure 2.2(a), the node B3 is the relative crossover,
χ[R1, R2], of R1 and R2; on the other hand, in Figure 2.2(b), the relative crossover
does not exist. Figure 2.3(a) shows an example where Ω(R1, R2, R3) is true and
Figure 2.3(b) shows an example where Ω(R1, R2, R3) is false.

R1 B1 R2 B2 R3 B3

I[]R1

I[]1B

I[]B2

I[]B3 +c(,x)R1I[]R1

Fig. 2.1. R1 → B3 is a candidate as I[R1] + c(R1, B3) < I[B3], which is equivalent to
Bnft[R1, B3] > 0.

2.3. Proof of Lemma 2.6. By symmetry it will suffice to prove part (i). Since
the lemma is trivial in case a = b, we assume a 6= b. Let σ be a crossing-free minimum-
cost matching; we must prove that σ is greedy on (Ra, Bb). By the crossing freeness
of σ and by the fact that Ra → Bb is a minimal candidate, σ does not contain any
jumper with both endpoints in [Ra, Rb], except possibly Ra ↔ Bb itself. If Ra ↔ Bb
is in σ, then the same reasoning shows that σ is greedy on (Ra, Bb); so we suppose
that Ra ↔ Bb is not in σ. Since we are dealing (w.l.o.g.) with balanced tours, we
may assume that b = N , by renumbering nodes if necessary.

186 SAMUEL R. BUSS AND PETER N. YIANILOS

R1 B1 R2 B2 R3 B3

I[]R1

+c(,x)R1I[]R1

I[]B2

I[]1B

I[]B3

+c(,x)RI[]R2 2

(a)

R1 B1 R2 B2 R3 B3

+c(,x)R1I[]R1
+c(,x)RI[]R2 2

(b)

Fig. 2.2. Illustrations of the relative crossover, χ[R1.R2], of R1 and R2. In (a), B3 is χ[R1, R2],
since it is the first node x to satisfy I[R2]+c(R2, x) > I[R1]+c(R1, x). In (b), the relative crossover
does not exist.

Claim (i). Ra ↔ Ba is not in σ.

Suppose, for a contradiction, that Ra ↔ Ba is in σ. Let v be the least value such
that Rv ↔ Bq is in σ for some q < a < v. Note that such a v, a < v ≤ N , must
exist since there are no jumpers in [Ra, BN] and since σ is not greedy on [Ra, BN]
(it cannot be greedy on [Ra, BN], since Ra → BN is a candidate). By choice of v,
σ is greedy on [Ra, Rv). These edges in the matching σ are represented by edges
drawn above the line in Figure 2.4(a). Since Ra → BN is a minimal candidate,
Bnft[Ra, BN] > Bnft[Rv, BN], so Lemma 2.10 implies

∑
i∈[a,v)

ci −
∑
i∈[a,v)

c′i > c(Ra, BN)− c(Rv, BN).

QUASI-CONVEX MATCHING 187

R1 B1 R2 B2 R3 B3

(a)

R1 B1 R2 B2 R3 B3

(b)

Fig. 2.3. Ω(R1, R2, R3) is true in (a) and false in (b).

Since Ra, Rv, BN , and Bq are in tour order, quasi convexity implies

c(Ra, BN)− c(Rv, BN) ≥ c(Ra, Bq)− c(Rv, Bq).

Combining these inequalities yields∑
i∈[a,v)

ci + c(Rv, Bq) >
∑
i∈[a,v)

c′i + c(Ra, Bq).(2.1)

Let σ′ be the matching obtained from σ by replacing the jumper Bq ↔ Rv and the
greedy matching on [Ra, Rv) with the edge Bq ↔ Ra and the greedy matching on
(Ra, Rv]. The new edges in σ′ are drawn below the line in Figure 2.4(a). By (2.1), σ′

has cost strictly less than the cost of σ, which is a contradiction.
Claim (ii). RN ↔ BN is not in σ.
Claim (ii) is proved by an argument similar to Claim (i). Alternatively, reverse

the colors and the tour order and Claim (ii) is a version of Claim (i).

188 SAMUEL R. BUSS AND PETER N. YIANILOS

Bq

Bq

BRR BB R B v-1 vv-1 Nu u+1 u+1R Rar

(b)

BRR BR B R Ba a+1 v-1 va b+1 v-1 N

(a)

Fig. 2.4. Illustrations of Claims (i) and (iii) from the proof of Lemma 2.6. The edges above
the lines represent edges in the presumed minimum-cost matching σ; these are replaced by the edges
below the line in the lower-cost matching σ′.

Claim (iii). The matching σ is greedy on (Ra, Bb).
Suppose for a contradiction that σ is not greedy on (Ra, Bb). In view of Claims

(i) and (ii) and since σ has no jumpers in [Ra, BN], this means that there exist u and v
such that u is the least value, such that σ contains Bu ↔ Rr with r < a ≤ u, and
v is the least value, such that σ contains Rv ↔ Bq with q < a ≤ v. Namely, let
u be the least value ≥ a such that Bu ↔ Ru+1 is not in σ and v be the least value
> u such that Rv ↔ Bv is not in σ. For these choices of u and v, it must be that
q < r < a ≤ u ≤ v ≤ N and that σ is greedy on [Ba, Ru] and [Ru+1, Bv−1]. These
edges in the matching σ are represented by edges drawn above the line in Figure 2.4(b).

Since Ra → BN is a candidate,

∑
i∈[a,N]

ci > c(Ra, BN) +
∑

i∈[a,N)

c′i.

And since it is minimal, neither Ra → Bu nor Rv → BN are candidates; i.e.,

∑
i∈[a,u]

ci ≤ c(Ra, Bu) +
∑

i∈[a,u)

c′i,

∑
i∈[v,N]

ci ≤ c(Rv, BN) +
∑

i∈[v,N)

c′i.

Combining these three inequalities gives

∑
i∈(u,v)

ci + c(Ra, Bu) + c(Rv, BN) >
∑
i∈[u,v)

c′i + c(Ra, BN).(2.2)

Since Ra, Rv, BN , Bq and Rr, Ra, Bu, Bq are in tour order, quasi convexity implies the
two inequalities

c(Ra, Bq) + c(Rv, BN) ≤ c(Ra, BN) + c(Rv, Bq),

QUASI-CONVEX MATCHING 189

c(Rr, Bq) + c(Ra, Bu) ≤ c(Rr, Bu) + c(Ra, Bq)

which combine to yield

c(Ra , BN)− c(Ra, Bu)− c(Rv, BN)(2.3)

≥ c(Rr, Bq)− c(Rr, Bu)− c(Rv, Bq).

Using (2.2) and (2.3) gives the inequality

∑
i∈(u,v)

ci + c(Rr, Bu) + c(Rv, Bq) >
∑
i∈[u,v)

c′i + c(Rr, Bq).

Let σ′ be the matching obtained from σ by replacing the jumpers Rr ↔ Bu, Rv ↔ Bq,
and the greedy matching on (Bu, Rv) with the edge Rr ↔ Bq and the greedy matching
on [Bu, Rv]. The new edges in σ′ are drawn below the line in Figure 2.4(b). The last
inequality above says that σ′ has cost strictly less than the cost of σ, which is a
contradiction.

3. The algorithm. In this section, we give the actual algorithm for the main
theorems. The correctness of the algorithm follows from the development in sec-
tion 2.2. With Kanzelberger and Robinson, we have developed efficient implementa-
tions in ANSI-C of all the algorithms described below [5].4

3.1. Preliminaries. As mentioned above, the algorithm maintains three lists
of nodes called deques (for “double ended queues,” since we will have to access both
ends of the lists). The three deques are the “main” deque M and two “left” deques
L1 and L-1. The latter two are called “left deques” since they contain possible left
endpoints for candidates. The deques will be updated by push-right operations which
add a new node to the right end, by pop-right operations which pop the rightmost
node off the deque, and by pop-left operations. However, push-left operations are
never required. Deque operations can be efficiently implemented by using contiguous
memory locations to store the deque elements and maintaining pointers to the left
and right endpoints; each deque operation can then be performed in constant time.
For our algorithm, it will suffice to reserve enough space for 2N deque elements (with
no possibility that a deque will grow leftward since push-left’s are not used).

SubscriptsR, L, andR−1 are used to select the rightmost item, leftmost item, and
the item preceding the rightmost, respectively. So L-1

L refers to the leftmost element
of L-1, MR−1 refers to the item just before the rightmost member of M, etc. Each
deque element is actually a pair, for example, MR = (X, I); the first entry X of the
pair is a node and the second entry I is a numerical value, namely I = I[X] as defined
in section 2.2. To simplify notation, we shall use the same notation for a deque element
as for the node which is its first component. Thus, ML also denotes the node which
is its first component. We write I[ML] to denote its second (numerical) component.
Similar conventions apply to the L±1 deques. To simplify our presentation of the
algorithm, we deal with boundary effects by augmenting the definition of primitive
operations as necessary. For example, accessing a nonexistent deque element will
return an undefined indicator ∅ and, in general, functions of undefined operands are
false or zero (in particular, the cost function c(−,−) and the I[−] functions return
zero if they have ∅ as an argument).

4These C implementations are also available electronically from the authors or can currently be
obtained by anonymous ftp from math.ucsd.edu or ftp.nj.nec.com

190 SAMUEL R. BUSS AND PETER N. YIANILOS

Function Input() returns the next vertex from an imagined input tape, which
moves in the forward direction only and is assumed to hold a balanced alternating
color tour. When the tape’s end is reached, “undefined” is returned. Procedure
Output() is used to write an individual matching to an imagined output tape. They
are written as discovered but can easily be output in tour order (with only an extra
O(N) time computation).

To use the same code for red nodes and blue nodes, a variable ψ tracks vertex
color by toggling between −1 and 1. Our convention is that ψ = 1 corresponds to
blue and ψ = −1 to red.

3.2. Narrative description of the algorithm. Initialization consists of set-
ting the three deques to be empty and setting the color toggle ψ := −1.

The algorithm first reads nodes from the input and pushes them onto the right
end of the M deque, and then twice scans the nodes in tour order. During the two
scans, nodes are popped from the left end of M and then pushed onto its right end.5

In addition, while processing a node some nodes may be popped off the right end ofM
to be matched. It will always be the case that M contains a sequence of contiguous
nodes in tour order and that the node currently being scanned immediately follows
the (formerly) rightmost element of M.

The variable ψ will be maintained as a color toggle, so that ψ is equal to −1 if
the node currently being processed is red and to 1 if the current node is blue. The
algorithm used for pushing an element onto the right end of M follows.

Algorithm 3.1. This procedure pushes a vertex X onto the right of the M deque
and computes the corresponding I[X] value which is pushed along with X.

procedure Push Main (X)
I:= I [MR] + ψ · c(MR, X)
push-right (X,I) onto M
return ()

Algorithm 3.1 merely computes the I[−] value for a node X and pushes the node
and its I[−] value on the right end of M . To justify the computation of the value
of I[X], note that if X is blue, then ψ = 1 and I[X] was defined to equal I[MR] −
c(MR, X); whereas, if X is red then φ = −1 and I[X] equals I[MR] + c(MR, X).
(Unless M is empty, in which case, I[X] = 0.)

Once the current node has been pushed onto the right end of M, the following
code implements step (β) from section 2.2:

while c(L-ψ
R−1,MR)− c(L-ψ

R ,MR) < ψ · (I[L-ψ
R]− I[L-ψ

R−1])

pop-right L-ψ

To justify the correctness of the while condition, suppose that the currently
scanned node is red, so φ = −1. By Lemma 2.10, Bnft[L-ψ

R−1,MR] > Bnft[L-ψ
R ,MR] if

and only if c(L-ψ
R−1,MR)− c(L-ψ

R ,MR) < ∆[L-ψ
R−1,L

-ψ
R]. Furthermore, ∆[L-ψ

R−1,L
-ψ
R]

is equal to ψ · (I[L-ψ
R]− I[L-ψ

R−1]) since L-ψ contains blue nodes and ψ = −1 (by the
equalities at the end of section 2.2). In this case, MR is past the crossover point of

L
-ψ
R−1 and L

-ψ
R , so L

-ψ
R may be discarded from consideration as a left endpoint of a

candidate. A similar calculation justifies the case when the current node is blue.

5For line-like tours, only the first scan is needed; however, we treat only the more general (circular)
case.

QUASI-CONVEX MATCHING 191

To implement step (γ), the following code is used:

if c(MR,L
-ψ
R) < ψ · (I[MR]− I[L-ψ

R])
X := pop-right M
while MR 6= L

-ψ
R

Match Pair()
Push Main(X)

where Match Pair is defined below. The above if statement checks whether L
-ψ
R →

MR is a candidate; if so, the algorithm greedily assigns edges to nodes in the interior
of the candidate (where “greedily” means with respect to the nodes that have not
already been assigned). Before the greedy assignment is started, the rightmost entry
is popped from M and is saved as X to pushed back on the right end afterwards.
There are two reasons for this: first, this gets the current node X out of the way of
Match Pair’s operation, and second, and more importantly, when X is pushed back
onto M, the I[−] value for the current node is recomputed so as to be correct for the
reduced matching problem in which the greedily matched nodes are no longer present.
Match Pair is the following procedure:

procedure Match Pair()
Output (“MR−1 ↔MR”)
pop-right M
if MR = L

ψ
R

pop-right Lψ

pop-right M
return()

The procedure Match Pair assigns a jumper MR−1 ↔ MR and discards a matched
node from the deque Lψ if it appears there. Because of the while condition controlling
calls to Match Pair, it is not possible for a matched node to occur in L-ψ, so we do
not check for this condition.

To implement step (δ), the following code is used:

while Ω(LψR−1,L
ψ
R,MR) = “Yes”

pop-right Lψ

push-right MR onto Lψ (without popping MR)

That completes the description of how nodes are processed during the first scan.
As mentioned earlier, the last instruction (the push-right) is omitted from step (δ)
during the second scan. Other than this, the processing for steps (β)–(δ) is identical
in the two scans.

One potentially confusing aspect of the second scan is that the I[−] values are
no longer actually the correct I[−] values; for example, it is no longer the case that
I[ML] is necessarily equal to zero. Strictly speaking, the I[−] values all shift by an
additive constant when an entry is popped from the left end of M; however, it is not
necessary to implement this shift, since the algorithm only uses differences between
I[−] values. The end result is that nothing special needs to be done to the I values
when we pop-left M.

After both scans are completed, any remaining nodes may be greedily matched.
As discussed above, there are two possible greedy matchings and both have the
same (optimal) cost. Thus either one may be used; the algorithm below just calls

192 SAMUEL R. BUSS AND PETER N. YIANILOS

Match Pair repeatedly to assign one of these greedy matchings.
Algorithm 3.2. This is the matching algorithm for balanced quasi-convex tours.

All variables are global.

“Initialization”

M,L-1,L1 := ∅
ψ := -1

“Read Input into the M deque”

while [X := Input()] 6= ∅
Push Main (X)
ψ := −ψ

“The First Scan”

while Lψ is empty or ML 6= L
ψ
L

X := pop-left M
Process Node()

push-right MR onto Lψ

ψ := −ψ
“The Second Scan”

while L-1 and L1 are not both empty
X := pop-left M
if X = L

ψ
L

pop-left Lψ

Process Node()
ψ := −ψ

“Windup Processing”

while M is not empty
Match Pair()

Exit.
procedure Process Node()

Push Main(X)

while c(L-ψ
R−1,MR)− c(L-ψ

R ,MR) < (I[L-ψ
R]− I[L-ψ

R−1]) · ψ
pop-right L-ψ

if c(MR,L
-ψ
R) < ψ · (I[MR]− I[L-ψ

R])
X := pop-right M
while MR 6= L

-ψ
R

Match Pair()
Push Main(X)

while Ω(LψR−1,L
ψ
R,MR)

pop-right Lψ

return

The complete matching algorithm is shown as Algorithm 3.2. When interpreting
Algorithm 3.2, it is necessary to recall our convention that any predicate of undefined
arguments is to be false. This situation can occur in the four while and if conditions
of Process Node. If L-ψ is empty, then L

-ψ
R is undefined and the two while conditions

and the first if condition are to be false. Similarly, if L-ψ has < 2 elements, then the
first while condition is to be false; and if Lψ has < 2 elements, then the final while
condition is to be false.

QUASI-CONVEX MATCHING 193

The runtime of Algorithm 3.2 is either O(N) or O(N logN) depending on whether
the weak analyticity condition holds. To see this, note that the initialization and the
windup processing both take O(N) time. The loops for each of the two scans are
executed ≤ N times. Except for the while loops, each call to Process Node takes
constant time. The second while loop (which calls Match Pair) is executed more than
once only when edges are being output. If the first or third while loop is executed
more than once, then vertices are being popped from the L stacks. Since b 1

2Nc edges
are output and since O(N) vertices are pushed onto the L stacks, each of these while
loops are executed only O(N) times during the entire execution of the algorithm.
An iteration of the first or second while loop takes constant time, while an iteration
of the third while loop takes either constant time or O(logN) time, depending on
whether the weak analyticity property holds.

When the weak analyticity condition holds, the Ω predicate typically operates in
constant time by computing two theoretical relative crossovers and comparing their
positions. This happens, for example, when the tour consists of points lying on a circle,
with the cost function equal to Euclidean distance; section 3.3 outlines a constant-time
algorithm for this example. Without the weak analyticity condition, the Ω-predicate
runs in logarithmic time, by using a binary search of the M deque. This general (not
weakly analytic) case is handled by the generic Ω algorithm discussed in section 3.3.

There are a couple of improvements that can be made to the algorithm which will
increase execution speed by a constant factor. First, the calls to Match Pair made
during the “Windup Processing” do not need to check ifMR = L

ψ
R, since Lψ is empty

at this time. Second, if computing the cost function c(−,−) is more costly than simple
addition, then it is possible for Push Main() to use an alternative method during the
two scans to compute the cost c(MR, X) for nodes X which have just been popped
from the left of M (except for the first one popped from the left in the first scan).
Namely, the algorithm can save the old I[X] value for the node X as it is left-popped
off the dequeM. Then the cost function can be computed by computing the difference
between the I[−] value of X and the I[−] of the previous node left-popped from M.
This second improvement applies only to the first Push Main call in Process Node.

3.3. Algorithms for Ω. During the first scan, the procedure Ω is called (repeat-

edly) by Process Node to determine whether L
ψ
R should be popped before the current

node MR is pushed onto the right end of the Lψ deque. During the second scan, MR

is never pushed onto the Lψ deque; however, using the procedure Ω can allow the
Lψ deque to be more quickly emptied, thus speeding up the algorithm’s execution.
(However, the use of the Ω could be omitted during the second scan without affecting
the correctness of the algorithm.)

When Ω is called, L
ψ
R−1, L

ψ
R, and MR are distinct nodes, in tour order, and of

the same color. Let δ = (I[LψR−1] − I[LψR]) · ψ and ε = (I[LψR] − I[MR]) · ψ. Let Y

denote the δ-crossover point of L
ψ
R−1 and L

ψ
R, and let Z denote the ε-crossover point

of L
ψ
R and MR (note Y and/or Z may not exist). By definition, Y and Z are both

opposite in color from the other three nodes. The procedure Ω must return True if
Y exists and Z does not, must return False if Y does not exist, and, if both exist,
must return True if L

ψ
R, Y, Z are in tour order, must return True if L

ψ
R, Z, Y are in

tour order, and may return either value if Y = Z.

In this section, we discuss two algorithms for Ω. We first discuss a “generic”
algorithm that works for any cost function, regardless of whether the weak analyticity
condition holds. This generic Ω procedure is shown as Algorithm 3.3 below. The

194 SAMUEL R. BUSS AND PETER N. YIANILOS

generic Ω executes a binary search for a node which is at or past one of the crossover
points but is not at or past the other. Obviously, if the crossover Y exists, then
it exists in the range (LψR,L

ψ
R−1), and if the crossover Z exists, it is in the range

(MR,L
ψ
R). Furthermore, Y cannot exist in the range (LψR,MR), since otherwise it

would have been popped when Y was reached (by the first while loop in an earlier call

to Match Pair). Hence, the binary search may be confined to the range (MR,L
ψ
R−1),

provided that True is returned in the event that the binary search is unsuccessful.
In Algorithm 3.3, a new notation Mk is used. This presumes that the M deque

is implemented as an array; the elements of M fill a contiguous block of the array
elements. When we write Mk, we mean the kth entry of the array. The L deques
can contain pointers to M deque entries; in fact, in our preferred implementation,
the L deque entries contain only an index for an M deque entry. Thus the value h
can be found in constant time for Algorithm 3.3.

The generic Ω algorithm shown in Algorithm 3.3 takes O(logN) time since it uses
a binary search.

Algorithm 3.3. This is the generic Ω algorithm which works with any tour,
regardless of weak analyticity. Past Xover A and Past Xover B are boolean-valued
variables.

procedure Ω(LψR−1,L
ψ
R,MR)

“Nodes L
ψ
R−1, L

ψ
R and MR are the same color.”

Let h be the index so that Mh−1 is L
ψ
R−1.

Let ` be the index so that M` is MR.

δ := (I[LψR−1]− I[LψR]) · ψ
ε := (I[LψR]− I[MR]) · ψ
“Do binary search of opposite color nodes from M` to Mh−2”

while h > `+ 1
k := `+ 2 b(h− `)/4c
Past Xover A:= (c(LψR−1,Mk)− c(LψR,Mk)) < δ

Past Xover B:= (c(LψR,Mk)− c(MR,Mk)) < ε
if Past Xover A

if Past Xover B
h := k

else
return(TRUE)

else
if Past Xover B

return(FALSE)
else

` := k + 2

return (TRUE)

Next we describe an example of a linear time algorithm for Ω where the weak an-
alyticity condition holds. For this example, we assume that the nodes of the quasicon-
vex tour lie on the unit circle in the xy plane, the cost function is equal to straight-line
Euclidean distance, and the tour proceeds in counterclockwise order around the circle.
The Ω algorithm either is given, or computes, the xy coordinates of the three nodes
L
ψ
R−1, L

ψ
R, and MR. It then uses a routine Circle Crossover to find the theoretical

QUASI-CONVEX MATCHING 195

δ-crossover Y of L
ψ
R−1 and L

ψ
R and the theoretical ε-crossover of L

ψ
R and MR. If the

theoretical crossover Y exists, it will be in the interval [LψR,L
ψ
R−1], and if Z exists, Z

will be in the interval [MR,L
ψ
R]. When Y and Z both exist, the Ω procedure returns

True if L
ψ
R, Y, Z are in tour order or any two of these nodes are equal; otherwise the

procedure returns False.
Algorithm 3.4. This is the algorithm which computes the δ-theoretical crossover

point for two nodes lying on the unit circle with cost function equal to Euclidean
distance. The inputs are δ and two points (x1, y1) and (x2, y2) lying on the unit
circle. The procedure returns TRUE or FALSE to indicate whether the crossover
point exists; if it does exist, it sets (x3, y3) equal to the crossover point. There is a
possibility that roundoff errors will lead to spurious “FALSE” answers, so the values
of (x3, y3) are set even when FALSE is returned.

procedure Circle Crossover(x1,y1,x2,y2,δ)
a := δ/2
hip := (x1 · x2 + y1 · y2)/2
if hip > 0.5 “two checks to avoid roundoff errors”

hip := 0.5
else if hip < −0.5

hip := −0.5
csqr := .5− hip
c :=

√
csqr

d :=
√
.5 + hip

if −x2 · y1 + x1 · y2 < 0
d := −d

asqr := a · a
if asqr > csqr

if a < 0
x3 := x1

y3 := y1
else

x3 := x2

y3 := y2
return(FALSE)

u := −(1 + d)(1− (asqr/csqr))
if asqr = csqr

v := a
else

v := a
√

1 + (u2)/(csqr − asqr)
if hip > 0

α := (x1 + x2)/(2d)
β := (y1 + y2)/(2d)

else
α := (y2 − y1)/(2c)
β := (x1 − x2)/(2c)

x3 := (u+ d)α− vβ
y3 := vα+ (u+ d)β
return (TRUE)

Of course, the crucial implementation difficulty for the procedure Ω is the algo-
rithm for Circle Crossover; this is shown as Algorithm 3.4. Circle Crossover takes
two points (x1, y1) and (x2, y2) lying on the unit circle in the xy-plane and a real

196 SAMUEL R. BUSS AND PETER N. YIANILOS

value δ. The theoretical δ-crossover point of (x1, y1) and (x2, y2) is found as an in-
tersection point of the unit circle and the hyperbola consisting of those points which
have distance from (x1, y1) equal to δ plus their distance from (x2, y2) (namely, the
intersection which is not between (x1, y1) and (x2, y2) in tour order). Letting the “half
inner product” hip equal (x1x2+y1y2)/2, the distance between the two points is equal

to 2c, where c =
√

1
2 − hip. And, the midpoint of the line segment between the two

points is distance
√

1
2 + hip from the origin. To conveniently express the equation

for the hyperbola, we set up uv-axes as a rigid translation of the xy-axes, positioned
so that the points (x1, y1) and (x2, y2) have uv-coordinates (0,−c) and (0, c), respec-

tively. This makes the origin have uv-coordinates (d, 0), where d = ±
√

1
2 + hip with

the sign being + if and only if the angle from (x1, y1) to (x2, y2) is ≤ 180 deg. In the
uv-plane, the hyperbola has equation

v2

a2
− u2

c2 − a2
= 1

where a = δ/2, and the unit circle has equation

(u+ d)2 + v2 = 1.

Eliminating v2 from these equations and solving for u, and then for v, shows that the
desired intersection point of the circle and the hyperbola has uv-coordinates

u = (1− d)

(
1− a2

c2

)
,

v = a

√
1 +

u2

c2 − a2
.

Given the uv-coordinates, it is an easy matter to find values α, β which allow the
corresponding xy-coordinates to be computed. Algorithm 3.4 show two equivalent
calculations of α, β; the algorithm chooses the one which avoids division by zero or
division by a number close to zero. Algorithm 3.4, as shown, also checks for some
error conditions that can arise from roundoff errors. In particular, it makes sure
that |hip| ≤ 1

2 , and that a2 < c2. Amazingly enough, we found, during extensive
testing with randomly generated tours of points on the unit circle, that roundoff error
occasionally caused these conditions to be violated, even for points on the unit circle
and for |a| < |c|.

3.4. An ANSI-C implementation. An efficient and highly portable ANSI-C
implementation of our algorithms is described in [5], which includes complete source
code, test programs for several interesting cases, benchmark results, and software to
produce postscript graphical representations of the matchings found. To help ensure
the correctness of our implementation, a straightforward O(n3) dynamic program-
ming solution was also implemented, and the results compared for 4,000,000 pseudo-
randomly drawn problems. Figure 1.1 shows an example of a matching produced by
our software.

Benchmark results for a variety of RISC processors produced nearly identical
results when normalized by clock rate. So timing results in [5] are given in units of
RISC cycles. Graphs of up to 20, 000 nodes are included in this study.

QUASI-CONVEX MATCHING 197

Recall that O(logN) time is a worst case bound for generic Ω. One interesting
experimental result is that over the range of graph sizes considered, for the specific
settings implemented in the test programs, and given the uniform pseudorandom
manner in which problem instances were generated, the generic Ω implementation
exhibits very nearly linear time performance. In other words, the experimentally
observed runtime of Ω was nearly constant. We suspect that this is primarily a
consequence of the uniform random distribution from which problems were drawn, and
that it should be possible to demonstrate expected time results better than O(logN)
for more structured settings.

The benchmarks included one line-like and two circular settings. Solving pseudo-
randomly drawn matching problems of size n required on average between 2,000 and
16,000 RISC cycles per node depending on the setting and on whether a constant-time
or generic Ω was employed. It is interesting to note that, in all cases, the constant-
time Ω performed better by a factor ranging from roughly 1.5 to slightly over 3. Thus,
for some problems, the linear time result of this paper may be of practical interest.

Despite our focus on efficiency, further code improvements and cost function eval-
uation by table lookup may contribute to significant performance improvement.

4. Nonbipartite, quasi-convex tours. In this section we show how the earlier
algorithms can be applied to nonbipartite, quasi-convex tours. The principal obser-
vation is that nonbipartite tours may be made bipartite by the simple construction
of making the nodes alternate in color. This is already observed by Marcotte and
Suri [20] in a more restrictive setting; we repeat the construction here for the sake of
completeness.

First, it is apparent that the proof of Lemma 2.3 still works in the nonbipartite
case, and thus any nonbipartite, quasi-convex tour has a minimum-cost matching in
which no jumpers cross. This fact implies the following two lemmas.

Lemma 4.1. Let x1, . . . , xN be a nonbipartite, quasi-convex tour with N even.
Then there exists a minimum-cost matching such that every edge in the tour is of the
form xi ↔ xj with i even and j odd.

Proof. It will suffice to show that any crossing-free matching has this property.
Suppose xi ↔ xj is a jumper in a crossing-free matching, with i < j. Since N is even,
the matching is complete in that every node is matched. The crossing-free property
thus implies that the nodes in (xi, xj) are matched with each other, so there are an
even number of such nodes, i.e., one of i and j is even and the other is odd.

Lemma 4.2. Let x1, . . . , xN be a nonbipartite line-like quasi-convex tour. Then
there exists a minimum-cost matching such that every edge in the tour is of the form
xi ↔ xj with i even and j odd.

Proof. If N is even then this lemma is just a special case of the former lemma. If
N is odd, then add an additional node xN+1 to the end of the tour, with c(xi, xN+1) =
0 for all i. The resulting tour is again quasi-convex and of even length; so the lemma
again follows immediately from the former lemma.

When Lemmas 4.1 and 4.2 apply, we may color the even nodes red and the odd
nodes blue and reduce the nonbipartite matching problem to a bipartite matching
problem. As an immediate corollary, we have that the two main theorems also apply
in the nonbipartite setting; namely, for nonbipartite, quasi-convex tours of even length
and for nonbipartite, line-like, quasi-convex tours, the matching problem can always
be solved in O(N logN) time and it can be solved in O(N) time if the weak analyticity
condition holds.

We do not know whether similar algorithms exist for the case of general (i.e.,

198 SAMUEL R. BUSS AND PETER N. YIANILOS

nonline-like) quasi-convex tours of odd length. Similarly, we do not know any linear
or near-linear time algorithms for bipartite, quasi-convex tours which are neither
balanced nor line-like.

We conclude this section by mentioning a tantalizing connection between our
work and the work of Yao [25]. Yao gave a quadratic runtime algorithm for solving
the dynamic programming problem

d(i, j) = c(i, j) + min{d(i, k − 1) + d(k, j) : i < k ≤ j}

for line-like quasi-convex tours with cost function c (improving on the obvious cubic-
time algorithm). Our nonbipartite matching problem can be stated as a similar dy-
namic programming problem; namely, the minimum-cost, MC(i, j), of a complete
matching on the nodes in [xi, xj] can be recursively defined to equal

min{c(i, k) +MC(i+ 1, k − 1) +MC(k + 1, j) : i < k ≤ j}.

(A similar dynamic programming algorithm can be given for the bipartite match-
ing problem.) The obvious naive algorithm for computing MC(−,−) is cubic-time;
however, our main results give (near)-linear time algorithms for line-like quasi-convex
tours. This raises the possibility that the dynamic programming problem considered
by Yao may also have a near-linear time solution.

5. Applications to string matching. As a final topic we briefly discuss the
application of our matching results to string comparison. A full treatment is beyond
the scope of this paper, but additional details and related algorithms may be found
in [6]. Given two symbol strings v = a1a2 · · · an and w = b1b2 · · · bn, our goal is to
measure a particular notion of distance between them. Intuitively, distance acts as
a measure of similarity; i.e., strings that are highly similar (highly dissimilar) are
to have a small (large) distance between them. The purpose of such formulations is
usually to approximate human similarity judgments within a pattern classification or
information retrieval system.

Suppose f(x) is a monotonely increasing, concave-down function with f(0) = 0.
Let symbols a1, . . . , an in v be a graph’s red nodes and b1, . . . , bn in w be its blue nodes,
and consider bipartite matchings of these 2n symbols. In the simplest formulation,
we define the cost of an edge ai ↔ bj as f(|j− i|) if ai and bj are the same symbol and
as f(n) if ai and bj are distinct symbols. The cost of matching unequal characters
can also be set to be any other fixed value instead of f(n). Our distance, σ(v, w),
between strings v and w is then the minimum cost of any such bipartite matching.

As an example, consider the two strings “delve” and “level” and let f(x) =
√
x.

Then the distance between these two strings is
√

5 +
√

0 +
√

2 +
√

1 +
√

1 ≈ 5.65.

As we have set up our problem above, the computation of σ(v, w) is not directly an
instance of the quasi-convex matching problem. However we can compute the σ func-
tion by considering each alphabet symbol α separately, and solving the quasi-convex
matching problem σα which results from restricting attention to occurrences of a sin-
gle alphabet symbol at a time. To make this clear, we introduce a special symbol “-”
which indicates the absence of an alphabet symbol. The value of σ(“delve,”“level”)
can be expressed as the sum

σd(“d----”,“-----”) + σe(“-e--e”,“-e-e-”)

+σl(“--l--”,“l---l”) + σv(“---v-”,“--v--”).

QUASI-CONVEX MATCHING 199

To make the summed σα terms equal σ as originally defined, each σα is defined to be
the subproblem’s minimum matching cost plus f(n)/2 times the number of unmatched
symbols.

We will loosely refer to distance functions that result from this kind of formula-
tion as σ-distances. Assuming that f(x) satisfies the weak analyticity condition, it
is not too difficult to show that it is possible to compute σ(v, w) in linear time. If
the weak analyticity condition does not hold, then our results give an O(n logn) time
algorithm.

A novel feature of our σ-distances is that distinct alphabet symbols are treated
independently. This is in contrast to most prior work which has used “least edit dis-
tance” for string comparison (see [21] for a survey). As an illustration of the difference
between our distance measure and the “edit distance” approach, consider comparing
the word “abcde” with its mirror image “edcba.” Our approach recognizes some sim-
ilarity between these two forms, while the most standard “edit distance” approach
sees only that the two strings have “c” in common—in essence substituting the first
two and last two symbols of the string without noticing the additional occurrences of
the same symbols at the other end of the other string.

A special form of our σ-distance measure in which f(x) = x, and the optimal
matching is only approximated, was introduced earlier by the authors and shown to
have a simple linear time algorithm [26, 27]. Its relationship to σ-distances is described
in [6]. This earlier algorithm has been successfully used in commercial applications,
especially for spelling correction in word processing software, typewriters, and hand-
held dictionary devices (we estimate that over 15,000,000 such software/hardware
units have been sold by Proximity Technology, Franklin Electronic Publishers, and
their licensees). Other less prominent commercial applications include database field
search (e.g., looking up a name or address), and the analysis of multifield records
such as mailing addresses, in order to eliminate near-duplicates. In both of these
applications, the strict global left-right ordering imposed by O(n2) time “edit dis-
tance” methods can be problematic. On the other hand, very local left-right order
preservation seems to be an important part of similarity perception in humans. One
simple adaptation of our σ-distance methods which goes a long way toward capturing
this characteristic consists of extending the alphabet beyond single symbols to include
digraphs or multigraphs. The result is increased sensitivity to local permutation. An-
other effective alphabet extension technique involves the addition of feature symbols
to the alphabet to mark events such as likely phonetic transitions. We expect that the
use of general concave-down distance functions (as opposed to f(x) = x) will improve
the quality of the similarity judgments possible within the σ-distance framework.

The development above considers strings of equal length only. The unequal length
case is not a difficult generalization but considering it does highlight the issue of em-
bedding. By this we mean that it is implicit in our formulation that the two strings
are in a sense embedded into the real line. The particular, rather natural embedding
we’ve assumed so far maps ai and bi to value i on the real line, but others are possible.

A detailed comparison of our methods with “edit distance” approaches is beyond
the scope of this paper. But we must point out that the “edit distance” formulation
is in several senses richer than ours. First, the cost of matching different alphabet
members need not be fixed. Also, our distance formulation depends on a desig-
nated embedding while the “edit distance” method requires no such specification.
Finally, for some problems left-right order preservation may be desirable. On the
other hand, even the simplest “edit distance” approach is O(n2) compared with the
O(n) or O(n logn) complexity of our method. We therefore feel that additional work

200 SAMUEL R. BUSS AND PETER N. YIANILOS

is needed to better understand the applications of our approach—and perhaps extend
it.

Acknowledgments. We wish to thank Dina Kravets, Dave Robinson, and War-
ren Smith for helpful discussions and Dave Robinson and Kirk Kanzelberger for im-
plementing and testing the algorithms described above.

REFERENCES

[1] A. Aggarwal, A. Bar-Noy, S. Khuller, D. Kravets, and B. Schieber, Efficient minimum
cost matching using quadrangle inequality, in Proc. 33rd Annual IEEE Symp. on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 583–592.

[2] A. Aggarwal and M. Klawe, Applications of generalized matrix searching to geometric al-
gorithms, Discrete Appl. Math., 27 (1990), pp. 3–23.

[3] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications of a
matrix-searching algorithm, Algorithmica, 2 (1987), pp. 195–208.

[4] A. Aggarwal and J. Park, Notes on searching in multidimensional monotone arrays, in Proc.
29th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1988, pp. 497–512.

[5] S. R. Buss, K. G. Kanzelberger, D. Robinson, and P. N. Yianilos, Solving the Minimum-
cost Matching Problem for Quasi-convex Tours: An Efficient ANSI-C Implementation,
Tech. Report CS94-370, University of California, San Diego, 1994.

[6] S. R. Buss and P. N. Yianilos, A Bipartite Matching Approach to Approximate String Com-
parison and Search, Tech. Report, NEC Research Institute, Princeton, NJ, 1995.

[7] D. Eppstein, Sequence comparison with mixed convex and concave costs, J. Algorithms, 11
(1990), pp. 85–101.

[8] Z. Galil and R. Giancarlo, Speeding up dynamic programming with applications to molecular
biology, Theoret. Comput. Sci., 64 (1989), pp. 107–118.

[9] Z. Galil and K. Park, A linear-time algorithm for concave one-dimensional dynamic pro-
gramming, Inform. Process. Lett., 33 (1990), pp. 309–311.

[10] P. Gilmore and R. Gomory, Sequencing a one state-variable machine: A solvable case of the
traveling salesman problem, Oper. Res., 12 (1964), pp. 655–679.

[11] X. He, An efficient parallel algorithm for finding minimum weight matching for points on a
convex polygon, Inform. Process. Lett., 37 (1991), pp. 111–116.

[12] D. S. Hirschberg and L. L. Larmore, The least weight subsequence problem, SIAM J. Com-
put., 16 (1987), pp. 628–638.

[13] A. J. Hoffman, On simple linear programming problems, in Convexity: Proceedings of the Sev-
enth Symposium in Pure Mathematics of the AMS, V. Klee, ed., American Mathematical
Society, Providence, RI, 1963, pp. 317–327.

[14] R. M. Karp and S.-Y. R. Li, Two special cases of the assignment problem, Discrete Math.,
13 (1975), pp. 129–142.

[15] M. M. Klawe and D. J. Kleitman, An almost linear time algorithm for generalized matrix
searching, SIAM J. Discrete Math., 3 (1990), pp. 81–97.

[16] D. Kravets and J. K. Park, Selection and sorting in totally monotone arrays, Math. Systems
Theory, 24 (1991), pp. 201–220.

[17] L. L. Larmore and B. Schieber, On-line dynamic programming with applications to the
prediction of RNA secondary structure, J. Algorithms, 12 (1991), pp. 490–515.

[18] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[19] Y. Mansour, J. K. Park, B. Schieber, and S. Sen, Improved selection in totally monotone
arrays, Internat. J. Comput. Geom. Appl., 3 (1993), pp. 115–132.

[20] O. Marcotte and S. Suri, Fast matching algorithms for points on a polygon, SIAM J. Com-
put., 20 (1991), pp. 405–422.

[21] D. Sankoff and J. B. Kruskal, Time Warps, String Edits and Macromolecules: The Theory
and Practice of Sequence Comparison, Addison–Wesley, Reading, MA, 1983.

[22] P. M. Vaidya, Geometry helps in matching, SIAM J. Comput., 18 (1989), pp. 1201–1225.
[23] M. Werman, S. Peleg, R. Melter, and T. Kong, Bipartite graph matching for points on a

line or a circle, J. Algorithms, 7 (1986), pp. 277–284.
[24] R. Wilber, The concave least-weight subsequence problem revisited, J. Algorithms, 9 (1988),

pp. 418–425.

QUASI-CONVEX MATCHING 201

[25] F. F. Yao, Speed-up in dynamic programming, SIAM J. Alg. Discrete Methods, 3 (1982),
pp. 523–540.

[26] P. N. Yianilos, The Definition, Computation and Application of Symbol String Similarity
Functions, Master’s thesis, Emory University, Atlanta, GA, 1978.

[27] P. N. Yianilos and S. R. Buss, Associative memory circuit system and method, continuation-
in-part, U.S. Patent 4490811, 1984.

SPACE-EFFICIENT SCHEDULING OF MULTITHREADED
COMPUTATIONS∗

ROBERT D. BLUMOFE† AND CHARLES E. LEISERSON‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 202–229, February 1998 009

Abstract. This paper considers the problem of scheduling dynamic parallel computations to
achieve linear speedup without using significantly more space per processor than that required for
a single-processor execution. Utilizing a new graph-theoretic model of multithreaded computation,
execution efficiency is quantified by three important measures: T1 is the time required for executing
the computation on a 1 processor, T∞ is the time required by an infinite number of processors, and
S1 is the space required to execute the computation on a 1 processor. A computation executed on
P processors is time-efficient if the time is O(T1/P + T∞), that is, it achieves linear speedup when
P = O(T1/T∞), and it is space-efficient if it uses O(S1P) total space, that is, the space per processor
is within a constant factor of that required for a 1-processor execution.

The first result derived from this model shows that there exist multithreaded computations such
that no execution schedule can simultaneously achieve efficient time and efficient space. But by
restricting attention to “strict” computations—those in which all arguments to a procedure must be
available before the procedure can be invoked—much more positive results are obtainable. Specif-
ically, for any strict multithreaded computation, a simple online algorithm can compute a schedule
that is both time-efficient and space-efficient. Unfortunately, because the algorithm uses a global
queue, the overhead of computing the schedule can be substantial. This problem is overcome by
a decentralized algorithm that can compute and execute a P -processor schedule online in expected
time O(T1/P + T∞ lgP) and worst-case space O(S1P lgP), including overhead costs.

Key words. parallel computing, multithreaded computing, parallel algorithms, scheduling
algorithms, randomized algorithms, strict execution, stack memory

AMS subject classifications. 68Q22, 68Q25, 68M20

PII. S0097539793259471

1. Introduction. In the course of investigating schemes for general-purpose
MIMD-style parallel computation, many diverse research groups have agreed on mul-
tithreading as a dominant paradigm. As an example, modern dataflow systems
[16, 19, 25, 33, 34, 35, 40, 41] partition the dataflow instructions into fixed groups
called threads and arrange the instructions of each thread into a fixed sequential order
at compile time. At run time, a scheduler dynamically orders execution of the threads.
Other systems employ schedulers that dynamically order threads based on the avail-
ability of data in shared-memory multiprocessors [1, 10, 23] or message arrivals in
message-passing multicomputers [2, 17, 29, 44].

Rapid execution of a multithreaded computation on a parallel computer requires
exposing and exploiting parallelism in the computation by keeping enough threads
concurrently alive to keep the processors of the computer busy. If processors are busy
most of the time, the P -processor execution schedule X of the computation exhibits

∗Received by the editors December 9, 1993; accepted for publication (in revised form) January
12, 1996. This research was supported in part by the Defense Advanced Research Projects Agency
under grant N00014-91-J-1698. An extended abstract of this paper appeared in the Proceedings of
the 25th Annual ACM Symposium on the Theory of Computing (STOC), San Diego, CA, ACM,
New York, 1993, pp. 362–371.

http://www.siam.org/journals/sicomp/27-1/25947.html
†Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188

(rdb@cs.utexas.edu). This research was conducted at the MIT Laboratory for Computer Science
with additional support from a National Science Foundation Graduate Fellowship.

‡MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139
(cel@mit.edu).

202

SCHEDULING MULTITHREADED COMPUTATIONS 203

linear speedup: the running time T (X) is order P times faster than the optimal
running time T1 with 1 processor, that is, T (X) = O(T1/P).

In attempting to expose parallelism, however, schedulers often end up exposing
more parallelism than the computer can actually exploit, and since each living thread
requires the use of a certain amount of memory, such schedulers can easily overrun the
memory capacity of the machine [15, 22, 24, 39, 43]. To date, the space requirements
of multithreaded computations have been managed with heuristics or not at all [14,
15, 22, 24, 26, 32, 39, 43]. In this paper, we use algorithmic techniques to address the
problem of managing storage for multithreaded computations. Our goal is to develop
scheduling algorithms that expose sufficient parallelism to obtain linear speedup but
without exposing so much parallelism that the space requirements become excessive.

We compare the total space S(X) required by a P -processor execution schedule
X with the space S1 used by a space-optimal 1-processor execution. We wish to use
as little space as possible, and we argue that a space-efficient P -processor execution
schedule X exhibits at most linear expansion of space, that is, S(X) = O(S1P).

Our first result shows that, in general, it is not possible to achieve both linear
speedup and linear expansion of space. We exhibit a multithreaded computation such
that any execution schedule X that achieves a factor of ρ speedup, that is, execution
time T (X) ≤ T1/ρ, must use space at least S(X) ≥ (1/4)(ρ− 1)

√
T1 +S1. For such a

computation, even achieving a factor of 2 speedup (ρ = 2) requires space that grows
as a function of the serial execution time.

In order to cope with this negative result, we restrict our attention to the class of
“strict” multithreaded computations. Intuitively, a strict computation is one in which
no subroutine is called until all its parameters are available, although the parameters
may be evaluated in parallel. Computations such as parallel divide-and-conquer,
backtrack search, branch-and-bound, and game-tree search are all strict.

We show that for any strict multithreaded computation and any number P
of processors, there exists a P -processor execution schedule X that achieves time
T (X) ≤ T1/P +T∞, where T∞ is the optimal execution time on an infinite number of
processors, and space S(X) ≤ S1P . Such a schedule exhibits linear expansion of space
and linear speedup, T (X) = O(T1/P), provided the average available parallelism,
which we define as T1/T∞, is at least proportional to P , that is, T1/T∞ = Ω(P). We
prove such schedules exist by exhibiting a simple centralized algorithm to compute
them. We give a second, somewhat more efficient algorithm that computes equally
good execution schedules; this algorithm is online and should be practical for moder-
ate numbers of processors, but its use of a centralized queue makes it inefficient for
large numbers of processors.

To demonstrate an algorithm that is efficient even for large machines, we give a
randomized, distributed, and online scheduling algorithm that achieves space expan-
sion proportional to P lgP for any strict computation and linear expected speedup
for any strict computation with average available parallelism T1/T∞ = Ω(P lgP).

We also show that some nonstrictness can be allowed in an otherwise strict com-
putation in a way that may improve performance but does not adversely affect the
time and space bounds.

The remainder of this paper is organized as follows. Section 2 develops a for-
mal model of multithreaded computation and execution schedules. In section 3, we
characterize multithreaded computations with three parameters and state some ba-
sic bounds relating these parameters to execution time and space. The lower bound
for general multithreaded computations is presented in section 4. The upper bound

204 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

Fig. 2.1. A multithreaded computation. This computation contains 20 tasks v1, v2, . . . , v20 and
six threads Γ1,Γ2, . . . ,Γ6.

for strict computations and the technique for handling limited nonstrictness are pre-
sented in section 5. Section 6 presents a distributed scheduling algorithm for strict
computations. Finally, in section 7 we conclude with a discussion of related and future
work.

2. A model for multithreaded computation. This section defines the model
of multithreaded computation that we use in this paper. We also define what it means
for a parallel computer to execute a multithreaded computation.

A multithreaded computation is composed of a set of threads, each of which is a
sequential ordering of unit-size tasks. In Figure 2.1, for example, each shaded block
is a thread with circles representing tasks and the horizontal edges, called continue
edges, representing the sequential ordering. Thread Γ5 of this example contains three
tasks: v10, v11, and v12. The tasks of a thread must execute in this sequential order
from the first (leftmost) task to the last (rightmost) task. In order to execute a thread,
we allocate for it a chunk of memory, called an activation frame, that the tasks of the
thread can use to store the values on which they compute.

A P -processor execution schedule for a multithreaded computation determines
which processors of a P -processor parallel computer execute which tasks at each step.
In any given step of an execution schedule, each processor either executes a single
task or sits idle. A 3-processor execution schedule for our example computation
(Figure 2.1) is shown in Figure 2.2. At step 3 of this example, processors p1 and p2

each execute a task while processor p3 sits idle.
During the course of its execution, a thread may create, or spawn, other threads.

Spawning a thread is like a subroutine call except that the spawning thread can
operate concurrently with the spawned thread. We consider spawned threads to be
children of the thread that did the spawning, and a thread may spawn as many children
as it desires. In this way, threads are organized into a spawn tree as indicated in
Figure 2.1 by the downward-pointing, shaded edges, called spawn edges, that connect
threads to their spawned children. The spawn tree is the parallel analogue of a call
tree. In our example computation, the spawn tree’s root thread Γ1 has two children,
Γ2 and Γ6, and thread Γ2 has three children, Γ3, Γ4, and Γ5. Threads Γ3, Γ4, Γ5, and
Γ6, which have no children, are leaf threads.

Each spawn edge goes from a specific task—the task that actually does the spawn
operation—in the parent thread to the first task of the child thread. An execution

SCHEDULING MULTITHREADED COMPUTATIONS 205

processor activity
step living threads p1 p2 p3

1 Γ1 v1

2 Γ1 v2

3 Γ1 Γ2 v3 v14

4 Γ1 Γ2 Γ3 Γ6 v4 v6 v15

5 Γ1 Γ2 Γ3 Γ4 Γ6 v5 v9 v16

6 Γ1 Γ2 Γ4 Γ5 Γ6 v7 v10 v17

7 Γ1 Γ2 Γ4 Γ5 v8 v18

8 Γ1 Γ2 Γ5 v19 v11

9 Γ1 Γ2 Γ5 v12

10 Γ1 Γ2 v13

11 Γ1 v20

Fig. 2.2. A 3-processor execution schedule for the computation of Figure 2.1. This schedule
lists the living threads at the start of each step and the task (if any) executed by each of the three
processors, p1, p2, and p3, at each step. Living threads that are ready are listed in bold. The other
living threads are stalled.

schedule must obey this edge in that no processor may execute a task in a spawned
child thread until after the spawning task in the parent thread has been executed. In
our example computation (Figure 2.1), due to the spawn edge (v6, v7), task v7 cannot
be executed until after the spawning task v6. Consistent with our unit-time model of
tasks, a single task may spawn at most one child. When the spawning task executes,
it allocates an activation frame for the new child thread. Once a thread has been
spawned and its frame has been allocated, we say the thread is alive or living. When
the last task of a thread executes, it deallocates its frame and the thread dies. In our
3-processor execution schedule (Figure 2.2), thread Γ5 is spawned at step 5 and dies
at step 9. Therefore, it is living at steps 6, 7, 8, and 9.

An execution schedule must respect one more kind of dependency. Consider a
task that produces a data value that is consumed by another task. Such a pro-
ducer/consumer relationship precludes the consuming task from executing until after
the producing task. To enforce such orderings, we introduce data-dependency edges,
as shown in Figure 2.1 by the curved edges. If the execution of a thread arrives at a
consuming task before the producing task has executed, execution of the consuming
thread cannot continue; the thread stalls. Once the producing task executes, the
data dependency is resolved, which enables the consuming thread to resume with its
execution; the thread becomes ready. For example, at step 4 of our 3-processor exe-
cution schedule (Figure 2.2), thread Γ1 is stalled at task v18 because task v9 has not
yet been executed. At step 5 task v9 is executed by processor p2, thereby enabling
thread Γ1. At step 6, thread Γ1 is ready at task v18. A multithreaded computation
does not model the mechanism by which data dependencies get resolved or unresolved
dependencies get detected.

An execution schedule must obey the constraints given by the data-dependency,
spawn, and continue edges of the computation. These edges form a directed graph of
tasks, and no processor may execute a task until after all of the task’s predecessors
in this graph have been executed. So that execution schedules exist, this graph must
be acyclic. That is, it must be a directed acyclic graph, or dag. At any given step of
an execution schedule, a task is ready if all of its predecessors in the dag have been
executed. Only ready tasks may be executed.

206 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

We make the simplifying assumption that a parent thread remains alive until all
its children die, and thus, a thread does not deallocate its activation frame until all
its children’s frames have been deallocated. Although this assumption is not strictly
necessary, it gives the execution a natural structure, and it will simplify our analyses
of space utilization. We also assume that the frames hold all the values used by
the computation; there is no global storage available to the computation outside the
frames. Therefore, the space used at a given time in executing a computation is the
total size of all frames used by all living threads at that time, and the total space
used in executing a computation is the maximum such value over the course of the
execution.

To summarize, a multithreaded computation can be viewed as a dag of tasks
connected by continue, spawn, and data-dependency edges. The tasks are connected
by continue edges into threads, and the threads form a spawn tree with the spawn
edges. When a thread is spawned, an activation frame is allocated and this frame
remains allocated as long as the thread remains alive. A living thread may be either
ready or stalled due to an unresolved data dependency.

The notion of an execution schedule is independent of any real machine char-
acteristics. An execution schedule simply requires that no processor executes more
than one task per time step and every task is executed at a time step after all of
its predecessor tasks (which connect to it via continue, spawn, or data-dependency
edges) have been executed. A given execution schedule may not be viable for a real
machine, since the schedule may not account for properties such as communication
latency. For example, in our 3-processor execution schedule (Figure 2.2), task v11 is
executed at step 8 by processor p3 exactly one step after v8 is executed by processor
p1, even though there is a data dependency between them that surely requires some
latency to be resolved.

It is important to note the difference between what we are calling a multithreaded
computation and a program. A multithreaded computation is the “parallel task
stream” resulting from the execution of a multithreaded program with a given set
of inputs. Unlike a serial computation in which the task stream is totally ordered, a
multithreaded computation only partially orders its tasks. In general, a multithreaded
computation is not a statically determined object; rather, the computation unfolds
dynamically during execution as determined by the program and the input data. For
example, a program may have conditionals, and therefore, the order of tasks (or even
the set of tasks) executed in a thread may not be known until the thread is actually
executed. We can think of a multithreaded computation as encapsulating both the
program and the input data. The computation then reveals itself dynamically during
execution.

3. Time and space. We shall characterize the time and space of an execution
of a multithreaded computation in terms of three fundamental parameters: work,
computation depth, and activation depth. We first introduce work and computation
depth, which relate to the execution time, and then we focus on activation depth,
which relates to the storage requirements.

The two time parameters are based on the underlying graph structure of the
multithreaded computation. If we ignore the shading in Figure 2.1 that organizes
tasks into threads, our multithreaded computation is just a dag of tasks. We define
the work of the computation to be the total number of tasks and the computation
depth to be the length of a longest directed path in the dag.

We quantify and bound the execution time of a computation on a P -processor

SCHEDULING MULTITHREADED COMPUTATIONS 207

parallel computer in terms of the computation’s work and depth. For a given com-
putation, let T (X) denote the time to execute the computation using P -processor
execution schedule X , and let

TP = min
X

T (X)

denote the minimum execution time with P processors—the minimum being taken
over all P -processor execution schedules for the computation. Then T1 is the work
of the computation, since a 1-processor computer can only execute one task at each
step, and T∞ is the computation depth, since, even with arbitrarily many processors,
each task on a path must execute serially.

Still viewing the computation as a dag, we borrow some basic results on dag
scheduling to bound TP . A computer with P processors can execute at most P tasks
per step, and since the computation has T1 tasks, we have TP ≥ T1/P . Of course, we
also have TP ≥ T∞. Early work by Graham [20, 21] and independently by Brent [11,
Lemma 2] yields the bound TP ≤ T1/P + T∞. The following theorem extends these
results minimally to show that this upper bound on TP can be obtained by greedy
schedules, i.e., those in which at each step of the execution, if at least P tasks are
ready, then P tasks execute, and if fewer than P tasks are ready, then all execute.

Theorem 3.1 (the greedy-scheduling theorem). For any multithreaded compu-
tation with work T1 and computation depth T∞, and for any number P of processors,
every greedy P -processor execution schedule X achieves T (X) ≤ T1/P + T∞.

Proof. Let G = (V,E) denote the underlying dag of the computation. Thus
we have |V | = T1, and a longest directed path in G has length T∞. Consider a
greedy P -processor execution schedule X where the set of tasks executed at time i,
for i = 1, 2, . . . , k, is denoted Vi, with k = T (X). The Vi form a partition of V .

We shall consider the progression 〈G0, G1, G2, . . . , Gk〉 of dags, where G0 = G,
and for i = 1, 2, . . . , k, we have Vi = Vi−1−Vi, and Gi is the subgraph of Gi−1 induced
by Vi. In other words, Gi is obtained from Gi−1 by removing from Gi−1 all the tasks
that are executed by X at step i and all edges incident on these tasks. We shall show
that each step of the execution either decreases the size of the dag or decreases the
length of the longest path in the dag.

We account for each step i according to |Vi|. Consider a step i with |Vi| = P . In
this case, |Vi| = |Vi−1|−P , so since |V | = T1, there can be at most bT1/P c such steps.
Now, consider a step i with |Vi| < P . In this case, since X is greedy, Vi must contain
every vertex of Gi−1 with in-degree 0. Therefore, the length of a longest path in Gi

is one less than the length of a longest path in Gi−1. Since the length of a longest
path in G is T∞, there can be no more than T∞ steps i with |Vi| < P .

Consequently, the time it takes schedule X to execute the computation is T (X) ≤
bT1/P c+ T∞ ≤ T1/P + T∞.

The greedy-scheduling theorem (Theorem 3.1) can be interpreted in two impor-
tant ways. First, the time bound given by the theorem says that any greedy schedule
yields an execution time that is within a factor of 2 of an optimal schedule, which fol-
lows because T1/P +T∞ ≤ 2 max{T1/P, T∞} and TP ≥ max{T1/P, T∞}. Second, the
greedy-scheduling theorem tells us when we can obtain linear parallel speedup, that is,
when we can find an execution schedule X such that T (X) = Θ(T1/P). Specifically,
when the number P of processors is no more than the average available parallelism
T1/T∞, then T1/P ≥ T∞, which implies that for a greedy schedule X , we have
T (X) ≤ 2T1/P . We shall be especially interested in the regime where P = O(T1/T∞)

208 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

and linear speedup is possible, since outside this regime, linear speedup is impossible
to achieve because TP ≥ T∞.

These results on dag scheduling have been known for years. A multithreaded
computation, however, adds further structure to the dag: the partitioning of tasks into
threads. This additional structure allows us to quantify the space used in executing a
multithreaded computation. Once we have quantified space usage, we will look back
at the greedy-scheduling theorem and consider whether there exist execution schedules
that achieve similar time bounds while also making efficient use of space. Of course,
we will have to quantify a space bound to capture what we mean by “efficient use of
space.”

We shall focus on a space parameter for a multithreaded computation which is
based on the tree structure of threads. If we collapse each thread into a single node
and consider just the spawn edges, the multithreaded computation is just a spawn
tree of threads. We define the activation depth of a thread to be the sum of the sizes
of the activation frames of all its ancestors, including itself. The activation depth of
a multithreaded computation is the maximum activation depth of any thread.

We shall denote the space required by a P -processor execution schedule X of a
multithreaded computation by S(X). Recall that S(X) is just the maximum, over all
steps in X , of the sum of the sizes of the activation frames of the living threads at
that step. Since we can always simulate a P -processor execution with a 1-processor
execution that uses no more space, we have S1 ≤ S(X), where S1 = minX S(X)
denotes the minimum space used by a 1-processor execution.

The following simple theorem shows that the activation depth of a computation
is a lower bound on the space required to execute it.

Theorem 3.2. Let A be the activation depth of a multithreaded computation,
and let X be a P -processor execution schedule of the computation. Then we have
S(X) ≥ A, and more specifically, we have S1 ≥ A.

Proof. In any schedule, the leaf thread with greatest activation depth must be
alive at some time step. Since we assume that if a thread is alive, its parent is alive,
when the deepest leaf thread is alive, all its ancestors are alive, and hence, all its
ancestors’ frames are allocated. However, the sum of the sizes of its ancestors’ acti-
vation frames is just the activation depth. Since S(X) ≥ A holds for all P -processor
schedules X and all P , it holds for the minimum-space execution schedule, and hence,
S1 ≥ A.

Given the lower bound of activation depth on the space used by a P -processor
schedule, it is natural to ask whether the activation depth can be achieved as an
upper bound. In general, the answer is no, since all the threads in a computation may
contain a cycle of data dependencies that force all of them to be simultaneously living
in any execution schedule. For the class of “depth-first” computations, however, space
equal to the activation depth can be achieved by a 1-processor schedule.

A depth-first computation is a multithreaded computation in which a left-to-right
depth-first search of tasks in the spawn tree always visits all the tasks on which a given
task depends before it visits the given task. In the example computation of Figure 2.1,
the left-to-right depth-first search order is v1, v2, . . . , v20, and this computation is
depth-first. In fact, this depth-first search produces a 1-processor execution schedule
which is just the familiar stack-based execution: the serial depth-first execution begins
with the root thread and executes its tasks until it either spawns a child thread or
dies. If the thread spawns a child, the parent thread is put aside to be resumed only
after the child thread dies; the scheduler then begins work on the child, executing the

SCHEDULING MULTITHREADED COMPUTATIONS 209

child until it either spawns a child or dies.
Theorem 3.3. For any depth-first computation, we have S1 = A.
Proof. At any time in a serial depth-first execution of the computation, the set

of living threads always forms a path from the root. Therefore, the space required is
just the activation depth of the computation. By Theorem 3.2, S1 ≥ A, and thus the
the space used is the minimum possible.

The remainder of this paper considers only depth-first computations, and we shall
use S1 to denote a computation’s activation depth.

We now turn our attention to determining how much space S(X) a P -processor
execution schedule X can use and still be considered efficient with respect to space
usage. Our strategy is to compare the space used by a P -processor schedule with the
space required by an optimal 1-processor schedule. Of course, we can always ignore
P − 1 of the processors to match the single-processor space bounds, and therefore,
our goal is to use small space while obtaining linear speedup.

Even for depth-first computations, a P -processor schedule may use nearly P times
the space of a 1-processor schedule. Consider, for example, a computation in which the
root thread is a loop that spawns a child thread for each iteration. A single processor
executing this computation uses only the space needed for a single iteration (plus the
space used by the root), since upon completion of an iteration, all the memory can
be freed and then reused for the next iteration. A natural P -processor execution,
however, might execute P iterations concurrently, thereby requiring the memory of P
iterations. Such a P -processor execution schedule X uses space S(X) = Θ(S1P).

In fact, a P -processor schedule that uses only P times the space of a single
processor is arguably efficient, since on average, each of the P processors only needs
as much memory as is used by the 1 processor. We would, of course, like to do better,
but an expansion in space that is linear in the number of processors, while achieving
linear speedup, is quite good, since the time-space product is bounded by a value
independent of P :

T (X)S(X) = O(T1/P) ·O(S1P)

= O(T1S1) .

We shall show in section 4 that achieving linear speedup and linear expansion of space
simultaneously is impossible in general, even for depth-first computations. For the
class of strict computations, however, section 5 shows that one can achieve both.

4. Lower bound. In this section we show that there exist multithreaded com-
putations for which no execution schedule can achieve both linear speedup and linear
expansion of space. In particular, for any amount of serial space S1 and any (rea-
sonably large) serial execution time T1, we can exhibit a depth-first multithreaded
computation with work T1 and activation depth S1 but with provably bad time/space
tradeoff characteristics. Being depth-first, we know from Theorem 3.3 that our com-
putation can be executed using serial space S1. Furthermore, we know from the
greedy-scheduling theorem (Theorem 3.1) that for any number P of processors, any
greedy P -processor execution schedule X achieves T (X) ≤ T1/P + T∞. Our com-
putation has computation depth T∞ ≈ √

T1, and consequently, for P = O(
√
T1),

a greedy P -processor schedule X yields T (X) = O(T1/P), i.e., linear speedup. We
show, however, that any P -processor schedule X achieving T (X) = O(T1/P) must
use space S(X) = Ω(

√
T1(P − 1)). Of course,

√
T1 may be much larger than S1, and

hence, this space bound is nowhere near linear in its space expansion.

210 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

Theorem 4.1. For any amount of serial space S1 ≥ 4 and serial time T1 ≥ 16S2
1 ,

there exists a depth-first multithreaded computation with work T1, computation depth
T∞ ≤ 8

√
T1, and activation depth S1 with the following property: for any number P

of processors and any value ρ in the range 1 ≤ ρ ≤ (1/8)T1/T∞, if X is a P -processor
execution schedule that achieves speedup ρ—that is, T (X) ≤ T1/ρ— then the schedule
requires space S(X) ≥ (1/4)(ρ− 1)

√
T1 + S1.

Proof. To exhibit a depth-first multithreaded computation with work T1, com-
putation depth T∞, and activation depth S1, we first ignore the partitioning of tasks
into threads and consider just the dag structure of the computation. Minus a few
tasks and dependencies, the dag appears as in Figure 4.1(a). The tasks are organized
into

m =
√
T1/8

separate components C0, C1, . . . , Cm−1 that we call chains.1 Each chain begins with

λ =
√
T1/S1

tasks that we call headers (vertical hashed in Figure 4.1(a)). After the headers, each
chain contains

ν = 6
√
T1

tasks (plain white in Figure 4.1(a)) that form the trunk. At the end of each chain,
there are λ blockers (horizontal hashed in Figure 4.1(a)). Each chain, therefore,
consists of 2λ+ ν = 2(

√
T1/S1)+6

√
T1 tasks. Since there are m =

√
T1/8 chains, the

total number of tasks accounted for by the m chains is (2
√
T1/S1 + 6

√
T1)

√
T1/8 =

(3/4)T1 + (1/4)T1/S1, and this number is no more than (13/16)T1 since S1 ≥ 4. The
remaining (at least) (3/16)T1 tasks form the parts of the computation not shown in
Figure 4.1(a).

There are no dependencies between different chains, so the average available par-
allelism T1/T∞ is at least m =

√
T1/8 and the computation depth T∞ is no more than

8
√
T1 as promised.
Now, consider the partitioning of the tasks from each chain into the actual threads.

As alluded to in Figure 4.1(b), the root thread has m child threads, each of which is
the root of a subcomputation that we call an outer iteration. (The outer iterations
contain inner iterations that will be discussed later.) Each of these outer iterations
contains

√
T1/2 threads. As illustrated by the shading in Figure 4.1, the ith outer

iteration for i = 1, 2, . . . ,m − 1 contains both the header tasks of chain Ci and the
blocker tasks of chain Ci−1. These tasks are organized into the threads of the outer
iteration so as to ensure that chain Ci cannot begin executing its trunk tasks until all√
T1/2 of the outer iteration’s threads have been spawned, and none of these threads

can die until chain Ci−1 begins executing its blocker tasks. (We will exhibit this
organization later.) Thus, if chain Ci begins executing its trunk tasks before chain
Ci−1 finishes its, then the execution will require at least

√
T1/2 space.

For any number P of processors, consider any valid P -processor execution sched-

ule X . For each chain Ci, let t
(s)
i denote the time step at which X executes the first

1In what follows, we refer to a number x of objects (such as tasks) when x may not be integral.
Rounding these quantities to integers does not affect the correctness of the proof. For ease of
exposition, we shall not consider the issue.

SCHEDULING MULTITHREADED COMPUTATIONS 211

AA
AA

AA

AA
AA

AA
AA

A
A

A

AA
AA

AA
AA

AA
AA

AA

AA
AA

AA
AA

headers

blockers

trunk

C0 Ci−1 Ci Cm−1

A
A

A
A

AA
AA

AA

(a) Chains of tasks.

➲

m

S1

ith
outer

iteration

(b) Outer iterations.

Fig. 4.1. Constructing a computation with no efficient execution schedule. The header tasks of
chain Ci and the blocker tasks of chain Ci−1 are both placed in the threads of the ith outer iteration.

trunk task of Ci, and let t
(f)
i denote the first time step at which X executes a blocker

task of Ci. Since the trunk has length ν and no blocker task of Ci can execute until

after the last trunk task of Ci, we have t
(f)
i − t

(s)
i ≥ ν.

Now consider two chains, Ci and Ci−1, and suppose t
(s)
i < t

(f)
i−1; this is the scenario

we described as using at least
√
T1/2 space. In this case, we consider the time interval

from t
(s)
i (inclusive) to t

(f)
i−1 (exclusive) during which we say that chain Ci is exposed,

and we let τi = t
(f)
i−1 − t

(s)
i denote the amount of time chain Ci is exposed. See

Figure 4.2. If t
(s)
i ≥ t

(f)
i−1 then chain Ci is never exposed and we let τi = 0. As we have

seen, over the time interval during which a chain is exposed, it uses at least
√
T1/2

space. We will show that in order to achieve speedup ρ—that is T (X) ≤ T1/ρ—there
must be some time step during the execution at which at least d(3/4)ρe − 1 chains
are exposed.

If schedule X is such that T (X) ≤ T1/ρ, then we must have t
(f)
m−1 − t

(s)
0 ≤ T1/ρ.

We can expand this inequality to yield

T1/ρ ≥ t
(f)
m−1 − t

(s)
0

=
m−1∑
i=0

(
t
(f)
i − t

(s)
i

)
−

m−1∑
i=1

(
t
(f)
i−1 − t

(s)
i

)
.(4.1)

212 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

t0
(f)

t0
(s)

t1
(s)

t1
(f)

t2
(f)

t2
(s)

t3
(s)

t3
(f)

t4
(f)

t4
(s)

tm–1
(s)

tm–1
(f)

τ1

τ3

τ4

0

T1/ρ

Fig. 4.2. Scheduling the execution of the chains. A solid vertical interval from t
(s)
i to t

(f)
i

indicates the time during which the trunk of chain Ci is being executed. When t
(s)
i < t

(f)
i−1, we can

define an interval, shown dashed, of length τi = t
(f)
i−1 − t

(s)
i , during which chain Ci is exposed.

Considering the first sum, we recall that t
(f)
i − t

(s)
i ≥ ν, hence,

m−1∑
i=0

(
t
(f)
i − t

(s)
i

)
≥ mν .(4.2)

Considering the second sum of inequality (4.1), when t
(f)
i−1t

(s)
i (so Ci is exposed), we

have τi = t
(f)
i−1 − t

(s)
i , and otherwise, τi = 0 ≥ t

(f)
i−1 − t

(s)
i . Therefore,

m−1∑
i=1

(
t
(f)
i−1 − t

(s)
i

)
≤

m−1∑
i=1

τi .(4.3)

Substituting inequalities (4.2) and (4.3) back into inequality (4.1), we obtain

m−1∑
i=1

τi ≥ mν − T1/ρ .

Let exposed(t) denote the number of chains exposed at time step t, and observe that

T1/ρ∑
t=1

exposed(t) =
m−1∑
i=i

τi .

Then the average number of exposed chains per time step is

1

T1/ρ

T1/ρ∑
t=1

exposed(t) =
1

T1/ρ

m−1∑
i=1

τi

SCHEDULING MULTITHREADED COMPUTATIONS 213

AA
AA

AA
AA

AA
AA

A
A

AA
AA

A
A

AA
AA

AA
AA

Fig. 4.3. Laying out the chains into the threads of a multithreaded computation. As before, the
header tasks are vertical hashed, and the blocker tasks are horizontal hashed. In this example, each
activation frame has unit size so S1 = 6. Also, in this example λ = 2, ν = 5, and only the first 2 out
of the m tasks in the root thread are shown. Each task of the root thread spawns a child (an outer
iteration), and each child thread contains λ + 1 = 3 tasks; the first λ of these spawn a child thread
which is the root of an inner iteration with activation depth S1 − 2 = 4, and the last one spawns a
leaf thread with the ν = 5 trunk tasks of a single chain.

≥ 1

T1/ρ
(mν − T1/ρ)

=
3

4
ρ− 1,

since m =
√
T1/8 and ν = 6

√
T1. There must be some time step t∗ for which

exposed(t∗) is at least the average, and consequently,

exposed(t∗) ≥
⌈

3

4
ρ

⌉
− 1 .

Now, recalling that each exposed chain uses space
√
T1/2, we have

S(X) ≥
(⌈

3

4
ρ

⌉
− 1

)
1

2

√
T1

≥ 1

4
(ρ− 1)

√
T1 + S1

for S1 ≤
√
T1/4 (which is true since we have T1 ≥ 16S2

1).
All that remains is exhibiting the organization of the tasks of each chain into a

depth-first multithreaded computation with work T1, computation depth T∞ ≤ 8
√
T1,

and activation depth S1 in such a way that each exposed chain uses
√
T1/2 space.

There are actually many ways of creating such a computation. One such way, which
uses unit-size activation frames for each thread, is shown in Figure 4.3.

For the multithreaded computation of Figure 4.3, the root thread contains m
tasks, each of which spawns a child thread (an outer iteration). Each child thread
contains λ + 1 tasks; the first λ of these spawn a child thread which is the root of a
subcomputation that we call an inner iteration. Each inner iteration has activation
depth S1 − 2 ≥ S1/2 (since S1 ≥ 4), and the last one spawns a leaf thread with the ν

214 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

trunk tasks of a single chain. Each of these inner iterations contains a single header
from one chain and a single blocker from the previous chain (except in the case of the
first group of λ) as shown in Figure 4.3. The header and blocker in an inner iteration
are organized such that in order to execute the header, all S1−2 of the threads in the
inner iteration must be spawned, and none of them can die until the blocker executes.
Thus, when a chain is exposed, all λ of these inner iterations have all of their threads
living, thereby using space λ(S1 − 2) ≥ (

√
T1/S1)(S1/2) =

√
T1/2.

We can verify from Figure 4.3 and from the given values of m, λ, and ν that this
construction actually has work slightly less than T1; in order to make the work equal
to T1 we can just add the extra tasks evenly among the threads that contain the trunk
of each chain (thereby increasing ν by a bit). Also, we can verify that T∞ ≤ 8

√
T1.

Finally, looking at Figure 4.3 we can see that this computation is indeed depth-
first.

The construction of a multithreaded computation with provably bad time/space
characteristics as just described can be modified in various ways to accommodate var-
ious restrictions to the model while still obtaining the same result. For example, some
real multithreaded systems require limits on the number of tasks in a thread, data
dependencies that only go to the first task of a thread, limited fan-in for data depen-
dencies, or a limit on the number of children a thread can have. Simple changes to the
construction just described can produce multithreaded computations that accommo-
date any or all of these restrictions and still have the same provably bad time/space
tradeoff. Thus, the lower bound of Theorem 4.1 holds even for multithreaded compu-
tations with any or all of these restrictions.

5. Scheduling algorithms for strict multithreaded computations. In the
view of negative results from section 4, we consider scheduling algorithms for a specific
class of depth-first multithreaded computations called “strict” computations. In this
section, we show that for any strict multithreaded computation and any number
P of processors, there exists a P -processor execution schedule X that achieves time
T (X) ≤ T1/P+T∞. We give two algorithms to compute such a schedule. We conclude
this section by showing how some nonstrictness can be allowed in an otherwise strict
computation in a way that may improve performance, but which does not adversely
affect our asymptotic time and space bounds.

Given a multithreaded computation, a scheduling algorithm for a P -processor
parallel computer must compute a P -processor execution schedule. In computing
such a schedule, the algorithm does not know the entire computation; the computation
actually unfolds dynamically during the course of execution, and consequently, the
scheduling algorithm must be online. At any given time during the execution, the
scheduler has a set of living threads, some of which are ready and some of which
are stalled. There might be some extra information attached to each thread that the
scheduling algorithm can use in deciding which ready threads get executed by which
processors, but the scheduler cannot know about the structure of the portion of the
computation not yet executed.

To cope with the lower bound from Theorem 4.1, we now restrict our attention
to those multithreaded computations in which every data dependency goes from a
thread to one of its ancestors in the spawn tree. It turns out that requiring all data
dependencies to go from a thread to one of its ancestors can be viewed as requiring
that all function invocations (in a functional language) be strict, and therefore, we
refer to this class of computations as strict multithreaded computations. For example,
the computation shown in Figure 5.1(a) is not strict since the bold data dependencies

SCHEDULING MULTITHREADED COMPUTATIONS 215

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

(a) Nonstrict.

➠

Γ1

Γ2

Γ3 Γ4

Γ6

v1 v2 v14 v18 v19 v20

v3 v6 v13 v15 v16

v11v10v8v7v5v4 v12

v17v9

Γ5

(b) Strict.

Fig. 5.1. (a) This multithreaded computation (the same as Figure 2.1) is nonstrict since it
has nonstrict data dependencies (shown bold) that go to nonancestor threads. (b) If we replace the
nonstrict data dependencies with new strict ones (shown bold) we obtain a strict computation since
all data dependencies go from a child thread to an ancestor thread.

violate the strictness condition just stated, but by promoting these dependencies we
obtain the strict computation shown in Figure 5.1(b).

Strict multithreaded computations are depth-first computations, since no data
dependency can go between two distinct subcomputations of a thread. Once a thread
Γ has been spawned in a strict computation, a single processor can complete the
execution of Γ and all of its descendant threads by using a depth-first schedule, even
if no other progress is made on other parts of the computation. In other words, from
the time the thread Γ is spawned until the time Γ dies, there is always at least one
thread from the subtree rooted at Γ that is ready. This property allows us to derive
algorithms to schedule the execution of these computations with efficient use of both
time and space.

Algorithm GDF (which stands for global depth-first) maintains all living threads
in a global queue prioritized by activation depth, i.e., the deepest threads get highest
priority. At each step of the algorithm, the scheduler removes from the queue the P
deepest ready threads (if there are fewer than P ready threads, it just removes them

216 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

S1

d

Fig. 5.2. The spawn tree corresponding to the example computation of Figure 2.1. The bold
outlined threads span depth d.

all) and assigns them arbitrarily to the P processors so that each processor receives at
most one thread. Each processor that has an assigned thread then executes one task
from that thread. To complete the step, all surviving threads and all newly spawned
threads are placed back into the global queue.

Theorem 5.1. For any number P of processors and any strict multithreaded
computation with work T1, computation depth T∞, and activation depth S1, Algorithm
GDF computes a P -processor schedule X that uses space S(X) ≤ S1P and time
T (X) ≤ T1/P + T∞.

Proof. The time bound follows immediately from the greedy-scheduling theorem
(Theorem 3.1), since GDF always produces a greedy schedule.

To prove the space bound, we show that the queue never contains more than P
threads (ready or otherwise) that span any activation depth. A thread Γ spans an
activation depth d, if Γ has activation depth A(Γ) ≥ d, and either Γ is the root or
the parent thread Γ′ of Γ has activation depth A(Γ′) < d. For example, Figure 5.2
depicts the spawn tree corresponding to the computation of Figure 2.1. Each thread
has height equal to the size of its activation frame and is located so that the top of its
activation frame is aligned with the bottom of its parent’s activation frame. In this
way, each black node is located at its thread’s activation depth, and the bold outlined
threads span depth d. For any time step t during the execution and any activation
depth d, let s(t, d) denote the number of living threads that span d at the start of
step t. Then the total space s(t) being used at the start of time step t is

s(t) =

S1∑
d=1

s(t, d) .(5.1)

By induction on the number of steps, we shall show that for all t, every activation
depth d has s(t, d) ≤ P . With this bound, equation (5.1) shows that s(t) ≤ S1P for
all time t, from which the space bound follows.

The algorithm begins with just one living thread (the root), so for every activation
depth d, we have s(1, d) ≤ 1 ≤ P . Now, consider any activation depth d, and suppose
that for time step t, the induction hypothesis s(t, d) ≤ P holds. The computation
being strict means that for each of the s(t, d) living threads that span d at the start
of step t, there is at least one ready thread with activation depth greater than or
equal to d; remember, this is the crucial property that we get by having all data
dependencies go from a child thread to an ancestor thread. Therefore, step t begins

SCHEDULING MULTITHREADED COMPUTATIONS 217

with at least s(t, d) ready threads at or deeper than d. The depth-first ordering then
ensures that no more than P − s(t, d) threads with depth less than d can execute at
step t. Then, since the only way to increase the number of threads that span d is to
execute a thread shallower than d that spawns a child thread at or deeper than d,
step t ends with at most s(t, d)+ (P − s(t, d)) = P living threads that span activation
depth d. Therefore, s(t+ 1, d) ≤ P , and the induction is complete.

Algorithm GDF′ is a refinement of Algorithm GDF that achieves greater ef-
ficiency by reducing the number of accesses to the global queue. Algorithm GDF′

begins with the root thread assigned to some arbitrary processor and the global queue
empty. On subsequent steps, GDF′ has completed a “previous” step and must sched-
ule threads for a “current” step. Suppose the previous step ends with P ′ out of the P
processors not having a thread. To start the current step, the scheduler removes from
the queue the P ′ deepest ready threads, or, if there are fewer than P ′ ready threads,
it removes them all. It assigns these threads arbitrarily to the P ′ idle processors so
that each idle processor receives at most one thread. The current step is now ready
to proceed. Each of the P processors that has an assigned thread executes one task
from that thread. Unless that thread spawns, dies, or stalls, the processor will have
a thread at the end of the current step. If the thread stalls, then the processor must
return it to the global queue, and consequently, the processor will not have a thread
at the end of the current step. Similarly, if the thread dies, then the processor will
not have a thread at the end of the step. Lastly, if the thread spawns a child, then the
processor returns the parent thread (the one it was working on) to the global queue
and keeps the child thread; in this case, the processor will still have a thread at the
end of the current step.

Algorithm GDF′ achieves the same performance bounds as proved in Theo-
rem 5.1, but it requires access to the global queue only when threads spawn, die, or
stall.

Theorem 5.2. For any number P of processors and any strict multithreaded
computation with work T1, computation depth T∞, and activation depth S1, Algorithm
GDF′ computes a P -processor schedule X that uses space S(X) ≤ S1P and time
T (X) ≤ T1/P + T∞.

Proof. This proof follows the proof of Theorem 5.1, but we add the following
assertion to the induction hypothesis: for any activation depth d, if a step t begins
with s(t, d) ≤ P living threads that span depth d, then step t begins with no more
than P−s(t, d) processors that have a thread with activation depth less than d.

This algorithm may be feasible for a modest number of processors, but for a
large number of processors, the cost of synchronization at the global queue becomes
prohibitive. To derive a truly scalable and distributed algorithm, we need to split the
global queue into P local queues, one for each processor. The next section presents
and analyzes such a distributed algorithm.

We have been able to relate resource requirements to nonstrictness in the com-
putation by characterizing two extremes. At one end, we have shown that arbitrary
uses of nonstrictness make efficient execution impossible. At the other end, purely
strict computations allow near optimally efficient executions. We now mention two
minor results that begin to characterize resource requirements for limited uses of
nonstrictness.

Given an arbitrary depth-first computation, any of the scheduling algorithms for
strict computations can be employed by first adding data-dependency edges to make
the computation strict. This transformation, known as strictifying (see Figure 5.1),

218 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

is always valid for depth-first computations. Of course, strictifying may dramatically
reduce the average available parallelism, and therefore, we would like some way of
exploiting the parallelism available through nonstrict spawns. Suppose we could ex-
ecute the computation as if it were strictified, but at each step, if there is an idle
processor and a thread that is stalled (due only to the strictness condition) at a task
that wants to spawn, we let the processor go ahead and execute that task, thereby
performing a nonstrict spawn. Unfortunately, the naive application of this rule can
actually result in an execution that takes longer than the purely strict execution.

With due care, however, we can modify this rule to allow some nonstrict spawns
while still guaranteeing the time and space bounds of a purely strict execution. For
example, we can restrict the application of this rule to a set of threads designated by
the programmer. If the programmer can designate this set of threads so as to ensure
that, during execution, at most x nonstrictly spawned threads simultaneously span
a given depth, then Algorithm GDF can achieve space bounded by S1(P + x) and
linear speedup as in Theorem 5.1; similar results apply for Algorithm GDF′ and for
the distributed algorithm that will be presented in the next section. Alternatively, by
“sequestering” the nonstrictly spawned threads, the scheduler itself can budget the
nonstrict spawns and achieve these same time and space bounds; details can be found
in [4].

6. Distributed scheduling algorithms. In a distributed thread-scheduling al-
gorithm, each processor works depth-first out of its own local priority queue. Specifi-
cally, to get a thread to work on, a processor removes the deepest ready thread from
its local queue. Ideally, we would like the processor to then continue working on that
thread until it either stalls, dies, or spawns, and when the processor does need to
enqueue a thread (as in the case when the thread stalls or spawns) or dequeue a new
thread, it does so by accessing only its local queue. Of course, this approach could
result in processors with empty queues sitting idle while other processors have large
queues. Thus, we require each processor to have some access to nonlocal queues in
order to facilitate some type of load balancing.

The technique of Karp and Zhang [28] suggests a randomized algorithm in which
threads are located in random queues in order to achieve some balance. We can show,
however, that the naive adoption of this technique does not work. In particular,
threads must migrate occasionally and some degree of synchronization is needed to
avoid the large deviations that result if this random process is run over a long period
of time. Further discourse on these problems can be found in [4]. In order to achieve
the desired result, we modify the Karp and Zhang technique by incorporating a new
mechanism to enforce a modest degree of synchrony among the processors.

Algorithm LDF (which stands for local depth-first) operates in iterations, with
each iteration consisting of a synchronization phase followed by a computation phase
and ending with a communication phase. In a synchronization phase, we compute a
cutoff depth D which is a global value made available to all processors. During the
following computation phase, only those threads with activation depth greater than
or equal to D can execute. Finally, the communication phase redistributes threads to
random locations.

The operation of each phase is governed by a synchronization parameter r that
affects both the time and space performance of the algorithm. Let LDF(r) denote
Algorithm LDF with synchronization parameter r.

In a synchronization phase of LDF(r), we use the synchronization parameter r
to compute the cutoff depth D. Each processor pi, for i = 1, . . . , P , computes the

SCHEDULING MULTITHREADED COMPUTATIONS 219

p1 p2 p3 p4

Cutoff
depth

Fig. 6.1. Computing the cutoff depth. Each column represents the local priority queue of
a processor, and each row represents an activation depth with depth increasing in the downward
direction. We depict each ready thread by a circle located in its processor’s queue and at its activation
depth. (Within a processor’s queue, the horizontal ordering of threads is irrelevant.) The ready
threads in each queue are ordered by activation depth with ties broken arbitrarily—this tie breaking
is depicted by the vertical ordering of threads within an activation depth. In this example, the
synchronization parameter r = 12, and the 12th deepest ready thread for each processor is shown
in black (just count up from the bottom). The deepest of these black threads determines the cutoff
depth. Only the ready threads at or deeper than the cutoff depth—those in the shaded region—can
execute during the following computation phase.

activation depth di of its rth deepest ready thread. In other words, di is the activation
depth for which processor pi has fewer than r ready threads deeper than di but at
least r ready threads at or deeper than di. Cutoff depth D is then computed simply
by

D = max
1≤i≤P

di

as illustrated in Figure 6.1.
During the computation phase of LDF(r), each processor executes at least one

task from each ready thread with activation depth greater than or equal to the cutoff
depth D in its local queue. We further forbid each processor from executing more
than r spawns; if a processor has more than r threads at or deeper than D that want
to spawn, it may only execute r of them.

The iteration ends with a communication phase during which each processor
must move each ready thread with activation depth greater than or equal to D (as
determined at the beginning of the iteration) and each newly spawned thread from its
local queue to a queue selected uniformly at random, independently for each thread.

By using the synchronization parameter r to compute the cutoff depth and then
ensuring that each processor executes only tasks from threads at or deeper than the
cutoff depth, while allowing at most r spawns, we get a guaranteed space bound.

Lemma 6.1. For any number P of processors and any strict multithreaded compu-
tation with activation depth S1, Algorithm LDF(r) computes a P -processor schedule
X such that S(X) ≤ 2rS1P .

Proof. We show by induction on the number of iterations that no activation
depth ever has more than 2rP living threads that span it. Specifically, recalling the

220 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

notation used in the proof of Theorem 5.1, we show that for every activation depth
d and every iteration t of the execution, s(t, d) ≤ 2rP . The result then follows from
equation (5.1). As before, the base case is straightforward.

For any activation depth d and any iteration t of the execution, we consider two
cases. In the first case, suppose iteration t begins with rP ≤ s(t, d) ≤ 2rP living
threads spanning depth d. Due to the strictness of the computation, there must be
at least rP ready threads with activation depth greater than or equal to d, and by
pigeonholing, some processor’s local queue must have at least r of them. Therefore,
the cutoff depth D will be set with D ≥ d. Consequently, during the computation
phase of iteration t, no thread with activation depth less than d can execute and the
iteration ends with no more living threads spanning depth d than it started with.
Now, suppose iteration t begins with s(t, d) < rP living threads spanning depth d.
In this case, during the computation phase, since each processor is only allowed r
spawns, the number of living threads that span depth d can increase by at most
rP , and therefore, the iteration ends with no more than 2rP living threads spanning
depth d. In either case, s(t+ 1, d) ≤ 2rP , which completes the induction.

In order to achieve speedup in the execution time, we must ensure that during
the computation phase of each iteration, each processor has some ready threads at or
deeper than the cutoff depth. To ensure that the cutoff depth is not set too deep, we
must use a large enough synchronization parameter r. On the other hand, the space
bound of Lemma 6.1 is directly proportional to r. By setting r = 6 lgP , the space
bound of Lemma 6.1 becomes S(X) ≤ 12S1P lgP , and with high probability, most
computation phases take O(lgP) time and get at least P lgP tasks executed as we
now show.

To analyze the running time, we say that each iteration either succeeds or fails
depending on how many tasks execute. An iteration that begins with at least P lgP
ready threads fails if fewer than P lgP of the ready threads get a task executed. An
iteration that begins with fewer than P lgP ready threads fails if not all of them get
a task executed.

We now show that with the synchronization parameter set to r = 6 lgP , it is
highly likely that each iteration succeeds.

Lemma 6.2. For any number P of processors and any iteration of Algorithm
LDF(6 lgP), the iteration fails with probability no more than P−5.

Proof. Suppose that when two threads have the same activation depth, we give
each thread a unique identifier to break the tie so we can uniquely identify the P lgP
deepest ready threads. If no local queue contains more than 6 lgP of the P lgP
deepest ready threads, then the synchronization phase sets the cutoff depth so that all
P lgP of these deepest threads are at or are deeper than the cutoff depth. Therefore,
an iteration succeeds if no local queue contains more than 6 lgP of the P lgP deepest
ready threads.

Consider a particular processor pi, and let the random variable Zi denote how
many of the P lgP deepest ready threads start the iteration in the local queue of
processor pi. Each thread is located independently at random, and hence, the random
variable Zi has a binomial distribution with P lgP trials and success probability 1/P .
Therefore,

Pr {Zi > 6 lgP} ≤
(
P lgP

6 lgP

)(
1

P

)6 lgP

.

SCHEDULING MULTITHREADED COMPUTATIONS 221

Then, from the bound (
x

y

)
≤
(
ex

y

)y
(6.1)

and the fact that 6 ≥ 2e, we can upper bound Pr {Zi > 6 lgP} by

Pr {Zi > 6 lgP} ≤
(
eP lgP

6 lgP

)(
1

P

)6 lgP

=
(e

6

)6 lgP

≤ P−6.

Now, let Z = max1≤i≤P Zi. For an iteration that begins with at least P lgP ready
threads, the probability of failure is no more than Pr {Z > 6 lgP}. We can use Boole’s
inequality to upper bound Pr {Z > 6 lgP} by adding the individual probabilities,
yielding

Pr {Z > 6 lgP} ≤ P · Pr {Zi > 6 lgP}
≤ P−5 .

We now show that iterations fail independently of each other. Specifically, we
show that knowing whether an iteration t fails provides no information about whether
any future iteration fails. The failure of an iteration depends only on how the ready
threads are distributed among the processors. Therefore, we need to show that know-
ing whether iteration t fails provides no information about the distribution of threads
at the end of the iteration. Suppose iteration t has cutoff depth D. No matter if
iteration t fails or not, the iteration ends with a communication phase in which every
ready thread at or deeper than D gets moved to a random location. Thus, iteration t
provides no information about the distribution of threads at or deeper than the cutoff
depth. Now, consider the threads less deep than D. The only part of an iteration
that even considers the threads shallower than the cutoff depth is the synchronization
phase. Therefore, we need to show that computing the cutoff depth provides no infor-
mation about the distribution of threads with activation depth less than D. Consider
an alternative method for computing the cutoff depth. Let all the processors work
in synchrony from the bottom up. First each processor counts the number of ready
threads it has with activation depth S1. Then each processor adds on the number
of ready threads it has with activation depth S1 − 1. We continue in this manner
until some processor reaches a count of r (the synchronization parameter). At this
depth we stop and set the cutoff depth. In this way the synchronization phase can
compute the cutoff depth with the exact same result but without ever considering
threads shallower than D. Thus, computing the cutoff depth provides no information
about the distribution of threads shallower than the cutoff depth.

With iterations failing independently of each other, we can bound the number of
failed iterations, thereby bounding the total number of iterations taken.

Lemma 6.3. For any number P of processors and any strict multithreaded com-
putation with work T1 and computation depth T∞, for any ε > 0, with probability
at least 1 − ε, Algorithm LDF(6 lgP) computes a P -processor schedule X that takes
O(T1/(P lgP) + T∞ + logP (1/ε)) iterations.

Proof. First we consider the failed iterations. Let the random variable f denote
the number of failed iterations. We will show that for any ε > 0, the probability that

222 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

f ≥ eT1/(P lgP) + b is no more than ε when b = (1/3) logP (1/ε). There are at most
T1 iterations, since each iteration always results in at least one task being executed,
and each iteration fails independently with probability P−5. Therefore, f is bounded
by a binomial distribution with T1 trials and success probability P−5, from which we
obtain

Pr

{
f ≥ e

T1

P lgP
+ b

}
≤
(

T1

e T1

P lgP + b

)(
1

P 5

)e T1
P lgP +b

.

Then, using inequality (6.1), we get

Pr

{
f ≥ e

T1

P lgP
+ b

}
≤
(

eT1

e T1

P lgP + b
· 1

P 5

)e
T1

P lgP +b

≤
(
P lgP

P 5

)e T1
P lgP +b

≤
(

1

P 3

)b
= P−3b,

and P−3b = ε for b = (1/3) logP (1/ε). Thus, with probability at least 1 − ε, we have
f = O(T1/(P lgP) + logP (1/ε)).

Now consider the successful iterations. We can think of each successful iteration
as a step in a greedy schedule with P lgP processors. Then, as in the proof of the
greedy-scheduling theorem (Theorem 3.1), we know that there can be no more than
T1/(P lgP) + T∞ successful iterations.

Adding together the number of successful iterations and the number of failed
iterations completes the proof.

Now, if we let the random variable Xi denote the time taken by the ith compu-
tation phase of Algorithm LDF(6 lgP), we can give the total time in computation
phases as the random variable X = X1 + X2 + · · · + XY , where Y is the random
variable denoting the number of iterations. The time taken by the ith computation
phase is proportional to the maximum number of ready threads with activation depth
greater than or equal to the cutoff depth in any processor. There can be a total of at
most 18P lgP ready threads at or deeper than the cutoff depth—r = 6P lgP deeper
than the cutoff depth and 12P lgP at the cutoff depth (from Lemma 6.1 with synchro-
nization parameter r = 6 lgP)—and each of these threads is located independently
at random. Thus, we can bound each Xi as the size of the largest bin when throwing
18P lgP balls at random into P bins. Furthermore, by the independence argument
the Xi’s are independent. We can now bound the random variable X.

Lemma 6.4. Let the random variable X denote the sum of Y mutually inde-
pendent random variables, X = X1 + X2 + · · · + XY with each Xi, for i = 1, . . . , Y ,
distributed as the number of balls in the fullest bin when throwing P lnP balls in-
dependently at random into P ≥ 2 bins. Then, for any ε > 0, we have X =
O(Y lnP + lg(1/ε)) with probability at least 1− ε.

Proof. We have

Pr {X ≥ aY lnP + b} = Pr
{
eX/e ≥ e(aY lnP+b)/e

}
≤ E

[
eX/e

]
e−(aY lnP+b)/e(6.2)

SCHEDULING MULTITHREADED COMPUTATIONS 223

by Markov’s inequality. By the independence of the Xi’s,

E
[
eX/e

]
=

Y∏
i=1

E
[
eXi/e

]
.(6.3)

From the definition of expectation,

E
[
eXi/e

]
=

P lnP∑
j=lnP

Pr {Xi = j} ej/e.

To bound E
[
eXi/e

]
, we break this sum into pieces. First we break out the terms from

j = lnP to j = e3 lnP − 1, which yields

E
[
eXi/e

]
=

e3 lnP−1∑
j=lnP

Pr {Xi = j} ej/e +
P lnP∑

j=e3 lnP

Pr {Xi = j} ej/e.(6.4)

The first of these sums we bound by factoring out the largest term and upper-bounding
the sum of probabilities by 1 as follows:

e3 lnP−1∑
j=lnP

Pr {Xi = j} ej/e ≤
e3 lnP−1∑
j=lnP

Pr {Xi = j} ee2 lnP

= ee
2 lnP

e3 lnP−1∑
j=lnP

Pr {Xi = j}

≤ ee
2 lnP .(6.5)

To bound the second sum in equation (6.4), we further break the range of the index
variable j into smaller pieces indexed by k = 3, . . . , dlnP e − 1, with piece k going
from j = ek lnP to j = ek+1 lnP − 1 as follows:

P lnP∑
j=e3 lnP

Pr {Xi = j} ej/e =

dlnPe−1∑
k=3

ek+1 lnP−1∑

j=ek lnP

Pr {Xi = j} ej/e

≤
dlnPe−1∑
k=3

eek lnP

ek+1 lnP−1∑
j=ek lnP

Pr {Xi = j}

≤
dlnPe−1∑
k=3

ee
k lnP Pr

{
Xi ≥ ek lnP

}

=

dlnPe−1∑
k=3

P ek Pr
{
Xi ≥ ek lnP

}
.(6.6)

Now we can bound Pr
{
Xi ≥ ek lnP

}
by the same technique as in Lemma 6.2, since

Xi has the same distribution as the random variable Z considered in the proof of
Lemma 6.2:

Pr
{
Xi ≥ ek lnP

} ≤ P

(
P lnP

ek lnP

)(
1

P

)ek lnP

≤ Pe−(k−1)ek lnP

= P−(k−1)ek+1.

224 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

Substituting this bound into inequality (6.6) yields

P lnP∑
j=e3 lnP

Pr {Xi = j} ej/e ≤
dlnPe−1∑
k=3

P ekP−(k−1)ek+1

≤
∞∑
k=3

P−(k−2)ek+1

≤ 1,(6.7)

since the sum is bounded by the geometric sum
∑∞

k=1 2−k = 1. Now we can substitute
inequalities (6.5) and (6.7) back into equation (6.4), producing

E
[
eXi/e

]
≤ ee

2 lnP + 1

≤ e(e
2+1) lnP .

Finally, by substituting this bound into equation (6.3) and then substituting into
inequality (6.2), we obtain

Pr {X ≥ aY lnP + b} ≤ e((e
2+1) lnP)Y e−(aY lnP+b)/e

= exp

(
−
(a
e
− e2 − 1

)
Y lnP − b

e

)

≤ exp

(
− b

e

)

for a ≥ e3 + e. Thus, with b = e ln(1/ε), we obtain

Pr
{
X ≥ (e3 + e)Y lnP + e ln(1/ε)

} ≤ ε.

We can now characterize the time and space usage for execution schedules com-
puted by the LDF algorithm with synchronization parameter r = 6 lgP .

Theorem 6.5. For any number P ≥ 2 of processors and any strict multithreaded
computation with work T1, computation depth T∞, and activation depth S1, Algorithm
LDF(6 lgP) computes a P -processor schedule X that uses space S(X) = O(S1P lgP),
and for any ε > 0, with probability at least 1 − ε, the schedule uses time T (X) =
O(T1/P + T∞ lgP + lg(1/ε)).

Proof. The space bound follows directly from Lemma 6.1 with synchronization
parameter r = 6 lgP . The time T (X) is the total time taken in computation phases.
Let the random variable Y denote the number of iterations. Then we can decompose
T (X) as a sum of Y mutually independent random variables, T (X) = X1 +X2 + · · ·+
XY , with each Xi distributed as the size of the fullest bin when throwing 18P lgP balls
independently at random into P bins. Using ε/2 as the value of ε in Lemma 6.3, we
obtain Y = O(T1/(P lgP) +T∞ + logP (1/ε)) with probability at least 1− ε/2. Then,
using ε/2 as the value of ε in Lemma 6.4, we obtain T (X) = O(Y lgP + lg(1/ε)) with
probability at least 1−ε/2 (using 18P lgP instead of P lnP only affects the constant).
Thus, with probability at least 1 − ε, the total time taken in computation phases is
T (X) = O(T1/P + T∞ lgP + lg(1/ε)).

Corollary 6.6. For any number P ≥ 2 of processors and any strict multi-
threaded computation with work T1and computation depth T∞, Algorithm LDF(6 lgP)

SCHEDULING MULTITHREADED COMPUTATIONS 225

computes a P -processor schedule X with expected execution time E [T (X)] = O(T1/P+
T∞ lgP).

Proof. Just use ε = 1/P in Theorem 6.5 to get T (X) = O(T1/P + T∞ lgP) with
probability at least 1− 1/P . Then we have

E [T (X)] ≤
(

1− 1

P

)
O

(
T1

P
+ T∞ lgP

)
+

1

P
T1

= O

(
T1

P
+ T∞ lgP

)
.

This algorithm achieves linear expected speedup when the computation has av-
erage available parallelism T1/T∞ = Ω(P lgP).

We can view the lgP factors in the space bound and the average available par-
allelism required to achieve linear speedup as the computational slack required by
Valiant’s bulk-synchronous model [42]. The space bound S(X) = O(S1P lgP) indi-
cates that Algorithm LDF(6 lgP) requires memory to scale sufficiently to allow each
physical processor enough space to simulate Θ(lgP) virtual processors. Given this
much space, the time bound E [T (X)] = O(T1/P +T∞ lgP) then demonstrates linear
expected speedup provided the computation has lgP slack in the average available
parallelism.

The space bound of Theorem 6.5 is an aggregate bound, but in a distributed
memory machine, we may want to bound the space associated with each individual
processor’s queue. In the LDF algorithm, each living thread is located in the local
queue of a processor chosen at random, so we assume that each activation frame is
located in the local memory of the same randomly chosen processor as its associated
living thread. Since the aggregate space used by Algorithm LDF(r) is bounded by
2rS1P , we would like some way to ensure that each individual processor requires space
bounded by O(rS1).

If we consider any given processor p and any given iteration t of the algorithm,
then we can let W denote the total space being used by activation frames located in
the memory of processor p. We can decompose W as a weighted sum of independent
indicator random variables and show that E [W] ≤ 2rS1. Then, using a theorem due
to Raghavan [36, Theorem 1], we can show that with probability at least 1− e−2r, we
have W ≤ 2erS1.

With this probabilistic bound on the space used by a given processor at a given
iteration, we can show that with appropriate choice of the synchronization parameter
r, we can bound the per-processor memory by simply rerandomizing thread locations
any time a processor’s memory fills up. In particular, if we choose r = Θ(lgP +lgS1),
then the total time spent rerandomizing is O(T1/P) and the per-processor storage
bound is O(S1(lgP + lgS1)). Details can be found in [4].

7. Related and future work. Although the work we have presented here pro-
vides some theoretical underpinnings for understanding the resource requirements of
multithreaded computations, much remains to be done. In this section, we review
some of the related work, both theoretical and empirical, on scheduling dynamic
computations. We discuss the class of “thread-stealing” algorithms and present some
of our preliminary research on this kind of scheduling algorithm.

Substantial research has been reported in the theoretical literature concerning
dynamic computations. In contrast to our research on multithreaded computations,
however, other theoretical research has tended to treat the aggregate resource require-
ments of a computation as a given, rather than as a quantity that depends on the

226 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

execution schedule. Thus, the relevant issue in this work is how to balance the load
across processors. Important work in this area includes a randomized work-stealing
algorithm for load balancing [38]; dynamic tree-embedding algorithms [3, 31]; and
algorithms for backtrack search [27, 37, 45], which can be viewed as a multithreaded
computation with no data-dependency edges. Although this work ignores aggregate
space requirements, it is interesting to note that Zhang’s work-stealing algorithm for
backtrack search [45] actually gives at most linear expansion of space, but he does
not mention this fact.

The problem of storage management for multithreaded computations has been a
growing concern among practitioners [13, 22]. To date, most existing techniques for
controlling storage requirements have consisted of heuristics to either bound storage
use by explicitly controlling storage as a resource or reduce storage use by modifying
the scheduler’s behavior. We are aware of no prior scheduling algorithms for multi-
threaded computations for which simultaneously good time and space bounds have
been proved.

The storage management problem can often be quite pronounced under the execu-
tion of a fair scheduler. By executing threads in round-robin fashion, a fair scheduler
gives each ready thread a fair portion of the execution time. A fair scheduler aggres-
sively exposes parallelism, often resulting in excessive space requirements. In order
to curb the excessive use of space exhibited by fair scheduling, researchers from the
dataflow community have developed heuristics to explicitly manage storage [15, 39].
The effectiveness of these heuristics is documented with encouraging empirical evi-
dence but no provable time bounds.

In contrast with these heuristic techniques, we have chosen to develop an algo-
rithmic foundation that manages storage by allowing programmers to leverage their
knowledge of storage requirements for serially executed programs.

Other researchers have also addressed the storage issue by attempting to relate
parallel storage requirements to serial storage requirements. Burton and Sleep [12]
and Halstead [22], for example, considered unfair scheduling policies based on thread
stealing. In these thread-stealing strategies, each processor works depth-first—just like
a serial execution—but when a processor runs out of ready threads, it steals threads
from other processors. In many cases, this scheduling policy results in each processor
using no more space than that used by a single processor, but a problem arises as to
what to do when all threads in a processor have stalled. If the processor goes out to
steal a thread from another processor, greater-than-linear space expansion may result.
If the processor goes idle, however, linear speedup is not guaranteed. For these unfair
scheduling policies, characterizing the performance analytically is difficult.

Thread stealing has also been employed in two parallel chess-playing programs.
Zugzwang [18] is a program in which processors steal subcomputations of a chess tree
using a parallel alpha-beta search algorithm. StarTech [30] is another parallel program
organized along similar lines but with a parallel scout-search algorithm. Although the
authors make no guarantees of performance for their algorithms, the empirical results
of these programs are good; both have won prizes in international chess competitions.

In recent work, we have obtained some preliminary results on thread stealing. We
have devised a new global algorithm that forms the basis of a randomized, distributed,
thread-stealing algorithm. Our new global algorithm is like GDF′ except for two
changes. First, the global queue is not organized by activation depth; when a processor
removes a ready thread from the queue, any ready thread suffices. Second, when a
thread dies, the thread’s processor must locate the parent thread in the global queue

SCHEDULING MULTITHREADED COMPUTATIONS 227

and check to see if the parent has any surviving children. If the parent no longer has
any surviving children, then the processor must commence work on the parent thread.
Otherwise, the processor is free to take any ready thread from the global queue. It can
be proved by simple induction that this algorithm satisfies the same time and space
bounds as Algorithms GDF and GDF′ . In our distributed thread-stealing algorithm,
we replace the global queue with local queues, one per processor. By making some
generous modeling assumptions, we have been able to analyze this algorithm and to
obtain bounds similar to those for Algorithm LDF. We are currently working on
improving these results.

Appendix. During the time between our results becoming publicly known [7]
and this journal publication, we have explored multithreaded computing more fully.
We have been able to characterize the performance of a distributed thread-stealing
algorithm [5, 8]. For the class of “fully strict” (well-structured) computations, this
randomized algorithm achieves execution space bounded by S1P and expected execu-
tion time bounded by O(T1/P+T∞), including scheduling overheads. Additionally, in
contrast to Algorithm LDF, this thread-stealing algorithm is efficient with respect to
communication. We have implemented this thread-stealing algorithm in the runtime
system for Cilk [5, 6], a parallel multithreaded extension of the C language. By em-
ploying a provably efficient scheduler, Cilk is able to deliver efficient and predictable
performance, guaranteed. Moreover, structure in the Cilk programming model facili-
tates the implementation of “adaptive parallelism” and transparent fault tolerance in
a runtime system for Cilk on networks of workstations [5, 9]. More information about
Cilk is available online at http://theory.lcs.mit.edu/~cilk.

Acknowledgments. The authors thank Bonnie Berger, Tom Cormen, Esther
Jesurum, Mike Klugerman, Bradley Kuszmaul, Tom Leighton, Arthur Lent, Greg Pa-
padopoulos, Atul Shrivastava, and Ethan Wolf of the MIT Laboratory for Computer
Science for insightful discussions.

REFERENCES

[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz, APRIL: A processor architecture
for multiprocessing, in Proc. 17th Annual Intl. Symposium on Computer Architecture,
Seattle, WA, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 104–114; Tech.
Report MIT/LCS/TM-450, MIT Laboratory for Computer Science, Cambridge, MA, 1991.

[2] W. C. Athas and C. L. Seitz, Multicomputers: Message-passing concurrent computers, Com-
puter, 21 (1988), pp. 9–24.

[3] S. Bhatt, D. Greenberg, T. Leighton, and P. Liu, Tight bounds for on-line tree embed-
dings, in Proc. of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, CA, SIAM, Philadelphia, 1991, pp. 344–350.

[4] R. D. Blumofe, Managing Storage for Multithreaded Computations, Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, 1992; Tech. Report MIT/LCS/TR-552, MIT Laboratory for Computer Science,
Cambridge, MA, 1992.

[5] R. D. Blumofe, Executing Multithreaded Programs Efficiently, Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, 1995.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, Cilk: An efficient multithreaded runtime system, in Proc. of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), Santa
Barbara, CA, ACM, New York, 1995, pp. 207–216.

[7] R. D. Blumofe and C. E. Leiserson, Space-efficient scheduling of multithreaded computa-
tions, in Proc. of the 25th Annual ACM Symposium on Theory of Computing (STOC),
San Diego, CA, ACM, New York, 1993, pp. 362–371.

228 ROBERT D. BLUMOFE AND CHARLES E. LEISERSON

[8] R. D. Blumofe and C. E. Leiserson, Scheduling multithreaded computations by work stealing,
in Proc. of the 35th Annual Symposium on Foundations of Computer Science (FOCS),
Santa Fe, NM, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 356–368.

[9] R. D. Blumofe and D. S. Park, Scheduling large-scale parallel computations on networks
of workstations, in Proc. of the Third Intl. Symposium on High Performance Distributed
Computing (HPDC), San Francisco, CA, IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 96–105.

[10] B. Boothe and A. Ranade, Improved multithreading techniques for hiding communication
latency in multiprocessors, in Proc. of the 19th Annual Intl. Symposium on Computer
Architecture, Gold Coast, Australia, IEEE Computer Society Press, Los Alamitos, CA,
1992, pp. 214–223.

[11] R. P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput.
Mach., 21 (1974), pp. 201–206.

[12] F. W. Burton and M. R. Sleep, Executing functional programs on a virtual tree of processors,
in Proc. of the 1981 Conference on Functional Programming Languages and Computer
Architecture, Portsmouth, NH, ACM, New York, 1981, pp. 187–194.

[13] D. E. Culler, Resource Management for the Tagged Token Dataflow Architecture, Master’s
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, MA, 1980; Technical Report MIT/LCS/TR-332, MIT
Laboratory for Computer Science, Cambridge, MA, 1985.

[14] D. E. Culler, Managing Parallelism and Resources in Scientific Dataflow Programs, Ph.D.
thesis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, 1990; Tech. Report MIT/LCS/TR-446, MIT Laboratory for Computer
Science, Cambridge, MA, 1990.

[15] D. E. Culler and Arvind, Resource requirements of dataflow programs, in Proc. of the 15th
Annual Intl. Symposium on Computer Architecture, Honolulu, HI, IEEE Computer Society
Press, Los Alamitos, CA, 1988, pp. 141–150; Computation Structures Group Memo 280,
MIT Laboratory for Computer Science, Cambridge, MA, 1987.

[16] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek, Fine-grain
parallelism with minimal hardware support: A compiler-controlled threaded abstract ma-
chine, in Proc. of the Fourth Intl. Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, CA, ACM, New York, 1991, pp. 164–175.

[17] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty,
and S. Wills, Architecture of a message-driven processor, in Proc. of the 14th Annual Intl.
Symposium on Computer Architecture, Pittsburgh, PA, IEEE Computer Society Press, Los
Alamitos, CA, 1987, pp. 189–196.

[18] R. Feldmann, P. Mysliwietz, and B. Monien, Game tree search on a massively parallel
system, Adv. Comput. Chess, 7 (1993), pp. 203–219.

[19] V. G. Grafe and J. E. Hoch, The Epsilon-2 hybrid dataflow architecture, in Proc. 35th
IEEE Computer Society Intl. Computer Conf. (COMPCON 90), San Francisco, CA, IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 88–93.

[20] R. L. Graham, Bounds for certain multiprocessing anomalies, The Bell System Tech. J., 45
(1966), pp. 1563–1581.

[21] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416–429.

[22] R. H. Halstead, Jr., Multilisp: A language for concurrent symbolic computation, ACM Trans.
Prog. Lang. Syst., 7 (1985), pp. 501–538.

[23] R. H. Halstead, Jr. and T. Fujita, MASA: A multithreaded processor architecture for parallel
symbolic computing, in Proc. of the 15th Annual Intl. Symposium on Computer Architec-
ture, Honolulu, HI, IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 443–451.

[24] W. Horwat, Concurrent Smalltalk on the Message-Driven Processor, Tech. Report
MIT/AI/TR-1321, MIT Artificial Intelligence Laboratory, Cambridge, MA, 1991.

[25] R. A. Iannucci, Toward a dataflow/von Neumann hybrid architecture, in Proc. of the 15th
Annual Intl. Symposium on Computer Architecture, Honolulu, HI, IEEE Computer Society
Press, Los Alamitos, CA, 1988, pp. 131–140; Computation Structures Group Memo 275,
MIT Laboratory for Computer Science, Cambridge, MA, 1988.

[26] S. Jagannathan and J. Philbin, A customizable substrate for concurrent languages, in Proc.
of the ACM SIGPLAN ’92 Conference on Programming Language Design and Implemen-
tation, San Francisco, CA, ACM, New York, 1992, pp. 55–67.

[27] C. Kaklamanis and G. Persiano, Branch-and-bound and backtrack search on mesh-connected
arrays of processors, in Proc. of the Fourth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, San Diego, CA, ACM, New York, 1992, pp. 118–126.

SCHEDULING MULTITHREADED COMPUTATIONS 229

[28] R. M. Karp and Y. Zhang, A randomized parallel branch-and-bound procedure, in Proc. of the
20th Annual ACM Symposium on Theory of Computing, Chicago, IL, ACM, New York,
1988, pp. 290–300.

[29] S. W. Keckler and W. J. Dally, Processor coupling: Integrating compile time and runtime
scheduling for parallelism, in Proc. of the 19th Annual Intl. Symposium on Computer
Architecture, Gold Coast, Australia, IEEE Computer Society Press, Los Alamitos, CA,
1992, pp. 202–213.

[30] B. C. Kuszmaul, Synchronized MIMD Computing, Ph.D. thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1994; Tech.
Report MIT/LCS/TR-645, MIT Laboratory for Computer Science, 1994; also available
online via ftp://theory.lcs.mit.edu/pub/bradley/phd.ps.Z.

[31] T. Leighton, M. Newman, A. G. Ranade, and E. Schwabe, Dynamic tree embeddings in
butterflies and hypercubes, in Proc. of the 1989 ACM Symposium on Parallel Algorithms
and Architectures, Santa Fe, NM, ACM, New York, 1989, pp. 224–234.

[32] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr., Lazy task creation: A technique for
increasing the granularity of parallel programs, IEEE Trans. Parallel Distrib. Systems, 2
(1991), pp. 264–280.

[33] R. S. Nikhil and Arvind, Can dataflow subsume von Neumann computing?, in Proc. of the
16th Annual Intl. Symposium on Computer Architecture, Jerusalem, Israel, IEEE Com-
puter Society Press, Los Alamitos, CA, 1989, pp. 262–272; Computation Structures Group
Memo 292, MIT Laboratory for Computer Science, Cambridge, MA, 1989.

[34] R. S. Nikhil, G. M. Papadopoulos, and Arvind, ∗T: A multithreaded massively parallel
architecture, in Proc. of the 19th Annual Intl. Symposium on Computer Architecture,
Gold Coast, Australia, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 156–
167; Computation Structures Group Memo 325–1, MIT Laboratory for Computer Science,
Cambridge, MA, 1991.

[35] G. M. Papadopoulos and K. R. Traub, Multithreading: A revisionist view of dataflow archi-
tectures, in Proc. of the 18th Annual Intl. Symposium on Computer Architecture, Toronto,
Canada, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 342–351; Compu-
tation Structures Group Memo 330, MIT Laboratory for Computer Science, Cambridge,
MA, 1991.

[36] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing
integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

[37] A. Ranade, Optimal speedup for backtrack search on a butterfly network, in Proc. of the Third
Annual ACM Symposium on Parallel Algorithms and Architectures, Hilton Head, SC,
ACM, New York, 1991, pp. 40–48.

[38] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, A simple load balancing scheme for task
allocation in parallel machines, in Proc. of the Third Annual ACM Symposium on Parallel
Algorithms and Architectures, Hilton Head, SC, ACM, New York, 1991, pp. 237–245.

[39] C. A. Ruggiero and J. Sargeant, Control of parallelism in the Manchester dataflow ma-
chine, in Functional Programming Languages and Computer Architecture, Lecture Notes
in Comput. Sci., 274, Springer-Verlag, Berlin, 1987, pp. 1–15.

[40] M. Sato, Y. Kodama, S. Sakai, Y. Yamaguchi, and Y. Koumura, Thread-based programming
for the EM-4 hybrid dataflow machine, in Proc. of the 19th Annual Intl. Symposium
on Computer Architecture, Gold Coast, Australia, IEEE Computer Society Press, Los
Alamitos, CA, 1992, pp. 146–155.

[41] K. R. Traub, Sequential Implementation of Lenient Programming Languages, Ph.D. thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1988; Tech. Report MIT/LCS/TR-417, MIT Laboratory for Computer Science,
Cambridge, MA, 1988.

[42] L. G. Valiant, A bridging model for parallel computation, Comm. ACM, 33 (1990), pp. 103–
111.

[43] M. T. Vandevoorde and E. S. Roberts, WorkCrews: An abstraction for controlling paral-
lelism, Internat. J. Parallel Programming, 17 (1988), pp. 347–366.

[44] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, Active messages:
A mechanism for integrated communication and computation, in Proc. of the 19th An-
nual Intl. Symposium on Computer Architecture, Gold Coast, Australia, IEEE Computer
Society Press, Los Alamitos, CA, 1992, pp. 256–266.

[45] Y. Zhang, Parallel Algorithms for Combinatorial Search Problems, Ph.D. thesis, Department
of Electrical Engineering and Computer Science, University of California at Berkeley, 1989;
Tech. Report UCB/CSD 89/543, University of California at Berkeley, Computer Science
Division, 1989.

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS∗

MIKAEL GOLDMANN† AND MAREK KARPINSKI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 230–246, February 1998 010

Abstract. We prove that a single threshold gate with arbitrary weights can be simulated by
an explicit polynomial-size, depth-2 majority circuit. In general we show that a polynomial-size,
depth-d threshold circuit can be simulated uniformly by a polynomial-size majority circuit of depth
d + 1. Goldmann, H̊astad, and Razborov showed in [Comput. Complexity, 2 (1992), pp. 277–300]
that a nonuniform simulation exists. Our construction answers two open questions posed by them:
we give an explicit construction, whereas they use a randomized existence argument, and we show
that such a simulation is possible even if the depth d grows with the number of variables n (their
simulation gives polynomial-size circuits only when d is constant).

Key words. threshold circuits, majority circuits, circuit complexity

AMS subject classifications. 68Q05, 68Q22, 68Q25

PII. S0097539794274519

1. Introduction. A threshold gate is a fairly simple device that computes a
weighted sum of its inputs, compares it to a threshold value, and outputs 1 or 0
depending on the outcome of the comparison. A threshold circuit is an acyclic network
of threshold gates. The size of a circuit is the number of wires in it.

Small-weight threshold gates are a restricted type of threshold gates. In this case
the magnitude of the (integer) weights of the gate is bounded by a polynomial in
the number of inputs to the gate. The corresponding circuits are called small-weight
threshold circuits. In this case the magnitude of the weights in the circuit is bounded
by a polynomial in the total number of inputs to the circuit. It is easy to see that a
majority gate can simulate a small weight threshold gate by simply duplicating input
wires and adding some constant inputs. This leads only to a polynomial increase in
the number of wires. Hence, depth-d, polynomial-size majority circuits are equivalent
to depth d polynomial-size, small-weight threshold circuits.

Threshold circuits have been shown to be surprisingly powerful. It is implicit in
work by Beame, Cook, and Hoover [4] that integer division can be carried out by
polynomial-size threshold circuits of constant depth. Allender [1] (inspired by Toda
[29]) shows that any function in AC0 can be computed by depth-3 majority circuits
of quasi-polynomial size. Yao [34] extends this to all of ACC0 (see also [5]).

There are some strong lower bounds for majority circuits of very small depth.
Hajnal et al. [11] prove exponential lower bounds on the size of depth-2 majority
circuits computing “inner product mod 2.” These results were extended in [13] to
depth-3 majority circuits where the gates on the bottom level have very small fan-
in, and recently superpolynomial bounds were proved for depth-3 majority circuits
where the gates on the bottom level are arbitrary gates of fan-in n1−ε [23]. For depth-
3 majority circuits with no extra restrictions, no superpolynomial lower bounds are

∗ Received by the editors September 12, 1994; accepted for publication (in revised form) January
18, 1996. A preliminary version of this paper appeared in Proc. 25th Annual ACM Symposium on
the Theory of Computing, ACM, New York, 1993, pp. 551–560.

http://www.siam.org/journals/sicomp/27-1/27451.html
† Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden

(migo@nada.kth.se). This author’s work was done in part while visiting the University of Bonn.
‡ Department of Computer Science, University of Bonn, 53117 Bonn (marek@cs.bonn.edu) and

International Computer Science Institute, Berkeley, CA 94704. This author was supported in part
by Leibniz Center for Research in Computer Science, by DFG grant KA 673/4-1, and by ESPRIT
BR grant 7097.

230

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 231

known. Siu, Roychowdhury, and Kailath proved superlinear lower bounds on the
number of wires in constant-depth majority circuits computing parity [28]. Recently
Impagliazzo, Paturi, and Saks extended the results of [28] to constant-depth threshold
circuits (with large weights) computing parity [15].

If one considers threshold circuits with arbitrary weights, even less is known.
There is no superpolynomial lower bound for depth-2 threshold circuits computing
some function in NP. As we mentioned above, such bounds exist for majority circuits
[11]. It is therefore interesting to explore the power of large weights in threshold
circuits.

It has long been known that a single threshold gate is strictly more powerful
than a single small-weight threshold gate. For instance, Myhill and Kautz showed
in 1961 that there are functions computable by a single threshold gate that require
weights of size Ω(2n/n), where n is the number of inputs [17]. Also, it was recently
shown that depth-2, polynomial-size threshold circuits are more powerful than depth-
2, polynomial-size, small-weight threshold circuits [10].

On the other hand, it was proved by Chandra, Stockmeyer, and Vishkin [8] that
addition of n binary encoded integers can be performed by constant depth majority
circuits (see also [21]). This implies that depth-d, polynomial-size threshold circuits
can be simulated by depth O(d), polynomial-size, small-weight threshold circuits.

In [25] Siu and Bruck gave a nonconstructive proof that polynomial-size, depth-d
threshold circuits can be simulated by polynomial-size, depth-2d+1 majority circuits.
Alon and Bruck gave a uniform construction in [3] achieving this. Goldmann, H̊astad,
and Razborov showed in [10] that any function computed by a depth-d, polynomial-
size threshold circuit is computable by a depth-d+1, polynomial-size majority circuit
(note that for d = 1, 2 this is optimal). Two open questions were posed in [10]: can
one make an explicit construction, and can one make it work also for nonconstant
depth? (Reference [10] uses a probabilistic argument, and the blowup in size is su-
perpolynomial if the depth grows with the number of variables.) We give positive
answers to both questions.

For a thorough survey of complexity theoretic results on threshold circuits, see
[22].

2. Preliminaries. It will be convenient to work over {1,−1} rather than {0, 1}.
An n-variable Boolean function thus maps {1,−1}n to {1,−1}. This is a simple
transformation that does not affect the power of threshold gates. A threshold gate
computes its output as the sign of a linear form:

g(x) = sign

(
w0 +

n∑
i=1

wixi

)
,

where the wi are the weights, and the sign function takes a real-valued input and is
defined by

sign (x) =

 −1 if x < 0,
0 if x = 0,
1 if x > 0.

Since g is to be ±1-valued, the argument to the sign function is required to be nonzero
for all x ∈ {1,−1}n. The following well-known result by Muroga [16] gives a bound
on the magnitude of the weights.

232 MIKAEL GOLDMANN AND MAREK KARPINSKI

Theorem 2.1 (see [16, Theorem 9.3.2.1]). Let f(x) be an arbitrary n-variable
threshold function. Then f(x) can be written as

f(x) = sign

(
w0 +

n∑
1

wixi

)
,

where for all i = 0, . . . , n,

wi ∈ Z and |wi| ≤ 2−n(n+ 1)(n+1)/2.

Remark 1. A recent result by H̊astad [12] gives a lower bound on the weights
required for a particular threshold function. The lower bound nearly matches the
upper bound in Theorem 2.1.

A threshold circuit is a directed acyclic graph the nodes of which are either
threshold gates or input variables. We allow multiple output nodes, and a circuit
is evaluated in topological order. For a given circuit C, fC is the function computed
by C. The size of a circuit is the number of wires in it.

A family of circuits {Cn} is said to compute a function f : {1,−1}∗ → {1,−1}∗
provided f �{1,−1}n= fCn for all n.

Definition 2.2. We use the following notation from [6].

• LT d is the class of functions computable by depth-d, polynomial-size threshold
circuits.
• L̂T d is the class of functions computable by depth-d, polynomial-size threshold

circuits with polynomially bounded integer weights.

Note that if we allow a gate to have multiple wires from an input (i.e., the under-
lying structure is a multi-graph), then depth-d, polynomial-size majority circuits can

compute any function in L̂T d.

We introduce also uniform classes of threshold circuits. In doing so we can use
the threshold circuit descriptions, e.g., similar to the “direct connection language” of
Ruzzo [24] (see also [9]).

Let BIN be the set of binary encodings of the positive integers. A threshold
circuit Cn with n inputs is described by a labeled multigraph (Vn, En). Vn = In

.∪ Gn,
where In = {1, x1, . . . , xn} is the set of inputs (note that the constant “1” is included
in In), and Gn = {g1, . . . , gs} is the set of gate labels. The edges in En are tuples
(e, v, g, k, δ) ∈ Vn×BIN×Gn×BIN×{1,−1} with the following interpretation: the
edge with label e goes from v to g (where e is a unique edge label), and the weight
of the edge is δ · 2k. There is no need to assign a threshold value to the gates in Gn.
We give them all threshold 0 and by having an appropriate weight assigned to the
constant input 1 any threshold can be achieved. Also, an edge with weight w can
be split into about logw edges the weights of which are powers of 2. We use Cn to
denote the description of Cn.

We use the same syntax when describing small-weight threshold circuits, but k in
an edge-tuple (n, e, v, g, k, δ) is interpreted as the weight having magnitude k rather
than 2k.

A circuit-family has polynomial-size descriptions if there is a constant c such that

• for each n ∈ N and each g ∈ Gn it holds that |g| ≤ c(1 + log(n+ 1)).
• for each n ∈ N and each edge (e, v, g, k, δ) ∈ En it holds that |e| ≤ c(1 +

log(n+ 1)) and that |k| ≤ c(1 + log(n+ 1)).

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 233

Note that given the above constraints both Vn and En have size polynomial in n.
To define uniformity, let C = {Cn} be a sequence of circuits, and for each Cn let Gn

and En be the corresponding gates and edges. C defines the language LC = LG ∪LE ,
where LG = { (n, g) | g ∈ Gn } and LE = { (n, e, v, g, k, δ) | (e, v, g, k, δ) ∈ En }.

Definition 2.3. A function is in L-uniform LTd if there is a sequence C of
depth-d threshold circuits with polynomial-size descriptions, such that there is a Turing
machine that accepts LC in linear space.

A function is in L-uniform L̂T d if there is a sequence C of depth-d small-weight
threshold circuits with polynomial-size descriptions, such that there is Turing machine
that accepts LC in linear space.

The reason for the terminology “L-uniform” is that the description of a circuit
of the above type can be generated in space that is logarithmic in the size of the
description.

We call a sequence of circuits P -uniform if the description of the nth circuit can
be generated in polynomial time on input 1n (cf., for example, [9]).

We define the following operator.
Definition 2.4. The operator rem is defined as follows. For integers a and b,

a rem b = c,

where c is the unique integer such that

a ≡ c (mod b) and − b/2 < c ≤ b/2.

3. The idea behind the construction. Let f be an arbitrary threshold gate
given by

f(x) = sign (F (x)) ,

where

F (x) = w0 +
n∑
i=1

wixi.

Since we have integer weights, and we require that the argument of ‘sign’ is nonzero,
we have |F (x)| ≥ 1 for all x.

In the next section we will build a parametrized approximator for f . For a
fixed input, the approximator is good for randomly chosen parameters. To show the
intuition behind the construction, we build an approximator ϕ for f that computes
correctly for a random input.

In the construction it will be convenient to use rational weights. All the weights
in the circuits we construct are of the form w/2, where w is an integer. By multiplying
all weights in the circuit by 2 we get integer weights, and the increase in the magnitude
of the weights is just a factor 2.

To describe the construction we need a couple of parameters that we call W
and m. Let wmax(f) be the largest magnitude of a weight of the gate f . It will be
convenient to assume the following:

W ≥ max{wmax(f), 2n},(1)

10n ≤ m ≤W.(2)

234 MIKAEL GOLDMANN AND MAREK KARPINSKI

The parameter m controls the quality of the approximator. In the circuit that imple-
ments the approximator the weights will have magnitude about m2. To have small-
weight circuits, clearly m must be kept small. On the other hand, intuitively it seems
that allowing larger weights allows a more accurate approximator. The parameter m
reflects this trade-off.

The construction uses the following function of one integer variable y:

Mm(y) =
1

2
sign

(
y −m+

1

2

)
−1

2
sign

(
y − 2m+

1

2

)
+

1

2
sign

(
y +m− 1

2

)
−1

2
sign

(
y + 2m− 1

2

)
.

The function Mm(y) has the following useful property, which is immediate from the
definition of Mm.

Lemma 3.1. If m ≤ |y| < 2m, then Mm(y) = sign (y), and otherwise Mm(y) =
0.

Let us look at a fixed input x. Assume that 2l ≤ |F (x)| < 2l+1. Given this
information, we can use less precision in the weights wi. Set

F(l)(x) = bw0m/2lc+
n∑
i=1

bwim/2lcxi.

If we disregard the error introduced by the floor operation, we will have

m ≤ |F(l)(x)| < 2m.

It is plausible that for most inputs x the truncation error will not matter, and then
sign (F (x)) = sign

(
F(l)(x)

)
. To get the weights small, we just look at F(l)(x) modulo

some small prime p > m2.
We are now ready to construct a small gadget ϕ(l)(x) that implements the com-

putation described above.

w
(l)
i = bwim/2lc rem p,

Φ(l)(x) = w
(l)
0 +

n∑
i=1

w
(l)
i xi,

ϕ(l)(x) =

d(n+1)/2e∑
j=−b(n+1)/2c

Mm
(
Φ(l)(x) + jp

)
.(3)

Let us establish some properties of ϕ(l) as defined by (3).
Proposition 3.2. For p > 4m the following holds.
1. For any x,

∣∣ϕ(l)(x)
∣∣ ∈ {0, 1}.

2. If
∣∣F(l)(x) rem p

∣∣ 6∈ [m, 2m), then ϕ(l)(x) = 0.

3. If m ≤ ∣∣F(l)(x)
∣∣ < 2m, then ϕ(l)(x) = sign

(
F(l)(x)

)
.

Proof. All statements follow from Lemma 3.1.

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 235

1. Each term Mm
(
Φ(l)(x) + jp

)
is either 0, 1, or −1, and since p > 4m there is

at most one j for which
∣∣Φ(l)(x) + jp

∣∣ < 2m, and thus at most one nonzero

term Mm
(
Φ(l)(x) + jp

)
.

2. By Lemma 3.1, Mm(y) 6= 0 implies that |y| < 2m, and since p > 4m this
in turn implies y = y rem p. Thus, the only term that might be nonzero is
the term Mm

(
Φ(l)(x) + jp

)
for which Φ(l)(x)+ jp = Φ(l)(x) rem p. Now just

observe that F(l)(x) ≡ Φ(l)(x)(mod p).

3. For the third statement we have the following. Assume that m ≤ ∣∣F(l)(x)
∣∣ <

2m. We then have Φ(l)(x) rem p = F(l)(x).
Let j0 be the integer that satisfies Φ(l)(x) rem p = Φ(l)(x) + j0p.

Since
∣∣Φ(l)(x)

∣∣ ≤ (n + 1)(p − 1)/2, j0 occurs in the sum in (3). The third
statement now follows from Lemma 3.1.

It is tempting to set

ϕ(x) =
∑
l

ϕ(l)(x)(4)

and hope that ϕ(x) = sign (F (x)) = f(x). The idea is that there is always an l such
that 2l ≤ |F (x)| < 2l+1. If there was no error introduced by the floor operations, we
would have m ≤ ∣∣F(l)(x)

∣∣ < 2m and sign
(
F(l)(x)

)
= sign (F (x)). By Proposition 3.2,

ϕ(l)(x) = sign
(
F(l)(x)

)
, and for all other l we would probably have ϕ(l)(x) = 0. Then

we would have ϕ(x) = ϕ(l)(x) = sign (F (x)) = f(x).
Remark 2. We know that |F (x)| ≤ (n+ 1)W . Thus, it is sufficient to sum over l

such that 0 ≤ l ≤ log((n+ 1)W) in (4).
The problems with (4) are of course that the floor operation sometimes introduces

truncation errors (e.g., when 2l ≤ F (x) but F(l)(x) < m), and sometimes the “wrong”
l gives a nonzero contribution to the sum (a modular error). Equation (4) is not such
a bad idea though, because it works for most x.

4. The approximator. To get an approximator based on the ideas of the previ-
ous section we want to spread the value F (x) in some random fashion. This was done
in [10] by considering sign (αF (x)) for a randomly chosen integer α ∈ {1, 2, . . . , 22n},
and since α > 0, one has sign (F (x)) = sign (αF (x)). It was shown that for any x, the
approximator would compute sign (αF (x)) correctly with high probability. By taking
many independent α’s and taking the sign of the average, one gets an approximator
that behaves well on all inputs. If the range of α was smaller, we could get an explicit
approximator by taking the average over all α’s.

We will modify the construction. Our approximator will depend on two param-
eters, and for any input, the approximator will be good with high probability if the
parameters are chosen at random. In our case the probability space is small enough
that we may take the average over all possible choices of parameter values. Just like
in [10] we will use a multiplier α, but it will be much smaller. For a random α, the
probability of a truncation error is small. To handle the modular errors, we will also
choose the prime p, used in the construction, randomly, and the probability that we
get a modular error for a random p is small.

Definition 4.1. We define the following sets. Let

[m] = {1, 2, . . . ,m},
PRm is the set of the first m2 primes that are greater than m2.

When α and p are chosen randomly, they are picked as a pair (α, p) ∈ [m] × PRm

according to the uniform distribution.

236 MIKAEL GOLDMANN AND MAREK KARPINSKI

Instead of looking at the weights wi, we make the approximator for weights αwi.
Thus, instead of looking at F (x) we look at αF (x), but this works since sign (αF (x)) =
sign (F (x)) = f(x). We call the corresponding truncated linear form Fα

(l)(x); that is,

Fα
(l)(x) = bαw0m/2lc+

n∑
i=1

bαwim/2lcxi.

Now we are ready to define the parametrized approximator ϕα,p(x).

w
(l)
i =

⌊
αwim/2l

⌋
rem p,

Φα,p
(l) (x) = w

(l)
0 +

n∑
i=1

w
(l)
i xi,

ϕα,p(l) (x) =

d(n+1)/2e∑
j=−b(n+1)/2c

Mm(Φα,p
(l) (x) + jp),(5)

ϕα,p(x) =

b3 logWc+1∑
l=0

ϕα,p(l) (x),

where the upper bound of the last summation follows from an argument analogous to
Remark 3, assumptions (1) and (2), and the fact that α ≤ m.

The following proposition is the (α, p)-version of Proposition 3.2. The proof is
completely analogous.

Proposition 4.2. For p > m2 the following hold.
1. For any x,

∣∣ϕα,p(l) (x)
∣∣ ∈ {0, 1}.

2. If
∣∣Fα

(l)(x) rem p
∣∣ 6∈ [m, 2m) then ϕα,p(l) (x) = 0.

3. If m ≤ ∣∣Fα
(l)(x)

∣∣ < 2m then ϕα,p(l) (x) = sign
(
Fα

(l)(x)
)
.

Corollary 4.3. If we assume (1) and (2), then for all x ∈ Zn we have ϕα,p(x) ∈
Z and |ϕα,p(x)| ≤ 2 + 3 logW .

Proof. It is not hard to see that statement 4.2 of Proposition 4.2 holds even for
x ∈ Zn. The corollary follows since we sum over at most 2 + 3 logW different l in
(5).

For any x there are usually α’s and p’s such that we get truncation errors or
modular errors. We will show that for any fixed x most pairs (α, p) do not give such
errors.

Definition 4.4.
1. We say that α is bad for x if there is some l such that

∣∣|αF (x)| − 2l
∣∣ ≤

2l+1n/m. Otherwise α is good for x.
2. We say that p is bad for x and α if there is an l such that

∣∣Fα
(l)(x)

∣∣ ≥ 2m but∣∣Fα
(l)(x) rem p

∣∣ < 2m. Otherwise p is good for x and α.

3. We call a pair (α, p) bad for x if α is bad for x or if p is bad for x and α.
Otherwise (α, p) is good for x.

We will show that when a pair (α, p) is good for x, then ϕα,p(x) = f(x). We will
also show that for any fixed x, a random pair (α, p) is likely to be good.

First we show that ϕα,p(x) = f(x) when (α, p) is good.
Proposition 4.5. Let x be an arbitrary fixed input. If (α, p) is good for x, then

ϕα,p(x) = f(x).
Proof. Let x be a fixed input and assume that (α, p) is a good pair for x. Without

loss of generality, we assume that F (x) > 0.

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 237

First we will show that there are no truncation errors that matter in this case.
Let l0 be the integer such that

2l0 ≤ αF (x) < 2l0+1.

Since F (x) ≤ (n + 1)W and α ≤ m we have αF (x) ≤ m(n + 1)W ≤ 2W 3, and
thus l0 ≤ b3 logW c+ 1.

For any l ∣∣∣∣Fα
(l)(x)− αF (x)m

2l

∣∣∣∣ < n+ 1,(6)

since the floor operation makes an error less than 1 for each weight of the gate.
Equation (6) immediately tells us that

m < Fα
(l0)

(x) < 2m.

This implies that the term ϕα,p(l0)
(x) will be equal to 1.

For l 6= l0 we have the following. Let l < l0 be an arbitrary integer. Since α is
good for x we have

2l+1

(
1 +

2n

m

)
< αF (x),

and from (6) it follows that

2m < Fα
(l)(x).

A completely analogous argument shows that for any l > l0 one has

m > Fα
(l)(x).

Thus, no error is introduced due to truncation.
We still need to show that there are no modular errors, that is, when we do

the computation modulo p we do not get a contribution from some l > l0 for which
Fα

(l)(x) > 2m. However, this would mean that for some l one has Fα
(l)(x) > 2m but∣∣Fα

(l)(x) rem p
∣∣ < 2m, and this implies by definition that p is bad for x and α contrary

to our assumption.
It remains to show that for any fixed x most α’s are good, and for any fixed x

and α most p’s are good.
Lemma 4.6. If Wand m satisfy (1) and (2), then for any x

Prα is bad for x < (16 log2 W)/m.

Proof. Let r = |F (x)|. We want to show that for most α we have
∣∣2l − αr

∣∣ >
2l+1n/m for all l.

Look at a fixed l. If there is any α which is bad with respect to l, then r must
satisfy the following equations.

r ≤ 2l
(

1 +
2n

m

)
< 2l+1,(7)

r ≥ 2l

m

(
1− 2n

m

)
> 2l−1/m.(8)

238 MIKAEL GOLDMANN AND MAREK KARPINSKI

The bad interval for α has length 2l+2n/(rm). If r and l do not satisfy (8), then all
α’s are too small to be bad. On the other hand, if r and l satisfy (8), there are at
most 8n different α’s that fit in the bad interval.

For any r, there are less than 2 logm different l that satisfy (7) and (8). Thus,
any x has at most 16n logm bad α. The lemma follows by our assumption that (1)
and (2) hold.

Lemma 4.7. If W and m satisfy (1) and (2), then for any x and α

Prp is bad for x and α < (16 log2 W)/m.

Proof. Once again consider a fixed l first, and assume that for input x and
multiplier α we have |Fα

(l)(x)| ≥ 2m but |Fα
(l)(x) rem p| < 2m for 4m logW of the

primes. By the pigeon hole principle we must have more than logW primes that
give the same remainder k, such that |k| < 2m. By the Chinese remainder theorem,
Fα

(l)(x) is uniquely determined modulo the product of those primes. That product is

greater than m2 logW . Since we assume (1) and (2),∣∣∣Fα
(l)(x)

∣∣∣ ≤ |mαF (x)|
≤ m2(n+ 1)W

� m2 logW .

This implies that k = Fα
(l)(x), which means that

∣∣Fα
(l)(x)

∣∣ < 2m, and we have a
contradiction. Since there are at most 2 + 3 logW < 4 logW different l, the lemma
follows.

Lemmas 4.6 and 4.7 imply the following lemma.
Lemma 4.8. If Wand m satisfy (1) and (2), then for an arbitrary fixed input x,

Pr(α, p) is bad for x ≤ (32 log2 W)/m.

We conclude this section by showing how the approximator allows us to simulate
a single threshold gate (with large weights) by a depth-2, small-weight, threshold-
circuit. This is a constructive version of Theorem 7.8 from [10].

Theorem 4.9. LT [1] (L̂T [2].
Proof. We will prove the inclusion. That it is strict follows from the fact that

parity is in L̂T [2]\LT [1]. Assume n ≥ 100; smaller inputs are handled by writing the
function in disjunctive normal form.

We are given a threshold gate

f(x) = sign

(
w0 +

n∑
i=1

wixi

)
.

Let W = max{wmax(f), 2n} be the bound used in the construction, and set the
parameter m = 128 log3 W (observe that W and m satisfy (1) and (2)). Consider the
following function:

g(x) = sign

∑
(a,p)

ϕα,p(x)

 .

We claim two things: f(x) = g(x) for all x ∈ {1,−1}n, and g(x) can be computed by
a depth-2, polynomial-size, threshold circuit with polynomially bounded weights.

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 239

The correctness of the construction follows from

E [f (x)ϕα,p(x)] > 0,(9)

where x is arbitrary and fixed, and we take expectation over the uniform distribution
on pairs (α, p). Let us prove (9).

E [f (x)ϕα,p(x)]

≥ Pr(α, p) good

−(2 + 3 logW)Pr(α, p) bad

≥ 1− 1

4 logW
− 2 + 3 logW

4 logW
> 0,

where the first inequality follows from Corollary 4.3 and the second inequality follows
from Lemma 4.8. This shows that f(x) = g(x) for all x.

Now, to implement g(x) as a circuit, let us look at what g(x) does.

g(x) = sign

 ∑
α,p,l,j

1

2
sign

(
Φα,p

(l) (x) + jp−m+
1

2

)
− 1

2
sign

(
Φα,p

(l) (x) + jp− 2m+
1

2

)

+
1

2
sign

(
Φα,p

(l) (x) + jp+m− 1

2

)
− 1

2
sign

(
Φα,p

(l) (x) + jp+ 2m− 1

2

).
Φα,p

(l) (x) is simply a weighted sum of the inputs. Hence, we only have two levels of

sign-functions, and one is the outmost operator, so g(x) can be computed by a depth-
2 threshold circuit. The size is the total number of terms in the summations (recall
that each Φα,p

(l) (x) depends on n ≤ logW variables). There are m3 = O
(
log9 W

)
pairs

(α, p), and O(logW) different l. This gives a total size of O(log12 W).
As for the weights, they are not necessarily integers, but if we multiply them by 2

they are. The only weights that are not ±1 are of the form 2w
(l)
j , 2(w

(l)
0 + jp±m), or

2(w
(l)
0 +jp±2m). All the w

(l)
i are reduced modulo some prime p that is among the first

2m2 = O(log6 W) primes. This implies that p ≤ O(log7 W). Since −b(n + 1)/2c ≤
j ≤ d(n+ 1)/2e, the weights are all of magnitude O(log8 W).

If we assume Muroga’s bound on weights to hold for the original threshold gate
f , then logW ≤ O (n logn), and hence we have a polynomial-size, polynomial-weight
threshold circuit of depth 2 that computes f(x). Actually, we need only to have logW
polynomial in n.

5. Extending the construction to circuits. In the previous section we
showed that a single threshold gate can be simulated by a polynomial-size majority
circuit. We will now generalize this to show that a depth-d, polynomial-size threshold
circuit can be simulated by a depth-d+ 1, polynomial-size majority circuit.

In [10] Goldmann, H̊astad, and Razborov introduced a circuit class that mixes
small and large weights.

Definition 5.1. L̃T d is the class of functions computable by depth-d, polyno-
mial-size circuits where the top gate has polynomially bounded weights.

We will show the following theorem.

240 MIKAEL GOLDMANN AND MAREK KARPINSKI

Theorem 5.2. For any depth d, possibly depending on n, L̃T d = L̂T d. More-
over, given an L̃T d circuit, for input size n, with weights bounded by 2p(n) for some
polynomial p, there is an explicit L̂T d circuit that computes the same function.

Corollary 5.3. For any depth d, possibly depending on n, LT d = L̂T d +
1. Moreover, given an LT d circuit, for input size n, with weights bounded by 2p(n)

for some polynomial p, there is an explicit L̂T d + 1 circuit that computes the same
function.

Proof. Make the LT d circuit into an L̃T d + 1 circuit by adding a dummy
gate with the output-gate of the LT d circuit as its only input and give this input
weight 1. By Theorem 5.2 the L̃T d + 1 circuit can be turned into an L̂T d + 1
circuit.

It remains to prove the theorem.
Proof of Theorem 5.2. Let us look at a circuit C for an L̃T d-function. For

simplicity, assume that the weights at the top gate are all 1. Let the top gate be given
by

g(x) = sign

(
t∑

i=1

Ci(x)

)
,

where the Ci are depth-d − 1 threshold circuits. Let s be the size of C. For each
circuit Ci we construct an approximator Γα,p

i . Below we describe how this is done.
Let wmax(C) be the largest magnitude of a weight of the circuit C, and let W =

max{wmax(C), 2s}. Let Ck be one of the subcircuits of g. Let the gates of Ck be
f1, . . . , fr, where r ≤ s. The fan-in of any fi is trivially bounded by logW , and all
gates have their weights bounded by W . Set the parameter m of the previous section
as follows:

m = 256s t log3 W.

For (α, p) ∈ [m] × PRm, construct a gate approximator ϕα,pi for each gate fi. Now,
connect the approximators in the same way as the gates. That is, if the output of fi
is the kth input to fj , then the output of ϕα,pi is the kth input to ϕα,pj . We call the
constructed “circuit” Γα,p

k . Note that for any fixed input x, if (α, p) is simultaneously
good for x in all ϕα,pi of Γα,p

k , then Γα,p
k (x) = Ck(x).

Lemma 5.4. For any fixed input x, if (α, p) is chosen uniformly at random from

[m]× PRm, then PrΓα,pk (x) 6= Ck(x) ≤ (8t log W)
−1

.
Proof. We know that each gate fi of Ck has fan-in bounded by logW , and will

give the correct output if (α, p) is good. By Lemma 4.8, the probability that (α, p) is
bad is (8s t logW)−1 by the choice of m. Since there are at most s gates in Ck, the
lemma follows.

We say that (α, p) is good for x and Γα,p
k if it is good for all gate approximators

ϕα,pi of Γα,p
k simultaneously.

What happens when (α, p) is bad for Γα,pk ? The magnitude of the output of Γα,pk

is bounded by the maximum output of the approximator of the top gate of Ck. Using
Corollary 4.3, we have for all x and all (α, p),

|Γα,p
k (x)| ≤ 2 + 3 logW.(10)

Since the corollary holds even when the inputs to the top gate are integers, this bound
holds even when some other approximator in Γα,p

k fails.
If we combine Lemma 5.4 and (10) we get the following lemma.

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 241

Lemma 5.5. For any fixed input x, if (α, p) is chosen uniformly at random from
[m]× PRm, then |E[Γα,pk (x)]− Ck(x)| ≤ 1

2t .
Do the same for all the circuits Ci to get approximators Γα,p

i . Consider the
following function:

h(x) = sign

 t∑
i=1

∑
(α,p)

Γα,p
i (x)

 .

Observe that this is equivalent to

h(x) = sign

(
E

[t∑
i=1

Γα,p
i (x)

])
.(11)

We claim the following.
Proposition 5.6. For all inputs x, h(x) = g(x).
Proof. By (11) and the fact that

∣∣∑t
i=1 Ci(x)

∣∣ ≥ 1, it is sufficient to show that∣∣∣∣∣E
[t∑

i=1

Γα,p
i (x)

]
−

t∑
i=1

Ci(x)

∣∣∣∣∣ ≤ 1/2.

This inequality follows by straightforward application of Lemma 5.5.
An argument analogous to that in the previous section shows that g(x) can be

implemented as a depth-d threshold circuit. We call the circuit Ĉ. It is not hard to
see that each wire in C corresponds to polynomially (in logW) many wires in Ĉ.

To get integer weights in the circuit it is sufficient to multiply all weights by 2.
The weights all have magnitude bounded by order of the largest prime used multi-
plied by s. The largest prime in PRm has size O(m2 logm), so the weights are all
O(s3t2 log6 W (log(st) + log logW)). This completes the proof of Theorem 5.2.

Just as before, the construction is polynomial in n as long as logW is polynomial
in n. By Theorem 2.1, this is always possible.

6. Uniform computations. In addition to being explicit, the constructions
given in this paper also preserve the uniformity conditions of the classes of circuits.
The constructions of sections 4 and 5 yield the following.

Theorem 6.1. Given any q-uniform class of threshold circuits {Cn} of depth d
and polynomial size, q ∈ {L,P}. There exists an algorithm running in logspace that,
given a description of a circuit Cn of depth d and polynomial size, will output the
description of a small-weight threshold circuit C ′

n of depth d + 1 and a polynomial
size such that fCn = fC′

n
for all n ≥ 0.

We have also the following corollary.
Corollary 6.2.

L-uniform LTd ⊆ L-uniform L̂T d+1,

P -uniform LTd ⊆ P -uniform L̂T d+1.

Proof. For P -uniformity the proof is very simple: generate the large-weight circuit
and then translate it to a small-weight circuit using Theorem 6.1.

To prove the result for L-uniformity we use the following lemma.

242 MIKAEL GOLDMANN AND MAREK KARPINSKI

Lemma 6.3. A family of circuits is L-uniform if and only if there is a Turing
machine that on input n outputs Cn using space O(logn).

Proof. Assume that we have an L-uniform family of circuits C, that is, we have a
machine M that recognizes the language LC . Let Cn be the description of the circuit
for input size n.

There are constants c and c′ such that each (n, g) ∈ LG has at most c(1+log(n+1))
bits, and each (n, e, v, g, k, δ) ∈ LE has at most c′(1 + log(n + 1)) bits. Consider
the machine M ′ that, given n, runs through all possible tuples with n as the first
component and outputs those that belong to LC . This will output Cn. The space
required is O(logn) plus the space used by M and the time is polynomial in n times
the time used by M . Thus, we have proved the “only if” part of the lemma.

Next we consider the case when there is a machine M that on input n generates
Cn. Let us construct a machine M ′ that works as follows. When given an input tuple,
say (n, g) for instance, it checks if |(n, g)| > c(1 + log(n + 1)) and, if so, it rejects;
otherwise it runs M on input n and checks the output of M “on-line,” and if (n, g)
is produced then M ′ accepts; otherwise it rejects. Clearly, M ′ recognizes LC . Also,
M uses space O(logn) plus the space used by M and time polynomial in n plus the
time used by M . We have now proved the “if” part of both statements and the proof
of the lemma is complete.

The following argument completes the proof of the corollary. If a family of (large-
weight) threshold circuits is L-uniform, then by Lemma 6.3 there is a machine that
generates Cn in space O(logn). By Theorem 6.1 this description can be translated
to a description of an equivalent small-weight circuit in space O(logn). Applying the
lemma again, in the other direction, we see that the family of small-weight circuits is
also L-uniform.

It remains to prove Theorem 6.1. Below we explain how, given a polynomial-size
description of a large-weight threshold circuit, one can construct a description of an
equivalent small-weight threshold circuit with one extra level of gates. It will be clear
that all the necessary computations can be carried out in space O(logn). In order to
conform with the notation used so far, we allow weights of the form w/2, where w is
an integer. However, as stated before, if all weights in the circuit are multiplied by 2,
then the circuit has integral weights.

In what follows
• α ranges over [m],
• p ranges over PRm,
• l ranges from 0 to b3 logW c+ 1,
• j ranges from −b(n+ 1)/2c to d(n+ 1)/2e,
• β ranges over {−1, 1},
• γ ranges over {1, 2},
• g is a gate label in a large-weight circuit,
• and e is an edge label in a large-weight circuit.

The parameters α through γ correspond to the threshold gates in an approximator
for a large-weight gate, since the approximator can be written on the following form
(for fixed α and p): ∑

l,j,β,γ

3− 2γ

2
sign

(
Φα,p

(l) + jp+ βγm− γ

2

)
.(12)

Note that the summation over β and γ corresponds to the four terms in the function
Mm. The idea now is that for each (large-weight) gate in the original circuit, we

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 243

construct the collection of gates in (12), and for each edge between two gates in the
original circuit we construct edges between the corresponding sets of small-weight
gates in the new (small-weight) circuit.

We use g and e for gate labels and edge labels of the large-weight circuit, and we
use ĝ and ê to denote labels in the small-weight circuit. To describe the construction
it is convenient to define labeling functions. We have functions λg(n, g, α, p, l, j, β, δ)
(to generate new gate labels), λe(n, e, ĝ

′, ĝ) (to generate new edge labels), λ1(n, ĝ),
and λt(n, ĝ) (which also generate edge labels). We also use ĝt as the label of the top
gate of the new circuit. We will assume that

1. the functions are linear space computable (i.e., space O(logn)),
2. the size of the output is linear in the size of the input (i.e., size O(logn)),
3. the functions λe, λ1, and λt have pairwise disjoint images,
4. the set In is disjoint from the image of λg,
5. ĝt is not in In or in the image of λg,
6. the functions are one-to-one.

Such functions are easy to find and we will not concern ourselves with the exact
implementation of them.

The translation works as follows:
1. Compute the size s of the large-weight circuit and find the largest k-value of

any edge and call this kmax.
2. Compute L = max{s, kmax} (note that W = 2L).
3. Compute m = 256sL3.
4. Output (n, ĝt).
5. For each gate (n, g) we output a collection of gates that corresponds to the

threshold functions of (12) for each value of α and p:
for each (α, p) ∈ [m]× PRm

for each l ∈ {0, 1, . . . , 3L+ 1}
for each j ∈ {−b(n+ 1)/2c, . . . , d(n+ 1)/2e}

for each (β, γ) ∈ {−1, 1} × {1, 2}
ĝ ← λg(n, g, α, p, l, j, β, γ)
output (n, ĝ)
ê← λ1(n, ĝ)
w ← jp+ βγm− β/2
output (n, ê, 1, ĝ, |w| , sign (w))

6. For each edge (n, e, v, g, k, δ) construct a collection of new edges. How this is
done depends on whether v is an input or a gate.
If v is an input, then it must be fed, with the appropriate weight, to all of
the gates that are constructed from g in the previous step.
for each (α, p) ∈ [m]× PRm

for each l ∈ {0, 1, . . . , 3L+ 1}
for each j ∈ {−b(n+ 1)/2c, . . . , d(n+ 1)/2e}

for each (β, γ) ∈ {−1, 1} × {1, 2}
ĝ ← λg(n, g, α, p, l, j, β, γ)
ê← λe(n, e, v, ĝ)
w ← bαγδm2k−lc rem p
output (n, ê, v, ĝ, |w| , sign (w))

If, on the other hand, we have an edge (n, e, g′, g, k, δ) between two gates, the
situation is quite similar, except that many of the gates that g′ gives rise to
are connected to many of the gates that g gives rise to.
for each (α, p) ∈ [m]× PRm

244 MIKAEL GOLDMANN AND MAREK KARPINSKI

for each (l, l′) ∈ {0, 1, . . . , 3L+ 1}2
for each (j, j′) ∈ {−b(n+ 1)/2c, . . . , d(n+ 1)/2e}2

for each (β, β′, γ, γ′) ∈ {−1, 1}2 × {1, 2}2
ĝ ← λg(n, g, α, p, l, j, β, γ)
ĝ′ ← λg(n, g

′, α, p, l′, j′, β′, γ′)
ê← λe(n, e, ĝ

′, ĝ)
w ← bα(3− 2γ)γδm2k−l−1c rem p
output (n, ê, ĝ′, ĝ, |w| , sign (w))

7. Finally, let gt be the top gate of the original circuit. Each gate that is pro-
duced from gt in step 5 is to be fed with weight 1 to ĝt, the top gate of the
new circuit.
for each (α, p) ∈ [m]× PRm

for each l ∈ {0, 1, . . . , 3L+ 1}
for each j ∈ {−b(n+ 1)/2c, . . . , d(n+ 1)/2e}

for each (β, γ) ∈ {−1, 1} × {1, 2}
ĝ ← λg(n, gt, α, p, l, j, β, γ)
ê← λt(n, ĝ)
output (n, ê, ĝ, ĝt, 1, 1)

Except for the calculation of w in step 6 it is immediately clear that the computations
involved can be carried out in space O(logn). This is true also for the weight compu-
tation. For bαγδm2k−lc rem p, note that αγm can be represented with O(logn) bits,
and that when k < l then so can bαγδm2k−lc. When k ≥ l, then αγδm2k−l is an
integer, and computing 2k−l rem p is easily done in space O(p+ k + l) = O(logn).

7. Conclusions and open problems. Our results entail the first explicit con-
structions for the optimal-depth, polynomial-size majority circuits for the number of
basic functions including, among others, powering (depth 3), integer multiplication
and integer division (depth 3); see [27] and [4].

More generally, our results entail the uniformity of the classes of majority circuits
simulating the corresponding classes of threshold circuits. We look at the following
functions.

ADDITION: given two n-bit numbers, compute their sum.

MULTIPLE ADDITION: given n n-bit numbers, compute their sum.

MULTIPLICATION: given two n-bit numbers, compute their product.

MULTIPLE MULTIPLICATION: given n n-bit numbers, compute their product.

DIVISION: given a 2n-bit numbers x and an n-bit number y, compute bx/yc.
SQUARING: given an n-bit number x, compute x2.

POWERING: given an n-bit number x and a logn-bit number y, compute xy.

COMPARISON: given two n-bit numbers x and y, decide if x ≥ y.

MAXIMUM: given n n-bit numbers, output the largest one.

SORTING: given n n-bit numbers, output them in sorted order.

The following table surveys the uniform upper bounds known before and stem-
ming from the present paper and compares them with the best-known (nonuniform)
lower bounds. Most of the constructions follow from nonuniform versions in [27] and
[26] (see also [22]). The uniform constructions for ADDITION, COMPARISON, and
SORTING follow from [3].

SIMULATING THRESHOLD CIRCUITS BY MAJORITY CIRCUITS 245

Uniform Depth Lower
Function

Upper Bound Bound

ADDITION 2,L-uniform 2
MULTIPLE ADDITION 2,L-uniform 2
MULTIPLICATION 3,L-uniform 3 [11]
MULTIPLE MULTIPLICATION 4,L-uniform 3 [11]
DIVISION 3,P -uniform 3 [33]
SQUARING 3,L-uniform 3 [33]
POWERING 3,P -uniform 2 [33]
COMPARISON 2,L-uniform 2 [25]
MAXIMUM 3,L-uniform 2
SORTING 3,L-uniform 3 [26]

We conclude with a list of open problems:

1. If the original circuit is monotone, our construction yields a nonmonotone
majority circuit. It is an open question if an arbitrary monotone thresh-
old gate can be simulated by constant-depth monotone majority circuits of
polynomial size.

2. Alternating Turing machines are closely connected to circuits with AND-gates
and OR-gates, and counting Turing machines are connected to majority cir-
cuits. Is there a reasonable machine model that has such a relationship to
threshold circuits? If so, what would be the corresponding notion of unifor-
mity, and would our simulation still work?

3. Are there any strong lower bounds for depth-2 threshold circuits or depth-3
majority circuits computing some explicit function?

Acknowledgments. We are grateful to Johan H̊astad and Ingo Wegener for
many valuable comments on earlier versions of this paper. We also thank Jens Lager-
gren, Sasha Razborov, and Avi Wigderson for several helpful discussions on the topic
of this paper. Finally, we thank the referees for careful reading and for numerous
helpful suggestions and comments.

REFERENCES

[1] E. Allender, A note on the power of threshold circuits, in Proc. 30th IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1989,
pp. 580–584.

[2] N. Alon and R. B. Boppana, The monotone circuit complexity of boolean functions, Combi-
natorica, 7 (1987), pp. 1–22.

[3] N. Alon and J. Bruck, Explicit Constructions of Depth-2 Majority Circuits for Comparison
and Addition, Tech. Report RJ 8300 (75661), IBM Research Division, 1991. SIAM J.
Discrete Math., 7 (1994), pp. 1–8.

[4] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related
problems, SIAM J. Comput., 15 (1986), pp. 994–1003.

[5] R. Beigel and J. Tarui, On ACC, in Proc. 32nd IEEE Symposium on Foundations of Com-
puter Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 783–792.

[6] J. Bruck, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math., 3
(1990), pp. 168–177.

[7] J. Bruck and R. Smolensky, Polynomial threshold functions, AC0 functions and spectral
norms, in Proc. 31st IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1990, pp. 632–641.

[8] A. Chandra, L. Stockmeyer, and U. Vishkin, Constant depth reducibility, SIAM J. Comput.,
13 (1984), pp. 423–439.

[9] S. A. Cook, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64
(1985), pp. 2–22.

246 MIKAEL GOLDMANN AND MAREK KARPINSKI

[10] M. Goldmann, J. Håstad, and A. Razborov, Majority gates versus general weighted thresh-
old gates, Comput. Complexity, 2 (1992), pp. 277–300.

[11] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán, Threshold circuits of bounded
depth, in Proc. 28th IEEE Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1990, 1987, pp. 99–110.

[12] J. Håstad, On the size of weights for threshold gates, SIAM. J. Disc. Math., 7 (1994), pp. 484–
492.

[13] J. Håstad and M. Goldmann, On the power of small-depth threshold circuits, Comput. Com-
plexity, 1 (1991), pp. 113–129.

[14] T. Hofmeister and P. Pudlak, A Proof that Division Is Not in TC0
2 , Research Report 447,

Department of Computer Science, University of Dortmund, 1992.
[15] R. Impagliazzo, R. Paturi, and M. Saks, Size-depth trade-offs for threshold circuits, in Proc.

25th ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 541–550.
[16] S. Muroga, Threshold Logic and its Applications, Wiley-Interscience, New York, 1971.
[17] J. Myhill and W. H. Kautz, On the size of weights required for linear-input switching func-

tions, IRE Trans. Electron. Comput., EC-10 (1961), pp. 288–290.
[18] P. Orponen, Neural networks and complexity theory, in Proc. 17th Internat. Symposium

on Mathematical Foundations of Computer Science, Lecture Notes in Comput. Sci. 629,
Springer-Verlag, Berlin, 1992, pp. 50–61.

[19] I. Parberry, A primer on the complexity theory of neural networks, in Formal Techniques in
Artificial Intelligence: A Sourcebook, Stud. Comput. Sci. Artif. Intell. 6, North–Holland,
Amsterdam, 1990, pp. 217–268.

[20] I. Parberry and G. Schnitger, Parallel computation with threshold functions, J. Comput.
System Sci., 36 (1988), pp. 278–302.

[21] N. Pippenger, The complexity of computation by networks, IBM J. Res. Develop., 31 (1987),
pp. 235–243.

[22] A. A. Razborov, On small depth threshold circuits, in Proc. 3rd Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Comput. Sci. 621, Springer-Verlag, New York, 1992,
pp. 42–52.

[23] A. A. Razborov and A. Wigderson, nΩ(logn) lower bounds on the size of depth 3 threshold
circuits with AND gates at the bottom, Inform. Process. Lett., 45 (1993), pp. 303–307.

[24] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365–383.
[25] K. Y. Siu and J. Bruck, On the power of threshold circuits with small weights, SIAM J.

Discrete Math., 4 (1991), pp. 423–435.
[26] K. Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister, Depth-efficient Neural Networks for

Division and Related Problems, Tech. Report RJ 7946, IBM Research Division, 1991. IEEE
Trans. Inform. Theory, 39 (1993), pp. 946–956.

[27] K. Y. Siu and V. Roychowdhury, On optimal depth threshold circuits for multiplication and
related problems, SIAM J. Discrete Math., 7 (1994), pp. 284–292.

[28] K. Y. Siu, V. Roychowdhury, and T. Kailath, Computing with Optimal Size Threshold
Circuits, Tech. Report, Stanford University, 1990.

[29] S. Toda, On the computational power of PP and ⊕P , in Proc. 30th IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990,
1989, pp. 514–519.

[30] J. Torán, An oracle characterization of the counting hierarchies, in Proc. 3rd Annual Structure
in Complexity Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1988,
pp. 213–223.

[31] J. Torán, A combinatorial technique for separating counting complexity classes, in Proc. 16th
International Colloquium on Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 372, Springer-Verlag, New York, 1989, pp. 732–744.

[32] K. W. Wagner, The complexity of combinatorial problems with succinct input representation,
Acta Inform., 23 (1986), pp. 325–356.

[33] I. Wegener, Optimal lower bounds on the depth of polynomial size threshold circuits for some
arithmetic functions, Inform. Process. Lett., 46 (1993), pp. 85–87.

[34] A. C. Yao, On ACC and threshold circuits, in Proc. 31st IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 619–627.

FULLY POLYNOMIAL BYZANTINE AGREEMENT FOR n > 3t
PROCESSORS IN t + 1 ROUNDS∗

JUAN A. GARAY† AND YORAM MOSES‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 247–290, February 1998 011

Abstract. This paper presents a polynomial-time protocol for reaching Byzantine agreement
in t + 1 rounds whenever n > 3t, where n is the number of processors and t is an a priori upper
bound on the number of failures. This resolves an open problem presented by Pease, Shostak, and
Lamport in 1980. An early-stopping variant of this protocol is also presented, reaching agreement in
a number of rounds that is proportional to the number of processors that actually fail.

Key words. Byzantine agreement, consensus, distributed computing, fault tolerance, computer
security

AMS subject classifications. 68M10, 68M15, 68Q22, 94C12

PII. S0097539794265232

1. Introduction. The Byzantine agreement (BA) problem, introduced by Pease,
Shostak, and Lamport in [22], is recognized as a fundamental problem in fault-tolerant
distributed computing. Over the last decade or more, the problem has received a great
deal of attention in the literature, and has become a testbed for a variety of models
for distributed computing (see [15] for an early survey on the subject). While BA has
been studied extensively over the years, the original model in which faulty processors
can act in arbitrarily malicious ways has continued to withstand a complete analysis.
In [22], the authors presented a protocol that solves the problem (then still referred
to as the interactive consistency problem) in t + 1 rounds whenever n > 3t. Here n
is the total number of processors and t is an a priori upper bound on the number of
faulty processors possible. They also proved that no solution for n ≤ 3t exists, while
Fischer and Lynch later showed that t + 1 rounds were necessary in the worst-case
run of any BA protocol [16]. The protocol presented in [22], however, required the
processors to send exponentially long messages and perform exponentially many steps
of computation. The design of more efficient protocols is presented in [22] as an open
problem, and has been the subject of many subsequent papers. This paper presents a
BA protocol for n > 3t that halts in t+ 1 rounds and uses only a polynomial amount
of communication and computation.

This work is based on a long sequence of papers whose goal was to reduce the
complexity of the protocol while maintaining good performance in terms of the num-
ber of rounds necessary for agreement. Polynomial-time BA protocols for n > 3t that
halt in more than 2t rounds (see, e.g., [11, 24]) have been known as of 1982. In 1985
Coan presented a family of BA protocols for n > 4t that, for every d, halt in t + t/d
rounds, and require messages of size O(nd) [8]. However, Coan’s protocols require ex-

∗ Received by the editors February 1, 1994; accepted for publication (in revised form) January 18,
1996. An early version of this work was presented at the 1993 STOC Conference and was published
as Fully polynomial Byzantine agreement in t+1 rounds, in the Proceeding of the 25th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1993, pp. 31–41.

http://www.siam.org/journals/sicomp/27-1/26523.html
† IBM T. J. Watson Research Center,P. O. Box 704, Yorktown Heights, NY 10598 (garay@

watson.ibm.com). Part of this work was completed while the author was on leave at Weizmann
Institute of Science.

‡ Department of Applied Math and Computer Science, Weizmann Institute of Science, Rehovot,
76100 Israel (yoram@wisdom.weizmann.ac.il). This work was supported in part by a Helen and
Milton A. Kimmelman Career Development Chair.

247

248 JUAN A. GARAY AND YORAM MOSES

Table 1
History of BA (partial list).

Protocol n rounds comm. comp.

[PSL] 80 3t+ 1 t+ 1 exp(n) exp(n)
[DFFLS,TPS] 82 3t+ 1 2t+ c poly(n) poly(n)

[C1] 85 4t+ 1 t+ t
d

O(nd) exp(n)

[DRS,BD,C2] 86 Ω(t2) t+ 1 poly(n) poly(n)

[BDDS] 87 3t+ 1 t+ t
d

O(nd) O(nd)

[MW] 88 6t+ 1 t+ 1 poly(n) poly(n)

[BGP1] 89 3t+ 1 t+ t
d

O(cd) O(cd)

[BG1] 89 4t+ 1 t+ 1 poly(n) poly(n)
[CW] 90 Ω(t log t) t+ 1 poly(n) poly(n)

[BG2] 91 (3 + ε)t t+ 1 poly(n)·O(2
1
ε) poly(n)·O(2

1
ε)

This paper 3t+ 1 t+ 1 poly(n) poly(n)

ponential local computation. Bar-Noy, Dolev, Dwork, and Strong later improved on
this result, providing protocols with essentially the same round and communication
behavior, but requiring only polynomial computation [2]. These protocols thus pro-
vide a tradeoff between the number of rounds required and the size of messages used,
and prove that 2t rounds are not necessary for polynomial-time BA protocols. (t+1)-
round polynomial-time BA protocols for n = Ω(t2) were presented in 1986 by Dolev,
Reischuk, and Strong [13]. In 1988 Moses and Waarts presented the first polynomial
(t+1)-round protocol with linear resilience. It required only that n > 8t and was later
improved to handle n > 6t [21]. In 1989 Berman and Garay presented a polynomial
protocol for n > 4t [3], which they improved in 1991 to handle n > (3 + ε)t for any
ε > 0 [4]. At the cost of requiring more processors (Ω(t log t)), Coan and Welch de-
veloped a polynomial protocol that uses one-bit messages and asymptotically optimal
total bit transfer [10]. Table 1 presents a summary of these and related results.

Our work starts out using observations and techniques developed in [2, 21, 3]. In
particular, we start from the formulation by Bar-Noy et al. of the exponential protocol
for n > 3t in terms of a two-stage process. In the first stage, processors exchange
information for t + 1 rounds, and each processor stores the information it receives
in a treelike data structure. In the second stage, each processor computes resolved
values for each node in a bottom-up fashion, where the resolved value of a node is a
function of the resolved values of its children in the tree. The resolved value of the
root of the tree is the value the processor decides on. In order to obtain our result,
we need to develop new techniques to handle the great powers that faulty processors
have when n > 3t. In particular, we study the class of functions that can serve in
the second stage of the algorithm for computing resolved values for the nodes. We
present a new class of admissible resolve functions, that alternate between favoring
the value 0 at one level of the tree and favoring 1 at the next level. By extending the
methods for fault detection and fault masking used, we are able to present a particular
admissible resolve function, which restricts the freedom of faulty processors. Given
these methods, this function forces the number of processors that are detected as
faulty by all nonfaulty processors to be large in runs in which the processors’ trees
grow exponential. This in turn makes it possible to apply a monitor voting technique
along the lines of the cloture votes technique of Berman and Garay [3] to obtain a
polynomial BA protocol.

A few comments are in order regarding the related randomized Byzantine agree-
ment problem. Rabin showed that a shared coin can be used to attain randomized

FULLY POLYNOMIAL BYZANTINE AGREEMENT 249

agreement in a constant number of rounds [23]. Later, Feldman and Micali presented
an algorithm for constructing such a coin, thereby providing an optimal protocol for
this problem [17]. In the protocol of [17], however, the decision property was guar-
anteed only with probability 1, and the protocol has runs in which no processor ever
reaches a decision. Moreover, there is no finite bound K, such that the processors that
do decide, do so in K rounds. Indeed, there is no obvious way to transform such a
probabilistic protocol into a polynomial protocol in which nonfaulty processors never
violate the conditions of Byzantine agreement (agreement and validity), and yet they
all decide in fewer than t + 1 rounds with probability 1. A very close approximation
of this was obtained by Goldreich and Petrank [19]. They presented a probabilistic
Byzantine agreement protocol with a constant expected number of rounds that is
guaranteed to always halt in t + O(log t). Their protocol is based on a sequential
combination of a probabilistic protocol with a deterministic (t + 1)-round protocol.
Before our paper, their scheme, when applied to the case of n > 3t, would yield a
protocol with an exponential worst-case complexity in terms of both computation and
communication. Using our protocols in their scheme, it is now possible to obtain such
a probabilistic protocol for n > 3t with polynomial-time worst-case complexity. Using
different techniques, Zamsky has recently improved to t + 1 the worst-case running
time of [19], while maintaining linear, but nonoptimal, resiliency [27].

The remainder of the paper is organized as follows. In section 2 we describe the
model and formally define the problem. In section 3 we review EIG, the exponential
information gathering protocol of Bar-Noy et al. In section 4 we review the techniques
that made polynomial-time protocols possible for n > 4t. Section 5 is the first step
towards a polynomial solution for n > 3t. We introduce a general, radically different
class of resolve functions. This class of functions is then used in section 6 as the
basis of a protocol for a slightly generalized version of Byzantine agreement. In
section 7 we present the concrete function of our choice, while in section 8 we present
Sliding-flip, the polynomial-time protocol for n > 3t. Finally, in section 9 we
modify the protocol so as to terminate in min{t+1, f +3} rounds, where f < t is the
actual number of failures that occur in the run.

2. Preliminary definitions. For ease of exposition of our protocols we shall be
concentrating on the following variant of Byzantine agreement, sometimes also called
the consensus problem, which is defined as follows: given are n processors, at most t
of which might be faulty. Each processor i has an initial value vi ∈ {0, 1}. Required
is a protocol with the following properties:

(i) Decision: Every nonfaulty processor i eventually irreversibly “decides” on
a value di ∈ {0, 1}.

(ii) Agreement: The nonfaulty processors all decide on the same value.
(iii) Validity: If the initial values vi of all nonfaulty processors are identical,

then di = vi for all nonfaulty processors i.

In the other common variant of Byzantine agreement there is a distinguished
leader with a single initial value v. The agreement and decision conditions remain the
same, while the validity condition requires that if the leader is nonfaulty, all nonfaulty
processors should decide on the leader’s value v. Protocols for both variants are
practically identical, and everything we say here applies to the single leader case with
only minor modifications.

Throughout the paper we use t to denote an upper bound on the number of
faulty processors. We assume the standard model for Byzantine agreement, in which
processors may fail in arbitrarily malicious ways (see, for example, [16]). Each proces-

250 JUAN A. GARAY AND YORAM MOSES

sor can communicate directly with every other processor via a reliable point-to-point
channel. Finally, the processors are synchronous and their communication proceeds
in synchronous rounds. In a round, a processor can send one message to each of the
other processors, and all messages are received in the round in which they are sent.

3. Exponential information gathering protocols. We start by describing
the exponential protocol due to Bar-Noy et al. [2] (Exponential Information Gather-
ing (EIG)), which is closely related to the original protocol of Pease, Shostak, and
Lamport [22]. Our final protocol will be obtained by a sequence of transformations
to this protocol, based on distinct observations. Our description of the EIG protocol
below is essentially taken from Bar-Noy et al. [2].

In the first round of the EIG protocol for Byzantine agreement, each processor
broadcasts its initial value vi to all other processors. In each of the following t rounds,
every processor broadcasts all of the information it received in the latest round. At the
end of t+1 rounds each processor computes a decision value based on the information
it has gathered, decides on this value, and halts.

We now describe the protocol in greater detail. Each processor incrementally
constructs a tree-based data structure which we will call an EIG tree. We consider
the root of the tree to be a node of depth 0, and inductively define the depth of a node
to be greater by one than the depth of its parent. We will only be interested in EIG
trees of depth at most t + 1. In the EIG tree, a node of depth r has n − r children.
Thus, in particular, the root has n children. The edges of the EIG tree are labelled
with processor names as follows. The outgoing edges of the root are labelled 1, . . . , n,
respectively. A node of depth r ≥ 1 has an edge labelled i for every processor name i
that does not appear on the path leading from the root to the node. Notice that with
this definition no label appears twice on a path from the root to a leaf. It follows that
the sequence of labels on the path from the root to a given node uniquely determines
this node. Moreover, there is a 1–1 correspondence between strings σ of up to t + 1
distinct processor names and the nodes in an EIG tree of depth t + 1. We will thus
regard such a string as the name of the corresponding node, and refer to nodes by
such names. The root is named by λ, which stands for the empty string. Notice that
the length of the string σ, which we shall denote by |σ|, coincides with the depth of σ.

We shall ultimately associate two values with each node σ in a processor i’s tree:
a stored value, denoted by tree(σ), and a resolved value denoted by res(σ). When
we need to specify the particular processor i in whose tree these values appear, we
denote them by treei(σ) and resi(σ), respectively. The stored values are assigned
during the t + 1 rounds of information exchange between the processors, while the
resolved values are computed at the end, in order to determine the decision value.
The manner in which these values are arrived at is described below. A node σj is said
to correspond to the processor j whose name labels the edge leading to the node from
its parent σ. We call a node of the EIG tree correct if it corresponds to a nonfaulty
processor.

Each processor i initially stores its initial value vi in treei(λ)—at the root of
its EIG tree. In the first round of the EIG protocol a processor will send the value
stored in its root to all n processors (including itself, although of course this message
need not actually be sent). For every processor j, the value that j sends to i in the
first round will be stored in the node 〈j〉 of treei (a default value of 0 will be stored
in treei(〈j〉) in case processor j does not receive a legitimate message with a value
from j). In each subsequent round every processor sends to all other processors the
level of its tree most recently filled in. (Note that a faulty processor may of course send

FULLY POLYNOMIAL BYZANTINE AGREEMENT 251

different values than the ones it should send, and also may send conflicting messages
to different processors in the same round.) The messages received are broken up and
used to form a new level in the processor’s tree as follows: If j’s message reports the
value v for the node σ, and j does not appear in σ, then the value v will be stored
at the node σj. Again, we store a default value of 0 in σj in case j did not report
a legitimate value for σ (that is, if j did not send a message that is in the syntax
appropriate for messages sent in this round). Intuitively, the node σj in treei stores
the value that j claims in its message to i to have stored in treej(σ). Notice that the
single message received by i from j in a given round reports on the values of many
nodes in j’s tree, and will be used to update many different nodes in treei.

We consider a node to be created in the round in which a value is stored in the
node. In the first stage of the EIG protocol, information is gathered for t+ 1 rounds,
until all nodes of depth up to t+1 are created. At that point each processor computes
a value for the tree by applying the recursive computation of resi(·) to the root λ.
The processor then “decides” on the value of res(λ), and halts. For the purpose of the
current section and the next one, the particular function used for res(·) is recursive
majority voting, defined as follows:

resi(σ) =

{
treei(σ) if σ is a leaf;
1 if majority of resi(σj) are 1;
0 otherwise.

Thus, resi(σ) computes the value of the recursive majority of the descendants of
the node σ in treei. This completes the description of the EIG protocol. Bar-Noy et
al. prove the following theorem.

Theorem 3.1 (see Bar-Noy et al. [2]). Protocol EIG solves the Byzantine agree-
ment problem for n > 3t.

4. Polynomial protocols for n > 4t. While the EIG protocol is a correct
(t+ 1)-round BA protocol for n > 3t, it has a major drawback in requiring messages
and local memory of exponential size. In fact, every run of this protocol is exponen-
tial. Nevertheless, the clean structure provided by the EIG tree will allow us to apply
a sequence of transformations to this protocol, and to finally arrive at a polynomial
protocol. In this section we shall present the basic observations that lead to a polyno-
mial protocol in the case of n > 4t. In section 5 we shall highlight the problems and
discuss the modifications required in the case of n > 3t. This will require a careful
analysis and new techniques. In particular, we shall introduce a new class of resolve
functions, which are instrumental in achieving a polynomial protocol for n > 3t.

4.1. Predicting resolved values. The first step is based on an observation
due to Moses and Waarts in [21]. A processor i can often determine early on what
the value of resi(σ) in the EIG protocol will be. This is commonly called prediction.
Roughly speaking, once i is able to predict the resolved value of σ, it can stop gathering
information about the whole subtree of treei rooted at σ. One basis for prediction
is the following lemma that is used in the proof of Theorem 3.1.

Lemma 4.1 (see Bar-Noy et al. [2]). Let n > 3t, let i and j be nonfaulty processors,
and let σ be a node of depth |σ| ≤ t such that j does not appear in σ. Then at the
end of round t+ 1 we have resi(σj) = treei(σj) = treej(σ).

As discussed in [21] if, for example, majority +t− 1 children of σ store the same
value v in treei, then i knows that at least majority of children of σ are correct
and store v. Hence, by Lemma 4.1 we get that the majority of resi(σj) values will
be v. The definition of the resolve function now implies that we will end up with

252 JUAN A. GARAY AND YORAM MOSES

resi(σ) = v. Following [21], we will say in this case that the value of σ is fixed to v
for i once σ’s children in treei have been created. Another case in which the resolved
value of a node can be predicted is when a majority of its children become fixed to
the same value. We also define a node σ to be closed in treei at the end of round r
if either σ or one of its ancestors is fixed in treei at that time. The properties of
prediction in the case of n > 4t are described in the following two statements.

Lemma 4.2 (see Moses and Waarts [21]). Assume n > 4t, let σ be a correct node
with |σ| ≤ t, and let i be a nonfaulty processor. Then σ is closed in treei by the end
of round |σ|+ 1.

Corollary 4.3 (see Moses and Waarts [21]). Assume n > 4t and let i and j be
nonfaulty processors. In the EIG protocol, if σ is fixed for i at the end of round r,
then σ is closed in treej at the end of round r + 1 at the latest.

An immediate implication of Corollary 4.3 is that a nonfaulty processor need
report on descendants of a node for at most one round after it can determine that the
node is fixed to some value. No further information it can send about the subtree of
that node will help anyone determine its final resolved value. In particular, once the
root becomes fixed in treei, processor i knows the decision value and needs to send
information for at most one more round. Moses and Waarts [21] use this to devise an
early-stopping BA protocol for n > 4t. This protocol is still exponential, although it
is significantly more efficient than the one that constructs the full EIG tree. Moreover,
there are many cases in which the tree is polynomial in size. In fact, in the common
case in which no failures arise, the protocol ends after two rounds, and the amount of
communication sent by a processor is O(n) in the case of single-source BA and O(n2)
in the consensus case.

Lemma 4.2 provides some insight into the relationship between the size of the EIG
trees (and hence the complexity of computation and communication) in a given run
of the early-stopping BA algorithm and the behavior of the faulty processors during
that run. Let us call a node σ corrupted in treei if σ is not closed in treei by the
end of round |σ|+1. Clearly, a noncorrupted node can have at most n children in the
tree. In addition, it is not hard to check that a corrupted node can account for the
need to store its grandchildren, but not for any later descendants. The total size of
an EIG tree thus becomes roughly O(n2C), where C denotes the number of corrupted
nodes in the tree. It follows that if we are able to reduce the number of corrupted
nodes, then the trees will shrink, and hence also the communication. (Indeed, the
protocol of [21] managed, for n > 8t, to ensure that no processor is able to corrupt
more than one node overall, and thus in all trees C ≤ t.) A central tool in reducing
the number of corrupted nodes turns out to be the detection and masking of faulty
processors, which we now turn to discuss.

4.2. Detecting and masking failures. Lemma 4.2 implies that if σj is cor-
rupted in treei, then processor i can detect that j is faulty immediately after it
receives values for σj’s children. Indeed, we shall see later on some other instances
in which a processor i can detect another processor as faulty. Detecting failures is
useful because of the following observation, which was first made by Dolev, Reischuk,
and Strong [13] and later used in various ways in [8, 2, 21, 3] and others. Since faulty
processors can send arbitrary messages, once we detect a processor as being faulty, we
can act as if it sends us particular messages that may be to our advantage, ignoring
what it actually sends us. This is called fault masking. One particularly simple form
of fault masking is to regard a processor detected as faulty to send us a fixed value
(e.g., 0) for all nodes of interest. As we shall see, this can help reduce the number

FULLY POLYNOMIAL BYZANTINE AGREEMENT 253

of corrupted nodes. Once all nonfaulty processors mask a given processor z, we say
that z is disabled. Notice, in particular, that once z is disabled, nodes of the form σz
can no longer be corrupted. They become fixed to the value being used for masking
at the end of round |σz|+ 1.

Corollary 4.3 implies that unless σj is corrupted in all of the correct processors’
trees, it will become closed (in all trees) at the end of round |σj|+ 2. It follows that
in order for the subtree of σj to grow to a substantial size in some processor’s tree,
the node σj must be corrupted in all nonfaulty processors’ trees. We will call a node
universally corrupted if it is corrupted in all nonfaulty processors’ trees. Another
consequence of Corollary 4.3 is that the final size of an EIG tree is polynomial if and
only if the number of universally corrupted nodes in the tree is polynomial. This
follows from the fact that if the subtree of a universally corrupted node has more
than n3 nodes, at least one of the node’s children must also be universally corrupted.
If a node σj is universally corrupted, then everyone detects j as faulty at the end of
round |σj|+1, and j becomes disabled from that point on. It cannot corrupt nodes in
later rounds. It follows that when n > 4t, fault masking allows a faulty processor to
universally corrupt nodes only during a single round. Moreover, Lemma 4.2 implies
that if neither the node σj nor any of its ancestors is fixed in treei by the end of round
|σj|, then all processor names appearing in the string σ denote faulty processors. This
implies that once we employ early stopping and fault masking in the case of n > 4t, at
least 3t of the children of any node of interest are nonfaulty. Moreover, at most t−|σ|
children of a node σj can be faulty. As a result, if processor i finds more than t− |σ|
values among the children of σj that differ from treei(σj), it can detect that j is
faulty.

If no faulty processor universally corrupts a node in a given round r, then all
nonfaulty processors decide by the end of round r+1. If only one processor universally
corrupts nodes in each round (and we employ early stopping and fault masking), then
the total size of the tree is polynomial. Following [3], we shall call ESFM (early
stopping with fault masking) the protocol resulting from the combined application of
the prediction and fault masking techniques to EIG. The ESFMprotocol significantly
reduces the size of the EIG tree processors construct.1 However, as discussed in [21],
the trees may still grow exponential in general because (i) more than one processor
can corrupt nodes in a given round, and (ii) a processor can corrupt many nodes in a
given round. The final observation that will yield a polynomial protocol, at least in
the case of n > 4t, is that when many processors universally corrupt nodes in a given
round, it is possible for the nonfaulty processors to detect that something “fishy” is
going on, and to decide to stop. How to do so is the subject of our next subsection.

4.3. Monitor voting. An important new idea was introduced by Berman and
Garay in [3]. They proposed to have each processor observe the size of its tree, and
when the size exceeds a certain threshold, to “vote” to stop the whole agreement
procedure. Thus, roughly speaking, they started a new instance of Byzantine agree-
ment in every round, in which a processor’s initial value reflects whether or not the
processor is in favor of stopping the process (and deciding on a default value). In
order for any processor’s tree to become exponential, all processors’ trees must grow
beyond any polynomial threshold. Should this happen, all nonfaulty processors would
vote in favor of stopping and deciding on the default, and this instance of the agree-

1 Using both techniques—prediction and fault masking—simultaneously reduces the tree from
size O(nt) to O(ct) (see [21]). In [4] a more sophisticated masking technique yields a similar result
for n > 3t.

254 JUAN A. GARAY AND YORAM MOSES

ment protocol would stop in two rounds. In the [3] protocol, once such an agreement
is attained, every nonfaulty processor decides on the default and halts, terminating
its participation in all Byzantine agreement instances underway.2 We think of the
agreement instances initiated in every round of the [3] protocol as processes that
monitor the run, ensuring that trees do not grow too much. Indeed, Berman and
Garay showed that when performed in a careful way, the monitor voting technique
yields the following theorem.

Theorem 4.4 (see Berman and Garay [3]). By applying monitor voting to the
ESFM tree, it is possible to obtain a (t+ 1)-round polynomial-time BA algorithm for
n > 4t.

Fig. 1. The monitor voting technique.

The technique is illustrated in Figure 1. Monitor voting introduces a number of
new subtleties.

(i) Once there are a number of agreement processes underway, we must be
careful to ensure that processors use the individual agreements’ values in a consistent
way when determining their ultimate decision value. If, for example, one processor
may decide 0 because its original information gathering tree stopped with value 0,
while the other decides 1 because one of the monitors stopped with value 1, we are in
trouble.

(ii) As monitor processes are initiated in different rounds of the execution, we
need to take action to ensure that they all halt by time t + 1. Otherwise, we may
run into consistency problems as described above, when we are forced to decide at
time t+ 1.

(iii) It may seem desirable to exclude faulty processors from participating in a
monitor, in order to ensure the monitor halts in time. However, deciding that a given
processor is faulty is as hard as Byzantine agreement itself. Techniques of [12] can be
used to show that we cannot exclude processors “on the fly,” as a result of failures
being detected.

2 This technique was called cloture votes by the authors, since it resembles a procedure in the
U.S. Senate in which a vote can be called on whether the discussion on a given topic has been going
on for too long.

FULLY POLYNOMIAL BYZANTINE AGREEMENT 255

The main tool that can be used to limit the damage caused by faulty processors
is to use information about failures that a processor has gained in one agreement
process to mask faulty processors in all agreement processes. It is crucial, however,
to ensure that sufficiently many processors are disabled before a processor can vote in
favor of stopping in a monitor agreement process. In fact, we shall use the following
rule for determining the initial value of processor i in monitor process Mr, which is the
monitor agreement process initiated in round r:

Monitor-vote: Processor i will vote 1 on Mr if it has detected that r − 1 faulty
processors have corrupted nodes and are disabled by the end of round r − 1;
it will vote 0 on Mr otherwise.

In the case of n > 4t, it is possible to show that for the information gathering
trees to grow large, the number of disabled processors must grow sufficiently fast to
cause every nonfaulty processor to eventually vote 1 using this rule. This is the basis
of the solution for n > 4t given in [3]. Extending this idea to n > 3t, however, seems
to be problematic, because the faulty processors have greater powers to corrupt nodes
when 4t ≥ n > 3t.

5. Deriving a polynomial protocol for n > 3t. Our goal in this paper is to
describe a polynomial BA protocol for n > 3t that is guaranteed to terminate in t+1
rounds. Intuitively, the protocol follows the monitor voting approach presented in the
previous section. In the case of n > 3t, however, most of the properties used when
n > 4t no longer hold. First of all, using the resolve function defined in section 4, the
analogues of Lemma 4.2 and Corollary 4.3 fail, i.e., it is possible to show that when
n < 4t the majority function does not guarantee quick prediction of the value res(σ)
even for correct nodes σ. (Indeed, we know of no constant number of generations of
descendants for which res guarantees prediction of correct nodes.) In [25] Waarts
presented prediction rules for a resolve function introduced by Bar-Noy et al. [2], and
showed that they guarantee prediction in two rounds. In the case of n > 4t we had
the property that exponential size of trees requires many faulty processors to expose
themselves (and hence become disabled) early in the run. Intuitively, we say that
some faulty processors must be “wasted” for the adversary to be able to cause trees
to grow exponential. This was crucial for the monitor voting scheme to succeed in
keeping the trees polynomial. As we shall see, the fact that it sometimes takes nodes
two rounds to fix when n > 3t implies that there are often cases in which the tree can
grow without requiring such waste to occur. The function used by Waarts in [25] is
ternary, and it occasionally provides an “undecided” value for an internal node. This
introduces enough “slack” into the information conveyed by the resolve function, that
we were unable to use it successfully in the case of n > 3t. It seems possible for
the adversary to cause the trees to grow exponential when that resolve function is
used, without the number of disabled processors ever becoming large enough to be
“caught” via monitor voting. A major focus of this paper is on deriving a resolve
function and corresponding prediction and fault detection rules that will guarantee
that exponential growth of the agreement trees will require sufficient waste to enable
monitor voting to detect the problem and halt.

In the rest of this section we introduce a radically different class of resolve func-
tions. This class of functions is then used in section 6 as the basis of a protocol for
a slightly generalized version of Byzantine agreement. We end up chosing the precise
function from this class in such a way that it guarantees that for the size of the EIG
trees to grow beyond a polynomial bound, faulty processors must be disabled at a rate
that is greater than one per round. This is the key point that enables us to perform

256 JUAN A. GARAY AND YORAM MOSES

monitor voting for the case of n > 3t in the spirit of the monitor voting we performed
for n > 4t.

5.1. A general class of resolve functions. Let us denote the set {0, . . . , j}
by [j]. For every function F : [t] → [n], we define a resolve function resF as follows:

resF (σ) =

{
tree(σ) if σ is a leaf;
1 if at least F (|σ|) of resF (σj) are 1;
0 otherwise.

Notice that resF (σ) = 0 if and only if #{j : resF (σj) = 0} ≥ n−|σ|+1−F (|σ|).
Moreover, notice that the original res function of [2] is simply resM , where M is
the majority function. Let us now turn to a straightforward observation regarding
functions of this type. Let a cut through the EIG tree be a set C of nodes that
intersects every path from the root to a leaf exactly once. One important property of
resolve functions is that the values of a resolve function on the nodes of a cut uniquely
determine its values on all nodes above it.

Lemma 5.1. Let C be a cut of the EIG tree, and let F : [t] → [n]. Then the
values of resF on the nodes of C uniquely determine the values of resF (σ), for all
nodes σ that are ancestors of nodes in C.

Proof. Notice that because C is a cut, if a node σ is an ancestor of a node in C,
then every one of σ’s children is either in C or an ancestor of a node in C. The proof
is by induction on the height of σ above C. Assume that σ is an ancestor of a node
in C and that the values of resF on the nodes of C uniquely determine the values
of all of σ’s children σj. Since resF (σ) depends only on the values of resF on σ’s
children, and their values are uniquely determined by the values of resF on C, we
are done.

This lemma has an immediate corollary that we shall find most useful in the
sequel.

Corollary 5.2. Let F : [t] → [n]. If, for all nodes σ of some cut C it is the
case that resF (σ) has the same value in all correct processors’ trees, then the values
of resF on every node above C are the same in all trees. In particular, this applies
to resF (λ), the resolved value for the root.

We are now in a position to identify a large class of functions F that can serve
as resolve functions for Byzantine agreement protocols. We say that F is a sound
resolve function for Byzantine agreement if applying resF to the complete EIG trees
of nonfaulty processors is guaranteed to fulfill the requirements of BA. (Notice that
decision is trivial in this case, since it is assumed that a processor decides on resF (λ);
thus, the claim actually concerns the agreement and validity properties).

Lemma 5.3. If F : [t] → [n] satisfies t+ 1 ≤ F (r) ≤ n− t− r, then resF is a
sound resolve function for Byzantine agreement for n > 3t.

Proof. The proof proceeds along the lines of the proof of resM (the majority
resolve function) from [2]. First notice that we are only interested in applying this
rule for depths r satisfying r ≤ t. In this case, if n > 3t then indeed n− t− r ≥ t+ 1,
so such functions F (r) exist.

Let hL(σ) = t + 1 − |σ| be the height of the node σ above the leaves. First, we
show by induction on hL(σ) that every correct node σ is resolved to tree(σ). For a
leaf σ (hL = 0) this is immediate from the definition of resF . Assume the claim is
true for all children of σ, and that σ is a correct node with hL(σ) ≥ 1. It follows that
at least n−t−|σ| of σ’s children j are correct. Moreover, since σ is correct, all correct
processors j /∈ σ receive and echo an identical value for σ, so that tree(σj) = tree(σ).

FULLY POLYNOMIAL BYZANTINE AGREEMENT 257

By the inductive hypothesis, we thus have #{j : resF (σj) = tree(σ)} ≥ n− t− |σ|.
The claim is obtained by observing that n − t − |σ| ≥ F (|σ|), which covers the case
tree(σ) = 1, and n − t − |σ| = n − |σ| + 1 − (t + 1) ≥ n − |σ| + 1 − F (|σ|), which
covers the case of tree(σ) = 0. This completes the inductive argument.

To complete the proof, notice that a tree of depth t + 1 has at least one correct
node on every path from the root to the leaves. It follows that there is a cut C through
the tree consisting of correct nodes only. For correct nodes σ (and, in particular, all
nodes σ ∈ C) we have just shown that resF (σ) is the same in all correct processors’
trees. It follows by Corollary 5.2 that resF (λ) is the same in all trees, and we are
done.

Notice that Lemma 5.3 allows a wide range of functions F (r), including the nat-
ural function M (majority). Our quest to lower the complexity of the algorithm
requires that we do not expand the whole EIG tree. Rather, we wish to use infor-
mation we gather incrementally in order to be able to predict the resolved values of
nodes, and thereby hopefully be able to avoid expanding their subtrees. Once every
processor is able to predict the resolved values of nodes on a cut of the tree, we shall
be done. Indeed, as shown in [21], when n > 4t the function resM guarantees that the
resolved values of correct nodes can always be predicted once values of their children
are stored. Unfortunately, when n < 4t majority does not guarantee quick prediction
of the value of resM (σ) even for correct nodes σ. We shall thus seek other functions
that will allow effective prediction.

We shall be most interested in a particular type of resolve function satisfying the
conditions of Lemma 5.3 which, roughly speaking, will alternate between favoring the
value 0 and favoring the value 1 in consecutive rounds.3 (Intuitively, a favored value
is one that requires a minimal amount of support in a given round in order to force
a parent to be resolved to this value, while the opposite value requires a substantial
amount of support.) A major consequence of this “flipping” function will be that the
resolved values of correct nodes can be predicted in two rounds at the latest. More
specifically, the alternating behavior will be controlled by the parity of the round. We
let par(r) denote the parity of r. Thus, par(0) = 0, par(1) = 1, par(2) = 0, etc.

Another important property of our function is that it will only be defined for an
appropriate portion of the EIG tree, and not for the complete tree. More specifically,
let us define a node σ to be righteous if σ is a correct node, and all of its ancestors
are faulty. (In other words, a righteous node is the first correct node on some path
from the root to a leaf.) Clearly, the identity of the faulty processors in a given
run completely determines which nodes of the tree are righteous. An important
property of the EIG tree is that given any choice of up to t faulty processors, the
set of righteous nodes forms a cut in the EIG tree. Given a set B of up to t faulty
processors, we define the righteous subtree of the EIG tree (with respect to B) to be
the tree whose leaves are the righteous nodes, and whose internal nodes consist of the
ancestors of righteous nodes. Clearly, different choices for B yield different righteous
subtrees. (In the sequel, the set B will be implicit, and will consist of the faulty
processors in the run under discussion.) Our goal will be to devise a mechanism by
which, roughly speaking, righteous nodes will be resolved to their stored values in
all nonfaulty processors’ trees. Since the righteous nodes are, in particular, correct
nodes, this means that they will be resolved to the same value in all trees. Once

3 A protocol that similarly alternates between favoring 0 and favoring 1, albeit in a different
setting, has previously been used by Attiya et al. in [29]. In our setting, alternation has been used
for fault masking by Berman and Garay in [4].

258 JUAN A. GARAY AND YORAM MOSES

righteous nodes resolve to the same values, we can use them in the role of leaves in
the definition of a new resolve function. We thus define a resolve function rightF on
nodes σ of the righteous subtree as follows:

rightFi (σ) =

treei(σ) if σ is righteous;
par(|σ|) if rightFi (σj) = par(|σ|) for at least

F (|σ|) nodes σj; and
1− par(|σ|) otherwise.

Notice that rightFi (σ) is undefined for nodes σ outside the righteous subtree. Since,
for a righteous node σ, we are guaranteed that treei(σ) = treej(σ) holds for all
(nonfaulty) i and j, it is the case that rightFi = rightFj . Since the righteous nodes

form a cut in the tree, it follows by Lemma 5.1 that rightFi is independent of i.
Therefore, we shall henceforth drop the subscript and refer to this function by rightF .
We now have the following proposition.

Proposition 5.4. rightF satisfies the agreement and validity conditions of
Byzantine agreement for every resolve function F : [t] → [n].

The definition of rightF seems to have a drawback. Processors are, in general,
unable to tell a righteous node from a nonrighteous one. So how can rightF be used
by the processors? Intuitively, our plan is to present “fixing” rules that would predict
the rightF value of a node, provided the node is in the righteous subtree. For nodes
outside the righteous subtree the rightF value is undefined, and we give no guarantee
on what values our fixing rules may give. This will not cause problems because our
rules will have the property that for every righteous node σ, either σ or one of its
ancestors will be fixed by the time values for σ’s grandchildren are stored in the tree
(i.e., by the end of round min(t + 1, |σ| + 2). Thus, our scheme will guarantee that
all nodes of the righteous subtree, including the root, become fixed in all trees by the
end of round t+ 1, if not earlier. Moreover, the nodes of the righteous subtree, when
fixed to a value, will be fixed to their rightF value. We shall now turn to formalize
this intuition.

6. ∆-agreement. The monitor processes we talk about are agreement protocols
that closely resemble ordinary Byzantine agreement, except for the following differ-
ences. (a) A monitor process is initiated in a state in which each nonfaulty processor i
has a set Fi of processors that i has already detected as faulty, and is masking through-
out the monitor. (b) The set of faulty processors used by processor i in each of the
monitors is obtained based on fault detection performed by i in all active agreement
processes. (c) Finally, we will associate with a monitor M a parameter ∆ < t which,
roughly speaking, is a lower bound on the number of initially disabled faulty proces-
sors. This gives rise to a slight generalization of Byzantine agreement, that we shall
call ∆-agreement.

We define ∆-agreement more formally as follows. As in Byzantine agreement,
in an instance of ∆-agreement, each nonfaulty processor i starts out with an initial
value vi ∈ {0, 1}. In addition, every nonfaulty processor i starts out with a set Fi

of faulty processes. If all nonfaulty processors start out with an initial vote of 0,
the parameter ∆ plays no role. If, however, at least one nonfaulty processor votes 1,

then at least ∆ faulty processors are initially disabled. Let D def
=
⋂
i

Fi denote the set

of initially disabled processors. In ∆-agreement, we are guaranteed that if at least
one nonfaulty processor votes 1, then #D ≥ ∆. (Thus, if all nonfaulty processors
vote 0, no guarantee about the size of D is given.) Strictly speaking, an instance

FULLY POLYNOMIAL BYZANTINE AGREEMENT 259

of ∆-agreement has two additional parameters, n and t, where as usual n is the
total number of processors, and t is an upper bound on the total number of faulty
processors (including the ones in D and in the Fi’s). Rather than working explicitly
with (n, t,∆)-agreement, we shall continue to talk about ∆-agreement, keeping n and t
implicit and assuming that n and t satisfy n ≥ 3t + 1, while ∆ < t. The decision,
agreement, and validity requirements are as in the case of Byzantine agreement defined
in section 2. Notice that the standard variant of Byzantine agreement that we have
been considering can be viewed as an instance of ∆-agreement, where ∆ = 0 and
Fi = ∅ for every nonfaulty processor i.

6.1. Basic structure of the ∆-EIG protocol. Our purpose in this section will
be to describe a protocol for ∆-agreement, which we shall call the ∆-EIG protocol.
In later sections we shall discuss how to combine a number of these protocols via
monitor voting to obtain an efficient solution to Byzantine agreement.

Our ∆-EIG protocol for a single instance of ∆-agreement will be based on a
number of components. We now discuss some of them. First of all, the ∆-EIG
protocol will operate on an EIG tree of depth t+ 1−∆ (as opposed to depth t+ 1 in
the standard EIG protocol). This will be essential, as we want to be able to complete a
run of this protocol within t+1−∆ rounds. In addition, we shall have every processor i
maintain a set of processors it has detected as faulty. Let Fi(r) denote the set of faulty
processors detected by i in the first r rounds. Thus, in particular, Fi(0) = Fi and the
sets Fi(r) grow monotonically over time (i.e., Fi(r + 1) ⊇ Fi(r)). These sets will be
used by the processors both for masking values in their own trees and for reporting
on masked nodes. Rather than processor i sending in round r + 1 separate reports
of masked values for each node τz corresponding to processors z ∈ Fi(r), we shall
have i send a report of the form mask(i, z) in the first round following the one in which
it detects z to be faulty. All processors that receive this report will, from then on,
act as if i actually sends separate masked reports for such nodes. In fact, we shall
abuse the language slightly, and consider a processor i that issues a mask(i, z) report
in round r as if it “reports” masked values for all nodes σz with |σz| ≥ r. A processor
will keep track of mask(i, z) reports it receives and will store masked values in nodes
accordingly on i’s behalf, as specified below. In addition to saving in communication,
this will allow a processor to detect failures based on reports its receives, and will,
later on, make it easier for i to estimate the number of disabled processors.

Formally, processors will send messages according to the following rule.

• Sending: In a given round r + 1, a processor i sends all other processors a
message consisting of two components. In the first component, the message contains
reports mask(i, z) on the processors z ∈ Fi(r) \Fi(r− 1) that i has just discovered as
faulty. For completeness, we formally define Fi(−1) = ∅, so that in the first round i
reports that it is masking the processors in Fi(0) = Fi. The second component of
the message consists of pairs 〈σj; v〉, where v = treei(σj), for all nodes σj of depth r
such that j /∈ Fi(r).

Upon receiving the messages sent to it in round r, processor i will record and
mask values as follows.

• Recording and masking:
1. Processor i appends every mask(z, j) report it receives in round r to a list

of mask reports that it maintains;
2. Processor i records values in treei according to the following:
a. If j /∈ Fi(r−1), then treei(τj), for a node τj of depth r, is the value reported

by j for τ in round r. In particular, if τ = σz for some z such that i has received a

260 JUAN A. GARAY AND YORAM MOSES

mask(j, z) report from j in one of the first r rounds, then treei(τj) = par(|τj|).
b. If z ∈ Fi(r − 1) and τz is a node of depth r, then treei(τz) = par(|τ |).

In particular, this means that values of nodes corresponding to initially detected
failures are always masked.
The set Fi is updated in the following manner.

• Fault detection: Fi(r) is obtained by adding to Fi(r− 1) any new processor
failure discovered by applying the fault detection rules FD0–FD3 described in section 6.3
to treei after the recording and masking steps have taken place. Since, as discussed
later on, the fault detection rules will be computable in a fairly efficient manner, this
whole step is feasible. We remark that it would be possible to use the new failures
detected in the last step in order to mask additional nodes, and then perhaps perform
the fault detection step again. Indeed, this process could be repeated until no new
failures would be discovered. For the sake of simplicity, we choose not to do so. The
failures discovered in round r will affect processors’ messages and processing from
round r + 1 on.

Faulty processors will be assumed to be discovered according to a set of sound
fault discovery rules. The only thing we require of this set of rules is that it should
include the rules FD0–FD3 described in section 6.3. The soundness of the rules implies
that one invariant of our algorithm will be the following.

• Soundness: If i and j are nonfaulty, then j /∈ Fi(r) holds for all rounds r.
Given the soundness invariant, the sending and the recording and masking rules

guarantee that treei(σ) = treej(σ) will hold for every correct node σ of depth at
most t + 1 − ∆, and nonfaulty processors i and j. It follows that the values of
the function rightF will continue to be independent of the tree in which they are
computed.

Prediction will be handled by a set of fixing rules Fx1–Fx3 described in section 6.2.
These rules will determine when a node σ is said to be fixed to value v in treei. Recall
that we defined a node σ to be closed in treei at the end of round r if either σ or
one of its ancestors is fixed in treei at that point.

Finally, we shall use a simple rule for deciding on a value and for halting in the
basic ∆-EIG protocol.

• Deciding: When the root λ becomes fixed to a value v in treei, processor i
decides on value v.

• Halting: Processor i continues to record information, perform fault detec-
tion, and report on values until the end of round t+ 1−∆, at which point it halts.

We shall show in Lemma 6.7 and Corollary 6.9 that the root cannot be fixed both
to 0 and to 1, and that the root is guaranteed to be fixed by the end of round t+1−∆.
As a result, the decision rule given above is well defined and will guarantee that i will
decide on a value.

To complete the description of ∆-EIG, we need to describe the rules by which
nodes are fixed to values, and the manner in which processors perform fault discovery.
This will be the subject of the next two subsections.

6.2. Fixing nodes to values. We now define when a node σ is fixed in treei
to a value v. This will be a major component in our protocol, and the properties
of fixing, which we discuss below, will be instrumental in the development of the
algorithm. We start with a fairly abstract definition of the fixing rules, relative to a
function F : [t] → [n]. We shall call such a function F admissible if it satisfies that

(i) F (0) = F (1) = t+ 1, and
(ii) t+ r − 1 ≥ F (r) ≥ t− r + 2 for r ≥ 2.

FULLY POLYNOMIAL BYZANTINE AGREEMENT 261

In the sequel, we shall restrict our attention to admissible functions. A considerable
amount of our analysis will be valid for admissible functions in general. Only in sec-
tion 7 will we choose a particular admissible function to be used in our final protocol.
We remark that admissible functions do not necessarily conform to the conditions of
Lemma 5.3. As we shall see, the fact that we shall be fixing values of nodes before
the full tree is developed will allow us to go beyond the bounds of Lemma 5.3. The
role of Lemma 5.3 is in motivating the development of admissible functions and our
fixing rules. It will not play a role in the correctness of our protocol in the end.

The bounds used in the definition of admissible functions were chosen so that they
would match the following fixing rules. Formally, a node σ becomes fixed in treei to
value v at the end of round r if σ was not closed at the end of round r − 1, and one
of the following rules applies:

Fx1: r = |σ| = t+ 1−∆ and treei(σ) = v.
Fx2: r = |σ|+ 1, par(|σ|) = v and

treei(σj) = v for at least

n− t nodes σj if σ = λ;
n− t− 1 nodes σj if |σ| = 1; and
n− t− 2 nodes σj if |σ| ≥ 2.

Fx3: Rules Fx1 and Fx2 do not apply, and either
(a) par(|σ|) = v and at least F (|σ|) of the σj’s are fixed to v; or
(b) par(|σ|) = 1 − v and at least n − |σ| − F (|σ|) + 1 (i.e., all but at

most F (|σ| − 1) of the σj’s are fixed to v.
We remark that a naive bottom-up computation based on Fx1–Fx3 can be used to

determine all of the fixed nodes and the values they are fixed to in a given EIG tree.
Such a computation requires a number of steps at most linear in the size of the tree.
The properties of the fixing rules Fx1–Fx3 will play a major role in the correctness of
our ultimate protocol. We now consider some of these properties.

One immediate consequence of the definition of the above fixing rules is the fol-
lowing.

Lemma 6.1. Let F be admissible and let i be a nonfaulty processor. If all non-
faulty processors vote 0, then the root λ is fixed to 0 in treei by the end of round 1.
Similarly, if all nonfaulty processors vote 1, then the root λ is fixed to 1 in treei by
the end of round 2.

Proof. Recall that par(|λ|) = 0. First assume that all nonfaulty processors
vote 0. It follows that at least n− t correct children of λ in treei store 0 at the end
of round 1, and as a result, by rule Fx2, the root is fixed to 0 at that point. Now
assume that all nonfaulty processors vote 1. The root λ has at least n − t correct
children. Let σ denote a correct child of the root λ. Thus, at the end of round 1 we
have that treei(σ) = 1. The root is not fixed yet. At the end of round 2, however,
treei(σj) = 1 for at least n− t− 1 children of σ. Since par(|σ|) = 1, it follows from
the second clause of Fx2 that σ will be fixed to 1 at the end of round 2. We thus
obtain that at least n − t children of λ are fixed to 1 by the end of round 2. Recall
that if F is admissible, then F (0) = t + 1. Hence, by rule Fx3 we now have that the
root becomes fixed to 1 at the end of round 2, since that F (|λ|) = F (0) = t+ 1, and
n− |λ| − F (|λ|) + 1 = n− (t+ 1) + 1 = n− t.

Lemma 6.1 essentially takes care of the validity problem for ∆-agreement in the
case in which all nonfaulty processors have initial votes of 0. The lemma states that
in this case the root in all nonfaulty processors’ trees will fix to 0 by the end of
round 1, and by the decision clause of the ∆-EIG protocol, all nonfaulty processors

262 JUAN A. GARAY AND YORAM MOSES

will decide 0 at that point. In the sequel, we shall therefore concern ourselves with
the case in which at least one nonfaulty processor votes 1. Hence, we will be able to
assume that the number of initially disabled processors is at least ∆.

We now wish to use the fixing rules to show that they guarantee that nodes of the
righteous subtree end up being fixed to the desirable values. In ∆-agreement, however,
we have processors that are initially disabled, that resemble nonfaulty processors in
the fact that they cannot corrupt nodes or otherwise misbehave. As a result, finding a
node corresponding to an initially disabled processor on a path from the root is quite
analogous to finding a correct node. Following this observation, we shall therefore
replace the definition of the righteous subtree with the analogous tree (which we shall
call the safe subtree), and perform our analysis with respect to the new tree. Formally,
we proceed as follows. Let D denote the set of initially disabled processors. We call
a node σ safe if (i) σ is either righteous or corresponds to a processor in D, and (ii)
none of σ’s ancestors are righteous, and none of them correspond to processors in D.
Since #D ≥ ∆ by definition of ∆-agreement, at most t−∆ processors labelling edges
on a path from the root can be faulty but not from D. It follows that every path
of t+2−∆ nodes leading from the root must contain a safe node. In particular (since
|λ| = 0), if σ is safe, then |σ| ≤ t + 1−∆. Since, by definition, there can be at most
one safe node on every path from the root to leaves of the EIG tree, we obtain that
the safe nodes form a cut in the tree. Let us denote this cut by Cs. We define the safe
subtree of an EIG tree in an execution of ∆-EIG to consist of Cs and all ancestors
of nodes in Cs. We remark that |σ| = t + 1 − ∆ can hold for a node of the safe
subtree only if σ is a safe node, and hence is either righteous or (initially) disabled.
Finally, we shall use hs(σ), for a node σ of the safe subtree, to denote the length of
the maximal path from the node σ to some node in Cs. More formally, for nodes σ
in the safe subtree, we define

hs(σ)
def
=

{
0 if σ ∈ Cs; and
1 + maxj hs(σj) otherwise.

One somewhat technical property that will serve us in the sequel is the follow-
ing. (In this and all other statements in this paper, references to EIG trees such
as treei, treej and treez are made only for nonfaulty processors; the assumption
that i, j, or z is nonfaulty will be implicit.)

Lemma 6.2. Let F be an admissible function, and let σ be a node of the safe
subtree such that 0 < |σ| < t+ 1−∆, and all nonfaulty processors that do not appear
in σ report the value v for σ. Then

(a) If v = par(|σ|) then σ is closed in treei by the end of round |σ|+ 1 at the
latest ; while

(b) If v 6= par(|σ|) then σ is closed in treei by the end of round min(|σ|+2, t+
1−∆) at the latest.
Moreover, if σ is fixed in treei, then it is fixed to v.

Proof. We prove the claim separately for different depths of |σ|.
(i) For t − ∆ > |σ| ≥ 1: We argue by cases depending on whether or not

v = par(|σ|).
(a) Assume v = par(|σ|). If σ is closed by the end of round |σ| then σ does not

become fixed in treei and we are done. Otherwise, σ has at least n − t − 1 correct
children all of which store v by the end of round |σ|+ 1. By rule Fx2 we thus obtain
that σ is fixed to v at the end of round |σ|+ 1.

(b) Now assume v 6= par(|σ|). The node σ cannot be fixed to v 6= par(|σ|) by
rule Fx2, since this rule only allows fixing to par(|σ|). If σ is closed by the end of

FULLY POLYNOMIAL BYZANTINE AGREEMENT 263

round |σ|+1, then σ does not become fixed in treei and we are done. We shall show
that if σ is not closed by the end of round |σ| + 1 then σ becomes fixed to v by the
end of round |σ| + 2. Let σj be a correct child of σ. In particular, treei(σj) = v,
and all correct children of σj store v in treei as well. Notice that par(|σj|) = v and
|σj| ≥ 2. In addition, since σ is a node of the safe subtree and |σ| < t−∆, the node
σj has at least n − t − 2 correct children, and they all store v. It follows that Fx1
does not apply to σj, and σj becomes fixed to v at the end of round |σ| + 2 for all
correct nodes σj. Recall that there are at least n− t− 1 such correct nodes σj. Let
r = |σ|, and recall that we are assuming that F (r) ≥ t− r + 2.4 Thus, in particular,
n− r− F (r) + 1 ≤ n− r− t+ r− 2 + 1 = n− t− 1. It now follows by Fx3(b) that σ
is fixed to v in treei by the end of round |σ|+ 2.

(ii) For t−∆ = |σ|: If σ is closed at the end of round |σ| = t−∆, then σ does
not become fixed in treei and we are done. Otherwise, if v = par(|σ|) then σ becomes
fixed by rule Fx2 to v as in the case of t − ∆ > |σ| described above. If v 6= par(|σ|)
then all of σ’s children are fixed in treei at the end of round |σ| + 1. Moreover, at
least n − t − 1 correct children σj of σ are fixed to v. As in the case of |σ| > t − ∆
and v 6= par(|σ|) we have that σ is fixed to v in treei by rule Fx3(b).

Lemma 6.2 immediately provides us with a number of useful corollaries. Essen-
tially, Lemma 6.2 implies that nodes corresponding to initially disabled processors
and righteous nodes are guaranteed to close quickly given our fixing rules.

Corollary 6.3. Let F be admissible, and let σ = τz be a node of the safe subtree
such that |σ| < t+ 1−∆ and z is disabled by the end of round |σ|. Then σ is closed
in treei by the end of round |σ| + 1 at the latest. Moreover, if σ becomes fixed to a
value v in treei, then v = par(|σ|) = rightF (|σ|).

Proof. Since |σ| < t + 1 − ∆, rule Fx1 does not apply to fixing σ. If σ is closed
in treei by the end of round |σ|, we are done. Otherwise, since we have that z
is disabled by the end of round |σ| and σ = τz, all nonfaulty processors j issue a
mask(j, z) report by round |σ|+ 1 at the latest. As a result, all nonfaulty processors
are considered to be reporting v = par(|σ|) for σ = τz. Lemma 6.2 now implies that σ
is closed in treei by the end of round |σ| + 1, and, if it is fixed in treei, it is fixed
to v = par(|σ|). Since at least n − t > n − t − 1 ≥ F (|σ|) righteous children of τz
in treei store the value par(|σ|), we obtain that par(|σ|) = rightF (σ) and we are
done.

In particular, Corollary 6.3 implies that all nodes corresponding to initially dis-
abled processors become closed within one round, and can fix only to their masked
value. A similar situation holds with respect to righteous nodes as shown in the
following corollary.

Corollary 6.4. Let F be admissible, and let σ be a safe node (and hence a leaf of
the safe subtree). Then σ is closed in treei by the end of round min(|σ|+2, t+1−∆).
Moreover, if σ becomes fixed to a value v in treei, then v = treei(σ) = rightF (σ).

Proof. First notice that if |σ| = t + 1 − ∆ and σ is not closed by the end of
round t − ∆, then σ is fixed in treei by rule Fx1 to treei(σ) = rightF (σ) and we
are done. If |σ| = t + 1 − ∆ and σ is closed in treei by the end of round t − ∆,
then σ is not fixed in treei and we are done. Otherwise, we have that |σ| < t+1−∆.
Let σ = τz, and assume that σ is not closed by the end of round |σ|. If σ is safe
because z ∈ D, then all processors report par(|σ|) for σ in round |σ| + 1 and we are
done by Lemma 6.2. We may thus assume that σ is righteous, then every nonfaulty
processor j reports treej(σ) for σ. Since we are assuming that z is nonfaulty, then, by

4 This is where we use the lower bound specified in the definition of admissible functions.

264 JUAN A. GARAY AND YORAM MOSES

soundness of the fault detection module and the recording condition, every nonfaulty
processor j would store the value that z reports for τ in treej(σ) = treej(τz).
Moreover, a nonfaulty processor z would report the same value for τ to all nonfaulty
processors j. Thus, we have that treei(σ) = treej(σ) for every nonfaulty processor j,
and we obtain that all nonfaulty processors report the value treei(σ) = rightF (σ)
for σ. The claim now follows by Lemma 6.2.

An immediate consequence of Corollaries 6.3 and 6.4 follows.

Lemma 6.5. A node σ that is not closed in treei by the end of round |σ|+ 1 is
in the safe subtree.

Proof. Corollaries 6.3 and 6.4 imply that every node τ on the safe cut Cs is closed
by the end of round |τ |+2. Since these nodes form a cut in the EIG tree, every node σ
that is not in the safe subtree has an ancestor τ in Cs; moreover, |σ| + 1 ≥ |τ | + 2.
It follows that a node σ that is not in the safe subtree must be closed by the end of
round |σ|+ 1 at the latest, and the claim follows.

The fixing rule Fx3 has the property that once all children of a node are fixed, so
is the node itself. As a result, we obtain the following lemma.

Lemma 6.6. For each nonfaulty i, every node σ of the safe subtree is closed
in treei by the end of round t+ 1−∆.

Proof. We prove the claim by induction on hs(σ) for nodes σ of the safe subtree.
Recall that we have defined hs(σ) to be the height of σ in the safe subtree. In
particular, we clearly have that hs(σ) ≤ t+1−∆ for every node σ of the safe subtree.
If hs(σ) = 0, then σ is a safe node, by definition of hs. The claim now follows from
Corollary 6.4. Now assume hs(σ) = k > 0, and assume the claim holds for all nodes τ
satisfying hs(τ) < k. In particular, every child σj of σ is in the safe subtree and
satisfies hs(σj) < hs(σ) = k. Thus, the inductive assumption implies that all of σ’s
children are closed by the end of round t + 1 − ∆. If this is because σ or one of its
ancestors are fixed, we are done. Otherwise, all of σ’s children are fixed by the end
of round t + 1 − ∆. Recall that the number of σ’s children is n − |σ|. If rule Fx3(a)
does not apply, then fewer than t+ 2− |σ| of the children of σ are fixed to the value
par(|σ|). It then follows that at least n− |σ| − (t+1− |σ|) = n− t− 1 of the children
of σ are fixed to 1−par(|σ|), so that σ is fixed to 1−par(|σ|) in treei by rule Fx3(b).
In either case we obtain that σ must also be fixed in treei, and we are done.

A crucial property of our fixing rules is that a node σ can be fixed to at most one
value in treei, as we now prove in the following lemma.

Lemma 6.7. If a node σ of the safe subtree is fixed to value v in treei, then σ is
not fixed to 1− v in treei.

Proof. We prove the claim by induction on hs(σ). The case hs(σ) = 0 follows
from Corollary 6.4. Assume that hs(σ) ≥ 1 and that the claim holds for all nodes τ
of the safe subtree with hs(τ) < hs(σ). Hence, in particular, rule Fx1 does not apply
to σ, and the claim holds for σ’s children in treei. Assume σ is fixed by Fx2. The only
value to which σ can be fixed by Fx2 is par(|σ|). Moreover, by the definition of these
rules, if Fx2 applies to σ in treei then neither Fx1 nor Fx3 do. It follows that if σ is
fixed by rule Fx2, then it is fixed to a unique value. Finally, assume σ becomes fixed
in treei by rule Fx3. In particular, Fx1 and Fx2 do not apply in the case of σ. The
node σ has exactly n− |σ| children σj. By definition, hs(σj) < hs(σ). Thus, by the
inductive hypothesis, each of these children is fixed to at most one value. The total
number of fixed children of σ that would be necessary for both Fx3(a) and Fx3(b) to
apply is t+2−|σ|+n− t−1 = n−|σ|+1, which is more than the number of children
of σ. It follows that only one of these rules can apply, so that σ can be fixed to at

FULLY POLYNOMIAL BYZANTINE AGREEMENT 265

most one value in treei.

We are now ready to prove that nodes of the safe subtree can become fixed only
to their rightF values.

Theorem 6.8. If F is admissible and a node σ of the safe subtree is fixed to
value v in treei, then v = rightF (σ).

Proof. We prove the claim by induction on hs(σ). The case of hs(σ) = 0 follows
directly from Corollary 6.4.

Assume that hs(σ) > 0 and the claim holds for all children σj of σ. (By definition
of hs we have that hs(σ) > hs(σj) ≥ 0.) Notice that the rule Fx1 cannot apply to σ
since Fx1 deals with nodes τ satisfying |τ | = t + 1 − ∆, and such a node is in the
safe subtree only if it is a safe node, in which case hs(τ) = 0. Thus, hs(σ) > 0, and
only rules Fx2 and Fx3 can apply for fixing σ. Since σ is an internal node of the safe
subtree, σ and all of its ancestors are incorrect nodes. As a result, at least n− t of σ’s
children are correct, while at most t− |σ| of them are faulty. Moreover, every correct
child of σ is righteous. We now consider the ways in which σ can become fixed due
to Fx2 and Fx3.

(i) Assume that |σ| ≥ 2 and σ becomes fixed in treei to value v = par(σ)
by rule Fx2. The definition of Fx2 implies that treei(σj) = v for at least n − t − 2
nodes σj. Since at most t − |σ| of these may be incorrect, we obtain that at least
n−t−2−t+ |σ| = n−2t+ |σ|−2 ≥ t+ |σ|−1 of these nodes are correct. For each such
correct child σj we have that rightF (σj) = v. Since F is admissible, we have that
F (|σ|) ≤ t+ |σ|−1, and it follows from the definition of rightF that rightF (σ) = v.5

A similar argument applies for the cases of |σ| ≤ 1. In these cases, F (|σ|) = t+ 1, at
least n− t− |σ| of the children are fixed to v, and at most t− |σ| of the children are
incorrect. In both cases n − t − |σ| − t + |σ| = n − 2t ≥ t + 1 = F (|σ|) and we are
done.

(ii) If σ is fixed in treei to v by rule Fx3(a), then par(|σ|) = v and we have
by the inductive hypothesis for the F (|σ|) ≥ t + 2 − |σ| nodes of the form σj that
are fixed to v in treei that rightF (σj) = v. Thus, by the definition of rightF we
have that rightF (σ) = v as well. An analogous argument works for fixing based on
Fx3(b).

Corollary 6.9. The root λ of treei is fixed to value rightF (λ) by the end of
round t+ 1−∆.

Proof. Lemma 6.6 implies that λ is closed in treei by the end of round t+1−∆.
Since λ has no ancestors, it must be fixed at that time. Theorem 6.8 implies that λ
is fixed to rightF (λ).

Theorem 6.10. For any sound fault-detection module and admissible function F ,
the ∆-EIG protocol satisfies the decision, agreement, and validity properties.

Proof. Decision follows immediately from Corollary 6.9 and Lemma 6.7. Recall
from our discussion of rightF that if σ is in the righteous subtree, then the value of
rightF (σ) is independent of the tree in which it is computed. Corollary 6.9 implies
that every nonfaulty processor decides on rightF (λ), and since λ is in the righteous
subtree, we obtain agreement. We now argue why validity holds. All correct children
of λ are righteous. If all nonfaulty processors j have the same initial value vj = v,
then rightF (σ) = v for all n− t righteous children σ of λ. By definition of rightF ,
this implies that rightF (λ) = v, and since rightF (λ) is the value decided on, we
obtain validity.

5 This is where we use the upper bound specified in the definition of admissible functions.

266 JUAN A. GARAY AND YORAM MOSES

6.3. Fault detection in ∆-EIG. We now turn to describing the fault discovery
rules we shall use in the instances of ∆-agreement for the purposes of our final protocol.
Notice that all of the results regarding fixing that we have seen above depend only
on the masking and soundness rules, which state that initially detected failures must
be masked to the favored value, and nonfaulty processors are not masked by other
nonfaulty processors. Thus, we have a considerable amount of freedom in introducing
fault discovery rules without affecting the correctness of the protocol.

We find it convenient to consider the notion of a node σ being committed to value v
in treei. Intuitively, σ = τz will be committed to v in treei only if i has a proof
that at least one nonfaulty processor either has received a report of v for τ from z, or
is masking z. Formally, we say that a node σ 6= λ is committed to v in treei if one
of the following holds:

C1: treei(σ) = v;
C2: treei(σj) = v for at least min(t+ 1, t+ 3− |σ|) nodes σj;
C3: σ is not closed in treei at the end of round |σ|+1 and σ is not fixed to 1−v

at the end of round |σ|+ 2.

As in the case of fixing, a naive linear-time computation based on C1, C2, and C3 is
easily seen to suffice for determining all of the commitments of nodes to values in a
given EIG tree. We remark that these rules will only be applied to nodes of the safe
subtree. For such nodes, the bound of C2 guarantees that one of the children σj with
treei(σj) = v is correct.

The main use we have for the notion of commitment is captured in the following
lemma.

Lemma 6.11. Let τ be a node of the safe subtree. If a child τz of τ is committed
to v in treei by the end of round r, then, for at least one nonfaulty processor j, either
z ∈ Fj(|τz|) or j received a report of v from z for τ .

Proof. If τz is committed to v in treei by C1, then the claim holds trivially for
j = i, since treei(τz) = v only if either i received a report of v for τ from z, or
v = par(|τ |) and i is masking z in round |τz|. Assume that τz is committed to v
in treei by C2. Since τ is a node of the safe subtree, all, except possibly for the
last, members of the sequence τ are faulty processors. It follows that the number of
incorrect children of τz is at most t− |τ |+ 1 (= t+ 2− |τz|). We thus obtain that if
C2 applies, then at least one of the children τzj of τz with treei(τzj) = v must be
a correct node. But treei(τzj) = v for a correct node τzj only if either z ∈ Fj(|τz|)
(in which case j sends a mask(j, z) message no later than in round |τz| + 1), or if j
received a report of v for τ from z. We are left with the case of commitment to v due
to C3. First notice that if τz is righteous and committed to v in treei by C3, then it
is already committed to v in treei by C2. This is because if τz is not closed in treei
at the end of round |τz| + 1, then it is committed in treei to value w = treei(τz),
and by Corollary 6.4, it will not not be committed to 1 − w by C3. Thus, we may
assume that τz is not righteous. In particular, it has at least n− t righteous children.
It suffices to show that at least one nonfaulty processor j reports v for τz. Assume
not. Then all nonfaulty processors report 1− v for τz. It now follows by Lemma 6.2
that τz must be fixed to 1 − v by the end of round |τz| + 2 if it was not closed by
the end of round |τz|+ 1. This contradicts the assumption that τz is committed to v
in treei by C3.

Lemma 6.12. Assume that t ≥ 3. If a node σ 6= λ of the safe subtree is ever fixed
to value v in treei, then σ is committed to v in treei by the end of round |σ|+ 2.

Proof. Assume σ is fixed to v in treei by the end of round |σ| + 2. If σ is fixed

FULLY POLYNOMIAL BYZANTINE AGREEMENT 267

by rule Fx1, then by C1 it is also committed to v in treei. If it is fixed by Fx2, then
it is committed to v by C2, since Fx2 implies that treei(σj) = v for at least n− t− 2
nodes σj. Given that t ≥ 3 and |σ| ≥ 1, we have

n− t− 2 ≥ 2t+ 1− 2 = 2t− 1 ≥ t+ 3− 1 = t+ 2 ≥ t+ 3− |σ|.
Finally, assume that σ is fixed to v by Fx3. In particular, σ is not closed in treei
by the end of round |σ| + 1, and it becomes fixed to v no earlier than the end of
round |σ|+ 2. Lemma 6.7 implies that σ can be fixed to at most one value in treei,
so that σ is not fixed to 1− v at the end of round |σ|+ 2, and by C3 it is committed
to v in treei at that point.

Notice that for every node σ 6= λ of the safe subtree, there must be at least one
value v ∈ {0, 1} such that at least t+ 1 (and hence≥ t+ 2− |σ|) nonfaulty processors
report v for σ. We say that σ is then publicly committed to such a value v. If σ
is publicly committed to v, then σ becomes committed by C2 to v in treei for all
trees treei in which values of children of σ are stored. A variant of Lemma 6.12 that
applies to public commitment and will be useful in the sequel is the following lemma.

Lemma 6.13. Let σ be a node of the safe subtree of depth 2 ≤ |σ| ≤ t − ∆,
let v = par(|σ|), and let σ be fixed in treei to 1− v (the “disfavored” value). Then σ
is publicly committed to 1− v.

Proof. By Theorem 6.8, a node σ of the safe subtree can be fixed only to rightF(σ).
Given our definition of publicly committed, we have that a node must be publicly
committed to at least one value among 0, 1. However, if σ were publicly commit-
ted to v = par(|σ|), then by definition of rightF we would have that rightF (σ) =
par(|σ|) 6= 1− v. It follows that σ must be publicly committed to 1− v.

We are now ready to present our fault detection rules. Intuitively, a nonfaulty
processor i discovers that a processor is faulty when there is “enough” evidence that
the processor has sent conflicting values to other correct processors. This evidence
may be gathered when the messages of the children of a node corresponding to the
faulty processor are received. Formally, processor i will detect z at the end of round
as being faulty if one of the following holds:

FD0: z sends i an ill-formatted message in round r.
FD1: By the end of round r, processor i has received mask(j, z) reports from at

least t+ 1 distinct processors j.
FD2: By the end of round r, some node τz that was not closed in treei by the

end of round |τz| is committed both to 0 and to 1 in treei.
FD3: By the end of round r, for some node τaz and value v such that (a) r =

|τaz|+ 1, and (b) τaz is not closed in treei by the end of round r; we have
that

(i) τaz is committed to v in treei;
(ii) at least 2(t+ 1− |τa|) + 1 of the nodes τaj are committed to 1− v

in treei by the end of round r; and
(iii) z does not mask a in round |τaz| + 1. (Namely, z did not send

a mask(z, a) report to i in the first r rounds.)
The motivation for the first three rules FD0–FD2 is fairly intuitive and straightfor-

ward. Similar rules have appeared in earlier work in the literature. The fourth rule,
FD3, is of a new type. It is tailor made for handling a specific type of corruption,
called cross corruption, that we will consider in detail in section 7. Intuitively, FD3
can be thought of as detecting a crime of omission. It applies when the detecting
processor i has a proof that, had z been nonfaulty, then z would have detected an-
other processor a as being faulty due to FD2 in round r−1. As a result, z should have

268 JUAN A. GARAY AND YORAM MOSES

issued a mask(z, a) report no later than in round r. By rule FD3, i discovers z as being
faulty once z fails to issue a mask(z, a) in time. Figure 2 illustrates this scenario.

Fig. 2. Discovering a fault using FD3.

Lemma 6.14. The rules FD0–FD3 are sound. That is, if the fault detection mod-
ule is sound for all nonfaulty processors through the end of round r − 1, then every
processor that is added to Fi(r) according to one of these rules is faulty.

Proof. The soundness of FD0 is trivial, since a processor that sends an ill-formatted
message is deviating from the protocol, and hence is faulty. If rule FD1 applies, then
at least one of the t + 1 processors that report to i that they are masking z must
be nonfaulty. The soundness of the rule now follows from our assumption about
the soundness of the fault detection module in the first r − 1 rounds. We now turn
to FD2. Notice that this rule cannot apply with respect to a node τz before the end
of round |τz| + 1, since only one commitment value can be obtained in treei before
values for the children of τz are stored. By Lemma 6.5, if τz is not closed at the
end of round |τz|, then τ is a node of the safe subtree. Since τz is committed both
to 0 and to 1, Lemma 6.11 implies that either at least one nonfaulty processor is
masking z in round |τz|, or z sent conflicting reports of both 0 and 1 for τ to two
different nonfaulty processors. Having assumed that the fault detection module was
sound in the first r − 1 rounds we obtain that, in either case, z must be faulty, and
hence FD2 is sound.

Finally, let us consider FD3. Roughly speaking, the soundness of FD3 is based
on FD2 and the fact that if (i) and (ii) hold, then i can determine that z must have
had enough information for detecting a as faulty using FD2 in round |τaz|. If z did not

FULLY POLYNOMIAL BYZANTINE AGREEMENT 269

react accordingly, then it must be faulty. We now formalize this intuition. Assume
that z is nonfaulty, and conditions (i) and (ii) apply. Moreover, assume that z does
not issue a mask(z, a) report by the end of round |τaz|. Since τaz is not closed by the
end of round |τaz| + 1, then by Lemma 6.5 the node τaz is in the safe subtree, and
hence all of the processors in the sequence τa are faulty. It follows that at most t−|τa|
of the nodes τaj that are committed to 1− v in treei by the end of round |τaz|+ 1
can be incorrect. t−|τa| can be incorrect. Since their total number is, by assumption,
at least 2(t+ 1− |τa|) + 1, it follows that at least

2(t+ 1− |τa|) + 1− (t− |τa|) = t+ 3− |τa|

of these nodes are correct, and, in particular, must appear in treez. It thus follows
by rule C2 that τa must be committed to 1 − v in treez by the end of round |τaz|.
However, since τaz is committed to v in treei, (and z is nonfaulty) it must be the
case that τa is committed to v in treez as well by the end of round |τaz|. Thus, by
rule FD2 we obtain that z must detect a as faulty in round |τaz|. Moreover, by the
masking behavior rule, in round |τaz|+1, processor z must report that it is masking a,
if it has not done so in an earlier round. If z fails to do so, then z must be faulty as
determined by FD3.

Given these fault discovery rules, we can now turn to study the conditions under
which nodes can be corrupted in instances of ∆-EIG. In addition, we shall be inter-
ested in the relationship between the corrupted nodes and the size of the EIG tree
constructed.

6.4. Corrupting nodes in ∆-EIG. Formally, in an execution of the ∆-EIG
protocol we define a node σ to be corrupted in treei if σ is not closed in treei by the
end of round |σ|+ 2.

A node σ is said to be universally corrupted if it is corrupted in treei for all
nonfaulty processors i. The following three lemmas show that, in order to cause
lasting trouble, a node must be universally corrupted.

Lemma 6.15. Let i and j be nonfaulty processors, and let σ be a node of the safe
subtree. If σ is fixed in treei by rule Fx2, then σ is closed in treej by the end of
round |σ|+ 3.

Proof. The claim follows immediately for righteous nodes σ by Corollary 6.4. We
shall henceforth consider the case in which σ is not righteous, so that at most t− |σ|
of its children are faulty. We prove the claim for |σ| ≥ 2; the modifications for the
cases |σ| = 0 and |σ| = 1 are simple and left for the reader. Assume that σ is
fixed in treei by rule Fx2, and that σ is not closed in treej by the end of round
|σ| + 2. Since σ is fixed to v in treei by Fx2 in round |σ| + 1, we have that at least
n− t−2− (t−|σ|) = n−2t+ |σ|−2 ≥ t+ |σ|−1 of σ’s children in treej are righteous
children that store v. If σ is not closed in treej beforehand, then Corollary 6.4
implies that these nodes will all be fixed to v in treej by the end of round |σ| + 3.
Since F (|σ|) ≤ t + |σ| − 1 we have that σ becomes fixed to v in treej by Fx3(a) at
the end of round |σ|+ 3.

As a consequence of Lemma 6.15, a straightforward induction yields the following.

Corollary 6.16. Let i and j be nonfaulty processors, and let σ be a node of the
safe subtree. If σ is closed in treei by the end of round r, then it is closed in treej
by the end of round r + 2.

Corollary 6.17. Let i be a nonfaulty processor, and let τ be a node that is not
universally corrupted. Then τ is closed in treei by the end of round |τ |+ 4.

270 JUAN A. GARAY AND YORAM MOSES

Proof. By definition of corruption, a node τ that is not universally corrupted must
be closed in treej for some nonfaulty j by the end of round |τ |+2. By Corollary 6.16
we have that τ is closed in treei by the end of round |τ |+ 4.

As in the case of n > 4t, there is a close relationship between corrupted nodes and
failure detection. Indeed, an immediate consequence of the fault discovery rule FD2
and the commitment rule C3 is the fact that a processor that corrupts a node in treei
is discovered by i as being faulty. Formally, we have the following lemma.

Lemma 6.18. If a node τz is corrupted in treei, then z ∈ Fi(|τz|+ 2).
Given Lemmas 6.2 and 6.18, we obtain the following relationship between univer-

sal corruption and disabled processors.
Corollary 6.19. If a node τz is universally corrupted, then processor z is

disabled from the end of round |τz|+ 2 on.
Since corruption is determined within at most two rounds, Corollary 6.19 implies

that a faulty processor can universally corrupt nodes in at most two different rounds.
Thus, our situation resembles that of the n > 4t case with majority, except that now
the faulty processors are able to corrupt nodes in two consecutive rounds in some
cases. This will force us to consider the possibility of cross corruption in section 7.

6.4.1. Waste. One consequence of Corollary 6.17 is that if no node σ of depth r
is universally corrupted, then all such nodes are closed by the end of round r + 4.
Moreover, it is easy to see that if all nodes of depth r are closed, then so are all of
their ancestors including the root. We thus have the following lemma.

Lemma 6.20. If no node σ of depth |σ| = r is universally corrupted, then the
root λ is closed in all processors’ trees by the end of round r + 4.

We say that a processor z universally corrupts a node τz at depth r if the node τz
is universally corrupted, and |τz| = r. Notice that whether z universally corrupts τz
might depend on events that take place after round r = |τz|, such as what values other
faulty processors report for τz, and who is masking z in round r+1. Intuitively, we can
figure out whether z universally corrupted τz only in round r+2. Corollary 6.19 states
that at most two rounds after a processor universally corrupts a node, this processor
is disabled. Corollary 6.3 implies that a disabled processor cannot universally corrupt
nodes. It follows that a processor can universally corrupt nodes in at most two
(consecutive) rounds. However, it is not hard to see that a processor z cannot be the
only processor universally corrupting nodes in a pair of consecutive rounds r and r+1.

Lemma 6.21. Assume that z universally corrupts nodes at depth r. If there are
universally corrupted nodes at depth r + 1, then there must be at least one processor
z′ 6= z corrupting nodes either at depth r or at depth r + 1.

Proof. Assume that τxy is a node of depth |τxy| = r + 1 that is universally
corrupted. If no processor other than z universally corrupts nodes at depth r+ 1, we
must have that y = z. By definition of the EIG tree, a node is a sequence of processor
names without repetitions, and hence x 6= z. Since τxy is universally corrupted, it is
not closed in any processor’s tree by the end of round |τ |+4. It follows that τx is also
not closed in any processor’s tree at that point. We conclude that τx was not closed
in any tree at the end of round |τ |+3 = |τx|+2, and hence was universally corrupted.
Thus, x 6= z universally corrupted nodes at depth r, and the claim follows.

Lemma 6.20 implies that in order to keep the trees from closing, at least one pro-
cessor must universally corrupt nodes at every depth. Moreover, Lemma 6.21 implies
that at least two different processors must universally corrupt nodes in consecutive
rounds. Finally, by Corollary 6.19, we know that two rounds after a processor uni-
versally corrupts nodes, this processor is disabled. It follows that, roughly speaking,

FULLY POLYNOMIAL BYZANTINE AGREEMENT 271

in order to keep the root from closing, at least one processor per round must become
disabled. We now make a few definitions that will allow us to make this intuition into
a precise statement, and will later help us in the analysis of monitor voting.

Let us denote by D(r) the set of processors that are disabled at the end of round r.
We define the deficit at r, denoted deficit(r), to be the number of processors that
universally corrupt nodes at depth r− 1, but are not disabled by the end of round r.
Recall that every processor that universally corrupts a node at depth r−1 is detected
by all nonfaulty processors as faulty (and hence disabled) by the end of round r + 1.
We thus have #D(r + 1) ≥ #D(r) + deficit(r). We are almost ready to define the
waste at r. Roughly speaking, the term waste comes from the idea that the nonfaulty
processors are playing against an adversary.6 This adversary is trying to enlarge the
size of processors’ trees without spending more than one disabled processor per round.
The waste measures the extent by which the adversary has exceeded this allowance.
Intuitively, the waste should be a measure, stated in terms of the number of disabled
processors and the deficit, that will have the following properties:

1. As long as at least one node is universally corrupted in every round, the
waste should be nondecreasing;

2. an appropriate form of monitor voting will guarantee that if the waste exceeds
a certain constant threshold, then the agreement process will be halted; and

3. as long as the waste does not exceed the threshold of (2), then the number
of universally corrupted nodes in the tree is polynomial.
To obtain this, we define the waste at the end of round r, denoted by Waste(r), as
follows:

Waste(r) = #D(r)− r + deficit(r)− correction(r).

The last term, correction(r), is technically needed in order to compensate for cases
in which the processors that form the deficit are able to corrupt nodes at depth r in
addition to round r − 1. In this case, we want to account one of these processors to
the following round. Formally, we define correction(r) as follows:

correction(r) =

0 if deficit(r) = 0;
0 if deficit(r) = 1 and only one processor universally

corrupts nodes at depth r − 1; and
1 otherwise.

In other words, the correction is 1 if either deficit(r) ≥ 2, or if deficit(r) = 1,
provided there is at least one processor universally corrupting nodes at depth r − 1
in addition to the processor forming the deficit at r. In either case, we deduct a cost
of 1 for the fact that some processor in the deficit had the option of causing harm at
depth r as well as at depth r − 1. The following lemma makes this claim precise.

Lemma 6.22. If correction(r) = 0 then no processor universally corrupts nodes
both at depth r − 1 and at depth r.

Proof. We consider the two cases in which correction(r) = 0. For the first case,
if deficit(r) = 0, then all processors that universally corrupt nodes in round r − 1
are disabled by the end of round r, and hence cannot corrupt nodes at depth r. For
the other case, assume that deficit(r) = 1 and let z be the processor forming the
deficit at r. By definition, if correction(r) = 0 then z is the only processor that

6 The notion of waste used here is close in spirit to, though technically quite different from, a
similar notion introduced in the work of Dwork and Moses [12].

272 JUAN A. GARAY AND YORAM MOSES

universally corrupts nodes at depth r − 1. By Lemma 6.21, z cannot also universally
corrupt nodes at depth r.

We can now prove the following theorem.
Theorem 6.23. Let r ≥ 2. If Waste(r + 1) < Waste(r) then no node of depth r

is universally corrupted.
Proof. We prove the contrapositive: assume that there is at least one univer-

sally corrupted node at depth r, and we shall show that Waste(r + 1) ≥ Waste(r).
Recall from the discussion above that #D(r + 1) ≥ #D(r) + deficit(r). In addi-
tion, notice that, by definition of correction, we are guaranteed that deficit(r′)−
correction(r′) ≥ 0 for all r′, and in particular we will have that deficit(r + 1) −
correction(r + 1) ≥ 0. We consider three cases:

(i) At least one processor universally corrupting nodes at depth r − 1 also
universally corrupts nodes at depth r. In this case, we have by Lemma 6.22 that
correction(r) = 1. We thus have:

Waste(r + 1) = #D(r + 1)− (r + 1) + deficit(r + 1)− correction(r + 1) ≥
#D(r + 1)− (r + 1) ≥ #D(r) + deficit(r)− r − 1 =
#D(r)− r + deficit(r)− correction(r) = Waste(r).

(ii) The assumption of case (i) does not hold, and at least one processor z that
universally corrupts nodes at depth r is disabled by the end of round r + 1. Clearly,
z /∈ D(r), and by assumption we have that z is not one of the processors forming a
deficit at r. Since z is disabled by the end of round r + 1, we have that #D(r + 1) ≥
#D(r) + deficit(r) + 1, and hence we are guaranteed that Waste(r+ 1) ≥ Waste(r)
by:

Waste(r + 1) ≥ #D(r + 1)− (r + 1) ≥ #D(r) + deficit(r) + 1− (r + 1) =
#D(r) + deficit(r)− r ≥ #D(r)− r + deficit(r)− correction(r) = Waste(r).

(iii) The assumptions of cases (i) and (ii) do not hold. Thus, no processor uni-
versally corrupts nodes both at depth r − 1 and at depth r, and no processor that
universally corrupts nodes at depth r is disabled by the end of round r+1. It follows
that only processors forming the deficit at r+1 universally corrupt nodes at depth r.
In this case, if deficit(r+1) ≥ 2, then deficit(r+1)−correction(r+1) ≥ 1, and
we have that that Waste(r + 1) ≥ #D(r) + deficit(r) + 1 − (r + 1) and hence
Waste(r + 1) ≥ Waste(r) as in the previous case. Finally, if deficit(r + 1) =
1 then the assumptions imply that the processor forming the deficit at r + 1 is
the only processor universally corrupting nodes at depth r. By the definition of
correction we thus have that correction(r + 1) = 0, and we again obtain that
deficit(r + 1) − correction(r + 1) ≥ 1, so that Waste(r + 1) ≥ Waste(r) and we
are done.

Theorem 6.23 will be instrumental in the correctness of our ultimate algorithm.
We shall design the monitor voting scheme in such a way that once the waste becomes
large enough (which in our case will mean at least two), an appropriate monitor
decision process will “fire,” thereby causing the processors all to decide on a default
value and halt.

In section 7.3 we shall demonstrate how it is possible to stop interacting about a
subtree of the EIG tree after it becomes closed. As a result, a fundamental parameter
determining the size of the processors’ trees will be the number of universally cor-
rupted nodes in the tree. Theorem 6.23 allows us to formalize the idea that there is
a close relationship between the waste of an execution and the number of universally

FULLY POLYNOMIAL BYZANTINE AGREEMENT 273

corrupted nodes in the tree. Recall, for example, that if there is only one processor
universally corrupting nodes at any given depth, then the total number of universally
corrupted nodes is no greater than t. In order for this number to grow, it is necessary
for there to be levels of the tree at which two or more processors universally corrupt
nodes. Notice, however, that if three or more processors universally corrupt nodes at
depth r, then Corollary 6.19 implies they all will be disabled by the end of round r+2,
and as a result we would have that Waste(r+2) > Waste(r). As we are going to start
with a waste at r = 2 of at least −1, it will follow that after a constant number of
such rounds, the monitors will detect a problem and stop the growth of the EIG tree.

The only situation in which the number of universally corrupted nodes can grow
more than in a linear fashion, and the waste need not increase, is in the case of
cross corruption. This is a situation in which two processors, say a and b, universally
corrupt nodes at depth r, and they continue to be the only processors to universally
corrupt nodes at depth r + 1. Specifically, if a corrupted a node τa at depth r and b
corrupted τb, then at depth r + 1 we will find b universally corrupting τab, while a
corrupts τba. See Figure 3 for an illustration of this situation. In this fashion, it is
possible to double the number of universally corrupted nodes of depth r+1 compared
to the number of corrupted nodes of depth r − 1, without increasing the waste.7

The next section is devoted to cross corruption. In particular, we shall devise
an admissible resolve function that will restrict the number of times at which cross
corruption need not increase the waste.

a b

c d c

2 failures:

0 failures

2 failures:

a, b

c, d

b a

d

τ

Fig. 3. Cross corruption.

7. Cross corruption. As discussed in the last section, in order for the number
of universally corrupted nodes to grow significantly without the waste growing at
the same time, pairs of faulty processors need to cross corrupt nodes in consecutive
rounds. In this section, we perform a careful analysis of the conditions that must
be met for cross corruption to succeed. We then use this analysis to fine tune the

7 Indeed, Berman and Garay [5] have shown that for the resolve function of [2] for n > 3t, it is
possible to construct an exponential tree this way, despite fault masking, early stopping, and monitor
voting.

274 JUAN A. GARAY AND YORAM MOSES

function F we use for fixing nodes, to limit the number of times that a cross corruption
can take place without the waste increasing. This analysis will yield essentially all of
the necessary ingredients for our final protocol.

The first property of cross corruption we shall use is the fact that in cross cor-
ruption, each universally corrupted node τa in the first of the two rounds has at most
one universally corrupted child τab. As a result, if the node τa is not closed in a
small number of rounds, then all of its children other than τab must be fixed in all
trees. Moreover, since τa is not closed after these nodes become fixed, the number of
its children fixed to par(|τa|) and the number fixed to its complement are uniquely
determined. More specifically, we have the following lemma.

Lemma 7.1. In a ∆-EIG protocol with admissible function F , let v = par(|τa|)
and let τa be a universally corrupted node whose only universally corrupted child
is τab. For every nonfaulty processor i, if τa is not closed in treei by the end of
round |τ |+ 6, then all of its children other than τab are fixed in treei at that point.
Moreover, let A denote the set of processors x for which the node τax is fixed to v
in treei, and let B denote the set of processors y such that τay is fixed to 1−v. Then
#A = F (|τa|)− 1 and #B = n− |τa| − F (|τa|).

Fig. 4. Two universally corrupted nodes.

Proof. The scenario described in the statement of the lemma is depicted in Fig-
ure 4. Corollary 6.17 implies that a node τax that is not universally corrupted must
be closed in all trees by the end of round |τax|+ 4 = |τ |+ 6. Since we are assuming
that τa is not closed in treei at that point, it follows that every such node τax will
necessarily be fixed in treei by the end of round |τ | + 6. Since τab is the only uni-
versally corrupted child of τa, we obtain that all other children of τa must be fixed
in treei by the end of round |τ | + 6. Let A be set of processors x such that the
node τax is fixed to v in treei (by the end of round |τ | + 6), and let B the set of
processors y such that the node τay is fixed to 1 − v. This is depicted in Figure 4.

FULLY POLYNOMIAL BYZANTINE AGREEMENT 275

Since τa is not closed in treei by the end of round |τ | + 6 we are guaranteed that
#A < F (|τa|) and #B < n− |τa|+ 1− F (|τa|). However, the fact that only one of
τa’s children is universally corrupted implies that #A+#B = n−|τa|−1. It follows
that #A = F (|τa|)− 1 and #B = n− |τa| − F (|τa|).

Another observation regarding cross corruption is the following. Recall that every
node of the safe subtree must be publicly committed either to 0 or to 1. If a node τac
is publicly committed to v and then becomes fixed to 1−v, then by rule FD2 everybody
will discover that c is faulty by the end of round |τac|+2 = |τ |+4, and c will become
disabled by then. As a result, we obtain the following lemma.

Lemma 7.2. Under the conditions and notation of Lemma 7.1, let C ⊆ B consist
of the processors c such that τac is publicly committed to v. Then C ⊆ (D(|τ |+ 5) \
D(|τ |+ 2)).

Proof. By definition of C, for every nonfaulty processor j we have that each
node τac with c ∈ C is committed to v in treej . In addition, since C ⊆ B, we
have that τac is fixed to rightF (τac) = 1 − v in treei by the end of round |τ | + 6.
As a result, we have by Theorem 6.8 and Lemma 6.7 that τac cannot become fixed
to v in treej . Moreover, since, by assumption, τa is not closed in treei by the end
of round |τ | + 6, we have by Corollary 6.16 that τa is not closed in treej by the
end of round |τ | + 4 = |τac| + 2. Hence, τac can be closed in treej at the end of
round |τac|+2 only if it is fixed (to 1− v) in treej at that point. If it is indeed fixed
to 1 − v in treej at the end of round |τ | + 4, then τac is committed at that point
to 1− v in treej by Lemma 6.12. If not, then it is committed to 1− v at that point
by C3. Since τa is not closed in treej by the end of round |τ |+ 4|, we have that τac
is not closed in treej by the end of round |τac|. Thus, in either case, rule FD2 implies
that j detects c as faulty by the end of round |τ |+ 4. Since this argument applies for
every nonfaulty processor j, we have that c is disabled at the end of round |τ | + 4.
Notice, however, that c could not have been disabled at the end of round |τ | + 2,
for if it had been disabled at that point, then, by Lemma 6.2, τac would not be
publicly committed to v: all nonfaulty processors would be reporting 1− v for τac by
masking c. By definition of B, this contradicts the assumption that c ∈ C ⊆ B. We
conclude that C ⊆ (D(|τ |+ 4) \ D(|τ |+ 2)). Since D(|τ |+ 5) ⊇ D(|τ |+ 4), we obtain
that C ⊆ (D(|τ |+ 5) \ D(|τ |+ 2)) and we are done.

Lemma 7.2 implies that, in order to avoid having the waste grow in an instance of
cross corruption, the size of the set C must remain small. Specifically, as we shall see
later on, it is necessary that #C ≤ 2. When this is the case, then the vast majority
of nodes τay with y ∈ B must be publicly committed to 1 − v. As a result, if B is
large enough, we can use the fault-detection rule FD3 to force the processors in A to
mask a in round |τ |+ 3. More specifically, we have the following lemma.

Lemma 7.3. Under the conditions and notation of Lemma 7.1, let B′ ⊆ B
consist of the processors y′ ∈ B such that the node τay′ is publicly committed to 1−v.
Assume #B′ ≥ 2(t+1−|τa|)+1. If the node τba is not closed in treei at the end of
round |τ |+7, then every processor x ∈ A for which τbax is not fixed to 1−v in treei
by the end of round |τ |+ 7 is disabled by the end of round |τ |+ 5.

Proof. Consider the following two cases.

(i) τbax is not closed in treei by the end of round |τ | + 7: In this case, by
Corollary 6.17 we have that τbax is universally corrupted, and by Corollary 6.19 we
obtain that x is disabled by the end of round |τbax|+ 2 = |τ |+ 5.

(ii) τbax is closed in treei by the end of round |τ |+ 7: Since, by assumption,
τba is not closed in treei by the end of round |τ |+7, if τbax is closed in treei at that

276 JUAN A. GARAY AND YORAM MOSES

point, then it must be fixed in treei. Moreover, since we have assumed that τbax is
not fixed to 1 − v, it must be fixed to v in treei by the end of round |τ | + 7. As a
result, for every nonfaulty processor j, the node τbax does not become fixed to 1− v
in treej . We now show that every nonfaulty processor j must have detected x as
faulty no later than in round |τ |+ 5.

Let j be an arbitrary nonfaulty processor. Recall that every node τax with x ∈ A
is fixed in treei to v 6= par(|τax|) by the end of round |τ | + 6. By Lemma 6.13 we
thus have that every node τax with x ∈ A is publicly committed to v. If x does not
send j a mask(x, a) message by the end of round |τ | + 3 then the conditions of the
fault detection rule FD3 hold for j with respect to x:

(i) τax is committed to v in treej ; and
(ii) since all nodes τay with y ∈ B′ are publicly committed to 1 − v, at least

#B′ ≥ 2(t+ 1− |τa|) + 1 such nodes τay are committed to 1− v in treej by the end
of round |τax|+ 1. It follows that j will detect x as faulty in round |τ |+ 3.
If x ∈ Fj(|τ |+ 3) then we are done. Otherwise, x sent j a mask(x, a) message by the
end of round |τ |+3, and hence by the masking rule we have that treej(τbax) = 1−v,
so that τbax is committed to 1− v in treej by C1. In addition, since

(i) τbax is not closed in treej by the end of round |τbax|+ 1; and
(ii) τbax is not fixed to 1− v by the end of round |τbax|+ 2 = |τ |+ 5,

we have that τbax is committed in treej to v by C3 by the end of round |τ |+5. Given
that τba is not closed in treei by the end of round |τ | + 7, Corollary 6.16 implies
that τba is not closed in treej by the end of round |τ |+5. It follows that τbax is not
closed in treej by the end of round |τbax| + 2 = |τ | + 5. Hence, by fault discovery
rule FD2, we obtain that x ∈ Fj(|τ |+ 5) and we are done.

Roughly speaking, Lemma 7.3 implies that in a successful cross corruption, most
members of A must mask a when reporting on τba. The ones that do not will become
disabled by the end of round |τ | + 5. As a result, if F (|τ |) ≥ F (|τ | + 1) + 3, then
for τba not to close by the end of round |τ | + 7, at least three members of A must
become disabled by the end of round |τ | + 5. As we shall see, this will be sufficient
to guarantee that a cross corruption in these rounds must increase the waste by at
least 1.

7.1. A concrete admissible function. Lemmas 7.2 and 7.3 motivate us to
seek an admissible function F with the following two properties:

1. F (r) ≤ t+ r − 4 for all 2 ≤ r ≤ t, and
2. F (r) ≥ F (r + 1) + 3 for all 2 ≤ r ≤ t.

In the notation of the above lemmas, the first property guarantees, for nodes τ satisfy-
ing |τ | ≥ 2, that if #B′ ≤ 2(t+1−|τa|) then #C ≥ 3. As we shall see, a combination
of both properties implies that a cross corruption must necessarily cause an increase
in the waste. Unfortunately, an admissible function with both properties does not
exist. We now turn to define a function that will have the first property, and will
approximate the second property. This property will hold for all but a small number
of rounds r.

Recall that, for F to be admissible, it must satisfy t + r − 1 ≥ F (r) ≥ t − r + 2
for 2 ≤ r ≤ t. Intuitively, we divide the execution into “phases” consisting of many
rounds each. In each phase we start with F (r) being close to t+ r, and we reduce the
threshold by steps of 3 from one round to the next until we come close to t − r. A
new phase then begins. Rather than at t+ r−1, a phase will start with the threshold
no greater that t + r − 4, to guarantee the first property described above. Thus,
both desired properties are maintained during a phase, but they are violated in the

FULLY POLYNOMIAL BYZANTINE AGREEMENT 277

transition between phases. Luckily, the number of such transitions will be shown to
be logarithmic in n.

We define rem(k) to be the difference between k and the largest power of 2 that
is smaller than k. More precisely stated,

rem(k)
def
= k − 2blog2 kc.

Notice that rem(k) = 0 for k ≥ 1 precisely if k is a power of 2. Moreover, one property
of rem that we shall use in the sequel is that, for all natural numbers k ≥ 1 we have
0 ≤ rem(k) ≤ k+1

2 − 1, so that, in particular, we have 0 ≤ 4rem(k) ≤ 2k − 2.
Our threshold function F ∗ is defined as follows:

F ∗(r) =

{
t+ 1 for 0 ≤ r ≤ 4; and
t+ r − 4− 4rem(r − 3) for r ≥ 5.

A few essential properties of the function F ∗ that we shall find useful in the sequel
are as follows.

Lemma 7.4. If r ≥ 5 then

t+ r − 4 ≥ F ∗(r) ≥ t− r + 4.

Proof. Since 0 ≤ 4rem(k) ≤ 2k−2 for k ≥ 2, we have that 0 ≤ 4rem(r−3) ≤ 2r−8
for r ≥ 5. It follows that t+r−4 ≥ F ∗(r) ≥ t+r−4−(2r−8) = t+r−4−2r+8 = t−r+4
for t+ 1 ≥ r ≥ 5 and we are done.

Lemma 7.5. The function F ∗ is an admissible resolve function.
Proof. Recall that a function F is admissible if it satisfies F (0) = F (1) = t + 1

and t + r − 1 ≥ F (r) ≥ t − r + 2 for r ≥ 2. For r = 0, 1 we have F ∗(r) = t + 1 as
desired. For 2 ≤ r ≤ 4 we have F ∗(r) = t + 1 and t + r − 1 ≥ t + 1 ≥ t − r + 2.
For r ≥ 5, Lemma 7.4 states that t + r − 4 ≥ F ∗(r) ≥ t − r + 4. We thus have
t+ r − 1 ≥ t+ r − 4 ≥ F ∗(r) ≥ t− r + 4 ≥ t− r + 2 and we are done.

Lemma 7.6. Let r ≥ 5 and assume that r − 2 is not a power of 2. Then
F ∗(r)− F ∗(r + 1) = 3.

Proof. Since r ≥ 5, we have that F ∗(r) = t + r − 4 − 4rem(r − 3), while F ∗(r +
1) = t + r − 3 − 4rem(r − 2). The fact that r − 2 is not a power of 2 implies that
rem(r−2) = rem(r−3)+1. It follows that F ∗(r) = t+ r−3+1−4(rem(r−2)−1) =
F ∗(r + 1)− 1 + 4 = F ∗(r + 1) + 3 and we are done.

Obviously, the number of rounds r ≤ t for which r − 2 is a power of 2 is roughly
log2 t.

7.2. The main lemma. We are now in a position to prove that, given our fixing
and fault detection rules, the price of cross corruption is high. In other words, that
for cross corruption to take place, many faulty processors must become disabled. As
a result, cross corruption will no longer be a problem for monitor voting. We now
have the following.

Lemma 7.7. Let τa and τb be universally corrupted nodes, such that
(i) |τ | ≥ 4 and |τ | − 1 is not a power of 2;
(ii) the only universally corrupted child of τa is τab and the only universally

corrupted child of τb is τba; and
(iii) for some i, both of the nodes τa and τb are not closed in treei by the end

of round |τ |+ 7.

278 JUAN A. GARAY AND YORAM MOSES

Then

#(D(|τ |+ 5) \ D(|τ |+ 2)) ≥ 5.

Proof. The situation considered in this lemma is partly illustrated by Figure 4.
We first prove the following about a and b.

Claim 7.8. a, b ∈ (D(|τ |+ 5) \ D(|τ |+ 2)).
Proof. The fact that τa and τb are not closed in treei by the end of round |τ |+7

implies, by Corollary 6.17, that these nodes are universally corrupted. By Corol-
lary 6.19 we thus obtain that both a and b must be disabled no later than at the end
of round |τa| + 2 = |τ | + 3. However, if either of them were disabled by the end of
round |τ |+ 2, then all nonfaulty processors would be masking them in round |τ |+ 3,
and by Lemma 6.2 we would have that τba and τab would not be corrupted in any
nonfaulty processor’s tree, contradicting our assumption about a and b. It follows
that

a, b ∈ (D(|τ |+ 3) \ D(|τ |+ 2)) ⊆ (D(|τ |+ 5) \ D(|τ |+ 2)).

Given Claim 7.8, we need to show that, under the conditions of the lemma, at
least three additional faulty processors must become disabled between rounds |τ |+ 3
and |τ |+ 5.

We shall perform our analysis based on the subtree rooted at τa. Assume the con-
ditions of the lemma hold, and without loss of generality let par(|τa|) = v. Since τab
is the only universally corrupted child of τa, it follows by Corollary 6.17 that all other
children of τa must be fixed in treei by the end of round |τ | + 6. Let A denote the
set of processors x such that the node τax is fixed to v in treei (by the end of round
|τ |+6), and let B the set of processors y such that the node τay is fixed to 1−v. This
is depicted in Figure 4. The conditions of Lemma 7.1 are satisfied, and as a result we
have that #A = F ∗(|τa|)− 1 and #B = n− |τa| − F ∗(|τa|).

As in Lemma 7.2, let C denote the subset of B consisting of processors c such
that τac is publicly committed to v.

Let us denote B′ def
= B \C. By definition, every node τay′ with y′ ∈ B′ is publicly

committed to 1 − v, and is hence committed to 1 − v in every nonfaulty processor’s
tree. We now show that, if B′ is “small” (namely, #B′ ≤ 2(t + 1 − |τa|)), then C
is large enough (i.e., #C ≥ 3) to yield the lemma. If B′ is not small, however, we
shall use Lemma 7.3 to show that sufficiently many processors, this time members
of A, must be disabled. Thus, either way we obtain that at least three processors in
addition to a and b become disabled in rounds |τ |+ 3 through |τ |+ 5.

As described above, we consider two cases:
(i) #B′ ≤ 2(t + 1 − |τa|): In this case, we claim that #C ≥ 3. This follows

from the fact that #B = n− |τa| − F ∗(|τa|) and #C = #B −#B′. The calculation
is as follows:

#C ≥ n− |τa| − F ∗(|τa|)− 2(t+ 1− |τa|)
= n− 2t+ |τa| − 2− F ∗(|τa|)
≥ n− 2t+ |τa| − 2− (t+ |τa| − 4)

= n− (3t+ 1) + 3 ≥ 3.

Lemma 7.2 implies that C ⊆ (D(|τ |+ 5) \ D(|τ |+ 2)). In the claim above we showed
that a, b ∈ (D(|τ |+5) \D(|τ |+2)). Since a /∈ C and b /∈ C, we obtain that #(D(|τ |+
5) \ D(|τ |+ 2) ≥ 5.

FULLY POLYNOMIAL BYZANTINE AGREEMENT 279

Fig. 5. A set G of newly disabled processors.

(ii) #B′ ≥ 2(t + 1 − |τa|) + 1: Since we are assuming that |τ | ≥ 4 we have
|τa| ≥ 5. By Lemma 7.6 we thus have that F ∗(|τa|)−F ∗(|τba|) = 3. Let A′ consist of
the processors x′ such that τbax′ is fixed to 1−v in treei by the end of round |τ |+7.
Since τb is not closed in treei by the end of round |τ |+7 and τba is the only universally
corrupted child of τb, we have that τba is also not closed in treei at that point. It

follows that #A′ ≤ F ∗(|τba|)− 1 = F ∗(|τa|)− 4 = #A− 3. Define G
def
= (A \A′) (see

Figure 5). In particular, we obtain that #G ≥ 3. Moreover, if a processor z ∈ A is
disabled by the end of round |τ | + 3, then Lemma 6.2 and the masking rules imply
that τbaz is fixed in treei to par(|τba|) = 1−v by the end of round |τ |+4. It follows
that no processor x ∈ G is disabled by the end of round |τ | + 3. The conditions of
Lemma 7.3 are satisfied with respect to every x ∈ G, and hence by Lemma 7.3 we
have that G ⊆ (D(|τ |+ 5) \ D(|τ |+ 2)). Notice that a, b /∈ G. Thus, we again obtain
that #(D(|τ |+ 5) \ D(|τ |+ 2)) ≥ 5, and we are done.

As a consequence of Lemma 7.7 and the definition of Waste we obtain the follow-
ing.

Corollary 7.9. If the conditions of Lemma 7.7 hold with respect to τ , then
Waste(|τ |+ 5) > Waste(|τ |+ 1).

280 JUAN A. GARAY AND YORAM MOSES

Proof. We have defined Waste(r) by:

Waste(r) = #D(r)− r + deficit(r)− correction(r).

By definition, we have that correction(r) ≥ 0, and deficit(r)−correction(r) ≥ 0.
It thus follows that

#D(r) + deficit(r) ≥ Waste(r) + r ≥ #D(r).(1)

In particular, we have that Waste(|τ | + 5) + |τ | + 5 ≥ #D(|τ | + 5). Recall that the
deficit at |τ | + 1 corresponds to processors that have universally corrupted nodes at
depth |τ | but are not yet disabled at time |τ |+1. All of these processors are discovered
as faulty by all nonfaulty processors, and are hence disabled, by time |τ | + 2. Thus,
we have that #D(|τ |+ 2) ≥ #D(|τ |+ 1) + deficit(|τ |+ 1). By equation (1) above
we thus obtain that #D(|τ |+ 2) ≥ Waste(|τ |+ 1) + |τ |+ 1.

By Lemma 7.7 we have that #(D(|τ | + 5) \ D(|τ | + 2)) ≥ 5. Since the set D
grows monotonically, D(|τ | + 5) ⊇ D(|τ | + 2), and we can therefore conclude that
#D(|τ |+ 5) ≥ #D(|τ |+ 2) + 5. In summary, we have

Waste(|τ |+5)+ |τ |+5 ≥ #D(|τ |+5) ≥ #D(|τ |+2)+5 ≥ Waste(|τ |+1)+ |τ |+1+5.

Deducting |τ |+5 from both sides, we obtain that Waste(|τ |+5) ≥ Waste(|τ |+1)+1,
so that Waste(|τ |+ 5) > Waste(|τ |+ 1) and we are done.

Lemma 7.7 implies that from round five on, the only rounds in which cross corrup-
tion can take place without increasing the waste of the run are pairs of rounds r, r+1
such that r−1 is a power of 2. In particular, since r ≤ t, this can happen no more than
log2 t + O(1) times. These rounds can increase the number of universally corrupted
nodes at any given depth in the tree by a factor of at most O(t).

7.3. Early stopping in ∆-agreement. A crucial property of the ∆-EIG pro-
tocol is captured by Corollary 6.16. It states that two rounds after a node σ is closed
in one nonfaulty processor’s tree, it will be closed in all processors’ trees. Obviously,
once σ is closed in treei, processor i has no use for the descendants of σ. Nevertheless,
it might still need to record values and perform fault detection, in order to continue
reporting on nodes in order to allow σ to close in the trees of other processors. What
Corollary 6.16 implies, then, is that i needs to relay values in the subtree rooted at σ
for at most two rounds after σ is closed in treei. This suggests that we can modify
the ∆-EIG protocol to obtain an early-stopping protocol as follows.

(a) Rather than reporting on all internal nodes in the ∆-EIG tree, processor i
will report on a node σ in round |σ|+ 1 only if σ was not closed in treei by the end
of round |σ| − 2. (Recall that a node can be closed before any value is stored in it;
all that is needed for it to be closed is that one of its ancestors should be fixed to a
value.) To implement this rule, all that is needed is for i to handle and report only
on the children and grandchildren of nodes that fix by rule Fx2.

(b) We modify the halting condition for a processor i to:
• Halting ′: Processor i continues to record information, perform fault detec-

tion, and report on values for two rounds after the root λ is closed in treei. At the
end of these two rounds (and no later than at the end of round t+ 1−∆), it halts.

(c) There are a couple of details we need to take care of once we modify the
protocol as described above. They result from the fact that it is now possible not
to receive a message from a nonfaulty processor. This can only happen, however, in
cases in which these values are of no use to the receiver. This leads to modifications

FULLY POLYNOMIAL BYZANTINE AGREEMENT 281

of the recording and masking rule, and to a modification of the definition of an ill-
formatted message, which in turn affects the process of fault detection. We start
by describing the latter. We shall extend the notion of an ill-formatted message as
follows: If node σ is not closed in treei by the end of round |σ|, and processor j’s
message in round |σ|+1 does not report values for all children of σ, then the message
is considered ill formatted and i will detect j as faulty by rule FD0. One consequence
of this definition is that if j sends no message to i in round r + 1 and the root λ is
not closed in treei by the end of round r, then i detects j as being faulty.

Finally, the recording and masking rule is modified for the case in which the root λ
is fixed in treei at the end of round r and i receives no message in round r + 1 from
some processor j /∈ Fi(r). Since i needs to continue to report on values in round r+2
by the halting′ rule, it acts as follows. For nodes that correspond to processors z for
which j has issued mask(j, z) reports in the first r rounds, there is no problem. For
all other nodes, we choose to have i consider j as reporting the same values that i
has reported, for all depth r nodes that i reports on in round r+1. This is related to
the reconstruction method advanced by Zamsky [26, 28], and by Berman, Garay, and
Perry [7]. One feature of this choice is that it keeps the fault detection rule FD2 from
ever causing i to mistakenly “detect” j as faulty. (While such a mistaken detection
would not change i’s decision in the agreement process being executed, it becomes
problematic when we run a number of agreement processes in parallel, and use a
common fault-detection module as will be described in section 8.1.)

We call the resulting protocol the ∆-ES protocol (the ES stands for early stop-
ping). Despite possibly reporting on much fewer nodes in a run of ∆-ES than in
similar runs of ∆-EIG, the processors’ behavior in ∆-ES maintains an important in-
variant: If a node σ is not closed in treei at the end of round |σ| and none of σ’s
ancestors is closed in treei by the end of round |σ|+ 1, then all nonfaulty processors
report a value for σ in round |σ|+1, as well as performing fault detection for all of σ’s
children in round |σ| + 1, and reporting on them in round |σ| + 2. This ensures the
following:

(i) For every nonfaulty i and j, the first node to close in treej along any path
from the root, is guaranteed to close in treei at most two rounds after it does in treej .
Hence, the information that processor i would receive in ∆-EIG but does not receive
in ∆-ES does not affect i’s decision.

(ii) The commitment rules operate in ∆-ES as they do in ∆-EIG, since they
depend only on the values stored in a node (C1), its children (C2), and grandchildren
(C3). The fault detection rule FD2 remains sound, since it depends solely on these
commitment rules.

(iii) The soundness of fault detection rule FD3 is maintained: If the node τaz is
not closed in treei by the end of round |τaz|+ 1, then all processors are guaranteed
to store the children of τa in the previous round, perform failure detection at the end
of round |τaz|, and report on nodes in round |τaz|+ 1. Hence, a processor that does
not mask the culprit processor a of FD3 in the designated round, must be faulty.

As a result, all of the properties proven for ∆-EIG in the previous sections hold
once we move to the ∆-ES protocol in the following proposition.

Proposition 7.10. All of the statements from Lemma 6.7 through Lemma 7.7
hold for the ∆-ES protocol.

The main aim of the protocol ∆-ES is to allow us to refrain from having to
construct exponential-size EIG trees and hence from having to send an exponential
amount of communication. At this point, we are able to prove a polynomial relation

282 JUAN A. GARAY AND YORAM MOSES

between the number of universally corrupted nodes and the size of trees. This will
reduce our problem to keeping the number of universally corrupted nodes polynomial,
which will be done in the later sections. We thus have the following corollary.

Corollary 7.11. Assume that the last nonfaulty processor halts by the end of
round r, and let the number of universally corrupted nodes σ of depth |σ| ≤ r−6 be T .
Then, for every nonfaulty processor i, the total number of nodes in treei is bounded
by O(n6T).

Proof. Let σ be a universally corrupted node. The node σ has O(n) children σj
that are not universally corrupted. Corollary 6.17 implies that each such child is closed
in treei by the end of round |σj|+4. It follows that σj has at most O(n4) descendants
in treei by the time it is closed. By definition of the ∆-ES protocol, processor i will
need to store one level of nodes, beyond these O(n4) nodes, in the subtree rooted
in σj. It follows that σ can have at most O(n6) descendants in treei that are not
themselves descendants of a universally corrupted child of σ. By accounting each
node of treei to its closest ancestor that is universally corrupted, the claim fol-
lows.

8. The Sliding-flip protocol. We now have all of the ingredients necessary
to define the final combined protocol. Intuitively, the protocol will be a variant of
monitor agreement in which the monitors will be instances of ∆-agreement. We
remark that in such a setting, there is a distinction between the global round number,
which is counted from the start of the original agreement process, and the local round
number of a specific instance of ∆-ES, which is counted from the start of this instance.
The global depth and local depth of a node are defined analogously. The definition of
∆-ES and our analysis of ∆-ES use local round numbers. In our protocol, one instance
of ∆-agreement is spawned in every round, for rounds 1 ≤ r ≤ t. In round r, the
agreement process that is generated will be a ∆-ES for ∆ = r − 1. Since, by the
Halting′ property, such an instance will complete in t + 1 − ∆ = t + 2 − r rounds,
we obtain that every such process will be complete by the end of (global) round
r−1+ t+2−r = t+1. We call such a process (t+1)-bounded. Before we provide the
details of the voting rules and properties of these instances of ∆-agreement, we now
describe a general method by which such agreement processes can be combined. This
will be used when we come to combine the agreement processes in the final description
of the combined protocol.

8.1. Preempt-on-one. In our combined protocol, we initiate one ∆-agreement
process Mr in every round r, where the parameter ∆ = r − 1 is used in Mr. In
this section we describe the method by which we combine the different agreement
processes. This method is stated in slightly more general terms than we need, as
it applies elsewhere as well. We call a set of agreement processes being executed
concurrently with respect to a single fault detection module (FDM) an ensemble, and
denote ensembles by E . Different agreement processes are said to use a single FDM if
for all nonfaulty processor i and (global) round r, the set Fi(r) used by one agreement
process is the same as that used by the others.

We now define an operation that takes an ensemble and turns it into a single pro-
tocol. In executing Preempt-on-One(E), a nonfaulty protocol concurrently executes
all of the processes in E . It decides and halts according to the following rule:

Dec0. Processor i decides 0 on Preempt-on-One(E) and halts once i has halted
with a decision of 0 on all processes in E .

Dec1. Processor i decides 1 on Preempt-on-One(E) and halts (preempting all
agreement processes underway) once i has halted with a decision of 1 on

FULLY POLYNOMIAL BYZANTINE AGREEMENT 283

some process in E .

The following property of Preempt-on-One(·) is fairly immediate, and will turn
out useful.

Lemma 8.1. Let E be an ensemble of agreement processes. If all processes in E
are (t + 1)-bounded and satisfy the agreement property, then Preempt-on-One(E) is
(t+ 1)-bounded and satisfies the agreement property.

Proof. We start by showing that Preempt-on-One(E) is an agreement protocol.
Assume that some processor i decides 0 on Preempt-on-One(E) in a given run. It fol-
lows from Dec0 that i decides 0 on all processes in E in this run. Since the instances all
satisfy the agreement property, no other nonfaulty processor j will decide 1 on any of
the processes in E . In addition, since the processes in E are all (t+1)-bounded, it fol-
lows that j will actually decide 0 on every process in E no later than in round t+1. We
conclude that every nonfaulty processor will halt in Preempt-on-One(E) with a deci-
sion of 0 by the end of round t+1. Assume now that i decides 1 on Preempt-on-One(E)
in a given run. Let M ∈ E be the process that triggers i’s decision. In particular, it fol-
lows that processor i decides 1 and then halts on M at the end of some round ri ≤ t+1.
Let j 6= i be any other nonfaulty processor. There are two possibilities: (i) Processor j
decides and halts on Preempt-on-One(E) before it has a chance to decide and halt
on the process M. By rule Dec0 in the definition of Preempt-on-One(E), a decision
of 0 can only be taken after j has decided and halted on all processes in E . It follows
that j could only have decided 1, so its decision is in agreement with processor i’s
decision. Moreover, since M was (t+1)-bounded, and j decided before it had a chance
to decide on M, we obtain that j decides before round t+ 1. (ii) The other possibility
is that j does manage to decide and halt on M. Here again because M satisfies the
agreement property, j will decide 1 on Preempt-on-One(E). In addition, since M was
(t+ 1)-bounded, j decides no later than in round t+ 1. In summary, we have that in
all cases, Preempt-on-One(E) satisfies the agreement property and is (t+1)-bounded,
and we are done.

8.2. Putting it all together. As described above, the ensemble generated in
the combined protocol consists of instances of ∆-ES protocols, initiated one per round,
in rounds 1 ≤ R ≤ t. We use R in this section to refer to global round numbers.
In round R, a monitor process initiated in global round K will have its own local
round number r = R + 1 −K. All the instances of ∆-ES protocols invoked use the
function F ∗ defined in section 7.1. Notice that the function F ∗ is applied, for every
instance of ∆-ES, relative to the local round count. Thus, in the same global round,
each agreement process has its own local round number. The combined protocol will
be Preempt-on-One(E), for the ensemble thus generated. We now describe how to
determine a processor’s initial vote in any given monitor process.

Clearly, in round R = 1, the value a processor i uses as its initial value is its
original initial value vi. In later rounds R > 1, the initial value of processor i in
monitor process MR, is essentially the same as the one we mentioned in section 4.3
for n > 4t. For the purpose of this voting rule, we say that processor i has detected
another processor z as being disabled by the end of round K if i has received mask(j, z)
reports from at least 2t+ 1 processors j by that point. The following lemma justifies
this terminology.

Lemma 8.2. If i has detected z as being disabled by the end of round K, then z
is disabled at the end of round K.

Proof. By definition, i can detect z as being disabled only once i has received at
least 2t+1 mask(j, z) reports. At least t+1 of these reports are from nonfaulty proces-

284 JUAN A. GARAY AND YORAM MOSES

sors j. The sending rule implies that a nonfaulty processor sends identical messages
to all processors in every round. It thus follows that every nonfaulty processor i′ must
have received at least t + 1 mask(j, z) reports by the end of round K. As a result,
the fault detection rule FD1 implies that each such processor i′ must detect z as being
faulty by the end of round K. It follows that z is disabled at that point, and we are
done.

The voting rule on a monitor MR with R > 1 is:

Monitor vote: Processor i will vote 1 on MR if
(i) at least one node at (global) depth R − 1 in one of i’s trees is not

closed; and
(ii) i has detected at least R− 1 faulty processors as being disabled by

the end of round R− 1.
It will vote 0 on MR, otherwise.

We define the Sliding-flip protocol to be the protocol that results from per-
forming Preempt-on-One on the ensemble consisting of the original agreement tree
together with the monitor agreement processes MR, for 2 ≤ R ≤ t, where the votes of
the nonfaulty processes are obtained according to the monitor-vote rule above. These
agreements processes are all instances of ∆-ES, based on the threshold function F ∗

defined in section 7.1. For ease of exposition, we shall consider the original agreement
process to be M1.

The role of part (i) in the monitor-vote rule is to guarantee that if all initial values
are 0, then a decision of 0 will be reached. The role of part (ii) is to guarantee that the
monitors satisfy the initial conditions of ∆-agreement: A nonfaulty process votes 1
on a monitor agreement process only if a sufficient number of processors are disabled.
In fact, an immediate consequence of Lemma 8.2 is the following corollary.

Corollary 8.3. If at least one nonfaulty processor votes 1 in a monitor MR+1,
then #D(R) ≥ R.

Corollary 8.3 formally shows that the monitors that are initiated in the com-
bined protocol are “legal” instances of ∆-agreement. We can now prove the following
proposition.

Proposition 8.4. The Sliding-flip protocol is a correct (t+ 1)-round Byzan-
tine agreement protocol.

Proof. Theorem 6.10 and Corollary 8.3 imply that all of the agreement processes
initiated in Sliding-flip are (t+1)-bounded instances of Byzantine agreement. We
therefore obtain by Lemma 8.1 that the Sliding-flip protocol satisfies the decision
and agreement conditions. We need to show that it also satisfies validity. If all initial
values are 1, then the root of the initial tree will fix to 1 at the end of round two for
all of the nonfaulty processors, so by the definition of Preempt-on-One they will all
decide 1. Assume that all initial values are 0. In particular, the initial values of all
nonfaulty processors are 0. It follows that, for every nonfaulty processor i, at least
2t + 1 of the root’s children in the initial tree will store 0 at the end of round one.
Since 0 is the preferred value in this round, the root will fix to 0. As a result, all nodes
at global depth 1 will be closed for every nonfaulty processor, and by the monitor-vote
rule, every such processor i will vote 0 on M2. A straightforward induction on R now
shows that all nonfaulty processors vote 0 on all monitors MR, so that all monitors
decide 0, and by definition of Preempt-on-One every nonfaulty processor i will end
up deciding 0 at time t+ 1.

It remains to show that the protocol is efficient. As a partial converse of Lemma 8.2
we have the following.

FULLY POLYNOMIAL BYZANTINE AGREEMENT 285

Lemma 8.5. If z is disabled at the end of round R and no nonfaulty processor
has halted by the end of round R, then every nonfaulty processor i will have detected z
as being disabled by the end of round R + 1.

Proof. If no nonfaulty processor has halted by the end of round R, then they
all send messages in round R + 1. If z is disabled at the end of round R, then every
nonfaulty processor j must send a mask(j, z) message to i no later than in round R+1.
It follows that i is guaranteed to receive at least 2t + 1 such messages by the end of
round R + 1, and we are done.

Recall that the Waste was defined with respect to a given instance of ∆-ES. The
parameter r of Waste(r) in a given instance of ∆-ES is a local round number. When we
run many instances of ∆-ES concurrently, as in the Sliding-flip protocol, we wish
to reason about an overall notion of waste. Let us define the global waste at time K,
denoted by G Waste(K), to be the maximum value of Waste(K − R) in monitor MR,
over all R < K. Thus, G Waste(K) is the maximal value that the waste obtains at
global time K. As a consequence of Lemma 8.5 and the monitor voting rule, we now
have the following lemma.

Lemma 8.6. If G Waste(R) ≥ 2 and some node is universally corrupted, then all
nonfaulty processors are guaranteed to halt by the end of round R + 6.

Proof. If R + 6 ≥ t + 1 the claim is immediate from the definition of the com-
bined protocol, which is guaranteed to halt for every processor by the end of (global)
round t + 1. Assume R + 6 < t + 1. It follows that processors can halt by the end
of round ≤ R + 6 only due to their deciding 1 on some monitor. First assume that
some nonfaulty processor i halts by the end of round R + 4, based on deciding 1
on a monitor MR

′
for some R′ < R + 3 by the end of round R + 2. It follows from

Corollary 6.16 and Proposition 7.10 that all processors will have decided 1 on MR
′
by

the end of round R + 4 and will halt by the end of round R + 6. Assume now that
no nonfaulty processor has halted by the end of round R + 4 due to a monitor MR

′

with R′ < R + 3. The fact that G Waste(R) ≥ 2 implies that #D(R + 1) ≥ R + 2.
Lemma 8.5 states that every nonfaulty processor i detects all members of D(R + 1)
as being disabled by the end of round R + 2. As a result, i will have detected at
least R+2 disabled processors by the end of round R+2. Finally, the fact that some
node is universally corrupted implies that, for every nonfaulty processor i, one of i’s
trees has survived the first round. The monitor voting rule now states that i will
vote 1 on MR+3. Since all of the processors vote 1 on MR+3 and are active until the end
of round R + 4, it follows that they all decide 1 on MR+3 at the end of round R + 4
and will thus halt by the end of round R + 6.

Given Lemma 8.6 and Theorem 6.23, we can now prove the following lemma.

Lemma 8.7. Choose L such that the last nonfaulty processor halts by the end
of round L + 6. Then, for every nonfaulty i and every monitor MR with R ≤ L, the
number of universally corrupted nodes in treei for MR is O(t2).

Proof. If, for some nonfaulty processor i, none of i’s trees survives the first round,
then no node is universally corrupted, and we are done. We shall therefore assume
from now on that at least one node is universally corrupted. By Lemma 8.6, the
waste cannot reach 2 before round L, or all processors would halt before round L+6.
We thus reason about the rounds preceding L, assuming the waste never reaches 2
in those rounds. We claim that if any node of (global) depth K ≥ 2 is universally
corrupted, then G Waste(K) ≥ −2. Since, for every monitor it is guaranteed by
definition that deficit(r) − correction(r) ≥ 0 for every r, it suffices to show that
#D(K)−K ≥ −1. Assume that σ is a node of depth K in a monitor MR (and hence

286 JUAN A. GARAY AND YORAM MOSES

|σ| = K− (R−1)). Since there is a universally corrupted node in MR, we know that at
least one nonfaulty processor voted 1 on this monitor, and hence by the monitor-vote
rule and by Lemma 8.2 we have that #D(R − 1) − (R − 1) ≥ 0. If |σ| ≤ 2 we are
clearly done. If, however, |σ| ≥ 3, then the path from the root to σ consists of nodes
all of which are universally corrupted. Clearly, by the end of round K, all processors
universally corrupting nodes at depths smaller than K−1 are disabled. It follows that
|σ|−2 of σ’s ancestors contribute fresh disabled processors that were not in D(R−1).
We thus obtain that D(K) ≥ R− 1 + |σ| − 2 = R− 1 +K − (R− 1)− 2 = K − 2, and
hence D(K)−K ≥ −2 and the claim is proven. We conclude that G Waste can vary
within a small constant range without causing a monitor to halt the protocol.

It is straightforward to check that if k ≥ 3 processors universally corrupt nodes at
(global) depth R, then G Waste(R+ 1)− G Waste(R− 1) ≥ k− 2. It follows that this
can happen only a constant number of times. A round with no universal corruption
whatsoever will cause all of the active monitors to close in two rounds. As argued in
section 7.2 following Corollary 7.9, the only case in which two processors can corrupt
nodes at a given depth in the same tree without increasing the waste is when cross
corruption takes place in a pair of rounds r, r + 1 such that r − 1 is a power of 2.
The number of such rounds r ≤ t + 1 is log t + O(1). It follows that the number of
universally corrupted nodes at any particular level of treei for a monitor MR is O(t).
Hence, the total number of universally corrupted nodes created by the end of round L
in treei for MR is bounded by O(t2).

As a consequence of Lemma 8.7 and Lemma 7.11 we obtain the following lemma.

Lemma 8.8. For every nonfaulty processor i, the total size of each of the t EIG
trees that i ever constructs is polynomial.

Finally, as a result of Lemma 8.8 and Corollary 7.11, we obtain the following
theorem.

Theorem 8.9. The Sliding-flip protocol is a correct Byzantine agreement
protocol that halts in t + 1 rounds in the worst case, and is polynomial in both com-
munication and computation.

9. Early stopping. The Sliding-flip protocol consists of an ensemble of agree-
ment processes running concurrently. They are initiated one per round, and are com-
bined using the Preempt-on-One scheme: a local decision of 1 in any instance causes
a global decision of 1 coupled with preemption of all decision processes. A decision
of 0 can be reached only at time t + 1, in case all agreement processes turn out to
have decided 0. (Recall that the agreement processes in the ensemble are all guaran-
teed to reach a local decision by the end of round t + 1.) In particular, even in runs
with no failures, a decision of 0 cannot take place before round t + 1. Thus, while
Sliding-flip is a polynomial protocol that is guaranteed to halt in t+ 1 rounds, it
is not guaranteed to stop early in runs in which few processors actually fail. In this
section we discuss how to modify the Sliding-flip protocol to obtain a protocol that
does stop early when few failures actually occur. The concept of early stopping is due
to [13], who showed that no protocol for Byzantine agreement can be guaranteed to
halt in fewer than min{t+ 1, f + 2} rounds in the worst case, where f is the number
of failures that occur in the run in question. Our goal will be to obtain a protocol
that is guaranteed to halt in min{t+ 1, f + c} rounds for a small constant c.

The Preempt-on-One scheme already takes care of stopping quickly when the
decision is 1. Early decision on 1 was of crucial importance to the Sliding-flip

protocol, because that was the way the protocol keeps trees from growing beyond a
polynomial bound. What remains, therefore, is to allow early stopping on a decision

FULLY POLYNOMIAL BYZANTINE AGREEMENT 287

of 0 without hindering the correctness of the early decision on 1. Our basic strategy
will be to maintain the basic Preempt-on-One rules for deciding on 1. Early stopping
on 0 will then depend on our ability to predict at an early stage that all agreement
processes that have been initiated, as well as all those that are due to be initiated in
the future, are bound to decide 0. It is safe to decide 0 when this happens, rather
than wait until the end of round t+1 to do so. The following lemma describes a fairly
general condition that guarantees that all future monitors will decide 0.

Lemma 9.1. In the protocol Sliding-flip, if all monitors MR with R ≤ K are
closed on 0 for all nonfaulty processors at the end of round K, then every monitor MR

with R > K that is initiated in the protocol closes on 0 at the end of its first round R.

Proof. Assume that all monitors MR with R ≤ K are closed on 0 for all nonfaulty
processors at the end of round K. Part (i) of the monitor-vote rule implies that all
nonfaulty processors will vote 0 on the monitor MR for the first R > K. This monitor
will close on 0 in its first round for all nonfaulty processors, and the same argument
can now be applied inductively to show that all later monitors will do the same.

The problem in trying to apply the condition of Lemma 9.1 is that this condition
is not one that can be detected by an individual processor. We now discuss a way
of making a similar condition detectable. In order to do so, we consider a variant
Sliding-flip′ of the Sliding-flip protocol that differs from the original only in
that, instead of initiating a new monitor agreement process MR in every round, such
a process is initiated once in five rounds. Specifically, MR monitors are initiated for
every integer R of the form R = 5k+1, for 1 ≤ k ≤ ⌊ t−1

5

⌋
. (The agreement tree based

on the processors’ original initial values is, of course, initiated in round one.) First
notice that Sliding-flip′ has all of the desired qualities of Sliding-flip: It halts
in at most t+1 rounds, and is guaranteed to be polynomial. The proof of correctness
of Sliding-flip′ is the same as that for Sliding-flip. The only changes required
in order to prove the complexity bounds for Sliding-flip′ are in Corollary 7.11,
Lemma 8.6, and Lemma 8.7. In Lemma 8.6 we are now guaranteed only that if
G Waste(R) ≥ 6 then a monitor issued no later than round R+ 7 closes with value 1.
Without any fine tuning, this will cause an increase of O(n4) in the complexity of
the protocol. The analogue of Corollary 7.11 will replace r − 6 by r − 10 and n6T
by n10T . The proof of the analogue of Lemma 8.7 goes through essentially without
change, when we assume G Waste(R) ≤ 6 instead of assuming that G Waste(R) ≤ 2.

Define Φi(K) to hold if (i) K ≡ 1 mod 5, (ii) no node of (global) depth K is
corrupted in any of i’s trees, and (iii) no agreement process initiated in a round
R ≤ K either has or will close with the root fixed to value 1. Intuitively, we will use
Φi(K) to determine a condition for early stopping on 0. We can show the following
lemma.

Lemma 9.2. If Φi(K) holds for some K, then all monitors MR for R > K that
will ever be initiated in Sliding-flip′ will close with value 0 in round R, for all
nonfaulty processors.

Proof. Let K ≡ 1 mod 5, and assume that no node of (global) depth K is cor-
rupted in any of i’s trees. Notice that because K ≡ 1 mod 5, no monitors are initiated
in the rounds K + 1, . . . ,K + 4. By definition of corruption, the fact that no node
of (global) depth K is corrupted for i implies that all depth K nodes in all of i’s
trees are closed by the end of round K + 2. Corollary 6.16 implies that all depth K
nodes in the trees of all nonfaulty processors are closed by the end of round K +4. It
follows that all trees corresponding to existing agreement processes close for all non-
faulty processors by that time. As a result, by part (i) of the monitor-vote rule, all

288 JUAN A. GARAY AND YORAM MOSES

nonfaulty processors will vote 0 on MR for R = K+5, and a straightforward inductive
argument shows that they will all vote 0 on every monitor initiated thereafter.

The condition Φi(K) used in Lemma 9.2 is easily detectable by process i. More-
over, Lemma 9.2 implies that if Φi holds, then Φj will hold soon thereafter.

Corollary 9.3. Let i and j be nonfaulty processors. If Φi(K) holds in a run of
Sliding-flip′, then Φj(K + 5) holds at the end of round K + 5.

Proof. Assume that Φi(K) holds. The argument given in the proof of Lemma 9.2
shows that the trees corresponding to all monitors initiated in rounds R ≤ K will be
closed for all nonfaulty processors by the end of round K + 4. By the monitor-vote
rule, all nonfaulty processors vote 0 on the monitor initiated in round K + 5. As a
result, this monitor is closed at the end of round K + 5, for all nonfaulty processors.
It follows that Φj(K + 5) holds, for all nonfaulty processors j.

Notice that if Φi(K) holds, then i will detect that Φi(K) holds no later than by
the end of round K + 2. Moreover, the proof of Corollary 9.3 shows that Φj(K + 5)
will be detectable by j no later than by the end of round K + 5. It follows that
once i detects that Φi(K) holds, it can essentially decide 0. The only thing it needs
to do in order to guarantee that Φj will hold for all j is to continue to participate in
the existing agreement processes (all of which, by Corollary 6.17, are guaranteed to
terminate by the end of round K + 4), and send its vote in the monitor initiated in
round K + 5. This provides an early-stopping method for deciding 0.

We define the ES-Sliding-flip protocol to consist of Sliding-flip′ with the
following modifications: (i) we add the rule that once a processor i first detects that
Φi(K) holds, it decides 0 and it halts once all of its monitors initiated in rounds
R ≤ K halt according to ∆-ES; and (ii) we add the default that sending no value as
a vote on a monitor amounts to sending a vote of 0 (and is not regarded an ill-formed
message). The purpose of point (ii) is to enable a processor that detects that Φi(K)
holds to halt before round K + 5. Its silence in round K + 5 will be interpreted as
a vote of 0, which will suffice to ensure that the necessary conditions of Φj(K + 5)
will hold. We can now summarize the properties of the protocol ES-Sliding-flip as
follows.

Theorem 9.4. The ES-Sliding-flip protocol is a correct Byzantine agree-
ment protocol that is polynomial in both communication and computation. It halts in
min{t + 1, f + 5} rounds in the worst case, where f is the number of failures that
actually take place.

Proof. Correctness of the protocol ES-Sliding-flip is inherited from that of
Sliding-flip′ and Corollary 9.3, which guarantees that if one of the nonfaulty pro-
cessors decides 0, then all of them will. The polynomial complexity and (t + 1)-
boundedness of ES-Sliding-flip are also inherited from Sliding-flip′. It remains
to show that the protocol halts in no more than f + 5 rounds. First notice that for
a node of global depth K to be corrupted, at least K distinct processors must fail.
This is obvious in the initial agreement process, and is true for arbitrary monitors MR

based on Lemma 6.1 and part (ii) of the monitor-vote rule. Assume that exactly f
processors fail in a given run. It follows that no more than f processors can ever be
disabled, and no node of depth greater than f can be corrupted. It follows that by the
end of round f + 3 all monitors ever initiated are closed in all nonfaulty processors’
trees. Since exactly f processors fail, if a node of depth f is corrupted, no non-
faulty processor can detect f processors as being disabled before round f +2, because
an additional round in which mask messages are sent is necessary for the detection.
This implies that the last monitor on which some nonfaulty processor votes 1 can

FULLY POLYNOMIAL BYZANTINE AGREEMENT 289

be initiated in a round K ≤ f . Let F = min{K : K ≡ 1 mod 5 &K > f}. Notice
that F ≤ f + 5. Let i be an arbitrary nonfaulty processor. If Φi(K) holds for some
K < F , then we have seen that i detects Φi(K) no later than time K + 2, and halts
no later than time K + 4, and K + 4 < F ≤ f + 5. Assume that Φi(K) did not hold
for K < F . It follows that Φi(F) will hold at the end of round f + 3. Processor i will
be able to decide 0 at the end of round f + 3, and halt at the end of round f + 5.
It follows that all processors decide and halt by the end of round f + 5 and we are
done.

A few remarks are in order: (i) It is possible to use the reconstruction method
of [26, 28, 7] in order to avoid the need for the additional two rounds in which nonfaulty
processors “echo” values to ensure that the others reach the same decision in an
instance of ∆-ES. A variant of ES-Sliding-flip based on such a modified version
of ∆-ES will halt in min{t+ 1, f + 3} rounds.

(ii) To obtain an early-stopping protocol halting within f + 2 rounds, what is
needed is to extend the fixing rule Fx2 in order to allow fixing in round |σ| + 1 to
the nonfavored value 1 − par(|σ|) if an overwhelming majority of σ’s children store
this value. The current version allows fixing only to par(|σ|). The current choice was
made in order to simplify the statements of the various lemmas in this paper, and to
shorten their proofs. We believe that with this extension and using reconstruction,
it should be possible to obtain an early stopping protocol that halts in the optimal
bounds of min{t+ 1, f + 2} rounds.

(iii) In runs with no failures, our protocol decides in at most three rounds and
halts in five. Only a single agreement tree is ever constructed, and the protocol acts
just like a simple straightforward protocol. With reconstruction the protocol would
halt in three rounds, and with an extended Fx2 rule both decision and termination
would be obtained in two rounds.

Acknowledgments. The authors would like to thank Café Ka’ze in Tel Aviv
for providing the ambiance and hospitality during critical stages of this work. Special
thanks to Cynthia Dwork, Arkady Zamsky, and to an anonymous referee for comments
and suggestions that improved this paper. The first author is also thankful to Piotr
Berman for innumerable discussions on the subject, and the second author is similarly
thankful to Orli Waarts.

REFERENCES

[1] A. Bar-Noy and D. Dolev, Consensus algorithms with one-bit messages, Distrib. Comput., 4
(1991), pp. 105–110. Preliminary version appeared as Families of consensus algorithms, in
Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Comput. Sci. 319, Springer-
Verlag, New York, 1988, pp. 380–390.

[2] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong, Shifting gears: Changing algorithms
on the fly to expedite Byzantine agreement, Inform. and Comput., 97 (1992), pp. 205–233.

[3] P. Berman and J. A. Garay, Cloture votes: n/4-resilient distributed consensus in t + 1
rounds, Math. Systems Theory, Ray Strong, ed., 26 (1993), pp. 3–20; special issue dedi-
cated to fault-tolerant distributed algorithms.

[4] P. Berman and J. A. Garay, Efficient distributed consensus with n = (3+ ε)t processors, in
Proc. 5th Internat. Workshop on Distributed Algorithms, Lecture Notes in Comput. Sci.
579, Springer-Verlag, New York, 1991, pp. 129–142.

[5] P. Berman and J. A. Garay, private communication, 1992.
[6] P. Berman, J. A. Garay, and K. J. Perry, Towards optimal distributed consensus, in Proc.

30th IEEE Symposium on the Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1989, pp. 410–415.

290 JUAN A. GARAY AND YORAM MOSES

[7] P. Berman, J. A. Garay, and K. J. Perry, Optimal early stopping in distributed consensus,
in Proc. 6th Internat. Workshop on Distributed Algorithms, Lecture Notes in Comput.
Sci. 647, Springer-Verlag, New York, 1992, pp. 221–237.

[8] B. Coan, A communication-efficient canonical form for fault-tolerant distributed protocols,
in Proc. 5th ACM Symposium on the Principles of Distributed Computing, ACM, New
York, 1986, pp. 63–72.

[9] B. Coan, Efficient agreement using fault diagnosis, Distrib. Comput., 7 (1993), pp. 87–
98; also in Proc. 26th Allerton Conference on Communication, Control and Computing,
University of Illinois, Urbana, IL, 1988, pp. 663–672.

[10] B. Coan and J. Welch, Modular construction of an efficient 1-Bit Byzantine agreement
protocol, Math. Systems Theory, H. R. Strong, ed., 26 (1993), pp. 131–154; special issue
dedicated to fault-tolerant distributed algorithms.

[11] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. R. Strong, An efficient algo-
rithm for Byzantine agreement without authentication, Inform. and Control, 52 (1982),
pp. 257–274.

[12] C. Dwork and Y. Moses, Knowledge and common knowledge in a Byzantine environment:
Crash failures, Inform. and Comput., 88 (1990), pp. 156–186.

[13] D. Dolev, R. Reischuk, and H. R. Strong, Early Stopping in Byzantine Agreement, IBM
Research Report RJ5406 (55357), IBM Almaden Research Center, San Jose, CA, 1986;
revised version appears in J. Assoc. Comput. Mach., 37 (1990), pp. 720–741.

[14] D. Dolev and H. R. Strong, Polynomial algorithms for multiple processor agreement, in
Proc. 14th Annual Symposium on Theory of Computing, ACM, New York, 1982, pp. 401–
407.

[15] M. J. Fischer, The Consensus Problem in Unreliable Distributed Systems (A Brief Survey),
Yale University Technical Report YALEU/DCS/RR-273, New Haven, CT, 1983.

[16] M. J. Fischer and N. A. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982), pp. 183–186.

[17] P. Feldman and S. Micali, Optimal algorithms for Byzantine agreement, in Proc. of the
20th Annual Symposium on Theory of Computing, ACM, New York, 1988, pp. 148–161.

[18] J. A. Garay and Y. Moses, Fully polynomial Byzantine agreement in t+1 rounds, in Proc.
of the 25th Annual ACM Symposium on Theory of Computing, ACM, New York, 1993,
pp. 31–41.

[19] O. Goldreich and E. Petrank, The best of both worlds: Guaranteeing termination in fast
randomized Byzantine agreement protocols, Inform. Process. Lett., 36 (1990), pp. 45–49.

[20] L. Lamport, R. E. Shostak, and M. Pease, The Byzantine generals problem, ACM Trans.
Prog. Lang. and Systems, 4 (1982), pp. 382–401.

[21] Y. Moses and O. Waarts, Coordinated traversal: (t + 1)-round Byzantine agreement in
polynomial time, J. Algorithms, 17 (1994), pp. 110–156; an extended abstract appeared
in Proc. 29th IEEE Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1988, pp. 246–255.

[22] M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of faults, J.
Comput. Mach., 27 (1980), pp. 121–169.

[23] M. Rabin, Randomized Byzantine generals, in Proc. 24th IEEE Symposium on the Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1983,
pp. 403–409.

[24] S. Toueg, K. J. Perry, and T. K. Srikanth, Fast distributed agreement, SIAM J. Comput.,
16 (1987), pp. 445–457.

[25] O. Waarts, Coordinated traversal: Byzantine Agreement in Polynomial Time, M. Sc. thesis,
Weizmann Institute of Science, Rehovot, Israel, 1988.

[26] A. Zamsky, New Algorithms for Agreement in Synchronous Distributed Networks, M. Sc.
thesis, Technion—Israel Institute of Technology, Haifa, Israel, 1992.

[27] A. Zamsky, A randomized Byzantine agreement protocol with constant expected time and
guaranteed termination in optimal (deterministic) time, in Proc. 15th Annual ACM Sym-
posium on Priniciples of Distributed Computing, ACM, New York, 1996, pp. 201–208.

[28] A. Zamsky, A. Israeli, and S. Pinter, Optimal time Byzantine agreement for t < n/8,
Distrib. Comput., 9 (1995), pp. 95–108.

[29] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer, Bounds on the time to reach agree-
ment in the presence of timing uncertainty, J. Assoc. Comput. Mach., 41 (1994), pp. 122–
152.

AN O(log k) APPROXIMATE MIN-CUT MAX-FLOW THEOREM
AND APPROXIMATION ALGORITHM∗

YONATAN AUMANN† AND YUVAL RABANI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 291–301, February 1998 012

Abstract. It is shown that the minimum cut ratio is within a factor of O(log k) of the maximum
concurrent flow for k-commodity flow instances with arbitrary capacities and demands. This improves
upon the previously best-known bound of O(log2 k) and is existentially tight, up to a constant factor.
An algorithm for finding a cut with ratio within a factor of O(log k) of the maximum concurrent
flow, and thus of the optimal min-cut ratio, is presented.

Key words. approximation algorithms, cuts, sparse cuts, network flow, multicommodity flow

AMS subject classifications. 05C38, 68R10, 90B10

PII. S0097539794285983

1. Introduction.

1.1. Multicommodity flow. Consider an undirected graph G = (V,E) with
an assignment of nonnegative capacities to the edges, c : E → R

+. A multicommodity
flow instance on G is a set of ordered pairs of vertices (s1, t1), (s2, t2), . . . , (sk, tk).
Each pair (si, ti) represents a commodity, with source at si and destination or target
at ti. The si’s and ti’s are also called terminals. The objective is to maximize the
amount of flow traveling from the sources to the corresponding destinations, subject
to the capacity constraints. The problem comes in two flavors. In the first, called
the maximum throughput problem, the total flow, summed over all commodities, is
to be maximized. The second is called the maximum concurrent flow problem. Here,
for each commodity (si, ti) a nonnegative demand Di is specified. The objective is
to maximize the fraction of the demand that can be shipped simultaneously for all
commodities. A maximum concurrent flow instance is uniform if the set of commodi-
ties is the set of all ordered pairs of vertices and all demands are equal. Both the
maximum throughput problem and the maximum concurrent flow problem can be
solved in polynomial time using linear programming.

Given a multicommodity flow instance (together with demands) the minimum
cut ratio is defined. A cut (S, S) is a partition of the vertices, with S ∪ S = V and
S ∩ S = ∅. The capacity of the cut (S, S) is the sum of capacities of the edges with
one endpoint in S and the other in S. The cut ratio is this capacity divided by the
sum of demands of commodities with one terminal in S and the other terminal in S.
Finally, the minimum cut ratio R is the minimum of cut ratios taken over all cuts
(S, S),

R = min
S⊂V

∑
e∈E∩(S×S) c(e)∑

(si,ti)∈(S×S)∪(S×S) Di
.

∗Received by the editors October 7, 1994; accepted for publication (in revised form) January 19,
1996.

http://www.siam.org/journals/sicomp/27-1/28598.html
†Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel (aumann@

cs.biu.ac.il).The work of this author was done while visiting MIT Laboratory for Computer Science,
and was supported by the Wolfson postdoctoral fellowship and DARPA contract N00014-92-J-1799.

‡Computer Science Department, The Technion, Haifa 32000, Israel (rabani@cs.technion.ac.il).
The work of this author was done while visiting MIT Laboratory for Computer Science, and was
supported by ARPA/Army contract DABT63-93-C-0038.

291

292 YONATAN AUMANN AND YUVAL RABANI

In general, determining the minimum cut ratio is an NP-hard problem [9]. The
maximum concurrent flow is a lower bound on the minimum cut ratio.

For the maximum throughput problem a different notion is useful—that of the
minimum multicut. A multicut is a subset of edges F ⊆ E whose removal disconnects
all source-destination pairs. The capacity of a multicut F is the sum of capacities of
the edges in F . Determining the value of the minimum multicut is an NP-hard and
a MAX-SNP-hard problem [11]. The maximum throughput is a lower bound on the
capacity of the minimum multicut.

Our results. In this paper, we study the problem of determining the worst-case
ratio between the minimum cut ratio and the maximum concurrent flow. We estab-
lish that for any k commodity instance, the ratio is O(log k). The bound holds for
instances involving arbitrary capacities and demands, thus improving upon the best
previously known bound of O(log2 k) [27]. We also consider the related question of
finding a cut whose ratio approximates the minimum cut ratio. Finding such a cut is
a basic step in approximation algorithms for many NP-hard problems (see [20, 16]).
We give an algorithm that produces a cut whose ratio is within an O(log k) factor of
the maximum concurrent flow, and thus within at most this factor of the minimum
cut ratio.

We now give a brief overview of the proof method and the procedure for obtaining
the cut. Starting with the linear programming formulation of the maximum concur-
rent flow problem, a solution to the dual program is an assignment of points in R

k to
the vertices of the graph. The value of the solution is the sum of L∞ distances spanned
by the edges, scaled by the capacities. The constraints of the dual program dictate
that the sum of distances between source-destination pairs, scaled by the demands,
equals one. Thus, we first solve the (dual) linear program and obtain an embedding
of the graph in R

k. Next, we wish to produce the cut by placing a hyperplane in
the space, where the two sides of the hyperplane determine the cut. Suppose that a
random hyperplane would have the property that for each pair of vertices x, y, the
hyperplane separates x from y with probability proportional to the distance between
the two. Then, the expected amount of demands separated by a random hyperplane
would be 1 (the sum of source-destination distances scaled by the demands). The
expected capacity of the cut, induced by the random hyperplane, would be the sum
of edge distances scaled by the capacities, which is exactly the value of the solution to
the dual, which, in turn, equals the optimal value of the primal, which is the max-flow.
Given these expectation, we could then try and find a hyperplane which maintains
the expected ratio. Such a cut would have cut ratio equal to the max-flow. Clearly,
this procedure fails. This is because in L∞ norm the necessary distribution over hy-
perplanes does not necessarily exist. As it turns out, L1 is the natural norm under
which to produce such a distribution. In particular, in L1 norm a random hyperplane
perpendicular to one of the axes has exactly the necessary property (i.e., it separates
any two nodes with probability proportional to the distance between the two).

With this intuition in mind, we use small distortion embeddings of finite metric
spaces into `1 [3, 21]. Once the (solution) graph is embedded in `1, we show how to
find (deterministically) a good cut. The factor of O(log k) is lost in the distortion of
the embedding. We also show that similar ideas are applicable to bounding the min-
multicut max-flow ratio for the maximum throughput problem, though the bounds
derived are inferior to the best-known bounds. Finally, as a consequence of known
instances of graphs with a high min-cut max-flow ratio, we derive tight (up to a
constant factor) lower bounds on the best possible distortion of embeddings into `1

APPROXIMATE MULTICOMMODITY MIN-CUT MAX-FLOW 293

and into `2, thus improving the lower bound of [3].

Related work. One of the most celebrated theorems in combinatorial optimization
is the min-cut max-flow theorem of Ford and Fulkerson and of Elias, Feinstein, and
Shannon [8, 7], which states that for a single commodity, the maximum flow is equal
to the minimum cut (here the two flavors of the problem coincide). Early on it had
been noted that this is not the case for multicommodity flow.

Early work on multicommodity flow concentrated on characterizing instances
where the maximum flow equals the minimum cut ratio. Equality has been estab-
lished for instances where the support (i.e., the graph created by connecting source-
destination pairs) is either the union of two stars, or the clique K4, or the cycle
C5, through the consecutive works of Hu [14], Rothschild and Whinston [28], Dinits
(see [1]), Seymour [29], and Lomonosov [23]. Seymour [30] shows that equality holds
when the union of the network and the support is planar. Okamura and Seymour [26]
establish equality for instances on planar graphs where all terminals reside on the
boundary of a single face. For more on this vein of work see [18].

In their groundbreaking work, Leighton and Rao [20] introduce the notion of an
approximate min-cut max-flow theorem. They show that for uniform multicommodity
flow, the min-cut ratio is within a factor of O(logn) of the maximum concurrent flow,
where n is the number of nodes in the network. Klein et al. [16] extend their tech-
niques to show an O(logC logD) approximate min-cut max-flow theorem for general
concurrent flow, where C is the sum of capacities and D is the sum of demands. This
ratio has been improved to O(log2 k), where k is the number of commodities, through
the works of Tragoudas [32], Garg, Vazirani, and Yannakakis [12], and Plotkin and
Tardos [27]. The prevalent method in these papers is the use of graph partitions (see
[17]). The last paper in the sequence overcomes the dependency on the values of the
demands by applying a scaling argument and combining flows. We note that while
in [20, 16] the primal program considered is the problem of minimizing the capacity
utilization (i.e., the factor by which edge capacities need to be multiplied to allow all
the demand through; see also Shahrokhi and Matula [31]), in [12] the primal program
considered is that of maximizing the throughput. This latter view is the one taken in
this paper.

Multicuts have been considered by Garg, Vazirani, and Yannakakis [11, 12]. The
first paper gives a 2-approximate min-multicut max-flow bound and approximation
algorithm for maximum throughput instances on arbitrary capacitated trees. The
second paper gives an O(log k)-approximate min-multicut max-flow bound and ap-
proximation algorithm for arbitrary maximum throughput instances. Dahlhaus et
al. [5] consider the problem of multiway cuts, i.e., multicuts for maximum throughput
instances defined by listing all pairs among a subset of k vertices. They show a 2− 2

k
approximation algorithm.

Of related interest is the beautiful approximate max-cut algorithm given by Goe-
mans and Williamson [13]. They use semidefinite programming to optimize distances
among vertices of a graph. When embedded into the unit ball in R

n with distances
determined by the L2 norm, the original distances do not shrink too much (but
they may have an unbounded increase). It is easy to cut the embedded graph by
a hyperplane. Similar ideas have been exploited by Karger, Motwani, and Sudan
to give an improved approximation algorithm for vertex coloring [15]. We note that
these techniques seem to fail when it is required to minimize a cut rather than to
maximize it.

The relation between `1-embeddability and multicommodity flow has been noted

294 YONATAN AUMANN AND YUVAL RABANI

by Avis and Deza [2]. They show that Lomonosov’s min-cut-equals-max-flow re-
sult (and its predecessors for two commodities, etc.) is related directly to the `1-
embeddability of certain fixed metric spaces.

A central tool in our proof is the small distortion embedding of a given metric
space into `1. For this we use a result of Linial, London, and Rabinovich. In a funda-
mental work, they study algorithmic and other applications of embeddings of graphs
into low-dimensional normed spaces, introducing techniques from functional analysis.
In particular, they consider a theorem of Bourgain [3] which asserts that any n-point
metric space can be embedded into `1 (and also into `2) with logarithmic distortion.
Bourgain’s original proof is existential. Linial, London, and Rabinovich present an
algorithmic version of the proof which also bounds the dimension by O(log2 n) (see
also Matoušek [25]). Following their initial work, Linial, London, and Rabinovich
have obtained independently similar results to the ones reported here. A full account
of their work, which also includes the earlier results, appears in [21]. We note that,
while the derivation in [21] is very similar to ours, we generate the cut by cutting with
a hyperplane, whereas in [21] the cut is generated by a different procedure.

Subsequent to this work, Linial, London, and Rabinovich (in the journal version of
their paper [22]), and independently Garg [10], have come up with modified algorithms
that can be effectively derandomized.

2. Min-cut-ratio max-concurrent-flow. Let G = (V,E) be a graph. Let
c : E → R

+ be an assignment of nonnegative capacities to the edges of G. Consider
a maximum concurrent flow problem on G, with demand Di from source si to des-
tination ti, i = 1, . . . , k. For each i, let

{
qi1, q

i
2, . . .

}
be an enumeration of the paths

from si to ti. Let qij(e) denote the characteristic function of the predicate e ∈ qij .

Let f ij be the amount of commodity i flowing along the path qij , and let f be the
minimum fraction of any of the demands which is transmitted in the system in total.
We formulate the maximum concurrent flow problem as the following linear program:

(P1)

maximize f subject to
Dif −

∑
j f

i
j ≤ 0 ∀i ∈ {1, 2, . . . , k},∑

i,j q
i
j(e)f

i
j ≤ c(e) ∀e ∈ E,

f ij ≥ 0 ∀i, j.

The first set of constraints requires that the total flow of commodity i be at least an f
fraction of the demand Di. The second set of constraints prevents the edge capacities
from being violated.

The dual is

(D1)

minimize
∑

e c(e)d(e) subject to∑
iDihi = 1,∑
e q

i
j(e)d(e)− hi ≥ 0 ∀i, j,

hi ≥ 0 ∀i,
d(e) ≥ 0 ∀e.

The dual has a pictorial physical interpretation. Imagine that the edges of the graph
represent a network of pipes. The “cross-section” area of pipe e is c(e), and d(e)
denotes the length of the pipe. Thus, the objective is to minimize the total volume
of the network. The variable hi corresponds to the distance between the terminals
of commodity i (i.e., the minimum length of a path qij). Now suppose that the
network supports a flow such that for each commodity i, the rate at which this

APPROXIMATE MULTICOMMODITY MIN-CUT MAX-FLOW 295

commodity is transmitted from source to destination is an f fraction of the demand of
the commodity. Then, at any given time the total volume of flow in the network is at
least

∑
i fDihi. Clearly, the volume of flow cannot be greater than the total volume

of the pipes, which is
∑

e c(e)d(e). The first constraint in the dual scales
∑

iDihi = 1.
Thus we have f ≤ ∑

e c(e)d(e), which is precisely the statement of weak duality in
this case.

The program (D1) may be of exponential size. Using the above interpretation,
we convert it to an equivalent program of polynomial size. The purpose of this step
is to allow the solution of the linear program in polynomial time. We consider the
vertices of G as points in R

k with L∞ norm. The distances between the vertices
are the distances assigned to the corresponding edges. For each i = 1, . . . , k, the
ith coordinate of the location of the vertex represents the distances of the vertex
from the source si. Thus, we obtain the following equivalent, polynomial size, linear
program:

(D′)

minimize
∑

e c(e)d(e) subject to
d(e) ≥ uxi − uyi

≥ uyi − uxi
∀e = (x, y), ∀i ∈ {1, 2, . . . , k},∑

iDihi = 1,
hi ≤ utii − usii ∀i,
utii ≥ 0, usii ≤ 0 ∀i.

Here, vertex x is mapped to the point ux = (ux1 , . . . , u
x
k) ∈ R

k.

Lemma 2.1. The optimal solutions to D1 and D′ are equal.

Proof. Consider a feasible solution to D′. The same d(e)’s and hi’s also constitute
a feasible solution for D1. To see this we only have to show that

∑
e q

i
j(e)d(e) ≥ hi

for all i, j. Indeed,

∑
e

qij(e)d(e) ≥
∑

e=(x,y)

qij(e) |uxi − uyi | = utii − usii ≥ hi .

The equality holds because qij is a path from si to ti and thus the summation is
telescopic. Thus, any feasible solution to D′ is also a solution to D1. Conversely,
given a feasible solution to D1, for all vertices x and i = 1, . . . , k, set uxi = dist(si, x),
where dist(y, x) denotes the length of the shortest path from y to x, under the non-
negative edge lengths d(e). This assignment gives D′ the same objective function
value as for D1 while obeying all the constraints.

A feasible solution to D′ induces a mapping of the vertices into the metric space
`k∞ (Rk with L∞ norm). The L∞ distances among these points have the following
properties:

1. ∀i, ‖uti − usi‖∞ ≥ hi; and
2. ∀e = (x, y), ‖ux − uy‖∞ ≤ d(e).

Next we embed this n point subspace of `k∞ into `d1 (Rd with L1 norm), with
ux mapped to ũx. Let h̃i denote ‖ũsi − ũti‖1. The embedding has the following
properties:

1. d is polynomial in the size of the input (in fact, the embedding will have
d = O(log2 k));

2. ∀i, h̃i ≥ hi/O(log k);
3. ∀e = (x, y), ‖ũx − ũy‖1 ≤ ‖ux − uy‖∞.

296 YONATAN AUMANN AND YUVAL RABANI

Such an embedding can be obtained by a slight variation of Bourgain’s theorem [3],
and the algorithmic version thereof by Linial, London, and Rabinovich. A sketch of
the proof is provided in the appendix (Corollary A.2; see also [21]).

For every pair of vertices x, y define the function δx,y : {1, . . . , d}×R → {0, 1} as

δx,y(j, ξ) =
{

1 if min{ũxj , ũyj} ≤ ξ < max{ũxj , ũyj},
0 otherwise.

The function δx,y is the characteristic function of the projection, on the jth axis, of
the straight line connecting ũx and ũy.

Now, define two functions

H : {1, 2, . . . , d} × R → R
+,

C : {1, 2, . . . , d} × R → R
+

as follows:

H(j, ξ) =
k∑
i=1

Diδ
si,ti(j, ξ),

C(j, ξ) =
∑

e=(x,y)∈E
c(e)δx,y(j, ξ).

Notice that H(j, ξ) is the sum of demands cut by a hyperplane perpendicular to the
jth axis at ξ, while C(j, ξ) is the sum of capacities of edges cut by the same hyperplane.

We have that

d∑
j=1

∫ ∞

−∞
H(j, ξ)dξ =

d∑
j=1

k∑
i=1

∫ ∞

−∞
Diδ

si,ti(j, ξ)dξ =
k∑
i=1

Dih̃i ≥ 1

O(log k)
.(2.1)

Similarly,

d∑
j=1

∫ ∞

−∞
C(j, ξ)dξ ≤

∑
e∈E

c(e)d(e).(2.2)

Therefore, since both functions are nonnegative, there exists a point (j0, ξ0) such that
H(j0, ξ0) > 0 and

C(j0, ξ0)

H(j0, ξ0)
≤ O(log k)

∑
e∈E

c(e)d(e).

To see this, consider the functions

H ′(j, ξ) = O(log k)H(j, ξ)

and

C ′(j, ξ) =
C(j, ξ)∑

e∈E c(e)d(e)
.

H ′ is not always 0 and C ′ is nonnegative. If H ′(j, ξ) < C ′(j, ξ) whenever H ′(j, ξ) > 0,

then we must have that
∑d

j=1

∫∞
−∞H ′(j, ξ) <

∑d
j=1

∫∞
−∞ C ′(j, ξ), in contradiction to

inequalities (2.1) and (2.2).

APPROXIMATE MULTICOMMODITY MIN-CUT MAX-FLOW 297

The point (j0, ξ0) determines a cut (S, S) by setting S =
{
x ∈ V | ũxj0 ≤ ξ0

}
. The

amount of demand between S and S is exactly H(j0, ξ0) and the capacity of the edges
connecting the two sides of the cut is C(j0, ξ0). The point (j0, ξ0) can be found in
polynomial time. This is because there are at most |V | points of interest to check in
each dimension. A sweep in each dimension can be used to obtain the best cut.

We have obtained the following theorem.
Theorem 2.2. For every concurrent multicommodity flow instance involving k

commodities, the minimum cut ratio is within a factor of O(log k) of the maximum
concurrent flow. Finding such a cut can be done in random polynomial time.

Proof. Obtain the optimal solution to D′, e.g., using Ye’s interior point polynomial
time algorithm [34]. (Alternatively, find a near-optimal solution using more efficient
algorithms, e.g., see Leighton et al. [19].) By Lemma 2.1 and linear programming
duality, the value m of this solution is equal to the optimal value of P1. The above
discussion shows how to find a cut with ratio within O(log k) of m.

3. Min-multicut max-throughput. We can apply our method to derive bounds
on the min-multicut to maximum-throughput ratio. However, the bounds we derive
are inferior to the O(log k) bound presented in [12]. We get an O(log2 k) bound us-
ing a randomized algorithm to find an approximate cut. The algorithm in [12] is
deterministic. A sketch of the proof follows.

Using the notation of the previous section, we formulate the maximum throughput
problem as the following linear program:

(P2)

maximize
∑

i,j f
i
j subject to∑

i,j q
i
j(e)f

i
j ≤ c(e) ∀e ∈ E,

f ij ≥ 0 ∀i, j.

The interpretation of this program is similar to that of (P1). The variables f ij denote

the flow due to commodity i along the path qij . The constraints guarantee that none
of the edge capacities are violated.

The dual is

(D2)
minimize

∑
e c(e)d(e) subject to∑
e q

i
j(e)d(e) ≥ 1 ∀i, j,

d(e) ≥ 0 ∀e.
This program can be interpreted similarly to D1. We have a similar network of
pipes. The constraints require that the distance between the pair of terminals of any
commodity is at least 1. To accommodate a flow of rate

∑
j f

i
j for every commodity

i, the total volume of the pipes must be at least
∑

i,j f
i
j . This demonstrates weak

duality.
As above, the dual (D2) can be converted into a polynomial size program where

vertices are mapped to points in `k∞. Note that in a feasible solution to D2 the
distance between each source-destination pair is at least 1. We embed the metric space

induced by the optimal solution into `
O(log2 k)
1 , shrinking all distances and maintaining

a distance of at least 1/O(log k) among the terminal pairs. For the optimal solution,
the embedded graph is contained in a cube of unit side length. Throughout the rest
of this section we use the same notation as in the previous section.

Consider the following process. For each dimension j, independently choose a
point ξj ∈ [0, 1], uniformly at random. Place a hyperplane intersecting the jth axis
at ξj and perpendicular to this axis. Consider a pair of vertices x, y. Let ax,yj denote

298 YONATAN AUMANN AND YUVAL RABANI

the length of the projection, onto the jth axis, of the straight line connecting ũx and
ũy. Let px,y be the probability that ũx and ũy are separated by at least one of the
d = O(log2 k) random hyperplanes. We have that

px,y ≤
d∑

j=1

ax,yj = ‖ũx − ũy‖1 ≤ ‖ux − uy‖∞ ,

and

px,y ≥ 1−
d∏

j=1

(
1− ax,yj

) ≥ 1−
(

1− ‖ũx − ũy‖1
d

)d

.

For si, ti, we have ‖usi − uti‖1 ≥ 1/O(log k) for all i. Thus, if we repeat the placement
of d random hyperplanes c log2 k = O(log2 k) times, then the probability, pi, that ũsi

and ũti are separated by any of these hyperplanes satisfies

pi ≥ 1−
(

1− 1

d ·O(log k)

)cd·O(log2 k)

≥ 1− k−c·O(1).

Thus, with c sufficiently large, with probability at least 1 − k−1 ≥ 2/3 (assuming
k ≥ 3, for k = 1 or k = 2 the min-multicut equals the max-throughput), all source-
destination pairs are separated.

For any edge e = (x, y), ‖ux − uy‖∞ ≤ d(e). Thus, the probability, pe, that e is
cut by any of the hyperplanes satisfies pe ≤ O(log2 k)d(e). Therefore, the expected
size of the multicut is O(log2 k)

∑
e c(e)d(e). By Markov’s inequality, the probability

that we get a multicut whose size is more than twice the expectation is at most 1/2.
Therefore, with probability at least 1/6 all commodities are cut and the size of the cut
is no more than twice the expectation. This guarantees that in random polynomial
time we get a multicut that separates all source-destination pairs and whose size is
O(log2 k)

∑
e c(e)d(e).

Appendix A. Embeddings of finite metric spaces. An embedding of a finite
metric space M = (X, d) into a (larger) metric space M′ = (X ′, d′) is a 1–1 mapping
ϕ : X → X ′. An embedding ϕ is a contraction if ∀x, y ∈ X, d′ (ϕ(x), ϕ(y)) ≤ d(x, y)
(see [33]). Any embedding into a normed space can be converted into a contraction
without changing the ratios of distances among the points, by scaling all distances.
For a contraction ϕ, the distortion is maxx,y∈X {d(x, y)/d′ (ϕ(x), ϕ(y))}. Obviously,
the distortion is at least 1. A contraction is isometric if it has distortion exactly 1.
For any p, a finite metric space is `p-embeddable if it can be isometrically embedded
into the r-dimensional normed space `rp, for some r. A finite metric space is Euclidean
if it is `2-embeddable. We say that ϕ is into `p, if M′ is `rp, for some r. For x ∈ X,
Y ⊂ X, denote by d(x, Y) the distance from x to Y , defined as miny∈Y d(x, y).
For x ∈ X, ρ ≥ 0, denote B(x, ρ) = {z | d(x, z) ≤ ρ} (the closed ball around x of
radius ρ).

The following lemma is due to Linial, London, and Rabinovich [21, 22] (see
also [25]). It gives an algorithmic version of a theorem of Bourgain [3]. For com-
pleteness, we give a sketch of the proof.

Lemma A.1 (see [22]). Let M = (X, d) be a finite metric space with |X| = n.

There exists a contraction, ϕ, of M into `
O(log2 n)
1 that has distortion O(logn). The

contraction can be constructed in random polynomial time.

APPROXIMATE MULTICOMMODITY MIN-CUT MAX-FLOW 299

Proof. For every t = 1, . . . , logn − 1, choose L = O(logn) subsets Qt,j ⊂ X,
j = 1, . . . , L, such that |Qt,j | = n

2t . Each subset is chosen uniformly at random
among all subsets of the specified size. The choices are mutually independent. For
each x ∈ X, define a vector φ(x) with entries φt,j(x) = d(x,Qt,j).

Consider two points x, y ∈ X. For t = 0, 1, . . . define ρt(x) = min ρ such that
|B(x, ρ)| ≥ 2t, and similarly define ρt(y). Let ρt = max {ρt(x), ρt(y)}, and let t̂ be
the largest t such that ρt ≤ d(x, y)/3. Set ρt̂+1 = d(x, y)/3. (Notice that ρ0 = 0.)
Consider a particular t > 0 and one of the corresponding sets Qt,j . W.l.o.g., ρt(x) = ρt
(i.e., ρt is obtained around x). Then, by assumption |B(x, ρt)| ≤ 2t, and by definition
|B(y, ρt−1)| ≥ 2t−1. Thus, a random set Qt,j of size n/2t has a constant probability
of intersecting B(y, ρt−1) and not intersecting B(x, ρt). (Notice that these balls are
disjoint.) Thus, with constant probability |φt,j(x)− φt,j(y)| ≥ ρt − ρt−1. Thus, with

L sufficiently large, with high probability,
∑L

j=1 |φt,j(x)−φt,j(y)| ≥ cL(ρt− ρt−1) for
some constant c. Thus,

‖φ(x)− φ(y)‖1 =
∑
t,j

|φt,j(x)− φt,j(y)| ≥
t̂+1∑
t=1

cL(ρt − ρt−1) = cLρt̂+1 = cL
d(x, y)

3
.

On the other hand, by the triangle inequality, for any x, y ∈ X, and any set Qt,j ,
|d(x,Qt,j)− d(y,Qt,j)| ≤ d(x, y). Thus,

‖φ(x)− φ(y)‖1 =
∑
t,j

|φt,j(x)− φt,j(y)| ≤ logn · L · d(x, y) .

Finally, define ϕ(x) = 1
L log nφ(x).

We get the following corollary.
Corollary A.2. Let M = (X, d) be a finite metric space. Let N = (Y, d)

be a subspace of M induced by a subset of points of cardinality k. There exists a

contraction ϕ of M into `
O(log2 k)
1 such that the restriction of ϕ to N has distortion

O(log k). The contraction can be constructed in random polynomial time.
Proof. Using the construction for N given by the proof of Lemma A.1, we get

the subsets Qt,j ⊂ Y , t = 1, . . . , log k − 1, j = 1, . . . , L, L = O(log k). For each
x ∈ X, set φt,j(x) = d(x,Qt,j), and define ϕ(x) = 1

L log kφ(x). Now, for any x, y ∈ X,

‖ϕ(x)− ϕ(y)‖1 ≤ d(x, y), and for all x, y ∈ Y , ‖ϕ(x)− ϕ(y)‖1 ≥ d(x, y)/c log k, for
some constant c.

Theorem A.3. For any n, there exists an (explicitly constructible) metric space
Mn over n points, such that any contraction of Mn into `1 has distortion Ω(logn).

Proof. The proof is by contradiction. Consider an n node bounded degree ex-
pander graphs Gn. (The expansion property we need is that any subset of s ≤ n/2
vertices is connected to at least αs other vertices, for some absolute constant α > 0.
Such graphs can be constructed, e.g., via [24].) There are Θ(n) edges in Gn, and there
exist kn = θ(n2) pairs of vertices at distance Θ(log n) apart. For each n, consider a
multicommodity flow instance where all the edges of Gn have unit capacity and there
is a unit demand between each of the kn pairs. It is not difficult to see that any cut in
Gn has cut ratio at least c/n, for some constant c. Consider a feasible solution to the
dual problem, where d(e) is set to dn = Θ(1/kn logn) for all e with an appropriate
choice of constant. The value of the dual for this solution is at most c′/n logn, for
some constant c′. Now, consider the path metric of Gn (i.e., the n-point metric space
over vertices of Gn, where the distance between two vertices is the minimum length

300 YONATAN AUMANN AND YUVAL RABANI

path connecting them). Suppose this metric space can be embedded into `1 with
distortion less than c logn/c′. Using the arguments from section 2, this implies that
there exists a cut in Gn with cut ratio less than c/n, which is a contradiction.

Remark. An alternative proof can be derived by noticing that for multicuts one
can disconnect a constant fraction of the commodities by a multicut whose size is
within an order of the distortion factor of the optimal fractional solution. The result
then follows since there are instances of multicommodity flow on expander graphs,
where cutting a constant fraction of the commodities requires a cut whose size is
Ω(log k) times the value of the maximum throughput (see [12]).

Bourgain [3] gives a lower bound of Ω(logn/ log logn) for the worst-case distortion
of any contraction of n-point metric spaces into `2. From Theorem A.3 we get the
following improvement over Bourgain’s lower bound.

Corollary A.4. Any contraction of Mn into `2 has distortion Ω(logn).

Proof. Any finite Euclidean space is `1-embeddable. (It is well known that L2

isometrically embeds in L1, see, e.g., [4]. For finite metric spaces, L1-embeddability
implies `1 embeddability; see [6].)

Remark. The question of improving Bourgain’s lower bound was raised by Linial,
London, and Rabinovich. A similar theorem, derived independently, is shown in [21,
22].

REFERENCES

[1] G. M. Adelson-Welsky, E. A. Dinits, and A. V. Karzanov, Flow Algorithms, Nauka,
Moscow, 1975 (in Russian).

[2] D. Avis and M. Deza, The cut cone, L1-embeddability, complexity and multicommodity flows,
Networks, 21 (1991), pp. 595–617.

[3] J. Bourgain, On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math.,
52 (1985), pp. 46–52.

[4] J. Bretagnolle, D. Dacunha-Castelle, and J. L. Krivine, Lois stables et espaces Lp, Ann.
Inst. H. Poincaré, 2 (1966), pp. 231–259.

[5] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis,
The complexity of multiway cuts, in Proc. of the 24th Annual ACM Symposium on Theory
of Computing, ACM, New York, 1992, pp. 241–251.

[6] M. Deza and M. Laurent, Applications of Cut Polyhedra, Technical report BS-R9221, CWI,
Amsterdam, 1992.

[7] P. Elias, A. Feinstein, and C. E. Shannon, A note on the maximum flow through a network,
IRS Trans. Inform. Theory, 2 (1956), pp. 117–119.

[8] L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Canadian J. Math., 8
(1956), pp. 399–404.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[10] N. Garg, A Deterministic O(log k)-Approximation Algorithm for Sparsest-Cut, 1995, preprint.
[11] N. Garg, V. V. Vazirani, and M. Yannakakis, Primal-dual approximation algorithms for

integral flow and multicut in trees, with applications to matching and set cover, in Proc.
20th International Colloquium on Automata, Languages, and Programming, (ICALP ’93),
Springer-Verlag, New York, 1993, pp. 64–75.

[12] N. Garg, V. V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theo-
rems and their applications, in Proc. of the 25th Annual ACM Symposium on Theory of
Computing, ACM, New York, 1993, pp. 698–707.

[13] M. X. Goemans and D. P. Williamson, .878-approximation algorithms for MAX CUT and
MAX 2SAT, in Proc. of the 26th Annual ACM Symposium on Theory of Computing,
ACM, New York, 1994, pp. 422–431.

[14] T. C. Hu, Multicommodity network flows, Oper. Res., 11 (1963), pp. 344–360.
[15] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite pro-

gramming, in Proc. of the 35th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 2–13.

APPROXIMATE MULTICOMMODITY MIN-CUT MAX-FLOW 301

[16] P. Klein, A. Agrawal, R. Ravi, and S. Rao, Approximation through multicommodity flow,
in Proc. of the 31st Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1990, pp. 726–737.

[17] P. Klein, S. Plotkin, and S. Rao, Excluded minors, network decomposition, and multicom-
modity flow, in Proc. of the 25th Annual ACM Symposium on Theory of Computing, ACM,
New York, 1993, pp. 682–690.

[18] B. Korte, L. Lovász, H. J. Promel, and A. Schrijver, eds., Paths, Flows, and VLSI-Layout,
Springer-Verlag, New York, 1990.

[19] F. T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas, Fast
approximation algorithms for multicommodity flow problems, in Proc. of the 23rd Annual
ACM Symposium on Theory of Computing, ACM, New York, 1991, pp. 101–111; J Com-
put. System Sci., 50 (1995), pp. 228–243.

[20] F. T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms, in Proc. of the
29th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1988, pp. 422–431.

[21] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algo-
rithmic applications, in Proc. of the 35th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 577–591.

[22] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215–245.

[23] M. Lomonosov, Combinatorial approaches to multiflow problems, Discrete Appl. Math., 11
(1985), pp. 1–93.

[24] G. A. Margulis, Explicit constructions of concentrators, Problems Inform. Transmission, 9
(1975), pp. 325–332.

[25] J. Matoušek, Note on bi-Lipschitz embeddings into normed spaces, Commentationes Mathe-
maticae Univ. Carolinae, 33 (1992), pp. 51–55.

[26] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory
Ser. B, 31 (1989), pp. 75–81.

[27] S. Plotkin and É. Tardos, Improved bounds on the max-flow min-cut ratio for multicommod-
ity flows, in Proc. of the 25th Annual ACM Symposium on Theory of Computing, ACM,
New York, 1993, pp. 691–697.

[28] B. Rothschild and A. Whinston, On two-commodity network flows, Oper. Res., 14 (1966),
pp. 377–387.

[29] P. D. Seymour, Four terminous flows, Networks, 10 (1980), pp. 79–86.
[30] P. D. Seymour, Matroids and multicommodity flows, European J. Combin., 2 (1981), pp. 257–

290.
[31] F. Shahrokhi and D. W. Matula, The maximum concurrent flow problem, J. ACM, 37 (1990),

pp. 318–334.
[32] S. Tragoudas, VLSI Partitioning Approximation Algorithms Based on Multicommodity Flow

and Other Techniques, Ph.D. thesis, University of Texas at Dallas, 1991.
[33] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer-Verlag,

New York, 1975.
[34] Y. Ye, An O(n3L) potential reduction algorithm for linear programming, Math. Programming,

50 (1991), pp. 239–258.

A SUBLINEAR TIME DISTRIBUTED ALGORITHM FOR
MINIMUM-WEIGHT SPANNING TREES∗

JUAN A. GARAY† , SHAY KUTTEN‡ , AND DAVID PELEG§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 302–316, February 1998 013

Abstract. This paper considers the question of identifying the parameters governing the be-
havior of fundamental global network problems. Many papers on distributed network algorithms
consider the task of optimizing the running time successful when an O(n) bound is achieved on an
n-vertex network. We propose that a more sensitive parameter is the network’s diameter Diam. This
is demonstrated in the paper by providing a distributed minimum-weight spanning tree algorithm
whose time complexity is sublinear in n, but linear in Diam (specifically, O(Diam+ nε · log∗ n) for
ε = ln 3

ln 6
= 0.6131...). Our result is achieved through the application of graph decomposition and

edge-elimination-by-pipelining techniques that may be of independent interest.

Key words. MST, min-weight spanning trees, distributed algorithms

AMS subject classifications. 05C05, 05C85, 68Q22, 68Q25, 68R10

PII. S0097539794261118

1. Introduction.

1.1. Motivation. In many papers on distributed network algorithms, the task of
optimizing the running time is considered successful when an O(n) bound is achieved
on an n-vertex network. Typically, the justification is that there exist n-vertex graphs
for which this bound is the best possible. The sequence of solutions to the leader
election problem (LE) exemplifies the reasoning above. Following the O(n logn) run-
ning time and a first improvement by Chin and Ting [CT] and Gafni [G] (with an
O(n log∗ n) running time), Awerbuch gave an “optimal” O(n)-time solution to the
problem [A1]. Again, this solution is optimal in the sense that there exist networks
for which this is the best possible.

This type of optimality may be thought of as “existential” optimality; namely,
there are points in the class of input instances under consideration for which the al-
gorithm is optimal. A stronger type of optimality, which we may analogously call
“universal” optimality, occurs when the proposed algorithm solves the problem opti-
mally on every instance.

An interesting “side effect” of universal optimality is that a universally optimal
algorithm precisely identifies the parameters of the problem that are inherently re-
sponsible for its complexity. For example, returning to the LE problem, a more careful

∗ Received by the editors January 3, 1994; accepted for publication (in revised form) February
5, 1996. Based on A sub-linear time distributed algorithm for minimum-weight spanning trees (pre-
liminary version), by J. A. Garay, S. Kutten, and D. Peleg, which appeared in the Proceedings of
the 34th Annual IEEE Symposium on the Foundations of Computer Science, Palo Alto, CA, IEEE
Computer Society Press, Los Alamitos, CA, 1993, pp. 659–668.

http://www.siam.org/journals/sicomp/27-1/26111.html
† IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 (garay@ wat-

son.ibm.com). Part of this author’s work was done while visiting the Weizmann Institute of Science,
Rehovot, Israel.

‡ IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 (kutten@
watson.ibm.com).

§ Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science,
Rehovot, 76100, Israel (peleg@wisdom.weizmann.ac.il). The work of this author was supported in
part by a Walter and Elise Haas Career Development Award and by a grant from the Basic Research
Foundation. Part of the work was done while visiting IBM T.J. Watson Research Center, Yorktown
Heights, NY.

302

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 303

look reveals that the inherent parameter is the network’s diameter Diam. Indeed, it
was observed in [P] that it is possible to give a trivial O(Diam)-time distributed LE
algorithm (although it should be noted that the solutions mentioned above were also
message-optimal, whereas the algorithm of [P] is not).

The interesting question that arises is, therefore, whether it is possible to identify
the inherent graph parameters associated with the distributed complexity of vari-
ous fundamental network problems and to develop universally optimal algorithms for
them.

A closely related question has been dealt with before in the context of study-
ing the role of locality in distributed computing. Various problems were shown to
be essentially local and hence amenable to a localized algorithm with very fast (e.g.,
polylogarithmic) running times. Notable examples include computing maximal in-
dependent sets and graph coloring [GPS, L, AGLP, PS2]. Locality-based techniques
were also developed for reducing communication and time complexities for other prob-
lems whose local natures are less apparent [AP1, AP2, AKP].

In contrast, we are interested here in problems that are essentially global, i.e.,
ones that do not admit localized solutions but rather always require the algorithm
to “traverse” the network. Problems of this type still raise the interesting (if more
modest) question of deciding whether Ω(n) time is essential—or is the network’s
diameter the inherent parameter? In the latter case, it would be desirable to devise
algorithms for these network problems that have a better complexity for the case of
graphs with low diameter.

In this paper, we tackle the classical minimum-weight spanning tree (MST) prob-
lem. This problem has been studied before as a canonical example for a graph-
algorithmic problem whose communication-efficient distributed solution poses some
surprisingly nontrivial subtleties [GHS]. The time complexity of the algorithm of
[GHS] is O(n logn), which was later improved to the (existentially) “optimal” O(n)
in [A1]. As with other problems, such as the above LE example, it is natural to ask
whether O(n) is universally optimal or if it can be improved.

Once again, the MST problem proves to be a worthy candidate for this type
of study. In other tree constructions, such as the breadth-first-search (BFS) tree
(which is closely related to the LE problem), it is intuitively clear that the true time
bound should be related to the network’s diameter Diam, since the depth of the
constructed tree is proportional to Diam. In contrast, the MST of a given network
may be considerably deeper than Diam, and in fact, may be as high as Ω(n). Hence
construction methods based on communication on the tree structure itself are doomed
to require Ω(n) time, and the problem of breaking the Ω(n) barrier seems intrinsically
harder.

In this paper we get closer to identifying the inherent parameters governing the
behavior of distributed MST construction by presenting a distributed MST algorithm
whose time complexity is sublinear in n, and linear in Diam (specifically, O(Diam+
nε · log∗ n) for ε = ln 3

ln 6 = 0.6131...), thus breaking the O(n) barrier. This result
is achieved through the application of graph decomposition and edge elimination
techniques that may be interesting in their own right.

1.2. Model and definitions. In this paper we focus on the problem of devis-
ing a time-efficient distributed MST algorithm. The statement of the problem is as
follows. The network is represented by an undirected graph G = (V,E), where V
is the set of nodes and E is the set of links between them. (Henceforth we use the
terms “graph” and “network” interchangeably, when no ambiguity arises.) The graph

304 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

is given with a weight function ω : E → R+ on the edges, such that each node in
V is associated with its own processor, and processors are able to communicate with
each other via the edges in E. The goal is to have the nodes (processors) cooperate
to construct a tree covering the nodes in V whose total edge weight is no greater than
any other spanning tree for G.

We assume that nodes have unique identifiers and that each edge e ∈ E is asso-
ciated with a distinct weight ω(e) known to the adjacent nodes. The usefulness of
having distinct edge weights stems from the fact that this property guarantees that
the MST is unique. Clearly, having distinct weights is not an essential requirement,
since one can always “create” them by appending the adjacent node’s numbers to
them. However, it is known that if the graph has neither distinct edge weights nor
distinct node identifiers, then no distributed algorithm exists for computing an MST
with a bounded number of messages [GHS].

For every subgraph F of the network, let Diam(F) denote the diameter of F , i.e.,
the maximum distance between any two vertices of F , where distance is measured in
the unweighted sense, i.e., in the number of hops.

In order to be able to concentrate on the central issue of time complexity, we shall
follow the common trend of stripping away nonessential complications. In particular,
we ignore the communication cost of our algorithm, i.e., the number of messages
it uses. (We comment that while this number is not optimized in any way in our
solution as presented in the current paper, it is not very large. In particular, it is still
considerably smaller than the number of messages needed for every node to learn the
topology of the entire network, as is used in a number of existing routing schemes,
e.g., Internet routing [MRR].)

We also assume that the computation performed by the network is synchronous;
namely, computation proceeds in rounds, governed by a global clock, with each round
taking one time unit. In each round each processor can examine the messages sent to
it by its neighbors (if any), compute, and send messages to any subset of its neighbors.
Such messages, if sent, are available to their recipients in the next round. The time
complexity of a synchronous algorithm is the number of time units elapsing until
the termination of the algorithm. This assumption is quite common in the literature.
Note, however, that here it is not essential, since our decision to ignore communication
costs allows us to freely use a synchronizer of our choice; for example, synchronizer
α [A2] enables an asynchronous network to run any protocol that was designed for
synchronous networks, with the same time complexity, at the cost of some increase in
the message complexity.

Still, we shall not adopt the extreme model employed in previous studies of locality
issues (cf. [L]), in which messages of arbitrary size are allowed to be transmitted
in a single time unit, since in this model the refined distinctions we focus on here
disappear. Clearly, if unbounded-size messages are allowed, then the problem can be
trivially solved in time O(Diam(G)) by collecting the entire graph’s topology into a
central node, computing an MST locally, and broadcasting the result throughout the
network.

Consequently, we will assume the more realistic (and rather common) model in
which messages have size O(logn), and a node may send at most one message on each
edge at each time unit.

We will also make the assumption that edge weights are polynomial in n, so an
edge weight can be sent in a single message. (This assumption is required for the time
analysis of all previous algorithms as well [GHS, A1].)

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 305

1.3. Our results. The original distributed MST algorithm of Gallager, Hum-
blet, and Spira [GHS] has a time complexity of O(n logn). This was later improved
by Awerbuch, who gave an O(n)-time algorithm [A1]. In this paper, we present
a distributed MST algorithm with time complexity O(Diam(G) + nε · log∗ n) for
ε = ln 3

ln 6 = 0.6131... .

2. Overview of the MST algorithm. Our algorithm is based on a careful
combination of two distinct approaches to the (distributed) construction of an MST.
Thus, before explaining our algorithm, it is instrumental to review the two approaches
and try to understand their shortcomings (when used individually).

2.1. Distributed growth approach. The first approach is the construction
method that is at the basis of the MST algorithm of [GHS] (referred to from now on
as the GHS algorithm). This algorithm does not utilize a central controller, or “center
of activity,” but rather allows a large number of processes to proceed simultaneously
and independently in the network. These processes gradually grow the MST from
scratch.

The GHS algorithm operates by growing so-called fragments in a distributed
manner, with each fragment consisting of a portion of the final MST. In each iteration
of the algorithm, the nodes of each fragment explore the immediate neighborhood of
the fragment and collectively decide on a neighboring fragment to merge with (by
adding the connecting edge to the tree), thus creating a larger fragment of the final
MST. This is a distributed version of the “blue” rule for MST construction (cf. [T,
p. 71]).

It is crucial to understand why algorithms based on this approach cannot guaran-
tee a time complexity proportional to Diam(G). The inherent difficulty lies in the fact
that the communication necessary for making the merging decisions for each fragment
is done on the fragment itself. This is a problem, since the MST is not guaranteed to
have depth proportional to Diam(G), and neither are any of its fragments. In fact,
it is easy to come up with examples for n-vertex graphs with diameter 1 whose MST
has depth n − 1. Thus, any approach based on communicating over the MST itself
will have time complexity proportional to n in the worst case on some graphs.

Note, however, that in the initial stages of the GHS algorithm, the fragments are
still small, and therefore communication on them is not as expensive. The idea on
which our algorithm is based is thus to start by running the GHS algorithm up to an
appropriately chosen point, and then switch to a different algorithm. In order for this
idea to work, it is essential to have a version of the GHS algorithm that controls the
rate of growth of the different fragments, preventing some fragments from growing
too large while other are still very small. (The original algorithm of [GHS] allows
uncontrolled growth of fragments.)

2.2. Coordinated elimination approach. The second approach to the dis-
tributed construction of an MST is based on synchronous, coordinated, centralized
operation. One extreme example for an algorithm operating in this way is the central-
ized algorithm mentioned in the introduction, in which the entire graph’s topology is
collected into a central node, which then computes an MST locally and broadcasts
the result throughout the network. This algorithm is slowed down considerably by
the heavy communication bottlenecks that are bound to be created along the paths
leading to the center node.

The crucial idea at the basis of the second approach is that some of this commu-
nication burden can be reduced by delegating the work of the center node to other

306 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

nodes along the paths leading to the center. This can be achieved if, instead of at-
tempting to build the MST, we concentrate on eliminating candidate edges, using the
so-called “red rule” for MST construction (cf. [T, p. 71]).

In order to control the complexity of the edge-elimination process, we employ a
new efficient pipelining technique aimed at overcoming congestion. This new tech-
nique deserves some discussion, since it is different and considerably simplified com-
pared to the one presented in an earlier version of this paper [GKP]. The new tech-
nique is motivated by the following complication in the solution of [GKP]. In the
end of the first stage of the algorithm, nodes are informed about candidate edges in
the graph (those that connect clusters). In the third stage of the [GKP] algorithm,
the nodes forward the description of those edges to their parents on a spanning tree,
toward the root. The problem is that there might be too many such edges, congest-
ing the accumulation process on the tree. The algorithm of [GKP] overcomes this
difficulty by introducing an intermediate stage employing a rather complex method
(centered on locality-based ideas related to [ADDJ, AGPV, B, PS1]) for eliminating
short cycles, and thus reducing the number of remaining edges for the third stage.

The algorithm presented here has only two stages. Both the second (cycle elim-
ination) and the third stages of [GKP] are replaced by a single stage, similar to the
third stage of [GKP], in which the nodes forward descriptions of candidate edges to
their parents on a breadth-first-search spanning tree. However, we incorporate a new
technique of cycle elimination into this stage. This new pipelining technique is very
simple, and the main novelty lies in its analysis. As in the third stage of the algorithm
in [GKP], nodes on the spanning tree forward the descriptions of their candidate edges
to their parents toward the root. However, here a node avoids forwarding the descrip-
tion of cycle-heavy edges. That is, a node forwards the description of edges according
to their weight and does not forward the description of an edge that closes a cycle with
edges whose description has already been forwarded. Let us now give a hint regarding
the difficulty in analyzing this stage of the protocol. It is not hard to prove that all
non-MST edges get eliminated by this process. The difficulty lies in analyzing the
time complexity. Note that the description above (i.e., that a node does not forward
a description of a cycle-heavy edge) seems to suggest that at certain points in time a
node might be forced to wait, due to not having an edge description that is eligible for
forwarding. Thus, it may seem that the convergecast may not be fully pipelined, and
hence may take a long time. We prove that this simple convergecast is fully pipelined,
and thus its running time is the one required, eliminating the need for the complex
cycle elimination stage of [GKP]. This pipelining proof may be of interest in itself.

2.3. Combined approach. Let us now outline the structure of our algorithm.
The algorithm consists of two parts as follows.

Algorithm Sublinear-MST

Part I: Controlled-GHS;

Part II: Edge elimination.

As its name indicates, Controlled-GHS (part I) is a modified variant of the original
algorithm of [GHS]. The purpose of the modification is to produce a balanced outcome
in terms of number and diameter of the resulting fragments. This is achieved by
computing, in each phase, a small dominating set on the fragment forest and merging

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 307

fragments accordingly. This, in turn, is achieved by invoking the distributed maximal
independent set (MIS) algorithm of [GPS]. At the end of this phase, we are left with
a “small” number of fragments, all of which have a “small” diameter.

Finally, part II performs the elimination of most of the remaining edges, leaving
only a tree connecting the fragments, and thus yielding the final MST. This elimi-
nation process is carried out in a distributed manner and requires nodes to forward
the description of certain edges to a central node, while eliminating the description
of certain other edges. (The forwarding is done on a superimposed breadth-first tree,
and the center is the root of this tree.) The central node does the final elimination,
which yields the output MST tree.

The details of each part are given in the remainder of the paper, followed by the
analysis of the total complexity.

3. Part I: Controlled-GHS. In this section we provide a modified, controlled
version of the Gallager-Humblet-Spira algorithm for MST that is suitable for our
purposes. We first provide a brief overview of the original algorithm of [GHS].

3.1. Brief description of the GHS algorithm. In the original distributed
algorithm of [GHS], nodes form themselves into fragments of increasing size. Initially,
all nodes are in singleton fragments. Nodes in each fragment F are connected by edges
that form a rooted MST, T (F), for the fragment. (Initially, the sole node comprising
a fragment is also its root.) Each node (other than the root) in a fragment has a
pointer to one of its neighbors, which is the next node on the path over the tree to
the root; moreover, each node “knows” the root Id. (In the remainder of this paper
we loosely use the word “fragment” to mean both the collection of nodes F and the
corresponding tree T (F).)

The events in the algorithm are divided into phases. Each phase takes as its input
the fragment structure output by the previous one and outputs larger fragments. (The
first phase takes as an input the singleton fragments, one per node.)

Let us now describe one phase. We present a simplified version of the GHS
algorithm compared to the original algorithm of [GHS]. (The original version is more
complex because of the desire to save messages and because of the asynchronous
nature of the networks for which it was designed.)

Within each fragment F , nodes cooperate to find the minimum-weight outgoing
edge in the entire fragment (an outgoing edge of a fragment F is an edge with one
endpoint in F and another at a node outside it). The strategy for identifying this
edge involves broadcasting over the fragment’s tree T (F), asking each node separately
for its own minimum-weight outgoing edge. These edges are then sent upwards on
the tree T (F), toward the root. Each intermediate node first collects this information
from all its children in the tree and then passes up only the lowest-weight edge it has
seen (which is therefore the lowest-weight edge in its subtree). The minimum-weight
outgoing edge is selected by the root to be included in the final MST.

Once a fragment’s minimum-weight outgoing edge is found, a message is sent out
over that edge to the chosen fragment on the other side. The two fragments then
combine, possibly along with several other fragments, into a new, larger fragment. If
the other fragment chose the same edge, then the two fragments agree at that point to
combine, and the edge they both chose is termed the core edge. Otherwise, following
the route from a fragment F1, to its chosen fragment F2, to F2’s chosen fragment F3,
and so on, [GHS] show that one must eventually reach two fragments that agree to
combine over a core edge. The combined fragment includes these two, as well as all
those other fragments that have such a route to them.

308 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

The combined fragment has a root; it is the node with the higher Id of the two
endpoints of the core edge. (This can be simulated in the case that nodes do not have
distinct Id’s but edges have distinct weights.)

This concludes the description of a single phase. In the next phase, the new frag-
ment finds its own minimum-weight outgoing edge, and the entire process is repeated
until all the nodes in the graph have combined themselves into one single fragment.
Each fragment (of size 2 or greater) is identified by the fragment’s core edge and root.

We remark that in the original GHS algorithm, all nodes operate asynchronously.
This creates the risk of undesirable “growth patterns” of fragments, resulting in exces-
sive communication costs (measured in number of messages). This problem is handled
by using special rules for merging fragments, designed to prevent these complications.
These rules are based on a “balanced data structure” approach. A phase number is
associated with each fragment. If phase(F) = l for a given fragment F , then the
number of nodes in F is greater than or equal to 2l. Initially, all fragments (singleton
nodes) are at phase 0. When two fragments at phase l are combined together, the
resulting new fragment has phase l + 1. Thus, the total number of messages is kept
to O(n logn) (although some more complex rules are needed to allow merges between
fragments of unequal phases). Similarly, it is not hard to show by induction on the
phase numbers that the time complexity of the algorithm is O(n logn) time units.

We refer the reader to [GHS] for further details.

3.2. Computing a small dominating set on a tree. In this subsection we
present a procedure Small-Dom-Set for computing a small dominating set on a given
tree. The procedure makes use of a subprocedure for computing a maximal indepen-
dent set in the tree. (A set M of vertices in a tree T is said to dominate the tree
if every vertex outside M has a neighbor in M .) A distributed version of procedure
Small-Dom-Set will later be used as a component in our Controlled-GHS algorithm,
which is a modification of GHS.

Our goal is as follows. Given a rooted tree T with a vertex set V (T), find a set
of vertices M ⊆ V (T) such that

1. M dominates V (T), and

2. |M | ≤ |V (T)|
2 .

Furthermore, we would like this procedure to be amenable to a fast distributed
implementation.

The procedure is based on the following. For a vertex v ∈ V (T), let Child(v)
denote the set of v’s children in T . We use a level function Ľ(v) on the nodes, defined
as follows:

Ľ(v) =

{
0 if v is a leaf,
1 + minu∈Child(v)(Ľ(u)) otherwise.

We denote by Ľi the set of tree nodes at level i,

Ľi = {v | Ľ(v) = i}.
Procedure Small-Dom-Set for computing a dominating set M on a tree T is presented
next.

Algorithm Small-Dom-Set
1. Mark the nodes of T with level numbers Ľ(v) = 0, 1, 2;
2. Select an MIS, Q, in the set R of unmarked nodes;
3. M ← Q ∪ Ľ1.

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 309

(a) (b)

L(v)>2

L(v)=2

L(v)=1

L(v)=0

non-MIS

MIS

Fig. 1. (a) The level numbers marked by the algorithm on a given tree T . (b) A small domi-
nating set M on the tree T .

A pictorial example is given in Figure 1.
For the distributed implementation discussed in the next subsection, it is impor-

tant to note that although the level numbers Ľ(v) are defined for every vertex v in the
tree, only the vertices belonging to the first three levels, Ľ0, Ľ1, and Ľ2, are actually
marked.

The fact that procedure Small-Dom-Set produces a dominating set is established
by the following lemma.

Lemma 3.1. Let M be the outcome of procedure Small-Dom-Set on the tree T .
Then for every node v 6∈M there exists an adjacent node v′ ∈M .

Proof. Partition V (T) into Ľ0 ∪ Ľ1 ∪ Ľ2 ∪ R. The set M output by procedure
Small-Dom-Set is composed of Q ∪ Ľ1. Now, by choice of Q, it dominates each node
of R \Q. Also, each node of Ľ0 ∪ Ľ2 has a neighbor in Ľ1.

The “smallness” of the resulting dominating set is guaranteed by the following
lemma.

Lemma 3.2. |M | ≤ |V (T)|
2 .

Proof. By construction, M = Ľ1 ∪Q. It is clear that |Ľ1| ≤ |Ľ0|, and hence

|Ľ1| ≤ |Ľ0 ∪ Ľ1|
2

.(1)

We now claim that

|Q| ≤ |R ∪ Ľ2|
2

.(2)

This can be proved by selecting for every v ∈ Q a distinct match ω(v) ∈ (R∪ Ľ2)−Q,
thus establishing that |R∪ Ľ2| ≥ 2 · |Q|. The matching is done as follows: pick ω(v) to

310 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

be an arbitrary child of v (by definition, vertices in Q always have children in R∪ Ľ2).
Distinctness is guaranteed by the fact that each node in the tree has a unique parent.
It now follows from (1) and (2) that

|M | = |Q ∪ Ľ1| ≤ |R ∪ Ľ2|
2

+
|Ľ0 ∪ Ľ1|

2
=
|V (T)|

2
.

3.3. Controlled-GHS.

3.3.1. Description of the Controlled-GHS procedure. In this subsection, we
provide the modified, controlled version of GHS (named Controlled-GHS) that is able
to achieve the following:

1. Upon termination, the number of fragments is bounded from above by N (for
N to be specified later).

2. Throughout the execution, the diameter of every fragment F satisfiesDiam(F)
≤ d (for d to be specified later).

Intuitively, since we focus on a synchronous algorithm, and we do not care about
communication complexity, our version of GHS is simpler than the original algorithm.
In particular, we are oblivious to balancing fragment sizes, and we do not need to use
the phase rules used in the original algorithm, since phases are imposed by phase
synchronization (using the assumed global clock).

More specifically, Controlled-GHS starts with singleton fragments, just like GHS
(see subsection 3.1), and executes a total of I phases. Each phase outputs a collection
of fragments that serve as the input for the next phase. A fragment is a rooted tree,
where each node (except for the root) has a pointer to the edge that leads to its parent
in the tree. Each phase of Controlled-GHS consists of the following two stages.

Stage 1. Consider the fragments that are input to the phase. Execute a
phase of GHS up to a point where each such input fragment F has chosen its
minimum-weight outgoing edge, i.e., has decided with which other fragment
in the current fragment collection it wants to merge.
This decision induces a “forest” structure on the fragment collection (possibly
with length-2 loops at the tree roots). Henceforth we refer to this structure
as the fragment forest, denoted FF .
Stage 2. Break the resulting trees into “small” (O(1) depth) trees, and merge
only these small trees.

This process is depicted in Figure 2. To accomplish Stage 2, the algorithm first
computes a dominating set MFF (T̃) on each tree T̃ of the fragment forest FF . Note
that the nodes of this tree are input fragments of the current phase of the algorithm.
Let MFF be the union over the trees T̃ (of the FF forest) of MFF (T̃). The algorithm
then lets each fragment F 6∈MFF pick one neighboring fragment F ′ ∈MFF and merge
with it. This causes the actual merges performed in a phase of Controlled-GHS to
have the form of “stars” in the fragment forest FF , and prevents merges along long
chains, hence bounding the diameter of the resulting fragments.

The dominating sets are computed using a distributed implementation of pro-
cedure Small-Dom-Set, denoted Dist-SDS, applied separately to each tree T̃ in the
fragment forest FF . A key aspect in this computation is the use of a distributed al-
gorithm for computing a maximal independent set. Most distributed MIS algorithms
in the literature (e.g., [AGLP, PS2]) can be used for our purposes. In fact, our solu-
tion only requires to compute an MIS on a tree, so we can use a distributed version
of the algorithm of [GPS], which is optimal for trees. (This algorithm makes use of
O(logn)-bit messages and therefore can be used within our model.)

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 311

Fig. 2. A phase of Controlled-GHS: the tree T of Figure 1b is broken into “small” trees
(represented by the solid edges) according to the MIS.

The algorithm of [GPS] (henceforth referred to as the GPS algorithm) has the
following properties.

Lemma 3.3 (see [GPS]). Applied in a given n-vertex tree G, Algorithm GPS

computes (in a synchronous manner) a maximal independent set (MIS) of G using
O(logn)-bit messages, and its time complexity is O(log∗ n).

Note that although procedure Dist-SDS is applied to the trees of the fragment
forest FF , it is actually executed on the original network itself. Hence the procedure
operates by simulating each fragment by a single representative, say, its root.

3.3.2. Analysis of controlled-GHS. The bounds on the number and diameter
of fragments are established by the next lemma. Given a fragment forest FF , let
Diam(FF) = maxF∈FF {Diam(F)}. Let FFi denote the fragment forest produced
by the algorithm Controlled-GHS at the end of the ith phase. (FF0 is the initial set
of vertices.)

Lemma 3.4. In each phase i of Controlled-GHS,
1. the number of fragments at least halves, i.e., |FFi| ≤ |FFi−1|/2, and
2. the maximum diameter of a fragment increases by a factor of at most 3

(possibly plus 2), i.e., Diam(FFi) ≤ 3Diam(FFi−1) + 2.
Proof. The number of new fragments in each tree T = T (F) of the fragment forest

FF at the end of a phase is equal to |M(T)|. By Lemma 3.2, |M(T)| ≤ |V (T)|/2.
Hence the same holds for the entire fragment forest, and claim 1 of the lemma follows.
Claim 2 is readily satisfied since the merges are star shaped.

Corollary 3.5. After running Controlled-GHS for I phases,

312 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

1. the number of fragments in FFI is at most N(I) = n
2I

, and
2. Diam(FFI) ≤ d(I) = 3I − 1 for every fragment F .

Let us now turn to analyzing the time complexity of Controlled-GHS. We first
examine the performance of procedure Dist-SDS.

Lemma 3.6. When executed on a fragment forest FF , procedure Dist-SDS takes
time O(log∗ n) ·Diam(FF).

Proof. It is easy to see that if a fragment F is a leaf in the fragment forest FF ,
then it identifies itself as such, and subsequently marks itself Ľ0, in time O(Diam(F)).
Similarly, fragments mark themselves Ľ1 and Ľ2 in time O(Diam(F)) as well. An-
other part that affects the time complexity is the MIS computation. By Lemma
3.3, the time complexity of the GPS algorithm is O(log∗ n). Note that since the pro-
cedure is executed on the original network itself, it is slowed down by a factor of
O(Diam(FF)). Hence the implementation of the GPS algorithm on the fragments of
FF is slowed down to O(log∗ n) ·Diam(FF) in our case.

The properties of the Controlled-GHS algorithm are now summarized by the
following graph decomposition lemma.

Lemma 3.7. When Algorithm Controlled-GHS is activated for I phases, it takes
O(3I · log∗ n) time and yields a fragment forest FFI of up to N(I) = n/2I fragments,
of diameter Diam(FFI) ≤ d(I) = 3I − 1. Each fragment in the forest is a fragment
of an MST of the graph G.

Proof. By Lemma 3.6, each phase i, 1 ≤ i ≤ I, of Controlled-GHS takes time
at most Diam(FFi−1) · O(log∗ n). By Corollary 3.5, this is at most 3i−1 · O(log∗ n).
Thus, the total time is given by

∑
i≤I

(3i−1 ·O(log∗ n)) ≤ 3I ·O(log∗ n) .

The size and diameter properties of the resulting fragment forest follow directly from
Corollary 3.5.

The rather even graph decomposition obtained by Algorithm Controlled-GHS
may conceivably be useful for other purposes as well.

4. Part II: Edge elimination. The second part of our algorithm starts at the
point where we are given a fragment graph F̃l, whose vertex set V (F̃l) is a fragment
forest FFI containing N ≤ N(I) fragments of the MST, and whose edge set E(F̃l) is
a collection of interfragment edges, which are the remaining candidates for joining the
MST. We now proceed to reduce the total number of remaining interfragment edges
(to the necessary N − 1).

4.1. The pipeline algorithm. We need the following technical definition. For
a set of edges Q and a cycle-free subset U ⊆ Q, define Cyc(U,Q) as the set of all
edges e ∈ Q \ U such that U ∪ {e} contains a cycle.

We are now ready to describe our pipelined procedure, given in Figure 3.

4.2. Analysis. Our analysis hinges on two main properties of the procedure.
First, the edges reported by each intermediate node to its parent in the tree are
sent in nondecreasing weight order. Second, each intermediate node transmits edges
upwards in the tree continuously until it exhausts all the reportable edges from its
subtree; namely, once the set of candidates RC is empty, the node will learn of no
more reportable edges.

Let us first make the following straightforward but crucial observation.

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 313

1. Build a breadth-first-search tree B on G, with a root r(B).
2. Throughout the execution, each node v on the tree maintains a

set Q of all the interfragment edges it knows of (either directly or
by “learning” from its children in the previous rounds), ordered
by nondecreasing edge weights. Initially this set contains only
the interfragment edges adjacent to it. It also maintains a set U
(initially empty) of all the edges it has already sent up to its parent
in the tree.

3. A leaf v starts sending edges upwards at pulse 0. An intermedi-
ate node v starts sending at the first pulse after it has received
messages from all its children.

4. At each pulse i, the node sends up to its parent in the tree the
lightest edge e in Q that has not been sent up in the previous
rounds up to round i − 1 (i.e., e 6∈ U), and which does not close
a cycle with the edges of U . If no such edge exists then terminate
participation in the pipelining part of the procedure (i.e., go to
step 6).
More formally, the node computes the set of remaining candidates
(RC)

RC = Q \ (U ∪ Cyc(U,Q)).

If RC = ∅, then v sends a “terminating” message to its parent in
the tree and terminates its participation in the pipelining part of
the protocol; else, it sends up to its parent the lightest edge e in
RC.

5. The root r(B) computes locally the set S of the N − 1 edges par-
ticipating in the MST of the fragment graph F̃ from among the
edges it hears of from its children.

6. The root r(B) then broadcasts (over the tree B) the resulting set of
N −1 interfragment edges (constituting the MST for the fragment
graph F̃) to all nodes in G.

Fig. 3. Procedure Pipeline.

Lemma 4.1. The edges reported by each intermediate node to its parent in the
tree form a forest.

Proof. This follows immediately from the rule used by the procedure to select the
next edge to be transmitted upwards.

Lemma 4.2. Every node v starts sending messages upwards at pulse Ĥ(v), where
Ĥ(v) is the height function defined as follows:

Ĥ(v) =

{
0 if v is a leaf ;

1 + maxu∈Child(v)(Ĥ(u)) otherwise.

Proof. The proof is straightforward by induction on the tree structure, from the
leaves upward.

Our main technical lemma concerns the properties of a node on the tree in some
round of the algorithm. Consider an intermediate node v at height H that has still

314 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

not terminated its participation in the algorithm, at round t, for some t ≥ H. Note
that each of the children of v in the tree is of height H−1 or lower, hence, by Lemma
4.2, all of them started transmission at round H − 1 or earlier. Call a child active if
it has not terminated yet (i.e., it has upcast an edge to v on round t− 1). Let

At(v) = {v1, . . . , vp}
be the set of v’s active children at round t.

Lemma 4.3.
(a) At the beginning of round t, the candidate set RC examined by v contains
at least one candidate edge upcast by each of its active children from At(v).
(b) If v upcasts an edge of weight ω at round t, then all of the edges which
v was informed of at round t − 1 by its active children were of weight ω or
greater.
(c) If v upcasts an edge of weight ω at round t, then any later edge it will
learn of is of weight ω or greater.
(d) Node v upcasts edges in nondecreasing weight order.

Proof. We prove the lemma by induction on the height of the tree, starting from
the leaves upwards.

A leaf v has no (active or other) children, and therefore claims (a), (b), and (c)
hold vacuously. Claim (d) follows trivially from the rules of the procedure.

Let us now consider an intermediate node v, and assume that the claims hold for
each of its children. We need to prove the four claims for v. We start with claim (a).

Let U be the set of m edges upcast by v during the first m = t − H rounds it
has participated in (namely, rounds H, . . . , t − 1 if t > H). By Lemma 4.1, U forms
a forest in G. Consequently, break U into the trees U1, . . . , U` in G, with xi = |Ui|,
where each such tree Ui has a vertex set V (Ui) of exactly xi + 1 vertices, and

∑
i

xi = |U | = m.(3)

Consider an active child u of v. Denote by D the set of edges upcast by u so
far (up to and including round t − 1). Since u was still active on round t − 1, it has
transmitted continuously to v since round Ĥ(u), which, as discussed before, is at most
H − 1. Therefore, we conclude that

|D| ≥ m+ 1.(4)

Suppose, for the sake of contradiction, that none of the edges upcast by u is a
candidate in round t. In other words, for each edge e ∈ D, either e was upcast by v
earlier (namely, e ∈ U), or e closes a cycle with the edges of U (namely, e ∈ Cyc(U)).
Thus, every such edge e has both of its endpoints in U . Furthermore, e cannot possibly
connect endpoints that belong to two different trees Ui and Uj (since in that case, e
would have been in neither U nor Cyc(U)).

This implies that the set D can be partitioned into sets D1, . . . , D` such that all
the edges of Di are restricted to vertices V (Ui) of the tree Ui, for 1 ≤ i ≤ `. Moreover,
notice that each such set Di is a forest, since the entire set D is a forest by Lemma
4.1.

The last two facts combined imply that

|Di| ≤ |V (Ui)| − 1 = xi.(5)

SUBLINEAR TIME DISTRIBUTED MST ALGORITHM 315

Combining (3), (4), and (5) we get

m+ 1 ≤ |D| =
∑
i

|Di| ≤
∑
i

xi = m,

which is a contradiction. Hence claim (a) must hold.
Next we prove claim (b) as follows. Consider any active child u of v. Let e be

the edge upcast by u on round t− 1. (Note that e does not necessarily have to be in
RC.) Let e′ be some edge that was upcast by u at some round t′ ≤ t− 1 and is still
in the candidate set RC on round t (such an edge must exist by claim (a)). By the
inductive hypothesis of claim (d), ω(e) ≥ ω(e′). By the edge selection rule of node v,
ω(e′) ≥ ω, and claim (b) follows.

Next we note that claim (c) follows trivially from claim (b). Finally, claim (d)
follows trivially from claim (c) and the edge selection rule of the procedure.

Finally, we need to argue that nodes do not terminate the algorithm prematurely.
Lemma 4.4. After a node v has terminated its participation in the algorithm, it

will learn of no more reportable edges.
Proof. We need to argue that once the set RC becomes empty, no new candidate

edges will become known to v. We prove this fact by induction on the structure of
the tree, starting from the leaves upward. The inductive step follows directly from
claim (a) of Lemma 4.3, which guarantees that if RC is empty on round t, none of
v’s children have upcast it an edge in round t− 1, and hence all of them have already
terminated.

Lemma 4.5. The running time of procedure Pipeline is bounded by O(N +
Diam(G)), and its output is an MST for G.

Proof. The fact that the resulting tree is an MST follows from the fact that
the trees constructed in the first stage were fragments of the MST, and from the
correctness of the “red rule” employed for edge elimination in the procedure (cf. [T,
p. 71]). (Essentially the red rule says that an edge that is the heaviest on any cycle
is not a part of any MST.)

As for the running time, the bound is derived from the following facts. First,
the root of the tree receives at most N edges from each of its children. Second, the
children send these edges to the root in a fully pipelined fashion (namely, without
stopping until exhausting all the edges they know of). Finally, the root starts getting
such messages at time Diam(G) at the latest.

5. The complexity of the combined algorithm. Combining the two parts,
we get the following distributed algorithm for MST.

1. Perform Algorithm Controlled-GHS for I phases.
2. Perform Algorithm Pipeline.

Summarizing the results of the last two sections, we get the following theorem.
Theorem 5.1. There exists a distributed MST algorithm with time complexity

O(Diam(G) + nε · log∗ n) for ε = ln 3
ln 6 = 0.6131... .

Proof. The complexities of the two parts of our algorithm are as follows, for the
given parameter I specified for the first part:

Part I: 3I ·O(log∗ n).
Part II: Diam(G) + n

2I
.

The total time complexity is thus optimized when choosing I such that 3I = n
2I

,

namely, I = lnn
ln 6 . For this choice of I, we get 3I = n

2I
= nε for ε = ln 3

ln 6 , which yields
a total time complexity of O(Diam(G) + nε · log∗ n).

316 JUAN GARAY, SHAY KUTTEN, AND DAVID PELEG

Acknowledgments. It is a pleasure to thank Ambuj Singh and Jerry James for
useful comments. Thanks are also due to two anonymous referees for their comments,
which helped to significantly improve the readability of the paper.

REFERENCES

[ADDJ] I. Althöfer, G. Das, D. Dobkin, and D. Joseph, Generating sparse spanners for
weighted graphs, in Proc. 2nd Scandinavian Workshop on Algorithm Theory, Lec-
ture Notes in Comput. Sci. 447, Springer-Verlag, New York, 1990, pp. 26–37.

[A1] B. Awerbuch, Optimal distributed algorithms for minimum-weight spanning tree, count-
ing, leader election and related problems, in Proc. 19th ACM Symp. on Theory of
Computing, ACM, New York, 1987, pp. 230–240.

[A2] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823.
[AGLP] B. Awerbuch, A. Goldberg, M. Luby, and S. Plotkin, Network decomposition and

locality in distributed computation, in Proc. 30th IEEE Symp. on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 364–
375.

[AGPV] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish, A tradeoff between information
and communication in broadcast protocols, J. ACM, 37 (1990), pp. 238–256.

[AKP] B. Awerbuch, S. Kutten, and D. Peleg, Competitive distributed job load balancing,
Proc. 24th ACM Symp. on Theory of Computing, ACM, New York, 1992, pp. 571–
580.

[AP1] B. Awerbuch and D. Peleg, Network synchronization with polylogarithmic overhead,
in 31st IEEE Symp. on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1990, pp. 514–522.

[AP2] B. Awerbuch and D. Peleg, Concurrent online tracking of mobile users, Proc. ACM
SIGCOMM Symposium on Communication, Architectures and Protocols, ACM, New
York, 1991, pp. 221–233.

[B] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[CT] F. Chin and H. F. Ting, An almost linear time and O(n log(n)+e) messages distributed

algorithm for minimum-weight spanning trees, in Proc. 26th IEEE Symp. on Founda-
tions of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1985,
pp. 257–266.

[G] E. Gafni, Improvements in the time complexity of two message-optimal election algo-
rithms, in Proc. 4th Symp. on Principles of Distributed Computing, ACM, New York,
1995, pp. 175–185.

[GHS] R. Gallager, P. Humblet, and P. Spira, A distributed algorithm for minimum-weight
spanning trees, in ACM Trans. Programming Lang. Systems, 5 (1983), pp. 66–77.

[GKP] J. Garay, S. Kutten, and D. Peleg, A sub-linear time distributed algorithm for
minimum-weight spanning trees, in Proc. 34th IEEE Symp. on Foundations of Com-
puter Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 659–668.

[GPS] A. V. Goldberg, S. Plotkin, and G. Shannon, Parallel symmetry breaking in sparse
graphs, in Proc. 19th ACM Symp. on Theory of Computing, ACM, New York, 1987,
pp. 315–324.

[L] N. Linial, Distributive graph algorithms—global solutions from local data, in Proc. 28th
IEEE Symp. on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1987, pp. 331–335.

[MRR] J. M. McQuillan, I. Richer, and E. C. Rosen, The new routing algorithm for the
ARPANET, IEEE Trans. Comm., COM-28 (1980), pp. 711–719.

[P] D. Peleg, Time-optimal leader election in general networks, J. Parallel Distrib. Comput.,
8 (1990), pp. 96–99.

[PS1] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[PS2] A. Panconesi and A. Srinivasan, Improved distributed algorithms for coloring and net-

work decomposition problems, in Proc. 24th ACM Symp. on Theory of Computing,
ACM, New York, 1992, pp. 581–592.

[T] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

ERRATUM: CONDITIONS FOR OPTIMALITY OF
THE HUFFMAN ALGORITHM∗

D. STOTT PARKER, JR.†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, p. 317, February 1998 014

Key words. Huffman algorithm, optimal tree construction, weighted path length, tree height,
quasi-linear functions, convex functions, Rényi entropy

AMS subject classifications. 94A15, 94A17, 94A24, 94A29, 94A45, 68Q20, 68R05, 05A05,
05C05

PII. S0097539797328550

The article [1] contains errors that are corrected by the underlined text below.

• page 473:
A weight combination function F : U2 → U is increasing if y < z implies
F (x, y) < F (x, z) for all x, y, z in U .

• page 474:
QL2. (Increasingness) F (u, x) < F (u, y) if x < y.

• page 475:
Theorem 2. F is Huffman monotone if and only if F satisfies properties
QL3 and QL4, given that F is increasing.

• page 476:
Corollary 1. F is Huffman monotone if and only if F is quasi-linear
and satisfies the restrictions of Lemma 1, given that F is increasing.

• page 487:
If cost is determined by the tree’s root weight, then the Hu-Tucker modifi-
cation of Huffman’s algorithm produces an optimal binary search tree when-
ever a nonshrinking weight combination function F satisfying conditions QL1,
QL2, QL3, and QL4 of section 3 is used.

Acknowledgments. The importance of these errors was kindly pointed out to
the author by D.E. Knuth, who constructed a very complex counterexample to The-
orem 2 as it was stated in [1]. Where the article defined an increasing function F
to satisfy F (u, x) ≤ F (u, y) if x ≤ y, the strict definition of increasingness above is
needed to establish Lemma 2 and the other results itemized. The corrections above
are listed in the references of [2]. Their overdue appearance here is prompted by
publication of a related work [3].

REFERENCES

[1] D. S. Parker, Conditions for optimality of the Huffman algorithm, SIAM J. Comput., 9 (1980),
pp. 470–489.

[2] D. E. Knuth, Huffman’s algorithm via algebra, J. Combin. Theory Ser. A, 32 (1982), pp. 216–
224.

[3] D. S. Parker and P. Ram, The construction of Huffman codes is a submodular (‘convex’)
optimization problem over a lattice of binary trees, SIAM J. Comput., to appear.

∗Received by the editors August 21, 1997; accepted for publication October 6, 1997.
http://www.siam.org/journals/sicomp/27-1/32855.html

†UCLA Computer Science Department, University of California, Los Angeles, CA 90095-1596
(stott@cs.ucla.edu).

317

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS∗

HAGIT ATTIYA† AND OPHIR RACHMAN†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 319–340, April 1998 001

Abstract. The atomic snapshot object is an important primitive used for the design and verifi-
cation of wait-free algorithms in shared-memory distributed systems. A snapshot object is a shared
data structure partitioned into segments. Processors can either update an individual segment or
instantaneously scan all segments of the object. This paper presents an implementation of an atomic
snapshot object in which each high-level operation (scan or update) requires O(n logn) low-level
operations on atomic read/write registers.

Key words. atomic read/write registers, single-reader multiwriter, snapshot objects, lineariz-
ability, asynchronous shared memory systems, wait-free computations

AMS subject classifications. 68P05, 68Q10, 68Q20, 68Q22

PII. S0097539795279463

1. Introduction. Wait-free algorithms for shared-memory systems have attract-
ed considerable attention during the past few years. The difficulty of synchronization
and communication in such systems caused many of the algorithms that were devel-
oped to be quite intricate. A major research effort attempts to simplify the design
and verification of efficient wait-free algorithms by defining convenient synchronization
primitives and efficiently implementing them. One of the most attractive primitives
is the atomic snapshot object introduced in [1, 2, 6].

An atomic snapshot object (in short, snapshot object) is a data structure shared
by n processors. The snapshot object is partitioned into n segments, one for each
processor. Processors can either update their own segment or instantaneously scan
all segments of the object. By employing a snapshot object, processors obtain an
instantaneous global picture of the system. This sidesteps the need to rely on “incon-
sistent” views of the shared memory and reduces the possible interleavings of the low
level operations in the execution. Therefore, snapshot objects greatly simplify the de-
sign and verification of many wait-free algorithms. An excellent example is provided
by comparing the recent proof of a bounded concurrent timestamp algorithm using
snapshot objects [15] with the original intricate proof in [10].

Unfortunately, the great conceptual gain of using snapshot objects is often dimin-
ished by the actual cost of their implementation; the best snapshot implementation to
date requires O(n2) read and write operations on atomic registers [1, 4]. Compared
with the cost of simply reading n memory locations, this might seem a high price
to pay for modularity and transparency. Thus, significant effort has been spent on
avoiding snapshots and constructing algorithms directly from read and write opera-
tions.

This paper presents a snapshot object implementation in which each update or
scan operation requires O(n logn) operations on single-writer multireader atomic reg-

∗Received by the editors January 3, 1995; accepted for publication (in revised form) December
18, 1995. An extended abstract of this paper appeared in Proceedings of the 12th Annual ACM
Symposium on Principles of Distributed Computing, Association for Computing Machinery, New
York, 1993, pp. 29–40. This research was supported by grant 92-0233 from the United States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Technion V.P.R., Argentinian
Research Fund, and by the fund for the promotion of research in the Technion.

http://www.siam.org/journals/sicomp/27-2/27946.html
†Department of Computer Science, The Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il,

fimfam@cs.technion.ac.il).

319

320 HAGIT ATTIYA AND OPHIR RACHMAN

isters. Thus, we dramatically reduce the gap between the trivial lower bound of
Ω(n) and the best known upper bound of O(n2) for atomic snapshots. Consequently,
our snapshot object makes it feasible to design modular and easy to verify wait-free
algorithms, without a great sacrifice in their efficiency.

We start with an algorithm for implementing an m-shot snapshot object, that is, a
snapshot object to which up to m operations can be applied. The algorithm is simple
and requires O(n logm) operations on single-writer multireader atomic registers. The
algorithm is inspired by the algorithm presented in [7] for solving lattice agreement
[4, 7, 11]. However, the algorithm of [7] uses atomic Test&Set operations, while the
current algorithm uses only atomic read and write operations.

We then present ways to transform this algorithm to implement an∞-shot snap-
shot object, that is, an object that supports an infinite number of operations.

One way is based on general-purpose transformations. In [7], the snapshot ob-
ject was proved to be reducible to the lattice agreement problem. By employing the
transformation of [7], the restriction of our algorithm to solve lattice agreement imme-
diately implies an∞-shot snapshot object in which each operation requires O(n logn)
read and write operations on atomic registers. Unfortunately, this implementation re-
quires an unbounded amount of memory. The bounded rounds abstraction of [13] can
be used to bound the memory requirements of this implementation.

An alternative path is a direct implementation of an∞-shot snapshot object, with
O(n logn) operations for each scan or update. This implementation uses a bounded
amount of memory and is based on recycling a single copy of the m-shot object.
This recycling combines in a novel way synchronization techniques such as handshake
bits [6], borrowing views [1] and traceable use techniques [14], and we believe it is
interesting on its own.

The bounded algorithm uses atomic operations on registers that may contain up
to O(n(logn+ |V |)) bits, where |V | is the number of bits needed to represent a value
of the snapshot object. (There are also operations on registers of size O(n4 logn), but
these occur infrequently.)

Besides the conceptual contribution to the design of future wait-free algorithms,
our snapshot object immediately yields improvements to existing algorithms that use
the snapshot object by plugging in our more efficient one. These include randomized
consensus [3, 6], approximate agreement [8], bounded timestamping [15], and general
constructions of wait-free concurrent objects [4, 17].

A multiwriter snapshot object is a generalized snapshot object in which any pro-
cessor can update any segment. There is a transformation of Anderson’s [2] which uses
any snapshot object as a black box to construct a multiwriter snapshot object; this
transformation requires a linear number of read and write operations. This transfor-
mation can be used to turn our algorithm into an algorithm for a multiwriter snapshot
object with the same complexity.

Deterministic snapshot implementations have been proposed by Anderson [2]
(bounded memory and exponential number of operations), by Aspnes and Herlihy
[4] (unbounded memory and O(n2) operations), and by Afek et al. [1] (bounded
memory and O(n2) operations). Attiya, Herlihy, and Rachman [7] give an O(n log2 n)
implementation that uses Test&Set registers, and an O(n) implementation that uses
dynamic Test&Set registers. Israeli, Shaham, and Shirazi [23] give a general technique
to transform any snapshot implementation that requires O(f(n)) operations per scan
or update into an (unbounded) implementation that requires O(f(n)) operations per
scan and only a linear number of operations per update (or vice versa). Constructions
of multiwriter snapshot objects appear in [1, 2].

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 321

Introduced in [7] are randomized implementations of the snapshot object
(O(n log2 n) using single-writer multireader registers, and O(n) using dynamic single-
writer multireader registers). Chandra and Dwork [9] also give a randomized imple-
mentation that requires O(n log2 n) operations on atomic single-writer multireader
registers. Weaker variants of the snapshot object were implemented by Kirousis,
Spirakis, and Tsigas [24] (single-scanner snapshot object), and by Dwork et al. [12]
(nonlinearizable snapshot object).

Independent of our work, Israeli and Shirazi [21] constructed a deterministic snap-
shot object that requiresO(n3/2 log2 n) operations and uses unbounded memory. Also,
they showed a lower bound of Ω(min{w, r}) low-level operations for any update op-
eration, where w is the number of updaters and r is the number of scanners [22].

As is made clear by the above review, our O(n logn) deterministic snapshot im-
plementation significantly improves all known deterministic implementations that use
only atomic registers and even improves almost all the existing randomized implemen-
tations. Note that by the general technique of [23], our snapshot implementation can
be improved to require O(n logn) operations per update and only O(n) operations
per scan (or vice versa).

Following the original publication of our algorithm, Inoue et al. [19] presented an
atomic snapshot object that requires only a linear number of read and write opera-
tions. However, this algorithm requires multiwriter registers, that is, each processor
can write to each register. In contrast, our algorithms use only single-writer registers.

The rest of the paper is organized as follows. Section 2 includes definitions of the
model and of the snapshot object. In section 3, we present the implementation of the
m-shot snapshot object, which is then used to construct the ∞-shot snapshot object
in section 4. We conclude in section 5 with a discussion of our results.

2. The snapshot object. Our model of computation is standard and follows,
e.g., [8, 16].

An atomic snapshot object is partitioned into n segments, S1, . . . , Sn, where only
processor pi may write to the ith segment. The snapshot object supports two op-
erations, scan and update(v). The scan operation allows a processor to obtain an
instantaneous view of the segments, as if all n segments are read in a single atomic
step. A scan operation returns a view, which is a vector V [1, . . . , n], where V [i] is the
value for the ith segment. The update operation with parameter v allows a processor
to write the value v into its segment.

An implementation of the snapshot object should be linearizable [18]. That is,
any execution of scan and update operations should appear as if it was executed
sequentially in some order that preserves the real time order of the operations.

In more detail, each scan or update is implemented as a sequence of primitive
operations. The nature of the primitive operations depends on the low-level objects
used; in our case, read and write operations of atomic registers. An execution is a
sequence of primitive operations, each executed by some processor as part of some
scan or update operation. We assume that each processor has at most one (high-level)
operation in progress at a time; that is, it does not start a new operation before the
preceding one has completed.

Define a partial order → on (high-level) operations in an execution such that
op1 → op2 if (and only if) the operation op1 has terminated before the operation op2
has started; that is, all low-level operations that comprise op1 appear in the execution
before any low-level operation that is part of op2. The partial order → reflects the
external real time order of nonoverlapping operations in the execution.

322 HAGIT ATTIYA AND OPHIR RACHMAN

For the snapshot implementation to be correct, we require that scan and update
operations can be linearized. That is, there is a sequence that contains all scan and
update operations in the execution that

a. extends the real time order of operations as defined by the partial order →;
and

b. obeys the sequential semantics of the snapshot operations; that is, if view
is returned by some scan operation, then for every segment i, view[i] is the
value written by the last update to the ith segment which precedes the scan
operation in the sequence.

In this paper, we define one operation that combines both scan and update,
denoted scate(v). Executing a scate(v) operation by pi both writes v into Si and
returns an instantaneous view of the n segments.1 Intuitively, to perform update(v) a
processor invokes scate(v) and simply ignores the view it returns; to perform a scan
the processor invokes scate(v), where v is the current value of its segment.

Another property that we require is wait-freedom; that is, every processor com-
pletes its execution of a scan or an update within a bounded number of its own
(low-level) operations, regardless of the execution of other processors.

3. Implementation of an m-shot snapshot object. In this section we con-
struct an m-shot snapshot object, which is a degenerate instance of the general snap-
shot object. Namely, an m-shot snapshot object is defined exactly as the general
snapshot object, except that the total number of scate operations that may be per-
formed by all processors is at most m.

3.1. Preliminaries. For the construction of the m-shot snapshot object, we
modify each segment of the snapshot object to contain both the value of the segment
in the field value, and some additional information that indicates the number of times
pi performed an operation. The additional fields seq and counter are incremented
with each operation performed by pi. Although the seq and counter fields contain
exactly the same information, they have different roles in the implementation. The
seq field determines which of two values written by pi is more up to date. The counter
field simply counts the number of operations performed by pi. When we present the
general implementation of the snapshot object, we shall see that the information in
these two fields is maintained differently; this is why we separate them here as well.

Note that each scate operation returns a view, which is a vector with three fields
in each entry. All segments are initially (⊥, 0, 0). We now introduce some terminology.

The size of a view V , denoted by |V |, is
∑
i V [i].counter. The size of a view

reflects the “amount of knowledge” that this view contains; that is, the size of a view
counts the total number of operations performed on the snapshot object before this
view was obtained.

A view V1 dominates a view V2, if for all i, V1[i].seq ≥ V2[i].seq. Two views V1
and V2 are comparable if either V1 dominates V2 or V2 dominates V1. Two views V1
and V2 are unanimous, if for all i, V1[i].seq = V2[i].seq implies that V1[i] = V2[i]. A
set {V1, . . . , Vl} of views is unanimous if any pair of views in the set are unanimous.
The union of a unanimous set {V1, . . . , Vl} of views, denoted by ∪{V1, . . . , Vl}, is the
minimal view that dominates all views V1, . . . , Vl. That is, the union is a view Vu
such that for every i, Vu[i] equals Vj [i] with maximal seq field. (All the sets of views
that we use in the paper are trivially unanimous. Therefore we use unions of sets of
views without explicitly stating that the sets are unanimous.)

1Combining the roles of scans and updates was implicitly done in previous works, where update
operations not only write new values but also return views.

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 323

Classifier(K, Ii): returns(Oi) (Code for pi)
0: write Ii to Ri
1: read R1, . . . , Rn
2: if | ∪ {R1, . . . , Rn}| > K then
3: read R1, . . . , Rn and return(Oi = ∪{R1, . . . , Rn})
4: else return(Oi = Ii)

FIG. 1. The classifier procedure.

3.2. The classifier procedure. We start by introducing a procedure called
classifier, with parameter K. Each processor pi starts the procedure with an input
view Ii, and upon termination, returns an output view Oi. The classifier procedure
appears in Figure 1. The processors use a set of single-writer multireader registers
R1, . . . , Rn.

In the classifier procedure each processor pi starts with some local knowledge
that is held in Ii. The goal of the classifier procedure is to update the processors’
knowledge in some organized manner. Roughly speaking, the processors that use the
procedure are classified into two groups such that the processors in the first group
retain their original knowledge, while each processor in the second group increases
its knowledge to dominate the knowledge of all the processors in the first group.
Specifically, processors in the first group are called slaves and are defined as the
processors that terminate the procedure in line 4. Processors in the second group are
called masters and are defined as the processors that terminate the procedure in line
3. The classifying property of the procedure is the crux of the m-shot snapshot object.
Notice that the classifier procedure provides very little guarantee on the number of
masters and slaves. In particular, it is possible that all processors are classified as
masters.

3.3. The implementation. To implement the scate operation for an m-shot
snapshot object, we construct a full binary tree with logm levels and m − 1 nodes.2

The nodes of the tree are labeled by an in-order numbering on the tree, assigning
labels in increasing order from the set {1, . . . ,m− 1}. For each node v, we denote the
label of v by Label(v). The labels given by the in-order search can be presented in the
following recursive manner: the root (in level 1) is labeled m

2 ; inductively, if a node
v in level ` is labeled Label(v), then the left child of v, denoted by v.left, is labeled
Label(v)− m

2`+1 , and the right child of v, denoted by v.right, is labeled Label(v)+ m
2`+1 .

(See Figure 2.)
Since each processor may perform several scate operations, we do not identify an

operation with the processor that executes it. In the rest of the section, we refer to
operations as independent entities that “execute themselves.”

Intuitively, each operation traverses the tree downwards starting from the root.
Inside the tree, operations that arrive at some node execute the classifier procedure
using the label of the node as the parameter K. The classifier procedure of each
node separates the arriving operations so that less knowledgeable operations (slaves)
proceed to the left and more knowledgeable operations (masters) proceed to the right.
This process continues throughout the levels of the tree; an operation terminates when
it arrives at a leaf of the tree.

The main idea in this construction is that operations are ordered in the leaves
(from left to right) according to the amount of knowledge they have collected. As we
prove in the following, when two operations are separated by some node, then the final

2We assume m is an integral power of 2. Otherwise, standard padding techniques can be applied.

324 HAGIT ATTIYA AND OPHIR RACHMAN

z z z z

z
z

z

zz
z

z

z

"""""

bbbbb
�
�
��

Z
Z
ZZ

l
l
ll

,
,

,,
7m
8

3m
8

5m
8

3m
4

m
2

m
4

m
8

1 3 5 m− 3 m− 1

FIG. 2. The classification tree.

knowledge of the operation that proceeded to the right dominates the final knowledge
of the operation that proceeded to the left. This guarantees that operations arriving
at different leaves are comparable and are ordered from left to right. In addition, we
prove that if two operations traverse exactly the same path in the tree, then they
have exactly the same final knowledge. Such two operations undergo a “squeezing”
process, where the difference in their knowledge is constantly reduced as they move
toward the leaves of the tree. Finally, when two operations arrive at the same leaf the
difference in their knowledge is squeezed to zero, and they are forced to have exactly
the same knowledge.

To implement this intuitive idea, we associate with each node a separate area
in the shared memory that contains a set of n single-writer multireader registers
R1, . . . , Rn. These registers are initialized to empty views that contain (⊥, 0, 0) in
each entry and are used to execute the classifier procedure at that node. In addition,
each processor pi has a local variable currenti that is initialized at the beginning
of each operation by pi. This local variable stores the accumulated knowledge of pi
during the execution of the operation. For ease of exposition, we add a (logm+ 1)th
level to the tree, which now contains the leaves of the tree. These leaves have no labels
and no associated registers, and they serve only as “final stations” for the operations
that traverse the tree.

All scate operations, up to m, are executed on the tree constructed above. A scate
operation op by pi is executed as follows: first, op writes the value of the operation
into Si. Second, op reads the n segments S1, . . . , Sn, and sets currenti to hold the
view that contains the values read from the segments. Then op starts traversing the
tree by entering the root. In general, when op enters some node v, it uses the value of
currenti as an input vector Ii, executes a classifier(Label(v), currenti) procedure at
v, and updates its currenti variable to hold the value returned by the procedure. If
pi terminates the classifier procedure in v as a master, it enters v.right; otherwise it
enters v.left. When op enters a leaf, it terminates and returns the value of currenti as
its final view. For clarity, we denote by currenti,` the value of currenti as op enters
level `. The precise code for a scate operation (by pi) appears in Figure 3.

3.4. Correctness proof. We start by stating the properties of the classifier
procedures that are executed in the various nodes of the tree. We first introduce
some notation. For each node v, Ops(v) denotes the set of operations that traverse
through v. At each node v, each operation in Ops(v) is classified either as a master
or as a slave. The set of operations that are classified as masters at v is denoted by

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 325

scate(value) (Code for pi)
1: Si := (value, incremented seq and counter)
2: for j := 1, . . . , n currenti,1[j] := Sj
3: v := root
4: for ` := 1, . . . , logm do
5: currenti,`+1 :=Classifier(Label(v), currenti,`)
6: if master then v:=v.right
7: if slave then v:=v.left
8: return(currenti,logm+1)

FIG. 3. The code for a scate operation.

M(v), and the set of operations that are classified as slaves at v is denoted by S(v). In
addition, we denote the input view of an operation opi for the classifier procedure at
level ` by Ii,`. (If pj is the processor that executes opi, then Ii,` is the value assigned
to currentj,` during opi.)

LEMMA 3.1. Let v be some node at level `. Let L and H be nonnegative integers
such that L ≤ Label(v) ≤ H. If L < |Ii,`| ≤ H for every opi ∈ Ops(v), and
| ∪ {Ii,` : opi ∈ Ops(v)}| ≤ H, then

(b1) for every opi ∈M(v), Label(v) < |Ii,`+1| ≤ H,
(b2) for every opi ∈ S(v), L < |Ii,`+1| ≤ Label(v),
(b3) | ∪ {Ii,`+1 : opi ∈M(v)}| ≤ H,
(b4) | ∪ {Ii,`+1 : opi ∈ S(v)}| ≤ Label(v), and
(b5) for every opi ∈M(v), Ii,`+1 dominates ∪{Ij,`+1 : opj ∈ S(v)}.

Proof. Properties (b1)–(b3) are immediate from the code.
Property (b4) is proved by contradiction. Assume that |∪{Ii,`+1 : opi ∈ S(v)}| >

Label(v). Since for each opi ∈ S(v) we have Ii,`+1 = Ii,`, it follows that |∪{Ii,` : opi ∈
S(v)}| > Label(v). Let opj be the last operation in S(v) that executes line 0 in the
classifier procedure of v. When opj executes line 1 of the procedure, all Ii,` such that
opi ∈ S(v) are already written in the registers of v. Since the value in any register
of any node is overwritten only with values that dominate it, opj collects a view with
size greater than Label(v). This contradicts the assumption that opj ∈ S(v).

To prove (b5), we show that when opi ∈ M(v) starts to execute line 3 in the
classifier procedure of v, all {Ij,` : opj ∈ S(v)} are already written in the registers of
v. Otherwise, if some opj ∈ S(v) has not yet written Ij,`, then when opj executes line
1 of the procedure it reads registers’ values that dominate the registers’ values that
opi read in line 1. This contradicts the assumption that opj ∈ S(v).

Using the properties of the classifier procedure as stated in the above lemma, we
now prove that all the views returned in scate operations are comparable. To show
that, we first prove that the views returned by operations that terminate in different
leaves of the tree are comparable. The following two simple lemmas are implied by
the code.

LEMMA 3.2. Let opi be an operation that returns Vi. Let v be a node such that
opi ∈ S(v) and let ` be v’s level. Then Vi is dominated by ∪{Ij,`+1 : opj ∈ S(v)}.

LEMMA 3.3. Let opi be an operation that returns Vi. Let v be a node such that
opi ∈M(v) and let ` be v’s level. Then Vi dominates Ij,`+1 for any opj ∈ S(v).

The next lemma uses Lemmas 3.2 and 3.3 to prove that the views returned by
operations that terminate in different leaves are comparable.

LEMMA 3.4. Let opi and opj be two operations that terminate in leaves vi and vj,
respectively, where vi 6= vj. Then the views returned by opi and opj are comparable.

326 HAGIT ATTIYA AND OPHIR RACHMAN

Proof. Let v be the node with maximal level (closest to the leaves) such that both
opi and opj belong to Ops(v), and let ` be its level. Since vi 6= vj , ` < logm + 1,
that is, v is an inner node. Since v is not a leaf, one of opi and opj is a master in v,
and the other is a slave at v. Assume, without loss of generality, that opi ∈ S(v) and
opj ∈M(v).

By Lemma 3.2, the view returned by opi is dominated by ∪{Ik,`+1 : opk ∈ S(v)}.
By Lemma 3.3, the view returned by opj dominates each Ik,`+1, if opk ∈ S(v), and
therefore dominates ∪{Ik,`+1, opk ∈ S(v)}. Thus, the view returned by opj dominates
the view returned by opi.

To complete the comparability proof, we show that the output views of operations
that terminate in the same leaf are comparable. The next lemma formally captures
the intuitive idea of the “squeezed” difference in knowledge. The lemma bounds the
size of the inputs Ii,` and their union at some node v of some level ` as a function of
Label(v) and `.

LEMMA 3.5. Let v be an inner node of level `. Then,
(1) for every opi ∈ Ops(v), Label(v)− m

2` < |Ii,`| ≤ Label(v) + m
2` , and

(2) | ∪ {Ii,` : opi ∈ Ops(v)}| ≤ Label(v) + m
2` .

Proof. The proof is by induction on `. For the induction base ` = 1, the lemma is
straightforward since the total number of operations is at most m. For the induction
step, assume the lemma holds for all nodes in level ` − 1 and consider an arbitrary
node v in level ` > 1. Let v′ be the parent of v and consider the classifier procedure
with parameter K = Label(v′) that is executed by Ops(v′) in v′. By the induction
hypothesis we have
(1) Label(v′)− m

2`−1 < |Ii,`−1| ≤ Label(v′) + m
2`−1 , for any opi ∈ Ops(v′), and

(2) | ∪ {Ii,`−1 : opi ∈ Ops(v′)}| ≤ Label(v′) + m
2`−1 .

If we denote L = Label(v′) − m
2`−1 and H = Label(v′) + m

2`−1 , then these are
exactly the conditions of Lemma 3.1. We have two cases.

Case 1. If v = v′.right, then K = Label(v′) = Label(v)− m
2` , and Ops(v) = M(v′).

We have by (b1) and (b3) of Lemma 3.1 that
(1) for any opi ∈ Ops(v), Label(v)− m

2` < |Ii,`| ≤ Label(v) + m
2` , and

(2) | ∪ {Ii,` : opi ∈ Ops(v)}| ≤ Label(v) + m
2` ,

which are the required conditions for the operations in Ops(v).
Case 2. If v = v′.left, then K = Label(v′) = Label(v) + m

2` , and Ops(v) = S(v′).
In this case, the same equations are implied by (b2) and (b4) of Lemma 3.1.

The next lemma proves that the views returned by two operations that terminate
at the same leaf are equal, and in particular, comparable.

LEMMA 3.6. Let opi and opj be two operations that terminate in the same leaf v.
Then the views returned by opi and opj are equal.

Proof. Let v′ be the parent of v. Assume, without loss of generality, that v =
v′.right; the proof if v is the left child of v′ follows in the same manner. By Lemma 3.5,
since v′ is in level ` = logm,
(1) Label(v′)− 1 < |Ik,logm| ≤ Label(v′) + 1, for any opk ∈ Ops(v′), and
(2) | ∪ {Ik,logm : opk ∈ Ops(v′)}| ≤ Label(v′) + 1.

The operations opi and opj execute the classifier procedure in v′ with parame-
ter K = Label(v′) and both terminate as masters and proceed to v. If we denote
L = Label(v′) − 1, and H = Label(v′) + 1, then conditions (1) and (2) above are
the required conditions for applying Lemma 3.1 to the classifier procedure that is
executed in v′. Thus, by Lemma 3.1(b1), since opi and opj are in M(v′), we have

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 327

|Ii,logm+1| = |Ij,logm+1| = Label(v′) + 1. In addition, by Lemma 3.1(b3), we have
| ∪ {Ii,logm+1, Ij,logm+1}| = Label(v′) + 1. Therefore, Ii,logm+1 = Ij,logm+1, which
implies that the output views of opi and opj are equal.

Lemmas 3.4 and 3.6 prove that the views returned by the scate operations are
comparable. We now use these comparable scate operations to implement the lin-
earizable scan and update operations of the snapshot object.

To execute an update(v) operation, a processor simply executes a scate(v) opera-
tion and ignores the view it returns. To execute a scan operation, a processor executes
a scate(v) operation using the current value of its segment. Notice that although the
same value is used, the seq and counter values are incremented. Thus, a scan oper-
ation by pi changes the sequence number of Si but does not change the value of Si.
Also notice that both scan and update operations return views. These views are later
used for the linearization of the scan and update operations.

In order to define the linearization of operations on the snapshot object, we first
order the scan operations and then insert the update operations. Consider any two
scan operations sci and scj that return Vi and Vj , respectively. If Vi 6= Vj and Vj
dominates Vi, then sci is linearized before scj and vice versa if Vi dominates Vj . If
Vi = Vj , then we order them first by the partial order→, and if the operations are not
ordered with respect to→, then we break symmetry by the identities of the processors
that execute the operations. This ordering of scans is well defined since a processor
has only one operation outstanding at a time, and hence two operations by the same
processor are always ordered by →.

Next, we insert the update operations between the linearized scan operations.
Consider an update operation that wrote a value (v, seq) to some segment Si. The
update operation is linearized after the last scan operation that returns a view that
does not contain (v, seq) and before the first scan operation that contains (v, seq).
Since scan operations are ordered by their views, each update operation fits exactly
between two successive scan operations. We break symmetry between update opera-
tions that fit between the same two scan operations in the same manner as in the scan
operations, that is, first by the partial order→ and then by processors’ identities. We
now prove that this sequence is a linearization.

The next lemma follows immediately from the way update operations are lin-
earized between scan operations.

LEMMA 3.7. For any scan operation sc and for all segments Si, the value returned
by sc for Si is the value written by the last update operation by processor pi that is
linearized before sc.

Therefore, the linearization sequence we constructed preserves the semantics of
the snapshot object. We now prove that it extends the partial order →.

LEMMA 3.8. For any two (scan/update) operations opi and opj, if opi → opj then
opi is linearized before opj.

Proof. There are four cases, according to operation types.
Case 1. Let sci and scj be two scan operations such that sci → scj . By the code

of the algorithm, the view returned by sci does not dominate the view returned by scj
and hence the view returned by scj dominates the view returned by sci. Since scan
operations are linearized by their views, this implies that sci is linearized before scj .

Case 2. Let sci be a scan operation and upj be an update operation such that
sci → upj . By the code of the algorithm, the view returned by sci does not contain
the value written by upj , and therefore, upj is linearized after sci.

328 HAGIT ATTIYA AND OPHIR RACHMAN

Case 3. Let upi be an update operation and scj be a scan operation such that
upi → scj . By the code of the algorithm, the view returned by scj contains the value
written by upi (or a value written by a later update operation by pi,) and therefore,
upi is linearized before scj .

Case 4. Let upi and upj be two update operations such that upi → upj . If
upi and upj fit exactly between the same two scan operations, then due to the way
symmetry is broken upi is linearized before upj , and the claim follows.

Otherwise, assume by way of contradiction that there exists a scan operation
sc such that upj is linearized before sc and sc is linearized before upi. Thus, sc
returns a view that contains the value written by upj and does not contain the value
written by upi. Consider the scate operation that is executed to implement upi. This
scate operation returns a view that contains the value written by upi but does not
contain the value written by upj . Therefore, this scate operation returns a view that is
incomparable to the view returned by sc. This contradicts the comparability property
of the views returned by the scate operations (Lemmas 3.4 and 3.6).

Lemmas 3.7 and 3.8 prove that the scate operation of Figure 3 implements an m-
shot snapshot object. The complexity analysis is obvious, and we have the following
theorem.

THEOREM 3.9. Each operation on the m-shot snapshot object implemented by
the scate operation of Figure 3 requires O(n logm) operations on atomic single-writer
multireader registers.

Note that each processor has a view for each level of the classification tree. Denote
by B the number of bits required to represent a view. Since the tree has O(m) nodes,
and for each node we have a view for each processor, it follows that the algorithm
requires a total of O(mnB) bits.

4. A general snapshot object.

4.1. An unbounded algorithm. A straightforward way to transform the m-
shot snapshot object into an∞-shot one is via the lattice agreement decision problem
[4, 7, 11]. In this problem, processors start with inputs from a complete lattice and
have to decide (in a nontrivial manner) on comparable outputs (in the lattice). It is
fairly simple to use an n-shot snapshot object to solve lattice agreement and there
is a general transformation that converts any lattice agreement algorithm into an
implementation of an∞-shot snapshot object [7]. The overhead of this transformation
is O(n) reads and writes per scan or update operation. Therefore, the m-shot snapshot
object of the previous section can be converted into an ∞-shot snapshot object in
which a scan or update operation requires O(n logn) operations.

Unfortunately, the general transformation of [7] extensively uses unbounded mem-
ory. That is, the transformation (possibly) replicates the memory area required for
one lattice agreement algorithm, for each operation on the snapshot object. This is a
consequence of the generality of the transformation, which does not assume anything
about the lattice agreement algorithm. In tailoring the transformation to our m-shot
snapshot object, the memory requirements can be reduced. That is, the number of
registers can be bounded, and only their values increase by one with each new op-
eration of the snapshot object. (The details, which are straightforward, will not be
discussed here.) While these memory requirements are sufficient for any practical
purpose, it is theoretically interesting to construct an ∞-shot snapshot object that
requires only a bounded amount of shared memory.

A method to bound the memory requirements of the general transformation ap-
pears in [13]. Here we show a direct approach for combining the ideas of the m-shot

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 329

snapshot object with synchronization mechanisms to obtain a bounded implementa-
tion of a general snapshot object.

4.2. Bounded ∞-shot snapshot object. As mentioned before, the transfor-
mation of [7] employs an infinite number of copies of a lattice agreement algorithm
so that each processor executes at most one operation on each copy. The algorithm
presented here uses similar ideas but with a single copy of the m-shot snapshot object
of the previous section.

Recall that in the construction of the m-shot snapshot object, each segment Si has
two additional fields, seq and counter. The counter field indicates how many operations
were performed by pi, while seq distinguishes, for any two values of pi, which is more
up to date. For the bounded implementation, we maintain this information using only
bounded memory. Intuitively, the seq field is maintained using bounded sequential
timestamps; the details are discussed in section 4.4. The more difficult task is to
maintain the counter field, used for the classification process, using bounded memory.

In the general algorithm, we use the same tree of height logm+1 which is traversed
by the operations, as in the m-shot object. In order to allow one tree to support an
unbounded number of operations, instead of only m, the operations are divided into
virtual rounds, each containing exactly m operations.

By appropriate control mechanisms, we separate operations from different rounds
so that they are not interleaved. In this way, the behavior of operations of the same
round correspond to executing m operations on a separate m-shot snapshot object.

4.2.1. The bounded counter mechanism. In the m-shot object, the counter
field associated with each segment specifies how many times the segment was updated;
summing the counter fields over all segments yields the total number of operations
that were performed on the snapshot object. In the general implementation, the
counter field associated with a segment specifies the number of times the segment
was updated modulo m; in this way, summing the counter yields the total number
of operations that were performed on the object modulo m. (Although this sum is
actually in the range 1, . . . , nm, we only refer to its value modulo m.)

We use the following terminology. The counter fields are called the local counters.
The sum of the local counters modulo m is the global counter. The values of the local
counters, as well as the global counter, are in the range 0, . . . ,m− 1.

For the sake of the proof, it is convenient to consider the unbounded values of these
counters as well. That is, with each local counter we associate a virtual counter with
the real (unbounded) value of that counter. Summing the virtual counters defines the
real value of the global counter. The real values of the counters are not used within
the code but only for the analysis.

4.2.2. The handshake mechanism. In the algorithm, we need to know the
chronological order of operations by different processors. Specifically, for any two
processors, pi and pj , we wish to know how many operations pi started since a certain
point in pj ’s last operation (and vice versa). Clearly, we cannot maintain the exact
number of operations since it is inherently unbounded. Therefore, we only want to
know if the number of operations that pi started is either 0, 1, 2,. . . , k− 1, or strictly
more than k − 1 (for some constant k). This is done with a handshake mechanism
that was introduced in [6].

For every two processors, pi and pj , there are two handshake variables Hi,j and
Hj,i. Hi,j is written by pi and read by pj , while Hj,i is written by pj and read by pi.
An intuitive way to describe the functionality of the handshake variables is to consider

330 HAGIT ATTIYA AND OPHIR RACHMAN

Handshakei(j)
0: temp = Hj,i

1: if Dist(Hi,j , temp) = 0 then return(Hi,j + 1)
2: if Dist(Hi,j , temp) ≤ k then return(temp)
3: if Dist(Hi,j , temp) > 2k then return(Hi,j + 1)

FIG. 4. The handshakei(j) procedure.

Takeoveri(j) Invoked with every read from pj ’s variable
1: if Dist(Hi,j , Hj,i) = k then goto Takeover by pj code

FIG. 5. The takeoveri(j) procedure.

a directed cycle with vertices numbered 0, . . . , 3k, where the direction is defined from
t to (t + 1) mod (3k + 1). The variables Hi,j and Hj,i represent the positions of pi
and pj on this cycle. To handshake with pi, pj checks the values of Hi,j and Hj,i and
updates its own position on the cycle accordingly.

More precisely, the function handshakei(j) is called by pi in order to update Hi,j

(Figure 4). Using the procedures handshakei(j) and handshakej(i) by pi and pj ,
respectively, maintains the invariant that the directed distance from Hi,j to Hj,i on
the cycle, denoted Dist(Hi,j , Hj,i), is either in the range [0, . . . , k] or in the range
[2k, . . . , 3k]. This invariant is used to determine who is the more advanced of the two
processors. If the distance from Hi,j to Hj,i is at most k (but not zero), then pj is
more advanced, and if the distance is between 2k and 3k then pi is more advanced.
(If the distance is zero then pi and pj are equally advanced.)

4.2.3. The failure detection mechanisms. In the implementation we present,
a scate operation may temporarily fail in one of two ways. The first kind of failure
occurs if some processor, say pj , performs several operations while pi traverses the
classification tree. This kind of failure is called a takeover failure; when it occurs, we
say that pi was overtaken by pj . The second kind of failure is a wraparound of the
global counter, which occurs when the value of the global counter goes from m to 0
while pi traverses the classification tree. We now describe the failures in more detail
and explain the failure detection mechanisms we employ.

Takeover failures are detected by a mechanism that is constantly being operated
(see Figure 5). Whenever a processor pi reads a register of some other processor, say
pj , it checks the value of Hj,i with respect to Hi,j . If Dist(Hi,j , Hj,i) = k, that is, pj
executed k or more handshakes since pi executed its last handshake, then a takeover
failure by pj is detected. In this case, pi jumps directly to a place in the code that
handles this situation.

Wraparound failures are detected by a different mechanism. Before pi traverses
the tree, it collects the values of the local counters and computes a value for the global
counter. Later, pi checks for a wraparound by using the procedure check-wraparound.
The procedure receives the global counter’s value that pi computed earlier and reads
the local counters again to obtain a new value for the global counter. If this value is
smaller than the previous one, then a wraparound has occurred, and pi jumps directly
to a place in the code that handles this situation. Note that a wraparound may occur,
but the global counter’s value obtained by the procedure is greater than the earlier
value of the global counter and the wraparound failure is not detected. We will show

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 331

check-wraparoundi(counter)
1: temp :=

∑
i Si.counter mod m

2: if temp ≤ counter then goto Wraparound code

FIG. 6. The check-wraparoundi procedure.

that when a wraparound failure occurs but is not detected, a takeover failure must
be detected by the handshake mechanism.

4.2.4. Data structures. For simplicity, we assume that the shared memory
consists of only n single-writer multireader registers, R1, . . . , Rn. All the information
written by processor pi is stored in its register Ri, which contains the following fields:

Si. pi’s segment, with three fields: value, (unbounded) seq, and (modulo m)
counter.

Treei. pi’s registers in the classification tree of the m-shot object (one register
per node). Each register holds the same three fields as above.

Hi,1, . . . , Hi,n. The handshake variables of pi with respect to all of the other
processors. For simplicity, we assume pi holds handshake variables also with
respect to itself.

Last[1, 2]. Last[1] holds the view returned by the last scate operation by pi.
Last[2] holds the view returned by the penultimate scate operation by pi.

In the code and throughout the correctness proof, we refer to the various fields of
the registers R1, . . . , Rn separately. Any read operation from some field of a register
implies that the whole register is read. Any write operation to some field means
writing some new value to that specific field and rewriting the current values to the
other fields.

4.2.5. Code description. The code appears in Figure 7.
In the code, pi starts by recording the sequence number of its last operation and

then incrementing its local sequence number and counter variables. Then, pi performs
the handshake procedure for each processor and then calculates the global counter.
At this point, pi writes the value of the operation into its segment Si. Notice that it is
possible that this line is not executed at all, since pi may detect a takeover failure while
collecting the values of the local counters (in line 4). In this case, pi jumps directly
to line 17 to handle the takeover failure and writes the value of the operation into Si
there. (Failure handling is explained later.) pi proceeds by performing a wraparound
check. If a wraparound is detected, pi jumps to line 23. If no wraparound is detected,
pi collects a local view of the segments and starts to traverse the classification tree.
This part of the operation is performed almost exactly as in the m-shot snapshot
object, except that the calculations regarding the sizes of views, performed in the
classifier procedures, are done modulo m. If pi traverses the tree without detecting
any takeover failure, it obtains some temporary result. Then, pi performs another
wraparound detection procedure. If during this procedure no failure is detected, pi
returns the temporary result as the result of the operation (and updates Ri.Last[1, 2]).
Otherwise, pi jumps to handle the detected failure.

Both kinds of failures, takeover and wraparound, are handled in a similar man-
ner. When pi detects that it was overtaken by pj , it tries to copy pj ’s last returned
view. However, pi is allowed to do so only if the last view returned by pj contains pi’s
current operation value. If not, pi starts the operation all over again. When pi detects
a wraparound failure, it tries to find a sufficiently recent view that was returned by
some operation and copies it. More precisely, pi tries to find a penultimate view of

332 HAGIT ATTIYA AND OPHIR RACHMAN

scate(value) (Code for pi)
0: first-seq := sequence-number

Start:
1: sequence-number := sequence-number+1
2: my-counter := (my-counter + 1) mod m
3: for j = 1 to n do Hi,j := Handshakei(j)
4: g-counter :=

∑
i Si.counter mod m

5: Si := (value,sequence-number,my-counter)
6: check-wraparound(g-counter)
7: ini := read S1, . . . , Sn
8: v := root, currenti,1 := ini
9: for ` = 1... logm do
10: currenti,`+1 := Classifier(Label(v), currenti,`)
11: if master then v := v.right
12: if slave then v := v.left
13: temp-result := currenti,logm+1
14: check-wraparound(g-counter)
15: Ri.Last[1, 2] := 〈temp-result, Ri.Last[1]〉
16: return temp-result

Takeover by pj code:
17: Si := (value,sequence-number,my-counter)
18: temp-result := Rj .Last[1]
19: if temp-result[i].seq > first-seq then
20: Ri.last[1, 2] := 〈temp-result, Ri.Last[1]〉
21: return temp-result
22: else goto Start

Wraparound code:
23: if ∃Rj .Last[2][i].seq > first-seq then
24: Ri.Last[1, 2] := 〈Rj .Last[1], Ri.Last[1]〉
25: return Rj .Last[1]
26: else goto Start

FIG. 7. The scate operation.

some processor that contains pi’s current operation value. If pi finds such a processor,
it copies its last view; otherwise, pi starts the operation all over again.

As a consequence of the failure handling technique, a scate operation may consist
of several attempts. (Each time a processor arrives at the label Start is the beginning
of a new attempt.) For every scate operation, only its last attempt is successful
and returns a view. The successful attempts can either return a view through the
failure handling procedures or not. Therefore, we partition attempts into three types:
unsuccessful attempts, which do not return a view; indirect attempts, which return a
copied view in line 21 or 25; and direct attempts, which return a view in line 16.

Note that different attempts of the same operation have different sequence num-
bers. Therefore, the unsuccessful attempts may be thought of as independent opera-
tions that are “cut off” before completion. On the other hand, the same first-seq is
used by all attempts of the same operation. The value of first-seq is used in order to

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 333

decide whether to copy another processor’s view in the failure procedures. That is,
the conditions in lines 19 and 23 are satisfied if the found view contains the sequence
number of any of the attempts of the current operation.

4.3. Correctness proof. We first show that views returned by scate operations
are comparable. Since only successful attempts return views, it suffices to prove
comparability for them.

Define an ordering on attempts according to the order they update the segments.
(This order has nothing to do with the linearization of scans and updates which will
be presented later.) Specifically, for each attempt we consider the first time that it
writes to Si, either in line 5 or in line 17. This write is called the actual update of the
attempt. Since writes are atomic, the ordering of actual updates defines an ordering
among the attempts.

Based on the ordering of the attempts, we divide them into “virtual rounds” of
size m. The first round contains the first m attempts, and in general, the ith round
contains attempts (i− 1)m+ 1, . . . , im.

Recall that k is the constant for the handshake mechanism, and m is a con-
stant that determines the height of the classification tree. These constants were left
unspecified, and we now fix k = 8 and m = (k + 2)n = 10n.

The following lemma implies that in order to prove the comparability of views
returned by successful attempts, we can consider only the direct attempts.

LEMMA 4.1. A view returned by an indirect attempt is also returned by some
direct attempt.

Proof. Toward a contradiction, let ati be an indirect attempt that copies a view
from some Rj .Last[1] such that this view is not a direct view. Consider all the
attempts that return the same view as ati, and from these attempts let atk be the
attempt whose write before returning its view (in lines 20 or 24) is the first in the
execution. The view returned by atk must be direct; otherwise, there was some
other attempt that returned this view and wrote it before atk did, which is a contra-
diction.

We next show that the views returned by direct attempts can be organized by
the virtual rounds.

LEMMA 4.2. Let ati be a direct attempt in round ri, and let atj be a (direct or
indirect) attempt in round rj > ri. Then ati starts to execute its wraparound test in
line 14 before atj executes its actual update step.

Proof. We slightly abuse notation and denote the processors that execute ati and
atj by pi and pj , respectively. Note that pi and pj may be the same processor, while
ati and atj are not the same attempt. This should not cause any confusion.

Consider the execution of line 4 in ati, and let c be the value of g-counter. Since
ati is in round ri, the value of the global counter is still less than (ri + 1)m when
pi completes line 4. Now pi executes its actual update step. Since ati is direct, pi
continues without detecting any failure and arrives in line 14.

Assume, by way of contradiction, that pj executes its actual update step in atj
before pi starts line 14. Therefore, the value of the global counter is greater than
(ri + 1)m when pi starts line 14, since atj is in round rj > ri. Since pi does not
detect a wraparound in line 14, the value it reads is c′ ≥ c. This can happen only if
the local counters were incremented at least m = (k + 2)n times since pi started to
execute line 4. In particular, at least one processor pl incremented its counter at least
(k + 2) times since pi has started to execute line 4. Thus, pl performs handshakel(i)
at least (k+1) times since pi started to execute line 4, which implies that pl performs

334 HAGIT ATTIYA AND OPHIR RACHMAN

handshakel(i) at least (k + 1) times since pi performed handshakei(l) in ati. By the
properties of the handshake mechanism, pi will detect a takeover failure by pl while
executing line 14, which is a contradiction.

This implies the following corollary.
COROLLARY 4.3. Let ati be a direct attempt in round ri. The view returned by

ati does not contain any values written by attempts in rounds strictly greater than ri.
By the definition of rounds, when pi reads S1, . . . , Sn in line 7 it observes all the

values from previous rounds. Furthermore, it is immediate from the code that any
direct attempt returns a view which contains at least the values it reads in line 7.
Therefore, we have the following corollary.

COROLLARY 4.4. Let ati be a direct attempt of round ri. The view returned by
ati contains all the values written in rounds strictly smaller than ri.

The above corollaries indicate that a direct attempt in round r observes all the
values of rounds smaller than r, plus some subset of the values of round r, and nothing
from rounds greater than r. Thus, for any two direct attempts in different rounds, it
is clear that the view returned by the later attempt dominates the view returned by
the earlier one. Consequently, in order to prove comparability of all the direct views,
we need only prove comparability of attempts in the same round. This is done in the
next lemma.

LEMMA 4.5. Let ati and atj be two direct attempts of round r. The views returned
by ati and atj are comparable.

Proof. By Lemma 4.2, until both ati and atj arrive at line 14, no value of round
greater than r is written in the segments and certainly not in the registers of the
tree. In addition, when either ati or atj reads the segments before starting to traverse
the tree (at line 7), all (r − 1)m values of rounds 1, . . . , r − 1 are already written
in the segments. Thus, the contribution of these values to the calculations that are
performed in the classifier procedures that are executed throughout ati and atj is
cancelled out.

This implies that the process of traversing the tree by ati and atj has exactly the
same properties of the m-shot object construction. The comparability of the views
returned by ati and atj is implied by the same arguments as in the m-shot object (in
the proofs of Lemmas 3.4 and 3.6).

Combining the above lemma with Lemma 4.1 implies the following corollary.
COROLLARY 4.6. The views returned by any two scate operations are comparable.
Comparable scate operations are used to implement scans and updates exactly in

the same way as in the m-shot object. That is, to execute an update(v) operation,
a processor executes scate(v) operation and ignores the value it returns; to execute
a scan operation, a processor executes a scate(v) operation with the current value of
its segment.

We now linearize the scan and update operations. First we identify each (update
or scan) operation with the unique pair (v, seq) that is written by the first attempt
of the operation. Scans and updates are linearized as in the m-shot object. That
is, the scans are linearized according to the (comparable) views they return, and the
updates are linearized between the scans according to the values they write. Clearly,
by the way updates are linearized between scans, we have the following lemma.

LEMMA 4.7. For every scan sc and for every Si, the value returned by sc for Si
is the value written by the last update by pi that is linearized before sc.

Therefore, the sequence preserves the semantics of the snapshot object. To show
it is a linearization, it remains to prove that the above sequence is consistent with the
real time order of operations, →.

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 335

The proof is similar to the corresponding proof for the m-shot object, but it is
more complicated since in the m-shot object all the returned views were direct, while
here the proof must consider both direct and indirect views. We start by introducing
some terminology.

We say that an operation op (scan or update) returns a direct view if the successful
attempt of op is direct, and similarly for indirect view. In addition, we sometimes
classify op itself as direct or indirect.

The origin of an operation op is the attempt that directly returned the view
returned by op. Formally, the origin of an operation op is defined inductively as
follows. If op is direct, then the origin of op is the last attempt executed in op.
Otherwise, if op is indirect and copies the view returned by op′, then the origin of
op is the origin of op′. In a similar manner, we define the depth of an operation op,
which specifies the distance of op from its origin. If op is direct, then its depth is zero.
Otherwise, if op is indirect and copies the view returned by op′, then the depth of op
equals the depth of op′ plus one.

An interval is a subsequence of consecutive primitive operations in the execution.
The interval of an operation is the interval starting with the execution of the first
statement of the operation and ending with the execution of the last statement of
the operation (not including the Return statement). The interval of an attempt is
defined similarly.

An interval is unsafe if some processor starts and terminates two consecutive
unsuccessful attempts in this interval. Otherwise, the interval is safe.

To show that the sequence defined above is consistent with →, it suffices to
prove that any indirect operation starts before its origin. This implies that the view
copied from the origin is sufficiently up to date, and thus, the indirect operation is
linearized within its interval. The intuitive proof argues that if an operation fails (due
to either takeover or wraparound), then during the time interval of the operation many
other operations were performed. At least some of these operations are completely
contained in the interval, and therefore, the view copied by the indirect operation
must be sufficiently up to date.

Unfortunately, the above intuition is not accurate since the failure mechanisms
guarantee only that during the interval of an indirect operation there are many at-
tempts. However, it is possible that not many of the attempts are successful, and
therefore, not many operations are completed during this interval. This means that
there are no up to date views to be copied. To overcome this problem we must show
that an operation does not contain many attempts. This will imply that if there are
many attempts in some interval, then there are many operations as well. To prove
that an operation does not contain many attempts, we have to show that after a
small number of unsuccessful attempts, an operation will find its value in some al-
ready existing view (or penultimate view). In turn, this relies on the fact that when a
failure is detected, there are sufficiently up to date views that were obtained by other
operations. On the face of it, this argument seems circular.

Put another way, the difficulty arises because the proof of partial correctness (pro-
cessors return values that are up to date) relies on the assumption that operations
terminate, and vice versa. We sidestep this circularity by first proving partial correct-
ness if the operation’s interval is safe, that is, all operations inside it terminate after
(at most) two attempts. Using this fact, we then prove that any interval is safe, i.e.,
all operations terminate after (at most) two attempts. This implies that the claim
holds for any operation.

LEMMA 4.8. If op’s interval is safe, then op’s origin starts after op starts.

336 HAGIT ATTIYA AND OPHIR RACHMAN

Proof. The proof is by induction on d, the depth of op. The base case, d = 0,
follows since the last attempt of op is the origin of op. For the induction step, let op
be an operation with depth d > 0, and assume the lemma holds for any operation of
depth d− 1 whose interval is safe. Since d > 0, op is indirect, and it copies the view
of some operation op′ of processor p′ with depth d − 1. Let at and at′ denote the
successful attempts of op and op′, respectively. There are two cases.

Case 1. op copies the view of op′ due to a takeover failure. Since takeover failures
are detected by the handshake procedure, p′ has executed its handshake procedure
at least k ≥ 6 times while at was executed. Therefore, p′ starts and completes at
least four consecutive attempts during at’s interval. Since at’s interval is safe, at least
two of these attempts are successful. Therefore, p′ completes at least two operations
while at is executed. The attempt at copies the view returned by op′, which is the
last preceding view returned by p′. The above implies that op′ starts after at starts.
By the induction hypothesis, the origin of op′ starts after op′ starts. Since this is also
the origin of op, it follows that the origin of op starts after op starts.

Case 2. op copies the view of op′ due to a wraparound failure. Let op′′ be the
operation of p′ that precedes op′. By the condition for copying the view of op′, the view
returned by op′′ contains the value written by op. Therefore, op′′ does not terminate
before op starts. In particular, op′ starts after op starts. By the induction hypothesis,
the origin of op′ starts after op′ starts. Since this is also the origin of op, it follows
that the origin of op starts after op starts.

We now prove that all intervals are safe, by showing that every operation termi-
nates after at most two attempts.

LEMMA 4.9. Every operation contains at most two attempts.
Proof. Assume, by way of contradiction, that there is an operation opi by proces-

sor pi that contains two consecutive unsuccessful attempts, at1, at2. Assume that the
interval from the start of at1 to the completion of at2 is minimal, that is, all intervals
contained in it are safe. (Such a minimal interval exists because the execution is a
sequence.) We prove that at2 must be successful. There are two cases.

Case 1. at2 fails due to a takeover failure by processor pj . In this case, pj executes
its handshake procedure at least k ≥ 6 times during at2’s interval. This implies that in
this interval pj starts and completes at least four attempts. Since any interval strictly
contained in at2’s interval is safe, at least two of these attempts are successful. Let
opj be the last operation completed by pj in at2’s interval. It follows that opj starts
after at2 starts, and therefore after the actual update of opi to Si (since at2 is not
the first attempt of opi). Since opj ’s interval is safe, Lemma 4.8 implies that opj ’s
origin starts after opj starts, and therefore after the value of opi is written in Si. This
implies that the view returned by opj contains the value written by opi. Therefore,
when pi discovers a takeover by pj in at2, it can copy the view of opj , and hence at2
is successful, which is a contradiction.

Case 2. at2 fails due to a wraparound failure. Consider the interval from the start
of at1 to the completion of at2. If at1 is unsuccessful due to a takeover failure, then
clearly there is a processor pj that executes its handshake procedure at least k ≥ 8
times during this interval. Otherwise, if both at1 and at2 fail due to a wraparound
failure, then again it is guaranteed that during their interval there is a processor pj
that executes its handshake procedure at least k ≥ 8 times. This implies that in this
interval pj starts and completes at least six attempts. Since this interval is safe, at
least three of these attempts are successful. This implies that pj starts and completes
at least two operations in this interval. As before, since this interval is safe, Lemma
4.8 implies that the last two operations of pj in this interval return views that contain

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 337

the value written by opi. Therefore, when pi discovers a wraparound failure in at2,
it can copy the last view returned by pj , and hence at2 is successful, which is a
contradiction.

Thus, all operation intervals are safe, and therefore Lemma 4.8 can be applied to
any operation to obtain the following corollary.

COROLLARY 4.10. For any operation op, the origin of op starts after op starts.
This implies that indirect operations copy views which are up to date. Since

direct operations clearly observe the value they write, and since indirect operations
copy other processors’ view only if it includes their value, we have the following lemma.

LEMMA 4.11. Any scan or update operation returns a view that contains its own
value.

The following lemma proves that the linearization sequence preserves the real
time order of the operations.

LEMMA 4.12. For any two (scan/update) operations opi and opj, if opi → opj
then opi is linearized before opj.

Proof. There are four cases, according to operation types.
Case 1. Let sci and scj be two scan operations such that sci → scj . By Lemma

4.11, scj returns a view that contains the value it writes. Furthermore, sci does not
return a view that contains the value of scj . Since the views returned by sci and scj
are comparable (Corollary 4.6), it must be that the view returned by scj dominates
the view returned by sci. Therefore, sci is linearized before scj .

Case 2. Let sci be a scan operation and upj be an update operation such that
sci → upj . By the code of the algorithm, the view returned by sci does not contain
the value written by upj , and therefore upj is linearized after sci.

Case 3. Let upi be an update operation and scj be a scan operation such that
upi → scj . By Corollary 4.10, the origin of scj starts after scj does, and therefore
after upi’s actual update. Since the origin is a direct attempt, it reads upi’s value.
Therefore, scj returns a view that contains the value written by upi, and hence scj is
linearized after upi.

Case 4. Let upi and upj be two update operations such that upi → upj . If
upi and upj fit exactly between the same two scan operations, then due to the way
symmetry is broken, upi is linearized before upj , and the lemma follows.

Otherwise, if upj is linearized before upi, then there exists a scan operation sc
such that upj is linearized before sc and sc is linearized before upi. Thus, sc returns
a view that contains the value written by upj and does not contain the value written
by upi. Consider the scate operation that is executed to implement upi. This scate
operation returns a view that contains the value written by upi (Lemma 4.11) but
does not contain the value written by upj (since upi → upj). Therefore, this scate
operation returns a view that is incomparable to the view returned by sc. This contra-
dicts the comparability property of the views returned by scate operations (Corollary
4.6).

Lemmas 4.7 and 4.12 imply that the sequence of scans and updates defined above
is indeed a linearization. By Lemma 4.9, each scate operation contains at most two
attempts. Each attempt requires O(n logm) = O(n logn) operations on atomic single-
writer multireader registers, which implies the following lemma.

LEMMA 4.13. Any scan or update operation terminates after at most O(n logn)
operations on atomic single-writer multireader registers.

Note that, in addition to a single copy of the m-shot classification tree, each
processor maintains n handshake variables (each with O(k) possible values) and two
views. Since k is a constant and m = O(n), the algorithm requires a total of O(n2B)

338 HAGIT ATTIYA AND OPHIR RACHMAN

bits, where as before, B is the number of bits required for representing a view.
Note that B is still unbounded, since the algorithm still uses unbounded sequence
numbers.

4.4. Bounding the sequence numbers. So far, we presented the∞-shot snap-
shot object using unbounded sequence numbers to allow every processor to distinguish,
for any set of values of another processor, which one is the most up to date. When se-
quence numbers are unbounded this goal is easily achieved by choosing the value with
the maximal sequence number. To avoid unbounded values we use bounded sequential
timestamps, a concept introduced in [20]. In our case, each processor generates its own
set of timestamps (timestamps of different processors are not compared). Therefore,
we can use ideas of [14] to implement these timestamps. Below, we briefly describe
these ideas; the reader is referred to [14, 13] for further details.

The main idea is to allow a processor to know which of its sequence numbers might
be in use in the system. If this can be done, then a processor can simply choose a new
sequence number to be some value that is not in use; to let other processors know
what is the ordering among its sequence numbers, the processor holds an ordered list
of all its currently used sequence numbers. If the number of sequence numbers that
might be in use is bounded, then the processor can draw its sequence numbers from
a bounded set of values (thus effectively recycling them).

The difficult part of the above idea is keeping track of the sequence numbers that
are in use in the system. The natural idea that comes to mind is that all of the
sequence numbers of a processor that are written somewhere in the shared memory
at some point are the ones that are in use. However, there might be situations where
some processor, pi, reads a certain sequence number, x, and then x is overwritten and
“disappears” from the shared memory. Later on, pi might rewrite x in the shared
memory. The traceable use abstraction of [14] solves this problem of “hidden” values
by forcing a processor that reads a sequence number from the shared memory to
leave evidence that this sequence number was read. This results in a slightly more
complicated mechanism for reading and writing values from the shared memory.

To allow values to be recycled the processor invokes a “garbage collection” of
sequence numbers, whose execution is spread over the duration of several operations
(see further details in [14, 13]).

The number of (low-level read and write) operations required for generating
bounded sequence numbers is linear, and therefore the O(n logn) complexity of the
snapshot algorithm is not affected.

In the implementation of the traceable use abstraction, the number of sequence
numbers that each processor uses is bounded by O(n2) times the total number of
sequence numbers of that processor that may be in the system concurrently (cf. [13]).
In our case, each processor can have at most O(n2) of its own sequence numbers in
the system concurrently. Thus, the total number of sequence numbers that are used
by each processor is O(n4), and the size of the sequence numbers is therefore O(logn).
In addition, each processor must hold an ordered list of all its sequence numbers that
are currently in use. The list requires O(n4 logn) bits per processor.

As was calculated before, the algorithm requires O(n2B) bits, where B is the
number of bits required to represent a view. To calculate B, recall that a view contains
n entries, each with three fields: the actual value of the entry, the counter field
(O(logn) bits), and the seq field (now bounded to require O(logn) bits). Therefore,

ATOMIC SNAPSHOTS IN O(n logn) OPERATIONS 339

the number of bits required to represent a view is O(n logn), plus n times the number
of bits required to represent an actual values of the snapshot object, which we denote
by |V |. Thus, the total space complexity is O(n3(logn+ |V |) + n5 logn) bits.

5. Discussion. We introduced an implementation of a bounded atomic snap-
shot object in which each update or scan operation requires O(n logn) operations
on atomic single-writer multireader registers. (As was previously mentioned, one of
the operations can be made linear by the results of [23].) Obviously, at least Ω(n)
operations are required for implementing the scan operation for an atomic snapshot
object, and by [22] this is also the lower bound for implementing the update opera-
tion. Needless to say, it will be very interesting to close the O(logn) gap between our
implementation and this lower bound.

REFERENCES

[1] Y. AFEK, H. ATTIYA, D. DOLEV, E. GAFNI, M. MERRITT, AND N. SHAVIT, Atomic snapshots
of shared memory, J. ACM, 40 (1993), pp. 873–890.

[2] J. H. ANDERSON, Composite registers, Distrib. Comput., 6 (1993), pp. 141–154.
[3] J. ASPNES, Time- and space-efficient randomized consensus, in Proceedings of the 9th Annual

ACM Symposium on Principles of Distributed Computing, ACM, New York, 1990, pp. 325–
331.

[4] J. ASPNES AND M. P. HERLIHY, Wait-free data structures in the asynchronous PRAM model,
in Proceedings of the 2nd Annual Symposium on Parallel Algorithms and Architectures,
ACM, New York, 1990, pp. 340–349.

[5] H. ATTIYA, A. BAR-NOY, AND D. DOLEV, Sharing memory robustly in message-passing sys-
tems, in Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing, ACM, New York, 1990, pp. 363–376.

[6] H. ATTIYA, D. DOLEV, AND N. SHAVIT, Bounded polynomial randomized consensus, in Pro-
ceedings of the 8th Annual ACM Symposium on Principles of Distributed Computing,
1989, ACM, New York, pp. 281–293.

[7] H. ATTIYA, M. HERLIHY, AND O. RACHMAN, Atomic snapshots using lattice agreement, Dis-
trib. Comput., 8 (1995), pp. 121–132.

[8] H. ATTIYA, N. A. LYNCH, AND N. SHAVIT, Are wait-free algorithms fast?, J. ACM, 41 (1994),
pp. 725–763.

[9] T. CHANDRA AND C. DWORK, Using Consensus to Solve Atomic Snapshots, 1992, manuscript.
[10] D. DOLEV AND N. SHAVIT, Bounded concurrent time-stamping, SIAM J. Comput., 26 (1997),

pp. 418–455.
[11] C. DWORK, private communication.
[12] C. DWORK, M. P. HERLIHY, S. A. PLOTKIN, AND O. WAARTS, Time-lapse snapshots, in

Proceedings of the Israel Symposium on the Theory of Computing and Systems, Haifa,
Israel, 1992, Lecture Notes in Comput. Sci. 601, D. Dolev, Z. Galil, and M. Rodeh, eds.,
Springer-Verlag, Berlin, pp. 154–170.

[13] C. DWORK, M. P. HERLIHY, AND O. WAARTS, Bounded round numbers, in Proceedings of the
12th Annual ACM Symposium on Principles of Distributed Computing, ACM, New York,
1993, pp. 53–64.

[14] C. DWORK AND O. WAARTS, Simple and efficient concurrent timestamping or bounded con-
current timestamping are comprehensible, in Proceedings of the 24th ACM Symposium on
Theory of Computing, ACM, New York, 1992, pp. 655–666.

[15] R. GAWLICK, N. LYNCH, AND N. SHAVIT, Concurrent timestamping made simple, in Proceed-
ings of the Israel Symposium on the Theory of Computing and Systems, Haifa, Israel, 1992,
Lecture Notes in Comput. Sci. 601, D. Dolev, Z. Galil, and M. Rodeh, eds., Springer-Verlag,
Berlin, pp. 171–183.

[16] M. P. HERLIHY, Wait-free synchronization, ACM Trans. Programming Lang. Systems, 13
(1991), pp. 124–149.

[17] M. P. HERLIHY, Randomized wait-free objects, in Proceedings of the 10th ACM Symposium on
Principles of Distributed Computing, ACM, New York, 1991, pp. 11–21.

[18] M. P. HERLIHY AND J. M. WING, Linearizability: A correctness condition for concurrent
objects, ACM Trans. Programming Lang. Systems, 12 (1990), pp. 463–492.

340 HAGIT ATTIYA AND OPHIR RACHMAN

[19] M. INOUE, W. CHEN, T. MASUZAWA, AND N. TOKURA, Linear-time snapshot using multi-
writer multi-reader registers, in Proceedings of the 8th International Workshop on Dis-
tributed Algorithms, Terschelling, The Netherlands, 1994, Lecture Notes in Comput. Sci.
857, G. Tel and P. Vitanyi, eds., Springer-Verlag, Berlin, 1994, pp. 130–140.

[20] A. ISRAELI AND M. LI, Bounded time stamps, Distrib. Comput., 6 (1987), pp. 205–209.
[21] A. ISRAELI AND A. SHIRAZI, Efficient Snapshot Protocol Using 2-Lattice Agreement, 1992,

manuscript.
[22] A. ISRAELI AND A. SHIRAZI, The time complexity of updating snapshot memories, in 2nd

Annual European Symposium on Algorithms, Lecture Notes in Comput. Sci. 855, Springer-
Verlag, New York, 1994, pp. 171–182.

[23] A. ISRAELI, A. SHAHAM, AND A. SHIRAZI, Linear-time snapshot protocols for unbalanced sys-
tems, in Proceedings of the 7th International Workshop on Distributed Algorithms, A.
Schiper, ed., Lausanne, Switzerland, 1993, Lecture Notes in Comput. Sci. 725, Springer-
Verlag, Berlin, 1993, pp. 26–38.

[24] L. M. KIROUSIS, P. SPIRAKIS, AND PH. TSIGAS, Reading many variables in one atomic opera-
tion: Solutions with linear or sublinear complexity, in Proceedings of the 5th International
Workshop on Distributed Algorithms, Delphi, Greece, 1991, Lecture Notes in Comput.
Sci. 579, S. Toueg, P. Spirakis, and L. Kirousis, eds., Springer-Verlag, Berlin, 1991, pp.
229–241.

CIRCUIT BOTTOM FAN-IN AND COMPUTATIONAL POWER∗

LIMING CAI† , JIANER CHEN‡ , AND JOHAN HÅSTAD§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 341–355, April 1998 002

Abstract. We investigate the relationship between circuit bottom fan-in and circuit size when
circuit depth is fixed. We show that in order to compute certain functions, a moderate reduction in
circuit bottom fan-in will cause significant increase in circuit size. In particular, we prove that there
are functions that are computable by circuits of linear size and depth k with bottom fan-in 2 but
require exponential size for circuits of depth k with bottom fan-in 1. A general scheme is established
to study the trade-off between circuit bottom fan-in and circuit size. Based on this scheme, we are
able to prove, for example, that for any integer c, there are functions that are computable by circuits
of linear size and depth k with bottom fan-in O(logn) but that require exponential size for circuits of
depth k with bottom fan-in c, and that for any constant ε > 0, there are functions that are computable
by circuits of linear size and depth k with bottom fan-in log n but that require superpolynomial size
for circuits of depth k with bottom fan-in O(log1−ε n). A consequence of these results is that the
three input read-modes of alternating Turing machines proposed in the literature are all distinct.

Key words. computational complexity, circuit complexity, lower bound, alternating Turing
machine

AMS subject classifications. 68Q05, 68Q10, 68Q15, 68Q25, 68Q30

PII. S0097539795282432

1. Introduction. To prove lower bounds for various computational models re-
mains as one of the most challenging tasks in complexity theory. Much progress
has been made recently in deriving lower bounds for computational models with lim-
ited capabilities, with the hope that these may lead to better lower bounds for more
general computational models and to better understanding of intrinsic complexity of
computation.

One of the most successful trials is the derivation of lower bounds for constant
depth circuits. The first strong lower bounds were given by Furst, Saxe, and Sipser [12]
and, independently, by Ajtai [1] who show that the size of a constant depth circuit
computing the parity function is superpolynomial. The results were subsequently
sharpened by Yao [18] who derived an exponential lower bound. H̊astad [14, 15]
further strengthened the result and obtained near optimal lower bounds. A direct
consequence of these results is that the logarithmic time hierarchy [17], i.e., the set of
languages accepted by families of circuits of constant depth and polynomial size, is a
proper subset of P .

The logarithmic time hierarchy was further refined by Sipser [17] who showed
that for each integer k > 1, there are functions that are computable by a circuit of
depth k and polynomial size but require superpolynomial size for circuits of depth
k − 1. Thus, all levels of the logarithmic time hierarchy are distinct. Exponential

∗Received by the editors March 6, 1995; accepted for publication (in revised form) December 19,
1995.

http://www.siam.org/journals/sicomp/27-2/28243.html
†School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701

(cai@cs.ohiou.edu). The work of this author was supported in part by the Engineering Excellence
Award from Texas A&M University.
‡Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

(chen@cs.tamu.edu). The work of this author was supported in part by National Science Foun-
dation grants CCR-9110824 and CCR-9613805.
§Department of Computer Science, Royal Institute of Technology, Stockholm, Sweden (johanh@

nada.kth.se).

341

342 L. CAI, J. CHEN, AND J. HÅSTAD

lower bounds for the depth k to k − 1 conversion were first claimed by Yao [18] and
then fully proved by H̊astad [14, 15].

In this paper, we will further sharpen the separation results in the logarithmic
time hierarchy by investigating the relationship between circuit bottom fan-in and
circuit size when circuit depth is fixed. We show that in order to compute cer-
tain functions, a moderate reduction in circuit bottom fan-in will cause significant
increase in circuit size. In particular, we prove that there are functions that are
computable by circuits of linear size and depth k with bottom fan-in 2 but that
require exponential size for circuits of depth k with bottom fan-in 1. A general
scheme is established to study the trade-off between circuit bottom fan-in and circuit
size. Based on this scheme, we are able to prove, for example, that for any inte-
ger c, there are functions that are computable by circuits of linear size and depth k
with bottom fan-in O(logn) but that require exponential size for circuits of depth k
with bottom fan-in c, and that for any constant ε > 0, there are functions that are
computable by circuits of linear size and depth k with bottom fan-in logn but that
require superpolynomial size for circuits of depth k with bottom fan-in O(log1−ε n).
Therefore, the computational power of constant depth circuits depends not only on
its depth but also strictly on its bottom fan-in when the depth of the circuits is
fixed.

Another motivation of our present research is the study of input read-modes
of a sublinear-time alternating Turing machine, which is an important computa-
tional model in the study of complexity classes. A number of input read-modes
for sublinear-time alternating Turing machines have appeared in the literature. In
the standard model proposed by Chandra, Kozen, and Stockmeyer [9], a compu-
tation path of the machine can read up to O(logn) input bits in time O(logn).
Ruzzo [16] proposed an input read-mode in which each computation path can read
at most one input bit and the reading must be performed at the end of the path.
An input read-mode studied by Sipser [17] insists that each input reading takes
time Ω(log n). These input read-modes have been carefully studied by Cai and
Chen [6] who have given a precise circuit characterization for each read-mode for
log-time alternating Turing machines of constant alternations. Input read-modes
of log-time alternating Turing machines also find applications in the study of com-
putational optimization problems [5, 8] and in the study of limited nondeter-
minism [7].

Based on the circuit characterizations of Cai and Chen and on our separation
results in constant depth circuits, we are able to show that the three proposed input
read-modes for alternating Turing machines are all distinct. More precisely, if we
let ΠUk (resp., ΠRk , ΠSk) be the class of languages accepted by log-time k-alternation
alternating Turing machines using the input read-mode of Chandra, Kozen, and Stock-
meyer (resp., Ruzzo, Sipser), then we can show that for all integers k ≥ 1,

ΠRk ⊂ ΠSk ⊂ ΠUk ⊂ ΠRk+1,

where ⊂ means “proper subset.” This gives a very detailed refinement of the loga-
rithmic time hierarchy.

The paper is organized as follows. Section 2 introduces necessary definitions
and related previous work. In section 3, we show that in order to compute certain
functions, an O(logn) factor reduction in circuit bottom fan-in may cause exponential
increase in circuit size. In section 4, we show that for circuits computing certain special
functions, even reducing the circuit bottom fan-in by 1 will result in exponential

CIRCUIT BOTTOM FAN-IN 343

increase in circuit size. A general scheme is established in section 5 to study the
trade-off between circuit bottom fan-in and circuit size. The relationship to the input
read-modes of alternating Turing machines is given in section 6.

2. Preliminaries. We briefly review the fundamentals related to the present
paper. For further discussion on the theory of circuit complexity and alternating
Turing machines, the reader is referred to [3, 11].

An (unbounded fan-in) Boolean circuit αn with input x = x1x2, . . . , xn of length
n is a directed acyclic graph. The fan-in of a node in the circuit is the in-degree
of the node. The nodes of fan-in 0 are called inputs and are labeled from the set
{0, 1, x1, x1, . . . , xn, xn}. The nodes of fan-in greater than 0 are called gates and are
labeled either and or or. One of the nodes is designated the output node. The size
is the number of gates and the depth is the maximum distance from an input to the
output. Without loss of generality, we assume that the circuits are of the special
form where all and and or gates are organized into alternating levels with edges only
between adjacent levels. Any circuit may be converted to one of this form without
increasing the depth and by at most squaring the size [10]. In this special form, the
gates that are connected to input nodes will be called bottom level gates or depth 1
gates. The gates that receive inputs from depth 1 gates will be called depth 2 gates,
and so on. The bottom fan-in of a circuit is the maximum over fan-ins of all bottom
level gates. The following notation introduced by Boppana and Sipser [3] will be
especially convenient in our discussion.

DEFINITION 2.1. (See [3].) A circuit α is a Πs
k-circuit (resp., Σsk-circuit) if α is a

depth k circuit of size at most s with an and-gate (resp., an or-gate) at the output.
A circuit β is a Πs,c

k -circuit (resp., Σs,ck -circuit) if β is a depth k+ 1 circuit of size at
most s with bottom fan-in c and an and-gate (resp., an or-gate) at the output.

A family of circuits is a sequence {αn |n ≥ 1} of circuits, where αn is with input of
length n. A family of circuits may be used to define a language. A family {αn | n ≥ 1}
of circuits is said to be a Πpoly

k -family (resp., Πpoly,c
k -family) if there is a polynomial

p such that for all n ≥ 1, αn is a Πp(n)
k -circuit (resp., Πp(n),c

k -circuit).
The Sipser function fmk , as defined in [14, 15], is given by the circuit Cmk shown

in Figure 1. The circuit Cmk is a tree of depth k in which every gate in the bottom
level has fan-in

√
km logm/2, the fan-in of the output gate is

√
m/ logm, and the

fan-in for all other gates is m. The output gate of Cmk is always an and-gate, while
the gates in the bottom level vary depending on the parity of k. Each variable xi,
1 ≤ i ≤ n, occurs at only one leaf. Note that the number n of variables of the function
fmk equals mk−1

√
k/2.

The following theorem is proved by H̊astad [14, 15].
THEOREM 2.2. (See [14, 15].) There is no depth k circuit computing the function

fmk with bottom fan-in 1
12
√

2k

√
m

logm and fewer than 2
1

12
√

2k

√
m

logm gates of depth ≥ 2,

for m > m0, where m0 is an absolute constant.
To further sharpen the separation results and study the relationship between

circuit bottom fan-in and circuit size, we introduce a variation fm,bk of the Sipser
function by explicitly specifying the bottom fan-in for the defining circuits.

DEFINITION 2.3. Let Cm,bk be the tree circuit defining the Sipser function fmk , as
illustrated in Figure 1, except that each bottom level gate of Cm,bk has fan-in b instead
of
√
km logm/2. Define fm,bk to be the function computed by the tree circuit Cm,bk .

The number n of variables of the function fm,bk is n = bmk−2
√
m/ logm.

344 L. CAI, J. CHEN, AND J. HÅSTAD

n∧
�
��

Z
ZZn∨

�
�
A
A

n∨
�
�
A
A

n n n∨ ∨ ∨
�� �� ��AA AA AAn n n n n n∧ ∧ ∧ ∧ ∧ ∧

�� �� �� �� �� ��BB BB BB BB BB BB
x1 x2 xn−1 xn

√
km logm/2

m

m

√
m/ logm

Fan-infmk (x1, . . . , xn)

FIG. 1. The circuit Cmk defining the function fmk .

The discussion of the present paper is centered on the complexity of the function
fm,bk .

3. On circuits that compute f m,Ω(log m)
k . In this section, we consider the

complexity of the function fm,bk , where b is of order Ω(logm).
Our main result in this section is that for b > k logm, the function fm,bk cannot

be computed by any depth k circuit without exponential size and with bottom fan-in
b

c logm for a particular constant c. This result requires two different proofs depending
on whether the bottom fan-in b is larger or smaller than the bottom fan-in of the
standard Sipser function circuit Cmk given in Figure 1.

We first consider the case b ≤
√
km logm/2. For this, we need to briefly review

some notations and results by H̊astad [14].
DEFINITION 3.1. (See [14].) Let q be a real number and (Bi)ri=1 a partition of

the variables. Let R+
q,B be the probability space of restrictions ρ that take values as

follows.
For every Bi, 1 ≤ i ≤ r independently,
1. with probability q let si = ∗ and else si = 0.
2. for every xk ∈ Bi let ρ(xk) = si with probability q and else ρ(xk) = 1.

Similarly, an R−q,B probability space of restrictions is defined by interchanging the
roles played by 0 and 1.

The idea behind these restrictions is that a block Bi will correspond to the vari-
ables leading into one of the bottom level gates of the circuit Cm,bk that defines the
function fm,bk . If the bottom level gates of Cm,bk are ands, we use a restriction from
R+
q,B ; if the bottom level gates of Cm,bk are ors, we use a restriction from R−q,B .

DEFINITION 3.2. (See [14].) For a restriction ρ ∈ R+
q,B, let g(ρ) be the restriction

defined as follows: for all Bi with si = ∗, g(ρ) gives the value 1 to all variables which
are given value ∗ by ρ except the variable with the highest index among those variables
given value ∗ by ρ, to which g(ρ) gives value ∗.

If ρ ∈ R−q,B , then g(ρ) is defined similarly but now takes the value 0 and ∗. Note
that for a given restriction ρ, the restriction g(ρ) can be obtained by a deterministic
process that makes each block Bi have at most one ∗.

CIRCUIT BOTTOM FAN-IN 345

Let ρg(ρ) denote the composition of the two restrictions. That is, ρg(ρ) is the
restriction g(ρ) obtained from the restriction ρ.

LEMMA 3.3 (the switching lemma [14]). Let σ be an and of ors all of size ≤ t and
ρ ∈ R+

q,B. Then the probability that under the restriction ρg(ρ) σ cannot be written
as an or of ands all of size < s is bounded by αs, where α < 4qt

ln 2 < 5.78qt.
The switching lemma is also true if we do either or both of the following replace-

ments: (1) replacing the probability space R+
q,B by the probability space R−q,B ; and

(2) replacing σ by an or of ands to be converted to an and and ors.
Now we are ready for our first main result of this section.
THEOREM 3.4. For k logm < b ≤

√
km logm/2, the function fm,bk cannot

be computed by any depth k circuit of bottom fan-in b
12k logm and size bounded by

2
1

12
√

2(k−1)

√
m

logm , for m > m0, where m0 is an absolute constant.
Proof. The proof is similar to the induction step in the proof given by H̊astad

for Theorem 2.2 (see [14, pages 48–50]). Therefore, we only outline the proof and
describe in detail those places that are different.

We set q = k logm
b . Suppose that τ1, . . . , τr, r = mk−2

√
m/ logm, are the bottom

level gates of the tree circuit Cm,bk defining the function fm,bk . Let (Bj)rj=1 be the
partition of the variables of fm,bk such that block Bj is the set of variables leading
into the bottom level gate τj of Cm,bk .

Claim 1. The probability that under the restriction ρg(ρ) any bottom level gate
τj of the tree circuit Cm,bk does not take value sj is bounded by 1

6m .
The proof is identical to the proof by H̊astad for Fact 1 in [14, page 49]: such a

gate τj does not take the corresponding value sj with probability (1− q)|Bj | < 1
6m
−k.

Since there are fewer than mk−1 bottom level gates in the tree circuit Cm,bk , the
probability in Claim 1 is bounded by 1

6m .
Claim 2. The probability that under the restriction ρg(ρ) any depth 2 gate in

the tree circuit Cm,bk gets fewer than
√

(k − 1)m logm/2 ∗’s from the bottom level is
bounded by 1

m .
Let pi =

(
m
i

)
qi(1 − q)m−i be the probability that a fixed depth 2 gate µ in

the tree circuit Cm,bk gets exactly i ∗’s from the bottom level. With the condition
b ≤

√
km logm/2, we can show that for i ≤

√
(k − 1)m logm, we have pi

pi−1
≥
√

2.

Thus the probability that gate µ gets fewer than
√

(k − 1)m logm/2 ∗’s is bounded
by m−k for sufficiently large m. Since there are fewer than mk−1 depth 2 gates in the
tree circuit Cm,bk , the probability in Claim 2 is bounded by 1

m .
Now suppose that the theorem is not true. Thus, there is a depth k circuit C0 of

size bounded by 2
1

12
√

2(k−1)

√
m

logm and bottom fan-in t ≤ b
12k logm that computes the

function fm,bk . Furthermore, assume that the gates in the bottom level of the circuit
C0 are or gates (the dual case can be proved similarly).

Claim 3. The probability that under the restriction ρg(ρ) any depth 2 gate in the
circuit C0 cannot be written as an or of ands of size 1

12
√

2(k−1)

√
m

logm is bounded

by 1
2 .
Let σ be a fixed depth 2 gate in the circuit C0. By the switching lemma, under

the restriction ρg(ρ), the probability that σ cannot be written as an or of ands of

size 1
12
√

2(k−1)

√
m

logm is bounded by (5.78qt)
1

12
√

2(k−1)

√
m

logm . Since the circuit C0 has

at most 2
1

12
√

2(k−1)

√
m

logm depth 2 gates, the probability in Claim 3 is bounded by

346 L. CAI, J. CHEN, AND J. HÅSTAD

(5.78qt)
1

12
√

2(k−1)

√
m

logm · 2
1

12
√

2(k−1)

√
m

logm

<

(
5.78
12

) 1
12
√

2(k−1)

√
m

logm

· 2
1

12
√

2(k−1)

√
m

logm

≤
(

5.78
6

) 1
12
√

2(k−1)

√
m

logm

,

which is smaller than 1
2 when m is sufficiently large.

Therefore with a probability larger than 1− (1
6m + 1

m + 1
2) > 1

3 , the tree circuit
Cm,bk becomes a circuit that computes a function f at least as hard as the Sipser
function fmk−1, and the circuit C0 becomes a depth k − 1 circuit that computes the

function f and has bottom fan-in 1
12
√

2(k−1)

√
m

logm and fewer than 2
1

12
√

2(k−1)

√
m

logm

gates of depth ≥ 2. But this contradicts Theorem 2.2.
Letting b =

√
km logm/2 in Theorem 3.4, we obtain Theorem 2.2. Note that the

size bound is slightly improved.
Note that the condition b ≤

√
km logm/2 in Theorem 3.4 is essential in the proof

for Claim 2. For larger bottom fan-in b, we have the following theorem.
THEOREM 3.5. For b ≥ 2

√
km logm/2, the function fm,bk cannot be computed by

any depth k circuit of bottom fan-in b
25ke logm and size bounded by 2

1
12
√

2k

√
m

logm , for
m > m0, where m0 is an absolute constant and e is the base of the natural logarithm.

Proof. Let q = 1.04
√
km logm/2
b . Consider the following probability space R+

q of
restrictions:

For each variable xk of the function fm,bk , let ρ+(xk) = ∗ with
probability q and else ρ+(xk) = 1.

The probability space R−q is defined similarly except that the value 1 is replaced by
value 0.

From now on, we assume that the bottom level gates of the tree circuit Cm,bk

defining fm,bk are and gates. The case when the bottom level gates of Cm,bk are
or gates can be proved similarly by using the probability space R−q instead of the
probability space R+

q .
We first show that under a restriction ρ+ ∈ R+

q , with very large probability, the
tree circuit Cm,bk computes a function at least as hard as the Sipser function fmk .
The proof is similar to that for Claim 2 in Theorem 3.4. Thus, we only describe the
differences.

Let τ be a bottom level gate in the tree circuit Cm,bk . The gate τ is an and gate
of fan-in b. Let pi =

(
b
i

)
qi(1− q)b−i be the probability that the gate τ gets exactly i

∗’s under a restriction ρ+ ∈ R+
q . First we consider the ratio

pi
pi−1

=
b− i+ 1

i
· q

1− q >
b− i
i
· q

1− q .

For i ≤ 1.02
√
km logm/2, we have

b− i
i
≥ b− 1.02

√
km logm/2

1.02
√
km logm/2

CIRCUIT BOTTOM FAN-IN 347

and

q

1− q =
(1.04

√
km logm/2)/b

1− (1.04
√
km logm/2)/b

=
1.04

√
km logm/2

b− 1.04
√
km logm/2

.

Thus, we have

pi
pi−1

>
b− 1.02

√
km logm/2

1.02
√
km logm/2

· 1.04
√
km logm/2

b− 1.04
√
km logm/2

≥ 52
51
.

This gives (51/52)j−ipj > pi for i < j ≤ 1.02
√
km logm/2.

Now under a restriction ρ+ ∈ R+
q , the probability that the gate τ gets fewer than√

km logm/2 ∗’s is bounded by

√
km logm/2∑
i=0

pi <

√
km logm/2∑
i=0

(51/52)
√
km logm/2−ip√

km logm/2

≤ 52p√
km logm/2 < 52(51/52)0.02

√
km logm/2p1.02

√
km logm/2

≤ 52(51/52)0.02
√
km logm/2,

and 52(51/52)0.02
√
km logm/2 is smaller than 1

mk
for sufficiently large m.

Since the circuit Cm,bk has fewer than mk−1 bottom level gates, we conclude that
under a restriction ρ+ ∈ R+

q , the probability that any bottom level gate of the tree
circuit Cm,bk gets fewer than

√
km logm/2 ∗’s is bounded by 1

m .
Now suppose that the theorem is not true. Thus, there is a depth k circuit C0

of bottom fan-in at most b
25ke logm and size bounded by 2

1
12
√

2k

√
m

logm such that the

circuit C0 computes the function fm,bk . We show that under a restriction ρ+ ∈ R+
q ,

with very large probability, the circuit C0 becomes a depth k circuit of bottom fan-in
at most 1

12
√

2k

√
m

logm .

Let µ be a bottom level gate of fan-in c ≤ b
25ke logm in the circuit C0, and let

ri =
(
c
i

)
qi(1 − q)c−i be the probability that the gate µ gets exactly i ∗’s under a

restriction ρ+ ∈ R+
q . We have(
c

i

)
qi(1− q)c−i ≤ c!

i!(c− i)!q
i ≤ ciqi

i!
≤
(cqe
i

)i
,

where the last inequality is based on Stirling’s approximation [13, page 452]

i! ≥ 0.9(i/e)i
√

2πi ≥ (i/e)i, for i ≥ 1.

Let s = 1
12
√

2k

√
m

logm . Under a restriction ρ+ ∈ R+
q , the probability that the gate µ

gets more than s ∗’s is bounded by

c∑
i=s+1

ri ≤
c∑

i=s+1

(cqe
i

)i
≤

c∑
i=s+1

 1.04
25
√

2k

√
m

logm

i

i

.

348 L. CAI, J. CHEN, AND J. HÅSTAD

For i > s = 1
12
√

2k

√
m

logm , we have
(

1.04
25
√

2k

√
m

logm

)/
i < 12.48

25 . Thus, under a

restriction ρ+ ∈ R+
q the probability that the gate µ gets more than s ∗’s is bounded

by
c∑

i=s+1

(12.48/25)i < (12.48/25)s.

Since the circuit C0 has at most 2s bottom level gates, we conclude that under a
restriction ρ+ ∈ R+

q , the probability that any bottom level gate of the circuit C0 gets
more than s ∗’s is bounded by

(12.48/25)s · 2s = (24.96/25)s = (24.96/25)
1

12
√

2k

√
m

logm ,

which is smaller than 1
m for sufficiently large m.

Thus, under a restriction ρ+ ∈ R+
q , with probability ≥ 1 − 1

m −
1
m > 1

2 , all
bottom level gates of the tree circuit Cm,bk get at least

√
km logm/2 ∗’s (thus Cm,bk

is converted to a circuit computing a function at least as hard as the Sipser function
fmk), and all bottom level gates of the circuit C0 get at most 1

12
√

2k

√
m

logm ∗’s. Note

that if a bottom level gate µ of the circuit C0 gets at most 1
12
√

2k

√
m

logm ∗’s, then

either the gate µ is eliminated from the bottom level (e.g., µ is an and gate and gets
an input with value 0) or the gate µ becomes a gate of fan-in at most 1

12
√

2k

√
m

logm .

In any case, we have derived that there is an assignment that converts the circuit C0

into a depth k circuit C ′ of bottom fan-in bounded by 1
12
√

2k

√
m

logm and size bounded

by 2
1

12
√

2k

√
m

logm such that the circuit C ′ computes a function at least as hard as the
Sipser function fmk . But this contradicts Theorem 2.2.

This completes the proof.

4. On circuits that compute f m,2
k . In the previous section, we showed that

for circuits to compute the function fm,bk , b = Ω(logm), an O(logm) factor reduction
in bottom fan-in may cause an exponential increase in the circuit size. In this section,
we will show that in certain cases, even reducing the circuit bottom fan-in by 1 will
cause an exponential increase in the circuit size. More precisely, we will show that the
function fm,2k can be computed by a depth k circuit of linear size and bottom fan-in
2 but requires exponential size for depth k circuits of bottom fan-in 1. Note that a
depth k circuit of bottom fan-in 1 is actually a depth k − 1 circuit.

We prove the above result with a new probability space of restrictions. We start
with the following lemma.

LEMMA 4.1. Partition the Boolean variables {x1, . . . , xn} into groups of c vari-
ables each. For each group, randomly pick r variables and assign them 0, and assign
the rest c−r variables ∗. Let σ be an or of a subset Sσ of {x1, x1, . . . , xn, xn} such that
Sσ contains at least h negative literals xi. Then with the above random assignment,

Pr[σ 6≡ 1] ≤ ((c− r)/c)h.

Proof. Let s = n/c be the number of groups in the partition given in the statement
of the lemma. We first rename the literals in the set Sσ so that x(d)

1 , . . . , x
(d)
jd

, d =

1, . . . , s, j1 + · · ·+ js = h, are h negative literals in Sσ, where x(d)
1 , . . . , x

(d)
jd

belong to
the same group in the partition, d = 1, . . . , s.

CIRCUIT BOTTOM FAN-IN 349

Let A(d)
t be the event that the variable x

(d)
t is not assigned 0 by the random

assignment, and let Eσ 6≡1 be the event that σ is not identical to 1. Then

Eσ 6≡1 ⊆
s⋂
d=1

(
A

(d)
1 ∩ · · · ∩A(d)

jd

)
.

Thus,

Pr[σ 6≡ 1] = Pr[Eσ 6≡1] ≤ Pr
[

s⋂
d=1

(
A

(d)
1 ∩ · · · ∩A(d)

jd

)]
=

s∏
d=1

Pr
[
A

(d)
1 ∩ · · · ∩A(d)

jd

]
.

We have the last equality because the events A(d)
1 ∩ · · · ∩ A(d)

jd
and A

(d′)
1 ∩ · · · ∩ A(d′)

jd′

are independent for d 6= d′.
Now consider Pr[A(d)

1 ∩ · · · ∩ A(d)
jd

]. If jd > c− r, then by the way we assign the

dth group, at least one of the variables x(d)
1 , . . . , x

(d)
jd

is assigned 0. Therefore,

Pr
[
A

(d)
1 ∩A(d)

2 ∩ · · · ∩A(d)
jd

]
= 0.

If jd ≤ c− r, then

Pr
[
A

(d)
1 ∩A(d)

2 ∩ · · · ∩A(d)
jd

]
= Pr

[
A

(d)
1

]
· Pr

[
A

(d)
2 |A

(d)
1

]
· Pr

[
A

(d)
3 |A

(d)
1 ∩A(d)

2

]
· · ·Pr

[
A

(d)
jd
|A(d)

1 ∩ · · · ∩A(d)
jd−1

]
.

Note that

Pr
[
A

(d)
i |A

(d)
1 ∩ · · · ∩A(d)

i−1

]
=
c− r − i+ 1
c− i+ 1

≤ c− r
c

.

Thus,

Pr
[
A

(d)
1 ∩A(d)

2 ∩ · · · ∩A(d)
jd

]
≤ ((c− r)/c)jd .

This gives directly

Pr[σ 6≡ 1] ≤
s∏
d=1

Pr
[
A

(d)
1 ∩ · · · ∩A(d)

jd

]
≤

s∏
d=1

(
c− r
c

)jd
=
(
c− r
c

)h
.

Similarly we can prove the following lemma.
LEMMA 4.2. Partition the Boolean variables {x1, . . . , xn} into groups of c vari-

ables each. For each group, randomly pick r variables and assign them 1, and assign
the rest c−r variables ∗. Let σ be an or of a subset Sσ of {x1, x1, . . . , xn, xn} such that
Sσ contains at least h positive literals xi. Then with the above random assignment,

Pr[σ 6≡ 1] ≤ ((c− r)/c)h.

Now we are ready for the main theorem of this section.
THEOREM 4.3. The function fm,2k cannot be computed by any depth k− 1 circuit

of size bounded by 2
1

12
√

2(k−1)

√
m

logm for m > m0, where m0 is an absolute constant.

350 L. CAI, J. CHEN, AND J. HÅSTAD

Proof. To simplify the expressions, we let s = 1
12
√

2(k−1)

√
m

logm . Suppose that the

theorem is not true and that there is a depth k− 1 circuit C of size 2s that computes
the function fm,2k . Furthermore, we assume that the gates in the bottom level of C
are or gates (the case that the bottom level gates of C are and gates can be proved
similarly).

Randomly pick one variable from each pair x2i−1 and x2i and assign it 0. This
will reduce the tree circuit Cm,2k defining fm,2k to the tree circuit Cm,mk−1 defining fm,mk−1 .

Let τ be an or gate in the bottom level of the circuit C such that τ has more
than s negative literals in its input, then by Lemma 4.1,

Pr[τ 6≡ 1] ≤ (1/2)s+1.

Let τ1, . . . , τr, r ≤ 2s be all the gates in the bottom level of the circuit C such that
there are more than s negative literals in their input, then

Pr[τ1 6≡ 1 ∨ · · · ∨ τr 6≡ 1] ≤ Pr[τ1 6≡ 1] + · · ·+ Pr[τr 6≡ 1] ≤ 2s(1/2)s+1 = 1/2.

Thus,

Pr[τ1 ≡ 1 ∧ · · · ∧ τr ≡ 1] ≥ 1/2.

Therefore, there is an assignment that converts the circuit Cm,2k to the circuit Cm,mk−1
and eliminates all gates in the bottom level of the circuit C in whose input there are
more than s negative literals. Let the circuit obtained from C by this assignment be
C ′.

Now partition the input of the function fm,mk−1 into groups of m variables each such
that each group corresponds to the inputs to a bottom level gate of the tree circuit
Cm,mk−1 . Randomly pick half of the variables in each group and assign them 1. The

circuit Cm,mk−1 under such an assignment is converted to the circuit Cm,m/2k−1 defining

the function f
m,m/2
k−1 .

Let σ be an or gate in the bottom level of the circuit C ′ with more than s positive
literals in its input, then by Lemma 4.2,

Pr[σ 6≡ 1] ≤ (1/2)s+1.

Let σ1, . . . , σt, t ≤ 2s be all the gates in the bottom level of the circuit C ′ with more
than s positive literals in their input, then

Pr[σ1 6≡ 1 ∨ · · · ∨ σt 6≡ 1] ≤ Pr[σ1 6≡ 1] + · · ·+ Pr[σt 6≡ 1] ≤ 2s(1/2)s+1 = 1/2.

Thus,

Pr[σ1 ≡ 1 ∧ · · · ∧ σt ≡ 1] ≥ 1/2.

Therefore, there is an assignment that converts the circuit Cm,mk−1 to the circuit Cm,m/2k−1
and eliminates all gates in the bottom level of C ′ that have more than s positive literals
in their input. Let the circuit obtained from C ′ by this assignment be C ′′.

Since each gate in the bottom level of the circuit C ′′ has neither more than s
negative literals nor more than s positive literals in its input, the bottom fan-in of the
circuit C ′′ is at most 2s = 1

6
√

2(k−1)

√
m

logm , which is smaller than m/2
25e(k−1) logm for

CIRCUIT BOTTOM FAN-IN 351

sufficiently large m. Thus, we have constructed a circuit C ′′ of depth k − 1, bottom

fan-in less than m/2
25e(k−1) logm , and size bounded by 2s = 2

1
12
√

2(k−1)

√
m

logm such that

C ′′ computes the function f
m,m/2
k−1 . This contradicts Theorem 3.5.

The following corollary will be used in section 6.
COROLLARY 4.4. The function fm,2k can be computed by a circuit of depth k,

linear size, and bottom fan-in 2, but cannot be computed by any depth k− 1 circuit of
polynomial size.

COROLLARY 4.5. For each pair of integers k, c > 1, there are functions that
are computable by circuits of linear size and depth k with bottom fan-in c but require
exponential size for circuits of depth k − 1.

5. Trade-off between bottom fan-in and size. We first summarize the re-
sults in the previous two sections in the following theorem.

THEOREM 5.1. For all integers b ≥ 2 and sufficiently large m, the function fm,bk

can be computed by a depth k circuit of linear size and bottom fan-in b, but requires
size larger than 2

1
12
√

2k

√
m

logm for depth k circuits of bottom fan-in b
25ek logm .

Proof. For the case 2 ≤ b ≤ k logm, since b
25ek logm < 1, the theorem is implied

by Theorem 4.3. The case k logm < b ≤
√
km logm/2 is proved in Theorem 3.4.

For the case
√
km logm/2 < b < 2

√
km logm/2, since b

25ek logm ≤
√
km logm/2
12k logm , the

theorem is implied by Theorem 3.4. Finally, the case b ≥ 2
√
km logm/2 is proved by

Theorem 3.5.
A number of important consequences follow directly from Theorem 5.1.
THEOREM 5.2. For any integers k ≥ 1 and h ≥ 1, and for any real number

r, there are functions that are computable by circuits of linear size and depth k with
bottom fan-in O(logh n) but that require exponential size for depth k circuits of bottom
fan-in r logh−1 n.

Proof. Let b = 25ek(k − 1)h−1r loghm. Note that in this case, the number of
variables in the function fm,bk is n ≤ mk−1 for m large enough. Thus, logm ≤ logn ≤
(k− 1) logm. By the definition, the function fm,bk can be computed by a depth k and
linear size circuit with bottom fan-in b = O(logh n). On the other hand, according to
Theorem 5.1, the function fm,bk requires exponential size for depth k circuits whose
bottom fan-in is r(k − 1)h−1 logh−1m. Note that r(k − 1)h−1 logh−1m is at least as
large as r logh−1 n.

By more careful selections of the bottom fan-in b in Theorem 5.1, combined with
a padding technique, we are able to obtain general results for the trade-off between
circuit size and circuit bottom fan-in. We illustrate this technique by the following
theorem, which can be easily extended to other cases using the same technique.

THEOREM 5.3. For any integer k ≥ 1 and for any real number ε > 0, there is
a function F εk that is computable by a circuit of linear size and depth k with bottom
fan-in logn but that requires superpolynomial size for depth k circuits of bottom fan-in
O(log1−ε n).

Proof. Choose h such that h
h+1 > 1 − ε, and then use Theorem 5.2 to choose a

function fm,bk of ≤ mk−1 variables which can be computed by a depth k circuit of
linear size and bottom fan-in b = 25ek logh+1m but that requires size

2
1

12
√

2k

√
m

logm(1)

when the bottom fan-in is ≤ loghm.

352 L. CAI, J. CHEN, AND J. HÅSTAD

Now make the function fm,bk formally the function F εk of n = 225ek logh+1 m vari-
ables by adding dummy variables that are not used. The theorem now follows for the
function F εk since the size bound (1) is superpolynomial in n and c log1−ε n < loghm
for any fixed constant c when m is sufficiently large.

In particular, if we let ε = 1 and h = 1, then we obtain the following corollary
that will be used in section 6.

COROLLARY 5.4. For any integer k ≥ 1, there is a function Fk that is computable
by a circuit of linear size and depth k with bottom fan-in logn but that requires su-
perpolynomial size for depth k circuits of bottom fan-in O(1).

6. Input read-modes of Turing machines. An important application of the
above investigation is to the input read-modes of a sublinear-time alternating Turing
machine, which is an important computational model in the study of complexity
classes.

To make sublinear-time Turing machines meaningful, we allow a Turing machine
to have a random access input tape, plus a read-write input address tape, such that
the Turing machine has access to the bit of the input tape denoted by the contents of
the input address tape.

An O(logn)-time alternating Turing machine (log-time ATM) is defined as an
extension of the O(logn)-time deterministic Turing machines in the usual way [9].
Given an input, the computation of a log-time ATM M can be represented by an ∧-∨
tree. Each computation path in the ∧-∨ tree can be divided into phases, which are the
maximal subpaths in which M does not make alternations. The first configuration
in each phase is called an alternation (configuration). In particular, the starting
configuration of M is always an alternation.

A number of input read-modes for sublinear-time alternating Turing machines
have appeared in the literature. The standard input read-mode introduced by Chan-
dra, Kozen, and Stockmeyer [9] allows a computation path of an O(logn)-time al-
ternating Turing machine to read up to Θ(logn) input bits. Ruzzo [16] proposed an
input read-mode in which each computation path can read at most one input bit and
the reading must be performed at the end of the path. An input read-mode studied
by Sipser [17] insists that the input address tape always be reset to blank after each
input reading so that each input reading takes time Ω(logn).

It can be shown that many complexity classes such as NCk for k ≥ 1 and ACk

for k ≥ 0 remain the same for all of these input read-modes of alternating Turing ma-
chines. On the other hand, it was unknown whether these input read-modes affected
the classes of lower complexity such as the levels in the logarithmic time hierarchy.
Recently, Cai and Chen [6] have demonstrated how each level of the logarithmic time
hierarchy based on each of the above input read-modes can be characterized by a uni-
form family of circuits. Combining these characterizations with the separation results
given in the previous sections, we are able to show that all of these input read-modes
are distinct.

Formally, the logarithmic time hierarchy is defined as the union of the following
classes:

Π1,Π2, . . . ,Πk, . . . ,

where Πk is the class of languages accepted by a log-time ATM that always starts
with an ∧-state and makes at most k alternations.

The above definition ignores the input read-modes of the log-time ATMs and thus
is not very precise. To be more precise, we will call

ΠU
1 ,Π

U
2 , . . . ,Π

U
k , . . . ,

CIRCUIT BOTTOM FAN-IN 353

the logarithmic time hierarchy based on the Chandra–Kozen–Stockmeyer model,

ΠR
1 ,Π

R
2 , . . . ,Π

R
k , . . . ,

the logarithmic time hierarchy based on Ruzzo’s model, and

ΠS
1 ,Π

S
2 , . . . ,Π

S
k , . . . ,

the logarithmic time hierarchy based on Sipser’s model, where ΠU
k (resp., ΠR

k , ΠS
k) is

the class of languages accepted by a log-time ATM based on the Chandra–Kozen–
Stockmeyer input read-mode (resp., on Ruzzo’s input read-mode, on Sipser’s input
read-mode) that always starts with an ∧-state and makes at most k alternations.

THEOREM 6.1. (See [6].) For all integers k ≥ 1,
(1) if a language L is in the class ΠR

k , then L is accepted by a Πpoly
k -family of

circuits;
(2) if a language L is in the class ΠS

k , then L is accepted by a Πpoly,c
k -family of

circuits for some constant c;
(3) if a language L is in the class ΠU

k , then L is accepted by a Πpoly,d log n
k -family

of circuits for some constant d;
According to the definitions, it is easy to see that ΠR

k ⊆ ΠS
k ⊆ ΠU

k . A proof for
the inclusion ΠU

k ⊆ ΠR
k+1 can be found in [6]. Our main result for this section is that

all of these inclusions are strict, as proved in the following theorem.
THEOREM 6.2. For any integer k ≥ 1, we have

ΠR
k ⊂ ΠS

k ⊂ ΠU
k ⊂ ΠR

k+1,

where ⊂ means “proper subset.”
Proof. (1) ΠR

k ⊂ ΠS
k .

It has been proved by Cai and Chen in [6] that ΠR
1 ⊂ ΠS

1 . Thus, we only need to
prove the strict inclusion for k ≥ 2.

Without loss of generality, we suppose that the output gate of the tree circuit
Cm,2k+1 defining the function fm,2k+1 is an and gate (otherwise, we consider the negation
of the function fm,2k+1). Moreover, to make the operations such as mk, logm, and

√
m

feasible within O(logn) deterministic time, we consider only the case where m is a
power of 2.

Let S1 be the language whose characteristic function is given by the functions
fm,2k+1, where m is a power of 2 (in particular, a string is not in the set S1 if its length
does not match the number of variables for any such function fm,2k+1). We first construct
a log-time ATM M1 that accepts the set S1 as follows. On input x, M1 first computes
the length n of x. This can be done in deterministic O(logn) time by reading O(logn)
input bits [2]. Then M1 verifies that n = 2mk−1

√
m/ logm for some integer m that is

a power of 2. After this, M1 simply traces the tree circuit Cm,2k+1 defining the function
fm,2k+1, except that in the kth phase, M1 reads the two consecutive input bits for the
corresponding bottom level gate and directly computes the value for the gate. Since
the output gate of the circuit Cm,2k+1 is an and gate, the log-time ATM M1 starts with
an ∧-state and makes at most k alternations.

According to our assumption, k ≥ 2. Thus, the log-time ATM M1 reads at most
two input bits in its last phase. By Theorem 3.1 in Cai and Chen [6], M1 can be
simulated by a log-time ATM based on Sipser’s input read-mode that always starts
with an ∧-state and makes at most k alternations. This proves that the set S1 is in
the class ΠS

k .

354 L. CAI, J. CHEN, AND J. HÅSTAD

Suppose that S1 is also in the class ΠR
k . Then by Theorem 6.1(1), S1 is accepted

by a Πpoly
k -family of circuits. Thus, for any integer m that is a power of 2, the

function fm,2k+1 is computable by a depth k circuit of polynomial size. This contradicts
Corollary 4.4.

This contradiction shows ΠR
k ⊂ ΠS

k .
(2) ΠS

k ⊂ ΠU
k .

The proof is similar to that for case (1). Consider the function Fk+1 in Corol-
lary 5.4, which is a function of n variables obtained from the function fm,bk+1, b =
25e(k + 1) log2m by adding dummy variables, where n = 225e(k+1) log2 m. We also
make similar assumptions as we did for case (1). Thus, the output gate of the tree
circuit Cm,bk+1 defining the function fm,bk+1 is an and gate, and m is a power of 2. Under
these assumptions, it is easy to see that the set S2 whose characteristic function is
given by the functions Fk+1 in Corollary 5.4 is in the class ΠU

k : a log-time ATM M2

first verifies the length of the input and traces the tree circuit Cm,bk+1 defining the corre-
sponding function fm,bk+1 except that in the kth phase, M2 reads directly a consecutive
block of b input bits that are the inputs to the corresponding bottom level gate. Note
that the b consecutive input bits can be read in deterministic O(b + logn) time [4],
and that b is logarithmic in the input length n of the function Fk+1. This proves that
the language S2 is in the class ΠU

k .
Suppose that S2 is also in the class ΠS

k . By Theorem 6.1(2), the language S2 is
accepted by a Πpoly,c

k -family of circuits for some constant c. That is, the function Fk+1
is computable by a depth k+ 1 and bottom fan-in c circuit whose size is polynomial.
But this contradicts Corollary 5.4. Thus, ΠS

k ⊂ ΠU
k .

(3) ΠU
k ⊂ ΠR

k+1.
The proof is similar to those of the other two cases. Let S3 be the language whose

characteristic function is given by the Sipser functions fmk+1. Then the set S3 can be
accepted by a log-time ATM M3 that always starts with an ∧-state and makes at
most k + 1 alternations. Moreover, the last phase of M3 reads at most one input bit.
By Theorem 3.1 in Cai and Chen [6], M3 can be simulated by a log-time ATM based
on Ruzzo’s input read-mode that always starts with an ∧-state and makes at most
k + 1 alternations. Thus, the set S3 is in the class ΠR

k+1. On the other hand, by
Theorem 6.1(3), S3 ∈ ΠU

k would imply that S3 is accepted by a Πpoly,O(log n)
k -family

of circuits. That would in turn imply that the Sipser function fmk+1 is computable by
a depth k+1 circuit of polynomial size whose bottom fan-in is O(logn), contradicting
Theorem 2.2.

This completes the proof.
COROLLARY 6.3. For each k ≥ 1, the kth levels of the logarithmic time hierarchy

based on the Chandra–Kozen–Stockmeyer input read-mode, Sipser’s input read-mode,
and Ruzzo’s input read-mode are all distinct.

Acknowledgments. The second author would like to thank Mike Sipser for an
early discussion that initialized this line of research. He is also grateful to Ken Regan
and Rong Chen for their comments and constructive discussions. Finally, the authors
are especially thankful to two anonymous referees for comments and suggestions that
have improved the presentation. In particular, one of the referees pointed out a
technical bug in an earlier version of the present paper.

REFERENCES

[1] M. AJTAI, Σ1
1-formulae on finite structures, Ann. Pure Appl. Logic, 24 (1983), pp. 1–48.

CIRCUIT BOTTOM FAN-IN 355

[2] D. BARRINGTON, N. IMMERMAN, AND H. STRAUBING, On uniformity within NC 1, J. Comput.
System Sci., 41 (1990), pp. 274–306.

[3] R. B. BOPPANA AND M. SIPSER, The complexity of finite functions, in Handbook of Theoretical
Computer Science Vol. A, J. van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 757–804.

[4] S. R. BUSS, The Boolean formula value problem is in ALOGTIME, in Proc. 19th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1987, pp. 123–131.

[5] L. CAI AND J. CHEN, Fixed parameter tractability and approximability of NP-hard optimization
problems, J. Comput. System Sci., 54 (1997), pp. 465–474.

[6] L. CAI AND J. CHEN, On input read-modes of alternating Turing machines, Theoret. Comput.
Sci., 148 (1995), pp. 33–55.

[7] L. CAI AND J. CHEN, On the amount of nondeterminism and the power of verifying, SIAM J.
Comput., 26 (1997), pp. 733–750.

[8] L. CAI, J. CHEN, R. G. DOWNEY, AND M. R. FELLOWS, On the structure of parameterized
problems in NP, Inform. and Comput., 123 (1995), pp. 38–49.

[9] A. K. CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput.
Mach., 28 (1981), pp. 114–133.

[10] J. CHEN, Characterizing parallel hierarchies by reducibilities, Inform. Process. Lett., 39 (1991),
pp. 303–307.

[11] S. COOK, A taxonomy of problems with fast parallel algorithms, Inform. and Control, 64 (1985),
pp. 2–22.

[12] M. FURST, B. SAXE, AND M. SIPSER, Parity, circuits, and the polynomial-time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–27.

[13] R. L. GRAHAM, D. E. KNUTH, AND O. PATASHNIK, Concrete Mathematics: A Foundation for
Computer Science, Addison-Wesley, Reading, MA, 1989.

[14] J. HÅSTAD, Computational Limitations for Small-Depth Circuits, The MIT Press, Cambridge,
MA, 1986.

[15] J. HÅSTAD, Almost optimal lower bounds for small depth circuits, in Advances in Computing
Research 5, S. Micali, ed., JAI Press Inc., Greenwich, CT, 1989, pp. 143–170.

[16] W. L. RUZZO, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365–383.
[17] M. SIPSER, Borel sets and circuit complexity, in Proc. 15th Annual ACM Symposium on Theory

of Computing, ACM, New York, 1983, pp. 61–69.
[18] A. C. YAO, Separating the polynomial-time hierarchy by oracles, in Proc. 26th Annual IEEE

Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1985, pp. 1–10.

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES∗

MARTIN DYER† , PETER GRITZMANN‡ , AND ALEXANDER HUFNAGEL§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 356–400, April 1998 003

Abstract. This paper gives various (positive and negative) results on the complexity of the
problem of computing and approximating mixed volumes of polytopes and more general convex
bodies in arbitrary dimension.

On the negative side, we present several #P-hardness results that focus on the difference of
computing mixed volumes versus computing the volume of polytopes. We show that computing the
volume of zonotopes is #P-hard (while each corresponding mixed volume can be computed easily)
but also give examples showing that computing mixed volumes is hard even when computing the
volume is easy.

On the positive side, we derive a randomized algorithm for computing the mixed volumes

V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks)

of well-presented convex bodies K1, . . . ,Ks, where m1, . . . ,ms ∈ N0 and m1 ≥ n − ψ(n) with
ψ(n) = o(logn

log logn). The algorithm is an interpolation method based on polynomial-time randomized
algorithms for computing the volume of convex bodies.

This paper concludes with applications of our results to various problems in discrete mathematics,
combinatorics, computational convexity, algebraic geometry, geometry of numbers, and operations
research.

Key words. computational convexity, volume, mixed volumes, convex body, polytope, zono-
tope, parallelotope, computation, approximation, computational complexity, deterministic algorithm,
randomized algorithm, polynomial-time algorithm, NP-hardness, #P-hardness, permanent, determi-
nant problems, lattice point enumerator, partial order, Newton polytope, polynomial equations

AMS subject classifications. 52B55, 52A39, 68Q20, 68Q15, 68R05, 68U05, 52A20, 90C30,
90C25

PII. S0097539794278384

Introduction. The present paper deals with algorithmic questions related to the
problem of computing or approximating volumes and mixed volumes of convex bodies
by means of deterministic or randomized algorithms. The emphasis will be on the
case of varying dimension (but we will also mention some results for fixed dimension).

As the terms are used here, a convex body in Rn is a nonempty compact convex set
and a polytope is a convex body that has only finitely many extreme points. A convex
body or a polytope in Rn is called proper if it is n-dimensional and hence has nonempty
interior. A convenient way to deal algorithmically with general convex bodies is to
assume that the convex body in question is “well presented” by an algorithm (called
an oracle) that answers certain sorts of questions about the body and also gives some
a priori information; see subsection 1.2 for precise definitions.

The problem of computing the volume voln(K) of an appropriately presented
convex body K of Rn is of fundamental importance from both a theoretical and
computational point of view. If K is of the form K =

∑s
i=1 λiKi, where K1, . . . ,Ks

∗Received by the editors December 9, 1994; accepted for publication (in revised form) January
23, 1996. Research of each author was supported in part by the Deutsche Forschungsgemeinschaft.
Research of P. Gritzmann was supported in part by a Max-Planck Research Award.

http://www.siam.org/journals/sicomp/27-2/27838.html
†School of Computer Studies, University of Leeds, Leeds LS2 9JT, U.K. (dyer@dcs.leeds.ac.uk).
‡University of Technology Munich, Center for Mathematical Sciences, D-80290 Munich, Germany

(gritzman@mathematik.tu-muenchen.de).
§Vogelherd 9, 90542 Eckental, Germany.

356

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 357

are convex bodies and λ1, . . . , λs are positive reals, then voln(K) can be expressed in
terms of the mixed volumes V (Ki1 ,Ki2 , . . . ,Kin) of K1, . . . ,Ks; in fact,

V

(s∑
i=1

λiKi

)
=

s∑
i1=1

s∑
i2=1

· · ·
s∑

in=1

λi1λi2 · · ·λinV (Ki1 ,Ki2 , . . . ,Kin)

is a multivariate homogeneous polynomial of degree n in the variables λ1, . . . , λs; see
subsection 1.1.

The corresponding Brunn–Minkowski theory is the backbone of convexity the-
ory (see [Sc93]), but it is also relevant for numerous applications in combinatorics,
algebraic geometry and a number of other areas; see section 4 and [GK94].

As it is well known, V (K, . . . ,K) = voln(K), and hence, mixed volumes gener-
alize the ordinary volume. From this observation it is already clear that, in general,
any hardness result for volume computation carries over to mixed volumes. Specif-
ically, the problem of computing the volume of polytopes (given in terms of their
vertices—“V-polytopes”—or in terms of their facet hyperplanes—“H-polytopes”; see
subsection 1.2) is known to be #P-hard (see [DF88]), whence computing mixed vol-
umes of polytopes is also (at least) #P-hard.

The hardness issue of volume versus mixed volume computation is, however, more
complicated than that. In the case where the number of bodies is not bounded
beforehand but part of the input, the above multivariate polynomial typically has
exponentially many coefficients and this implies that the task of computing all mixed
volumes of a given set of bodies does require exponential time. But this fact also
allows for the possibility that the volume of the Minkowski sum of convex bodies may
be hard to compute even if each mixed volume can be computed easily. Indeed, when
the bodies K1, . . . ,Ks are all line segments, each mixed volume computation is just
the evaluation of a corresponding determinant; computing the volume of the zonotope
K = K1 + · · ·+Ks is, in general however, hard.

THEOREM 1. The following task is #P-hard: given n, s ∈ N and rational vectors
z1, . . . , zs of Rn, compute the volume of the zonotope

∑s
i=1[0, 1]zi.

A slight strengthening of this result is contained in Theorem 5. As a corollary to
Theorem 1 we show in Theorem 2 that (approximately) computing the volume of the
Minkowski sum of ellipsoids is also #P-hard, a result needed in subsection 2.4.

Conversely to Theorem 1, computing a single mixed volume may be hard even if
the volume of the corresponding Minkowski sum is easy to compute.

THEOREM 3. The following problem MIXED-VOLUME-OF-BOXES is #P-hard:
given a positive integer n and, for i, j = 1, 2, . . . , n, positive rationals αi,j, determine
the mixed volume V (Z1, . . . , Zn) of the axes-parallel parallelotopes Zi =

∑n
j=1[0, αi,j]ej,

(i = 1, 2, , . . . , n), where ej denotes the jth unit vector.
The #P-hardness persists even when the boxes are restricted to having just two

different (and previously prescribed) edge lengths.
Proofs of these theorems (and related results) are given in section 2. We further

show that Theorem 3 can be strengthened to just two parallelotopes if one of them is
permitted to deviate from being axes-parallel (Theorem 4). In view of these results
it may be surprising that even though the computation of certain mixed volumes
appears to be harder than volume computation, from the point of view of complexity
theory it is not. Theorems 6 and 7 show that the problem of computing any specific
mixed volume of polytopes (or zonotopes) is #P-easy.

Section 2 will also discuss the problem of how efficiently mixed volumes can be
approximated by means of deterministic algorithms. [GLS88], [AK90], and [BH93]

358 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

give exponential upper bounds for the error of deterministic polynomial approxima-
tions of the volume, and [BF86] gives an almost matching lower bound in the oracular
model. We discuss possible extensions to mixed volumes and derive a polynomial-time
algorithm for estimating any mixed volume of two convex bodies to a relative error
that depends only on the dimension but is independent of the “well-boundedness”
parameters of the bodies (Theorem 9). As a necessary “by-product” we further show
that it can be decided in polynomial time whether the mixed volume of convex bodies
vanishes (Theorem 8). This is a nontrivial result since a mixed volume may be greater
than zero even if each set is contained in a lower-dimensional affine subspace.

A natural approach to mixed volumes is to try to use values (or estimates thereof)
of the polynomial voln(

∑s
i=1 λiKi) for computing (or estimating) (some of) its co-

efficients, the mixed volumes of the convex bodies Ki. This approach works under
reasonable assumptions provided the above polynomial can be evaluated (approxi-
mately) in polynomial time; see [GK94]. This is particularly true for polytopes in
fixed dimension; see [AS86], [CH79]. For variable dimension there is not much hope
in ever obtaining a polynomial-time deterministic algorithm for this task, but we may
utilize the polynomial-time randomized volume algorithm of [DFK91].

PROPOSITION 1. There is a polynomial-time randomized algorithm which solves
the following problem:

Instance: A well-presented convex body K in Rn, positive rational numbers τ and
β.

Output: A random variable v̂ ∈ Q such that

prob

{
|v̂ − voln(K)|

voln(K)
≥ τ

}
≤ β.

Let us point out that after a preprocessing “rounding” step whose running time
depends on the “a priori parameters” of the body, the running time of the main
algorithm is bounded above by a polynomial in n, 1

τ , and log(1
β).

[DFK91]’s algorithm was improved by [LS90], [AK90], [DF91], [LS93], [KLS97];
see [Kh93], [GK94], and [Lo95] for surveys. Let us point out that, when dealing with
randomized algorithms of the above kind, it suffices to give the desired approximation
to error probability, say 1

4 . Then afterO(log(1/β)) independent trials of the algorithm,
the median of the results achieves the required probability β; see [JVV86], [SJ89],
[KKLLL93], or [LS93].

Even for just two bodies there are two major difficulties in extending Proposition
1 to mixed volumes. First, in general there is no way of obtaining relative estimates
of the coefficients from relative estimates of the values of a polynomial p. (This
is easily seen by considering the one-parameter sequence of univariate polynomials
qβ(x) = 1 + βx + x2, where β may be any arbitrary small positive rational number;
cf. [GK94, section 6.2]). The special structure of the “mixed volume polynomial”
p(x) = voln(K1 + xK2) will, however, allow us to handle this problem. Second,
the absolute values of the entries of the “inversion” which is used for expressing the
coefficients of the polynomial in terms of its approximated values are not bounded by
a polynomial, while the randomized volume approximation algorithm is polynomial
only in 1

τ but not in size(τ). This difficulty is mirrored in the restrictions on ψ in the
following theorem.

THEOREM 10. Suppose that ψ : N→ N is nondecreasing with

ψ(n) ≤ n and ψ(n) logψ(n) = o(logn).

Then there is a polynomial-time algorithm for the following problem:

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 359

Instance: Well-presented convex bodies K1, K2 of Rn, positive rational numbers
ε and β, an integer m with 0 ≤ m ≤ ψ(n).

Output: The information that the mixed volume

am = V (

n−m︷ ︸︸ ︷
K1, . . . ,K1,

m︷ ︸︸ ︷
K2, . . . ,K2)

of K1 and K2 vanishes, iff am = 0, or, otherwise, a random variable âm ∈ Q,
satisfying

prob

{
|âm − am|

am
≥ ε
}
≤ β.

The complexity of the above algorithm is only marginally worse than the com-
plexity of the volume oracle; see section 3 for a detailed analysis. Note that the
function

ψ(n) =
⌈

logn
log2 logn

⌉
satisfies the above condition (on N \ {1, 2, 3}).

Theorem 10 can be extended to more than two bodies.
THEOREM 11. Suppose that ψ : N→ N is nondecreasing with

ψ(n) ≤ n and ψ(n) logψ(n) = o(logn).

Then there is a polynomial-time algorithm for the following problem:
Instance: n, s ∈ N, m1, . . . ,ms ∈ N0 with m1 + m2 + · · · + ms = n and m1 ≥

n− ψ(n), well-presented convex bodies K1, . . . ,Ks of Rn, positive rational numbers ε
and β.

Output: The information that the mixed volume

Vm1,...,ms = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks)

vanishes, iff Vm1,...,ms = 0, or, otherwise, a random variable V̂m1,...,ms ∈ Q such that

prob

{
|V̂m1,...,ms − Vm1,...,ms |

Vm1,...,ms

≥ ε
}
≤ β.

Theorems 10 and 11 will be proved in section 3. But let us take a few words
here to place their results into perspective. Both theorems are proved by using an
interpolation (or numerical differentiation) method, which is based on Proposition 1.
A special feature of such a method is that in order to compute a specific coefficient
of the polynomial under consideration it computes essentially all (or at least “all
previous”) coefficients. Now, suppose that ψ : N → N is a functional with ψ(n) ≤ n
for all n ∈ N; let

Iψ(n) = {(m1, . . . ,mψ(n)) :m1, . . . ,mψ(n) ∈ N0, m1 + · · ·+mψ(n) = n

and n−m1 ≤ ψ(n)},

360 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

and let K1, . . . ,Kψ(n) be convex bodies of Rn. Then

|Iψ(n)| =
(

2ψ(n)− 1
ψ(n)− 1

)
,

whence the number of different mixed volumes

V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

mψ(n)︷ ︸︸ ︷
Kψ(n), . . . ,Kψ(n))

is in general only bounded by a polynomial in n if ψ(n) ≤ κ logn for some constant
κ. This means that there can possibly be a polynomial-time algorithm for computing
all such mixed volumes only if

ψ(n) ≤ κ logn.

As we will see in section 3, the statements of Theorems 10 and 11 are much easier to
prove for ψ being constant. As the previous discussion shows, when the number of
bodies is part of the input, no polynomial-time algorithm is capable of computing more
than “very few” mixed volumes. This fact places severe limitations on interpolation
methods that indicate that the restriction on ψ in Theorem 11 is “essentially best-
possible” for any such method.

Let us remark that, for general convex bodies, it is an open problem whether there
exists any method that avoids these limitations and allows one to access single specific
mixed volumes. Hence it is open, whether the above restrictions on ψ can be lifted
and whether there are polynomial-time randomized algorithms which, on arbitrarily
given n, s ∈ N, m1, . . . ,ms ∈ N0 with m1 +m2 + · · ·+ms = n, well-presented convex
bodies K1, . . . ,Ks of Rn and positive rational numbers ε and β, compute a random
variable V̂m1,...,ms ∈ Q such that prob{|V̂m1,...,ms − Vm1,...,ms |/Vm1,...,ms ≥ ε} ≤ β.

Note specifically that even the case s = n, m1 = · · · = ms = 1 is open.
Section 4 contains some problems related to mixed volumes and some applications

of our results. In particular, we deal with the problem of counting the number of
integer points in lattice polytopes and with some determinant problems involving
minors of given matrices. Furthermore, we discuss possible applications of our results
to problems in mixture management, combinatorics, and algebraic geometry.

1. Basic geometric and computational aspects. The following three sub-
sections provide definitions, notation, background information, and some first results
that are needed later in sections 2 and 3.

1.1. Mixed volumes. Let Kn denote the family of all convex bodies of Rn.
A theorem of Minkowski [Mi11] (see also [BF34], [Sc93, section 5]) shows that for

K1,K2, . . . ,Ks ∈ Kn and nonnegative reals λ1, λ2, . . . , λs,

voln

(
s∑
i=1

λiKi

)

is a homogeneous polynomial of degree n in λ1, . . . , λs, and can be written in the form

voln

(
s∑
i=1

λiKi

)
=

s∑
i1=1

s∑
i2=1

· · ·
s∑

in=1

λi1λi2 · · ·λinV (Ki1 ,Ki2 , . . . ,Kin),(1.1)

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 361

where the coefficients V (Ki1 ,Ki2 , . . . ,Kin) are order-independent, i.e., invariant un-
der permutations of their arguments. The coefficient V (Ki1 ,Ki2 , . . . ,Kin) is called
the mixed volume of Ki1 ,Ki2 , . . . ,Kin . We will also use the term mixed volume for
the functional

V :

n︷ ︸︸ ︷
Kn × · · · × Kn → R, (K1, . . . ,Kn) 7→ V (K1, . . . ,Kn),

as well as for restrictions of this functional to certain subsets of Kn × · · · × Kn.
Mixed volumes are nonnegative, monotone, multilinear, and continuous valuations;
see [BZ88, Chapter 4], [Sa93], and [GK94] for the basic properties of mixed volumes,
and see [Sc93] for an excellent detailed treatment of the Brunn-Minkowski theory.

The order-independence gives rise to the notation

V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks)

for the mixed volume V (K1, . . . ,Ks), where each Ki occurs exactly mi times and∑s
i=1mi = n. The following Aleksandrov–Fenchel inequality, [Al37], [Al38], [Fe36],

plays a fundamental role in the Brunn-Minkowski theory and will be needed in the
approximation algorithm of section 3.

V (K1,K2,K3, . . . ,Kn)2 ≥ V (K1,K1,K3, , . . . ,Kn) V (K2,K2,K3, . . . ,Kn),(1.2)

whenever K1,K2, . . . ,Kn ∈ Kn; see [Sc93] for a proof and a discussion of this in-
equality.

The following “decomposition lemma” (see, e.g., [BZ88, section 19.4]) will also
turn out to be useful in our analysis.

PROPOSITION 2. Let K1, . . . ,Kn ∈ Kn and suppose that Kn−m+1, . . . ,Kn are
contained in some m-dimensional affine subspace U of Rn. Let VU denote the mixed
volume with respect to the m-dimensional volume measure on U , and let VU⊥ be
defined similarly with respect to the orthogonal complement U⊥ of U . Then(

n
m

)
V (K1, . . . ,Kn−m,Kn−m+1, . . . ,Kn) =

VU⊥(K ′1, . . . ,K
′
n−m)VU (Kn−m+1, . . . ,Km),

where K ′1, . . . ,K
′
n−m denote the orthogonal projections of K1, . . . ,Kn−m onto U⊥,

respectively.
As a particular consequence, it follows that

V (K1, . . . ,Kn−m,Kn−m+1, . . . ,Kn) = 0

if there is a proper subspace of U that contains Kn−m+1, . . . ,Kn. (Note, however,
that in general the mixed volume may be greater than zero even if each set lies in
some lower-dimensional subspace of Rn.) In the special case m = 1, Kn = [0, 1]v, and
U = lin{v}, where v ∈ Rn \ {0}, Proposition 2 reads

n · V (K1, . . . ,Kn−1, [0, 1]v) = ‖v‖ · VU⊥(K ′1, . . . ,K
′
n−1).

If all bodies K1, . . . ,Ks are line segments, say

Ki = Si = pi + [0, 1]zi (i = 1, . . . , s),

362 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

with pi, zi ∈ Rn, then Z =
∑s
i=1 Si is a zonotope. It follows that for any sequence

1 ≤ i1, i2, . . . , in ≤ s of mutually distinct indices,

V (Si1 , Si2 , . . . , Sin) =
1
n!

∣∣det(zi1 , zi2 , . . . , zin)
∣∣,

where (zi1 , zi2 , . . . , zin) denotes the n× n-matrix with columns zi1 , . . . , zin . With the
aid of (1.1) this implies the well-known volume formula for zonotopes,

voln

(
s∑
i=1

Si

)
=

∑
1≤i1<i2<···<in≤s

∣∣det(zi1 , zi2 , . . . , zin)
∣∣;(1.3)

see [Sh74], [Mo89], or [St91].
The polynomial expression in (1.1) involves all s variables λ1, . . . , λs but, of

course, one of the variables, say λ1, may be set to 1, whence the problem of com-
puting all mixed volumes of s sets in Rn can be reduced to the task of computing
the coefficients of a (generally now inhomogenous) polynomial of degree n in s − 1
indeterminates. For s = 2 we obtain the univariate polynomial

p(x) = voln(K1 + xK2) =
n∑
i=0

(
n
i

)
aix

i,

where

ai = V (

n−i︷ ︸︸ ︷
K1, . . . ,K1,

i︷ ︸︸ ︷
K2, . . . ,K2).

The Aleksandrov–Fenchel inequality implies that the sequence

qm =
am−1

am
(m = 1, . . . , n)

is increasing, whence the sequence a0, . . . , an is unimodal.
Finally, note that when s > 2, m1,m2, . . . ,ms ∈ N0 with

∑s
i=1mi = n, and

Lx = K0 + xK1 for nonnegative x ∈ R,

q(x) = V (

m1︷ ︸︸ ︷
Lx, . . . , Lx,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks)

is a polynomial in x of degree m1, and we have

q(x) =
m1∑
k=0

(
m1
k

)
V (

m1−k︷ ︸︸ ︷
K0, . . . ,K0,

k︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks)xk.

(1.4)

This fact will, in particular, be used in subsection 3.3.

1.2. Algorithmic preliminaries. The present subsection begins with some re-
marks on how to deal algorithmically with polytopes and more general convex bodies,
and then collects a few results that are needed later.

The underlying model of computation is the binary Turing machine model, which—
in case of convex bodies—will be augmented by certain oracles; see [GJ79], [GLS88].

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 363

From an algorithmic point of view, polytopes are dealt with much more easily than
general convex bodies because polytopes can be presented in a finite manner, namely,
in terms of their vertices or in terms of their facet halfspaces. Clearly, from an algo-
rithmic point of view it is not the geometric object that is relevant but its presentation.
Hence we use the following notation; see e.g., [GK94].

A string (n,m; v1, . . . , vm) with n,m ∈ N, and v1, . . . , vm ∈ Qn is called a V-
polytope in Rn; it represents the geometric object P = conv{v1, . . . , vm}; hence we
will sometimes write P = (n,m; v1, . . . , vm). A string (n,m;A, b), where n,m ∈ N, A
is a rational m×n matrix and b ∈ Qm such that P = {x ∈ Rn : Ax ≤ b} is a polytope
is called an H-polytope in Rn, and is again identified with the geometric object P .
If we want to focus more on the geometric object P we will call each corresponding
V- or H-polytope a V- or H-presentation of P . The binary size (or short size) of a
V- or H-polytope P is the number of binary digits needed to encode the data of the
presentation.

Let us point out that each rational polytope admits a presentation as a V- or H-
polytope, and in fixed dimension one can be computed from the other in polynomial
time. This is no longer true in general when the dimension is part of the input, since
the number of vertices of a polytope may be exponential in its number of facets and
vice versa; see [Mc70].

Zonotopes admit specifically “compact” presentations. A string (n, s; c; z1, . . . , zs)
with n, s ∈ N and c, z1, . . . , zs ∈ Qn is called an S-zonotope in Rn; it represents the
geometric object Z = c +

∑s
i=1[0, 1]zi. Sometimes we will also work with zonotopes

whose relationship to the origin (and whose scaling) is different. Specifically, zontopes
of the form

∑s
i=1[−1, 1]zi will be used. To keep the notation simple, we refrain,

however, from introducing an additional name for such a presentation. Note that,
in general, neither the vertices nor the facets of a zonotope are readily accessible
from an S-presentation. In fact, for zonotopes generated by s segments in general
position, both the number of facets and the number of vertices grow exponentially as
m increases.

A zonotope Z is called a parallelotope if the “generators” z1, . . . , zs are linearly
independent; it is rectangular if they are pairwise othogonal, and axes-parallel if all
generators are standard unit vectors.

A convenient way to deal algorithmically with general convex bodies K is to
assume that K is given by an algorithm (called an oracle) that answers certain sorts of
questions about the body. These oracles are designed in such a way that the standard
polytope case is included, i.e., it is easy to construct the corresponding oracles for
V- or H-polytopes. This oracular approach has been introduced and extensively
studied for proper convex bodies in [GLS88]. In particular, [GLS88] shows that under
suitable additional assumptions, “membership,” “separation,” and “optimization” are
equivalent. Here we need a slight variant since we want to deal with mixed volumes of
possibly improper convex bodies. Let K ∈ Kn, and define for ε ≥ 0 the outer parallel
body and the inner parallel body of K, respectively, by

K(ε) = (K + εBn) ∩ aff(K) and K(−ε) = K \ ((aff(K) \K) + εBn),

where Bn denotes the Euclidean unit ball in Rn. The most natural algorithmic prob-
lem for convex bodies K is the following.

WEAK MEMBERSHIP PROBLEM FOR K ∈ Kn. Given y ∈ Qn, and a rational
number ε > 0, assert that y ∈ K(ε) or that y /∈ K(−ε).

If a convex body K is given by an algorithm that solves the weak membership
problem, we say that K is described by a weak membership oracle. It is quite evi-

364 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

dent that the information given by a weak membership oracle is insufficient for most
algorithmic purposes. Hence we need some additional a priori information about
the body in question; see [GLS88] for a discussion of these assumptions in case of
a proper convex body. A convex body K of Rn will be called well presented if
it is given by a weak membership oracle and if the following additional informa-
tion is provided: a nonnegative integer d and vectors a0, . . . , ad ∈ Qn such that
aff(K) = aff{a0, . . . , ad}; a vector b ∈ KnQn, and positive rational numbers ρ and R
such that (b+ ρBn) ∩ aff(K) ⊂ K ⊂ RBn.

Note that d is the dimension of K and that aff(K) is presented in terms of an
affine basis. It is, however, easy to compute from a0, . . . , ad a presentation of aff(K)
as the solution space of a system of (rational) linear equations and vice versa. The
size of a well-presented convex body K ∈ Kn is then defined as n plus the sum of the
binary sizes of the parameters a0, . . . , ad, b, ρ, and R, and the input size of the weak
membership oracle for K is the sum of size(K) and size(ε).

It is not hard to see that well presentation carries over to Minkowski sums. In
fact, let K1, . . . ,Ks ∈ Kn be well presented with parameters n, di, ai,0, . . . , ai,di , bi,
ρi, and Ri for i = 1, . . . , s, and let λ1, . . . , λs be positive rationals whose sizes are
bounded above by the sizes of K1, . . . ,Ks. Then it is easy to find an affine basis of
the affine hull of K = λ1K1 + · · ·+ λsKs, and

d = dim(lin{ai,j − ai,0 : i = 1, . . . , s; j = 1, . . . , di}),
b = λ1b1 + · · ·+ λsbs,
R = λ1R1 + · · ·+ λsRs

are valid parameters for K. Further, one can compute in polynomial time a nontrivial
lower bound ρ such that (b+ρBn)∩aff(K) ⊂ K. It is also true that a membership or-
acle for K can be derived in polynomial time from membership oracles for K1, . . . ,Ks,
but this result makes use of the nontrivial relation of the oracles studied in [GLS88].

PROPOSITION 3. Let K1, . . . ,Ks ∈ Kn be well presented, and let λ1, . . . , λs be
positive rationals whose sizes are bounded above by the sizes of K1, . . . ,Ks. Then, a
well presentation for K = λ1K1 + · · ·+ λsKs can be computed in polynomial time.

The following Löwner–John-type “rounding lemmas” in terms of Bn and Cn =
[−1, 1]n are due to [GLS88] and [AK90], respectively; see the survey [GK94, section
6.2] for some additional results in this context.

PROPOSITION 4. There are oracle polynomial-time algorithms which accept as
input a well-presented convex body K and construct affine transformations φ1 and φ2
such that 0 ∈ aff(φ1(K)), 0 ∈ aff(φ2(K)) and

aff(φ1(K))∩Bn ⊂ φ1(K) ⊂ n
√
n+ 1Bn, aff(φ2(K))∩Cn ⊂ φ2(K) ⊂ 2(n+ 1)Cn.

1.3. Some estimates for numerical differentiation. As already mentioned
above, computing (some/all) mixed volumes from the ordinary volume can be re-
garded as computing (some/all) of the coefficients of a polynomial from its values.
This can in principle be done by numerical differentiation, and we will derive a few
estimates now that will be used in section 3.

Let

q(x) =
n∑
i=0

cix
i

be a univariate polynomial of degree n, and let ξ0, . . . , ξn be pairwise different inter-
polation points. The Lagrange-interpolation polynomials lk(x) =

∑n
i=0 bkix

i on the

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 365

node set X = {ξ0, . . . , ξn} satisfy

lk(ξj) =
n∑
i=0

bkiξ
i
j = δjk,

where δjk is the usual Kronecker symbol. Then

q(x) =
n∑
k=0

q(ξk)lk(x) =
n∑
i=0

(
n∑
k=0

q(ξk)bki

)
xi;

hence

ci =
n∑
k=0

bkiq(ξk) for i = 0, . . . , n.

In general, only estimates q̂(ξj) of the function values q(ξj) are available. In fact,
for the purpose of section 3 we can only use estimates with bounded relative error.
Here we suppose first that the absolute error is bounded beforehand, i.e., there is a
positive δ such that

|q̂(ξj)− q(ξj)| ≤ δ for j = 0, . . . , n.

Now, let m ∈ {0, . . . , n}, and let us take

ĉm =
n∑
k=0

bkmq̂(ξk)

as an estimate for cm. Then we obtain

|cm − ĉm| =
∣∣∣∣∣
n∑
k=0

bkm(q(ξk)− q̂(ξk))

∣∣∣∣∣ ≤ δ
n∑
k=0

|bkm| .(1.5)

Efficient methods for performing the computations in a systematical way (e.g., by
using divided differences) can be found in any textbook on numerical analysis; see for
example [BZ65]. The problem of how to choose the interpolation points to minimize
the error terms

∑n
k=0 |bkm| is discussed in (among others) [Ri75]; see also [MM85],

[Sa74], [Ri90]; equidistant nodes are in general not optimal. We will use equidistant
interpolation points anyway since, on the one hand, the subsequent analysis becomes
more tractable and, on the other hand, the additional error introduced that way is
dominated by other occurring error terms and hence is essentially irrelevant.

For the estimates in this subsection, we will normalize the nodes to the set X =
{0, 1, . . . , n}; in section 3 we will use the node set hX for some suitable positive
rational h.

Let M denote the (infinite) Vandermonde matrixM = (ji)i,j∈N0 , (with the setting
00 = 1); for r ∈ N let M (r) = (ji)i,j=0,...,r−1 be the restriction of M to its first r rows
and columns, and let B(r) = (b(r)ij)i,j=0,...,r−1 be the inverse of M (r). We will now

derive an upper estimate for
∑r−1
i=0 |b

(r)
im|.

For i, j ∈ N with i ≥ j, let σij denote the Stirling numbers of the second kind,
i.e., the number of partitions of the set {1, . . . , i} into j pairwise disjoint nonempty
subsets (see, e.g., [St86]). In addition, let σ00 = 1, σi0 = 0 for all i > 0 and σij = 0

366 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

whenever i < j. Note that j!σij is the number of surjective mappings of {1, . . . , i}
into {1, . . . , j}; hence, it follows that

ji =
∞∑
k=0

σikk!
(
j
k

)
=
∞∑
k=0

σikj(j − 1) · . . . · (j − k + 1),(1.6)

and, in particular,

σij ≤
ji

j!
.

Thus, with the notation (x)k = x(x− 1)(x− 2) · . . . · (x− k + 1), the identity

xi =
∞∑
k=0

σik(x)k

holds for all integers x = 0, . . . , i and hence holds for all x ∈ R. Let

L = (σij)i,j∈N0 , U =
(
j
i

)
i,j∈N0

, and D = diag(0!, 1!, 2!, . . .).

Then L and U are an (infinite) lower and upper triangular matrix, respectively, and
(1.6) can be written as

M = LDU.

Left multiplication by L−1 = (sij)i,j∈N0 yields

x(x− 1) · . . . · (x− i+ 1) =
∞∑
k=0

sikx
k.

Hence, sij has sign (−1)i−j (for j ≤ i) and, evaluating the above identity for x = −1
yields

i∑
j=0

|sij | = i!.

The numbers sij are called the Stirling numbers of the first kind. From

xj =
∞∑
i=0

(
j
i

)
(x− 1)i and (x− 1)j =

∞∑
i=0

(
j
i

)
(−1)j−ixi,

we conclude for the inverse U−1 = (wij)i,j∈N0 of U that

wij = (−1)j−i
(
j

i

)
.

Now, note that(
L(r))−1 =

(
L−1)(r), (

D(r))−1 =
(
D−1)(r), (

U (r))−1 =
(
U−1)(r)

and M (r) = L(r)D(r)U (r).

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 367

Hence,

B(r) =
(
U (r))−1(

D(r))−1(
L(r))−1 =

(
U−1)(r)(D−1)(r)(L−1)(r),

and this reads explicitly as

b
(r)
ij =

r−1∑
k=0

(−1)k−i
(
k

i

)
1
k!
skj = (−1)i+j

r−1∑
k=0

(
k

i

)
1
k!
|skj | (i, j = 0, . . . , r − 1).

(1.7)

This implies that for any m ∈ {0, . . . , r − 1},
r−1∑
i=0

|b(r)im| =
r−1∑
i=0

r−1∑
k=0

(
k

i

)
|skm|
k!
≤

r−1∑
k=0

2k
|skm|
k!

< 2r.(1.8)

We conclude the univariate case with an additional technical estimate that is
needed in section 3. It gives an upper bound on the error induced by using only
B(r) (for some r ≤ n) rather than the full matrix B(n+1) in the computation of the
coefficients of a polynomial of degree n.

Let, for i, j ∈ N0 with j < r,

dij =
r−1∑
k=0

b
(r)
kj k

i.

Clearly dij = δij for i < r. For i ≥ r, combining (1.6) and (1.7) yields∣∣∣∣∣
r−1∑
k=0

b
(r)
kj k

i

∣∣∣∣∣ =

∣∣∣∣∣
r−1∑
k=0

(
r−1∑
p=0

(−1)p−k
(
p

k

)
1
p!
spj

)(∞∑
q=0

σiqq!
(
k

q

))∣∣∣∣∣
=

∣∣∣∣∣
r−1∑
p=0

r−1∑
q=0

spjσiq
q!
p!

(−1)q−p
(
r−1∑
k=0

(−1)k−q
(
k

q

)(
p

k

))∣∣∣∣∣
≤

r−1∑
p=0

|spj |σip ≤
r−1∑
p=0

pi ≤ ri.

(1.9)

Let us close this section with a few brief remarks about the general multivariate
case. Let, for n, s ∈ N,

Yn,s =
{
y = (m1, . . . ,ms) ∈ (N0)s :

s∑
i=1

mi = n
}
.

Clearly,

N = |Yn,s| =
(
n+ s− 1

n

)
.

Suppose that the elements of Yn,s are ordered (for instance lexicographically) so that
Yn,s = {y1, . . . , yN}, where yj = (mj,1, . . . ,mj,s). Now we want to determine the
coefficients of a homogeneous multivariate polynomial

q(x1, . . . , xs) =
N∑
j=1

cjx
mj,1
1 · . . . · xmj,ss

368 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

from its function values. So, we have to choose N interpolation points in such a way
that the N ×N matrix(

(ξ(i)
1)

mj,1 · (ξ(i)
2)

mj,2 · . . . · (ξ(i)
s)

mj,s
)
i,j=1,...,N

,

a higher-dimensional analogue of the classical Vandermonde matrix, is nonsingular.
(Note that, as opposed to the univariate case, it does not suffice to choose the N
points mutually different.) Sufficient conditions for nonsingularity can be found in
[CY77]; see also [Ol86]. In particular, one may take an (s − 1)-dimensional simplex
S = conv{z1, . . . , zs} in Rs and choose ξ(k1,...,ks) = 1

n

∑s
j=1 kjzj , where (k1, . . . , ks) ∈

Yn,s.
This implies, in particular, that when the dimension n is fixed, there is a polyno-

mial-time algorithm which, given s ∈ N and (V- orH-) polytopes P1, . . . , Ps, computes
all mixed volumes V (Pi1 , . . . , Pin).

2. Deterministic algorithms. The present section discusses the problem of
computing or approximating (mixed) volumes by means of deterministic algorithms.
In particular we give results that focus on the difference of volume versus mixed
volume computation.

2.1. Computing the volume of zonotopes. In this subsection we deal with
the following problem.

VOLUME-OF-ZONOTOPES.
Given an S-zonotope Z = (n, s; c; z1, . . . , zs), compute its volume.

Note that the problem asks for voln(Z), where Z = c+
∑s
i=1[0, 1]zi. Since the volume

is translation invariant, we can always assume that c = 0. Now, let A denote the n×s
matrix with columns z1, . . . , zs and let J denote the family of all subsets I of {1, . . . , s}
of cardinality n. Then (1.3) can be written in the form

voln(Z) =
∑
I∈J
|detBI |,

where BI is the n× n-minor of A whose columns correspond to I. It is clear that for
constant n or constant s−n, the number

(
s
n

)
of n×n subdeterminants is polynomially

bounded, whence the volume of zonotopes can be computed in polynomial time. The
general case is, however, #P-hard.

THEOREM 1. VOLUME-OF-ZONOTOPES is #P-hard.
Proof. The proof will use a reduction of the following #P-complete problem.
#SUBSET-SUM (see [GJ79], [Jo90]). Given positive integers m, α1, . . . , αm, and

α, determine the number of different subsets J of {1, . . . ,m} such that
∑
j∈J αj = α.

So, suppose (m;α1, . . . , αm, α) is an instance of #SUBSET-SUM, and let n = m+2
and s = 2m+ 3. Further, define

z2k−1 = ek + αkem+2, k = 1, . . . ,m;
z2k = ek, k = 1, . . . ,m+ 1;
z2m+1 = em+1 − αem+2;

zδ2m+3 = −
m+1∑
i=1

ei + δem+2, δ ∈ {−1, 0, 1},

where e1, . . . , en denote again the standard basis vectors of Rn, and set

Zδ =
s−1∑
i=1

[0, 1]zi + [0, 1]zδs .

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 369

Suppose now that there is a polynomial-time algorithm A for solving the problem
VOLUME-OF-ZONOTOPES, and apply A to compute voln(Z−1)−2voln(Z0)+voln(Z1).
In terms of the determinant formula, this means that we are only interested in those
n× n submatrices BI of the n× s matrix

Aδ =

1 1 0 0 0 0 . . . 0 0 0 0 −1
0 0 1 1 0 0 . . . 0 0 0 0 −1
0 0 0 0 1 1 . . . 0 0 0 0 −1
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . 1 1 0 0 −1
0 0 0 0 0 0 . . . 0 0 1 1 −1
α1 0 α2 0 α3 0 . . . αm 0 −α 0 δ

which depend on δ. Then, clearly, BI has to contain the last column zδ2m+3 of Aδ,
and in choosing the remaining m + 1 columns, we have to select exactly one vector
from each pair z2k−1, z2k (k = 1, . . . , n − 1). Therefore, the summands |detBI | of
the determinantal expansion of voln(Zδ) which are depending on δ are in one-to-one
correspondence with the subsets J of {1, . . . ,m+ 1} via

j ∈ J ⇐⇒ 2j − 1 ∈ I.

From this it follows easily that there is an integer κ that depends only on α1, . . . , αm
and α but not on δ such that

voln(Zδ) = κ+
∑

J⊂{1,...,m+1}
|δ +

∑
i∈J

αj |,

where, for notational consistency, αm+1 = −α. Then,

voln(Z−1)− 2voln(Z0) + voln(Z1)

=
∑

J⊂{1,...,m+1}

∣∣∣−1 +
∑
j∈J

αj

∣∣∣− 2
∣∣∣∑
j∈J

αj

∣∣∣+
∣∣∣1 +

∑
j∈J

αi

∣∣∣
 .

Since for any nonzero integer γ,

| − 1 + γ| − 2|γ|+ |1 + γ| = 0,

it follows that

1
2

(
voln(Z−1)− 2voln(Z0) + voln(Z1)

)
=
∣∣∣{J ⊂ {1, . . . ,m+ 1} :

∑
j∈J

αi = 0
}∣∣∣.

But ∑
j∈J

αi = 0 if and only if m+ 1 ∈ J and
∑

j∈J∩{1,...,m}
αj = α,

whence A gives rise to a polynomial-time algorithm for #SUBSET-SUM.
Theorem 1 proves the #P-hardness of evaluating

∑
I∈J |detBI |. This result is

in striking contrast to the fact that by the Binet–Cauchy formula (see, e.g., [BS83]),∑
I∈J

(detBI)2 = det(AAT),(2.1)

370 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

whence the sum of the squares of all n × n subdeterminants can be evaluated in
polynomial time.

Note, further, that Proposition 1 can be applied to S-zonotopes since it is standard
fare to derive a well presentation for an S-zonotope. So there is a polynomial-time
randomized algorithm for VOLUME-OF-ZONOTOPES. Zonotopes come, however, with
an additional structure (and in particular, with a natural dissection into parallelo-
topes) so it is conceivable that there are faster randomized algorithms for zonotopes
than there are for general well-presented convex bodies. This question is, however,
open.

For an easiness result complementing Theorem 1 see Theorem 6, and for an ap-
plication of VOLUME-OF-ZONOTOPES to a problem in the oil industry see subsection
4.3.

We will now draw the first of a few consequences of Theorem 1 and prove a result
that is relevant in subsection 2.4.

THEOREM 2. The following problem VOLUME-OF-SUM-OF-ELLIPSOIDS is #P-
hard: given s, n ∈ N, nonsingular rational (n × n)-matrices A1, . . . , As, an error
bound ε ∈ Q, ε > 0, compute a rational number V̂ which satisfies∣∣∣V̂ − voln(E1 + E2 + · · ·+ Es)

∣∣∣ < ε,

where Ei is the ellipsoid Ei = {x ∈ Rn : xTATi Aix ≤ 1}.
Proof. Let (n, s; c; z1, . . . , zs) be an instance of VOLUME-OF-ZONOTOPES and set

Z =
∑s
i=1[−1, 1]zi. Note that

voln(Z) = 2nvoln

(
c+

s∑
i=1

[0, 1]zi

)
,

whence it suffices to show how the computation of voln(Z) can be reduced to a suitable
instances of VOLUME-OF-SUM-OF-ELLIPSOIDS.

For each i = 1, . . . , s we compute first an orthogonal basis {vi,1, . . . , vi,n} of Rn
such that vi,1 = zi. Let Bi be the n×n-matrix with rows vTi,1, . . . , v

T
i,n, set for µ ∈ N,

Dµ
i = diag

(
1

〈zi, zi〉
,

µ

〈vi,2, vi,2〉
, . . . ,

µ

〈vi,n, vi,n〉

)
,

and define the ellipsoid

Eµi = {x ∈ Rn : xT (Dµ
i Bi)

T (Dµ
i Bi)x ≤ 1}.

Then we have

[−1, 1]zi ⊂ Eµi ⊂ [−1, 1]zi +
1
µ

n∑
j=2

[−1, 1]vi,j .

Now, let Z ′ =
∑s
i=1
∑n
j=2[−1, 1]vi,j , and let R ∈ N such that Z ∪ Z ′ ⊂ RCn, where

Cn denotes again the standard unit cube. Then the above inclusions yield

Z ⊂ Eµ1 + Eµ2 + · · ·+ Eµs ⊂ Z +
1
µ
Z ′ ⊂ Z +

R

µ
Cn.

Now note that for any λ > 0,

voln(Z + λCn)− voln(Z) =
n∑
i=1

(
n

i

)
V (

n−i︷ ︸︸ ︷
Z, . . . , Z,

i︷ ︸︸ ︷
Cn, . . . , Cn)λi,

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 371

and this implies that

voln(Eµ1 + · · ·+ Eµs)− voln(Z) ≤
n∑
i=1

(
n

i

)
V (

n−i︷ ︸︸ ︷
Z, . . . , Z,

i︷ ︸︸ ︷
Cn, . . . , Cn)

(
R

µ

)i
≤ (4R)n

µ
.

Hence, if for µ0 = d 2
ε (4R)ne the volume of Eµ0

1 +· · ·+Eµ0
s is approximated to absolute

error ε
2 , we obtain an estimate of voln(Z) to absolute error ε. Further, it follows from

(1.3) that size(voln(Z)) is bounded by a polynomial in the input size. Therefore, it
suffices to approximate voln(Z) to a sufficiently small absolute error ε whose size is
polynomially bounded and then perform the usual rounding (with continued fractions)
in order to obtain voln(Z) precisely.

Finally note that all constructions and computations can be done in polynomial
time; this completes the transformation.

2.2. Mixed volumes of paralellotopes. We give some hardness results for
computing mixed volumes of parallelotopes. The first involves axes-parallel parallelo-
topes which (for brevity) will be called boxes.

Before we state the result we need two lemmas.
LEMMA 1. Let the entries of A = (αij)i,j=1,2,,...,n be nonnegative rationals, and

for i = 1, . . . , n set Zi =
∑n
j=1[0, αij]ej. Then

n!V (Z1, . . . , Zn) = per(A),

where per(A) denotes the permanent of A.
Proof. Note that the Zi are all boxes, and so is

∑n
i=1 λiZi for each n-tuple

(λ1, . . . , λn) of nonnegative reals. Hence,

voln

(
n∑
i=1

λiZi

)
= voln

 n∑
j=1

[
0,

n∑
i=1

λiαij

]
ej

 =
n∏
j=1

(
n∑
i=1

λiαij

)
.

Comparing the coefficients of λ1 · λ2 · . . . · λn we see that

V (Z1, . . . , Zn) =
1
n!

n∑
j1=1

· · ·
n∑

jn=1

εj1,...,jnα1,j1 · . . . · αn,jn ,

where

εj1,...,jn =

{
1 if j1, . . . , jn is a permutation of 1, 2, . . . , n,
0 otherwise,

and this proves the assertion.
The problem of computing the permanent of 0-1-matrices is known to be #P-

complete [Va77]; see also [Va79], [Br86], [JS89], [LS90], [KKLLL93]. Hence, Lemma
1 implies that the problem of computing the mixed volume V (Z1, . . . , Zn) of n faces
Zi of the cube [0, 1]n is also #P-complete. (Note, on the positive side, that in view of
Lemma 1, Theorem 11 yields a randomized polynomial-time algorithm for estimating
the permanent of certain classes of matrices.) In order to extend this result to proper
boxes, observe that if we replace the 0-entries of a given 0-1-matrix B by a parameter
α to obtain an α-1-matrix Bα, then per(Bα) is a polynomial in α; evaluation of
this polynomial for n + 1 different values of α (or for one sufficiently small value

372 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

of α) allows us to compute its constant term per(B). In order to prove the sharper
statement of Theorem 3, we use the following strengthening of [Va77]’s hardness result
to the permanent of α-β-matrices with prescribed α and β.

LEMMA 2. The following problem is #P-hard for any pair α, β of (fixed) distinct
rationals: given a positive integer n, and an n×n matrix A with entries α, β, compute
per(A).

Proof. We may assume that β = α + 1 and α 6= 0. Let B = (bik)i,k=1,...,n be an
arbitrary 0-1-matrix. We will reduce the computation of per(B) to the computation
of the permanent of several matrices with α, α+ 1 entries.

Let G denote the bipartite graph on 2n vertices whose adjacency matrix is B,
and for k = 1, . . . , n let Mk be the number of matchings of size k in G. We want to
compute Mn = per(B). For j = 0, . . . , n let X(j) = (x(j)

ik), denote the (n+ j)× (n+ j)
matrix with entries

x
(j)
ik =

{
α+ bik for i, k = 1, . . . , n;
α otherwise.

Clearly, X(j) has only entries α, α+ 1; whence using an oracle for evaluating the per-
manent of matrices with α, α+1 entries n+1 times, we can determine the permanents
of all the X(j). On the other hand, we have

n∑
k=0

Mk(n− k + j)!αn−k+j = per(X(j)) (j = 0, . . . , n).(2.2)

To see this, regard α as an indeterminate, and expand per(X(j)) as a polynomial in
α. Then the terms contributing to the coefficient of αn−k+j arise as follows. For
every k-matching in G we obtain a product (α + 1)k, and this can be completed in
(n − k + j)! ways to give a lowest term αn−k+j . We do this by selecting the α term
from the product of monomials (either α or α + 1) represented by any matching on
the complete bipartite graph induced by the remaining n− k + j rows and columns.

Therefore, if the above system (2.2) of linear equations is nonsingular, we can
solve it for Mn, and this establishes the #P-hardness result.

To see that (2.2) is indeed nonsingular, let us rewrite the system as follows:

n∑
k=0

(
k + j

j

)
(k!αkMn−k) =

j! per(X(j))
αj

(j = 0, . . . , n).

Introducing the new variables yk = k!αkMn−k, the question now reduces to deciding
whether the (n+ 1)× (n+ 1) matrix C with entries ckj =

(
k+j
j

)
is nonsingular. But

this follows easily from the Vandermonde identity

n∑
r=0

(
k

r

)(
j

r

)
=
(
k + j

j

)
for k, j ≤ n,

since C = UUT , where U is the lower triangular matrix with entries uij =
(
i
j

)
which

has all its diagonal elements 1.
Now we can prove Theorem 3.
THEOREM 3. Let α, β be (fixed) distinct positive rationals. Then the following

restriction of MIXED-VOLUME-OF-BOXES is #P-hard: given n ∈ N, and for i, j =

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 373

1, 2, , . . . , n, an element αi,j of {α, β}, compute the mixed volume V (Z1, . . . , Zn) for
the proper boxes Zi =

∑n
j=1[0, αi,j]ej, (i = 1, . . . , n).

Proof. The result is a simple consequence of Lemmas 1 and 2.
Theorem 3 implies directly the “instability” result that, while the case of ε = 0 is

trivial, it is #P-hard for any ε > 0 to compute the mixed volume of n proper boxes,
all containing the unit cube Cn and all being contained in the cube (1 + ε)Cn.

Note that MIXED-VOLUME-OF-BOXES can be solved in polynomial time if the
number s of different boxes is bounded beforehand. In this case there are only O(ns−1)
different mixed volumes, and they can all be computed by the approach of subsection
1.3 (see [GK94, subsection 4.1]), since their Minkowski sum is a box whose volume
can be computed easily. We will show, however, that the corresponding problem for
just two proper rectangular parallelotopes is #P-hard if they are not both required
to be axes-parallel.

THEOREM 4. The following problem is #P-hard: given n ∈ N, m ∈ {0, . . . , n},
α1, . . . , αn ∈ N, and integer vectors y1, . . . , yn which form an orthogonal basis of Rn,

compute V (

n−m︷ ︸︸ ︷
Z1, . . . , Z1,

m︷ ︸︸ ︷
Z2, . . . , Z2), where Z1 =

∑n
i=1[0, 1]yi and Z2 =

∑n
i=1[0, αi]ei.

Proof. We use the problem VOLUME-OF-ZONOTOPES of Theorem 1 for a reduc-
tion. Let Z = (n, s; c, z1, . . . , zs) be an S-zonotope. We may assume without loss of
generality that z1, . . . , zs ∈ Zn, that s > n, and that Z is proper. Now, let A denote
the n× s matrix with columns z1, . . . , zs. Since, by (1.3), elementary row operations
to A do not change the volume of the zonotope generated by the columns of A, we
may further assume that the rows v1, . . . , vn of A are orthogonal.

Let {vn+1, . . . , vs} ⊂ Qs be an orthogonal basis of the orthogonal complement of
the linear hull of {v1, . . . , vn} such that the sizes of vn+1, . . . , vs are bounded by a
polynomial in size(Z). Note that such a basis can be computed essentially by solving
a system of linear equations. Let B denote the s× s matrix that is obtained from A
by augmenting the rows vn+1, . . . , vs, and let y1, . . . , ys be the column vectors of B.
Since the rows of A are orthogonal, so are the columns. Hence,

Z1 =
s∑
i=1

[0, 1]yi

is a proper rectangular parallelotope in Rs. Set, further,

C =
s∑

i=n+1

[0, 1]ei, and for 0 < µ < 1, Zµ2 = C + µ
n∑
i=1

[0, 1]ei.

By Proposition 2, applied with U = {0}n×Rs−n (and hence U⊥ = Rn×{0}s−n), we
obtain (

s

n

)
V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n︷ ︸︸ ︷
C, . . . , C) = voln(Z),

and this gives already an #P-hardness result for the case that one of the parallelotopes
is permitted to be lower dimensional. To complete the proof of Theorem 4, observe
that (by (1.4))

V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n︷ ︸︸ ︷
Zµ2 , . . . , Z

µ
2) =

s−n∑
i=0

(
s− n
i

)
V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n−i︷ ︸︸ ︷
C, . . . , C,

i︷ ︸︸ ︷
Ĉ, . . . , Ĉ)µi,

374 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

where Ĉ = [0, 1]n × {0}s−n. Since there is a positive integer R of size bounded by a
polynomial in size(Z) such that Z1 ⊂ R[0, 1]s, it follows that

V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n︷ ︸︸ ︷
C, . . . , C) ≤ V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n︷ ︸︸ ︷
Zµ2 , . . . , Z

µ
2)

≤ V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n︷ ︸︸ ︷
C, . . . , C) + 2s−nRnµ.

Now, let µ0 be a positive rational of size bounded by a polynomial in the input size
such that 1/µ0 > 2 · 2s−nRn

(
s
n

)
, and set Z2 = Zµ0

2 . Then Z2 is a proper rectangular
parallelotope, and

∣∣∣∣voln(Z)−
(
s

n

)
V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

s−n︷ ︸︸ ︷
Z2, . . . , Z2)

∣∣∣∣ < 1
2
.

Since voln(Z) is an integer, this shows that it suffices to compute the mixed volume

V (

n︷ ︸︸ ︷
Z1, . . . , Z1,

n−s︷ ︸︸ ︷
Z2, . . . , Z2) in order to obtain voln(Z). To conclude the transformation

just apply a suitable scaling to make µ0 integer.
As a simple consequence of Theorem 4 we can derive a sharpening of Theorem 1.
THEOREM 5. The following problem is #P-hard: given n ∈ N, and two n-tuples

v1, . . . , vn and w1, . . . , wn of integer vectors that form orthogonal bases of Rn, compute
the volume of the Minkowski sum

voln

(n∑
i=1

[0, 1]vi
)

+
(n∑
j=1

[0, 1]wj
) .

Proof. Let Z1 =
∑n
i=1[0, 1]vi and Z2 =

∑n
j=1[0, 1]wj . For the proof of the

theorem, just note that all mixed volumes of Z1 and Z2 can be computed by the
method indicated in subsection 1.3 by evaluating voln(Z1 + ξZ2) for n + 1 mutually
disjoint interpolation points ξ0, . . . , ξn, and apply Theorem 4.

2.3. Easiness of mixed volume computation. The results of the previous
subsection show that mixed volume computation is in general at least as hard as any
problem in #P. The present subsection addresses the question of whether computing
mixed volumes is possibly even harder.

As shown in [DF88], using any oracle which solves some #P-complete problem in
constant time, the volume of a V-polytope can be computed in polynomial time; this
is stated by saying that volume computation for V-polytopes is #P-easy.
H-presented polytopes come with the additional difficulty that the size of their

volume is not bounded by a polynomial in the input size. An example was given by
[La91], showing that there is no polynomial-space algorithm for exact computation of
the volume of H-polytopes. However, approximation to any positive rational absolute
error ε is again #P-easy for H-polytopes, [DF88].

It is clear from section 1.3 (see also [GK94]) that the easiness results for computing
or approximating the volume can be extended to mixed volumes if the number s of
sets under consideration is bounded beforehand. If, however, s is part of the input the
number of volume computations needed for the numerical differentiation approach to
compute a single mixed volume cannot be bounded by a polynomial in n and s. The

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 375

reason is that this method “essentially” computes all mixed volumes at once and their
number is exponential.

We will show in the following, however, that even in this general case computation
(for V-polytopes or S-zonotopes) or approximation (for H-polytopes) of any single
mixed volume is #P-easy. We begin with the easier case of S-zonotopes.

THEOREM 6. Let Π be any #P-complete problem. Then any oracle OΠ for solving
Π can be used to produce an algorithm that runs in time that is oracle-polynomial in
the input size for solving the following problem:

Instance: n, s ∈ N, and m1, . . . ,ms ∈ N such that
∑s
i=1mi = n, S-zonotopes

Zi = (n, si; ci; zi,1, . . . , zi,si), for i = 1, . . . , s.
Task: Compute the mixed volume

V (

m1︷ ︸︸ ︷
Z1, . . . , Z1,

m2︷ ︸︸ ︷
Z2, . . . , Z2, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs).

Proof. The proof reduces the problem to the task of approximating the volume
of a (typically nonconvex) finite union of parallelotopes.

For i ∈ S = {1, . . . , s}, let Ji = {(i, 1), . . . , (i, si)}, set J = J1 ∪ · · · ∪ Js, and

Jm1,...,ms = {I ⊂ J : |I ∩ Ji| = mi, for i ∈ S}.
Further, let r =

∑s
i=1 si, and let A denote the n× r matrix

A = (z1,1, . . . , z1,s1 , . . . , zs,1, . . . , zs,ss).

Then it is easy to see, by expanding voln(
∑s
i=1 λiZi), that(

n

m1, . . . ,ms

)
V (

m1︷ ︸︸ ︷
Z1, . . . , Z1, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs) =

∑
I∈Jm1,...,ms

|detBI |,(2.3)

where BI denotes the n× n submatrix of A with column indices in I, and
(

n
m1,...,ms

)
is the usual multinomial coefficient, i.e.,(

n

m1, . . . ,ms

)
=

n!
m1! · . . . ·ms!

.

To prove the theorem, we will now interpret (2.3) geometrically. In fact, let

Z =
∑

(i,j)∈J
[0, 1]zi,j ,

and let again J denote the family of all subsets I of J of cardinality n. Using a simple
inductive argument (with respect to r), we see that there is a subset I of J and that
there are vectors pI (I ∈ I) such that the parallelotopes

PI = pI +
∑
i∈I

[0, 1]zi (I ∈ I)

form a dissection of Z into proper parallelotopes; see [Sh74]. Further, for each
x ∈ Z ∩ Qn, a subset I ∈ I with x ∈ PI can be found in time bounded by a
polynomial in size(Z) and size(x). Note that these parallelotopes are in one-to-
one correspondence with the nonsingular matrices BI with I ∈ J . Hence, with
Zm1,...,ms =

⋃
I∈Jm1,...,ms

PI , we have(
n

m1, . . . ,ms

)
V (

m1︷ ︸︸ ︷
Z1, . . . , Z1, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs) = voln(Zm1,...,ms),

and membership in Zm1,...,ms of a point x ∈ Qn can be checked in polynomial time.

376 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

Now, let R =
∑

(i,j)∈J ‖zi,j‖∞, whence Z ⊂ R[−1, 1]n. Further, let ε be a positive
rational, let

α =
⌈

2rnn2(2R)n

ε

⌉
, and δ =

R

α
.

For each integer vector t = (τ1, . . . , τn), let

xt = δ

(
τ1 +

1
2
, . . . , τn +

1
2

)T
, and Ct = xt +

δ

2
[−1, 1]n.

For each xt, membership in Zm1,...,ms can be decided in polynomial time, so OΠ
can be used to construct a counting machine that outputs the number N of integer
vectors t for which xt ∈ Zm1,...,ms . So, if ν is the number of cubes Ct that intersect
the boundary of Zm1,...,ms , we have

|Nδn − voln(Zm1,...,ms)| ≤ νδn.

It is readily seen that each facet of any ZI (I ∈ Jm1,...,ms) is intersected by at most
2n(2α)n−1 such cubes, whence (after some standard calculations)

|Nδn − voln(Z(m1,...,ms))| ≤ 4rnn2(2α)n−1δn ≤ ε ≤
(

n

m1, . . . ,ms

)
ε.

Therefore, ∣∣∣∣∣∣V (

m1︷ ︸︸ ︷
Z1, . . . , Z1, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs)−Nδn

(
n

m1, . . . ,ms

)−1
∣∣∣∣∣∣ ≤ ε.

Now, size(voln(Zm1,...,ms)) is bounded above by a polynomial in the size of the input.

So a suitable choice of ε and subsequent rounding yields V (

m1︷ ︸︸ ︷
Z1, . . . , Z1, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs)

exactly.
Note that as a corollary we see that VOLUME-OF-ZONOTOPES is #P-easy.
THEOREM 7. Let Π be any #P-complete problem. Then any oracle OΠ for solving

Π can be used to produce an algorithm that runs in time that is oracle-polynomial in
the input size (including size(ε) in the second case) for solving the following problems:

Instance 1: n, s ∈ N and m1, . . . ,ms ∈ N such that
∑s
i=1mi = n, V-polytopes

Pi = (n, ni; vi,1, . . . , vi,ni), for i = 1, . . . , s.
Task 1: Compute the mixed volume

V (

m1︷ ︸︸ ︷
P1, . . . , P1,

m2︷ ︸︸ ︷
P2, . . . , P2, . . . ,

ms︷ ︸︸ ︷
Ps, . . . , Ps).

Instance 2: n, s ∈ N and m1, . . . ,ms ∈ N such that
∑s
i=1mi = n, H-polytopes

Pi = (n, ni;Ai, bi), for i = 1, . . . , s, a positive rational number ε.
Task 2: Compute a rational number V̂m1,m2,...,ms such that∣∣∣∣V̂m1,m2,...,ms − V (

m1︷ ︸︸ ︷
P1, . . . , P1,

m2︷ ︸︸ ︷
P2, . . . , P2, . . . ,

ms︷ ︸︸ ︷
Ps, . . . , Ps)

∣∣∣∣ ≤ ε.
Proof. For V- or H-polytopes it is not so clear (as it was for S-zonotopes) that

mixed volumes can be reduced to a volume computation, yet it is possible. The proof
makes substantial use of a formula of [Sc94] (a generalization of [Be92]), and we will
begin by restating [Sc94]’s approach.

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 377

For a polytope P in some Rm and an integer k with 0 ≤ k ≤ m, let, as usual,
Fk(P) denote the set of k-faces of P , and let F(P) =

⋃m
k=0 Fk(P). Further, for a face

F of P , let N(P, F) denote the cone of outer normals of P at F .
Now, let P1, . . . , Ps be polytopes in Rn. Set r = s · n and

P̃ = P1 × P2 × · · · × Ps ⊂
s︷ ︸︸ ︷

Rn × Rn × · · · × Rn = Rr.

It is easy to see that

F(P̃) = {F1 × F2 × · · · × Fs : F1 ∈ F(P1), . . . , Fs ∈ F(Ps)}

and that

Fk(P̃) =
⋃

k1,...,ks∈N0
k1+···+ks=k

{F1 × F2 × · · · × Fs : F1 ∈ Fk1(P1), . . . , Fs ∈ Fks(Ps)}.

Let

∆ = {(xT , xT , . . . , xT)T ∈ Rr : x ∈ Rn};

∆ is a linear subspace of Rr of dimension n. For ṽ = (v1, . . . , vr)T ∈ ∆⊥ \ {0}, let
∆ṽ = lin(∆ ∪ {ṽ}), and let

∆+
ṽ = {w̃ ∈ ∆ṽ : 〈w̃, ṽ〉 > 0},

the corresponding “positive” open halfspace. Further, let π∆ and π∆ṽ
denote the

orthogonal projections onto ∆ and ∆ṽ, respectively, let π′∆ be the restriction of π∆
to the set ∆ṽ, and set Pṽ = π∆ṽ (P̃). Note that

π∆(x1, . . . , xs) =
1
s

(
s∑
i=1

xTi , . . . ,
s∑
i=1

xTi

)T
.

Then voln(π∆(P̃)) is just the sum of the volumes of the projections of those facets of
Pṽ with outer normal vector w̃ in ∆+

ṽ .
Suppose that none of the w̃ ∈ ∆+

ṽ is orthogonal to a hyperplane in Rr that
supports P̃ in a face of dimension greater than n. Then each facet of Pṽ with outer
normal w̃ in ∆+

ṽ is the projection of exactly one n-dimensional face F̃ ∈ Fn(P̃) such
that w̃ ∈ N(P̃ , F̃). Let F̃+

n be the set of all faces F̃ ∈ Fn(P̃) for which

N(P̃ , F̃) ∩∆+
ṽ 6= ∅.

It follows that

π∆(P̃) =
⋃

F̃∈F̃+
n

π∆(F̃)

and

voln(π∆(F̃) ∩ π∆(G̃)) = 0 for all F̃ , G̃ ∈ F̃+
n , F̃ 6= G̃.

Now, let

Fm1,...,ms =
⋃

F̃=F1×F2×···×Fs∈F̃+
n

dim(F1)=m1,...,dim(Fs)=ms

int(F1 + · · ·+ Fs),

378 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

where int is taken with respect to Rn. (Clearly, in terms of volume computations,
taking the interior does not matter, and we do it only for technical reasons that
become clear when we develop a method for checking membership in Fm1,...,ms later.)
By replacing Pi by λiPi for λi > 0, and comparing coefficients we obtain [Sc94]’s
formula(

n

m1, . . . ,ms

)
V (

m1︷ ︸︸ ︷
P1, . . . , P1, . . . ,

ms︷ ︸︸ ︷
Ps, . . . , Ps)

= voln(Fm1,...,ms) =
∑

F̃=F1×F2×···×Fs∈F̃+
n

dim(F1)=m1,...,dim(Fs)=ms

voln(F1 + · · ·+ Fs).

Suppose that rational vectors v1, v2, . . . , vs ∈ Rn can be computed in polynomial
time with ṽ = (vT1 , v

T
2 , . . . , v

T
s)T ∈ ∆⊥ and such that no w̃ ∈ ∆+

ṽ supports P̃ in a
face of dimension greater than n. We can then apply the same proof technique as
in the proof of Theorem 6, if we can check membership of a point z in Fm1,...,ms in
polynomial time. But this can be done as follows (in both cases where P1, . . . , Ps are
V- or H-polytopes).

Given z ∈ Rn, we first check whether z ∈ P1 +P2 + · · ·+Ps. Clearly, this can be
done by linear programming. If the answer is affirmative, we compute the vector z̃0
that is given by

{z̃0} = {z̃ + λṽ : λ ≥ 0} ∩ relbd(Pṽ), where z̃ = (zT , . . . , zT)T .

To see that this can be done in polynomial time, observe that the corresponding
parameter λ0 is the solution of the linear program

max〈ṽ, x̃〉 s.t. x̃ ∈ P̃ ∩ (z̃ + ∆⊥).

Since P̃ = {x̃ = (xT1 , . . . , x
T
s)T : x1 ∈ P1, . . . , xs ∈ Ps} and z̃ + ∆⊥ can be easily

expressed in the form Ax̃ = b, where A is an n × r matrix with 0-1 coefficients,
b ∈ Qn, and the size is bounded by a polynomial in r and size(z), the given linear
program can be solved in polynomial time.

Now, if λ0 = 0 we know that z ∈ bd(P1 + P2 + · · · + Ps), and we report that
z 6∈ Fm1,...,ms .

Otherwise we compute an outer normal w̃ ∈ ∆+
ṽ of Pṽ at z̃0. This can be done in

polynomial time.
Let Fw̃ denote the face of Pṽ that corresponds to the supporting hyperplane

determined by w̃. It may or may not be the case that Fw̃ is a facet of Pṽ (we will find
out in the final step); and we know that z 6∈ Fm1,...,ms if it is not. (This situation is
the reason for considering only the interiors of the sets F1 + · · ·+Fs in the definition
of Fm1,...,ms .)

Next we determine the face F̃ of P̃ which is induced by the supporting hyperplane
orthogonal to w̃. This is done by solving for i = 1, . . . , s the linear program

max〈wi, x〉 s.t. x ∈ Pi,

where w1, . . . , ws ∈ Rn such that w̃ = (wT1 , . . . , w
T
s)T . Note that is is not enough to

find a solution; we need to find a V- or H-presentation of the set of all solutions. But
this can be done in polynomial time. So, let F1, . . . , Fs be the respective solution sets.
Then F̃ = F1 × F2 × · · · × Fs is the face of P̃ in question. Now we need to check
whether dimFi = mi for all i = 1, . . . , s, a task involving just linear algebra, and, if

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 379

this is the case, finally, whether π∆ṽ
does not reduce dim F̃ , again a simple task from

linear algebra.
Hence we have derived a polynomial-time algorithm for checking membership in

Fm1,...,ms which we can now apply to the points xt used in the proof of the easiness
results for zonotopes, and we may proceed as before.

In order to finish the proof of Theorem 7, all that is left to be done is to show
that an appropriate choice of the vector ṽ can be made in polynomial time.

The condition on ṽ is satisfied if
s⋂
i=1

(
relint (N(Pi, Fi))− vi

)
= ∅

for all s-tuples (F1, F2, . . . , Fs) of faces Fi of Pi such that

dimF1 + dimF2 + · · ·+ dimFs > n.

We will actually produce (in polynomial time) vectors v1, . . . , vs such that
s⋂
i=1

(
lin (N(Pi, Fi))− vi

)
= ∅(2.4)

for all s-tuples (F1, F2, . . . , Fs) of faces Fi of Pi such that

dimF1 + dimF2 + · · ·+ dimFs > n.

Let (F1, F2, . . . , Fs) be such a choice of faces, i.e.,

k1 + · · ·+ ks ≥ n+ 1, where ki = dimFi for i = 1, . . . , s.

Suppose that for i = 1, . . . , s the vectors ai,1, . . . , ai,n−ki are facet normals of Pi that
span lin(N(Pi, Fi)). Then (2.4) is violated for some choice of ṽ, if and only if the
following inhomogenous system of linear equations (in the variables x and λi,j) is
feasible.

x+
n−ki∑
j=1

λi,jai,j = vi (i = 1, . . . , s).(2.5)

Note that this system is overdetermined; it consists of r equations in n+
∑s
i=1(n−ki) =

r + (n −
∑s
i=1 ki) ≤ r − 1 variables and is, hence, generically infeasible. In order to

find a specific vector ṽ of size that is bounded by a polynomial in the input size,
which renders all such systems infeasible, we have to analyze the condition a bit more
carefully, since in general there are doubly exponentially many such systems. Note,
however, that the coefficient matrices have the property that all entries are of size
that is bounded by a polynomial in the input size. Now suppose ṽ is of the form

ṽξ = (vT1 , v
T
2 , . . . , v

T
s)T = (ξ, ξ2, . . . , ξr)T for some ξ > 1.

Note that, in general, ṽξ 6∈ ∆⊥, but since ṽξ 6∈ ∆, it is of the form (yTξ , . . . , y
T
ξ)T + ṽ′ξ

with ṽ′ξ ∈ ∆⊥, whence it suffices to show that for a suitable choice of ξ the system
(2.5) is infeasible for ṽξ. Now, since (2.5) is overdetermined, it is only feasible if
the components of ṽξ satisfy a linear relation with coefficients that come as subde-
terminants of (2.5)’s coefficient matrices, whence are bounded in size by an integer
polynomial π(Λ) in the input size Λ, i.e., we have a relation

ξr +
r−1∑
i=1

αiξ
i = 0 with |α1|, . . . , |αr−1| ≤ 2π(Λ).

Hence, with ξ0 = 2r2π(Λ) the vector ṽξ0 makes all systems (2.5) infeasible.
This completes the proof of the two asserted easiness results.

380 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

2.4. Deterministic methods for approximating mixed volumes. The prob-
lem of how well the volume of a well-presented convex body can be approximated in
polynomial time was investigated by various authors; see [GK94] for a survey.

For a positive functional φ on Kn (or on appropriate subsets of Kn) and a func-
tional λ : N → R, a (relative) λ-approximation of φ is a functional φ̂ defined on the
domain of φ such that

φ(K)

φ̂(K)
≤ λ and

φ̂(K)
φ(K)

≤ λ.

(Note that the relative error |(φ̂(K) − φ(K))/φ(K)| is only appropriate if one is
confronted with small errors since taking φ̂(K) = 0 always gives an estimate with
relative error 1.)

When looking for relative estimates for mixed volumes, the first question is if one
can efficiently check whether the mixed volume under consideration is greater than
zero.

THEOREM 8. There is a polynomial time algorithm which solves the following
problem: given n, s ∈ N, m1, . . . ,ms ∈ N0 with

∑s
i=1mi = n, and well-presented

convex bodies K1, . . . ,Ks, decide whether

V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks) = 0.

Proof. For i = 1, . . . , s, let di = dim(Ki), and let ai,0, . . . , ai,di ∈ Ki such that
aff(Ki) = aff{ai,0, . . . , ai,di}. Note that these vectors ai,j are part of the input of
the problem. Since our task is clearly translation invariant, we may assume that
a1,0 = · · · = as,0 = 0, and also that b1 = · · · = bs = 0, where bi is the given “center”
of Ki.

Now, for i = 1, . . . , s, let Zi =
∑di
j=1[−1, 1]ai,j . Then clearly, for some ρ,R > 0

(which we do not have to know explicitly),

ρZi ⊂ Ki ⊂ RZi.
Hence, by the monotonicity of mixed volumes,

V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks) = 0,

if and only if

V (

m1︷ ︸︸ ︷
Z1, . . . , Z1,

m2︷ ︸︸ ︷
Z2, . . . , Z2, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs) = 0.

Using the notation introduced in the previous subsection, let Ji = {(i, 1), . . . , (i, di)}
for all i = 1, . . . , s, set J = J1 ∪ · · · ∪ Js, set

Jm1,...,ms = {I ⊂ J : |I ∩ Ji| = mi, for i = 1, . . . , s}
and let AI = {ai,j : (i, j) ∈ I} for I ⊂ J .

It follows from Proposition 2 that V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks) 6= 0 if

and only if there is a linear independent subset AI of AJ which, for i = 1, . . . , s, con-
tains exactly mi elements from AJi . This is equivalent to the existence of a common
basis for two matroids, the linear matroid and the partition matroid on AJ . The ex-
istence of such a common basis can be determined in polynomial time by the matroid
intersection algorithm of [Ed70]; see also [GLS88, Theorem 7.5.16].

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 381

Now, assume that K1, . . . ,Ks are well-presented convex bodies and we are longing
for relative approximations to

V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks),

where m1 + · · ·+ms = n. Using Proposition 4, we easily obtain a
(
min{ρn/2n , ν

n/2
n }

)
-

approximation of voln(K), where

ρn = n
√
n+ 1 and νn = 2(n+ 1).

(In the rest of the paper we will use these abbreviations to emphasize that improve-
ments in Proposition 4 (in general or for subclasses of Kn) carry over to our approxi-
mation results. For such an improvement for H-polytopes see [KT93], and see [GK94]
for a survey.) Note that ρn/2n and νn/2n depend only on the dimension n and are inde-
pendent of the bounds of the in- and circumradii given in the input. On the negative
side, it has been shown by [BF86] that for each polynomial-time algorithm which pro-
duces a λ-approximation of the volume of well-presented convex bodies there exists a
constant c such that λ(n) ≥ (cn

log n)n/2 for all n ∈ N.
It is clear that we cannot expect anything better for mixed volumes, but can we at

least get polynomial-time approximations whose error depends only on the dimension
n? Note that the “obvious” approach of approximating the bodies K1, . . . ,Ks by
parallelotopes each and then using the mixed volume of the parallelotopes as estimates
fails in view of Theorem 4, and Theorem 2 indicates some limits for a similar approach
using ellipsoids. The following result, however, gives a positive answer for s = 2; the
general case is open and posed here as a problem.

THEOREM 9. Let m : N0 → N0 with m(n) ≤ n for all n ∈ N0, and let λ : N→ R
be defined by

λ(n) = min
{
ρ
m(n)

2
n ν

n−m(n)
2

n , ρ
n−m(n)

2
n ν

m(n)
2

n

}
.

Then there is a polynomial-time algorithm which produces a λ-approximation of

V (

n−m(n)︷ ︸︸ ︷
K1, . . . ,K1,

m(n)︷ ︸︸ ︷
K2, . . . ,K2)

for well-presented proper convex bodies K1,K2.
Proof. Given K1 and K2, let φ1 and φ2 be affine transformations such that

Bn ⊂ φ1(K1) ⊂ ρnBn and Cn ⊂ φ2(K2) ⊂ νnCn.

This implies, with Z = φ1(φ−1
2 (Cn)) and m = m(n), that

V (

n−m︷ ︸︸ ︷
Bn, . . . ,Bn,

m︷ ︸︸ ︷
Z, . . . , Z) ≤ V (

n−m︷ ︸︸ ︷
φ1(K1), . . . , φ1(K1),

m︷ ︸︸ ︷
φ1(K2), . . . , φ1(K2))

≤ V (

n−m︷ ︸︸ ︷
ρnBn, . . . , ρnBn,

m︷ ︸︸ ︷
νnZ, . . . , νnZ).

Since the common affine transformation φ1 changes the mixed volume only by the
absolute value of the corresponding determinant as a factor, we obtain the desired
bound by taking the geometric mean of the lower and upper estimates and noticing
that the roles of K1 and K2 can be interchanged. The polynomiality of the algorithm

382 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

follows from Proposition 4 and from the fact that the quermassintegrals of a paral-
lelotope can be approximated to absolute positive rational error ε in polynomial time
in n and size(ε); see, e.g., [GK94, Theorem 4.4.4].

Let us point out that Theorem 9 can be extended to improper sets K1 and K2
by first using Theorem 8 to check whether the mixed volume under consideration is
0, and if this is not the case, by applying Theorem 9 to the bodies K1 + εBn and
K1 + εBn for suitably small positive rational ε.

The final result of this subsection is needed as preprocessing for the inductive step
in the main algorithm of section 3. It is included here because it is approximative
in the sense that it gives an algorithmic solution to the (properly phrased variant

of the) question of how well a specific mixed volume V (

n−k+1︷ ︸︸ ︷
K1, . . . ,K1,

k−1︷ ︸︸ ︷
K2, . . . ,K2) of

two bodies approximates the “next” one, V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
K2, . . . ,K2). First we state

a theoretical bound which holds after some preliminary normalizations, then we will
show how these assumptions can be satisfied in polynomial time.

LEMMA 3. Let K1,K2 ∈ Kn, let E be an ellipsoid centered at 0 such that E ⊂
K1 ⊂ ρnE, and let v1, . . . , vn be the semi-axis vectors of E, such that ‖v1‖ ≤ · · · ≤
‖vn‖. Further, suppose that Bn ⊂ K2 ⊂ ρnBn and that ‖vm‖ = 1. Then

(n+ 1)−4m+5/2 ≤ am−1

am
≤ (n+ 1)4m−3/2,

where, for k = m− 1,m,

ak = V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
K2, . . . ,K2).

Proof. For i = 1, . . . , n, set wi = vi/‖vi‖. Further, for j = 1, . . . ,m, let Uj =
lin{v1, . . . , vj}, let πj : Rn → Rn be the orthogonal projection on U⊥j , and let VUj
and VU⊥j denote the (mixed) volume taken in Uj , U⊥j (with respect to the standard
j- or (n− j)-measure in Uj or U⊥j), respectively.

Let us begin by giving a simple lower estimate for V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
K2, . . . ,K2),

when k = m− 1,m. Let

Qk = conv{±w1, . . . ,±wk}.

Then we obtain, with the aid of Proposition 2,

V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
K2, . . . ,K2) ≥ V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
Qk, . . . , Qk)

=
(
n

k

)−1

VU⊥k (

n−k︷ ︸︸ ︷
πk(K1), . . . , πk(K1))VUk(

k︷ ︸︸ ︷
Qk, . . . , Qk)

=
(
n

k

)−1

voln−k(πk(K1))volk(Qk) =
2k

(n− k + 1) · . . . · nvoln−k(πk(K1))

≥
(

2
n

)k
voln−k(πk(K1)).

(2.6)

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 383

Next we derive upper bounds. Note, first, that

‖v1‖K2 ⊂ ρn‖v1‖Bn ⊂ ρnE ⊂ ρnK1;
K1 ⊂ π1(K1) + ρn[−1, 1]v1;
K2 ⊂ π1(K2) + ρn[−1, 1]w1.

Now, again let k = m−1,m. Using the monotonicity of mixed volumes we obtain

V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
K2, . . . ,K2)

≤ V (

n−k︷ ︸︸ ︷
π1(K1) + ρn[−1, 1]v1, . . . , π1(K1) + ρn[−1, 1]v1,

k︷ ︸︸ ︷
π1(K2) + ρn[−1, 1]w1, . . . , π1(K2) + ρn[−1, 1]w1)

=
n−k∑
i=0

k∑
j=0

(
n− k
i

)(
k

j

)
V (

n−k−i︷ ︸︸ ︷
π1(K1), . . . , π1(K1),

i︷ ︸︸ ︷
ρn[−1, 1]v1, . . . , ρn[−1, 1]v1,

k−j︷ ︸︸ ︷
π1(K2), . . . , π1(K2),

j︷ ︸︸ ︷
ρn[−1, 1]w1, . . . , ρn[−1, 1]w1).

Proposition 2 then yields the following estimate.

V (

n−k︷ ︸︸ ︷
K1, . . . ,K1,

k︷ ︸︸ ︷
K2, . . . ,K2)

≤ (n− k)V (

n−k−1︷ ︸︸ ︷
π1(K1), . . . , π1(K1), ρn[−1, 1]v1,

k︷ ︸︸ ︷
π1(K2), . . . , π1(K2))

+ kV (

n−k︷ ︸︸ ︷
π1(K1), . . . , π1(K1),

k−1︷ ︸︸ ︷
π1(K2), . . . , π1(K2), ρn[−1, 1]w1)

=
2(n− k)ρn‖v1‖

n
VU⊥1 (

n−k−1︷ ︸︸ ︷
π1(K1), . . . , π1(K1),

k︷ ︸︸ ︷
π1(K2), . . . , π1(K2))

+
2kρn
n

VU⊥1 (

n−k︷ ︸︸ ︷
π1(K1), . . . , π1(K1),

k−1︷ ︸︸ ︷
π1(K2), . . . , π1(K2))

≤ 2(n− k)ρ2
n + 2kρn
n

VU⊥1 (

n−k︷ ︸︸ ︷
π1(K1), . . . , π1(K1),

k−1︷ ︸︸ ︷
π1(K2), . . . , π1(K2))

≤ 2ρ2
nVU⊥1 (

n−k︷ ︸︸ ︷
π1(K1), . . . , π1(K1),

k−1︷ ︸︸ ︷
π1(K2), . . . , π1(K2)).

The same estimate can now be applied inductively; if we do this k−1 times for k = m
and k times for k = m− 1 we obtain

V (

n−m︷ ︸︸ ︷
K1, . . . ,K1,

m︷ ︸︸ ︷
K2, . . . ,K2) ≤ (2ρ2

n)m−1VU⊥m−1
(

n−m︷ ︸︸ ︷
πm−1(K1), . . . , πm−1(K1), πm−1(K2))

V (

n−m+1︷ ︸︸ ︷
K1, . . . ,K1,

m−1︷ ︸︸ ︷
K2, . . . ,K2) ≤ (2ρ2

n)m−1voln−m+1(πm−1(K1)).

(2.7)

384 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

Now we combine the estimates (2.6) and (2.7) with the fact that

πm−1(K2) ⊂ ρnBn−m+1 ⊂ ρnπm−1(K1),
πm−1(K1) ⊂ πm(K1) + ρn[−1, 1]vm,

and obtain

V (

n−m︷ ︸︸ ︷
K1, . . . ,K1,

m︷ ︸︸ ︷
K2, . . . ,K2) ≤ (2ρ2

n)m−1VU⊥m−1
(

n−m︷ ︸︸ ︷
πm−1(K1), . . . , πm−1(K1), πm−1(K2))

≤ (2ρ2
n)m−1ρnvoln−m+1(πm−1(K1)) ≤ nm−1ρ2m−1

n V (

n−m+1︷ ︸︸ ︷
K1, . . . ,K1,

m−1︷ ︸︸ ︷
K2, . . . ,K2)

(2.8)

and

V (

n−m︷ ︸︸ ︷
K1, . . . ,K1,

m︷ ︸︸ ︷
K2, . . . ,K2) ≥

(
2
n

)m
voln−m(πm(K1))

≥ 2m−1

nmρn
voln−m+1(πm−1(K1)) ≥ 1

nmρ2m−1
n

V (

n−m+1︷ ︸︸ ︷
K1, . . . ,K1,

m−1︷ ︸︸ ︷
K2, . . . ,K2).

(2.9)

When ρn is replaced by its upper bound (n+1)3/2, the estimates (2.8) and (2.9) yield
the assertion.

LEMMA 4. There is a polynomial-time algorithm which constructs, for given well-
presented proper convex bodies K1,K2 of Rn and a given m ∈ {1, . . . , n}, an affine
transformation φ and a rational number κ > 0 such that

1 ≤
a′m−1

a′m
≤ (n+ 1)8m,

where, for k = m− 1,m,

a′k = V (

n−k︷ ︸︸ ︷
K ′1, . . . ,K

′
1,

k︷ ︸︸ ︷
K ′2, . . . ,K

′
2)

is the corresponding mixed volume of the transformed bodies K ′1 = κφ(K1) and K ′2 =
φ(K2).

Proof. Proposition 4 allows us to construct affine transformations φ and φ̂ such
that

Bn ⊂ φ(K2) ⊂ ρnBn and Bn ⊂ φ̂(φ(K1)) ⊂ ρnBn.

So, let us assume for simplicity of notation that, already,

E ⊂ K1 ⊂ ρnE and Bn ⊂ K2 ⊂ ρnBn,

where E = A−1Bn for a nonsingular matrix A whose entries are bounded in size by
a polynomial in the input size. Now, using the multilinearity of the mixed volumes,
Lemma 3 implies

(n+ 1)−4m+5/2‖vm‖ ≤
am−1

am
≤ (n+ 1)4m−3/2‖vm‖.

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 385

The problem of computing ‖vm‖ is essentially the task of computing the eigenvalues
of ATA, and this can be done in time that is polynomial in the input data and in the
binary size of the required precision ε. (A conceptually simple way to find the largest
eigenvalue of a positive definite matrix A is to perform a binary search on A − λI
(with respect to a parameter λ) using the criterion for positive definiteness that the
determinants of the k × k submatrices of the first k rows and columns are positive.
The rest is then standard fare in linear algebra.) However, all these quantities are
only available up to a polynomially bounded precision. So suppose that ν is a positive
rational such that |ν − ‖vm‖| ≤ ε. Then we obtain

(n+ 1)−4m+5/2(ν − ε) ≤ am−1

am
≤ (n+ 1)4m−3/2(ν + ε),

whence, with a sufficiently small (but polynomially bounded) positive ε,

(n+ 1)−4mν ≤ am−1

am
≤ (n+ 1)4mν.

So, if we rescale K2 by a factor (n+ 1)4m/ν, we obtain the asserted inequality.

3. Randomized algorithms. In this section, we give a randomized algorithm
for computing relative approximations of certain mixed volumes of well-presented
convex bodies to relative error ε whose running time is polynomial in 1/ε and the size
of the input. We begin with the case of two bodies K1 and K2. Our algorithm uses
the polynomial-time randomized volume algorithm of Proposition 1 to obtain relative
estimates of the values of the polynomial

p(x) = voln(K1 + xK2) =
n∑
j=0

cjx
j =

n∑
j=0

(
n

j

)
ajx

j

=
n∑
j=0

(
n

j

)
V (

n−j︷ ︸︸ ︷
K1, . . . ,K1,

j︷ ︸︸ ︷
K2, . . . ,K2)xj

at certain interpolation points. After deriving a basic estimate in subsection 3.1 and
showing that the general case of possibly improper convex bodies can be reduced to
the case of all bodies in question being proper, we describe a randomized algorithm
in subsection 3.2 that computes approximations âm of the mixed volumes am of two
proper convex bodies recursively. The scaling of Lemma 4 is used as a preprocessing
step; it gives a first rough estimate for am. The first part of the algorithm uses a search
procedure to produce an approximation of the ratio am−1/am to constant error; the
second step gives the desired relative approximation of am to error ε. Subsection
3.2 concludes with the analysis of the complexity of the algorithm, thus establishing
Theorem 10 (as stated in the introduction). Subsection 3.3 generalizes the randomized
algorithm to more than two convex bodies and proves Theorem 11 (as stated in the
introduction).

3.1. A basic estimate and a reduction lemma. The first part of this subsec-
tion gives an estimate that is fundamental for the algorithm presented in subsection
3.2.

Let ξ0, . . . , ξn be (equidistant) interpolation nodes and for i = 0, . . . , n, let ŷi
denote the relative estimate of yi = p(ξi) to error τ . Setting

ĉm =
n∑
k=0

bkmŷk,

386 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

where the bkm are again the coefficients of the Lagrange polynomials, (1.5) yields

|ĉm − cm| ≤ τ max
i=0,...,n

{q(ξi)}
n∑
k=0

|bkm|.

We are, however, interested in a relative approximation, i.e., an estimate of the form

|ĉm − cm| ≤ τ ′|cm|.

Using the results of subsection 1.3, it is not hard to see that, in general,

1
|cm|

max
i=0,...,n

{q(ξi)}
n∑
k=0

|bkm|

grows exponentially in n. Unfortunately, the running time of the approximation
algorithm of Proposition 1 is polynomial only in the approximation error and not
in its size. Hence the relative approximations of yi to error τ that are produced
via Proposition 1 cannot be used in this way to give estimates for all coefficients
in polynomial time. This is the reason for using a small (left upper corner) r × r
submatrix B(r) of the full matrix B(n+1); to allow polynomiality, (rm)m must be
bounded by a polynomial in n.

The following lemma gives a bound for the error |ĉm − cm|, where the estimate
ĉm is now computed from B(r). The parameters used are all generated later by the
algorithm.

LEMMA 5. Let m ∈ {1, . . . , n}, let r ∈ N with r ≥ 4m + 7, let α, γ, and σ be
positive reals with α ≥ 1 such that

γkak ≤
{
αrγmσ for k ≤ m− 1;
γmσ for k ≥ m,

(3.1)

let 0 < η ≤ 1, h = η γ
rn , and for j = 0, . . . , r− 1 let ξj = j · h. Further, let τ > 0, and

for j = 0, . . . , r − 1 let ŷj ∈ Q such that |ŷj − yj | ≤ τyj. Then, taking the estimate

ĉm = h−m
r−1∑
i=0

b
(r)
im ŷi,

we have

|ĉm − cm| ≤
σ

ηm

(
n

m

)(
(2α)reτ(rm)m +

2ηr

7!

)
.(3.2)

Proof. It follows from the choice of interpolation nodes and from (3.1) that

yj = |p(ξj)| ≤ |p(ξr)| =
n∑
i=0

ci(rh)i =
n∑
i=0

ciη
iγin−i

≤ σγmαr
n∑
i=0

n−i
(
n

i

)
≤ σγmαr

n∑
i=0

1
i!
≤ σγmαre.

(3.3)

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 387

Now let

c̃m = h−m
r−1∑
i=0

b
(r)
imyi.

Since
(
n
m

)
≥ (nm)m, it follows from (1.8) and (3.3) that

|c̃m − ĉm| ≤ h−mτ max{y0, . . . , yr−1} ·
r−1∑
j=0

|b(r)jm| ≤ h−mτσγmαre · 2r

≤ (2α)rτη−mσe(rm)m
(
n

m

)
.

(3.4)

Now,

hmc̃m =
r−1∑
j=0

b
(r)
jmyj =

n∑
i=0

cih
i
r−1∑
j=0

b
(r)
jmj

i = cmh
m +

n∑
i=r

cih
i
r−1∑
j=0

b
(r)
jmj

i.

Since r ≥ 4m+ 7, whence 7! r2m ≤ r!, we obtain, with the aid of (1.9) and (3.1),

∣∣c̃m − cm∣∣ = h−m
∣∣∣∣ n∑
i=r

cih
i
r−1∑
j=0

b
(r)
jmj

i

∣∣∣∣ ≤ h−m∣∣∣∣ n∑
i=r

cih
iri
∣∣∣∣

= η−mγ−m(rn)m
n∑
i=r

ciγ
iηin−i ≤ ηr−mσ(rn)m

n∑
i=r

(
n

i

)
n−i

≤ ηr−mσ(rm)m
(
n

m

) n∑
i=r

1
i!
≤ ηr−mσ

(
n

m

)
2
7!
.

(3.5)

Clearly, (3.4) and (3.5) yield the asserted inequality (3.2).
The next lemma will allow us to reduce the general case of mixed volume com-

putation to the case of proper convex bodies. We use the notation of Theorem 11.
LEMMA 6. Let k ∈ N, k ≤ s, and suppose Ak is a polynomial-time randomized

algorithm that performs the task stated in Theorem 11 under the additional assumption
that K1, . . . ,Kk are proper (while Kk+1, . . . ,Ks may be improper). Then there exists
a polynomial-time randomized algorithm Ak−1 that performs the same task under the
assumption that K1, . . . ,Kk−1 are proper.

Proof. Let K1, . . . ,Ks ∈ Kn be well presented, let K1, . . . ,Kk−1 be proper, and
suppose we want to compute the mixed volume

v = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks).

Let us first use Theorem 8 to determine whether v = 0. If this is the case, we are
done. So suppose that v 6= 0. Then, of course, there is a fixed integer polynomial π
in the size Λ of the input such that

v ≥ 2−π(Λ).

Now, consider for 0 ≤ δ ≤ 1 the mixed volume

p(δ) = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

mk−1︷ ︸︸ ︷
Kk−1, . . . ,Kk−1,

mk︷ ︸︸ ︷
Kk + δBn, . . . ,Kk + δBn,

mk+1︷ ︸︸ ︷
Kk+1, . . . ,Kk+1, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks).

388 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

Clearly,

p(δ) =
mk∑
i=0

(
mk

i

)
piδ

i,

where

pi = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

mk−i︷ ︸︸ ︷
Kk, . . . ,Kk, . . . ,

ms︷ ︸︸ ︷
Ks, . . . ,Ks,

i︷ ︸︸ ︷
Bn, . . . ,Bn),

and p0 = p(0) = v. Let R ∈ N such that K1, . . . ,Ks ⊂ R[−1, 1]n. Note that such a
bound is part of the input. Then we have

p(δ)− v = δ

mk∑
i=1

(
mk

i

)
piδ

i−1 ≤ δ(2R)n
mk∑
i=1

(
mk

i

)
≤ δ(4R)n.

Let ε ∈ Q with 0 < ε ≤ 1 be given; set

δ0 =
ε

3(4R)n2π(Λ) and τ =
ε

3
.

From the given well-presentation of Kk we can easily derive in polynomial time a
well-presentation of K ′k = Kk + δBn; hence we can apply Ak to the bodies

K1, . . . ,Kk−1,K
′
k,Kk+1, . . . ,Ks.

We call Ak with error parameter τ to compute an approximation p̂ of p = p(δ0) to
relative error τ . We take v̂ = p̂ as an approximation of v, and obtain∣∣∣∣ v̂ − vv

∣∣∣∣ =
∣∣∣∣ p̂− vp

∣∣∣∣ ∣∣∣pv ∣∣∣ ≤
(
|p̂− p|
p

+
|p− v|
p

)
p

v
≤ τ p

v
+
p− v
v

= τ + (τ + 1)
p− v
v

≤ τ + 2δ0(4R)n2π(Λ) ≤ ε

3
+ 2

ε

3
= ε.

Hence v̂ is the desired approximation of v to relative error ε.

3.2. Mixed volumes of two proper bodies. We will now describe a ran-
domized algorithm for computing the mixed volumes a0, . . . , ak of two proper convex
bodies K1 and K2 of Rn recursively, where k ≤ ψ(n), with

ψ(n) ≤ n and ψ(n) logψ(n) = o(logn).

We use Proposition 1 to compute relative estimates of voln(K1 + xK2) for suitable
choices of nonnegative rational x. In particular, a0 = voln(K1) is already (approxi-
mately) available. For the inductive step suppose that, for some m ∈ {1, . . . , ψ(n)},
estimates â0, . . . , âm−1 of the mixed volumes a0, . . . , am−1, respectively, have already
been obtained to relative error, say 1

10 .
By Lemma 4 we may assume that

1 ≤ qm =
am−1

am
≤ (n+ 1)8m,

since the transformation underlying Lemma 4 changes am by a constant factor and
does not affect relative approximation. Clearly,

10
11

(n+ 1)−8mâm−1 ≤ am ≤
10
9
âm−1,

and this gives a first
√

(11/9)(n+ 1)4m approximation of am.

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 389

The main routine is divided into two parts. First, we apply a search technique
to improve the above approximation of qm to constant error. Then we run a similar
procedure to obtain the required approximation of αm to relative error ε.

1. Search procedure: Set q0 = 1, and let

γ0 =

{
1 if m = 1;

max
{

9âm−2
11âm−1

, 1
}

otherwise.

Now, note that

11âm−2

9âm−1
≥ qm−1 ≥

9âm−2

11âm−1
for m ≥ 2

and that the Aleksandrov–Fenchel inequality (1.2) implies that qm ≥ max{qm−1, 1}.
This yields, for γ = γ0,

qm ≥ γ ≥
(

9
11

)2

qm−1 ≥
2
3
qm−1.(3.6)

In the kth iteration of our search procedure we have γ = γk, also satisfying (3.6),
hence,

σk :=
am−1

γk
≥ am−1

qm
= am.

Now the Aleksandrov–Fenchel inequality implies that γk ≤ qj for all j ≥ m, hence,
inductively,

γjkaj ≤ γ
m−1
k am−1 = γmk σk for all j ≥ m.

Similarly for j ≤ m− 2, we deduce from qj+1, . . . , qm−1 ≤ 3
2γ that

γjkaj ≤
(

3
2

)m−j−1

γm−1
k am−1 ≤

(
3
2

)r
γmk σk for all j ≤ m− 2,

whenever r ≥ m. Let us choose r ≥ 4m + 7 such that r = O(ψ). Now we apply
Lemma 5 with the parameters

γ = γk, σ = σk, α =
3
2
, η = 1, and τ =

1
20 · 3r+1(rm)m

.

So, using the volume algorithm of Proposition 1 with interpolation nodes ξj = j ·h for
j = 0, . . . , r − 1, where h = hk = γk

rn , and error bound τ we obtain relative estimates
ŷj ∈ Q of yj = p(ξj) that can be used to produce in polynomial time an estimate ĉm
of cm that satisfies (3.2), whence

|ĉm − cm| ≤ σk
(
n

m

)(
1
20

+
2
7!

)
≤ σk

(
n

m

)
1
19
.

But then we have for

sk = ĉm/
(
n
m

)
,

|sk − am| ≤
1
19
σk.

Now, if

sk ≤
4 · 10
9 · 11

âm−1

γ
≤ 4

9
σk,

390 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

then

am ≤
(

4
9

+
1
19

)
σk <

σk
2
,

whence γk < qm
2 . So γk+1 = 2γk still satisfies (3.6), and we can repeat the above

procedure with γk+1.
Note that σ0 ≤ am−1 and σk+1 = 1

2σk; this implies that after at most 8m log(n+1)
iterations the process stops with a γ̂ ∈ Q such that

sk ≥
4âm−1

10γ̂
≥ 4

11
σk.

This implies that

σk ≥ am ≥
(

4
11
− 1

19

)
σk ≥

1
4
σk,(3.7)

hence qm/4 ≤ γ̂ ≤ qm. Note that 10âm−1/(11γ̂) is already a 4-approximation of am.
2. Approximation: Now that we know qm approximately, we are able to compute

âm, the desired approximation of am to the relative error ε. We assume that 0 < ε ≤ 1
and choose a positive rational η0 of size that is bounded by the size of the input such
that

η0 ≤ ε
1

r−m .

As before, we apply Lemma 5, this time with the parameters

γ = γ̂, σ = σk, α =
3
2
, η = η0, and τ =

ηr0
15 · 3r(rm)m

.

Then we use again the volume algorithm of Proposition 1, now with interpolation
nodes ξj = j · h for j = 0, . . . , r − 1, where h = γ̂

rnη0, and error bound τ , and we
obtain relative estimates ŷj ∈ Q of yj = p(ξj) that lead in polynomial time to an
estimate ĉm of cm that satisfies (3.2), whence

|ĉm − cm| ≤ σkηr−m0

(
n

m

)(
e

15
+

2
7!

)
≤
(
n

m

)
ε

4
σk.

In conjunction with (3.7) this yields

|âm − am| ≤
ε

4
σk ≤ εam

for âm = ĉm/
(
n
m

)
as required.

As for its running time, under the stated assumptions on ψ the algorithm uses

O(rm log(n+ 1)) = o(log3 n) calls to the volume estimator

with error, where
1
τ

= O(3rr2m) = no(1) in the first part,

1
τ

=
(

1
ε

)1+o(1)

no(1) in the final step.

It follows that the algorithm is polynomial. Note that the running time is only
marginally worse than the running time of the volume estimator. In fact, suppose
that the volume algorithm (after rounding) has complexity

O

(
1
εk
nl log

(1
β

))
.

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 391

Then the running time of our mixed volume algorithm is bounded by

O

(
1

εk+o(1)n
l+o(1) log

(1
β

))
.

Since by Lemma 6 the initial assumption that K1 and K2 are proper is irrelevant, we
have completed the proof of Theorem 10.

3.3. Extension to more than two bodies. Now we extend the algorithm
to the case of more than two bodies, thus proving Theorem 11. So, let us consider
approximating

V (

m1︷ ︸︸ ︷
K1, . . . ,K1,

m2︷ ︸︸ ︷
K2, . . . ,K2, . . . ,

ms−1︷ ︸︸ ︷
Ks−1, . . . ,Ks−1,

ms︷ ︸︸ ︷
Ks, . . . ,Ks),

where
∑s
i=1mi = n. We may assume again that K1, . . . ,Ks are proper.

Suppose, recursively, we have an approximation procedure whenever only s − 1
different bodies occur with 3 ≤ s ≤ n. We want to extend it then to all s bodies by
considering the polynomial

q(x) =
m∑
k=0

(
m

k

)
akx

k,

for m = ms−1 +ms, where

ak = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

m2︷ ︸︸ ︷
Ks−2, . . . ,Ks−2,

m−k︷ ︸︸ ︷
Ks−1, . . . ,Ks−1,

k︷ ︸︸ ︷
Ks, . . . ,Ks),

and using estimates of

q(ξj) = V (

m1︷ ︸︸ ︷
K1, . . . ,K1, . . . ,

m2︷ ︸︸ ︷
Ks−2, . . . ,Ks−2,

m︷ ︸︸ ︷
Ks−1 + ξjKs, . . . ,Ks−1 + ξjKs)

for suitably chosen interpolation points ξ0, . . . , ξm. Note that for the coefficients ak
we still have the Aleksandrov–Fenchel inequality (1.2).

Suppose, now, that ψ satisfies the condition given in Theorem 11, and let m1 ≥
n − ψ(n). Then the degrees of the corresponding mixed volume polynomials are
bounded above by ψ(n). This allows us to simplify the procedure by using the whole
coefficient matrix. There is, however, one additional difficulty now. We do not have a
polynomial-time procedure for obtaining a “good” initial scaling of the sets anymore
(as Lemma 4 for s = 2) such that the ratio am−1/am of successive coefficients in the
polynomial is suitably bounded. We leave it as an open question whether there is
an analogue of Lemma 4 for s ≥ 3 (with a bound that is independent of the well-
presentedness parameters ρi, Ri). However, the input yields vectors bi and numbers
ρ,R such that for each Ki we have

bi + ρBn ⊂ Ki ⊂ bi +RBn,
and we may assume without loss of generality that all bi are 0. Using the monotonicity
of mixed volumes we obtain

ρ

R
≤ am−1

am
≤ R

ρ
,

and this implies that the number of iterations in the binary search part of the proce-
dure is bounded by O

(
log(R/ρ)

)
. Moreover it follows that for each ξ ≥ 0,

ρ(1 + ξ)Bn ⊂ Ks−1 + ξKs ⊂ R(1 + ξ)Bn.
Hence, we have an additional factor log(R/ρ) as part of the input to the volume
approximator. With these modifications, Theorem 11 is just a corollary to Theorem
10.

392 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

4. Related problems and applications. The present section contains vari-
ous applications of our results to problems in discrete mathematics, combinatorics,
computational convexity, algebraic geometry, geometry of numbers, and operations
research.

4.1. Counting integer points in integer polytopes. A polytope is called
integer if all vertices are integer vectors. We denote by Pn(Z) the set of all integer
polyopes of Rn. The lattice point enumerator G : Pn(Z)→ N is counting the number
of lattice points of lattice polytopes P , i.e., G(P) = |P∩Zn|. The following polynomial
expansion of G(kP) is due to [Eh67], [Eh77].

PROPOSITION 5. There are functionals Gi : Pn(Z) → N0 such that for every
P ∈ Pn(Z) and k ∈ N,

G(kP) =
n∑
i=0

kiGi(P).

The polynomial on the right-hand side is often referred to as Ehrhart-polynomial;
see [St86] for basic facts on this polynomial. In case of lattice zonotopes one can
give an explicit formula for the Ehrhart-polynomial; this was used in [St91] to find
a generating function for the number of degree sequences of simple m-vertex graphs.
(In fact, there is a one-to-one correspondence between these degree sequences and
the integer points of a suitable zonotope.) The functionals Gi have some interesting
properties; see e.g., the survey [GW93]. They may be viewed as “discrete” analogues
of the quermassintegrals

Wi(P) = V (

n−i︷ ︸︸ ︷
P, . . . , P ,

i︷ ︸︸ ︷
Bn, . . . ,Bn).

What is particularly important for our purpose is the fact that Gn(P) is just the
volume of P . Hence, it follows from Proposition 5 that determining the number of
integer points of an integer polytope (that is presented in any of the standard ways)
is (at least) as hard as computing its volume. In fact, it is easy to obtain from any
standard presentation of an integer polytope P the same kind of presentation for kP
of size that is bounded by a polynomial in size(P) and size(k). Hence, if we had a
polynomial-time procedure for determining the number of lattice points of an integer
polytope, we could run the algorithm for each polytope 0 · P, 1 · P, . . . , n · P , and
we would then obtain voln(P) = Gn(P) by computing the leading coefficient of the
Ehrhard-polynomial, just by solving the corresponding system of linear equations.
Hence, we obtain the following #P-hardness result as a consequence of the hardness
results for volume computation of [DF88] (for V- and H-polytopes) and of Theorem
1 (for S-zonotopes).

THEOREM 12. The problem of evaluating G(P) is #P-complete for integer V-,
integer H-polytopes, and for integer S-zonotopes.

Let us remark that in fixed dimension G(P) can be computed in a polynomial
time, [Ba94]; see also [DK97]. Note, further, that while this task is easy for V-
polytopes, deciding whether a given H-polytope P is an integer polytope is coNP-
complete; see [PY90]. For a survey of various other results on lattice point enumera-
tion see [GW93].

4.2. Some determinant problems and their relatives. We will proceed
by determining the complexity of the following determinant problems (using similar

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 393

methods as in the proof of Theorem 1), and then draw some consequences for a
problem in computational convexity.

Let κ be an integer constant. Then κ-DETERMINANT is the following decision
problem: given positive integers n, s with s ≥ n, and an integer n × s-matrix A, is
there an n× n-submatrix B of A such that detB = κ?

#(κ-DETERMINANT) asks for the number of different such matrices.
THEOREM 13. The problem #(κ-DETERMINANT) is #P-complete for any κ ∈ Z;

κ-DETERMINANT is NP-complete for κ 6= 0.
Proof. Clearly, the first problem is in #P while the second is in NP. To prove the

hardness results, we use reductions from # SUBSET-SUM and SUBSET-SUM, respec-
tively; see the proof of Theorem 1.

Let (m;α1, . . . , αm, α) be an instance of SUBSET-SUM (or, equivalently, of its
counting version), and define the matrix A′δ as in the proof of Theorem 1, but with
each αj replaced by βj = (|κ| + 2)αj for j = 1, . . . ,m, αm+1 = −α replaced by
βm+1 = −(|κ| + 2)α + 1, and δ = κ − 1. It follows readily that for each maximal
square submatrix BI of A′δ whose determinant does not depend on δ we have

detBI ∈ {0,±β1, . . . ,±βm,±βm+1}.
In particular, detBI 6= κ, unless κ = 0.

Now, suppose κ 6= 0. Recall from the proof of Theorem 1 that in the remaining
cases the index sets I of the matrices BI in the determinantal expansion of voln(Zδ)
are in one-to-one correspondence with the subsets J of {1, . . . ,m+ 1} via

j ∈ J ⇐⇒ 2j − 1 ∈ I.
Further, it is easy to see that detBI = κ implies m+ 1 ∈ J , and, hence, detBI = κ if
and only J \ {m+ 1} is a solution of the given instance of SUBSET-SUM. This settles
the problem for κ 6= 0.

Now, let κ = 0, and let us use the original matrix Aδ of the proof of Theorem 1.
Among the

(2m+3
m+2

)
− 2m+1 subdeterminants for which detBI is independent of δ, we

have for each i = 1, . . . ,m + 1 exactly 2m + m2m−1 subsets I of {1, . . . , 2m + 3} of
cardinality m+2 such that |detBI | = |αi|, and all other cases give detBI = 0. Hence,
with the choice of δ = 0, the number of singular (m+ 2)× (m+ 2) submatrices would
allow us to compute the number of subsets J ⊂ {1, . . . ,m+1} for which

∑
i∈I αi = 0,

and this is the number of solutions of #SUBSET-SUM.
Let us point out that the (seemingly) similar problem of finding an n×n submatrix

B of maximal determinant of a given n×m matrix A with entries in {0,±1} is also
NP-hard even for quite small classes of such matrices A; [see GKL95, Theorem 5.2].
Clearly, this problem is closely related to the problem of finding a largest (with respect
to the volume) n-simplex in a V-polytope, while the NP-hardness result of Theorem
13 implies that, given a V-polytope P and a positive integer κ, finding an n-simplex
S with vertices at vertices of P and voln(S) = κ is NP-complete.

We remark that Theorem 13 stops short of proving that SINGULAR-SUBMATRIX,
the case κ = 0 of κ-DETERMINANT, is also NP-hard. To extend Theorem 13 to
SINGULAR-SUBMATRIX would be interesting since, in a geometric context, the exis-
tence of singular submatrices corresponds to configurations which are not in general
position. However, general position assumptions are made frequently and it would be
useful to know whether these assumptions can be checked efficiently; see [CKM82] for
some related results.

4.3. Volume of zonotopes and mixture management. The following mix-
ture management problem from the oil industry is studied in [GV89]. A seller has

394 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

a stock of m bins which contain a mixture of chemical substances. Suppose that for
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, the ith bin contains a nonnegative rational zij of
volume units of chemical j. To satisfy the customer’s demand of a special mixture of
bj volume units of each chemical j, the seller takes a proportion λi with 0 ≤ λi ≤ 1
of volume from each container such that

bj =
m∑
i=1

λizij for all j ∈ {1, . . . , n}.

Typically, the mixtures in each bin come with associated costs, and a linear program-
ming approach is used to satisfy the customer’s demand at minimum total cost. It
is pointed out in [GV89], however, that this is not a reasonable optimality criterium
if all bins have (approximately) the same costs, and this is the case for particular
applications in the oil industry.

Therefore [GV89] suggest the following approach. Clearly, the zonotope

Z =
m∑
i=1

[0, 1]zi, where zi = (zi1, . . . , zin)T for i = 1, . . . ,m,

describes all possible demands the seller can satisfy. Now, typically, there are many
possibilities to satisfy a demand b = (b1, . . . , bm)T , and the question is how to do it
in such a way that “the widest possible variety of possible future demands” can still
be satisfied. More precisely, [GV89] suggests choosing for each b ∈ Qm a vector

l =

λ1
...
λm

 ∈ L(b) :=

λ1

...
λm

 ∈ [0, 1]m : b =
m∑
i=1

λizi

such that after taking λi volume proportions from bin i, respectively, the set

Z(l) :=
m∑
i=1

[0, 1](1− λi)zi

of the remaining possible mixtures has maximal volume. The volume as objective
functions is justified by the fact that if the seller has no information about the future
demands, it is reasonable to assume that the future demand is uniformly distributed.

Note that the function f(l) := voln(Z(l)) is a homogeneous polynomial in the
(1 − λi)’s and (due to the Brunn–Minkowski theorem) has nice analytic properties.
But as we have seen in Theorem 1, evaluating f(λ) is #P-hard. This means that,
while intriguing, this approach is not practical for large numbers of bins. However,
Proposition 1 suggests that a randomized variant of the algorithm presented in [GV89]
may be worth considering.

4.4. Two applications of mixed volumes in combinatorics. Two interest-
ing applications in combinatorics can be found in [St81].

For the first, suppose that M is a unimodular matroid of rank n with represen-
tation v1, v2, . . . , vm ∈ Rn over the reals; see [We76], [Wh87]. Let S1, . . . , Ss be a
partition of {1, 2, . . . ,m} into proper subsets, and let t1, . . . , ts be nonnegative inte-
gers such that

∑s
i=1 ti = n. Then the number of bases of M with ti elements in Si

equals (
n

t1, . . . , ts

)
V (

t1︷ ︸︸ ︷
Z1, . . . , Z1, . . . ,

ts︷ ︸︸ ︷
Zs, . . . , Zs),

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 395

where Zi is the zonotope

Zi =
∑
j∈Si

[0, 1]vj .

Note that the total number b of bases of M can be computed easily because the
corresponding matrix A with columns v1, . . . , vm is unimodular and hence, by (2.1),

b =
∑
I∈J
|detBI | =

∑
I∈J

(detBI)2 = det(AAT).

As we will see now, this polynomial-time computability is destroyed for mixed volumes
of unimodularly generated zonotopes (unless #P = P).

THEOREM 14. The following problem is #P-hard:
Instance: n, s ∈ N and m1, . . . ,ms ∈ N such that

∑s
i=1mi = n, S-zonotopes

Zi = (n, si; ci; zi,1, . . . , zi,si), for i = 1, . . . , s such that the (n × r)-matrix A with
columns zi,j is unimodular, where r =

∑s
i=1 si.

Task: Compute the mixed volume

V (

m1︷ ︸︸ ︷
Z1, . . . , Z1,

m2︷ ︸︸ ︷
Z2, . . . , Z2, . . . ,

ms︷ ︸︸ ︷
Zs, . . . , Zs).

Proof. We reduce the problem of computing the number of perfect matchings
in bipartite graphs to the given problem. For i = 1, 2, let Vi = {vi1, . . . , vin}, let
V1 ∩ V2 = ∅, let E ⊂

{
{v1,j , v2,k} : j, k = 1, . . . , n

}
, and set V = V1 ∪ V2. Let us now

consider the bipartite graph G = (V,E). Since it can be checked in polynomial time
whether G admits a perfect matching, we may assume that the number of perfect
matchings of G is not 0. We add an additional vertex v2,n+1 to V2 and the edges
En+1 =

{
{v1,j , v2,n+1} : j = 1, . . . , n

}
to E and obtain a new bipartite graph G′ =

(V ′, E′). The node-edge incidence-matrix A′ of G′ is totally unimodular. It has
2n + 1 rows but is only of rank 2n. So we delete the row that corresponds to the
new vertex v2,n+1, and we obtain a totally unimodular matrix A′′ of rank 2n with
2n rows and |E′| = |E| + n columns. The nonsingular (2n) × (2n)-submatrices B of
A′′ are in one-to-one correspondence with the spanning trees of G′. (Note that in
the totally unimodular case GF (2)-singularity is equivalent to R-singularity; see, e.g.,
[Sc86, section 21.1].) Now, we partition E′ into En+1 and the n subsets E1, . . . , En
where Ej is the set of those edges of E which contain v2,j (j = 1, . . . , n). Further, for
j = 1, . . . , n + 1, let Zj be the zonotope that is generated by the column vectors of
A′′ that correspond to Ej . Then by (2.3), the mixed volume

(2n)!
n!

V
(
Z1, Z2, . . . , Zn,

n︷ ︸︸ ︷
Zn+1, . . . , Zn+1,

)
is just the number of those spanning trees of G′ that contain all edges of En+1 and
for j = 1, . . . , n exactly one edge of Ej .

It is easy to see that the spanning trees with this property are in one-to-one
correspondence with the perfect matchings of G.

For the second application let P = {p1, p2, . . . , ps, q1, q2, . . . , qn−s} be a poset,
and suppose that p1 < p2 < · · · < ps. For j = 1, 2, . . . , s let N(i1, i2, . . . , is) denote
the number of linear extensions σ of P such that σ(pj) = ij ; see [St86]. Then, with
i0 = 0 and is+1 = n+ 1,

N(i1, i2, . . . , is) = (n− s)!V (

i1−i0−1︷ ︸︸ ︷
K0, . . . ,K0, . . . ,

is+1−is−1︷ ︸︸ ︷
Ks, . . . ,Ks),

396 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

where Kj ⊂ Rn−s (j = 0, 1, . . . , s) are the order polytopes, i.e., x ∈ Kj if and only if
for all i = 1, 2, . . . , n− s,

0 ≤ xi ≤ 1,
xi ≤ xk if qi < qk (k = 1, 2, . . . , n− s),
xi = 0 if j > 0 and qi < pj ,
xi = 1 if j < s and qi > pj+1.

These polytopes reflect the poset “between” pj and pj+1 on the subset {q1, . . . , qn−s}.
By the Aleksandrov–Fenchel inequality (applied to in the case s = 1) it follows that
N(i)2 ≥ N(i−1)N(i+1) for i = 1, . . . , n−1 and, hence, the sequence N(1), . . . , N(n)
is unimodal. Observe that the evaluation of N(i1, i2 . . . , ir) is #P-complete even when
s = 0, [BW92]; in this case, N is the number of linear extensions of the poset. It
follows that computing the volume of H-polytopes is #P-hard in the strong sense.

4.5. An application of mixed volumes in algebraic geometry. Let
S1, S2, . . . , Sn be subsets of Zn, and consider a system F = (f1, . . . , fn) of Laurent
polynomials in n variables such that the exponents of the monomials in fi are in Si for
all i = 1, . . . , n. Suppose, further, that F is sparse in that the number of monomials
having nonzero coefficients is “small” as compared to the degree of the fi. To fix the
notation, let, for i = 1, . . . , n,

fi(x) =
∑
q∈Si

c(i)q xq,

where fi ∈ C[x1, x
−1
1 , . . . , xn, x

−1
n], and xq is an abbreviation for xq11 · · ·xqnn ; x =

(x1, . . . , xn) are the indeterminates and q = (q1, . . . , qn) the exponents. Further, let
C∗ = C \ {0}.

Now, if the coefficients c(i)q (q ∈ Si) are chosen “generically,” the number L(F) of
distinct common roots of the system F in (C∗)n depends only on the Newton polytopes
Pi = convSi of the polynomials (see [GKZ90]); more precisely,

L(F) = n! · V (P1, P2, . . . , Pn).(4.1)

Moreover, if F has less then n!V (P1, . . . , Pn) distinct roots, there must exist a nonzero
integer vector α = (α1, . . . , αn) such that the “homogenized” system

Fα = (fα1 , . . . , f
α
n),

where

fαi (x) =
∑
q∈Sαi

c(i)q xq, Sαi =
{
q ∈ Si : αT q = min{αT q : q ∈ Si}

}
has a root in (C∗)n. These results become more intuitive by noting that both sides
of (4.1) are invariant under unimodular transformations of the exponent vectors and
under translations by integer vectors. (Each translation of a set Si by a vector p(i)

corresponds to a multiplication of fi with the monomial xp
(i)

.) Observe, further, that
the Minkowki sum of the Newton polytopes P1, . . . , Pn is the Newton polytope of the
product of the corresponding polynomials whence both sides of the equation are also
additive in each component.

The above theorem was first proved in [Be75]; see also [BZ88, Chapter 27].
A convex geometric approach (utilizing the above connections) was recently de-

veloped for computing the isolated solutions of sparse polynomial systems; see [HS95],

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 397

[VG95], and [Ro94]. The mixed volumes are determined by computing a “mixed sub-
division” of the Pi using lifting methods similar to those of [Sc94] stated in subsection
2.3. See also [GKZ90] and [GS93] for further results on Newton polytopes and [VC92],
[PS93], [CE93], [CR91], [VVC94], [ER94], [EC95], [LRW96], [Ro94], [Ro97], and the
papers quoted therein for further results on counting the roots of polynomial systems.

Acknowledgment. We are grateful to Mark Jerrum for providing the proof of
Lemma 2.

REFERENCES

[Al37] A.D. ALEKSANDROV, On the theory of mixed volumes of convex bodies, II. New in-
equalities between mixed volumes and their applications, Math. Sb. N.S., 2 (1937),
pp. 1205–1238 (in Russian).

[Al38] A.D. ALEKSANDROV, On the theory of mixed volumes of convex bodies, IV. Mixed
discriminants and mixed volumes, Math. Sb. N.S., 3 (1938), pp. 227–251 (in
Russian).

[AS86] E.L. ALLGOWER AND P.M. SCHMIDT, Computing volumes of polyhedra, Math. of
Comp., 46 (1986), pp. 171–174.

[AK90] D. APPLEGATE AND R. KANNAN, Sampling and integration of near log-concave func-
tions, in Proc. 23rd ACM Symp. on Theory of Computing, ACM, New York,
1990, pp. 156–163.

[BF86] I. BÁRÁNY AND Z. FÜREDI, Computing the volume is difficult, in Proc. 18th ACM
Symp. on Theory of Computing, ACM, New York, 1986, pp. 442–447. Reprinted
in Discrete Comput. Geom., 2 (1987), pp. 319–326.

[Ba94] A.I. BARVINOK, A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed, Math. Oper. Res., 19 (1994), pp. 769–779.

[BZ65] I.S. BEREZIN AND N.P. ZHIDKOV, Computing Methods, Vol. 1, Pergamon Press, Ox-
ford, 1965.

[Be75] D.N BERNSHTEIN, The number of roots of a system of equations, Funct. Anal. Appl.,
9 (1975), pp. 183–185.

[Be92] U. BETKE, Mixed volumes of polytopes, Arch. Math., 58 (1992), pp. 388–391.
[BH93] U. BETKE AND M. HENK, Approximating the volume of convex bodies, Discrete Com-

put. Geom., 10 (1993), pp. 15–21.
[BF34] T. BONNESEN AND W. FENCHEL, Theorie der konvexen Körper, Springer-Verlag,

Berlin, 1934 (in German); (reprinted: Chelsea, New York, 1948); Theory of Con-
vex Bodies, BCS Associates, Moscow, Idaho, 1987, (in English).

[BW92] G. BRIGHTWELL AND P. WINKLER, Counting linear extensions is #P -complete, Or-
der, 8 (1992), pp. 225–242.

[Br86] A. Z. BRODER, How hard is it to marry at random? (On the approximation of the
permanent), in Proc. 18th ACM Symp. on Theory of Computing, ACM, New
York, 1986, pp. 50–58.

[BS83] R. A. BRUALDI AND H. SCHNEIDER, Determinantal identities: Gauss, Schur, Cauchy,
Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley, Linear Algebra
Appl., 52–53 (1983), pp. 769–791.

[BZ88] YU. D. BURAGO AND V. A. ZALGALLER, Geometric Inequalities, Springer-Verlag,
Berlin, 1988.

[CE93] J. CANNY AND I.Z. EMIRIS, An efficient algorithm for the sparse mixed resultant, in
Proc. 10th Intl. Symp. Appl. Algebra, Algebraic Alg., Error-Corr. Codes, Lecture
Notes in Comput. Sci. 263, Springer-Verlag, New York, 1993, pp. 89–104.

[CR91] J. CANNY AND J.M. ROJAS, An optimality condition for determining the exact num-
ber of roots of a polynomial system, in Proc. ACM Intl. Symp. Algebraic Symbolic
Comput., Bonn, Germany, ACM, New York, 1991, pp. 96-102.

[CH79] J. COHEN AND T. HICKEY, Two algorithms for determining volumes of convex poly-
hedra, J. Assoc. Comput. Mach., 26 (1979), pp. 401–414.

[CY77] K.C. CHUNG AND T.H. YAO, On lattices admitting unique Lagrange interpolation,
SIAM J. Numer. Anal., 14 (1977), pp. 735–743.

[CKM82] R. CHANDRASEKARAN, S.N. KABADI, AND K.G. MURTY, Some NP-complete prob-
lems in linear programming, Oper. Res. Lett., 1 (1982), pp. 101–104.

398 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

[DF88] M.E. DYER AND A.M. FRIEZE, The complexity of computing the volume of a polyhe-
dron, SIAM J. Comput., 17 (1988), pp. 967–974.

[DF91] M.E. DYER AND A.M. FRIEZE, Computing the volume of convex bodies: a case where
randomness provably helps, in Probabilistic Combinatorics and its Applications,
Proceedings of Symposia in Applied Mathematics, Vol. 44, Béla Bollobás, ed.,
American Mathematical Society, Providence, RI, 1991, pp. 123–169.

[DFK91] M.E. DYER, A.M. FRIEZE, AND R. KANNAN, A random polynomial time algorithm
for approximating the volume of a convex body, J. Assoc. Comput. Mach., 38
(1991), pp. 1–17.

[DK97] M.E. DYER AND R. KANNAN, On Barvinok’s algorithm for counting lattice points in
fixed dimension, Math. Oper. Res., 22 (1997), to appear.

[Ed70] J. EDMONDS, Submodular functions, matroids, and certain polyhedra, in Combina-
torial Structures and their Applications, R. Guy, H. Hanani, N. Sauer, and J.
Schönheim, eds., Gordon and Breach, New York, 1970, pp. 69–87.

[Eh67] E. EHRHART, Sur un probléme de géometrie diophantienne linéaire, J. Reine Angew.
Math., 226 (1967), pp. 1–29; 227 (1967), pp. 25–49.

[Eh77] E. EHRHART, Polynômes arithmétiques et méthode des polyédres en combinatoire,
Birkhäuser, Basel, 1977.

[EC95] I.Z. EMIRIS AND J.F. CANNY, Efficient incremental algorithms for the sparse resultant
and the mixed volume, J. Symbolic Comput., 20 (1995), pp. 117–149.

[ER94] I.Z. EMIRIS AND A. REGE, Monomial bases and polynomial system solving, in Proc.
8th ACM Intl. Symp. Algebraic Symbolic Comput. ’94, Oxford, UK, ACM, New
York, 1994, pp. 114–122.

[Fe36] W. FENCHEL, Inégalités quadratique entre les volumes mixtes des corps convexes,
C.R. Acad. Sci. Paris, 203 (1936), pp. 647–650.

[GJ79] M.R. GAREY AND D.S. JOHNSON, Computers and Intractability, W.H. Freeman, San
Francisco, CA, 1979.

[GKZ90] I.M. GELFAND, M.M. KAPRANOV, AND A.V. ZELEVINSKY, Newton polytopes and the
classical resultant and discriminant, Adv. Math., 84 (1990), pp. 237–254.

[GV89] D. GIRAD AND P. VALENTIN, Zonotopes and mixture management, in New Methods
in Optimization and their Industrial Uses, J.P. Penot, ed., ISNM87, Birkhäuser,
Basel, 1989, pp. 57–71.

[GK94] P. GRITZMANN AND V. KLEE, On the complexity of some basic problems in computa-
tional convexity: II. Volume and mixed volumes, in Polytopes: Abstract, Convex
and Computational, T. Bisztriczky, P. McMullen, R. Schneider, and A. Ivic Weiss,
eds., Kluwer, Boston, 1994, pp. 373–466.

[GKL95] P. GRITZMANN, V. KLEE, AND D. LARMAN, Largest k-simplices in d-polytopes, Dis-
crete Comput. Geom., 13 (1995), pp. 477–515.

[GS93] P. GRITZMANN AND B. STURMFELS, Minkowski addition of polytopes: computational
complexity and applications to Gröbner bases, SIAM J. Discrete Math., 6 (1993),
pp. 246–269.

[GW93] P. GRITZMANN AND J.M. WILLS, Lattice points, in Handbook of Convex Geometry,
P.M. Gruber and J.M. Wills, eds., Elsevier, Amsterdam, 1993, pp. 765–798.

[GLS88] M. GRÖTSCHEL, L. LOVÁSZ, AND A. SCHRIJVER, Geometric Algorithms and Com-
binatorial Optimization, Springer-Verlag, Berlin, 1988.

[HS95] B. HUBER AND B. STURMFELS, A polyhedral method for solving sparse polynomial
systems, Math. Comput., 64 (1995), pp. 1541–1555.

[JS89] M. R. JERRUM AND A. J. SINCLAIR, Approximating the permanent, SIAM J. Comput.,
18 (1989), pp. 1149–1178.

[JVV86] M. R. JERRUM, L. G. VALIANT, AND V.V. VAZIRANI, Random generation of combina-
torical structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986),
pp. 169–188.

[Jo90] D.S. JOHNSON, A catalog of complexity classes, in Handbook of Theoretical Computer
Science. vol. A: Algorithms and Complexity, J. van Leeuwen, ed., Elsevier and
M.I.T. Press, Amsterdam and Cambridge, MA, 1990 , pp. 67–161.

[KLS97] R. KANNAN, L. LOVÁSZ, AND M. SIMONIVITS, Random walks and an O∗(n5) volume
algorithm for convex bodies, Random Structures Algorithms, 11 (1997), pp. 1–96.

[KKLLL93] N. KARMARKAR, R. KARP, R. LIPTON, L. LOVÁSZ, AND M. LUBY, A Monte-Carlo
algorithm for estimationg the permanent, SIAM J. Comput., 22 (1993), pp. 284–
293.

[Kh93] L.G. KHACHIYAN, Complexity of polytope volume computation, in New Trends in Dis-
crete and Computational Geometry, J. Pach, ed., Springer-Verlag, Berlin, 1993,
pp. 91–101.

ON THE COMPLEXITY OF COMPUTING MIXED VOLUMES 399

[KT93] L.G. KHACHIYAN AND M.J. TODD, On the complexity of approximating the maximal
inscribed ellipsoid for a polytope, Math. Programming, 61 (1993), pp. 137–159.

[La91] J. LAWRENCE, Polytope volume computation, Math. Comput., 57 (1991), pp. 259–
271.

[LRW96] T.Y. LI, J.M. ROJAS, AND X. WANG, Counting affine roots of polynomial systems
via pointed Newton polytopes, J. Complexity, 12 (1996), pp. 116–133.

[Lo95] L. LOVÁSZ, Random walks on graphs: A survey, in Combinatorics: Paul Erdös is 80,
Vol. 2, D. Miklós, V. T. Sós and T. Szönyi, eds., Bolyai Soc. Math. Stud. 2, János
Bolyai Math. Soc., Budapest, 1995, pp. 353–397.

[LS90] L. LOVÁSZ AND M. SIMONIVITS, The mixing rate of Markov chains, an isoperimetric
inequality and computing the volume, in Proc. IEEE 31st Annual Symp. Found.
Comput. Sci., IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 364–
355.

[LS93] L. LOVÁSZ AND M. SIMONIVITS, Random walks in a convex body and an improved
volume algorithm, Random Structures Algorithms, 4 (1993), pp. 359–412.

[Mc70] P. MCMULLEN, The maximum number of faces of a convex polytope, Mathematika,
17 (1970), pp. 179–184.

[MM85] G. MIEL AND R. MOONEY, On the condition number of Lagrangian numerical differ-
entiation, Appl. Math. Comput., 16 (1985), pp. 241–252.

[Mi11] H. MINKOWSKI, Theorie der konvexen Körper, insbesondere Begründung ihres Ober-
flächenbegriffs, in Collected Works Vol. II, Leipzig, Berlin, 1911, pp. 131–229.

[Mo89] H. L. MONTGOMERY, Computing the volume of a zonotope, Amer. Math. Monthly,
96 (1989), p. 431.

[Ol86] C. OLMSTED, Two formulas for the general multivariate polynomial which interpo-
lates a regular grid on a simplex, Math. Comput., 47 (1986), pp. 275–284.

[PY90] C.H. PAPADIMITRIOU AND M. YANNAKAKIS, On recognizing integer polyhedra, Com-
binatorica, 10 (1990), pp. 107–109.

[PS93] P. PEDERSEN AND B. STURMFELS, Product formulas for sparse resultants, Math. Z.,
214 (1993), pp. 377–396.

[Ri75] T.J. RIVLIN, Optimally stable Lagrangian numerical differentiation, SIAM J. Numer.
Anal., 12 (1975), pp. 712–725.

[Ri90] T.J. RIVLIN, Chebyshev Polynomials. From Approximation Theory to Algebra and
Number Theory, 2nd ed., John Wiley, New York, 1990.

[Ro94] J.M. ROJAS, A convex geometric approach to counting the roots of a polynomial
system, Theoret. Comput. Sci., 133 (1994), pp. 105–140.

[Ro97] J.M. ROJAS, Toric intersection for affine root counting, J. Pure Appl. Math., 133
(1997), to appear.

[Sa74] H.E. SALZER, Some problems in optimally stable Lagrangian differentiation, Math.
Comput., 28 (1974), pp. 1105–1115.

[Sa93] J.R. SANGWINE-YAGER, Mixed volumes, in Handbook of Convex Geometry, P.M.
Gruber and J.M. Wills, eds., Elsevier, Amsterdam, 1993, pp. 43–72.

[Sc93] R. SCHNEIDER, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of
Mathematics and its Applications, Vol. 44, Cambridge University Press, Cam-
bridge, MA, 1993.

[Sc94] R. SCHNEIDER, Polytopes and Brunn-Minkowski theory, in Polytopes: Abstract, Con-
vex and Computational, T. Bisztriczky, P. McMullen, R. Schneider, and A. Ivic
Weiss, eds., Kluwer, Boston, 1994, pp. 273–300.

[Sc86] A. SCHRIJVER, Linear and Integer Programming, Wiley-Interscience, New York, 1986.
[Sh74] G.C. SHEPHARD, Combinatorial properties of associated zonotopes, Canad. J. Math.,

26 (1974), pp. 302–321.
[SJ89] A. SINCLAIR AND M. JERRUM, Approximate counting, uniform generation and rapidly

mixing Markov chains, Inform. Comput., 82 (1989), pp. 93–133.
[St81] R.M. STANLEY, Two combinatorial applications of the Aleksandrov-Fenchel inequal-

ities, J. Combin. Theory Ser. A, 17 (1981), pp. 56–65.
[St86] R.M. STANLEY, Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole, Pa-

cific Grove, CA, 1986.
[St91] R. STANLEY, A zonotope associated with graphical degree sequences, in Applied Ge-

ometry and Discrete Mathematics: The Victor Klee Festschrift, P. Gritzmann and
B. Sturmfels, eds., Amer. Math. Soc. and Assoc. Comput. Mach., Providence, RI,
1991, pp. 555–570.

[Va77] L.G. VALIANT, The complexity of computing the permanent, Theoret. Comput. Sci.,
8 (1977), pp. 189–201.

400 MARTIN DYER, PETER GRITZMANN, AND ALEXANDER HUFNAGEL

[Va79] L.G. VALIANT, The complexity of enumeration and reliability problems, SIAM J.
Comput., 8 (1979), pp. 410–421.

[VC92] J. VERSCHELDE AND R. COOLS, Nonlinear reduction for solving deficient polynomial
systems by continuation methods, Numer. Math., 63 (1992), pp. 263–282.

[VG95] J. VERSCHELDE AND K. GATERMANN, Symmetric Newton polytopes for solving
sparse polynomial systems, Adv. Appl. Math, 16 (1995), pp. 95–127.

[VVC94] J. VERSCHELDE, P. VERLINDEN, AND R. COOLS, Homotopies exploiting Newton poly-
topes for solving sparse polynomial systems, SIAM J. Numer. Anal., 31 (1994),
pp. 915–930.

[We76] D.J.A. WELSH, Matroid Theory, Academic Press, London, 1976.
[Wh87] N. WHITE, Unimodular matroids, in Combinatorial Geometries, N. White, eds., Cam-

bridge University Press, Cambridge, MA, 1987, pp. 40–52.

INTERPOLATING ARITHMETIC READ-ONCE FORMULAS
IN PARALLEL∗

NADER H. BSHOUTY† AND RICHARD CLEVE†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 401–413, April 1998 004

Abstract. A formula is read-once if each variable appears in it at most once. An arithmetic
formula is one in which the operations are addition, subtraction, multiplication, and division (and
constants are allowed). We present a randomized (Las Vegas) parallel algorithm for the exact interpo-
lation of arithmetic read-once formulas over sufficiently large fields. More specifically, for n-variable
read-once formulas and fields of size at least 3(n2 + 3n− 2), our algorithm runs in O(log2 n) parallel
steps using O(n4) processors (where the field operations are charged unit cost). This complements
some results from [N.H. Bshouty and R. Cleve, Proc. 33rd Annual Symposium on the Foundations
of Computer Science, IEEE Computer Science Press, Los Alamitos, CA, 1992, pp. 24–27] which
imply that other classes of read-once formulas cannot be interpolated—or even learned with mem-
bership and equivalence queries—in polylogarithmic time with polynomially many processors (even
though they can be learned sequentially in polynomial time). These classes include boolean read-once
formulas and arithmetic read-once formulas over fields of size o(n/ logn) (for n variable read-once
formulas).

Key words. learning theory, parallel algorithm, read-once formula

AMS subject classifications. 41A05, 41A20, 68Q20, 68T05

PII. S009753979528812X

1. Introduction. The problem of interpolating a formula (from some class C) is
the problem of exactly identifying the formula from queries to the assignment (mem-
bership) oracle. The interpolation algorithm queries the oracle with an assignment a
and the oracle returns the value of the function at a.

There are a number of classes of arithmetic formulas that can be interpolated
sequentially in polynomial time as well as in parallel in polylogarithmic time (with
polynomially many processors). These include sparse polynomials and sparse rational
functions ([BT88, BT90, GKS90b, GrKS88, RB89, GKS90b, SS93, M91]).

A formula over a variable set V is read-once if each variable appears at most once
in it. An arithmetic read-once formula over a field K is a read-once formula over the
basic operations of the field K; addition, subtraction, multiplication, division, and
constants are also permitted in the formula. The size of an arithmetic formula is the
number of instances of variables (i.e., leaves) in it.

Bshouty, Hancock, and Hellerstein [BHH92] present a randomized sequential poly-
nomial-time algorithm for interpolating arithmetic read-once formulas (AROFs) over
sufficiently large fields. Moreover, they show that, for arbitrarily sized fields, arith-
metic read-once formulas can be learned using equivalence queries in addition to
membership queries. Other works on AROF and boolean read-once formulas can be
found in [AHK89, B2H92, BHHK91, GKS90a, Han90, and HH91].

The question of whether arithmetic read-once formulas can be interpolated (or
learned) quickly in parallel depends on the size of the underlying field. It is shown
in [BC92] that for arithmetic read-once formulas over fields with o(n/ logn) elements
there is no polylogarithmic-time algorithm that uses polynomially many processors

∗Received by the editors June 13, 1995; accepted for publication (in revised form) January 23,
1996. This research was supported in part by NSERC of Canada.

http://www.siam.org/journals/sicomp/27-2/28812.html
†Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4

(bshouty@cpsc.ucalgary.ca, cleve@cpsc.ucalgary.ca).

401

402 NADER H. BSHOUTY AND RICHARD CLEVE

(for interpolating as well as learning with membership and equivalence queries [A87],
[L88]). Also, a similar negative result holds for boolean read-once formulas.

We present a (Las Vegas) parallel algorithm for the exact interpolation of arith-
metic read-once formulas over sufficiently large fields. For fields of size at least
3(n2 + 3n − 2), the algorithm runs in O(log2 n) parallel steps using O(n4) proces-
sors (where the field operations are charged unit cost). This complements some re-
sults from [BC92] which imply that other classes of read-once formulas cannot be
interpolated—or even learned with membership and equivalence queries—in polylog-
arithmic time with polynomially many processors (even though they can be learned
sequentially in polynomial time). These classes include boolean read-once formulas
and arithmetic read-once formulas over fields of size o(n/ logn) (for n variable read-
once formulas).

If the “obvious” parallelizations are made to the interpolating algorithm in
[BHH92] (i.e., parallelizations of independent parts of the computation) one obtains a
parallel running time that is Θ(d), where d is the depth of the target formula. Since,
in general, d can be as large as Θ(n), this does not result in significant speedup. Our
parallel algorithm uses some techniques from the sequential algorithm of [BHH92]
as well as some new techniques that enable nonlocal features of the AROF to be
determined in polylogarithmic time.

The parallel algorithm can be implemented on an oracle parallel random access
machine (PRAM). More specifically, it is an exclusive-read exclusive-write (EREW)
PRAM—which means that processor’s accesses to their communal registers are con-
strained so that no two processors can read from or write to the same register simul-
taneously. The EREW PRAM initially selects some random input values (uniformly
and independently distributed) and then performs O(n3) membership queries (via its
oracle).

2. Identification with queries. The learning criterion we consider is exact
identification. There is a formula f called the target formula, which is a member of a
class of formulas C defined over the variable set V . The goal of the learning algorithm
is to halt and output a formula h from C that is equivalent to f .

In a membership query, the learning algorithm supplies values (x(0)
1 , . . . , x

(0)
n) for

the variables in V , as input to a membership oracle, and receives in return the value of
f(x(0)

1 , . . . , x
(0)
n). Let f |(x←x(0)) denote the projection of f obtained by hardwiring

x to the value x(0). An assignment of values to some subset of a read-once formula’s
variables defines a projection, which is the formula obtained by hardwiring those
assigned variables to their values in the formula and then rewriting the formula to
eliminate constants from the leaves. Note that if f ′ is a projection of f , it is possible
to simulate a membership oracle for f ′ using a membership oracle for f .

We say that the class C is learnable in polynomial time if there is an algorithm
that uses the membership oracle and interpolates any f ∈ C in polynomial time in the
number of variables n and the size of f . We say that C is efficiently learnable in parallel
if there is a parallel algorithm that uses the membership oracle and interpolates any
f ∈ C in polylogarithmic time with polynomial number of processors. In the parallel
computation p processors can ask p membership queries in one step.

3. Preliminaries. A formula is a rooted tree whose leaves are labeled with vari-
ables or constants from some domain and whose internal nodes, or gates, are labeled
with elements from a set of basis functions over that domain. A read-once formula
is a formula for which no variable appears on two different leaves. An arithmetic

INTERPOLATING READ-ONCE FORMULAS IN PARALLEL 403

read-once formula over a field K is a read-once formula over the basis of addition,
subtraction, multiplication, and division of field elements, whose leaves are labeled
with variables or constants from K.

In [BHH92] it is shown that a modified basis can be used to represent any arith-
metic read-once formula. Let K be an arbitrary field. The modified basis for arith-
metic read-once formulas over K includes only two nonunary functions, addition (+)
and multiplication (×). The unary functions in the basis are (ax + b)/(cx + d) for
every a, b, c, d ∈ K such that ad− bc 6= 0. This requirement is to prevent ax+ b and
cx + d from being identically 0 or differing by just a constant factor. We can also
assume that nonconstant formulas over this modified basis do not contain constants
in their leaves. We represent such a unary function as fA, where

A =
(
a b
c d

)
.

The restriction on a, b, c, and d is equivalent to saying the determinant of A (denoted
det(A)) is nonzero.

The value of a read-once formula on an assignment to its variables is determined
by evaluating the formula from the bottom up. This raises the issue of division by
zero. In [BHH92] this problem is handled by defining basis functions over the extended
domain K∪ {∞,ERROR}, where ∞ represents 1/0 and ERROR represents 0/0. For
the special values, we define our basis function as follows (assume x ∈ K − {0},
y ∈ K ∪ {∞,ERROR}, and A is as above).

y + ERROR = y × ERROR = fA(ERROR) = ERROR
x+∞ = x×∞ =∞
0 +∞ =∞×∞ =∞

0×∞ =∞+∞ = ERROR

fA(∞) =
{

a
c c 6= 0
∞ c = 0 and fA

(−d
c

)
=∞ if c 6= 0.

It is shown in [BHH92] that these definitions are designed so that the output of
the read-once formula is the same as it would be if the formula were first expanded
and simplified to be in the form p(x1, . . . , xn)/q(x1, . . . , xn) for some polynomials p
and q, where gcd(p, q) = 1, and then evaluated.

We say that a formula f is defined on the variable set V if all variables appearing
in f are members of V . Let V = {x1, . . . , xn}. We say a formula f depends on variable
xi if there are values x(0)

1 , x
(0)
2 , . . . , x

(0)
n , and x

(1)
i in K for which

f(x(0)
1 , x

(0)
2 , . . . , x(0)

n) 6= f(x(0)
1 , . . . , x

(0)
i−1, x

(1)
i , x

(0)
i+1, . . . , x

(0)
n)

and for which both those values of f are not ERROR. We call such an input vector
v = (x(0)

1 , . . . , x
(0)
n) a justifying assignment for xi.

Between any two gates or leaves α and β in an AROF, the relationships ancestor,
descendant, parent, and child refer to their relative positions in the rooted tree. Let
α ≤ β denote that α is a descendant of β (or, equivalently, that β is an ancestor of
α). Let α < β denote that α is a proper descendant of β (i.e., α ≤ β but α 6= β).
For any pair of variables xi and xj that appear in a read-once formula, there is a
unique node farthest from the root that is an ancestor of both xi and xj , called their
lowest common ancestor, which we write as lca(xi, xj). We shall refer to the type of
lca(xi, xj) to mean the basis function computed at that gate. We say that a set W

404 NADER H. BSHOUTY AND RICHARD CLEVE

of variables has a common lca if there is a single node that is the lca of every pair of
variables in W .

We define the skeleton of a formula f to be the tree obtained by deleting any unary
gates in f (i.e., the skeleton describes the parenthesization of an expression with the
binary operations, but not the actual unary operations or embedded constants).

We now list a basic property of unary functions fA that is proved in [BHH92].
PROPERTY 3.1.
1. The function fA is a bijection from K ∪ {∞} to K ∪ {∞} if and only if

det(A) 6= 0. Otherwise, fA is either a constant value from K∪{∞,ERROR}
or a constant value from K ∪ {∞}, except on one input value on which it is
ERROR.

2. The functions fA and fλA are equivalent for any λ 6= 0.
3. Given any three distinct points p1 = (x1, y1), p2 = (x2, y2), and p3 = (x3, y3),

(a) if p1, p2, p3 are on a line then there exists a unique function fA with
fA(x) = ax+b that satisfies fA(x1) = y1, fA(x2) = y2, and fA(x3) = y3.

(b) if p1, p2, p3 are not on a line then there exists a unique function fA with
det(A) 6= 0 that satisfies fA(x1) = y1, fA(x2) = y2, and fA(x3) = y3.

4. If functions fA and fB are equivalent and det (A),det (B) 6= 0, then there is
a constant λ for which λA = B.

5. The functions (fA ◦ fB) and fAB are equivalent.
6. If det(A) 6= 0, functions f−1

A and fA−1 are equivalent.
7. fA(λx) = f

A
(
λ 0
0 1

) (x) and fA(λ+ x) = f
A
(

1 λ
0 1

) (x).

λfA(x) = f(λ 0
0 1

)
A

(x) and λ+ fA(x) = f(1 λ
0 1

)
A

(x).

4. Collapsibility of operations. Whenever two nonunary gates of the same
type in an AROF are separated by only a unary gate, it may be possible to collapse
them together to a single nonunary gate of the same type with higher arity. For
? ∈ {+,×}, a unary operation fA is called ?-collapsible if

fA(x ? y) ? z ≡ fB(x) ? fC(y) ? z

for some unary operations fB and fC . Intuitively, the above property means that
if the fA gate occurs between two nonunary ? gates then the two ? gates can be
“collapsed” into a single ? gate of higher arity, provided that new unary gates can be
applied to the inputs.

In [BHH92] it is explained that a unary gate fA is ×-collapsible if and only if A
is of the form (

a 0
0 b

)
or

(
0 a
b 0

)
,

and +-collapsible if and only if A is of the form(
a b
0 c

)
.

The following are equivalent definitions of ?-collapsible that will be used in this paper.
PROPERTY 4.1. The following are equivalent.
1. fA is +-collapsible.
2. fA(x) = αx+ β for some α, β ∈ K, and α 6= 0.
3. fA(∞) =∞.

INTERPOLATING READ-ONCE FORMULAS IN PARALLEL 405

The following are equivalent.
1. fA is ×-collapsible.
2. fA(x) = αxβ for some α ∈ K, β ∈ {1,−1} and α 6= 0.
3. {fA(∞), fA(0)} = {0,∞}.

Proof. We prove the property by showing that 1⇔ 2⇔ 3. If fA is +-collapsible
then

A =
(
a b
0 c

)
,

and therefore f(x) = (a/c)x + (b/c). Since A is nonsingular, a 6= 0, c 6= 0, and
a/c 6= 0. 2 ⇒ 1 is obvious. If fA(x) = αx + β for some α, β ∈ K and α 6= 0, then
fA(∞) = α∞ + β = ∞. If fA(∞) = ∞ then, since f(a b

d c)
(∞) = a/d = ∞, we must

have d = 0.
The result for ×-collapsible is left to the reader.
In [BHH92], a three-way justifying assignment is defined as an assignment of

constant values to all but three variables in an AROF such that the resulting formula
depends on all of the three remaining variables. For the present results, we require
assignments that meet additional requirements, which are defined below.

For any two gates α and β with α < β, define the α–β path as the sequence of gate
operations along the path in the tree from α to β (including the operations of α to β
at the endpoints of the path). Define a noncollapsing three-way justifying assignment
as a three-way justifying assignment with the following additional property. For the
unassigned variables x, y, and z, if lca(x, y) < lca(x, z) and all nonunary operations
in the lca(x, y)–lca(x, z) path are of the same type ? (for some ? ∈ {+,×}), then the
function that results from the justifying assignment is of the form

fE(fC(fA(x) ? fB(y)) ? fD(z)),

for some unary operations fA, fB , fC , fD, and fE , where fC is not ?-collapsible.
Intuitively, this means that, after the justifying assignment, the two gates, lca(x, y)
and lca(x, z), cannot be collapsed—and thus the relationship lca(x, y) < lca(x, z) can
still be detected in the resulting function.

Now, define a total noncollapsing three-way justifying assignment as a single
assignment of constant values to all variables in an AROF such that, for any three
variables, if all but those three are assigned to their respective constants then the
resulting assignment is noncollapsing three-way justifying.

5. Parallel learning algorithm. In this section, we present a parallel algorithm
for learning AROFs. The algorithm has three principal components: finding a total
noncollapsing three-way justifying assignment; determining the skeleton of the AROF;
and determining the unary gates of the AROF.

The basic idea is to first construct a graph (that will later be referred to as the
least common ancestor hierarchy (LCAH) graph) that contains information about the
relative positions of the lcas of all pairs of variables. This cannot be obtained quickly
in parallel from justifying assignments because of the possibility that some of the
important structure of an AROF “collapses” under any given justifying assignment.
However, we shall see that any total noncollapsing justifying assignment is sufficient to
determine the entire structure of the AROF at once (modulo some polylog processing).

Once the LCAH graph has been constructed, the skeleton of the AROF can be
constructed by discarding some of the structure of the LCAH graph (a “garbage

406 NADER H. BSHOUTY AND RICHARD CLEVE

collection” step). This is accomplished using some simple graph algorithms as well as
a parallel prefix sum computation (which is NC1 computable [LF80]).

Finally, once that skeleton is determined, the unary gates can be determined by
a recursive tree contraction method (using results from [B74]).

5.1. Finding a total noncollapsing three-way justifying assignment. In
[BHH92], it is proven that, for any triple of variables x, y, and z, by drawing random
values (independently) from a sufficiently large field and assigning them to the other
variables in an AROF, a three-way justifying assignment for those variables is obtained
with high probability. In the parallel algorithm, a three-way justifying assignment that
is total noncollapsing is required. We show that, if the size of the field K is at least
O(n2) then the same randomized procedure also yields a total noncollapsing three-
way justifying assignment with probability at least 1

2 . Therefore, in time O(1) this
step can be implemented.

We shall begin with some preliminary lemmas, and then the precise statement
that we require will appear in Corollary 5.4.

LEMMA 5.1. If g(y, z) = fB(fA(y) ? z), where fA is not ?-collapsing, then there
exists at most one value z(0) for z such that fC(y) ≡ g(y, z(0)) is ?-collapsing.

Proof. Let ? = +. If fB(fA(y)+z0) is +-collapsible then by Property 4.1 we have

fB(fA(y) + z0) = αy + β,

where α ∈ K\{0} and β ∈ K. We substitute y =∞ and get

fB(fA(∞) + z0) =∞.

Since fA is not +-collapsible, by Property 4.1 we have fA(∞) = γ 6=∞. Solving the
above system using Property 3.1 we get

z0 = fB−1(∞)− γ.

This shows that there is at most one value of z that makes fB(fA(y)+z) +-collapsible.
Let ? = ×. If fB(fA(y)z0) is ×-collapsible then by Property 4.1 we have

fB(fA(y)z0) = αyβ ,

where α ∈ K\{0} and β ∈ {+1,−1}. We substitute y = 0,∞ and get

{fB(fA(0)z0), fB(fA(∞)z0)} = {0,∞}.

Since fA is not ×-collapsible, by Property 4.1, we have that either fA(0) or fA(∞)
is not in {0,∞}. Suppose fA(0) 6∈ {0,∞} and suppose fB(fA(0)z0) = 0 (the other
cases are similar). Solving this gives

z0 = fB−1(0)/fA(0).

This shows that there is at most one value of z that makes fB(fA(y)z) ×-
collapsible.

LEMMA 5.2. Let F (x1, . . . , xn) be an AROF with lca(x1, x2) < lca(x1, x3) and
suppose that all nonunary operations in the lca(x1, x2) − lca(x1, x3) path are of the
same type ? ∈ {+,×}. Let x(0)

4 , . . . , x
(0)
n be independently, uniformly, and randomly

chosen from S ⊆ K, where |S| = m. Then the probability that x(0)
4 , . . . , x

(0)
n is a

noncollapsing three-way justifying assignment is at least 1−
(3n+1

m

)
.

INTERPOLATING READ-ONCE FORMULAS IN PARALLEL 407

Proof. Note that x(0)
4 , . . . , x

(0)
n is not a noncollapsing three-way justifying assign-

ment if and only if it is not a justifying assignment or there exists a path between the
lcas of x1, x2, and x3 such that all nonunary operations are of the same type and the
path collapses under the assignment. From [BHH92], the probability of the former
condition is at most 2n+4

m . We need to bound the probability of the latter condition.
We have that F (x1, . . . , xn) is of the form

E(fHk(· · · fH1(fH0(A(x1) ? B(x2)) ? C1) · · ·) ? Ck) ? D(x3)),

where A(x1), B(x2), C1, . . . , Ck, D(x3), E(y) may depend on variables from x4, . . . , xn
in addition to their marked arguments. Let Ā(x1), B̄(x1), C̄1 , . . . , C̄k, D̄(x3), Ē(y)
denote the above formulas (respectively) with x

(0)
4 , . . . , x

(0)
n substituted for the vari-

ables x4, . . . , xn. Also, let d1, . . . , dk denote the degrees of C1, . . . , Ck (respectively)
as functions of x4, . . . , xn. By the assumption that F is in normal form, fH0 is not
?-collapsing. Therefore, by Lemma 5.1, there exists at most one value of C1 for which
fH1(fH0(y)?C1) is ?-collapsing. We can bound the probability of this value occurring
for C1. Since the degree of C1 is d1, an application of Schwartz’s result in [Sch80]
implies the probability that this value occurs for C1 is at most d1/m.

Similarly, if fH1(fH0(y)?C1) is not ?-collapsing then Lemma 5.1 implies that there
exists at most one value of C2 for which fH2(fH1(fH0(y) ? C̄1) ? C2) is ?-collapsing,
which occurs with probability at most d2/m, and so on. It follows that the probability
that

fHk(fHk−1(· · · fH1(fH0(y) ? C̄1) · · ·) ? C̄k)

is ?-collapsing is at most (d1 + · · ·+ dk) 1
m ≤

n−3
m .

The result now follows by summing the two bounds.
THEOREM 5.3. Let F (x1, . . . , xn) be an AROF over K, and x(0)

1 , . . . , x
(0)
n be cho-

sen uniformly from a set S ⊆ K with |S| = m. Then the probability that x(0)
1 , . . . , x

(0)
n

is a total noncollapsing three-way justifying assignment is at least 1− 6n2

m .
Proof. First, note that from Lemma 5.2 we can immediately infer that if x(0)

1 , . . . ,

x
(0)
n are drawn independently, uniformly, and randomly from S ⊆ K, where |S| =
m, then the probability that x

(0)
1 , . . . , x

(0)
n is a noncollapsing three-way justifying

assignment is at most
(
n
3

)
(n+1

2m) = O(n
4

m).
To obtain a better bound, consider each subformula Ci that is an input to some

nonunary gate in the AROF. By results in [BHH92], there are at most two possible
values of Ci that will result in some triple of variables with respect to which the
assignment is not three-way justifying (the values are 0 and∞). Thus, as in the proof
of Lemma 5.2, the probability of one of these values arising for Ci is at most 2d

m , where
d is the degree of Ci. Also, from Lemma 5.2, there is at most one value of Ci that
will result in a collapsing assignment, and the probability of this arising is at most
d
m . Thus, the probability of one of the two events above arising is at most 3d

m , and,
since d ≤ n, this is at most 3n

m .
Since there are at most 2n such subformulas Ci, the probability of any one of

them attaining one of the above values is at most 6n2

m .
The constant in the proof of Theorem 5.3 can be improved to obtain probability

of

1−
3
2 (n2 + 3n− 2)

m

408 NADER H. BSHOUTY AND RICHARD CLEVE

by using the following observation. Notice that we upper bounded the degree of each
subtree by n. In fact, we can upper bound the degree of the leaves (there are n leaves)
by degree 1 since they are variables. Then we have n− 1 other internal subformulas
with respective degrees 2 = d1 ≤ d2 ≤ · · · ≤ dn−1. It is easy to show that di ≤ i+ 1
(simple induction on the number of nodes). Taking all this into account we obtain
the above bound.

By setting m ≥ 3(n2 + 3n− 2), we obtain the following.
COROLLARY 5.4. Let F (x1, . . . , xn) be an AROF over K, and x

(0)
1 , . . . , x

(0)
n be

chosen uniformly from a set S ⊆ K with |S| = 3(n2 + 3n − 2). Then the probability
that x(0)

1 , . . . , x
(0)
n is a total noncollapsing three-way justifying assignment is least 1

2 .
This corollary implies that the expected time complexity of finding a total non-

collapsing three-way justifying assignment is O(1).

5.2. Determining the skeleton of a read-once formula in parallel. In
this section, we assume that a total noncollapsing three-way justifying assignment is
given and show how to construct the skeleton with O(n3) membership queries in one
parallel step followed by O(logn) steps of computation.

First, suppose that, for a triple of variables x, y, and z, we wish to test whether
or not lca(x, y) < lca(x, z). If op(x, y) 6= op(x, z) then this can be accomplished by
a direct application of the techniques in [BHH92], using the fact that we have an
assignment that is justifying with respect to variables x, y, and z. On the other
hand, if op(x, y) = op(x, z) then lca(x, y) < lca(x, z) could be difficult to detect with
a mere justifying assignment because the justifying assignment might collapse the
relative structure between these three variables. If all the nonunary operations in
the lca(x, y)–lca(x, z) path are identical then, due to the fact that we have a non-
collapsing justifying assignment, we are guaranteed that the substructure between
the three variables does not collapse, and we can determine that lca(x, y) < lca(x, z)
in O(1) time (again by directly applying techniques in [BHH92]). This leaves the
case where op(x, y) = op(x, z), but the nonunary operations in the lca(x, y)–lca(x, z)
path are not all of the same type. In this case, the techniques of [BHH92] might fail
to determine that lca(x, y) < lca(x, z) and report them as equal. We shall overcome
this problem at a later stage in our learning algorithm by making inferences based on
hierarchical relationships with other variables. For the time being, we can, in time
O(1) with one processor, compute the following.

DESCENDANT(x, y, z)

=

YES if lca(x, y) < lca(x, z) and op(x, y) 6= op(x, z);
YES if lca(x, y) < lca(x, z) and all nonunary operations

in the lca(x, y)–lca(x, z) path are of the same type;
YES or MAYBE if lca(x, y) < lca(x, z) and op(x, y) = op(x, z) but not

all nonunary operations in the lca(x, y)–lca(x, z)
path are of the same type;

MAYBE otherwise.

Note that if DESCENDANT(x, y, z) = YES then it must be that lca(x, y) <
lca(x, z); however, if DESCENDANT(x, y, z) = MAYBE then it is possible that
lca(x, y) < lca(x, z), but op(x, y) = op(x, z) and the nonunary operations on the
lca(x, y)–lca(x, z) are not of the same type, or that lca(x, y) 6< lca(x, z).

To construct the extended skeleton of an AROF, we first construct its LCAH
graph, which is defined as follows.

DEFINITION. The LCAH graph of an AROF with n variables consists of
(
n
2

)
vertices, one corresponding to each (unordered) pair of variables. For the distinct

INTERPOLATING READ-ONCE FORMULAS IN PARALLEL 409

variables x and y denote the corresponding vertex by xy or, equivalently, yx. Then,
for distinct vertices xy and zw, the directed edge xy → zw is present in the LCAH
graph if and only if lca(x, y) ≤ lca(z, w).

We shall prove that the following algorithm constructs the LCAH graph of an
AROF.

Algorithm CONSTRUCT-LCAH-GRAPH.
1. in parallel for all distinct variables x, y, z do

if DESCENDANT(x, y, z) = YES then
insert edges xy → xz and xy → yz and xz → yz and yz → xz

2. in parallel for all distinct variables x, y, z, w do
if edges xy → xw → xz are present then

insert edge xy → xz

3. in parallel for all distinct variables x, y, z do
if no edges between any of xy, xz, yz are present then

insert edges in each direction between every pair of xy, xz, yz

4. in parallel for all distinct variables x, y, z, w do
if edges xy → xw → zw present or edges xy → yw → zw present then

insert edge xy → zw

THEOREM 5.5. Algorithm CONSTRUCT-LCAH-GRAPH constructs the
LCAH graph of an AROF.

Proof. The proof follows from the following sequence of observations.
(i) For all distinct variables x, y, and z for which lca(x, y) < lca(x, z) = lca(y, z),

after executing steps 1 and 2 of the algorithm the appropriate edges pertaining to
vertices xy, xz, and yz (namely, xy → xz, xy → yz, xz → yz, and yz → xz) are
present.

(ii) For all distinct variables x, y, and z for which lca(x, y) = lca(x, z) = lca(y, z),
after executing step 3 of the algorithm the appropriate edges pertaining to vertices
xy, xz, and yz (namely, edges in both directions between every pair) are present.

(iii) For all distinct variables x, y, z, and w, after executing step 4 of the algorithm
the edge xy → zw is present if and only if lca(x, y) ≤ lca(z, w).

It is straightforward to verify that algorithm CONSTRUCT-LCAH-GRAPH
can be implemented to run in O(logn) time on an EREW PRAM with O(n4) proces-
sors. Moreover, the O(n3) membership queries can be made initially in one parallel
step.

In an AROF, each nonunary gate corresponds to a biconnected component (which
is a clique) of its LCAH graph. Thus, to transform the LCAH graph into the extended
skeleton of the AROF, we simply “compress” each of its biconnected components into
a single vertex and then extract the underlying tree structure of this graph (where
the underlying tree structure of a graph is the tree whose transitive closure is the
graph1). This is accomplished using standard graph algorithm techniques, including
a parallel prefix sum computation [LF80]. The details follow.

We first designate a “leader” vertex for each biconnected component. We then
record the individual variables that are descendants of each nonunary gate and then
discard the other nodes in each biconnected component.

The algorithm below selects a leader from each connected component in an LCAH
graph. We assume that there is a total ordering ≺ on the vertices of the LCAH graph

1All edges are directed toward the root.

410 NADER H. BSHOUTY AND RICHARD CLEVE

(for example, the lexicographic ordering on the pair of indices of the two variables
corresponding to each vertex).

Algorithm LEADER.

in parallel for all vertices xy ≺ zw do
if edges xy → zw and zw → xy are present then

mark xy with X.

It is easy to prove the following.
LEMMA 5.6. After executing algorithm LEADER, there is precisely one un-

marked node (namely, the largest in the ≺ ordering) in each biconnected component
of the LCAH graph.

After selecting a leader from each biconnected component of the LCAH graph, we
add n new nodes to this graph that correspond to the n variables. The edge x→ yz is
inserted if and only if the variable x is a descendant of lca(y, z). This is accomplished
by the following algorithm.

Algorithm LEAVES.

in parallel for all distinct variables x, y, z, w do
insert edge x→ xy
if edge xy → zw is present then

insert edge x→ zw.

LEMMA 5.7. After executing algorithm LEAVES, the edge x → yz is present if
and only if variable x is a descendant of lca(y, z).

Both Algorithms LEADER and LEAVES can be implemented in O(logn) time
with O(n4) processors.

After these steps, the marked nodes are discarded from the augmented LCAH
graph (that contains

(
n
2

)
+ n vertices), resulting in a graph with at most 2n − 1

vertices that is isomorphic to the extended skeleton of the AROF. This discarding is
accomplished by a standard technique involving the computation of prefix sums. We
first adopt the convention that the order ≺ extends to the augmented LCAH graph
as x1 ≺ · · · ≺ xn and x ≺ yz for any variables x, y, and z. Then, for each node v, set

ϕ(v) =
{

1 if v is unmarked
0 if v is marked,

and compute the prefix sums

σ(v) =
∑
u�v

ϕ(u).

With algorithms for parallel prefix sum computation [LF80] this can be accomplished
in O(log(

(
n
2

)
+ n)) = O(logn) time with O(

(
n
2

)
+ n) = O(n2) processors.

The function σ is a bijection between the unmarked nodes of the augmented
LCAH graph and some S ⊆ {1, 2, . . . , 2n − 1}, and σ(xi) = i when i ∈ {1, . . . , n}.
The following algorithm uses the values of this function to produce the extended
skeleton of the AROF.

Algorithm COMPRESS-AND-PRUNE.

in parallel for all distinct vertices u, v do
if vertices u, v are both unmarked

INTERPOLATING READ-ONCE FORMULAS IN PARALLEL 411

and edge u→ v is in augmented LCAH graph then
insert edge σ(u)→ σ(v) in skeleton graph

in parallel for all distinct i, j, k ∈ S do
if edges i→ j → k and i→ k are in skeleton graph then

remove edge i→ k from skeleton graph.

The following is straightforward to prove.
LEMMA 5.8. The “skeleton” graph that COMPRESS-AND-PRUNE produces

is isomorphic to the extended skeleton of the AROF, where the inputs x1, . . . , xn cor-
respond to the vertices 1, . . . , n (respectively) of the graph.

5.3. Determining a read-once formula from its skeleton. Once the skele-
ton of an AROF is determined, what remains is to determine the constants in its unary
gates (note that the nonunary operations are easy to determine using the techniques
in [BHH92]). We show how to do this in O(log2 n) steps with O(n logn) processors.
The main idea is to find a node that partitions the skeleton into three parts whose
sizes are all bounded by half of the size of the skeleton. Then the unary gates are
determined on each of the parts (in a recursive manner), and the unary gates required
to “assemble” the parts are computed.

The following lemma is an immediate consequence from a result in [B74].
LEMMA 5.9. For any formula F (x1, . . . , xn), there exists a nonunary gate of type

? that “evenly” partitions it in the following sense. With a possible relabelling of the
indices of the variables,

F (x1, . . . , xn) ≡ G(fA(fB(H(x1, . . . , xk)) ? fC(I(xk+1, . . . , xl))), xl+1, . . . , xn),

and the number of variables in G(y, xl+1, . . . , xn), H(x1, . . . , xk), and I(xk+1, . . . , xl)
are all bounded above by dn2 e.

A minor technicality in the above lemma is that, since the skeleton is not neces-
sarily a binary tree, it may be necessary to “split” a nonbinary gate into two smaller
gates.

It is straightforward to obtain the above decomposition of a skeleton in NC1. Once
this decomposition is obtained, the recursive algorithm for computing the unary gates
of the AROF follows from the following lemma.

LEMMA 5.10. Let x(0)
1 , . . . , x

(0)
n be a total noncollapsing justifying assignment for

the AROF F (x1, . . . , xn). If

F (x1, . . . , xn) ≡ G(fA(fB(H(x1, . . . , xk))?

fC(I(xk+1, . . . , xl))), xl+1, . . . , xn)

then
(i) given the skeleton of F (x1, . . . , xn) and the subformulas G(y, xl+1, . . . , xn), H(x1,
. . . , xk) and I(xk+1, . . . , xl), it is possible to determine A, B, and C, and, thus, the
entire structure of F (x1, . . . , xn) in O(logn) steps with O(n logn) processors.
(ii) given the skeleton of F (x1, . . . , xn), the problem of determining G(y, xl+1, . . . , xn),
H(x1, . . . , xk), and I(xk+1, . . . , xl) is reducible to the problem of determining a ROF
given its skeleton.

Proof. For part (i), assume that the subformulasG(y, xl+1, . . . , xn), H(x1, . . . , xk),
and I(xk+1, . . . , xl) are given. Since x(0)

1 , . . . , x
(0)
n is a justifying assignment, G(y, x(0)

l+1,

412 NADER H. BSHOUTY AND RICHARD CLEVE

. . . , x
(0)
n), H(x1, x

(0)
2 , . . . , x

(0)
k), I(xk+1, x

(0)
k+2, . . . , x

(0)
l) are all nonconstant unary func-

tions, so there exist nonsingular matrices A′, B′, C ′ (which are easy to determine in
O(logn) parallel steps) such that

fA′(y) ≡ G
(
y, x

(0)
l+1, . . . , x

(0)
n

)
fB′(x1) ≡ H

(
x1, x

(0)
2 , . . . , x

(0)
k

)
fC′(xk+1) ≡ I

(
xk+1, x

(0)
k+2, . . . , x

(0)
l

)
.

Also,

F (x1, x
(0)
2 , . . . , x

(0)
k , xk+1, x

(0)
k+2, . . . , x

(0)
n) ≡ fA′(fA(fB(fB′(x1) ? fC(fC′(xk+1))))),

so the matrices A′ ·A, B ·B′, C ·C ′ can be determined in O(1) steps, [BHH92]. From
this, the matrices A, B, C can be determined.

For part (ii), consider the problem of determining G(y, xl+1, . . . , xn). Note that

F (y, x(0)
2 , . . . , x

(0)
l , xl+1, . . . , xn) ≡ G(fA′′(y), xl+1, . . . , xn),

for some nonsingular A′′. Therefore, if we fix x2, . . . , xl to x(0)
2 , . . . , x

(0)
l then we have

a reduction from the problem of determining G(fA′′(y), xl+1, . . . , xn).
Similarly, we have reductions from the problem of determining fB′′(H(x1, . . . , xk))

and fC′′(I(xk+1, . . . , xl)) for nonsingular matrices B′′ and C ′′. Since the matrices A′′,
B′′, C ′′ can be absorbed into the processing of part (i), this is sufficient.

By recursively applying Lemmas 5.9 and 5.10, we obtain a parallel algorithm to
determine an AROF given its skeleton and a total noncollapsing three-way justify-
ing assignment in O(log2 n) steps. The processor count for this can be bounded by
O(n logn).

REFERENCES

[A87] D. ANGLUIN, Queries and concept learning, Mach. Learning, 2 (1987), p. 319–342.
[AHK89] D. ANGLUIN, L. HELLERSTEIN, AND M. KARPINSKI, Learning read-once formulas

with queries, J. ACM, 40 (1993), pp. 185–210.
[AK91] D. ANGLUIN AND M. KHARITONOV, When won’t membership queries help?, J. Com-

put. System Sci., 50 (1995), pp. 336–355.
[B74] J. P. BRENT, The parallel evaluation of general arithmetic expressions, J. ACM, 21

(1974), pp. 201–206.
[BHH92] N. H. BSHOUTY, T. R. HANCOCK, AND L. HELLERSTEIN, Learning arithmetic read-

once formulas, SIAM J. Comput., 24 (1995), pp. 706–735.
[BC92] N. H. BSHOUTY AND R. CLEVE, On the exact learning of formulas in parallel, Proc.

of the 33rd Annual Symposium on Foundations of Computer Science, IEEE Com-
puter Science Press, Los Alamitos, CA, 1992, pp. 24–27.

[B2H92] N. H. BSHOUTY, T. R. HANCOCK, AND L. HELLERSTEIN, Learning boolean read-once
formulas with arbitrary symmetric and constant fan-in gates, J. Comput. System
Sci., 50 (1995), pp. 521–542.

[BGHM93] N. H. BSHOUTY, S. GOLDMAN, T. HANCOCK, AND S. MATAR, Asking questions
to minimize errors, in Proc. of the Sixth Annual Workshop on Computational
Learning Theory, ACM, New York, 1993, pp. 41–50.

[BHHK91] N. H. BSHOUTY, T. R. HANCOCK, L. HELLERSTEIN, AND M. KARPINSKI, An algo-
rithm to learn read-once threshold formulas, and transformation between learning
models, Comput. Complexity, 4 (1994), pp. 37–61.

[BT88] M. BEN-OR AND P. TIWARI, A deterministic algorithm for sparse multivariate poly-
nomial interpolation, in Proc. of the 20th Annual ACM Symposium on the Theory
of Computing, ACM, New York, 1988, pp. 301–309.

INTERPOLATING READ-ONCE FORMULAS IN PARALLEL 413

[BT90] A. BORODIN AND P. TIWARI, On the decidability of sparse univariate polynomial
interpolation, Comput. Complexity, 1 (1991), pp. 67–90.

[GKS90a] S. A. GOLDMAN, M. J. KEARNS, AND R. E. SCHAPIRE, Exact identification of read-
once formulas using fixed points of amplification functions, SIAM J. Comput.,
22 (1993), pp. 705–726.

[GKS88] D. Y. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER, Fast parallel algorithms for
sparse multivariate polynomial interpolation over finite fields, SIAM J. Comput.,
19 (1990), pp. 1059–1083.

[GKS90b] D. Y. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER, Interpolation of sparse ra-
tional functions without knowing bounds on the exponent, in Proc. of the 31st
Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1990, pp. 193–202.

[Han90] T. HANCOCK, Identifying µ-formula decision trees with queries, in Proc. of the Third
Annual Workshop on Computational Learning Theory, ACM, New York, 1990,
pp. 23–37.

[HH91] T. HANCOCK AND L. HELLERSTEIN, Learning read-once formulas over fields and ex-
tended bases, in Proc. of the Fourth Annual Workshop on Computational Learn-
ing Theory, ACM, New York, 1991, pp. 326–336.

[HS80] J. HEINTZ AND C. P. SCHNORR, Testing polynomials that are easy to compute, in
Proc. of the 12th Annual ACM Symposium on the Theory of Computing, ACM,
New York, 1980, pp. 262–272.

[LF80] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. ACM, 27 (1980),
pp. 831–838.

[L88] N. LITTLESTONE, Learning quickly when irrelevant attributes abound: A new linear
threshold algorithm, Mach. Learning, 2 (1988), pp. 285–318.

[M91] Y. MANSOUR, Randomized approximation and interpolation of sparse polynomials,
SIAM J. Comput., 24 (1995), pp. 357–368.

[MT90] W. MAASS AND G. TURÁN, On the complexity of learning from counterexamples and
membership queries, in Proc. of the 31st Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 203–210.

[RB89] M. R. ROTH AND G. M. BENEDEK, Interpolation and approximation of sparse mul-
tivariate polynomials over GF(2), SIAM J. Comput., 20 (1991), pp. 291–314.

[SS93] R. E. SCHAPIRE AND L. M. SELLIE, Learning sparse multivariate polynomials over a
field with queries and counterexamples, J. Comput. Systems Sci., 52 (1996), pp.
201–213.

[Sch80] J. T. SCHWARTZ, Fast polynomial algorithms for verification of polynomial identities,
J. Assoc. Comput. Mach., 27 (1980), pp. 701–707.

[Val84] L. G. VALIANT, A theory of the learnable, Comm. ACM, 27 (1984), pp. 1134–1142.
[VL92] J. S. VITTER AND J. LIN, Learning in parallel, Inform. and Comput., 96 (1992),

pp. 179–202.

AN ON-LINE ALGORITHM FOR SOME UNIFORM PROCESSOR
SCHEDULING∗

RONGHENG LI† AND LIJIE SHI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 414–422, April 1998 005

Abstract. This paper considers the problem of on-line scheduling a set of independent jobs
on m uniform machines (M1,M2, . . . ,Mm) in which machine M ′is processing speed is si = 1(i =
1, . . . ,m − 1) and sm = s > 1. List scheduling [Y. Cho and S. Sahni, SIAM J. Comput., 9 (1980),
pp. 91–103] guarantees a worst-case performance of 3m−1

m+1 (m ≥ 3) and 1+
√

5
2 (m = 2) for this problem.

We prove that this worst-case bound cannot be improved for m = 2 and m = 3 and for every m ≥ 4,
an algorithm with worst-case performance at most 3m−1

m+1 − ε is presented when sm = 2, where ε is
a fixed positive number, and then we improve the bound for general sm = s > 1.

Key words. on-line scheduling, list scheduling, uniform machines

AMS subject classifications. 90B35, 90C27

PII. S00975397995279694

1. Introduction. A uniform machine system consists of m,m ≥ 1, machines
(M1,M2, . . . ,Mm). A speed si, si ≥ 1 is associated with each machine. In one unit of
time Mi can carry out si units of processing. A list (t1, t2, . . . , tn) of n jobs is given
to us on-line—that means we get the jobs one by one. Both the total number of jobs
that need to be scheduled and the size of the jobs are not previously known. The
processing time of job ti becomes known only when ti−1 has already been scheduled.
As soon as job ti appears, it must irrevocably be scheduled. Our goal is to minimize
the makespan, i.e., the maximum completion time over all jobs in a schedule. The
quality of an algorithm H is measured by its worst-case ratio

RH(m) = sup
L
{CH(L)/C∗(L) : L is a list of jobs},

where CH(L) denotes the makespan produced by the heuristic H on the machines
and the list L of jobs and C∗(L) denotes the corresponding makespan in some optimal
schedule. List scheduling (LS), which always assigns the current job to the machine
that will complete it first, is a simple example of a nonpreemptive on-line algorithm
and is always used. When si = 1(i = 1, 2, . . . ,m), the machine system is well known
as an identical machine system. For an identical machine system, Graham showed in
1969 that RLS(m) = 2− 1/m [2]. For m ≥ 4, this bound was improved by Galambos
and Woeginger in 1993 [3]. They designed an algorithm called Refined List Scheduling
(RLS) and showed that RRLS(m) ≤ 2− 1/m− ηm, where ηm > 0 for m ≥ 4. Bartal
et al. [4] made some progress for large numbers of machines by devising an algorithm
whose worst-case guarantee is 2 − 1

7 for all m. When si = 1(i = 1, . . . ,m − 1) and
sm = s ≥ 1, Cho and Sahni showed in 1980 that RLS(m, s) ≤ 1 + m−1

m+s−1 min{2, s} ≤
3− 4

m+1 , and the bound 3− 4
m+1 is achieved when s=2.

In this paper, for m ≥ 4 machines we present a heuristic that has a significantly
better worst-case performance guarantee than LS when si = 1(i = 1, . . . ,m− 1) and

∗Received by the editors January 9, 1995; accepted for publication January 25, 1996.
http://www.siam.org/journals/sicomp/27-2/27969.html
†Department of Mathematics, Hunan Normal University, Changsha 410081, People’s Republic of

China (lap@hunnu.edu.cn).
‡RUTCOR, Rutgers University, New Brunswick, NJ 08903 (lijie@rutcor.rutgers.com).

414

UNIFORM PROCESSORS’ ON-LINE ALGORITHM 415

sm = 2 and then show that the bound 3 − 4
m+1 can be improved when si = 1(i =

1, . . . ,m − 1) and sm = s > 1. For m = 2 and 3, we will show that the worst-case
performance guarantee of LS cannot be improved by any heuristic.

2. Lower bounds for on-line scheduling. For a heuristic H, let

RH(m, s) = sup
L
{CH(L)/C∗(L) | L is a list of jobs and(2.1)

si = 1(i = 1, 2, . . . ,m− 1), sm = s ≥ 1 is fixed},

RH(m) = sup
s≥1

RH(m, s).(2.2)

In the remainder of this paper we always assume that the speed si = 1(i = 1, . . . ,m−1)
and sm = s ≥ 1 if there is no special notation.

THEOREM 2.1. The following inequalities hold.
(i) RLS

(
2, 1+

√
5

2

)
= RLS(2) = 1+

√
5

2 ,

(ii) RLS(m, s) ≤ 1 + m−1
m+s−1 min{2, s},

(iii) RLS(m) = RLS(m, 2) = 3− 4
m+1 , (m ≥ 3).

Proof. For the proof see [1].
THEOREM 2.2. For any heuristic H, the following inequalities hold.

(i) RH(2) ≥ 1+
√

5
2 ,

(ii) RH(m) ≥ 2, (m ≥ 3).
Proof. Claim (i) is easily proved by using list L1 =

{
1, 1+

√
5

2

}
when s1 = 1 and

s2 = 1+
√

5
2 . Suppose that there exists an on-line algorithm H with RH(m) < 2 for

m ≥ 3. Consider list lk = {1, 2, . . . , 2k} (k = 0, 1, 2, . . .). Obviously

RH(m) ≥ CH(lk)
C∗(lk)

for any k ≥ 0. One can easily verify that C∗(lk) = 2k−1. Because RH(m) < 2, the
jobs in list lk must all be assigned to machine Mm; then CH(lk) = 2k − 1

2 and

RH(m) ≥ CH(lk)
C∗(lk)

= 2− 1
2k
.

We conclude that RH(m) ≥ 2 for the arbitrariness of k.
From Theorems 2.1 and 2.2, we know that RLS(2) and RLS(3) cannot be improved

anymore.

3. The algorithm. In this section we will give a heuristic. As the algorithm
gets the jobs one by one, the values of C∗ and CH vary during the algorithm. To
simplify notation, we will identify each job with its length. The load Li of a machine
Mi is the sum of processing times over all jobs assigned to it. In the remainder of this
paper, we always assume that the speed si = 1(i = 1, 2, . . . ,m− 1) and sm = s ≥ 1 if
there is no special notation.

We are ready to present our heuristic A. In the algorithm, two real numbers
αm and βm are used that satisfy 0 < αm < 1 and βm > 1. In order to keep the
presentation simple, we drop the indices and write α and β instead. The exact values
of α and β will be specified later.

416 RONGHENG LI AND LIJIE SHI

ALGORITHM A.
Step 1. Reorder the machines such that L1 ≤ L2 ≤ · · · ≤ Lm−1 holds. Let x be

a new job given to the algorithm.
Step 2. Let L =

∑m−1
i=1 Li + sLm be the total length of jobs given before x. If

Lm ≥
(3m− 5)α

s(m+ 1)(m− 2)
L and x ≤ β

m− 2
L,

then put x on L1.
Step 3. Assign x by LS, that is to say, assign x to the machine that will complete

it first.
Throughout the following analysis, we always denote by x the current job. In

order to keep the analysis simple, we present the following simple inequalities.

(m+ s− 1)C∗ ≥ L+ x(3.1)

and

ti ≤ sC∗(3.2)

for any given job ti.
LEMMA 3.1. If x is put on L1 in Step 2, then

(L1 + x)/C∗ ≤ m+ s− 1
m− 1

[
1 +

(m− 2)β
m+ β − 2

− (3m− 5)α
(m+ 1)(m+ β − 2)

]
.

Proof. Because x ≤ β
m−2L, we have

x ≤ β

m+ β − 2
(L+ x).(3.3)

Since

L+ x =
m−1∑

1

Li + sLm + x

≥ (m− 1)(L1 + x) +
(3m− 5)α

(m+ 1)(m− 2)
(L+ x)−

[
m+

(3m− 5)α
(m+ 1)(m− 2)

− 2
]
x.

From the above and (3.3) we get[
1 +

(m− 2)β
m+ β − 2

− (3m− 5)α
(m+ 1)(m+ β − 2)

]
(L+ x) ≥ (m− 1)(L1 + x).(3.4)

By (3.1) and (3.4), Lemma 3.1 is proved.
LEMMA 3.2. If x ≤ β

m−2L and x is assigned to Mi in Step 3, then

Lxi /C
∗ ≤ m+mβ − 2

m+ β − 2
,

where Lxi represents the load of the machine Mi after x has been assigned to Mi.

UNIFORM PROCESSORS’ ON-LINE ALGORITHM 417

Proof. We know that in Step 3 x is assigned to either M1 or Mm. If x is put on
L1, then L1 + x ≤ Lm + x

s and

L+ x =
m−1∑
i=1

Li + sLm + x

≥ (m− 1)(L1 + x) + s
(
Lm +

x

s

)
− (m− 1)x

≥ (m+ s− 1)(L1 + x)− (m− 1)β
m+ β − 2

(L+ x).

From the above and (3.1), we get

(L1 + x)/C∗ ≤ m+mβ − 2
m+ β − 2

.

Similarly we can prove (
Lm +

x

s

)
/C∗ ≤ m+mβ − 2

m+ β − 2

if x is put on Lm.
In the remainder of this paper, the real number ᾱ satisfies that ᾱ > α.
LEMMA 3.3. If

β

m− 2
L < x ≤ β̄

m− 1
L and Lm <

(3m− 5)ᾱ
s(m+ 1)(m− 2)

L

then

Lxi /C
∗ ≤ (m+ s− 1)(m− 1)

(m+ β̄ − 1)s

[
(3m− 5)ᾱ

(m+ 1)(m− 2)
+

β̄

(m− 1)

]
.

Proof. From (3.1) we have(
Lm +

x

s

)/
C∗ ≤

(
Lm +

x

s

)/ L+ x

m+ s− 1

≤ (m+ s− 1)
(
Lm +

β̄L

s(m− 1)

)/(
L+

β̄

m− 1
L

)
≤ (m+ s− 1)(m− 1)

(m+ β̄ − 1)s

[
(3m− 5)ᾱ

(m+ 1)(m− 2)
+

β̄

(m− 1)

]
.

Because x is assigned in Step 3, Lxi ≤ Lm + x
s . Lemma 3.3 is proved.

LEMMA 3.4. If x is assigned to machine Mi and

Lm ≥
(3m− 5)ᾱ

s(m+ 1)(m− 2)
L,

β

m− 2
L ≤ x < β̄

m− 1
L

and

(3m− 5)α
(m+ 1)(m+ β − 2)

+
β

m+ β − 2
≤ (3m− 5)ᾱ

(m+ 1)(m− 2)
,(3.5)

418 RONGHENG LI AND LIJIE SHI

then

Lxi /C
∗ ≤ max

{
s(m− 2)(mβ̄ +m− 1)(mβ +m− 2)(m+ 1)

(m− 1)(m+ s− 1)2(3m− 5)ᾱβ
,

1 +
m− 1

m+ s− 1
max{1, s− 1}

}
.

Proof. Let t be the last task assigned to machine Mm before x.
Case 1. t ≤ C∗. Let L̄i(i = 1, 2, . . . ,m) be the machine M ′is load before t is

assigned and let L̄ be the total length of tasks before t is given. If

t ≤ β

m− 2
L̄, then L̄m <

(3m− 5)α
s(m+ 1)(m− 2)

L̄.

So

Lm = L̄m +
t

s
<

(3m− 5)α
s(m+ 1)(m− 2)

L̄+
t

s

=
(3m− 5)α

s(m+ 1)(m− 2)
(L̄+ t) +

1
s

[
1− (3m− 5)α

(m+ 1)(m− 2)

]
t

≤ (3m− 5)α
s(m+ 1)(m− 2)

(L̄+ t) +
1
s

(
1− (3m− 5)α

(m+ 1)(m− 2)

)
β

m+ β − 2
(L̄+ t)

≤ 1
s

[
(3m− 5)α

(m+ 1)(m+ β − 2)
+

β

m+ β − 2

]
L.

This is a contradiction because

Lm ≥
(3m− 5)ᾱ

s(m+ 1)(m− 2)
L ≥ 1

s

[
(3m− 5)α

(m+ 1)(m+ β − 2)
+

β

m+ β − 2

]
L.

So we get

t >
β

m− 2
L̄(3.6)

and t is assigned as in Step 3. Since

L̄+ t ≥ (m− 1)L̄1 + sL̄m + t

= (m− 1)(L̄1 + t) + s

(
L̄m +

t

s

)
− (m− 1)t

≥ (m+ s− 1)
(
L̄m +

t

s

)
− (m− 1)t

= (m+ s− 1)Lm − (m− 1)t,

and by

Lm ≥
(3m− 5)ᾱ

s(m+ 1)(m− 2)
L

UNIFORM PROCESSORS’ ON-LINE ALGORITHM 419

and (3.6), we conclude that

t ≥ βᾱ(3m− 5)(m+ s− 1)
s(βm+m− 2)(m+ 1)(m− 2)

L.(3.7)

If x is assigned to Mm, then

L+ x =
m−1∑
i=1

Li + sLm + x

≥ (m− 1)(L1 + x) + s
(
Lm +

x

s

)
− (m− 1)x

≥ (m+ s− 1)
(
Lm +

x

s

)
− (m− 1)β̄
m+ β̄ − 1

(L+ x).

From the above we get

L+ x ≥ (m+ s− 1)(m+ β̄ − 1)
mβ̄ +m− 1

(
Lm +

x

s

)
.

So (
Lm +

x

s

)
/C∗ ≤

(
Lm +

x

s

)/
t

≤ mβ̄ +m− 1
(m+ s− 1)(m+ β̄ − 1)

L+ x

t

≤ mβ̄ +m− 1
(m+ s− 1)(m+ β̄ − 1)

·
(
L+

β̄

m− 1
L

)
· s(mβ +m− 2)(m+ 1)(m− 2)

βᾱ(3m− 5)(m+ s− 1)L

=
s(mβ̄ +m− 1)(mβ +m− 2)(m+ 1)(m− 2)

βᾱ(m+ s− 1)2(m− 1)(3m− 5)
.

Case 2. t > C∗. In this case, we conclude that

x ≤ C∗max{1, s− 1}.

So

(m+ s− 1)C∗ ≥ L+ x ≥ (m− 1)L1 + s
(
Lm +

x

s

)
≥ (m+ s− 1)

(
Lm +

x

s

)
− (m− 1)x

≥ (m+ s− 1)
(
Lm +

x

s

)
− (m− 1)C∗max{1, s− 1}.

From the above we get(
Lm +

x

s

)/
C∗ ≤ 1 +

m− 1
m+ s− 1

max{1, s− 1}.

Similarly, we can prove it if x is assigned to M1.

420 RONGHENG LI AND LIJIE SHI

LEMMA 3.5. If x > β̄
m−1L and x is assigned to Mi in Step 3, then

Lxi /C
∗ ≤ sm

m+ s+ 1
+

s(m− 1)
β̄(m+ s− 1)

,

where Lxi represents the load of machine Mi after x is assigned to Mi.
Proof. If x is assigned to M1, then

L+ x =
m−1∑
i=1

Li + sLm + x

≥ (m+ s− 1)(L1 + x)− (m− 1)x.

From the above, x ≤ sC∗, and x > β̄
m−1L we have

L1 + x

C∗
≤ (L1 + x)

/ x

s
≤ s(L+mx)

(m+ s− 1)x

≤ ms

m+ s− 1
+

sL

m+ s− 1
· m− 1
β̄L

=
ms

m+ s− 1
+

(m− 1)s
(m+ s− 1)β̄

.

If x is assigned to Mm, the proof is similar.
LEMMA 3.6. Let Rm = minR, subject to

(m+ 1)R2 − 2(m− 1)R− 2m > 0

2 < R <
3m− 1
m+ 1

(m+ 1)R2 − 2(m− 1)R−m− 1
(m+ 1)2R− 2m(m+ 1)

≥ 1
2

[
(m+ 1)R2 − 2(m− 1)R−m− 1

(m+ 1)R2 − 2(m− 1)R− 2m
− (m− 1)R

m+ 1

]
.

(3.8)

We have that Rm is the only real root of

(m+ 1)3R4 − (m+ 1)(5m2 + 4m− 5)R3 + (6m3 − 18m+ 4)R2(3.9)

+ (m3 + 11m2 −m− 3)R− 2m(m2 − 1) = 0

in interval (2, 3− 4
m+1), and Rm is an increasing function of m. lim

m→∞
Rm is the only

real root of equation R3 − 3R2 + 1 = 0 between 2 and 3.
Proof. Equation (3.8) is equivalent to

1
2
R +

2
(m+ 1)2 −

(m− 1)2

(m+ 1)2[(m+ 1)R− 2m]
(3.10)

≥ m− 1
2[(m+ 1)R2 − 2(m− 1)R− 2m]

+
1
2
.

UNIFORM PROCESSORS’ ON-LINE ALGORITHM 421

If m is fixed, the left-hand side of (3.10) is an increasing function of R and the
right-hand side of (3.10) is a decreasing function of R in interval(

2,
m− 1 +

√
3m2 + 1

m+ 1

)
and (

m− 1 +
√

3m2 + 1
m+ 1

,
3m− 1
m+ 1

]
,

respectively. If R = 2 or 3m−1
m+1 , the inequality (3.10) is strict and

m− 1 +
√

3m2 + 1
m+ 1

is an odd point of the right-hand side. So Rm exists and is the only real root of
equation

1
2
R +

2
(m+ 1)2 −

(m− 1)2

(m+ 1)2((m+ 1)R− 2m)
(3.11)

=
m− 1

2[(m+ 1)R2 − 2(m− 1)R− 2m]
+

1
2
.

If R is fixed, it is easy to verify that the right-hand side of (3.10) is an increasing
function of m but the left-hand side is a decreasing function of m. So we can conclude
that Rm is an increasing function of m. From (3.11) we get (3.9), and letting m tend
to infinity in (3.11), we get R3 − 3R2 + 1 = 0.

THEOREM 3.7. For Algorithm A there exists εm > 0 such that

RA(m, 2) ≤ 3m− 1
m+ 1

− εm

and there exists a positive ε such that εm ≥ ε for every m ≥ 4.
Proof. Lemmas 3.1–3.5 give upper bounds on the worst-case ratios in the five

scenarios. If α < 1 and β > 1, we can easily verify that

m+ 1
m− 1

[
1 +

(m− 2)β
m+ β − 2

− (3m− 5)α
(m+ 1)(m+ β − 2)

]
>
m+mβ − 2
m+ β − 2

.(3.12)

Let R be the real root of equation (3.9), and

α1 =

2(m+ 1)2R4 − 8(m2 − 1)R3 + 2(3m2 − 10m+ 3)R2 + (3m2 − 2m− 5)R+ 2m(m+ 1)
[(m+ 1)R− 2m][(m+ 1)R2 − 2(m− 1)R− 2m− 1]

,

α =
m− 2
3m− 5

α1,

β =
m− 2

(m+ 1)R2 − 2(m− 1)R− 2m− 1
,

ᾱ =
2(m− 2)[(m+ 1)R2 − 2(m− 1)R−m− 1]

(3m− 5)[(m+ 1)R− 2m]
,

β̄ =
2(m− 1)

(m+ 1)R− 2m
;

422 RONGHENG LI AND LIJIE SHI

TABLE 3.1

m αm βm RLS(m, 2) RA(m, 2)
4 0.9482 1.1512 2.2 2.1835
5 0.8951 1.2557 2.3333 2.3025
9 0.7634 1.4854 2.6 2.5353
∞ 0.5357 1.8779 3 2.8795

then inequality (3.5) becomes equality and the upper bounds given in Lemma 3.1,
3.3, 3.4, and 3.5 are all equal to R. From Lemma 3.6, let εm = 3m−1

m+1 − R; then we
get

RA(m, 2) ≤ R =
3m− 1
m+ 1

− εm.

Because εm tends to a positive number when m tends to infinity, there exists a positive
number ε such that εm ≥ ε for every m ≥ 4.

The comparison for some m between the two algorithms is shown in Table 3.1.
In the following we devise an algorithm Ā for general sm = s > 1.
ALGORITHM A. Let ε1 and ε2 be two positive numbers. If 2 − ε1 ≤ s ≤ 2 + ε2,

then we use algorithm A to schedule; otherwise we use algorithm LS.
THEOREM 3.8. There exist suitable ε1 > 0, ε2 > 0, and εm > 0 such that

RĀ(m) ≤ 3m− 1
m+ 1

− εm

for every m ≥ 4.
Proof. Because the upper bounds given in Lemmas 3.1, 3.2, 3.4, and 3.5 are

continuous functions of s, from Theorems 2.1 and 3.7, Theorem 3.8 is proved.

4. Conclusion. In this paper we derived two on-line algorithms that beat list
scheduling in the measure of worst-case performance (for m ≥ 4) on two conditions,
respectively. However, the following question may be very interesting. First, asymp-
totically our analysis did not improve the heuristic LS in Theorem 3.8, since εm may
tend to zero as m tends to infinity. Second, in Theorem 3.8 RĀ(m, s) = RLS(m, s)
for most s > 1. Are there on-line scheduling algorithms with worst case better than
RLS(m, s) for any fixed s ≥ 1? Third, for m ≥ 4 machines, we gave a lower bound of
2. How can we get a greater lower bound?

Acknowledgment. We are grateful to our supervisor, Professor Minyi Yue, for
his encouragement on this problem.

REFERENCES

[1] Y. CHO AND S. SAHNI, Bounds for list schedules on uniform processors, SIAM J. Comput.,
9 (1980), pp. 91–103.

[2] R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416–429.

[3] G. GALAMBOS AND G. J. WOEGINGER, An on-line scheduling heuristic with better worst case
ratio than Graham’s List Scheduling, SIAM J. Comput., 22 (1993), pp. 349–355.

[4] Y. BARTAL, A. FIAT, H. KARLOFF, AND R. VOHRA, New algorithms for an ancient scheduling
problem, in Proc. 24th ACM Symp. on Theory of Computing, ACM, New York, 1992,
pp. 51–58.

THE LOAD, CAPACITY, AND AVAILABILITY OF QUORUM
SYSTEMS∗

MONI NAOR† AND AVISHAI WOOL‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 423–447, April 1998 006

Abstract. A quorum system is a collection of sets (quorums) every two of which intersect.
Quorum systems have been used for many applications in the area of distributed systems, including
mutual exclusion, data replication, and dissemination of information.

Given a strategy to pick quorums, the load L(S) is the minimal access probability of the busiest
element, minimizing over the strategies. The capacity Cap(S) is the highest quorum accesses rate
that S can handle, so Cap(S) = 1/L(S).

The availability of a quorum system S is the probability that at least one quorum survives,
assuming that each element fails independently with probability p. A tradeoff between L(S) and the
availability of S is shown.

We present four novel constructions of quorum systems, all featuring optimal or near optimal
load, and high availability. The best construction, based on paths in a grid, has a load of O(1/

√
n),

and a failure probability of exp(−Ω(
√
n)) when the elements fail with probability p < 1

2 . Moreover,
even in the presence of faults, with exponentially high probability the load of this system is still
O(1/

√
n). The analysis of this scheme is based on percolation theory.

Key words. quorum systems, load, fault tolerance, distributed computing, percolation theory,
linear programming

AMS subject classifications. 60K35, 62N05, 68M10, 68Q22, 68R05, 90A28, 90C05

PII. S0097539795281232

1. Introduction.

1.1. Motivation. Quorum systems serve as basic tools providing a uniform
and reliable way to achieve coordination between processors in a distributed sys-
tem. Quorum systems are defined as follows. A set system is a collection of sets
S = {S1, . . . , Sm} over an underlying universe U = {u1, . . . , un}. A set system is said
to satisfy the intersection property if every two sets S,R ∈ S have a nonempty in-
tersection. Set systems with the intersection property are known as quorum systems,
and the sets in such a system are called quorums.

Quorum systems have been used in the study of problems such as mutual exclu-
sion (cf. [39]), data replication protocols (cf. [7, 18]), name servers (cf. [32]), selective
dissemination of information (cf. [46]), and distributed access control and signatures
(cf. [34]).

A protocol template based on quorum systems works as follows. In order to per-
form some action (e.g., update the database, enter a critical section), the user selects a
quorum and accesses all its elements. The intersection property then guarantees that
the user will have a consistent view of the current state of the system. For example,

∗Received by the editors February 8, 1995; accepted for publication (in revised form) January
30, 1996. A preliminary version of this paper appeared in the 35th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE Computer Society Press, Los Alamitos, CA, 1994,
pp. 214–225.

http://www.siam.org/journals/sicomp/27-2/28123.html
†Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot

76100, Israel (naor@wisdom.weizmann.ac.il). This author is an incumbent of the Morris and Rose
Goldman Career Development Chair; research was supported by an Alon fellowship and by a grant
from the Israel Science Foundation administered by the Israeli Academy of Sciences and Humanities.
‡Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, NJ 07974

(yash@research.bell-labs.com). The research of this author was completed at the Department of
Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot 76100, Israel.

423

424 MONI NAOR AND AVISHAI WOOL

if all the members of a certain quorum give the user permission to enter the critical
section, then any other user trying to enter the critical section before the first user
has exited (and released the permission-granting quorum from its lock) will be refused
permission by at least one member of any quorum it chooses to access.

In this work we consider three criteria of measuring how good a quorum system is:
1. Load. A strategy is a rule giving each quorum an access frequency (so that

the frequencies sum up to 1). A strategy induces a load on each element, which is the
sum of the frequencies of all quorums it belongs to. This represents the fraction of the
time an element is used. For a given quorum system S, the load L(S) is the minimal
load on the busiest element, minimizing over the strategies. The load measures the
quality of a quorum system in the following sense. If the load is low, then each element
is accessed rarely; thus it is free to perform other unrelated tasks.

2. Capacity. We would like the system to handle as many requests as possible.
For this purpose we define a(S, k) as the number of quorum accesses that S can handle
during a period of k time units. This is the maximal t for which there exists a way to
schedule t quorum accesses, to quorums S1, . . . , St (allowing repetitions), such that
no element is accessed more than k times. The capacity Cap(S) is then the limit as
k →∞ of a(S, k) normalized by k.

3. Availability. Assuming that each element fails with probability p, what
is the probability, Fp, that the surviving elements do not contain any quorum? This
failure probability measures how resilient the system is, and we would like Fp to be
as small as possible.

Our goal is to investigate these criteria and find quorum systems that perform
well according to all three.

1.2. Related work. The first distributed control protocols using quorum sys-
tems [42, 14] use voting to define the quorums. Each processor has a number of votes,
and a quorum is any set of processors with a combined number of votes exceeding
half of the system’s total number of votes. The simple majority system is the most
obvious voting system.

The availability of voting systems is studied in [4]. It is shown that in terms of
availability, the majority is the best quorum system when p < 1

2 . In [35] the failure
probability function Fp is characterized, and among other things it is shown that the
singleton has the best availability when p > 1

2 . The case when the elements fail with
different probabilities pi, all less than 1

2 , is addressed in [41].
The first paper to explicitly consider mutual exclusion protocols in the context

of intersecting set systems was [13]. In this work the term coterie and the concept of
domination are introduced. Several basic properties of dominated and nondominated
coteries are proved.

Alternative protocols based on quorum systems (rather than on voting) appear in
[28] (using finite projective planes), [1] (the Tree system), [5, 25] (using a grid), and
[23, 24, 38] (hierarchical systems). The triangular system is due to [26, 9]. The Wheel
system appears in [29]. The CWlog system appears in [37, 36]. The motivation for
several of these alternative systems was to find constructions with high availability
and low load (which is referred to in most of these papers as quorum systems with
small quorums).

In [19], the question of how evenly balanced the work load can be is studied.
Tradeoffs between the potential load balancing of a system and its average load are
obtained, and it is shown that in some quorum systems it is impossible to have a
perfect load balance in which all the elements have an equal load.

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 425

A concept of capacity in voting systems is defined in [21] and some voting systems
are compared. The analysis does not distinguish between properties of the quorum
system and properties of the strategy that chooses which quorum to access.

A good reference to percolation theory is [15]. Two successful applications of
percolation to questions of computer science are shown in [30] and [8].

While the majority quorum system is the best in terms of availability, and the
finite projective planes construction have excellent load, they fail miserably according
to the other criteria: the load of majority is 1

2 and the failure probability of the
projective planes (FPP) goes to 1 (quickly) as the number of elements grows. In
fact, all of the existing constructions are less successful than ours in the simultaneous
achievement of high availability and low load.

1.3. New results. We start by defining the concepts of load and capacity and
showing that they can be formulated as linear or integer linear programs. Then
using results of hypergraph theory we show that Cap(S) = 1/L(S). Therefore, all the
information regarding the capacity is captured by L(S).

We obtain several lower bounds on the load L(S). We show that if the minimal
quorum size is c(S), then L(S) ≥ max{1/c(S), c(S)/n}; hence L(S) ≥ 1/

√
n. We also

obtain a tradeoff between the load and failure probability, i.e., Fp ≥ pnL(S). In some
cases the linear program formulation of load also allows us to efficiently compute the
load of a given quorum system, even if the quorums are not represented explicitly,
using the ellipsoid algorithm adaptation of [16]. The behavior of the load when the
elements may fail is also studied. We assume the common model that the elements fail
independently with probability p. The load then becomes a random variable Lp(S).

Next we show some conditions that prove that a given strategy w induces the
optimal load. This enables us to find optimal strategies and to calculate L(S) of some
quorum systems without actually solving the linear program.

The major contributions of this work are four novel quorum system constructions,
all of which have optimal or near optimal load and high availability, i.e., a failure
probability that tends to 0 exponentially fast when p < 1

2 , or at least when p < β < 1
2 .

Our best construction is the Paths system, which is based on a percolation grid. It has
a load of O(1/

√
n), and a failure probability of exp(−Ω(

√
n)) when the elements fail

with probability p < 1
2 . Moreover, even in the presence of faults, with exponentially

high probability the load of this system is still O(1/
√
n). Two other constructions

resemble the Grid construction but are enhanced so their failure probability tends
to 0. The B-Grid system has L(B-Grid) = O(1/

√
n) and if p < 1

3 , then Fp(B-Grid) =
O(exp(−n1/4/2)). The SC-Grid system has L(SC-Grid) = O(

√
(lnn)/n), and if

p < 1
2 − δ for some δ > 0, then Fp(SC-Grid) ≤ exp(−Ω(

√
n lnn)). The AndOr

system uses the AND/OR trees of [43]. It has L(AndOr) = O(1/
√
n), Fp(AndOr) ≤

exp(−Ω(
√
n)) when p < 1

4 , and Fp ≤ exp(−Ω(n0.19)) if p ≤ 0.38 − Ω(n−0.19). The
three latter constructions also enjoy the property that their quorums are all of size
O(
√
n).
Finally, we analyze the load of some known quorum system constructions. We

show that all voting systems have a load of at least 1
2 , which is very high. We also

show that nondominated coteries have lower load than dominated ones.
The paper is organized in as follows. In section 2 we present some basic definitions.

In section 3 we define the load and the capacity, their linear programs, and the
relationship between them. In section 4 we prove the basic properties of the load. In
section 5 we present the new constructions. In section 6 we analyze the load of some
quorum systems.

426 MONI NAOR AND AVISHAI WOOL

2. Preliminaries.

2.1. Definitions and notation.
DEFINITION 2.1. A set system S = {S1, . . . , Sm} is a collection of subsets Si ⊆ U

of a finite universe U . A quorum system is a set system S that has the intersection
property: S ∩R 6= ∅ for all S,R ∈ S.

Alternatively, quorum systems are known as intersecting set systems or intersect-
ing hypergraphs. The sets of the system are called quorums. The number of elements
in the underlying universe is denoted by n = |U |. The number of quorums in the
system is denoted by m. The cardinality of the smallest quorum in S is denoted by
c(S) = min{|S| : S ∈ S}.

The degree of an element i ∈ U in a quorum system S is the number of quorums
that contain i: deg(i) = |{S ∈ S : i ∈ S}|.

DEFINITION 2.2. Let S be a quorum system. S is s-uniform if |S| = s for all
S ∈ S.

DEFINITION 2.3. A quorum system S is (s, d)-fair if it is s-uniform and deg(i) = d
for all i ∈ U . S is called s-fair if it is (s, d)-fair for some d.

DEFINITION 2.4. A coterie is a quorum system S that has the minimality prop-
erty: there are no S,R ∈ S, S ⊂ R.

DEFINITION 2.5. Let R,S be coteries (over the same universe U). Then R dom-
inates S, denoted R � S, if R 6= S and for each S ∈ S there is R ∈ R such that
R ⊆ S. A coterie S is called dominated if there exists a coterie R such that R � S.
If no such coterie exists, then S is nondominated (ND). Let NDC denote the class of
all ND coteries.

2.2. The probabilistic failure model. We use a simple probabilistic model
of the failures in the system. We assume that the elements (processors) fail indepen-
dently with probabilities pi. We assume that the failures are transient. We assume
also that the failures are crash failures and that they are detectable.

DEFINITION 2.6. A configuration is a vector x ∈ {0, 1}n in which xi = 1 iff the
element i ∈ U has failed.

Notation. For a configuration x let dead(x) = {i ∈ U : xi = 1} denote the set
of failed elements, and let live(x) = {i ∈ U : xi = 0} denote the set of functioning
elements.

Notation. We use qi = 1− pi to denote the probability of survival of element i.
DEFINITION 2.7. For every quorum S ∈ S let ES be the event that S is hit, i.e.,

at least one element i ∈ S has failed (or, xi = 1 for some i ∈ S). Let fail(S) be the
event that all the quorums S ∈ S are hit, i.e., fail(S) =

⋂
S∈S ES.

When the failure probabilities are equal, i.e., p = (p, . . . , p), we use the definition
of [35] of the global system failure probability of a quorum system S, as follows.

DEFINITION 2.8. Fp(S) = Pp(fail(S)) = Pp(
⋂
S∈S ES).

When we consider the asymptotic behavior of Fp(Sn) for a sequence Sn of quorum
system over a universe with an increasing size n, we find that for many constructions
it is similar to the behavior described by the Condorcet Jury Theorem [6]. Hence, we
have the following definition of [35].

DEFINITION 2.9. A parameterized family of functions gp(n) : N → [0, 1], for
p ∈ [0, 1], is said to be Condorcet iff

lim
n→∞

gp(n) =

{
0, p < 1

2 ,

1, p > 1
2 ,

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 427

and g1/2(n) = 1
2 for all n. If gp(n) has this behavior for p 6= 1

2 but g1/2(n) 6= 1
2 , then

it is said to be almost Condorcet.

3. Load and capacity.

3.1. Strategies and load. A protocol using a quorum system (for mutual ex-
clusion, say) occasionally needs to access quorums during its run. A strategy is a
probabilistic rule that governs which quorum is chosen each time. In other words, a
strategy gives the frequency of picking each quorum Sj .

DEFINITION 3.1. Let a quorum system S = (S1, . . . , Sm) be given over a uni-
verse U . Then w ∈ [0, 1]m is a strategy for S if it is a probability distribution over
the quorums Sj ∈ S, i.e.,

∑m
j=1 wj = 1.

For every element i ∈ U , a strategy w of picking quorums induces the frequency
of accessing element i, which we call the load on i. The system load, L(S), is the load
on the busiest element induced by the best possible strategy. Formally, we have the
following definition.

DEFINITION 3.2. Let a strategy w be given for a quorum system S = (S1, . . . , Sm)
over a universe U . For an element i ∈ U , the load induced by w on i is `w(i) =∑
Sj3i wj. The load induced by a strategy w on a quorum system S is

Lw(S) = max
i∈U

`w(i).

The system load on a quorum system S is

L(S) = min
w
{Lw(S)},

where the minimum is taken over all strategies w.
Remarks.

(i) The load L(S) should be viewed as a “best case” definition. A load of L(S) is
achieved only if the quorums are chosen according to an optimal strategy. However,
a protocol using the quorum system may use some other strategy (for instance, if
computing an optimal strategy is too costly) hence, the actual load might be higher
than L(S). This also means that L(S) is a property inherent in the combinatorial
structure of the quorum system and not in the protocol using the system.

(ii) In the definition of L(S) we are assuming that all the elements of the universe
are functioning, so all the quorums of the system are usable. In the following the
definition is extended to the case where the elements may fail.

3.2. A linear programming formulation of the load. An alternative way
to define the load is via a linear programming formulation. This formulation shows
that the load L(S) can be computed in polynomial time using linear programming
algorithms (cf. [40]) if S is given explicitly.

DEFINITION 3.3. Let a quorum system S = (S1, . . . , Sm) be given over a uni-
verse U of size n. Define a variable wj for each quorum Sj ∈ S and an additional
variable L. Then the system load L(S) is defined by the following linear program.

LP : L(S) = minL, s.t.

∑m
j=1 wj = 1, (i)∑
Sj3i wj ≤ L, for all i ∈ U, (ii)

wj ≥ 0, L ≥ 0. (iii)

Notation. We use (w;L) to denote a tuple of a strategy and a possible load that
together constitute a point in the problem domain [0, 1]m+1.

428 MONI NAOR AND AVISHAI WOOL

Remark. The program LP is always feasible, since for any quorum system S and
strategy w, the point (w; 1) is trivially feasible. Clearly, LP is also a bounded linear
program, so L(S) is always finite.

The next definition and lemma show that the load L(S) is closely related to the
well-known fractional matching number of a hypergraph (cf. [12, p. 149]).

DEFINITION 3.4. The fractional matching number of a quorum system, denoted
by ν∗, is

FM : ν∗(S) = max
m∑
j=1

fj , s.t .
{ ∑

Sj3i fj ≤ 1, for all i ∈ U,
fj ≥ 0.

LEMMA 3.5. L(S) = 1/ν∗(S) for any quorum system S.
Proof. Let w be an optimal strategy for program LP , attaining L(S). Then f

defined by fj = wj/L(S) is feasible in program FM . Since FM is maximizing, it
follows that ν∗(S) ≥

∑
j fj = 1/L(S).

On the other hand, consider f which optimizes program FM , with
∑
j fj = ν∗(S).

Then w defined by wj = fj/ν
∗ is a strategy (since

∑
j wj = 1), and (w; 1/ν∗) is feasible

for program LP . Since L(S) is minimal it follows that L(S) ≤ 1/ν∗(S).
Notation. For a vector y ∈ [0, 1]n and a set S ⊆ U , let y(S) =

∑
i∈S yi.

FACT 3.6. Let S be a quorum system as in Definition 3.3. Define a variable yi
for each element i ∈ U , and an additional variable T . The dual of program LP is

DLP : t(S) = maxT, s.t .

∑n
i=1 yi ≤ 1, (iv)

y(Sj) ≥ T, for all Sj ∈ S, (v)
yi ≥ 0, (vi)
T ≶ 0. (vii)

Remarks.
(i) Formally the variable T is unconstrained (vii). However, at the optimum,

t(S) = T is positive, since T = 0 is feasible for any vector y ∈ [0, 1]n and DLP is a
maximization problem.

(ii) The value of t(S) does not change if we require equality in (iv), since we can
increase the yi values without violating any inequality in (v) and without changing T .

Using the dual program DLP allows us in some cases to compute L(S), even
when S is given implicitly, using the ellipsoid algorithm of [16, 27] (see section 4.3).

3.3. The capacity of a quorum system. Each time that a distributed proto-
col generates an access to a quorum S ∈ S, it causes work to be done by the elements
of S. During the time that the elements of S are busy with one quorum access, they
cannot handle another. However, other elements may be used in the next quorum
access, making use of the parallelism in the system. We want to find what is the
maximal rate of quorum access that the system allows.

Assume that it takes one unit of time for an element to complete the work required
for a single quorum access. Now consider a period of k time units, and some schedule
of quorum accesses that need to take place during this period. Let the integers rj
count the number of times that each quorum Sj ∈ S is accessed, with the total number
of accesses being a =

∑
Sj∈S rj . Ignoring the order in which the quorum accesses are

scheduled, a necessary condition for the system to handle all a accesses within this
period of k time units is that every element i ∈ U be accessed at most k times. The
following definition formalizes this condition using an integer linear program.

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 429

DEFINITION 3.7. The maximum number of quorum accesses which a quorum
system S can handle within k units of time is

IP : a(S, k) = max
m∑
j=1

rj , s.t .

∑
Sj3i rj ≤ k, for all i ∈ U,

rj ≥ 0,
rj ∈ N.

The capacity of the system S is defined as the maximal rate at which the system
handles quorum accesses. In other words, the capacity is the number of accesses
a(S, k) that the system can handle, normalized by k. Since we are interested in the
behavior over long time periods, we let the period k tend to infinity.

DEFINITION 3.8. The capacity of a quorum system S is

Cap(S) = lim
k→∞

a(S, k)
k

.

In hypergraph theory the quantity a(S, k) is known as the k-matching number
of S and is usually denoted by νk (cf. [12, p. 154]). Furthermore, Proposition 5.12
of [12] shows that limk→∞ νk/k = ν∗; hence by the definition of the capacity and
Lemma 3.5 we obtain the following corollary.

COROLLARY 3.9. Cap(S)= 1/L(S).
Therefore, all the information regarding the capacity is captured by L(S). In [33]

we gave a direct proof of Corollary 3.9 (without using the hypergraph machinery)
which indicates how to schedule the quorum accesses so the capacity tends to 1/L(S):
select the quorums independently at random using a strategy w which optimizes the
load.

3.4. The load with failures. In this section we extend our definition of the
load to the case where the elements may fail. We use the simple probabilistic failure
model of section 2.2, namely that the elements fail independently with probabilities
p = (p1, . . . , pn).

DEFINITION 3.10. Let x ∈ {0, 1}n be the current configuration. Then Sx is the
subcollection of functioning quorums, Sx = {S ∈ S : S ⊆ live(x)}.

DEFINITION 3.11. The load of a quorum system S over a configuration x ∈ {0, 1}n
is defined as follows. If Sx = ∅ then L(Sx) = 1. If there are functioning quorums,
i.e., Sx 6= ∅, then

L(Sx) = minL, s.t .

∑
Sj∈Sx

wj = 1,∑
Sx3Sj3i wj ≤ L, for all i ∈ live(x),

wj ≥ 0, L ≥ 0.

Remark. When there are no functioning quorums in the current configuration,
there is no natural concept of load. We choose to define L(Sx) = 1 for such a
configuration to capture the intuition of a monotonic load; as more elements fail, the
load increases. The intuition behind this definition is justified in Proposition 3.16.

DEFINITION 3.12. Let the elements fail with probabilities p = (p1, . . . , pn). Then
the load is a random variable Lp(S) defined by

P
(
Lp(S) = L

)
=

∑
x

L(Sx)=L

∏
i∈dead(x)

pi
∏

i∈live(x)

qi.

430 MONI NAOR AND AVISHAI WOOL

If the probabilities p = (p, . . . , p) are all equal, we denote the random load by Lp(S).
Let ELp(S) denote the expectation of Lp(S).

FACT 3.13. For any quorum system S, if the elements never fail, then EL0(S) =
L(S) and if the elements fail with probability 1, then EL1(S) = 1.

LEMMA 3.14. Let S be a quorum system. Then ELp(S) ≥ Fp(S) for any p ∈
[0, 1].

Proof. By Definition 3.11, in a configuration x that causes a system failure (i.e.,
all the quorums are hit) the load is 1. Since Fp(S) is the probability of a system
failure, we get

ELp(S) = [1− Fp(S)] · g(S, p) + Fp(S) · 1

for some g(S, p) ≥ 0, and we are done.
The following examples show that although the FPP quorum system and the

Grid system have optimal or near optimal load of O(1/
√
n) when all the elements are

functioning (see Example 4.11), this load is not stable.
Example 3.15. In [35] it is shown that Fp(FPP) −→

n→∞
1 and Fp(Grid) −→

n→∞
1

for any p > 0. Therefore Lemma 3.14 gives that ELp(S) −→
n→∞

1 for both
systems.

The next proposition shows the correctness of the intuition that if the elements
are more fail prone, then the load is higher. For the proof we need some notation and
two lemmas.

PROPOSITION 3.16. ELp(S) is a monotone nondecreasing function of p ∈ [0, 1]
for any S.

Notation. For configurations x and z, denote x ≥ z if xi ≥ zi for all i ∈ U .
Notation. For a vector z = (z1, . . . , zn), let (1i; z) denote the vector z with a 1

plugged into the ith coordinate: (1i; z) = (z1, . . . , zi−1, 1, zi+1, . . . , zn), and similarly
for (0i; z).

LEMMA 3.17. Consider the function L(x) : {0, 1}n 7→ [0, 1] defined by L(x) =
L(Sx) for some quorum system S. If x ≥ z then L(x) ≥ L(z).

Proof. If x ≥ z then every element that is functioning in configuration x (with
xi = 0) is also functioning in z. Therefore Sx ⊆ Sz. If Sx = ∅, then by Definition 3.11
L(x) = 1 and we are done. Otherwise, any strategy w that uses only quorums
of Sx is a valid strategy for Sz as well, and by the minimality of L(Sz) the claim
follows.

LEMMA 3.18. Let S be a quorum system, let the elements fail with probabilities
p = (p1, . . . , pn), and let L(x) = L(Sx) be the load over configuration x. Consider the
multilinear function h(p) : [0, 1]n 7→ [0, 1] defined by

h(p) =
∑

x∈{0,1}n
L(x)

∏
xk=1

pk
∏
xk=0

qk = E[L(x)].

Then ∂h
∂pi

= h(1i; p)− h(0i; p) = E[L(1i; x)− L(0i; x)].
Proof. Sum h(p) separately for configurations in which element i is failed (xi = 1)

or is functioning (xi = 0).

h(p) = pi
∑

x:xi=1

L(x)
∏
xk=1
k 6=i

pk
∏
xk=0

qk + qi
∑

x:xi=0

L(x)
∏
xk=1

pk
∏
xk=0
k 6=i

qk

= pih(p1, . . . , pi−1, 1, pi+1, . . . , pn) + qih(p1, . . . , pi−1, 0, pi+1, . . . , pn)
= pih(1i; p) + qih(0i; p).

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 431

Taking partial derivatives we get ∂h
∂pi

= h(1i; p)− h(0i; p). Having element i fail
with probability 1 is the same as having a constant 1 in the random configuration x,
so h(1i; p) = E[L(1i; x)]. Linearity of the expectation completes the lemma.

Proof of Proposition 3.16. Consider the case where the elements fail with proba-
bilities p = (p1, . . . , pn), and let L(x) and h(p) be as before. By Lemma 3.17 L(x) is
nondecreasing, so L(1i; x) ≥ L(0i; x) for every i. Therefore by Lemma 3.18, ∂h

∂pi
≥ 0

as an expectation of nonnegative terms, so h(p) is nondecreasing in every coordi-
nate. Plugging p = (p, . . . , p) shows that ELp(S) = h(p, . . . , p) is a nondecreasing
function.

3.5. Other measures of load. In order to measure an intuitive notion of “load”
of a quorum system, our definition of L(S) (Definitions 3.2 and 3.3) is not the only
one that comes to mind. Here we discuss the shortcomings of some alternatives.

Several authors (e.g., [28, 1] have emphasized the criterion of having small quo-
rums. This is an important parameter since it captures the message complexity of a
protocol using the quorum system. However, it does not tell us how to use the quo-
rums so each element is used as infrequently as possible. Moreover, our lower bounds
(Propositions 4.1 and 4.2) show that if the quorum size is small (i.e., c(S) <

√
n)

then decreasing it any further actually increases the load. We therefore argue that
when analyzing a quorum system, one should consider both its quorum size and load
(and of course its availability) since each measures a different aspect of the system’s
quality. Having a small quorum size does not give us the whole picture.

Looking for systems with small average quorum size can also be misleading. For
instance, the average quorum size in the Wheel system [29] is very small (≈ 3) but
the load is high: L(Wheel) ≈ 1/2.

Another tempting definition is that of an average load, rather than the maximum,
i.e., AvL(S) = minw 1

n

∑
i∈U

∑
Sj3i wj , minimizing over strategies w. An equivalent

notion is that of the total load, which is the same as the average except for the
scaling factor of 1/n. However, by changing the summation order it follows that
AvL(S) = minw 1

n

∑
1≤j≤m wj |Sj |. A strategy that minimizes this expression is the

trivial strategy that always uses the smallest quorum Smin (with probability 1), so
AvL is an uninteresting measure.

4. Properties of the load.

4.1. Lower bounds and a tradeoff of the load. In this section we present
three lower bounds on the load L(S), in terms of the smallest quorum cardinality
c(S) and the universe size n. Two of these can be found in the hypergraph literature
as upper bounds for the fractional matching number ν∗, and we present them here
using our terminology. We also show a tradeoff between the availability of a quorum
system, quantified by the failure probability Fp, and the load.

PROPOSITION 4.1. (See [12, p. 150].) L(S) ≥ c(S)
n for any quorum system S.

PROPOSITION 4.2. L(S) ≥ 1
c(S) for any quorum system S.

Proof. Let Smin ∈ S be a quorum such that |Smin| = c(S) and let y be defined by
yi = 1

c(S) for i ∈ Smin and yi = 0 otherwise. Then (y; 1/c(S)) is feasible for program
DLP so the claim follows by the weak duality of linear programming.

PROPOSITION 4.3. (See [2]; cf. [12, p. 170].) Let m(S) be the number of quorums
in S. Then

L(S) ≥ 1√
n

√
1 +

c(S)− 1
m(S)

≥ 1√
n
.

432 MONI NAOR AND AVISHAI WOOL

Example 4.4. The following examples show that both Propositions 4.1 and 4.2
give meaningful lower bounds on the load of some quorum systems.

(i) Over an odd-sized universe, all the quorums of the simple majority system
Maj are of size (n+ 1)/2; therefore, by Proposition 4.1 L(Maj) ≥ (n+ 1)/2n > 1

2 .
(ii) In the Tree system [1], the smallest quorums have cardinality log(n + 1).

Therefore, by Proposition 4.2 L(Tree) ≥ 1/ log(n+ 1).
The following proposition shows a tradeoff between the failure probability and

the load.
PROPOSITION 4.5. Fp(S) ≥ pnL(S) for any quorum system S and any p ∈ [0, 1].
Proof. Consider a quorum Smin with |Smin| = c(S). If all the elements of Smin

fail then by the intersection property the system fails; therefore Fp(S) ≥ pc(S). The
claim follows since c(S) ≤ nL(S) by Proposition 4.1.

DEFINITION 4.6. An infinite family of quorum systems Sn over universes of
increasing size n is said to have a tight tradeoff if

L(S) ≤ C · − logFp(Sn)
n

for some constant C = C(p) > 0 that depends only on 0 < p < 1
2 .

Remark. It is pointless to consider values of p ≥ 1
2 since in [35] it is proved that

Fp(S) ≥ 1
2 for such p and any quorum system S, so Proposition 4.5 is meaningless

asymptotically in this case.

4.2. Conditions for optimality of the load. In this section we present several
conditions that guarantee the optimality of a strategy w. The first condition, which
can be applied to any system S, is an immediate consequence of linear programming
duality.

PROPOSITION 4.7. Let a quorum system S be given, and let w be a strategy
for S with an induced load of Lw(S) = L. Then L is the optimal load iff there exists
y ∈ [0, 1]n such that y(U) = 1 and y(S) ≥ L for all S ∈ S.

Proof. By the premise, (w;L) is a feasible point of LP , with an objective function
value of L. Therefore, by duality L is the optimum iff there exists a feasible point
of the dual problem DLP with an objective function value of L as well. By the
definition of DLP , this implies that L is optimal iff there exists y such that (y;L) is
dual-feasible, which is guaranteed by the conditions on y.

One way to search for a good strategy w is to try to find a balancing strategy. We
can try to do this by constructing a feasible point (w;L) for the following balanced
load linear program, in which the inequalities (ii) of LP are replaced by equalities (ix).

BLP :

∑m
j=1 wj = 1, (viii)∑
Sj3i wj = L, for all i ∈ U, (ix)

wj ≥ 0, L ≥ 0. (x)

The program BLP is not always feasible, since finding a solution would imply that S
can be perfectly balanced, which cannot be done for all quorum systems [19]. Nev-
ertheless, one could hope that such a balancing strategy (if found) would induce the
optimal load. The next proposition shows that this is true for a certain subclass of
quorum systems.

PROPOSITION 4.8. Let S be an s-uniform quorum system. Let w be a strategy
and let L ≥ 0 be such that (w;L) is a feasible point for program BLP . Then the
optimal load is L(S) = L = s/n.

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 433

Proof. First let us show that L = s/n. Using the equalities (ix) we get∑
i∈U

∑
Sj3i

wj = nL.(1)

By switching the summation order and using the s-uniformity of S and equality (viii)
we get ∑

i∈U

∑
Sj3i

wj =
m∑
j=1

wj
∑
i∈Sj

1 = s
m∑
j=1

wj = s.(2)

By equating (1) and (2) we conclude that L = s/n.
Now let y = (1/n, . . . , 1/n) be a weight vector for the elements. Clearly y(U) = 1,

and y(S) = |S|/n = s/n = L for any quorum S ∈ S, since S is s-uniform. Therefore
(y;L) is dual-feasible, so by Proposition 4.7, L(S) = L.

Remark. The proof does not use the fact that S is a quorum system in any way,
and it holds for nonintersecting set systems as well.

The condition that Proposition 4.8 places on a strategy w is a very weak one.
It suffices to show that w is a feasible balancing strategy for it to induce the unique
optimal load, if S is uniform. The following example shows that the uniformity
is crucial; nonuniform quorum systems can have several balancing strategies, with
different induced loads.

Example 4.9. Consider the quorum system

S = { {1, 4, 6}, {2, 4, 7}, {3, 5, 6, 7}, {1, 2, 3, 5},
{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}, {4, 5, 6, 7}, {5, 6, 7, 1}, {6, 7, 1, 2}, {7, 1, 2, 3} }.

The strategy w = (0, 0, 0, 0, 1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7) is balancing with a load of Lw(S) = 4

7 .
However, the strategy w′ = (1

4 ,
1
4 ,

1
4 ,

1
4 , 0, 0, 0, 0, 0, 0, 0) is also balancing, with a load

of Lw′(S) = 1
2 .

If S is a fair system, then the next proposition shows that we can compute the
load and optimal strategy immediately. This is a restatement of Proposition 5.1 of
[12] using the fact that L(S) = 1/ν∗.

PROPOSITION 4.10. Let S be an (s, d)-fair quorum system. Then L(S) = s/n =
d/m.

Example 4.11. The following examples demonstrate the use of Proposition 4.10.
The first shows that the lower bound of Example 4.4 is tight, and the other two show
that the optimal load of Proposition 4.3, 1/

√
n, can be attained.

(i) Over an odd-sized universe, Maj is an n+1
2 -fair quorum system, so L(Maj) =

n+1
2n ≈

1
2 .

(ii) The FPP system [28] is a (t + 1)-fair quorum system over n = t2 + t + 1
elements, so L(FPP) = t+1

t2+t+1 ≈
1√
n

. In fact, equality holds in the tighter lower
bound of Proposition 4.3 for this system.

(iii) The Grid system [5] is a (2h − 1)-fair system over n = h2 elements, so
L(Grid) = 2h−1

h2 ≈ 2√
n

.

4.3. Effective calculation of the load. If a quorum system S is given explic-
itly, as a list of all m quorums, then program LP of Definition 3.3 can be solved in
poly(n,m) time using linear programming (cf. [40]). However, often S is given implic-
itly, say, via some data structure containing the elements coupled with a polynomial-
time procedure to produce a quorum on demand. In such a case just writing program

434 MONI NAOR AND AVISHAI WOOL

Input a point (y;T).
The rows are U1, . . . , Ud.
Q← ∅; s← 0
for i = d to 1 // bottom to top

r ←
∑
j∈Ui yj

if r + s < T then
return Ui ∪Q // y(Ui ∪Q) < T

else
j ← argmink∈Ui{yk} // min weight in row i
s← s+ yj
Q← Q ∪ {j}

end-for
return TRUE // (y;T) is dual-feasible

FIG. 1. An oracle for a crumbling wall quorum system.

LP could be an exponential task since typically m = 2Ω(n). Calculating the load
quickly is especially important when failures may occur, since the computation needs
to be done repeatedly after each configuration change.

Instead we make use of the adaptation of the ellipsoid algorithm of [16]. Let d
denote the dimension of the problem at hand. The ellipsoid algorithm uses an oracle,
which receives a point x ∈ Rd and performs the following action.

(i) If x is a feasible point, then return TRUE.
(ii) Otherwise, return a hyperplane separating x from the feasible region (i.e.,

return a violated constraint).
Given such an oracle that works in time τ , the algorithm solves the linear program

in time poly(τ, d).
We achieve nothing by applying this algorithm to problem LP since its dimension

is m + 1. However, we can apply this algorithm to the dual problem DLP , whose
dimension is n+1. Translated to our terminology, we need to provide an oracle whose
input is a point (y;T). If (y;T) is feasible in DLP then the oracle returns TRUE,
otherwise it returns a quorum S ∈ S such that y(S) < T . If this oracle works in
poly(n) time, then the algorithm calculates the load in poly(n) time.

Remark. Solving problem DLP gives us the optimal value of the load, but does
not find a strategy that induces this load. Just writing down a strategy would cause
a time complexity of Ω(m).

Example 4.12. In the systems of the crumbling wall class [37] the elements are
arranged in rows of different widths, and a quorum is the union of a full row and
a representative from each row below the full row. The procedure in Figure 1 is
an oracle of the required kind, with a time complexity of O(n). Therefore, we
can compute the load of any crumbling wall using the ellipsoid algorithm outlined
above.

5. Optimal load, high availability quorum systems.

5.1. The paths system. In this system, the elements constitute a type of square
grid, and a quorum is the union of two paths, one connecting the left and right sides
and one connecting the top and bottom sides. Our analysis shows that L(Paths) =
O(1√

n
) and that Fp(Paths) ≤ e−Ω(

√
n) for p < 1

2 , so the tradeoff between the load

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 435

(0,0)

FIG. 2. The grids G(3) (full lines) and G∗(3) (dotted lines).

and failure probability is tight. Moreover, we show that even in the presence of
faults, with exponentially high probability the load is still Lp(Paths) = O(1√

n
) for

all p < 1
2 , which is the best we can hope for. We also give a simple and efficient

algorithm for computing a strategy which induces an almost optimal load when some
elements are faulty. The proofs are based on theorems of percolation theory (see the
appendix).

DEFINITION 5.1. Let G(d) be the subgrid of Z2 with vertex set {v ∈ Z2 : 0 ≤ v1 ≤
d + 1, 0 ≤ v2 ≤ d} and edge set consisting of all edges joining neighboring vertices
except those joining vertices u, v with either u1 = v1 = 0 or u1 = v1 = d+ 1.

DEFINITION 5.2. Let G∗(d), the dual of G(d), be the subgrid with vertex set
{v + (1

2 ,
1
2) : 0 ≤ v1 ≤ d,−1 ≤ v2 ≤ d} and edge set consisting of all edges joining

neighboring vertices except those joining vertices u, v with either u2 = v2 = − 1
2 or

u2 = v2 = d+ 1
2 .

See Figure 2 for a drawing of G(d) and G∗(d). Note that every edge e ∈ G(d) has
a dual edge e∗ ∈ G∗(d) which crosses it. We call such e and e∗ a dual pair of edges.
Note also that G(d) and G∗(d) are isomorphic; G∗(d) may be obtained by rotating
G(d) at a right angle around the origin and relocating the vertex labeled (0, 0) to the
point (d+ 1

2 ,−
1
2). Both G(d) and G∗(d) contain d2 + (d+ 1)2 = 2d2 + 2d+ 1 edges.

DEFINITION 5.3. The Paths quorum system of order d has n = 2d2 + 2d + 1
elements, and we identify an element in U with a dual pair of edges e ∈ G(d) and
e∗ ∈ G∗(d). A quorum in the system is the union of (elements identified with) the
edges of a left-right path in G(d) and the edges of a top-bottom path in G∗(d).

PROPOSITION 5.4.
√

2√
n
/ L(Paths) / 2

√
2√
n

.
Proof. For the lower bound, note that the smallest quorum has size c(Paths) =

2d+ 1, and we can apply Proposition 4.1 to get L(Paths) ≥ 2d+1
2d2+2d+1 . For the upper

bound, consider the quorums of the type Sj = {edges joining u, v ∈ G(d) : u2 =
v2 = j} ∪ {edges joining u, v ∈ G∗(d) : u1 = v1 = j + 1

2}, for j = 0, . . . , d. Each
element corresponding to a horizontal edge in G(d) appears in two such quorums,
except elements on the diagonal that appear only once. A strategy choosing only
these quorums with probability 1

d+1 induces a load of 2
d+1 .

We now wish to calculate the failure probability of the Paths system. We assume
that the elements fail with probability p. A failed element corresponds to two closed

436 MONI NAOR AND AVISHAI WOOL

percolation edges: an edge e ∈ G(d) and its dual edge e∗ ∈ G∗(d). We say that a path
in G(d) is closed if all its edges are closed. Define the following events:

(i) LR = “there exists an open left-right path in G(d),”
(ii) LRC = “there exists a closed left-right path in G(d),”
(iii) TB = “there exists a open top-bottom path in G∗(d),”
(iv) TBC = “there exists a closed top-bottom path in G∗(d).”

LEMMA 5.5. If p > 1
2 , then there exists a positive function ϕ such that Pp(LR) ≤

e−ϕ(p)d.
Proof. Consider the grid G(d), and let λ = {v ∈ Z2 : v1 = d + 1} be the set of

Z2 vertices on the infinite vertical line on the right side of G(d). Let R denote the
vertices on the right side of G(d). Then summing along the possible starting points
on the left side,

Pp(LR) ≤
d∑
k=0

Pp((0, k)↔ R) ≤
d∑
k=0

Pp((0, k)↔ λ) = (d+ 1)Pp(0↔ λ).

A path from the origin to λ must exit the ball B(d), so we can apply Theorem A.1
to get

≤ (d+ 1)Pp(0↔ ∂B(d)) ≤ (d+ 1)e−ψ(p)d ≤ e−ϕ(p)d.

COROLLARY 5.6. If q > 1
2 (p < 1

2), then there exists a positive function ϕ such
that Pp(LRC) ≤ e−ϕ(q)d.

Proof. Exchanging the roles of p and q we get that Pp(LRC) = Pq(LR), so we
can apply Lemma 5.5.

PROPOSITION 5.7. There exists a positive function ϕ such that Fp(Paths) obeys
Fp(Paths) ≤ 2e−ϕ(q)d, p < 1

2 ,

Fp(Paths) ≥ 1− e−ϕ(p)d, p > 1
2 ,

1
2 < Fp(Paths) ≤ 3

4 , p = 1
2 ,

so Fp(Paths) is almost Condorcet.
Proof. By definition, the event “there is a live quorum” is LR∩TB. A moment’s

reflection shows that an open left-right path exists in G(d) iff no closed top-bottom
path exists in G∗(d), since a dual pair of edges e and e∗ have the same state (see dis-
cussion in [15, pp. 198–199]). Therefore, the events LR and TBC are complementary.
Since G(d) and G∗(d) are isomorphic, then TB and LRC are also complementary
events. Therefore, the system failure event is

fail = LR ∩ TB = TBC ∪ LRC.

Additionally, the isomorphism betweenG(d) andG∗(d) implies that Pp(LR) = Pp(TB)
and Pp(LRC) = Pp(TBC). Now we consider the three cases as follows.

(i) Let p < 1
2 . Then Fp = Pp(fail) = Pp(LRC ∪ TBC) ≤ 2Pp(LRC) and so

Fp(Paths) ≤ 2e−ϕ(q)d by Corollary 5.6.
(ii) Let p > 1

2 . Then 1−Fp = Pp(LR∩TB) ≤ Pp(LR) ≤ e−ϕ(p)d by Lemma 5.5.
(iii) Let p = 1

2 . From the above discussion and the proof of Corollary 5.6 it
follows that P1/2(LR) = P1/2(TB) = 1

2 . For the upper bound, note that both LR
and TB are increasing events, so we can use the FKG inequality [10]. Therefore,

F1/2 = 1− P1/2(LR ∩ TB) ≤ 1− P1/2(LR)P1/2(TB) =
3
4
.

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 437

For the lower bound, note that Paths is a dominated quorum system. Therefore,
F1/2(Paths) > 1

2 by a result of [35].
Finally, we show that, with high probability, the load of the Paths system is

O(1√
n

) in the presence of failures, for any failure probability p < 1
2 . In other words,

the load has essentially the same asymptotic behavior as long as there is a good
probability that at least one functioning quorum exists.

PROPOSITION 5.8. For any 0 ≤ p < 1
2 there exists γ > 0 such that Lp(Paths) =

O(1√
n

) with probability ≥ 1− e−γd.
Proof. Let LRr be the event “there exist at least r + 1 edge disjoint left-right

paths in G(d).” Fix some 1
2 > p′ > p. Then by Theorem A.3,

1− Pp(LRr) ≤
(

q

q − q′

)r
[1− Pp′(LR)].

Now for p′ < 1
2 ,

Pp′(LR) = 1− Pp′(TBC) = 1− Pp′(LRC) ≥ 1− e−ϕ(q′)d

by Corollary 5.6, so

Pp(LRr) ≥ 1−
(

q

q − q′

)r
e−ϕ(q′)d.

Fix 0 < γ < ϕ, let 0 < β = ϕ−γ
ln[q/(q−q′)] , and let r = βd. Then Pp(LRr) ≥ 1− e−γd. In

other words, with high probability, there exist βd+ 1 edge disjoint left-right paths in
G(d). The same also happens for top-bottom paths in G∗(d). Therefore, we can find
βd + 1 quorums such that any element appears in at most two of them (once as an
edge e ∈ G(d) and once as the dual edge). We conclude that when such quorums are
found, Lp(Paths) ≤ 2

βd+1 = O(1√
n

).
Remark. This is the strongest possible result regarding load with failures, since if

p ≥ 1
2 then by Lemma 3.14 and a result of [35], ELp(S) ≥ Fp(S) ≥ 1

2 for any quorum
system S.

Proposition 5.8 guarantees that, with high probability, a good strategy (that
induces a load of O(1/

√
n)) exists. We now describe an efficient algorithm that finds

a nearly optimal strategy w for any given configuration x; the load induced by w is
at most twice the optimal load under configuration x, L(Pathsx).

The algorithm mimics the structure of the existence proof. As a preprocessing
step that needs to be performed after each configuration change, the algorithm finds
a maximum collection of disjoint left-right paths, say kLR such paths, and similarly
finds kTB disjoint top-bottom paths. This can be done by connecting a source vertex
s to all the vertices on the left side and a sink t to the vertices on the right, assigning
a capacity of 1 to all the edges, and finding the maximum (s, t) flow (and repeating
for TB paths). Since the network is planar we can find the flow in time O(n logn)
using the algorithm of [20], or in time O(n

√
logn) by [17] using the methods of [11].

Given these path collections, the strategy w is the following: if either kLR = 0
or kTB = 0, then no live quorums exist in configuration x. Otherwise, whenever a
quorum is needed, pick an LR path with uniform probability 1/kLR and a TB path
with uniform probability 1/kTB , and use their union. Since the paths are disjoint,
each element can appear at most once in an LR path and once in a TB path, so

Lw(Pathsx) ≤ 1/kLR + 1/kTB .

438 MONI NAOR AND AVISHAI WOOL

FIG. 3. The B-Grid system over n = 240 elements with width d = 16, h = 5 bands, and r = 3
rows per band. One quorum is shaded.

However, if the maximum flow is kLR, then the max-flow min-cut theorem implies the
existence of a kLR-size cut. Therefore, any LR path that is open in configuration x
must cross this cut via an edge, so some edge in this cut must have a load of at least
1/kLR under any strategy. This implies a lower bound on the load

L(Pathsx) ≥ max{1/kLR, 1/kTB};

hence Lw(Pathsx) is at most twice the best possible.
Remark. A related construction, using paths on a triangular lattice with elements

corresponding to the nodes, was suggested in [45] (see [44]). They show that their
construction has asymptotically high availability (Fp → 0 when p < 1

2 in our nota-
tion). The rate of convergence is not analyzed and neither is the load (with or without
failures). Nevertheless, it seems that an analysis similar to ours would show that the
characteristics of their system are comparable to those of our Paths system, with a
load of O(1/

√
n) and Fp ≤ e−Ω(

√
n) when p < 1

2 .

5.2. The B-Grid system. Arrange the elements in a rectangular grid of width d.
Split the grid logically into h bands of r rows each (so there are n = dhr elements).
Call r elements in a column that are all contained in a single band a minicolumn. Then
a quorum consists of one minicolumn in every band, and a representative element in
each minicolumn of one band (see Figure 3).

LEMMA 5.9. L(B-Grid) = d+hr−1
dhr .

Proof. Clearly B-Grid is a fair quorum system, with a quorum size of d+ hr− 1,
and the lemma follows from Proposition 4.10.

LEMMA 5.10. Fp(B-Grid) ≤
(
dpr
)h + h

(
1− qr

)d.
Proof. Define E1 to be the event “in every band there exists a minicolumn whose

elements all failed,” and E2 to be the event “there exists a band in which every
minicolumn contains a failed element.” Clearly the system failure event is fail =
E1 ∪ E2, so Fp(B-Grid) ≤ P(E1) + P(E2). We get the result since P(E1) ≤

(
dpr
)h and

P(E2) ≤ h
(
1− qr

)d.
In the next lemma we give a condition on r under which Fp decays exponentially

fast in a large range of p values.
LEMMA 5.11. If 0 ≤ p ≤ 1

3 and r = bln dc, then Fp(B-Grid) ≤ e−h + e−
1
2

√
d for

large values of d such that lnh < 1
2

√
d.

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 439

AbC bCD CDE DEA EAb

fGh GhI hIj Ijf jfG

Klm lmN mNo NoK oKl

FIG. 4. The SC-Grid system over n = 15 elements with width d = 5, h = 3 rows, and r = 3
elements per cell. The elements of one quorum are marked by capitalized letters, and the cells where
a majority is achieved are shaded.

Proof. To get P(E1) ≤
(
dpr
)h ≤ e−h we require the condition

r >
ln d+ 1
ln 1/p

.(3)

To get P(E2) ≤ h
(
1− qr

)d ≤ e− 1
2

√
d we require the condition

r <
ln d− ln(lnh+ 1

2

√
d)

ln 1/q
.(4)

If we consider only p ≤ 1
3 , then 1

ln 1/p ≤ 0.91 and 1
ln 1/q ≥ 2.466, and a simple

check shows that r = bln dc fills both conditions (3) and (4) for sufficiently large d if
lnh < 1

2

√
d.

The next propositions are proved by plugging the parameters into Lemmas 5.11
and 5.9. In Proposition 5.12 the failure probability is minimal for the B-Grid system
(up to a logarithmic factor in the exponent). In Proposition 5.13 the load is minimal.

PROPOSITION 5.12. If d = n2/3, r = bln dc, and h = n/(rd), then L(B-Grid) =
O(n−1/3) and Fp(B-Grid) = O(exp(−n1/3

lnn)) in the range 0 ≤ p ≤ 1
3 .

PROPOSITION 5.13. If d =
√
n, r = bln dc, and h = n/(rd), then L(B-Grid) =

O(1/
√
n) and Fp(B-Grid) = O(exp(−n1/4

2)) in the range 0 ≤ p ≤ 1
3 .

Remark. Taking either d > n2/3 or d <
√
n makes both the load and the avail-

ability worse. Note that, in any case, the tradeoff between the load and failure prob-
ability is not tight. By Proposition 4.5 we could hope for a failure probability of
O(exp(−n2/3)) when the load is ≈ n−1/3.

5.3. The SC-Grid system. Consider a grid made of h rows of cells with
width d. In a universe of size n = dh, allocate d different elements to each row. As-
sume that row j is allocated elements {1, . . . , d}. Then for a parameter r < d, place
the elements into cells in shifted cyclic order: {1, . . . , r} in cell (1, j), {2, . . . , r+ 1} in
cell (2, j) and so forth. Every element appears in r cells in the same row. A quorum
in the system is a set of elements that are a majority in one cell of every row and a
majority in every cell of one row (see Figure 4). This system is somewhat similar to
that of [38] in which each grid cell contains a distinct set of elements. For simplicity
assume that both d and r are odd.

LEMMA 5.14. Let r be odd and let d > r. Consider a cycle of d elements, and
the d subsets C1, . . . , Cd of r consecutive elements along the cycle. Color G of the

440 MONI NAOR AND AVISHAI WOOL

elements in green, and let gj count the number of green elements in Cj. If gj ≥ r+1
2

for all j, then G ≥ dd · r+1
2r e. If d | r then the bound can be achieved.

Proof. Sum the number of green elements in each Cj . Then
∑d
j=1 gj = rG since

every green element is counted precisely r times. Since gj ≥ r+1
2 then rG ≥ d · r+1

2
and we are done.

If d = rx for some integer x, then consider the x disjoint sets C` = {(` − 1)r +
1, . . . , `r} for 1 ≤ ` ≤ x. In each set color the first r+1

2 elements in green. Then
every set Cj contains r+1

2 green elements and G = x · r+1
2 , so the lower bound is

achieved.
LEMMA 5.15. rh+d

2n / L(SC-Grid) / r
d .

Proof. By Lemma 5.14 the smallest quorum size is c(SC-Grid) ≥ r+1
2 (h−1)+ d+1

2 ,
so the lower bound follows from Proposition 4.1. For the upper bound, consider the
quorums S1, . . . , Sk+1, where Sj contains all the d elements of row j, and r+1

2 elements
of every row i 6= j. Consider a specific row j. As long as k r+1

2 ≤ d we can use a
different set of r+1

2 elements from row j in quorum Si for i 6= j, so every element
appears in at most two quorums. Therefore we can take k = b 2d

r+1c. A strategy that
chooses one of these quorums with equal probability induces a load of 2

k+1 ≈
r
d .

Notation. Let fx be the probability that at least x+1
2 elements fail out of x when

each element fails independently with probability p.
LEMMA 5.16. Fp(SC-Grid) ≤ (dfr)h + hfd.
Proof. Call a cell failed if a majority of its elements fail. Let E1 be the event

“all the rows contain at least one failed cell,” and let E2 be the event “there exists
a row in which all the cells failed.” Then Fp(SC-Grid) ≤ P(E1) + P(E2). Clearly
P(E1) ≤ (dfr)h. By Lemma 5.14, if all the cells in row j have failed, then at least d+1

2
of the elements in row j have failed, so P(E2) ≤ hfd.

LEMMA 5.17. For every δ < 1
2 there exists ε > 0 such that, when 0 ≤ p ≤ 1

2 − δ
and r ≥ 2

ε ln d, then

Fp(SC-Grid) ≤ d−h + he−εd.

Proof. By a Chernoff inequality, there exists ε > 0 such that fx ≤ e−εx for all x
when 0 ≤ p ≤ 1

2 − δ. For this ε, if r ≥ 2
ε ln d then fr ≤ 1/d2. Plugging this into

Lemma 5.16 finishes the lemma.
By plugging the parameter values into Lemmas 5.15 and 5.17 we obtain the

following result.
PROPOSITION 5.18. For every δ < 1

2 there exists ε > 0 such that if 0 ≤ p ≤
1
2 − δ, then taking r = d 2

ε ln de, d =
√
n lnn, and h = n/d gives Fp(SC-Grid) =

exp(−Ω(
√
n lnn)) and L(SC-Grid) = O(

√
(lnn)/n).

Remark. The parameters were chosen to minimize the failure probability. The
tradeoff between the load and failure probability is tight for this construction.

5.4. The AndOr system. Consider a complete rooted binary tree of height h,
rooted at root, and identify the n = 2h leaves of the tree with the system elements.
We define two recursive procedures that operate on a subtree rooted at v and return
a set of elements.

(i) For a leaf v, ANDset(v) = ORset(v) = {v}.
(ii) ANDset(v) = ORset(v.left) ∪ORset(v.right).
(iii) ORset(v) has a choice; it can be either ANDset(v.left) or ANDset(v.right).

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 441

A quorum in the AndOr system is any set Q = S ∪ R where S is an ANDset(root)
and R is an ORset(root).

It is easy to think of the AndOr system as the conjunction of two boolean functions
corresponding to the top level activations of ANDset and ORset . Each function is
defined by a complete tree of alternating AND and OR gates, over the same inputs,
but one function has an AND gate at the root while the other has an OR gate at the
root.

LEMMA 5.19. If S = ANDset(root) and R = ORset(root), then |S ∩ R| = 1
for any choices made by the activations of the ORset procedure. Hence AndOr is a
quorum system.

Proof. The proof is by induction on the tree height h. The case h = 0 is obvious.
For h ≥ 1, assume w.l.o.g. that the ORset procedure uses the left subtree. Then any
element in the right subtree is not in the intersection, and by the induction hypothesis
the intersection in the left subtree has size 1.

LEMMA 5.20. The AndOr system is a fair system, with

c(AndOr) =

{
2
√
n− 1, h even,

3
√
n/2− 1, h odd.

Proof. The fairness is obvious from symmetry. Let ANDsize(h) = |ANDset(root)|
denote the size of the output of the ANDset procedure on a tree with height h,
and similarly let ORsize(h) = |ORset(root)|. Then by definition, ANDsize(0) =
ORsize(0) = 1, and

ANDsize(h) = 2ORsize(h− 1),
ORsize(h) = ANDsize(h− 1).

It is easy to show by induction on h that ORsize(h) = 2b
h
2 c and ANDsize(h) = 2b

h+1
2 c.

Combining with Lemma 5.19 finishes the proof.
PROPOSITION 5.21. L(AndOr) = O(1/

√
n).

Proof. To obtain the proof, apply Proposition 4.10 using Lemma 5.20.
The following proposition shows the high availability of the AndOr system. The

proof is an adaptation of the proof in [43]. We include it here for completeness,
omitting some of the technical details.

PROPOSITION 5.22. Let α = 3−
√

5
2 ≈ 0.38. Fp(AndOr) ≤ exp(−Ω(

√
n)) when

p < 1
4 and Fp ≤ exp(−Ω(n0.19)) when p ≤ α− Ω(n−0.19).
Proof. Let fA(h) denote the probability that all of the possible outputs sets of the

ANDset procedure are hit, and similarly let fO denote the probability for the ORset
procedure, on a tree with height h. Clearly Fp(AndOr) ≤ fA(h) + fO(h). By the
definitions,

fA(h) = 2f2
A(h− 2)− f4

A(h− 2),
fO(h) = 4f2

O(h− 2)− 4f3
O(h− 2) + f4

O(h− 2),

and fA(0) = fO(0) = p. Obviously fA(h) < 2f2
A(h − 2), and also fO(h) = f2

O(h − 2)
(2− fO(h− 2))2

< 4f2
O(h− 2). Therefore, by induction, when h is even,

fA(h) < 22
h
2 −1p2

h
2 < (2p)

√
n

and similarly fO(h) < (4p)
√
n. So it follows that Fp(AndOr) ≤ exp(−Ω(

√
n)) when

p < 1
4 . When h is odd the bound is similar.

442 MONI NAOR AND AVISHAI WOOL

Now fO has a stable point at p = α and fA has a stable point at p = 1 − α.
As shown by [43], if there are n = O(d5.3) leaves in the tree and p < α − Ω(d−1) <
1 − α − Ω(d−1), then fA(h) < 2−d−1, and the same is true for fO. Setting d =
O(n1/5.3) = O(n0.19) finishes the claim.

We now describe how to use the AndOr system when some elements have failed.
We show an algorithm that finds a nearly optimal strategy w for any given configura-
tion x; the load induced by w is at most twice the optimal load under configuration x,
L(AndOrx). The description is of an activation at the top level of ANDset(root), say.
The description of the ORset activation is identical.

The algorithm is a preprocessing step which needs to be done after each config-
uration change. It begins by recursively marking the internal nodes in the tree as
“alive” or “dead” in the obvious way; an AND node is alive if both of its children are
alive, and an OR node is alive if at least one of its children is alive.

Consider a live node v. If it is either an AND node, or an OR node with a single
live child, then any strategy that chooses to use (elements in the tree rooted at) v
is forced to use all of v’s live children. Therefore, to complete the description of our
strategy w we need to show what happens at OR nodes with two live children. For
this, during the preprocessing each such node v is given a probability β(v). If the
strategy w decides to use v’s tree, then it uses its left subtree with probability β(v)
and its right subtree with probability 1− β(v).

To compute the β(v) values for live OR nodes v with two live children, the algo-
rithm recursively computes the optimal loads `L and `R in the left and right subtrees,
respectively. To achieve an optimal load for v’s tree, β(v) must satisfy β`L = (1−β)`R.
Therefore, β(v) = `R/(`L + `R), and the load induced on v’s tree is `L`R/(`L + `R).

The above computation is performed twice, once starting with ANDset(root) and
once starting with ORset(root). Note that a node may be marked “alive” w.r.t. the
ANDset(root) activation and “dead” w.r.t. the ORset, or vice versa. However, every
v is assigned a single β(v) value since it is an OR node only w.r.t. one top level
activation.

This w would clearly induce an optimal load for any configuration x if we were
interested in a single top-level activation. However, since we must activate both
ANDset and ORset at the top level, a moment’s reflection shows that Lw(AndOrx) ≤
2L(AndOrx).

Remarks.
(i) A quorum system can be constructed from any monotone read-once boolean

function in a similar way. This is achieved by taking some AND/OR formula F
implementing the function and making a dual copy of it F d (in which every AND
gate is replaced by an OR gate and vice versa). A quorum is defined to be a union
of two sets of elements, one satisfying F and the other satisfying F d. The proof
of Lemma 5.19 would still hold for such a system. However, the load and failure
probability would depend on the specific structure of the function used.

(ii) The AndOr system is isomorphic to the hierarchical grid construction of [24],
when the grids at all the levels are 2 × 2 grids. The read-quorum and write-quorum
procedures of [24] correspond to our top-level activations of the ANDset and ORset
procedures, respectively. However, ours is a much stronger analysis; we calculate the
load and analyze the rate of decay of Fp and the critical probability α.

6. Load analyses of some quorum systems.

6.1. Nondominated coteries have lower loads. The following proposition
shows that nondominated coteries (see Definition 2.5) have the lowest loads. This

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 443

gives further support to the intuitive view that NDC’s are preferable to dominated
coteries for practical applications.

PROPOSITION 6.1. Let S, R be quorum systems over the same universe U such
that R � S. Then L(R) ≤ L(S).

Proof. Assume that S = {S1, . . . , Sm} and R = {R1, . . . , Rm′}. Define a mapping
ϕ : S 7→ R as follows. For every set Sk ∈ S consider the minimal j such that Rj ⊆ Sk,
and let ϕ(Sk) = Rj . By Definition 2.5 there exists such an Rj for every Sk, so ϕ is
well defined. Let w be an optimal strategy for S. Define w′ for R by

w′j =
{∑

ϕ(Sk)=Rj wk, if ∃k : ϕ(Sk) = Rj ,
0, otherwise.

Clearly w′ is a strategy for R. The load induced by strategy w′ on an element i is

`w′(i) =
∑
Rj3i

w′j =
∑
Rj3i

 ∑
ϕ(Sk)=Rj

wk

 ≤∑
Sk3i

wk = `w(i).

Applied to the load on the busiest element i this implies that

Lw′(R) ≤ Lw(S) = L(S),

and by the minimality of L(R) the result follows.
Remark. Proposition 6.1 does not imply that dominated quorum systems neces-

sarily have a high load. In fact, all our constructions in section 5 are dominated and
have optimal or near-optimal load. By Proposition 6.1 there exist NDC’s with loads
which are as good or better—but these are more cumbersome to describe explicitly.

6.2. Voting systems have high loads. A popular and simple way to construct
a quorum system is by weighted voting [14, 13, 41, 29]. In this section we show that
L(S) > 1

2 for any voting system S, i.e., any voting system is at least as bad as the
Maj system in terms of load.

DEFINITION 6.2. For each i ∈ U let the integer vi ≥ 0 denote the weight of i. Let
V =

∑
i vi be the total weight. The voting system defined by the weights vi is

Vote =

{
S ⊆ U :

∑
i∈S

vi >
V

2

}
.

PROPOSITION 6.3. L(Vote) > 1
2 .

Proof. Consider the vector y defined by yi = vi/V for all i ∈ U . Clearly y(U) = 1.
By Definition 6.2,

y(S) =
1
V

∑
i∈S

vi >
1
2
,

for any quorum S ∈ Vote. Therefore (y; 1
2) is a feasible point to program DLP , so

L(Vote) > 1
2 by the weak duality of linear programming.

6.3. The tree system. We have shown in Example 4.4 that the load of the Tree
quorum system [1] is L(Tree) ≥ 1

log(n+1) . In this section we show that the bound is
almost tight; the precise load is L(Tree) = 2

log(n+1)+1 . We first show an upper bound

444 MONI NAOR AND AVISHAI WOOL

by balancing the load on the elements, and then show a matching lower bound. We
use h to denote the height of the tree (n = 2h+1 − 1).

CLAIM 6.4. L(Tree) ≤ 2
h+2 .

Proof. Denote a tree rooted at node i by T (i), and denote its left and right
subtrees by TL(i) and TR(i). We build a probabilistic recursive strategy Pick to pick
a quorum, using values βh, to be defined later, as follows.

Pick(T (i)) =

{i} ∪ Pick(TL(i)), with probability βh,

{i} ∪ Pick(TR(i)), with probability βh,

Pick(TL(i)) ∪ Pick(TR(i)), with probability 1− 2βh.

Let L(h) denote the load induced by strategy Pick in a tree of height h. The load is
determined either by the load on the root i, or by the most heavily loaded element
in one of the subtrees. Therefore L(h) = max{2βh, (1 − βh)L(h − 1)}. Choosing
βh = L(h−1)

L(h−1)+2 balances the load, so with this choice the load obeys the recurrence

L(h) =
2L(h− 1)
L(h− 1) + 2

,

and L(0) = 1. A simple check shows that L(h) = 2
h+2 solves this recurrence, and then

βh = 1
h+2 for h ≥ 1.

CLAIM 6.5. L(Tree) ≥ 2
h+2 .

Proof. Let 0 ≤ ti ≤ h denote the distance from node i to the root. To show a
matching lower bound we build a dual-feasible vector of weights y, defined by

yi =

1

h+2

(1
2

)ti
, 0 ≤ ti < h,

1
h+2

(1
2

)h−1
, ti = h.

It is easy to see that y is a valid weight vector. We need to show that y(S) ≥ 2
h+2

for every quorum S ∈ Tree.
By induction from the leaves toward the root, one can show that

y(S ∩ T (i)) =

{
2

h+2

(1
2

)ti
, S ∩ T (i) 6= ∅,

0, otherwise,
(5)

for every i ∈ U and S ∈ Tree. Plugging the root of the tree we obtain y(S) =
2

h+2

(1
2

)0 = 2
h+2 . Therefore, (y; 2

h+2) is feasible for program DLP so the claim follows
from the weak duality of linear programming.

6.4. The hierarchical quorum system. In this section we analyze the load
and availability of the hierarchical system of [23]. In this system the elements are
the leaves of a complete ternary tree. The internal nodes are 2-of-3 majority gates.
We show that Fp(HQS) ≤ exp(−Ω(n0.63)) when p < 1

3 and Fp(HQS) ≤ n−α(p) when
p < 1

2 , and that L(HQS) = n−0.37.
The analysis is similar in nature to that of the AndOr system. However, HQS is

a nondominated system, so the analysis is good up to 1
2 rather than up to the 0.38 of

the AndOr system. On the other hand, the load of HQS is worse than the O(1/
√
n)

of the AndOr system.
We use h to denote the height of the tree (n = 3h).

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 445

PROPOSITION 6.6. L(HQS) = n−0.37.
Proof. By symmetry it follows that HQS is a fair system, with c(HQS) = nlog3 2 =

n0.63. Therefore by Proposition 4.10, L(HQS) = n0.63/n = n−0.37.
PROPOSITION 6.7. Fp(HQS) ≤ exp(−Ω(n0.63)) when p < 1

3 and Fp(HQS) ≤
n−α(p) when p < 1

2 .
Proof. Let f(h) denote Fp(HQS) on a tree with height h. Then f(h) obeys the

recurrence

f(h) = 3f2(h− 1)− 2f3(h− 1),

and f(0) = p. We observe that p = 1
2 is a stable point, so by a result of [35] it follows

that HQS is nondominated. Now certainly f(h) < 3f2(h − 1), so by induction on h

we show that f(h) < 32h−1p2h < (3p)n
log3 2

, which proves the case when p < 1
3 .

For larger values of p, we prove by induction on h that f(h) is decreasing when
p < 1

2 , and then, that

f(h) ≤ p · (3p− 2p2)h.

If p = 1
2 −ε then 3p−2p2 < 1−ε so f(h) < 1

2 (1−ε)log3 n < n−α for some α(p).
Remark. The HQS system has a tight tradeoff between its availability and load

when p < 1
3 .

Appendix. Results of percolation theory. In this section we list the defini-
tions and results that are used in our analysis of the Paths system, following [15].

The percolation model we are interested in is as follows. Let Z2 be the graph of
the square lattice in the plane. Assume that an edge between neighboring vertices in
Z2 is closed with probability p and open with probability q = 1− p, independently of
other edges. This model is known as bond percolation on the square lattice. Another
natural model, which plays a minor role in our work, is the site percolation model. In
it the vertices are closed with probability p. Unless otherwise stated, we always use
the bond percolation model.

Notation. For an event E defined in the percolation model (either on Z2 or on
some finite subgraph of Z2), we denote the probability of E by Pp(E).

A key idea in percolation theory is that there exists a critical probability, pc, such
that graphs with p < pc exhibit qualitatively different properties than graphs with
p > pc. For example, Z2 with p < pc has a single connected (open) component of
infinite size. When p > pc there is no such component (see [15, p. 110]). For bond
percolation in the plane pc = 1

2 [22].
Notation. Let B(d) be the ball of radius d with center at the origin; B(d) = {v ∈

Z2 : |v1|+ |v2| ≤ d}. Let ∂B(d) be the surface of B(d), ∂B(d) = {v ∈ Z2 : |v1|+ |v2| =
d}. For a vertex v and a set of vertices A, let v ↔ A denote the event that there
exists an open path between v and some vertex in A.

The following theorem shows that when the probability p for a closed edge is above
the critical probability, the probability of having long open paths decays exponentially
fast.

THEOREM A.1. (See [31].) If p > 1
2 , then there exists ψ(p) > 0 such that

Pp(0↔ ∂B(d)) < e−ψ(p)d for all d.

DEFINITION A.2. Let E be an event defined in the percolation model. Then the
interior of E with depth r, denoted Ir(E), is the set of all configurations in E which
are still in E even if we perturb the states of up to r edges.

446 MONI NAOR AND AVISHAI WOOL

We may think of Ir(E) as the event that E occurs and is “stable” with respect to
changes in the states of r or fewer edges. The definition is useful to us in the following
situation. If LR is the event “there exists an open left-right path in a rectangle D,”
then by flow considerations it follows that Ir(LR) is the event “there are at least r+1
edge disjoint open left-right paths in D.”

THEOREM A.3. (See [3].) Let E be an increasing event and let r be a positive
integer. Then

1− Pp(Ir(E)) ≤
(

q

q − q′

)r
[1− Pp′(E)]

whenever 0 ≤ p < p′ ≤ 1.
The theorem amounts to the assertion that if E is likely to occur when the edge

failure probability is p′, then Ir(E) is likely to occur when the failure probability is
smaller than p′.

Acknowledgments. We are grateful to David Peleg for his encouragement and
to Danny Raz for his careful reading of our manuscript. We thank the anonymous
referees for remarks which helped us improve our presentation, and for bringing [12]
and [45] to our attention.

REFERENCES

[1] D. AGRAWAL AND A. EL-ABBADI, An efficient and fault-tolerant solution for distributed mutual
exclusion, ACM Trans. Comp. Sys., 9 (1991), pp. 1–20.

[2] R. AHARONI, P. ERDŐS, AND N. LINIAL, Dual integer linear programs and the relationship
between their optima, in Proc. 17th Annual ACM Symp. Theory of Computing (STOC),
ACM, New York, 1985, pp. 476–483.

[3] M. AIZENMAN, J. T. CHAYES, L. CHAYES, J. FRÖHLICH, AND L. RUSSO, On a sharp transition
from area law to perimeter law in a system of random surfaces, Comm. Math. Physics, 92
(1983), pp. 19–69.

[4] D. BARBARA AND H. GARCIA-MOLINA, The reliability of vote mechanisms, IEEE Trans. Com-
put., C-36 (1987), pp. 1197–1208.

[5] S. Y. CHEUNG, M. H. AMMAR, AND M. AHAMAD, The grid protocol: A high performance
scheme for maintaining replicated data, in Proc. 6th IEEE Int. Conf. Data Engineering,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 438–445.

[6] N. CONDORCET, Essai sur l’application de l’analyse à la probabilité des decisions rendues à la
pluralite des voix, Paris, 1785.

[7] S. B. DAVIDSON, H. GARCIA-MOLINA, AND D. SKEEN, Consistency in partitioned networks,
ACM Computing Surveys, 17 (1985), pp. 341–370.

[8] M. DUBINER AND U. ZWICK, Amplification and percolation, in Proc. 33rd Annual IEEE Symp.
Foundations of Comput. Sci. (FOCS), IEEE Computer Society Press, Los Alamitos, CA,
1992, pp. 258–267.

[9] P. ERDŐS AND L. LOVÁSZ, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets, Proc. Colloq. Math. Soc. János Bolyai 10, 1975,
North–Holland, Amsterdam, pp. 609–627.

[10] C. M. FORTUIN, P. W. KASTELEYN, AND J. GINIBRE, Correlation inequalities on some partially
ordered sets, Comm. Math. Physics, 22 (1971), pp. 89–103.

[11] G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs, with applications,
SIAM J. Comput., 16 (1987), pp. 1004–1022.

[12] Z. FÜREDI, Matchings and covers in hypergraphs, Graphs Combin., 4 (1988), pp. 115–206.
[13] H. GARCIA-MOLINA AND D. BARBARA, How to assign votes in a distributed system, J. ACM,

32 (1985), pp. 841–860.
[14] D. K. GIFFORD, Weighted voting for replicated data, in Proc. 7th Annual ACM Symp. Oper.

Sys. Principles (SIGOPS), ACM, New York, 1979, pp. 150–159.
[15] G. R. GRIMMETT, Percolation, Springer-Verlag, New York, 1989.
[16] M. GRÖTSCHEL, L. LOVÁSZ, AND A. SCHRIJVER, The ellipsoid method and its consequences

in combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.
[17] R. HASSIN, Maximum flow in (s, t) planar networks, Inform. Process. Lett., 13 (1981), p. 107.

LOAD, CAPACITY, AND AVAILABILITY OF QUORUM SYSTEMS 447

[18] M. P. HERLIHY, Replication Methods for Abstract Data Types, Ph.D. thesis MIT/LCS/TR-319,
Massachusetts Institute of Technology, Cambridge, MA, 1984.

[19] R. HOLZMAN, Y. MARCUS, AND D. PELEG, Load balancing in quorum systems, SIAM J.
Discrete Math., 10 (1997), pp. 223–245.

[20] A. ITAI AND Y. SHILOACH, Maximum flow in planar networks, SIAM J. Comput., 8 (1979),
pp. 135–150.

[21] P. JALOTE, S. RANGARAJAN, AND S. K. TRIPATHI, Capacity of voting systems, IEEE Trans.
Software Eng., 19 (1993), pp. 698–706.

[22] H. KESTEN, The critical probability of bond percolation on the square lattice equals 1
2 , Comm.

Math. Physics, 71 (1980), pp. 41–59.
[23] A. KUMAR, Hierarchical quorum consensus: A new algorithm for managing replicated data,

IEEE Trans. Comput., 40 (1991), pp. 996–1004.
[24] A. KUMAR AND S. Y. CHEUNG, A high availability

√
n hierarchical grid algorithm for replicated

data, Inform. Process. Lett., 40 (1991), pp. 311–316.
[25] A. KUMAR, M. RABINOVICH, AND R. K. SINHA, A performance study of general grid structures

for replicated data, in Proc. 13th Int. Conf. Dist. Comp. Sys., IEEE Computer Society
Press, Los Alamitos, CA, 1993, pp. 178–185.

[26] L. LOVÁSZ, Coverings and colorings of hypergraphs, in Proc. 4th Southeastern Conf. Combi-
natorics, Graph Theory and Computing, 1973, Utilitas Math. Publishing Inc., Winnipeg,
pp. 3–12.

[27] L. LOVÁSZ, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, Philadelphia,
1986.

[28] M. MAEKAWA, A
√
n algorithm for mutual exclusion in decentralized systems, ACM Trans.

Comp. Sys., 3 (1985), pp. 145–159.
[29] Y. MARCUS AND D. PELEG, Construction Methods for Quorum Systems, Tech. Report CS92–

33, The Weizmann Institute of Science, Rehovot, Israel, 1992.
[30] T. R. MATHIES, Percolation theory and computing with faulty arrays of processors, in Proc.

3rd ACM-SIAM Symp. on Discrete Alg., SIAM, Philadelphia, 1992, pp. 100–103.
[31] M. V. MENSHIKOV, Coincidence of critical points in percolation problems, Soviet Math. Dok.,

33 (1986), pp. 856–859.
[32] S. J. MULLENDER AND P. M. B. VITÁNYI, Distributed match-making, Algorithmica, 3 (1988),

pp. 367–391.
[33] M. NAOR AND A. WOOL, The load, capacity and availability of quorum systems, in Proc. 35th

Annual IEEE Symp. Foundations of Comput. Sci. (FOCS), IEEE Computer Society Press,
Los Alamitos, CA, 1994, pp. 214–225.

[34] M. NAOR AND A. WOOL, Access control and signatures via quorum secret sharing, in Proc.
3rd ACM Conf. Comp. and Comm. Security, New Delhi, India, ACM, New York, 1996,
pp. 157–168. Also available as Theory of Cryptography Library record 96-08, http:
//theory.lcs.mit.edu/∼tcryptol/1996.html.

[35] D. PELEG AND A. WOOL, The availability of quorum systems, Inform. and Comput., 123
(1995), pp. 210–223.

[36] D. PELEG AND A. WOOL, The availability of crumbling wall quorum systems, Discrete Appl.
Math., 74 (1997), pp. 69–83.

[37] D. PELEG AND A. WOOL, Crumbling walls: A class of practical and efficient quorum systems,
Distrib. Comput., 10 (1997), pp. 87–98.

[38] S. RANGARAJAN AND S. K. TRIPATHI, A robust distributed mutual exclusion algorithm, in
Proc. 5th Int. Workshop on Dist. Algorithms (WDAG), Lecture Notes in Comput. Sci.
579, Springer-Verlag, New York, 1991, pp. 295–308.

[39] M. RAYNAL, Algorithms for Mutual Exclusion, MIT Press, Cambridge, MA, 1986.
[40] A. SCHRIJVER, Theory of Linear and Integer Programming, John Wiley, Chichester, 1986.
[41] M. SPASOJEVIC AND P. BERMAN, Voting as the optimal static pessimistic scheme for managing

replicated data, IEEE Trans. Par. Dist. Sys., 5 (1994), pp. 64–73.
[42] R. H. THOMAS, A majority consensus approach to concurrency control for multiple copy

databases, ACM Trans. Database Sys., 4 (1979), pp. 180–209.
[43] L. G. VALIANT, Short monotone formulae for the majority function, J. Algorithms, 5 (1984),

pp. 363–366.
[44] C. WU, Replica Control Protocols that Guarantee High Availability and Low Access Cost, Tech.

Report 1817, Dept. Computer Science, University of Illinois, Urbana-Champaign, Urbana,
Illinois, 1993.

[45] C. WU AND G. G. BELFORD, The triangular lattice protocol: A highly fault tolerant protocol for
replicated data, in Proc. 11th Annual IEEE Symp. on Reliable Dist. Sys., 1992, pp. 66–73.

[46] T. W. YAN AND H. GARCIA-MOLINA, Distributed selective dissemination of information, in
Proc. 3rd Int. Conf. Par. Dist. Info. Sys., IEEE Computer Society Press, Los Alamitos,
CA, 1994, pp. 89–98.

SPACE-EFFICIENT DETERMINISTIC SIMULATION
OF PROBABILISTIC AUTOMATA∗

IOAN I. MACARIE†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 448–465, April 1998 007

Abstract. Given a description of a probabilistic automaton (one-head probabilistic finite-state
automaton or probabilistic Turing machine) and an input string x of length n, we ask how much
space does a deterministic Turing machine need in order to decide the acceptance of the input string
by that automaton?

The question is interesting even in the case of one-head one-way probabilistic finite-state au-
tomata (1pfa’s). We call (rational) stochastic languages (S>rat) the class of languages recognized by
1pfa’s whose transition probabilities and cutpoints (i.e., recognition thresholds) are rational numbers.
The class S>rat contains context-sensitive languages that are not context-free, but on the other hand
there are context-free languages not included in S>rat.

Our main results are as follows:
• The (proper) inclusion of S>rat in Dspace(log n), which is optimal (i.e., S>rat 6⊂Dspace(o(logn))).

The previous upper bounds were Dspace(n) (obtained by P. D. Dieu in 1972) and
Dspace(log n log logn) (obtained by H. Jung in 1984).

• Probabilistic Turing machines with space bound f(n) ∈ O(logn) can be deterministically
simulated in space O(min(cf(n) logn, logn(f(n)+log logn))), where c is a constant depend-
ing on the simulated probabilistic Turing machine. The best previously known simulation
uses O(logn(f(n) + log log n)) space (obtained by H. Jung in 1984).

To obtain these results we develop and use two space-efficient (but also parallel-time-efficient)
techniques, which are of independent interest:

• a technique to compare deterministically, using only O(logn) space, large numbers given
in terms of their values modulo a sequence of primes, p1 < p2 < · · · < pn ∈ O(na) (where
a is some arbitrary constant);

• a technique to compare deterministically a threshold with entries of the inverse of a given
banded matrix.

Key words. stochastic languages, probabilistic Turing machines, deterministic simulation,
residue representation, space-bounded complexity classes, matrix inversion

AMS subject classifications. 68Q15, 68Q75, 68Q05, 68Q10, 68Q22, 68R99

PII. S0097539793253851

1. Introduction. The (one-head one-way) probabilistic finite(-state) automa-
ton (1pfa) was introduced by Rabin in 1963 as a generalization of the deterministic
finite automaton. He proved that, in general, probabilistic automata are stronger
than their deterministic counterparts. The concepts of cutpoint and isolated cutpoint
are due to the same author. He also showed that probabilistic automata with iso-
lated cutpoint1 recognize only regular languages, and he stated a relation between
the complexities (i.e., the minimal numbers of states) of probabilistic automata and
the complexities of deterministic automata that recognize the same languages. The
languages recognized by one-head one-way probabilistic finite automata are called

∗Received by the editors August 9, 1993; accepted for publication (in revised form) February
8, 1996. An extended abstract of this paper appears in Proceedings of the 11th Symposium on
Theoretical Aspects of Computer Science, 1994, Lecture Notes in Comput. Sci. 775, Springer-Verlag,
New York, pp. 109–122.

http://www.siam.org/journals/sicomp/27-2/25385.html
†Millennium Computer Corporation, Research and Advanced Development Group, 2851 Clover

Street, Pittsford, NY 14534 (macarie@millenniumcc.com). This research was mainly supported by
the National Science Foundation under grant CDA 8822724 while the author was working in the
Department of Computer Science, University of Rochester, Rochester, NY.

1Probabilistic automata with isolated cutpoint are also known as probabilistic automata that
recognize with bounded-error.

448

SPACE-EFFICIENT DETERMINISTIC SIMULATION 449

stochastic languages (S>). Turakainen [Tu68] defined the concepts of generalized prob-
abilistic finite automaton and generalized stochastic language and proved the equality
between the class of stochastic languages and the class of generalized stochastic lan-
guages. Dieu [Di72] showed that rational stochastic languages (S>rat), i.e., languages
recognized by probabilistic finite automata with rational transition probabilities and
rational cutpoint, can be recognized by O(n)-space-bounded deterministic Turing ma-
chines.

In 1973, Kuklin [Ku73] introduced the (one-head) two-way probabilistic finite
automaton (2pfa) as a generalization of 1pfa. Some time later, Freivalds [Fr81] proved
that the language {anbn | n ∈ N} can be recognized, although slowly, by a two-way
probabilistic finite automaton with isolated cutpoint (2bpfa). Jung [Ju84] found an
O(logn log logn)-space deterministic simulation for 2pfa’s, and later Wang [Wa92]
provided a much weaker O(n)-space deterministic simulation for 2bpfa’s using an
interesting technique based on the Markov chain tree theorem of Leighton and Rivest
[LR86]. In spite of the fact that the classes of languages recognized by 1pfa’s and
2pfa’s are the same (if their transition probabilities are either all rationals or all
reals) [Ka89], the class of languages recognized by 2bpfa’s is larger than the class
of languages recognized by 1pfa’s with isolated cutpoint. Jung [Ju84] obtained an
optimal O(logn) deterministic space simulation for 2bpfa’s.

The significance of finite-state automata is limited by their weakness. Therefore,
in the 1970’s the general interest moved to more powerful devices. Gill [Gi77] intro-
duced the concept of probabilistic Turing machines (PTM). Later Simon [Si77, Si81],
Borodin, Cook, and Pippenger [BCP83], and Jung [Ju81, Ju84] obtained several re-
sults on space-bounded (unbounded-error) probabilistic computation. Probably the
most important result is that the languages recognized by PTM’s in space f(n) ∈
Ω(logn) can be recognized by deterministic Turing machines in space O(f2(n)).
This result, together with the fact that f(n)-space PTM’s are at least as strong as
f(n)-space nondeterministic Turing machines, generalizes Savitch’s theorem [Sa70].
In the case of small space-bounded probabilistic complexity classes, Jung proved
the inclusion of languages recognized by f(n) ∈ O(logn) space-bounded PTM’s in
Dspace(log n(f(n) + log logn)) [Ju84].

In this article we present space-efficient simulations of small space-bounded
(unbounded-error) PTM’s by derandomized (i.e., deterministic) Turing machines: we
show a more efficient simulation of f(n) ∈ o(logn) space-bounded PTM’s and an opti-
mal O(logn)-space simulation of one-head probabilistic finite automata with rational
transition probabilities. Our simulations are presented for the more general setting of
Markov chains, so they may have other applications as well. To obtain these results
we develop and use two techniques that are of independent interest:

• a technique to compare deterministically, using only O(logn) space, numbers
given in terms of their values modulo a sequence of primes, p1 < p2 < · · · <
pn ∈ O(na) (where a is some arbitrary constant);
• a technique to compare deterministically a threshold with entries of the in-

verse of a given banded matrix.
In section 2 we define the notions used in this article and we recall some basic

results on stochastic languages.
Section 3 presents optimal deterministic logspace simulations for one-head prob-

abilistic finite automata (Theorems 3–4), and a space-efficient technique to work with
residue representations (Lemmas 1–3).

In section 4 we show that probabilistic Turing machines with space-bound f(n) ∈
O(logn) can be simulated by deterministic Turing machines that use only

450 IOAN I. MACARIE

O(min(cf(n) logn, logn(log f(n) + log logn))) space, where c is a constant depend-
ing on the simulated machine (Theorem 5).

Finally, in section 5 we discuss the significance of our results and we state some
open problems.

2. Background. This section presents the definitions and the notations used in
this article, and gives reminders of some properties of stochastic languages.

DEFINITION 1. (See [Ra63].) A (one-head one-way) probabilistic finite automaton
(1pfa) A is a 5-tuple

A = (Q,Σ, π, {(x,M(x))|x ∈ Σ}, F),

where
Q is the (finite) set of states, whose cardinal is denoted by n (i.e., n = |Q|);
Σ is the input alphabet;
π is the initial state-distribution vector, satisfying

∑n
i=1 π(i) = 1, where π(i) ∈

[0, 1];
F is the set of accepting states, F ⊂ Q (implicitly, Q − F is the set of rejecting

states);
M(x) is an n-by-n stochastic matrix, whose entry mij(x) is the probability of

transition from state si to state sj under the input symbol x, and where
∑n
j=1mij(x) =

1, for each i ∈ {1, . . . , n}.
DEFINITION 2. (See [Tu68].) A generalized (one-head one-way) probabilistic finite

automaton (1Gpfa) is a 5-tuple as above with the following relaxed constraints: π is
an n-dimensional real vector (and not a state-distribution vector), and the transition
matrices M(x) are arbitrary real matrices not constrained to be stochastic. Such a
machine is also known as a weighted finite automaton [CK94].

Observation 1. Equivalently, a 1pfa (1Gpfa) is a finite-state automaton that has
one head restricted to move from left to right on an input string y = x1, . . . , xk . (We
consider that the length of y is k, and that xi, i ∈ {1, . . . , k} are symbols from the
input alphabet. Also, we may consider that the input string is delimited by a left
and a right endmarker.) From a current state i, after reading the symbol xl scanned
by its head the automaton switches to state j with probability (weight) mij(xl) and
moves its head to the next input symbol.

In what follows, we describe the acceptance procedure of the string y by such
an automaton. Let Σ∗ be the set of words over the input alphabet Σ, and let ε
be the empty word. A word matrix M(y), y ∈ Σ∗ is the matrix product M(y) =
M(x1), . . . ,M(xk) , where y = x1, . . . , xk , xi ∈ Σ, and M(ε) = In, where In is the
identity matrix of order n. The state-distribution vector of a probabilistic automaton
A after scanning the word y ∈ Σ∗ is rA(y) = πM(y). The acceptance probability of
y by A (i.e., the probability that A reaches an accepting state when processing y) is
pA(y) = πM(y)ηF where ηF is the column vector whose ith component is equal to 1
or 0 depending on whether or not the ith state is an accepting state.

For a 1Gpfa A, we define the acceptance function pA in a similar way, but in this
case pA is real-valued, and it is not necessarily a probability function anymore.

DEFINITION 3. (See [Ra63].) The class of stochastic languages (S>) is the class
containing the languages of the form

T (A, λ) = {y ∈ Σ∗|pA(y) > λ},

where A is a 1pfa and λ is a real number in [0,1], called cutpoint (or recognition

SPACE-EFFICIENT DETERMINISTIC SIMULATION 451

threshold). If ∃ε > 0 such that ∀y ∈ Σ∗ ⇒ |pA(y) − λ| > ε, then λ is called iso-
lated cutpoint. (The recognition with isolated cutpoint is identical to bounded-error
recognition.)

DEFINITION 4. (See [St66].) S= is the class of languages of the form T=(A, λ) =
{y ∈ Σ∗|PA(y) = λ} where A is a 1pfa and λ is a cutpoint in [0,1].

DEFINITION 5. S6= is the class of languages of the form T 6=(A, λ) = {y ∈
Σ∗|PA(y) 6= λ}, where A is a 1pfa and λ is a cutpoint in [0, 1].

DEFINITION 6. (See [Tu69b].) For each class Sa (a ∈ {>,=, 6=}) we define the
rational subclasses Sa

rat containing the languages of the form T a(A, λ), where A is a
1pfa with the elements of its stochastic matrices and of its initial state-distribution
vector all rationals, and λ is a rational cutpoint. We have defined in this way S>rat,
S=

rat, S 6=rat.
In what follows, we call S>rat,S=

rat, and S6=rat (rational) stochastic classes. All the
probabilistic automata used in this article have rational transition probabilities; for
simplicity, sometimes we drop the word “rational” without creating misunderstanding.

It is easy to prove that if in all the previous definitions we fix the value of the
threshold λ to be 1/2, the classes of languages defined so far do not change. Conse-
quently, we will use only probabilistic automata whose cutpoint is 1/2.

A one-head two-way probabilistic finite automaton (2pfa) is similar to a 1pfa, but
its head can move in both directions on the input string, which is delimited by a
left and right endmarker. Such an automaton has final (accepting and rejecting)
states, and it halts when reaching these states. A 2pfa accepts an input string x if its
acceptance probability when processing x (i.e., the probability to reach an accepting
state) is larger than 1/2. A one-head two-way probabilistic finite automaton with
isolated cutpoint (2bpfa) is a 2pfa with the following restriction: there is an open
interval I containing the cutpoint such that for any input string x its acceptance
probability by the automaton does not fall inside I. A formal definition of these
devices can be found in [Ka89]. We use the notations 2PFArat (2BPFArat) for the
classes of languages recognized by one-head two-way probabilistic finite automata
with rational transition probabilities (and isolated cutpoint).

The definition for probabilistic Turing machine (PTM) is standard [Gi77]. To
simplify our presentation, in this article we simulate probabilistic Turing machines
that have a single head on the input tape and a single head on the worktape. The
computation of a space-bounded PTM (or of a probabilistic finite automaton) on an
input string is viewed as a Markov process [Gi77, Si77] that is characterized by its
state transition matrix. This approach is used in section 4.

Other notations we use in this article are as follows:
• $ means proper inclusion,
• ⊂ means inclusion (not necessarily proper),
• |x| is the length of x if x is a string or the absolute value of x if x is a number

or the number of elements of x if x is a set,
• ‖X‖ is the norm of the matrix X defined by ‖X‖ = maxi(

∑
j |xij |),

• Dspace(S(n)), Nspace(S(n)), and PrSpace(S(n)) are the classes of languages
recognized by deterministic, nondeterministic, and probabilistic, respectively,
S(n)-space-bounded Turing machines,

• N is the set of natural numbers.
Next we recall some closure properties of these classes and we present relations

between them and the Chomsky’s hierarchy.

452 IOAN I. MACARIE

PROPOSITION 1. (See [Di71].) The classes S=
rat and S6=rat are closed under inter-

section and union but are not closed under complementation. The complement of any
language from one class is in the other class.

THEOREM 1. (See [Tu69a].) S6=rat and S=
rat are properly included in S>rat.

PROPOSITION 2. (See [Bu67].) The class of regular languages is properly included
in S=

rat
⋂

S6=rat.
The rational stochastic classes are properly included in the class of context-

sensitive languages (denoted CSL) (since S>rat $ Dspace(n) [Di72] and Dspace(n) ⊂
Nspace(n) = CSL) but are not included in the class of context-free languages (denoted
CFL); using the closure properties of S=

rat, we can prove that the non-context-free lan-
guage {anbncn | n ∈ N} is included in S=

rat [Ma93].
On the other hand, there are context-free languages which are not contained in

any of the rational stochastic classes: {x1y | x, y ∈ (0 + 1)∗, |x| = |y|} ∈ CFL− S>rat.
(In fact this language is not even in S> [DS90, Ra92].)

It follows that rational stochastic classes do not fit neatly into the Chomsky’s
hierarchy. The next step is to compare them with space-bounded deterministic com-
plexity classes. This problem is addressed in section 3.

Finally, we recall a useful result relating complexity classes defined by one-head
one-way and one-head two-way probabilistic finite automata.

THEOREM 2. (See [Ka89].) S>rat =2PFArat.
In other words, any 2pfa with rational transition probabilities can be simulated

by a corresponding 1pfa with rational transition probabilities.

3. Space-efficient deterministic recognition of stochastic languages. In
this section we compare the stochastic complexity classes we have defined so far (S=

rat,
S 6=rat, and S>rat) with classes of languages defined by space-bounded deterministic Turing
machines. The main result is the (proper and optimal) inclusion of the class S>rat in
Dspace(log n). Lemma 3, used to compare integers given in terms of their residue
representations, is of independent interest.

First, we present the background which is common to all the proofs in this sec-
tion. For a 1pfa processing an input string w of length n, we have to compute its
accepting probability and compare it with 1/2. After some transformations, this task
is equivalent to comparing two integers. Since the two integers are too large to fit
in our working space, we work modulo relatively small primes, and we compare the
residue representations of the two integers. In what follows, the representation of an
integer modulo a set of primes (that is determined by the context) is called a residue
representation. We denote by X = (x1, x2, . . . , xn) (where xi = X mod pi, for all
i ∈ {1, . . . , n}) the residue representation of an integer X modulo the set of primes
{p1, p2, . . . , pn}.

Now we present these steps in more detail. Let A be a 1pfa. Its transition
probabilities are rational numbers. It follows that M(w) has only rational elements
for all w ∈ Σ∗. In constant space we can find the least common multiple (let us call
it b) of the denominators of the transition probabilities and of the components of the
initial-distribution vector. Without loss of generality, we suppose π = (1, 0, . . . , 0).
We compute the accepting probability for the input string w = w1, . . . , wn of length n

p(w) = πM(w1), . . . ,M(wn)ηTF

= (1/bn)πM ′(w1), . . . ,M ′(wn)ηTF ,

SPACE-EFFICIENT DETERMINISTIC SIMULATION 453

where each M ′(wi) = bM(wi) has only integer elements from the interval [0,b]. Every
element of M ′(wi) can be computed in constant space. We have p(w) = (1/bn)p′(w)
where p′(w) is the word function generated by a 1Gpfa having M ′(wi) as transition
matrices (p′(w) = πM ′(w1), . . . ,M ′(wn)ηT).

Comparing p(w) with 1/2 is equivalent to comparing 2p′(w) with bn.
The values of p′(w) and bn are integers from the interval [0, bn], so O(n) space

is needed for storing them (too much); the standard solution is to compute the two
numbers modulo relatively small primes and then to compare them using the Chinese
Remainder Theorem. In this paper we work with the primes greater than 3. The
reason why we avoid the prime 2 will be obvious from the proof of Lemma 1. (In fact
this restriction is not essential because we can avoid using Lemma 1, but we have to
modify Lemmas 2 and 3 accordingly [DMS94].)

Let us chose a constant c such that
cn∏
i=1

pi > 2cn > 4bn

and pi is the ith prime starting with p1 = 3. Then both 2p′(w) and bn are natural
numbers smaller than

∏cn
i=1 pi − 1. We compute these numbers modulo p1, . . . , pcn.

The advantage of using residue representations is that, at any given time, we do
not have to store on the worktape all the residues, but only a finite number of them.
Of course, when we need it, we have to be able to compute each such residue in a
small amount of space. (In this way we use only O(log pcn) = O(logn) deterministic
space.) Note that the ith prime can be found in O(log i) deterministic space. Also for
each k ∈ {1, . . . , cn}, the computation of 2p′(w) mod pk requires O(log pk) ∈ O(logn)
space since it is enough to keep on the work tape all the elements of the partial product
matrix

M(w1, . . . , wj) =
j∏
i=1

M(wi) mod pk, for j ∈ {1, . . . , n}.

For each k ∈ {1, . . . , cn} the computation of bn mod pk uses only O(logn) space. It
follows that the residue representations of 2p′(w) and bn can be computed in O(logn)
space, for one prime at a time.

Now we turn to the presentation of the main results of this section.
THEOREM 3. S=

rat $ Dspace(log n); S6=rat $ Dspace(log n) and both inclusions are
optimal.

Proof. We prove the first relation. Since Dspace(log n) is closed under comple-
mentation [Si80] and the complement of each language from S6=rat is in S=

rat, it follows
the second relation.

Let L be a language from S=
rat, and let A be a 1pfa that recognizes L. Let w be

an input word of length n and let p(w) be the acceptance probability of w by A. It
follows that

w ∈ L⇐⇒ 1/2 = p(w)⇐⇒ 2p′(w) = bn.

We check the last equality (whose members are integers) modulo the first cn primes.
If 2p′(w) mod pi = bn mod pi for all i ∈ {1, . . . , cn} then w ∈ L; else w 6∈ L. It follows
that the acceptance or rejection of w can be decided deterministically in O(logn)
space, i.e., L ∈ Dspace(log n). The time required by this simulation is O(n2). (We
have assumed that each arithmetic operation between two O(logn)-bit integers is
done in constant time.)

454 IOAN I. MACARIE

Both inclusions are proper because the classes S=
rat and S6=rat are not closed under

complementation. From the relations {anbn |n ∈ N} ∈ Dspace(Ω(log n)) [LSH65] and
{anbn | n ∈ N} ∈ S=

rat [Ma93], we obtain that both inclusions are optimal (i.e., it is
not possible to include S=

rat and S6=rat in Dspace(o(logn))).
In the rest of this section we show the stronger inclusion S>rat $ Dspace(log n). To

prove it we design a simulation of one-head probabilistic finite automata with rational
transition probabilities by logspace deterministic Turing machines. The difference
from the proof of Theorem 3 is that, at a given moment, we have to compare the
numbers 2p′(w) and bn using their residue representations. The standard procedure
is to recompute the numbers from their residue representations (using the Chinese
Remainder Theorem) and to compare them bit by bit. This approach was used by
Jung [Ju84] who made crucial use of two results from circuit theory obtained by Reif
[Re86] and Borodin [Bo77]. However, with this technique we can prove only S>rat $
Dspace(log n log logn).

One observation about the method mentioned above is that we do not need to
recompute the numbers (whose residue representations we already have) in order
to decide which is larger. The comparison of these numbers can be done working
directly on their residue representations. In what follows we focus on this idea and we
prove S>rat $ Dspace(log n) (Theorem 4). First we describe a technique to compare
numbers, whose residue representations can be deterministically obtained in O(logn)
space, using only O(logn) space. This result is contained in Lemmas 1–3.

LEMMA 1. If N is an odd integer and X,Y ∈ [0, N − 1] are also integers, then
X ≥ Y iff (X − Y) has the same parity as (X − Y) mod N .

Proof. It follows from the fact that N is odd and

(X − Y) mod N =
{

(X − Y) if X ≥ Y
N + (X − Y) if X < Y.

LEMMA 2. For every finite ascending sequence of primes p1, . . . , pn, for every
integer X ∈ [0,

∏n
i=1 pi), if the residue representation of X modulo these primes can

be computed in O(log pn) deterministic space, then X mod N can be computed in
O(log pn + logN) deterministic space, for every positive integer N .

Proof. Let X = (x1, . . . , xn) be the residue representation of X ∈ [0,
∏n
i=1 pi)

modulo the primes p1, . . . , pn (i.e., xi = X mod pi, for i ∈ {1, . . . , n}), and let Mn =∏n
i=1 pi. Using the Chinese Remainder Theorem we obtain

X =
n∑
i=1

(xici)pi
Mn

pi
− r ·Mn,

where r is a natural number, ci ∈ [0, Pi) is defined by ci
Mn

pi
= 1 (mod pi), and

(xici)pi denotes xici mod pi, for i = 1, n. It follows that

r =
n∑
i=1

(xici)pi
pi

− X

Mn
,

where 0 ≤ X
Mn

< 1 and r = b
∑n
i=1

(xici)pi
pi
c ∈ [0, n).

The next step is to find deterministically r using small space. After computing r,
using the Chinese Remainder Theorem we can easily compute X mod N using only
multiplications and additions modulo N .

In the rest of the proof we show how to space-efficiently find r. We compute each
ti = (xici)pi

pi
with (k+1)dlogne exact digits and then we sum them up. We obtain the

SPACE-EFFICIENT DETERMINISTIC SIMULATION 455

0.

0.

t =

t =

t =

1

i

.r a1

r . a1 111.....111111.....111 111.....111

0.

A 1A A A A1 20

Uncertain cases:

A A A A1 20

Note: each box

Block Block Block Neglected bits

Sum up

Block (1)

1

k+

k

k

 + 1k

k

n

n -

1 2

contains log n bits

FIG. 1. The “approximate” computation of r.

number A0.A1, . . . , AkAk+1, where Ai, i ∈ {0, . . . , k + 1} are blocks of dlogne digits,
and A0 ∈ [0, n) is the integer part of the sum. See Fig. 1. The value of k is obtained
from the condition

Mn

nk
<
Mn−1

4
⇐⇒ nk > 4 · pn, for all n ∈ N greater than a threshold.

(For example, if the sequence p1, p2, . . . , pn contains the first n odd primes, then we
can take k = 2.) In an exact computation of

∑n
i=1 ti, it is possible to have a (n− 1)-

unit carry from the right of block Ak+1. Furthermore, block Ak may get at most
one additional unit carry from block Ak+1. As a result, the bits in the blocks Ai,
i ∈ {0, . . . , k}, are exact or are affected by a one-unit carry to block Ak. If for all
i ∈ {1, . . . , k} the blocks Ai have all their bits equal to 1, then a carry from block
Ak+1 does increment A0, and this is the only situation when A0 is affected by our
computation error. We call such a situation an uncertain case. Therefore, we test
whether all blocks Ai, i ∈ {1, . . . , k} have all their bits equal to 1; if not, we stop
returning r = A0, or else we continue with our investigation to decide whether r = A0
or r = A0 + 1. In this case we have

X ∈
[
Mn −

Mn

nk
,Mn

]
or X ∈

[
0,
Mn

nk

]
(because our computation error is smaller than 1/nk). In order to treat both variants
in a uniform way, we consider negative the numbers from the interval (Mn/2,Mn) and
positive the numbers from the interval [0,M(n)/2). For every prime p > 2, let smod
p be the function defined on integers and with values in the interval (−p/2, p/2] such
that

(X smod a) mod a = X mod a

for every integer X. Note that the function smod p is similar to the standard function
mod p but it has values in the interval (−p/2, p/2]. It follows that the inclusion of X

456 IOAN I. MACARIE

0

Certain cases
1/2

is in one of the shaded areas.

Recurse

(Omit modulus p

0Mn

Mn

The number X is in the shaded area.

n)

Mn-1

Mn-1

The number Y = X mod Mn-1

Uncertain cases
Uncertain cases

1/2

FIG. 2. The reduction of uncertain cases.

mentioned above is equivalent to

X smodMn ∈
(
−Mn

nk
,
Mn

nk

)
.

We obtain that, in an uncertain case, our problem is reduced to finding the sign of
X smodMn.

This problem will be solved recursively. If Y smodMn−1 is the number with the
residue representation (x1, . . . , xn−1), then the next recurrence holds:

X smodMn = Y smodMn−1 + αMn−1,

where α is an integer in the interval (−pn/2, pn/2]. From the fact that X smodMn ∈
(−Mn

nk
, Mn

nk
) ⊂ (−Mn−1

4 , Mn−1
4) (the value k has been computed to make this last

inclusion true), and Y smodMn−1 ∈ (−Mn−1
2 , Mn−1

2), it follows that α = 0 in the
previous recurrence. (This observation belongs to Dietz [Di93].) As a result,

X smodMn = Y smodMn−1 ∈
(
−Mn−1

4
,
Mn−1

4

)
,

and we reduce the problem of computing the sign of X smodMn to computing the
sign of Y smodMn−1. If Y smodMn−1 ∈ [0, Mn−1

4), then r = A0 + 1; else r = A0.
Note that this recursive step converts a large fraction of uncertain cases into certain
cases. See Fig. 2.

If we still have an uncertain case, we continue the recursion as above.
LEMMA 3. Consider p1, p2, . . . , pn strictly increasing odd primes and Mn =∏n

i=1 pi. If for two integers X,Y ∈ [0,Mn − 1] their residue representations can
be computed deterministically in O(log pn) space, then the relations X > Y,X = Y ,
and X < Y can be decided in O(log pn) deterministic space.

Proof. Let X = (x1, . . . , xn), Y = (y1, . . . , yn) be the residue representation of X
and Y and let

Z = ((x1 − y1) mod p1, . . . , (xn − yn) mod pn)

= (X − Y) mod Mn.

SPACE-EFFICIENT DETERMINISTIC SIMULATION 457

We compute the parity of X, Y , and Z using Lemma 2 with N = 2, we check whether
Z = 0, and we apply Lemma 1 to compare X and Y . Every operation is done in
O(log pn) deterministic space.

Observation 2. This lemma has a crucial role in proving the most important
results of this paper. It gives us a space-efficient tool to compare large numbers given
in terms of their residue representations. Another presentation and other applications
of this technique can be found in [DMS94]. Davida and Litow, independently, propose
another method to efficiently compare numbers given their residue representations
[DL91]. The two methods turn out to have similar strength. Although one was
expressed in the setting of deterministic space and the other in the setting of parallel
time, they can easily be adapted to the other context. A more detailed comparison
between them can be found in [DMS94].

THEOREM 4. S>rat $ Dspace(log n) and the inclusion is optimal.
Proof. We work with odd primes and we follow the method presented at the be-

ginning of this section until we have to compare two integers given (on demand) their
residue representations. Then, we apply Lemma 3. The time required by this simula-
tion is O(n3), under the assumption that arithmetic operations between O(logn)-bit
integers are done in constant time.

The inclusion is proper since {x1y | x, y ∈ (0 + 1)∗, |x| = |y|} ∈ Dspace(log n) −
S>rat. Also, it is optimal since S=

rat is optimally included in Dspace(logn) and S=
rat $

S>rat.
This theorem improves the result of Dieu [Di72], S>rat $ Dspace(n).
COROLLARY 1. 2PFArat $ Dspace(log n) and the inclusion is optimal.
Proof. Use the equality S>rat =2PFArat.
This corollary improves the results of Wang [Wa92] (2BPFArat $ Dspace(n)) and

Jung [Ju84] (PrSpace(O(1)) $ Dspace(log n log logn)).

4. Space-efficient deterministic simulations of o(log n)-space-bounded
probabilistic Turing machines. The main result of this section is a space-efficient
deterministic simulation of small-space-bounded probabilistic Turing machines. The
simulation is presented for the more general setting of Markov chains. Our technique
to compare a threshold with entries of the inverse of a given banded matrix is of
independent interest.

We recall first some basic knowledge about space-bounded probabilistic compu-
tations. Let us consider the computation of a space-bounded PTM A on an input
string x of length n. A configuration of A contains the state of its finite control,
the description of the worktape content, and the position of heads on the worktape
and on the input tape. Without loss of generality, we suppose that A has only one
accepting configuration, one rejecting configuration, and that the computation halts
when it enters these configurations. For an input x, the accepting probability of x is
the probability that A enters the accepting configuration. The machine A accepts x
if its accepting probability of x is larger than 1/2.

In what follows, with the computation of A on an input string x, we associate a
Markov process whose states are the possible configurations of A, and whose transition
probabilities are given by the probabilities of A’s moves. The Markov process has
one starting state, one rejecting state, and one accepting state, according to the
configurations of A. The accepting probability of x equals the long-run transition
probability of the Markov process to move from the starting state into the accepting
state. The Markov process is characterized by a state transition matrix. Each entry
of this matrix represents the probability to move from one state to another state

458 IOAN I. MACARIE

in one step and corresponds to the transition probability of A to move from one
configuration to another in one step. We call this matrix the configuration transition
matrix. In order to compute easily the long-run transition from the initial state to
the accepting state, we use a “simplified” configuration transition matrix in which
we omit the rejecting state and some of the states that are not connected (directly
or indirectly) to the accepting state. Obviously, the configuration transition matrix
and the simplified configuration transition matrix have the same long-run transition
probability from the initial state to the accepting state.

The acceptance decision of A on x is equivalent to comparing 1/2 with a long-
run transition probability in the associated Markov process. Using only logarithmic
space, Simon [Si77, Si81] presents a way to reduce nondeterministically this problem
to the problem of comparing 1/2 with an element of a matrix inverse. This decision is
obtained by a parallel-time-efficient (and also space-efficient, as follows from a result
of Borodin [Bo77]) algorithm for matrix inversion due to Csanky [Cs76]. Jung [Ju84]
finds a logspace deterministic reduction to reduce the acceptance decision of A on x
to the problem of comparing 1/2 with an entry of a matrix inverse, and he designs a
space-efficient (and also parallel-time efficient) algorithm to solve the last problem in
the particular case of matrices with small bandwidth.

In what follows we extend these previous techniques, and we present a more
space-efficient deterministic simulation of small-space PTM’s that makes crucial use
of Lemmas 1–3.

THEOREM 5. The languages recognized by f(n) ∈ O(logn) space-bounded proba-
bilistic Turing machines can be recognized by deterministic Turing machines in space

O(min(cf(n) logn, logn(f(n) + log logn))),

where c is a constant depending on the probabilistic Turing machine.2

Proof. Let A be an f(n) ∈ O(logn) space-bounded PTM processing an input
string x of length n. By pA(x) we denote the acceptance probability of x by A. The
number of possible configurations of A is

m = q(n+ 2)f(n)af(n)
0 ∈ O(na),

where q is the number of states, a0 is the size of the worktape alphabet of A, and a
is a constant. (We remind the reader that A has one head on the input tape and one
head on the worktape. Its input string is delimited by left and right end-markers.)
We enumerate these configurations in increasing order of the input head’s position.
The computation of A on x is seen as a Markov process.

Let N be the m-by-m (simplified) configuration transition matrix associated with
this Markov process in which the first row corresponds to the starting configuration
of A (i.e., to c1), the mth row, which corresponds to the accepting configuration (i.e.,
to cm) is filled with 0, and the row (and the column) corresponding to the rejecting
state is omitted. The bandwidth of N is B ∈ O(f(n)af(n)

0) ⊂ O(cf(n)) (we can take
c = a0 + ε for arbitrarily small ε > 0). Without loss of generality, we suppose that the
elements of N are rational numbers all having the same denominator b. In the case
of standard definition of PTM’s b is 2, but we present the case with b natural, since
the applicability of this result can be extended to other probabilistic devices whose
computation can be represented by a Markov chain.

2More precisely, c depends on the size of the worktape alphabet of the probabilistic Turing
machine.

SPACE-EFFICIENT DETERMINISTIC SIMULATION 459

The entry (1,m) of the matrix sum I + N + · · · + Nk goes to pA(x) when k
goes to infinity. Our problem is to space-efficiently approximate this entry. Also note
that ‖N‖ ≤ 1 and that the above matrix sum is not necessarily convergent. In what
follows, we slightly modify N , using transformations computable deterministically in
logarithmic space, to obtain the sequence of matrices Q, M , and finally M − ∆M ,
so that ‖Q‖ < 1, ‖M‖ < 1, ‖M −∆M‖ < 1. Moreover, the sum I + (M −∆M) +
· · · + (M − ∆M)k is convergent to F−1, where F = I − (M − ∆M) is also easy to
invert. The entry in the last column of the first row of F−1 will closely approximate
the long-run transition probability from configuration c1 into configuration cm of
the initial Markov process (i.e., pA(x)). As a result, we can determine whether A
accepts x by comparing that entry with 1/2. This is equivalent to comparing two
determinants whose elements are integers. We compute each of these determinants
modulo relatively small primes and we use Lemma 3, where X and Y are the values
of the two determinants.

In what follows we present the sequence of modifications of configuration transi-
tion matrices in steps. Recall that ‖X‖ denotes the norm of the m-by-m matrix X,
defined by ‖X‖ = maxi

∑
j=1,m |xij |.

Step 1 (obtaining Q). Gill [Gi77] and Simon [Si81] proved that there is an integer
d1 independent of n, such that for every input x of length n the acceptance probability
of x does not fall in the interval [1/2, 1/2 + 1/bn

d1]. (Such an integer can be found
deterministically in O(1) space. Using the technique from [RST82] (they used it to
build “a probabilistic clock”), we find an integer d2 > d1 such that for every input x
of length n, from each configuration ci, A rejects with probability 1/bn

d2 and enters
in the next configuration cj with probability (1− 1/bn

d2) · nij . Then the acceptance
probability for x will decrease by a quantity less than 1/bn

d1 and the set of recognized
words is not changed. This modification of the computation of A corresponds to a
modification of the associated Markov process and to a modification of the (simpli-
fied) configuration transition matrix N . (In fact, our goal is to modify the original
Markov process corresponding to the computation of A on the input x. Some of these
modifications could not correspond to any simple modification of the machine A.)

We obtain a configuration transition matrix Q of size m-by-m with its elements
defined by qij = (1 − 1/bn

d2) · nij . From ‖N‖ ≤ 1 it follows ‖Q‖ ≤ 1 − 1/bn
d2 .

In the associated Markov process the modified acceptance probability of x does not
fall in the interval [1/2, 1/2 + 1/bn

d3] for some integer d3 > d1 independent of n but
dependent on d1 and d2.

So far we have obtained that I −Q is nonsingular. In addition we would like to
have the following property: the modified acceptance probability of x does not fall
in an open interval containing 1/2. In order to obtain this additional property in the
next step we modify Q and obtain M .

Step 2 (obtaining M). We modify the Markov process by introducing a new state
c0 such that from c0 the new Markov process goes into c1 with probability 1−1/bn

d4 ,
where d4 > d3, and we consider c0 its starting state. The long-run transition prob-
ability to move from state c0 to state cm is equal to (1 − 1/bn

d4) multiplied by the
long-run transition probability to move from state c1 to state cm in the previous
Markov process. Its values fall outside the interval [1/2 − 1/bn

d5
, 1/2 + 1/bn

d5], for
some integer d5 > d4 independent of n, and are on the same side of 1/2 as the original
acceptance probability of x by A. We denote by M the new (m + 1)-by-(m + 1)

460 IOAN I. MACARIE

configuration transition matrix associated with this new Markov process. We recall
that the last row of M (corresponding to the accepting configuration) contain only
zeros. The matrix M has a bandwidth equal to B or B+1 and ‖M‖ < 1−1/bn

d5
< 1.

The matrix I−M is nonsingular since it is diagonally dominant, i.e., for each row the
absolute value of the diagonal element is larger than the sum of the absolute values
of the other elements.

As a result, I + M + · · · + Mk + · · · = (I −M)−1. Let E = (I −M)−1. The
element e1,m+1 approximates the accepting probability of x by A in the following
sense: if x is accepted by A, then e1,m+1 > 1/2 + 1/bn

d5 , and if x is rejected by A,
then e1,m+1 < 1/2− 1/bn

d5 . The integer d5 is independent of n.
In the next step we apply one more transformation on M and obtain M −∆M ,

such that I−(M−∆M) can be inverted space-efficiently using a Gaussian elimination.
We achieve this by forcing M−∆M to have nonnull elements on the diagonal situated
immediately above the band of M .

Step 3 (obtaining M−∆M). We slightly modify M (and the Markov process) in a
way that does not change the acceptance decision for x. We call ∆M the matrix having
all its elements zeros with the exception of the elements on the diagonal immediately
above the band of M , which are all equal to 1/bn

d6 , for an integer d6 > d5. Clearly,
‖∆M‖ = 1/bn

d6 and ‖M−∆M‖ ≤ 1−1/bn
d5 +1/bn

d6
< 1−1/2 ·1/bnd5 . We compute

the difference between [I − (M −∆M)]−1 and (I −M)−1 using a lemma of Banach
[Go83]:

‖[I − (M −∆M)]−1 − (I −M)−1‖ ≤ ‖∆M‖ · ‖[I − (M −∆M)]−1‖ · ‖(I −M)−1‖.

From ‖(I −M)−1‖ ≤ ‖I‖ + ‖M‖ + · · · + ‖Mk‖ + · · · ≤ 1
1−‖M‖ when ‖M‖ < 1, it

follows that

‖(I −M)−1‖ ≤ 1
1− (1− 1/bnd5)

= bn
d5
,

‖[I − (M −∆M)]−1‖ ≤ 1
1− (1− 1/bnd5 + 1/bnd6)

≤ 2 · bnd5
.

Using Banach’s lemma we obtain

‖[I − (M −∆M)]−1 − (I −M)−1‖ ≤ 2 · b2nd5

bn
d6

<
1
bn
d5

if d6 > d5 and if n is large enough. Let us denote F = I − (M −∆M).
Based on the fact that e1,m+1 closely approximates the acceptance probability of

x in the sense described at the end of Step 2, and that the norm of (E−F−1) is small
enough, it follows that the element of F−1 from the entry (1,m+ 1) lies on the same
side of 1/2 as pA(x). Computing this element is equivalent to computing the element
y1 from the system

F ·

y1
...
ym
ym+1

 =

0
...
0
1

 .
Step 4 (clear denominators). Now, we transform the matrix F into an integer

matrix. On the left, we multiply both sides of the previous system by the diagonal

SPACE-EFFICIENT DETERMINISTIC SIMULATION 461

matrix

F1 =

bn
d6

. . .
. . .

bn
d6

bn
d6

1

.

This yields the equivalent system

G ·

y1
...
ym
ym+1

 =

0
...
0
1

 .
G has only integer elements, since d6 exceeds the earlier constants, and it is nonsin-
gular since F and F1 are nonsingular. Its bandwidth is at most one larger than the
bandwidth of N , and its elements on its highest nonnull diagonal are all 1. We have to
find y1 and how it compares with 1/2. The element y1 is the entry (1,m+ 1) of G−1,
so its value is y1 = u

v , where u = (−1)(m+1)+1∆(m+1,1), v = detG, u and v are both
integers, and u/v > 1/2 iff 2u > v. ∆(m+1,1) is the minor (m+ 1, 1) of G, and is the
determinant of a matrix having the same structure as G; so our problem is reduced
to comparing the determinants of two matrices that have the same type as G.

Step 5 (Gaussian elimination). We show how to compute the determinant of G.
The determinants giving u and v can be computed in a similar way. First, we do a
partial Gaussian elimination of the elements under the highest nonnull diagonal (now
filled with 1’s). Next we have to compute the determinant of a O(B)-by-O(B) integer
matrix G2 (see Fig. 3) that can be done in O(logB(logB + log logP)) deterministic
space, where P is the largest number used in that computation.

We comment now on different ways to do the Gaussian elimination and to compute
the elements of the matrices G1 and G2. The first remark is that we can compute the
elements of G1 and G2 column by column. For a given column, each element can be
computed by a linear recurrence involving a constant number of elements belonging
to the same column and situated in the next upper (B + 1) positions above it. We
have to compute the first m+1 elements generated by this recurrence. (Note that the
operations involved in the recurrence are additions, subtractions, and multiplications.)
We indicate two ways to solve this recurrence, whose space-efficiencies depend on the
magnitude of B.

• One way is to always keep the last (B + 1) elements on the worktape, and,
when computing a new element, to replace the oldest element. The space
used in this approach is O(B · logP).
• The other way is to solve the recurrence in parallel using a circuit model. We

recall the result of Stone [St73], which states that obtaining the first m num-
bers satisfying a linear recurrence of order B is equivalent to multiplying m
B-by-B matrices, and this is equivalent to performing logm iterations, where
each iteration involves parallel multiplications of B-by-B matrices. Matrix
multiplication can be done by logspace-uniform (polynomial-size) boolean cir-
cuits of depth O(logB + log logP), where P is the largest number involved
in the computation. As a result, we can solve the linear recurrence using

462 IOAN I. MACARIE

0

0
gaussian
elimination

0

0

0
G

G2

1

1

1

1

1

1
1

1
1G=

FIG. 3. Gaussian elimination.

logspace-uniform boolean circuits of depth O(logm(logB+log logP)), which
can be simulated in O(logm(logB+log logP)) deterministic space using a re-
sult of Borodin [Bo77]. Essentially, Jung found another variant of this second
method [Ju84].

In summary, the acceptance or rejection of x is equivalent to deciding whether y1
is larger or smaller than 1/2, which is equivalent to deciding which of the integers 2u
and v is larger. The magnitude of these two numbers is O(m(bn

d6)m) = O(bn
d6+a+1

)
(recall that m ∈ O(na)). Let h ∈ Θ(nd6+a+1). We have max(2u, v) <

∏h
i=1 pi,

where pi, i ∈ {1, . . . , h} are the first h primes starting with p1 = 3. We can
compute 2u and v modulo these h primes and then compare them using Lemma
3. Their computation modulo a prime pi can be done deterministically, using the
previous remarks, in O(logm + min(B log pi, logm(logB + log log pi))) space. Also
note that log ph ∈ O(logn) (because ph ∈ O(h log h)), logm ∈ O(logn), and B =
O(cf(n)).

THEOREM 6. The languages recognized by f(n) ∈ o(log log logn) space-bounded
probabilistic Turing machines can be recognized by deterministic Turing machines in
space O(cf(n)(logn)), where c is a constant depending on the probabilistic Turing
machine.

This theorem improves the following result of Jung [Ju84]:

PrSpace(f(n)) ⊂ Dspace(log n(f(n) + log logn))

for f(n) ∈ o(log log logn).

5. Discussion and open problems. This article presents space-efficient de-
randomized (i.e., deterministic) simulations of probabilistic automata. Depending on
the amount of space used by the simulated probabilistic automaton, we obtain results
at three different levels:

• Probabilistic (one-head one-way and one-head two-way) finite automata (with
rational transition probabilities) can be simulated deterministically inO(logn)
space. This simulation is optimal and represents a significant improvement
over the previously reported simulations [Di72, Ju84, Wa92]. It follows as a
corollary that the languages recognized by these automata have simple char-
acterizations in extended first-order logics. (See [Im87] for some connections
among space-bounded complexity classes and first-order logic with ordering
and closure operators.)
• Probabilistic Turing machines with space bound f(n) ∈ o(log log logn) are

simulated deterministically in O(cf(n) logn) space, where c is a constant de-
pending on the size of the worktape alphabet of the simulated machine. This

SPACE-EFFICIENT DETERMINISTIC SIMULATION 463

improves a simulation of Jung, which uses O(logn log logn) space indepen-
dently of the size of f(n) [Ju84]. The existence of languages with probabilistic
space complexities at this level was pointed out by Freivalds [Fr81].3 In the
nondeterministic case, on the other hand, there are no such languages since
there is a space complexity gap below log log n [SHL65].
• Probabilistic Turing machines with space bound f(n) between Θ(log log logn)

and Θ(logn) can be simulated deterministically in O(logn(f(n) + log logn))
space. Our new simulation uses the same space as Jung’s [Ju84]. When
f(n) is between Θ(log logn) and Θ(logn) these simulations generalize Monien
and Sudborough’s deterministic simulation of space-bounded nondeterminis-
tic Turing machines [MS82].

Our simulations are presented in the more general setting of Markov chains, so
they may have other applications as well. We also design a space-efficient method
to compare a threshold with entries of the inverse of banded matrices. One tool for
proving these results is a space-efficient (and also parallel-time-efficient) technique to
deterministically compare numbers given in terms of their residue representations.

We turn now to some open problems.
The main limitation in the proof of Theorem 5 is that we are able to use only

the bandwidth of the matrix, but not its sparse structure, within the band. We
are looking for more sophisticated algorithms for inverting matrices, able to take
advantage of bandwidth combined with sparseness. Interestingly, for the problem of
iterated matrix product, to which matrix inversion is efficiently reducible [Co85], there
is known an approximation technique that takes advantage of the matrix sparseness
within each row [SZ95]. This technique uses pseudorandom generators for space-
bounded bounded-error probabilistic computation [Ni90, Ni92]. However, it does
not provide tight approximations and, consequently, it can be used for simulating
only bounded-error probabilistic computation. It may be possible to combine the
advantages of both techniques.

Another question is how to take further advantage of the fact that we can do
small modifications on the configuration transition matrices when inverting them.

Acknowledgments. I am very grateful to Joel Seiferas and Paul Dietz for many
valuable discussions on this subject. I also thank them for carefully reading an earlier
version of this paper and suggesting significant improvements. I also thank Helmut
Jürgensen for his comments on a preliminary version of this paper and Marius Zimand
and Bruce Litow for bringing to my attention the paper by Davida and Litow [DL91].

REFERENCES

[Bo77] A. BORODIN, On relating time and space to size and depth, SIAM J. Comput., 6 (1977),
pp. 733–744.

[BCP83] A. BORODIN, S. COOK, AND N. PIPPENGER, Parallel computation for well-endowed rings
and space-bounded probabilistic machines, Inform. and Control, 48 (1983), pp. 113–136.

[Bu67] R. BUKHARAEV, On the representability of events in probabilistic automata, Prob. Methods
and Cybernetics, V, Kazan, 1967, pp. 7–20 (in Russian).

[Bu85] R. BUKHARAEV, Fundamentals of the Theory of Probabilistic Automata, Nauka, Moscow,
1985 (in Russian).

[CK94] K. CULIK AND J. KARHUMAKI, Finite automata computing real functions, SIAM J. Com-
put., 23 (1994), pp. 789–814.

3Actually, Freivalds used a different notion of space-bounded probabilistic complexity class, but
our simulation can also be adapted to his case.

464 IOAN I. MACARIE

[Co85] S. A. COOK, A taxonomy of problems with fast parallel algorithms, Inform. and Comput.,
64 (1985), pp. 2–22.

[Cs76] L. CSANKY, Fast parallel matrix inversions algorithms, SIAM J. Comput., 5 (1976), pp. 618–
623.

[Di71] P. D. DIEU, On a class of stochastic languages, Z. Math. Logik Grundlagen Math. Bd., 17
(1971), pp. 421–425.

[Di72] P. D. DIEU, On a necessary condition for stochastic languages, Electron. Inform. Kybernetik
EIK, 8/10 (1972), pp. 575–588.

[Di93] P. DIETZ, personal communication, 1993.
[DL91] G. I. DAVIDA AND B. LITOW, Fast parallel arithmetic via modular representation, SIAM J.

Comput., 20 (1991), pp. 756–765.
[DMS94] P. DIETZ, I. I. MACARIE, AND J. I. SEIFERAS, Bits and relative order from residues, space

efficiently, Inform. Process. Lett., 50 (1994), pp. 123–128.
[DS90] C. DWORK AND L. STOCKMEYER, A time complexity gap for two-way probabilistic finite-

state automata, SIAM J. Comput., 19 (1990), pp. 1011–1023.
[Eb89] W. EBERLY, Very fast parallel matrix and polynomial arithmetic, SIAM J. Comput., 18

(1989), pp. 955–976.
[Eb95] W. EBERLY, Fast parallel band matrix arithmetic, Inform. and Comput., 116 (1995), pp. 117–

127.
[Fr81] R. FREIVALDS, Probabilistic two-way machines, in Proc. 6th Symposium on Mathematical

Foundations of Computer Science, Lecture Notes in Comput. Sci., 118, Springer-Verlag,
New York, 1981, pp. 33–45.

[Fr91] R. FREIVALDS, Complexity of probabilistic versus deterministic automata, Baltic Computer
Science, Selected Papers, Lecture Notes in Comput. Sci. 502, Springer-Verlag, Berlin,
1991, pp. 565–613.

[Gi77] J. GILL, Computational complexity of probabilistic Turing machines, SIAM J. Comput., 6
(1977), pp. 675–695.

[Go83] G. GOLUB AND C. VAN LOAN, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983.

[HU79] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and
Computation, Addison–Wesley, Reading, MA, 1979.

[Im87] N. IMMERMAN, Languages that capture complexity classes, SIAM J. Comput., 16 (1987),
pp. 760–778.

[Ju81] H. JUNG, Relationships between probabilistic and deterministic tape complexity, in Proc.
10th Symposium on Mathematical Foundations of Computer Science, Lecture Notes in
Comput. Sci. 118, Springer-Verlag, New York, 1981, pp. 339–346.

[Ju84] H. JUNG, On probabilistic tape complexity and fast circuits for matrix inversion problems,
11th Internat. Coll. on Automata, Languages and Programming, (ICALP 1984), Lecture
Notes in Comput. Sci. 172, Springer-Verlag, New York, pp. 281–291.

[Ka89] J. KANEPS, Stochasticity of the languages recognizable by 2-way finite probabilistic automata,
Diskret. Mat., 1 (1989), pp. 63–77 (in Russian).

[Ku73] YU. I. KUKLIN, Two-way probabilistic automata, Avtomat. i Vychisl. Tekhn., 5 (1973),
pp. 35–36 (in Russian).

[LR86] F. LEIGHTON AND R. RIVEST, Estimating a probability using finite memory, IEEE Trans.
Inform. Theory, 6 (1986), pp. 733–742.

[LSH65] P. M. LEWIS II, R. STEARN, AND J. HARTMANIS, Memory bounds for recognition of context-
free and context-sensitive languages, in IEEE Conference Record on Switching Circuit
Theory and Logical Design, 1965, IEEE Computer Science Press, Los Alamitos, CA,
pp. 191–202.

[Ma93] I. MACARIE, Closure Properties of Stochastic Languages, Technical Report TR441, Dept. of
Comp. Science, University of Rochester, Rochester, NY, 1993.

[Ma95] I. I. MACARIE, Decreasing the bandwidth of a configuration transition matrix, Inform. Pro-
cess. Lett., 53 (1995), pp. 315–320.

[MS82] B. MONIEN AND I. H. SUDBOROUGH, On eliminating nondeterminism from Turing machines
which use less than logarithm worktape space, Theoret. Comput. Sci., 21 (1982), pp. 237–
253.

[Ni90] N. NISAN, Pseudorandom generators for space-bounded computation, Proc. 22nd Annual
ACM Symposium on the Theory of Computing, ACM, New York, 1990, pp. 204–212.

[Ni92] N. NISAN, RL ⊆ SC, in Proc. 24th Annual ACM Symposium on the Theory of Computing,
ACM, New York, 1992, pp. 619–623.

[NZ93] N. NISAN AND D. ZUCKERMAN, More deterministic simulation in logspace, in Proc. 25th
Annual ACM Symposium on the Theory of Computing, ACM, New York, 1993, pp. 235–
244.

SPACE-EFFICIENT DETERMINISTIC SIMULATION 465

[Pa71] A. PAZ, Introduction to probabilistic automata, in Computer Science and Applied Mathe-
matics, Academic Press, New York, 1971.

[Ra63] M. O. RABIN, Probabilistic automata, Inform. and Control, 6 (1963), pp. 230–244.
[Re86] J. REIF, Logarithmic depth circuits for algebraic functions, SIAM J. Comput., 15 (1986),

pp. 231–242.
[Ra92] B. RAVIKUMAR, Some Observations on 2-way Probabilistic Finite Automata, Technical Re-

port TR92-208, Dept. of Comp. Science and Statistics, Univ. of Rhode Island, Kingston,
RI, 1992.

[RST82] W. RUZZO, J. SIMON, AND M. TOMPA, Space-bounded hierarchies and probabilistic com-
putation, in Proc. 14th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1982, pp. 215–223; also in J. Comput. System Sci., 28 (1984), pp. 216–230.

[Sa70] W. J. SAVITCH, Relationships between nondeterministic and deterministic tape complexity,
J. Comput. System Sci., 4 (1970), pp. 177–192.

[SHL65] R. E. STEARNS, J. HARTMANIS, AND P. M. LEWIS II, Hierarchies of memory limited
computations, in IEEE Conf. Record on Switching Circuit Theory and Logical Design,
IEEE Computer Society Press, Los Alamitos, CA, 1965, pp. 179–190.

[Si77] J. SIMON, On the difference between one and many, in Proc. 4th Internat. Coll. on Automata,
Languages and Programming, Lecture Notes in Comput. Sci. 52, Springer-Verlag, New
York, 1977, pp. 480–491.

[Si81] J. SIMON, Space-bounded probabilistic Turing machine complexity classes are closed under
complement, in Proc. 13th Annual ACM Symposium on Theory of Computing, ACM,
New York, 1981, pp. 158–167.

[Si80] M. SIPSER, Halting space-bounded computation, Theoret. Comput. Sci. 10 (1980), pp. 335–
338.

[SS78] A. SALOMAA AND M. SOITTOLA, Automata-theoretic Aspects of Formal Power Series,
Springer-Verlag, Berlin, 1978.

[St66] P. STARKE, Stochastische Ereignisse und Wortmengen, Z. Math. Logik Grundlagen Math.
Bd., 12 (1966), pp. 61–68.

[St73] H. STONE, An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations, J. ACM, 20 (1973), pp. 27–38.

[SZ95] M. SAKS AND S. ZHOU, RSPACE(S) ⊆ DSPACE(S3/2), in Proc. 36th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 344–353.

[Tu68] P. TURAKAINEN, On stochastic languages, Inform. and Control, 12 (1968), pp. 304–313.
[Tu69a] P. TURAKAINEN, On languages representable in rational probabilistic automata, Ann. Acad.

Sci. Fenn. Ser. A I, 439 (1969).
[Tu69b] P. TURAKAINEN, Generalized automata and stochastic languages, Proc. Amer. Math. Soc.,

21 (1969), pp. 303–309.
[Tu71] P. TURAKAINEN, Some closure properties of the family of stochastic languages, Inform. and

Control, 18 (1971), pp. 253–256.
[Wa92] J. WANG, A note on two-way probabilistic automata, Inform. Process Lett., 43 (1992),

pp. 321–326.

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME∗

PHILLIP G. BRADFORD† , GREGORY J. E. RAWLINS‡ , AND GREGORY E. SHANNON§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 466–490, April 1998 008

Abstract. The matrix chain ordering problem is to find the cheapest way to multiply a chain
of n matrices, where the matrices are pairwise compatible but of varying dimensions. Here we
give several new parallel algorithms including O(lg3 n)-time and n/lgn-processor algorithms for
solving the matrix chain ordering problem and for solving an optimal triangulation problem of
convex polygons on the common CRCW PRAM model. Next, by using efficient algorithms for
computing row minima of totally monotone matrices, this complexity is improved to O(lg2 n) time
with n processors on the EREW PRAM and to O(lg2 n lg lgn) time with n/lg lgn processors on
a common CRCW PRAM. A new algorithm for computing the row minima of totally monotone
matrices improves our parallel MCOP algorithm to O(n lg1.5 n) work and polylog time on a CREW
PRAM. Optimal log-time algorithms for computing row minima of totally monotone matrices will
improve our algorithm and enable it to have the same work as the sequential algorithm of Hu and
Shing [SIAM J. Comput., 11 (1982), pp. 362–373; SIAM J. Comput., 13 (1984), pp. 228–251].

Key words. parallel, dynamic programming, matrix chain ordering, optimization

AMS subject classifications. 90C39, 68Q25, 03D15

PII. S0097539794270698

1. Introduction. The design of efficient parallel algorithms for problems with
elementary serial dynamic programming solutions has been the focus of much recent
research. These problems include string editing [2, 5, 30], context-free grammar recog-
nition [35, 37], and optimal tree building [7, 32]. Polylog time parallel algorithms for
solving these problems use new approaches, since straightforward parallelization of
sequential dynamic programming algorithms produce very slow (linear-time) parallel
algorithms. Many efficient parallel algorithms designed to date rely on monotonic-
ity conditions to give divide-and-conquer schemes. By “efficient” we mean that the
processor-time product is within a polylog factor of the best sequential time.

The matrix chain ordering problem (MCOP) is to find the cheapest way to multi-
ply a chain of n matrices, where the matrices are pairwise compatible but of varying
dimensions. This problem can be found in many classic textbooks on parallel and
sequential algorithms, such as [3, 18]. The MCOP is often the focus of dynamic
programming research and pedagogy because of its amenability to an elementary dy-
namic programming solution. There has been significant sequential and parallel work
on the MCOP [11, 17, 19, 20, 21, 25, 26, 27, 28, 29, 38, 40, 41, 39, 42, 43, 44] and a
related convex polygon triangulating problem. However, until recently none of this
work has given an efficient (linear-processor) polylogarithmic-time algorithm for the

∗Received by the editors July 6, 1994; accepted for publication (in revised form) February 13,
1996. An extended abstract of this paper appeared in the Proceedings of the 8th Annual IEEE
International Parallel Processing Symposium, Cancun, Mexico, H. J. Siegel, ed., IEEE Computer
Society Press, Los Alamitos, CA, pp. 234–241. This paper also represents part of the first author’s
dissertation.

http://www.siam.org/journals/sicomp/27-2/27069.html
†Department of Computer Science, Indiana University, 215 Lindley Hall, Bloomington, IN 47405

(bradford@cs.indiana.edu). Current address: Max-Planck-Institut für Informatik, Im Stadtwald,
D-66123 Saarbrücken, Germany (pbradford@bfm.com).
‡Department of Computer Science, Indiana University, 215 Lindley Hall, Bloomington, IN 47405

(rawlins@cs.indiana.edu).
§Department of Computer Science, Indiana University, 215 Lindley Hall, Bloomington, IN 47405

(shannon@cs.indiana.edu). Current address: 2501 N. Loop Drive, ISU Research Park, Ames, IA
50010 (shannon@neb.infostructure.com).

466

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 467

MCOP. (See Bradford [11].) Recently in [40] and [41] Ramanan independently gave
an O(lg4 n)-time and n-processor algorithm for solving the MCOP on the CREW
PRAM. Moreover, in [15] we gave a O(lg4 n)-time and n/lgn processor algorithm for
solving the MCOP on the common-CRCW PRAM.

Algorithm-design paradigms often aid the design of efficient sequential algorithms.
However, some algorithm-design paradigms may not lead to efficient parallel algo-
rithms. In particular, some variations of the greedy paradigm appear to be inherently
sequential [4]. This highlights the significance of research in parallel dynamic pro-
gramming.

1.1. Main results of this paper. Our approach follows [11], recasting the
MCOP as a shortest path problem in a graph modeling a dynamic programming
table. (In fact, this paper is an update of a part of [10] and a revision of [15]; see
also the first author’s dissertation [12].) This graph has O(n2) nodes and with an
all-pairs shortest paths algorithm finding a shortest path in this graph results in a
n6/lgn processor MCOP algorithm. Reducing the number of nodes to O(n) using a
tree decomposition and applying an all-pairs shortest path algorithm gives an n3/lgn
processor and polylog-time algorithm.

In this paper, we convert the successive applications of the brute force all-pairs
shortest paths algorithm to successive applications of parallel partial prefix and bi-
nary search algorithms. As in the n3/lgn-processor algorithm, the applications of
the prefix and binary search algorithms are controlled by a rake-compress paradigm
operating on a tree-based decomposition of the original graph. All of this results
in a polylog-time (O(lg3 n)) and linear-processor (n/lgn) parallel algorithm for the
MCOP on the common-CRCW PRAM. This improves our result of O(lg4 n) time
and n/lgn processors of [15]. In addition, using efficient algorithms for computing
row minima on totally monotone matrices, our algorithm can run in O(lg2 n lg lgn)
time using n/lg lgn processors on a common-CRCW PRAM or in O(lg2 n) time us-
ing n processors on an EREW PRAM. Using the most efficient polylog-time parallel
algorithms for computing row minima on totally monotone matrices, our algorithm
can run in O(lg1.5 n lg lgn) time using O(n

√
lgn) work on a common-CRCW PRAM

or in O(lg2.5 n
√

lg lgn) time using O(n
√

lgn lg lgn) processors on an EREW PRAM.
See Bradford, Fleischer, and Smid [14] for the most efficient polylog-time parallel
algorithms to date for computing row minima in totally monotone matrices.

1.2. Previous results. Elementary dynamic programming algorithms sequen-
tially solve the matrix chain ordering problem in O(n3) time; see [3, 18]. Several
recent textbooks on the design and analysis of parallel algorithms discuss the MCOP;
see [36, 23]. However, the best sequential solution of the MCOP is Hu and Shing’s
O(n lgn) algorithm [28, 29]. (Much work has been done on lower bounds on the
MCOP and related problems; see [38, 39, 13].) Using straight-line arithmetic pro-
grams, Valiant et al. [43] showed that many classical optimization problems with effi-
cient sequential dynamic programming solutions are in NC. Their algorithms require
Θ(lg2 n) time and n9 processors. Using pebbling games, Rytter [42] gave more effi-
cient parallel algorithms for a similar class of optimization problems costing O(lg2 n)
time with n6/lgn processors. In [11], an algorithm was given that takes O(lg3 n)
time and n3/lgn processors, and [20] gave an algorithm that takes O(lg3 n) time and
n2/lg3 n processors. In [40], Ramanan gives an extended abstract of an n-processor
and O(lg4 n)-time CREW PRAM algorithm for solving the MCOP which came after
our buggy version in [10]; his full version appears in [41]. A full version of our n/lgn-
processor and O(lg4 n)-time algorithm described and improved upon in this paper

468 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

appears in [15]. In addition, there are serial and parallel approximation algorithms
for the MCOP [11, 17, 19, 27].

1.3. Structure of the paper. In section 2 we briefly review the interpretation
of the MCOP as a shortest path graph problem from [11] and then summarize the
n3/lgn-processor algorithm. In section 3 we isolate this algorithm’s n3/lgn-processor
bottlenecks. The n3/lgn-processor cost of these bottlenecks is from an all-pairs short-
est paths algorithm. In section 4 we show how to replace the all-pairs shortest path
algorithm with parallel prefix and an all-pairs comparison algorithm. In section 5
we replace the all-pairs comparison algorithm with applications of parallel prefix and
binary search. Finally, it is shown that the key problems solved in section 4, and more
efficiently in section 5, can be solved by finding the row minima of a totally monotone
matrix.

2. An O(lg3 n) time and n3/lgn processor MCOP algorithm. This sec-
tion contains a brief review of the polylog-time and n3/lgn-processor MCOP algo-
rithm from [11].

Let T be an n × n dynamic programming table for the matrix chain ordering
problem. It has entries T [i, k] representing the cheapest cost of the matrix product
Mi • · · · •Mk. For any such T there is a graph Dn where the cost of a shortest path to
node (i, k), denoted sp(i, k), is the same as the final value of T [i, k]. Given a chain of
n matrices, finding a shortest path from (0, 0) to (1, n) in Dn solves the MCOP [11].

The weighted digraph Dn has vertices in the set, {(i, j) : 1 ≤ i ≤ j ≤ n}∪{(0, 0)}
and edges

{(i, j)→ (i, j + 1) : 1 ≤ i ≤ j < n} ∪ {(i, j) ↑ (i− 1, j) : 1 < i ≤ j ≤ n}
∪{(0, 0)↗ (i, i) : 1 ≤ i ≤ n},

known as unit edges, together with the edges

{(i, j) =⇒ (i, t) : 1 < i < j < t ≤ n} ∪ {(s, t) ⇑ (i, t) : 1 ≤ i < s < t ≤ n},

known as jumpers; see the jumper from (1, 2) to (1, 4) in Figure 1. The unit edge
(i, j)→ (i, j+1) represents the product (Mi•· · ·•Mj)•Mj+1 and weighs f(i, j, j+1) =
wiwj+1wj+2, which is taken as the cost of multiplying a wi × wj+1 matrix and a
wj+1 × wj+2 matrix. Similarly, the unit edge (i, j) ↑ (i− 1, j) represents the product
Mi−1 • (Mi • · · · •Mj) and costs f(i− 1, i− 1, j) = wi−1wiwj+1. A shortest path to
(i, k) through the jumpers (i, j) =⇒ (i, k) and (j+1, k) ⇑ (i, k) represents the product
(Mi • · · · •Mj) • (Mj+1 • · · · •Mk), and these jumpers weigh sp(j + 1, k) + f(i, j, k)
and sp(i, j)+f(i, j, k), respectively, where sp(j+1, k) is the cost of a shortest path to
node (j + 1, k) and f(i, j, k) = wiwj+1wk+1. The jumper (i, j) =⇒ (i, t) is of length
t− j. See Figure 1.

Using this model the MCOP can be solved in polylog time with n6/lgn processors
by using an all-pairs shortest path algorithm and exploiting the following theorem.

THEOREM 1 (Duality Theorem [11]). If a shortest path from (0, 0) to (i, k) con-
tains the jumper (i, j) =⇒ (i, k), then there is a dual shortest path containing the
jumper (j + 1, k) ⇑ (i, k).

Furthermore, using a tree decomposition of Dn and an all-pairs shortest path
algorithm, the MCOP was solved in polylog time using n3/lgn processors [11].

2.1. Matrix dimensions as nesting levels of matching parentheses. The
next four subsections show that using the list of matrix dimensions as nesting levels of

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 469

(4,4)(0,0)

(3,4)(3,3)

(2,4)(2,3)(2,2)

(1,4)(1,3)(1,2)(1,1)

FIG. 1. The weighted graph D4.

matching parentheses gives a tree decomposition of Dn that leads to efficient solutions
of the MCOP.

Given an associative product with the level of each parenthesis known, for each
parenthesis find its matching parenthesis by solving the all nearest smaller value
(ANSV) problem [8, 9]: given weights w1, w2, . . . , wn, for each w find the indices,
if they exist, of the nearest proceeding and succeeding weights both less than w. Let’s
call this pair of indices, if they exist, an ANSV match. That is, for each w the problem
is to find the largest j where 1 ≤ j < i, and find the smallest k where i < k ≤ n,
so that wj < wi and wk < wi, if such values exist. In Dn, (i, k) is a critical node if
[wi, wk+1] is an ANSV match.

By solving the ANSV problem we can compute all critical nodes of Dn. The
bottom of Figure 2 depicts a list of matrix dimensions (called weights) and dashed
lines representing four key ANSV matches. The four corresponding critical nodes are
circled in Dn.

In our nomenclature, [8] shows that the following theorem holds.
THEOREM 2. Computing all critical nodes costs O(lgn) time with n/lgn proces-

sors or in O(lg lgn) time using n/lg lgn processors on the common-CRCW PRAM.
In addition, [16, 34] give the following theorem.
THEOREM 3. Computing all critical nodes costs O(lgn) time with n/lgn proces-

sors on the EREW PRAM.
Two critical nodes on the same diagonal are compatible if no vertices other than

(0, 0) can reach both of them by a unit path. Since a path of critical nodes represents
a parenthesization, all critical nodes are compatible. Also, Dn has at most n − 1
critical nodes and there is at least one path from (0, 0) to (1, n) that includes all
critical nodes [11].

470 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

FIG. 2. Two leaf subgraphs inside a band subgraph with critical nodes shown.

2.2. Canonical subgraphs of Dn. In this subsection we investigate the inter-
action between subgraphs containing critical nodes.

All vertices and edges that can reach (i, t) by a unit path form the subgraph
D(i, t). Given D(i, j) if the weight list wi, . . . , wj+1 is monotonic, then D(i, j) is
monotonic. A band canonical subgraph D(i,t)

(j,k) is the subgraph containing the maximal
unit edge-connected path of critical nodes beginning at critical node (j, k) and termi-
nating at critical node (i, t) with the vertex set {(0, 0)}∪(V [D(i, t)]−V [D(j+1, k−1)])
and associated edges. A canonical subgraph of the form D

(i,t)
(j,j+1) is a leaf canonical

subgraph and is written D(i,t); it has the same nodes and edges as D(i, t). The top of
Figure 2 shows two leaf subgraphs nested inside of a band subgraph. Leaf and band
subgraphs are the only two types of canonical subgraphs. Canonical subgraphs are
easily distinguishable by the properties of their critical nodes shown in Theorem 2.
From here on p denotes the path of critical nodes in band or leaf canonical subgraphs.

Given D(i, u) with a monotone list of weights wi ≤ wi+1 ≤ · · · ≤ wu+1, a shortest
path from (0, 0) to (i, u) is the straight unit path (0, 0) ↗ (i, i) → (i, i + 1) →
· · · → (i, u) that costs wi

∑u
j=i+1 wjwj+1. On the other hand, if D(i, t) has no

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 471

(j,k)

(i,t)

FIG. 3. Two angular paths.

critical nodes, then its associated weight list is monotonic. As in [28, 29, 11] let
‖wi : wk‖ =

∑k−1
j=i wjwj+1, which is easily computable using differences of components

of the parallel partial prefixes ‖w1 : wi‖ for 2 ≤ i ≤ n+1. This is useful since the unit
path (i, j)→ · · · → (i, k) costs wi‖wj+1 : wk+1‖ = wi(‖w1 : wk+1‖ − ‖w1 : wj+1‖).

Suppose (j, k) and (i, t) are two critical nodes in a canonical graph such that from
(j, k) we can reach (i, t) by a unit path, that is if i ≤ j ≤ k ≤ t, then the angular
paths of (j, k) and (i, t) are, (see Figure 3)

(j, k) ⇑ (i, k)→ · · · → (i, t) and (j, k) =⇒ (j, t) ↑ · · · ↑ (i, t).

THEOREM 4 (see [11]). In a canonical subgraph the shortest path between any two
critical nodes that contains no other critical nodes is an angular path or edge.

In addition, any shortest path not including critical nodes is a straight path of
unit edges. Thus, any shortest path to a critical node that contains no other critical
nodes is a straight path of unit edges [11].

Now a polylog-time algorithm for finding shortest paths to all critical nodes
in D(1,m) graphs is given. This algorithm takes O(lg2m) time and uses m3/lgm
processors.

First compute the parallel partial prefixes ‖w1 : wi‖ for 2 ≤ i ≤ m + 1. Find all
critical nodes. Now, in constant time using m processors compute the costs of all of
the unit paths to nodes in p. Next compute the cost of the O(m2) angular paths in
constant time with m2 processors. Finally, compute the shortest path to each node in
p by treating every angular path as an edge and applying a parallel all-pairs shortest
path algorithm.

2.3. Combining the canonical graphs for an efficient parallel algorithm.
In this subsection we discuss a tree contraction algorithm that contracts the tree
structure joining the canonical subgraphs to form a shortest path in Dn; see also
[28, 29, 11].

In Dn a canonical tree joins all of the canonical subgraphs. A node in a canonical
tree is critical node, say (i, j), and is written (i, j). Initially, for every leaf D(i,j)

the critical node (i, j) is the tree leaf (i, j). Internal tree nodes are either isolated
critical nodes or (i, t) and (j, k) in the band D(i,t)

(j,k). Tree edges are straight unit paths
connecting tree nodes, and jumpers may reduce the cost of tree edges.

Given an instance of the MCOP with the weight list l1 = w1, w2, . . . , wn+1, cycli-
cally rotating it, getting l2, and finding an optimal parenthesization for l2 gives an
optimal solution to the original instance of the MCOP with l1, [28, 21]. So in the rest
of this paper let w1 denote the smallest weight in any weight list.

472 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

FIG. 4. A tree of canonical graphs (the circles denote tree nodes).

A result of Hu and Shing [28] leads directly to the next corollary.
COROLLARY 1 (Atomicity Corollary [11]). Suppose a weight list w1, . . . , wn+1,

with the three smallest weights w1, wj+1, and wk+1, is given such that 1 < j < k − 1.
Then the critical nodes (1, j) and (1, k) are in a shortest path from (0, 0) to (1, n) in
Dn.

For this corollary to work it is central that if w1, wj+1, and wk+1 are the three
smallest weights; then j+ 1 > 2 and k > j+ 1. This generally means that Corollary 1
cannot be applied in a canonical subgraph. For instance, take the leaf D(1,m) where
we can assume w1 < wm+1 < wi for 1 < i < m+ 1. However, Corollary 1 can be used
to break Dn into a tree of canonical graphs; see Figure 4.

IfDn has fewer than n−1 critical nodes, thenDn may have disconnected canonical
trees and monotone subgraphs. But there is at least one path joining these subtrees,
and at the same time we can discount the monotone subgraphs. There are several
relationships canonical graphs may have; these follow directly from the relationships
of critical nodes that are tree nodes.

The tree edge (i, j) → · · · → (i, v) along row i initially costs wi‖wj+1 : wv+1‖
where wi < wv+1 < wj+1 are the three smallest weights in D(i, v). Let p denote
a shortest path of critical nodes in D(j + 1, v) from (j + 1, v) back to (0, 0). Edge
minimizing the unit path along the ith row to the critical node (i, v) is done as follows.
First let L = wi‖wi+1 : wv+1‖ and W ((i, k) =⇒ (i, u)) = sp(k+ 1, u) + f(i, k, u), then
compute

A[i, v] = min
∀(k+1,u)∈V [p]

{L, wi‖wi+1 : wv+1‖ − wi‖wk+1 : wu+1‖+W ((i, k) =⇒ (i, u))}.

Since the three smallest weights in D(i, v) are wi < wv+1 < wj+1, by Corollary 1 the
cheapest cost to critical node (i, v) is now in A[i, v].

THEOREM 5 (see [11]). When edge minimizing a tree edge (i, j) → · · · → (i, v)
in a canonical subgraph we only have to consider jumpers (i, k) =⇒ (i, t) such that
(k + 1, t) ∈ V [p].

The critical node (i, u) in the band D
(i,u)
(j,k) is the front critical node. In general,

Theorem 5 holds when p is a shortest path through a band from the front critical
node back to (0, 0). Also, Theorem 5 holds for leaves in the canonical tree that, after
raking, have become conglomerates of other leaves, bands, and isolated critical nodes.
Here, jumpers derived from critical nodes in different subtrees are independent so we
can minimize tree edges with them simultaneously.

2.4. Contracting a canonical tree. In this subsection we show how to contract
a canonical tree efficiently in parallel.

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 473

a) b) c)

A

B

Min A M
in

A

Min B

M
in

B

FIG. 5. Bottlenecks 1, 2, and 3 for the n3/lgn-processor algorithm.

Assume that all critical nodes (i, j) in tree leaves have the minimum cost back to
(0, 0) stored in sp(i, j). Compute these values using an all-pairs shortest path parallel
algorithm. There is an ordering of the leaves that prevents the simultaneous raking of
two adjacent leaves. Given two neighboring leaves D(i,j) and D(j+1,k) with the three
tree leaves (i, j), (j + 1, k), and (i, k), assume wi < wk+1 < wj+1. Then leaf (j + 1, k)
must be raked, since (i, j) is in a shortest path from (0, 0) to (i, k). Use the Euler
tour technique [33] when the raking order is arbitrary.

Given two nested bands, assume D
(i,v)
(j,u) is nested around D

(k,t)
(r,s) , that is, j ≤

k < t ≤ u. Without loss of generality, suppose any trees between D
(i,v)
(j,u) and D

(k,t)
(r,s)

have been contracted. Then joining these bands costs O(lg2 n) time with n3/lgn
processors. To achieve this, first, edge minimize all straight unit paths in D(i,v)

(j,u) with

the shortest paths from critical nodes that are between D(i,v)
(j,u) and D(k,t)

(r,s) back to (0, 0).
Next, take all angular paths connecting these two bands and apply a parallel all-pairs
shortest path algorithm merging the bands. Merging the bands D(i,v)

(j,u) and D
(j,u)
(r,s)

gives a shortest path from the front critical node (i, v) back to (0, 0) through D
(i,v)
(r,s).

Incorporating this band merging with the tree contraction completes the polylog-time
and n3/lgn-processor MCOP algorithm.

3. The structure of shortest paths in canonical subgraphs. In this section
we give the n3/lgn-processor bottlenecks of the algorithm in section 2. In addition,
we give a metric for measuring the relative contributions of angular paths to shortest
paths and some theorems about shortest paths forward from critical nodes in canonical
graphs. From this section on, we only address rows in the canonical graphs; the
arguments for columns follow immediately.

3.1. The n3/lgn processor bottlenecks. In this subsection we give the
n3/lgn-processor bottlenecks of the algorithm sketched in section 2.

Three parts of the algorithm in section 2 use n3/lgn processors. All other parts
of this algorithm use a total of n/lgn processors and take O(lgn) time. The three
bottlenecks are: finding shortest paths from all critical nodes in leaf graphs back to
(0, 0) (see Figure 5a); merging two bands (see Figure 5b); and merging two bands
that have contracted canonical trees between them (see Figure 5c).

In Figure 5c, contracted trees A and B are used to edge minimize the unit paths
marked by “Min-A” and “Min-B.” Edge minimizing the unit paths in the outer
band with the contracted trees gives an instance of the second bottleneck; see Figure
5b. Edge minimizing the unit paths in the outer band with the contracted trees costs
O(lgn) time with n2/lgn processors. In section 5 we will see how to perform such
edge minimization in O(lg2 n) time with n/lgn processors.

474 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

(0,0)

FIG. 6. The dashed path is p and the two black nodes are supercritical nodes.

Finding shortest paths back to (0, 0) from all critical nodes in a leaf graph, as
in Figure 5a, will be done by breaking a leaf graph into nested bands. Therefore,
finding efficient parallel methods of band merging and edge minimization will give an
efficient parallel algorithm for the MCOP. So, the focus of the rest of the paper is
finding efficient ways to get shortest paths from all critical nodes back to (0, 0) by
edge minimization in leaf subgraphs partitioned as bands.

Given the band D
(i,v)
(j,t) , let p(i,v)

(j,t) denote a shortest path from (i, v) back to (0, 0)

totally contained in D
(i,v)
(j,t) ; see Figure 6. When there is no ambiguity, p(i,v)

(j,t) will be

written as p. Given a band D
(i,v)
(j,t) , whenever p = p

(i,v)
(j,t) starts from the front critical

node of the band it is in, the nodes V [p] are supercritical nodes. Considering the
minimal path back from the front critical node in Figure 6, we can see that only the
two black critical nodes are supercritical nodes. Supercritical nodes of any band are
all critical nodes in some minimal path back form the front critical node in the band
back to (0, 0). Any two supercritical nodes in p are connected by supercritical nodes
interspersed with the angular paths shown by Theorem 4.

When a canonical tree of Dn is totally contracted, then the final path p from (1, n)
back to (0, 0) gives the optimal order to multiply the set of n matrices. In addition,
the cost of p is the minimal cost of multiplying the given chain of n matrices.

3.2. A metric for finding minimal cost angular paths. In this subsection
we give a metric for finding minimal cost angular paths by using the equivalence of
angular paths and jumpers along unit paths. This equivalence comes directly from
Theorem 1.

When merging two bands, a unit path has at most one jumper minimizing it,
since all the relevant jumpers are nested. These jumpers get their sp values from
supercritical nodes of the inner band.

The influence of an angular edge can be taken as a jumper in a straight unit path
by Theorem 1. In the case of Figure 5c, notice that any unit edge minimization using

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 475

(i,x 1)

(i,y)

(i,s 1)

(i,t)

(i,y)

(i,x 1)

(i,t)

(i,s 1)

a)

b)

FIG. 7. Two different nestings of two jumpers.

sp values from A or B is independent of unit edge minimization using sp values from
the inner band. Therefore, measuring the potential contribution of angular edges to
shortest paths is done by measuring the potential contribution of jumpers to shortest
paths along straight unit paths.

Take a node (s, t) ∈ V [p], where sp(s, t) is the cost of a shortest path back to
(0, 0) with respect to a band; then in row i we want to compare the cost of the jumper
(i, s− 1) =⇒ (i, t) with the cost of the associated unit path (i, s− 1)→ · · · → (i, t).

Given (s, t) ∈ V [p], take row i above p with the jumper (i, s− 1) =⇒ (i, t); define

∆i(s, t) = wi‖ws : wt+1‖ − [sp(s, t) + f(i, s− 1, t)].

If ∆i(s, t) > 0, then the jumper (i, s− 1) =⇒ (i, t) provides a cheaper path along row
i than the unit path (i, s − 1) → · · · → (i, t). In particular, take both (s, t) ∈ V [p]
and (x, y) ∈ V [p], and the two possible jumper nestings of Figure 7.

Considering the nesting of the jumpers in Figure 7a, if ∆i(s, t) > ∆i(x, y) > 0,
then the jumper (i, s− 1) =⇒ (i, t) “saves more” than the jumper (i, x− 1) =⇒ (i, y)
along row i because (i, s−1) =⇒ (i, t) doesn’t have to deal with the paths (i, s−1)→
· · · → (i, x − 1) and (i, y) → · · · → (i, t) and ∆i(s, t) > ∆i(x, y) > 0. Similarly, for
the nesting of the jumpers in Figure 7b, if ∆i(x, y) > ∆i(s, t) > 0, then the jumper
(i, x − 1) =⇒ (i, y) “saves more” than the jumper (i, s − 1) =⇒ (i, t) along row i.
Notice that considering the jumpers in Figure 7b, if ∆i(s, t) > ∆i(x, y) > 0, then
the jumper (i, s− 1) =⇒ (i, t) may or may not make row i cheaper than the jumper
(i, x− 1) =⇒ (i, y). On the other hand, in Figure 7b, if (i, s− 1) =⇒ (i, t) makes row
i cheaper than the jumper (i, x− 1) =⇒ (i, y) does, then ∆i(s, t) > ∆i(x, y) > 0.

In D(1,m), if (s, t) ∈ V [p], then above the path of critical nodes p the function
∆i(s, t) is defined for all rows i such that s > i ≥ 1.

Notice that edge minimizing a unit path is only half the game, for we also must
consider the shortest paths forward.

Figure 8 is for the next theorem; also see [28].
THEOREM 6. Let D(i,v)

(r,s) be a leaf graph and let (j, u) and (k, t) be any two critical

nodes in D
(i,v)
(r,s) such that there is a unit path from (k, t) to (j, u). Then a shortest

path from (j, u) to (i, v) costs less than a shortest path from (k, t) to (i, v).
A proof follows inductively by shadowing trivial angular paths without any

jumpers, then showing that any shortest path from (k, t) forward to (i, v) can be

476 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

(i,v)

(j,u)

(k,t)

FIG. 8. (j, u) shadowing (k, t)’s shortest path forward.

“shadowed” by a shorter path from (j, u) forward to (i, v). While in the process we
have taken into account the f values. Naturally, Theorem 6 also holds for shortest
paths forward in leaf graphs.

The next theorem will also be useful.
THEOREM 7. Let (i, s− 1) =⇒ (i, t) be a shortest path forward. Suppose that the

next band merging the value of sp(s, t) decreases due to an edge minimization of row
s or a lower row. Then (i, s− 1) =⇒ (i, t) is still in a shortest path forward.

A proof of this theorem follows directly from the basic notions of shortest paths.
In particular, if the shortest path forward from the critical node (s, t) goes through
(s, t) ⇑ (i, t), then making the path to (s, t) shorter will not affect the jumper (s, t) ⇑
(i, t) or the path from (i, t) to the front node of the present band.

4. A polylog-time and n2/lgn-processor MCOP algorithm. In this sec-
tion we give an O(lg2 n)-time and n2/lgn-processor algorithm for the MCOP. This
algorithm works by using a key induction invariant that allows recursive doubling
techniques to break through the bottlenecks given in the last section.

The basic idea of the algorithm is as follows. All critical nodes know their shortest
paths to the front of the present bands they are in. Only supercritical nodes have their
shortest paths back to (0, 0) through their present bands. When merging two bands,
by Theorem 5, we only have to consider shortest paths from supercritical nodes in
the inner band to any critical node in the outer band. Therefore, all critical nodes
must maintain a shortest path to the front of the band they are in. At the same time,
all supercritical nodes must maintain a shortest path backwards to (0, 0) through the
band they are in. Much of this section supplies the details and correctness of this
algorithm.

Each critical node in Dn has two pointers called front-ptr and back-ptr that rep-
resent angular edges. Back-ptrs are only used by supercritical nodes. With each
front-ptr there are two values, cost-of-front-ptr and cost-to-front; and with each back-
ptr there is one value, cost-to-back. Cost-of-front-ptr is the cost of the angular edge
going forward to the front critical node in the present band, where the value of cost-
to-front is the entire cost to the front critical node of the present band containing
front-ptr. Similarly, the value of cost-to-back is the cost from the supercritical node at
hand back to (0, 0) through the present band. Initially, these pointers connect critical
nodes and tree edges in the canonical tree.

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 477

1. All critical nodes in both bands have their front-ptrs in trees of
shortest paths that eventually go to supercritical nodes. The supercritical
nodes have their front-ptrs form a linked list that goes to the front
(super)critical nodes of their respective bands.

2. In the two bands both shortest paths back to (0, 0) of supercritical nodes
are known. These shortest paths of supercritical nodes are made of linked
lists of back-ptrs from the front (super)critical nodes of each band
back through their respective bands to (0, 0).

FIG. 9. Inductive invariant for band merging.

Let D(i,v)
(j,t) and D

(j,t)
(k,s) be nested bands with paths of critical nodes labeled p

(i,v)
(j,t)

and p
(j,t)
(k,s), respectively. Note (i, v) and (j, t) are the front critical nodes of these

bands. As before, p(i,v)
(j,t) and p

(j,t)
(k,s) are shortest paths from the front critical nodes

back to (0, 0) through the bands D(i,v)
(j,t) and D

(j,t)
(k,s), respectively. Let p(i,v)

(j,t) and p
(j,t)
(k,s)

be made by two linked lists of back-ptrs along supercritical nodes back to (0, 0) in
their bands. It turns out that the shortest paths forward form all critical nodes in
each of these bands and are made up of linked lists of trees of front-ptrs. We will see
that this linked list of trees of front-ptrs is interconnected through the supercritical
nodes as in Figure 10.

Figure 9 gives the induction invariant for merging two bands.
Figure 10 gives an example of the data structures for maintaining the inductive

invariant. In this figure only critical nodes are shown and the supercritical nodes are
black. The solid arrows are front-ptrs and the dashed arrows are back-ptrs.

Now, say (s, t) is a critical node but not a supercritical node, that is (s, t) ∈ V [p]
and (s, t) 6∈ V [p]. There is a unique angular edge (x, y) ⇑ (r, y) → · · · → (r, u) in p
that “goes around” (s, t); see Figure 11. If we consider all rows above p in a given
canonical graph, then wi < wr implies that row i is “above” row r as in Figure 11.
From here on we focus on finding shortest paths above the path p of critical nodes.
The symmetric case of shortest paths below the path p of critical nodes follows.

Once we edge minimize all unit paths in D
(i,v)
(j,k) with jumpers that get their sp

values from supercritical nodes in D(j,k)
(s,t) , then we can find the shortest path from (i, v)

back to (0, 0) through D(i,v)
(s,t) . First, take one processor at each critical node in D(i,v)

(j,k)
that sums the cost of the path back to (0, 0), possibly through an edge-minimized
unit path with the cost of its shortest path forward. Next, find the minimum of all
of these sums, giving the shortest path from (i, v) back to (0, 0) through D

(j,k)
(s,t) .

The basic intuition for the next lemma is that, if the shorter of two nested jumpers
edge minimizes a unit path r, then any unit path above r with both of these jumpers
is not minimized by the longer jumper; see Figure 12. For the next lemma, assume
there is a unit path of critical nodes from (x, y) to (s, t) to (r, u) as in Figure 11.

LEMMA 1. Let (s, t) be a critical node between the supercritical node (x, y) and
the critical node (r, u) and suppose that i < r < s < x and row i is above row r. That
is, wi < wr, where rows i and r are above p. Then

if ∆r(x, y) ≥ ∆r(s, t), then ∆i(x, y) ≥ ∆i(s, t).

478 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

Outer Band

Inner Band

FIG. 10. Solid arrows: forward linked lists of trees; dashed arrows: backward linked lists p.

(s,t)

(x,y)

(r,u)(r,y)

(i,y) (i,u)

FIG. 11. (s, t) 6∈ V [p] and the angular edge (x, y) ⇑ (r, y)→ · · · → (r, u).

Row r

Row i
x-1

x-1

y

y

s-1

s-1

t

t

FIG. 12. Two jumpers in different rows.

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 479

Proof. Suppose ∆r(x, y) ≥ ∆r(s, t). This means

wr‖wx : wy+1‖ − [sp(x, y) + f(r, x− 1, y)] ≥ wr‖ws : wt+1‖ − [sp(s, t) + f(r, s− 1, t)].

Using some algebra we obtain the following (where ‖wi : wi‖ = 0):

wr[‖ws : wx‖+ ‖wy+1 : wt+1‖] < sp(s, t)− sp(x, y) + wr(wswt+1 − wxwy+1).

Moreover, sp(s, t) − sp(x, y) is always positive because (r, x − 1) =⇒ (r, y) is nested
inside of (r, s− 1) =⇒ (r, t) and f(r, s− 1, t) < f(r, x− 1, y). Therefore, if sp(x, y) >
sp(s, t), then a shortest path p would go through (s, t) to (r, u) and not over (s, t). In
particular, if sp(x, y) > sp(s, t), then since f(r, x− 1, t) > f(r, s− 1, t), it must be the
case that sp(x, y)+f(r, x−1, t) > sp(s, t)+f(r, s−1, t). Therefore, row r would have
been edge minimized by jumper (r, s − 1) =⇒ (r, t) and not by (r, x − 1) =⇒ (r, y);
see Figure 12.

In addition, wswt+1 − wxwy+1 < 0, since both (x, y) and (s, t) are critical nodes
where s ≤ x < y ≤ t. So it must be that wxwy+1 − wswt+1 > 0. Therefore, since

wr[‖ws : wx‖+ ‖wy+1 : wt+1‖+ wxwy+1 − wswt+1] < sp(s, t)− sp(x, y)

holds, and because wi < wr and the term sp(s, t) − sp(x, y) is independent of i and
r, then ∆i(x, y) ≥ ∆i(s, t) follows.

The next theorem follows from Lemma 1.
THEOREM 8. Let (s, t) be a critical node between the supercritical node (x, y) and

the critical node (r, u). Suppose i < r < s < x and row i is above row r, that is,
wi < wr, where rows i and r are above p. Then

if (r, x− 1) =⇒ (r, y) makes row r cheaper than (r, s− 1) =⇒ (r, t) does,
then (i, x− 1) =⇒ (i, y) makes row i cheaper than (i, s− 1) =⇒ (i, t) does.

A proof follows from Lemma 1 and by the fact that the rows

(i, s− 1)→ · · · → (i, x− 1) and (i, y)→ · · · → (i, t)

are cheaper than the rows

(r, s− 1)→ · · · → (r, x− 1) and (r, y)→ · · · → (r, t),

and the change in f values between (r, x − 1) =⇒ (r, y) and (i, x − 1) =⇒ (i, y) is
greater than the change of f values between (r, s−1) =⇒ (r, t) and (i, s−1) =⇒ (i, t).
That is,

f(r, x− 1, y)− f(i, x− 1, y) > f(r, s− 1, t)− f(i, s− 1, t),

since wx and wy+1 are both bigger than ws and wt+1. In addition, wr > wi; therefore

(wr − wi)[wxwy+1 − wswt+1] > 0.

Consider two nested bands with paths of critical nodes pi for the inner band and
po for the outer band, where pi and po are shortest paths from the front critical nodes
back to (0, 0) in each of these bands. Now, suppose (s, t) is between (x, y) and (r, u)
and (s, t) ∈ V [pi]. If (x, y) ∈ V [pi] and (r, u) ∈ V [po], then Lemma 1 and Theorem 8

480 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

Inner Band

Outer Band

FIG. 13. Conflicting angular paths between two bands being merged.

(a,z)(a,v)

(d,v)

(b,y)(b,u)

(e,u)

(g,t)

(c,x)

D(c,x)
(a,z)

D(g,t)

D(e,u)
(d,v)

FIG. 14. The bands D(a,z)
(c,x) , D(d,v)

(e,u) and the leaf D(g,t).

also hold. This is because sp(s, t)−sp(x, y) is positive by an argument similar to that
in the proof of Lemma 1.

Two angular edges above p, say (x, y) ⇑ (r, y)→ · · · → (r, u) and (i, j) ⇑ (s, j)→
· · · → (s, t), are compatible if they don’t cross each other. Compatibility also holds
for angular paths below p. Theorem 9 shows that when merging two bands and com-
puting shortest paths forward, only compatible angular edges need to be considered.
Figure 13 shows two conflicting angular paths.

Take the canonical graphs D(a,z)
(c,x) , D(d,v)

(e,u) and D(g,t), where D(g,t) is nested inside

of D(d,v)
(e,u) which is, in turn, inside of D(a,z)

(c,x) ; see Figure 14. Furthermore, assume that

D
(a,z)
(c,x) and D

(d,v)
(e,u) are to be merged together. Then, in the next recursive doubling

step, the new band D
(a,z)
(e,u) will be merged with the leaf D(g,t). We can assume D(g,t)

is a leaf or a band.

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 481

The next theorem assumes we have found a shortest path from supercritical nodes
in D

(d,v)
(e,u), through critical nodes in the outer band D

(a,z)
(c,x) ; see Figure 14. We know

(d, v) ∈ V [p(d,v)
(e,u)] and, without loss of generality, we can assume (e, u) ⇑ (d, u) →

· · · → (d, v) is p(d,v)
(e,u). Now, suppose the angular edge (e, u) ⇑ (b, u) → · · · → (b, y) is

in p
(a,z)
(e,u), where p(a,z)

(e,u) is the minimal path from (a, z) back to (0, 0) through D
(a,z)
(e,u).

THEOREM 9 (Main Theorem). In merging two nested bands computing shortest
paths forward from supercritical nodes of the inner band, we only need to consider
compatibly nested angular edges.

Proof. The proof is by contradiction. Suppose (e, u) ⇑ (b, u) → · · · → (b, y) is in
p

(a,z)
(e,u), that is, the angular edge (e, u) ⇑ (b, u)→ · · · → (b, y) is in a shortest path from

(a, z) back to (0, 0) through D(a,z)
(e,u); see Figure 14. Suppose (d, v) is in the band D(d,v)

(e,u).

Therefore (d, v) is between (e, u) and (a, z) in D(a,z)
(e,u). Now, when merging D(g,t) with

D
(a,z)
(e,u) we will show that a shortest path forward to (a, z) that goes through (d, v)

must go through a critical node in row b or a critical node in a row below b.
Now, for the sake of a contradiction, assume otherwise. Suppose after merging

D
(a,z)
(c,x) with D(d,v)

(e,u) there is some shortest path from (0, 0) through (d, v) to (a, z). This

shortest path travels through an angular path connecting the bands D(a,z)
(c,x) and D(d,v)

(e,u)
and this angular path is conflicting with the angular path (e, u) ⇑ (b, u)→ · · · → (b, y).
Say, without loss of generality, this conflicting angular path is (d, v) ⇑ (a, v)→ · · · →
(a, z); see Figure 14. That is, we have conflicting angular paths since the shortest path
from (d, v) forward goes through an angular path that terminates above row b, and
the shortest path forward from (e, u) goes through an angular path that terminates
in row b. But notice in D

(a,z)
(e,u) that the shortest path from (a, z) back to (0, 0) still

goes through the angular edge (e, u) ⇑ (b, u)→ · · · → (b, y).
In D(a,z)

(e,u) the angular edge (d, v) ⇑ (a, v)→ · · · → (a, z) can’t be the shortest path
forward from (d, v).

By Theorem 1, the shortest path to (b, y) through the angular edge

(e, u) ⇑ (b, u)→ · · · → (b, y)

is equivalent to the path

(b, b)→ · · · → (b, e− 1) =⇒ (b, u)→ · · · → (b, y).

Moreover, since p(a,z)
(e,u) goes through (e, u) ⇑ (b, u)→ · · · → (b, y), the jumper (b, e− 1)

=⇒ (b, u) edge minimizes row b. Thus, the jumper (b, d − 1) =⇒ (b, v) saves at
most as much as (b, e − 1) =⇒ (b, u), and (b, d − 1) =⇒ (b, v) is nested around
(b, e− 1) =⇒ (b, u). Thus,

∆b(e, u) ≥ ∆b(d, v).

Also, by Theorem 1, the shortest path from (d, v) to (a, z) that goes through the
angular edge

(d, v) ⇑ (a, v)→ · · · → (a, z)

is equivalent to the path

(a, a)→ · · · → (a, d− 1) =⇒ (a, v)→ · · · → (a, z).

482 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

(a,a) (a,v)

(d,v)

(a,z)(a,e 1) (a,u)

(d,d) (d,e 1) (d,u)

FIG. 15. The two paths A and D.

But, consider the path

(a, a)→ · · · → (a, e− 1) =⇒ (a, u)→ · · · → (a, z),

and we know that the jumper (a, e−1) =⇒ (a, u) is nested inside of (a, d−1) =⇒ (a, v).
In this case, it is possible that d = e or u = v, but not both, since (d, v) is between
(e, u) and (b, y) and a < b and wa < wb, where row a is above row b and they are
both above p. Furthermore, since the appropriate ∆ values are defined, the following
holds by Lemma 1:

if ∆b(e, u) ≥ ∆b(d, v), then ∆a(e, u) ≥ ∆a(d, v).

Therefore,

∆a(e, u) ≥ ∆a(d, v),

which means the jumper (a, e − 1) =⇒ (a, u) saves at least as much as the jumper
(a, d− 1) =⇒ (a, v) in a path to (a, z).

By Theorem 8, since (b, e − 1) =⇒ (b, u) edge minimizes row b, and ∆a(e, u) ≥
∆a(d, v), the jumper (a, e−1) =⇒ (a, u) saves more in row a than (a, d−1) =⇒ (a, v).

Now, take the two paths

A = (a, a)→ · · · → (a, e− 1) =⇒ (a, u)→ · · · → (a, v),

D = (d, d)→ · · · → (d, e− 1) =⇒ (d, u)→ · · · → (d, v) ⇑ (a, v)

as in Figure 15.
A is cheaper than D going from (a, z) back to (0, 0) in D(a,z)

(e,u) by Theorem 8. Now,
if (d, v) ⇑ (a, v) is in a shortest path forward from (d, v), then the shortest path forward
from (e, u) must be through the angular path (e, u) ⇑ (a, u) → · · · → (a, z) and not
the angular path (e, u) ⇑ (b, u)→ · · · → (b, y), which is a contradiction. This follows
by applying Theorem 8 to the jumpers (b, d− 1) =⇒ (b, v) and (b, e− 1) =⇒ (b, u) in
row b and then up to row a, since (b, y) is between (d, v) and (a, z).

Now, suppose D(g,t) is merged with the outer band D(a,z)
(e,u). Then, none of the an-

gular paths connecting supercritical nodes in D(g,t) with paths forward D(a,z)
(e,u) change.

This case is a straightforward application of the proof above and Theorem 7.
It is important to note that Theorem 9 shows that only angular paths starting

from supercritical nodes in the same path back to (0, 0) are compatible. Theorem 9
doesn’t say that all angular paths are always compatible.

Suppose that there is some angular path from a supercritical node in the inner
band, say (s, t), to the outer band that is in a shortest path from the front node

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 483

Row r
x 1

x 1

y

y
Row s

v 1

v 1

z

z

FIG. 16. Two jumpers in different rows.

of the outer band back to (0, 0). Then all supercritical nodes from (s, t) back to
(0, 0) have their shortest paths forward through the angular path starting at (s, t).
On the other hand, by Theorem 9 all supercritical nodes after (s, t) up to the front
supercritical node of the inner band have their shortest paths through nested angular
paths connecting the inner and outer bands. In fact, we can inductively apply this
argument together with Theorem 6 giving the following corollary.

COROLLARY 2. Consider the nested angular paths connecting two bands that are
shortest paths forward from the different supercritical nodes of the inner band. Then,
listing the path containing the outermost such angular path to the path containing the
innermost such angular path gives more and more costly paths forward.

The next lemma assumes we are merging two nested bands to find a shortest path
from the front critical node of the outer band back to (0, 0).

LEMMA 2. Let (s, t) be a critical node and let the ith and rth rows above p be
such that i < r < s and wi < wr. Then ∆i(s, t) < ∆r(s, t).

Proof. The function ∆i(s, t) measures the potential minimizing effect of (i, s −
1) =⇒ (i, t) on the path (i, i) → · · · → (i, u), where (i, u) ∈ V [p] and i < s < t ≤ u.
The cost of the jumper (i, s − 1) =⇒ (i, t) is sp(s, t) + f(i, s − 1, t). Therefore, the
difference ∆i+1(s, t)−∆i(s, t) is

(wi+1 − wi)[‖ws : wt+1‖ − wswt+1],

where wi+1 > wi. Since the expression ‖ws : wt+1‖ − wswt+1 is independent of the
difference of weights wi and wi+1 and ‖ws : wt+1‖−wswt+1 > 0, because (s, t) ∈ V [p].
Also, when s = t− 1 we have

‖ws : wt+1‖ = wsws+1 + ws+1wt+1.

In addition, since (s, t) ∈ V [p], it must be that max{ws, wt+1} < wu, for s < u ≤ t.
Thus max{ws, wt+1} < ws+1. Therefore,

wsws+1 + ws+1wt+1 > wswt+1

and the proof follows inductively.
The proof of the next lemma is similar to that of Lemma 1. The basic intuition

here is that, if the longer of two nested jumpers edge minimizes a unit path r, then
any unit path below r, with both of these jumpers, is not minimized by the shorter
jumper; see Figure 16.

This next lemma only considers supercritical nodes since we are interested in
merging two nested bands. For the next lemma assume there is a unit path of critical
nodes from (v, z) to (x, y).

484 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

LEMMA 3. Let (v, z) and (x, y) be two supercritical nodes, where r < s < x < v,
and assume wr < ws such that rows s and r are above p. Then

if ∆r(x, y) ≥ ∆r(v, z), then ∆s(x, y) ≥ ∆s(v, z).

Proof. Assume ∆r(x, y) ≥ ∆r(v, z). Then

wr‖wx : wy+1‖ − [sp(x, y) + f(r, x− 1, y)]

≥ wr‖wv : wz+1‖ − [sp(v, z) + f(r, v − 1, z)].

By Lemma 2 and, since each of these jumpers is of length at least 2, we know that
wrwvwz+1 < wr‖wv : wz+1‖ and wrwxwy+1 < wr‖wx : wy+1‖. In addition, since
wr < ws, we know that f(r, x − 1, y) < f(r, v − 1, z) and wr‖wx : wy+1‖ > wr‖wv :
wz+1‖. Furthermore, the same holds in row s. Therefore, it must be that ∆s(x, y) ≥
∆s(v, z).

THEOREM 10. Suppose we are given two supercritical nodes (v, z) and (x, y),
where r < s < x < v, and wr < ws such that rows s and r are above p. Then

if (r, x− 1) =⇒ (r, y) makes row r cheaper than (r, v − 1) =⇒ (r, z) does,

then (s, x− 1) =⇒ (s, y) makes row s cheaper than (s, v − 1) =⇒ (s, z) does.

A proof of this theorem follows from Lemma 3 and the fact that the change of
the f values between (r, v− 1) =⇒ (r, z) and (s, v− 1) =⇒ (s, z) increases faster than
the change in the f values between (r, x− 1) =⇒ (r, y) and (s, x− 1) =⇒ (s, y).

While merging D(i,v)
(j,t) and D(j,t)

(k,s) to form p
(i,v)
(k,s), the next lemma shows that we only

need shortest path values backwards to (0, 0) from supercritical nodes and we don’t
need shortest path values backwards to (0, 0) from any other critical nodes. Hence,
the back-ptrs will form a linked list between supercritical nodes backwards eventually
to (0, 0), and we can compute the cost-to-back weights using a parallel pointer jumping
partial prefix computation.

LEMMA 4. Suppose we are given p(i,v)
(j,t) and p(j,t)

(k,s) in D(i,v)
(j,t) and D(j,t)

(k,s), respectively.

Consider critical nodes in the outer band, say (u, z) ∈ V [p(i,v)
(j,t)] and (u, z) 6∈ V [p(i,v)

(k,s)];
then we don’t need shortest paths back to (0, 0).

Proof. Consider the angular path (x, y) ⇑ (q, y)→ · · · → (u, z) between D(j,t)
(k,s) and

D
(i,v)
(j,t) . That is, (x, y) ∈ V [p(j,t)

(k,s)] and (u, z) ∈ V [p(i,v)
(j,t)]. But, suppose (u, z) 6∈ V [p(i,v)

(k,s)]

is the case. Notice that (u, z) may be a supercritical node in p
(i,v)
(j,t) .

Consider the following cases.
Case i: Suppose D(i,v)

(k,s) is merged with another band nested around it.

Then, since (u, z) is not in V [p(i,v)
(k,s)], by Theorem 5 we do not have to consider any

angular paths starting from (u, z) going forward to critical nodes in the band nested
around D

(i,v)
(k,s).

Case ii: Suppose D(i,v)
(k,s) is merged with a smaller band inside D(k, s).

Node (u, z) could be the terminal node of an incoming angular path contributing
to a shortest path forward for some supercritical node in D(k, s). In this case (u, z)
needs to have a shortest path from (u, z) forward. Of course, in this case (u, z) could
become a supercritical node and would have a minimal path back to (0, 0). On the
other hand, since the critical node (u, z) is not a supercritical node it has no need of
a shortest path back to (0, 0).

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 485

We want to find a shortest path forward for every critical node, since some angular
path from some future inner band may terminate at any critical node. Therefore,
after finding each supercritical node’s minimal cost to the front critical node of the
outer band, then compute a tree partial prefix sum from the critical nodes to the
supercritical nodes. This lets all critical nodes know their shortest paths to the front
of the outer band.

Suppose, through recursive doubling, we generate the band D(i,v)
(j,t) and the shortest

path p
(i,v)
(j,t) from (i, v) back to (0, 0) in this band. The next theorem shows that we

can build the appropriate data structures to maintain the inductive invariant through
recursive doubling.

THEOREM 11. Suppose we have just merged any two nested bands into a new
band. Then the front pointers of the new band form a tree and the back pointers of
the new band form a linked list.

There is a proof by induction based on Theorem 9.
Theorem 11 shows that the inductive invariant holds given the appropriate data

structures and computations.

4.1. Merging bands using n2/lgn processors. In this subsection we show
how to merge two bands using n2/lgn processors in O(lgn) time. This algorithm
also merges two optimally triangulated convex polygons when all of the weights of
one polygon are heavier than all of the weights of the other. Given a triangle with
vertices wi, wj , and wk its cost is wiwjwk; also see [18, 28].

Recursively doubling the band merging algorithm while using the proper data
structures and appropriate tree contracting gives the n2/lgn-processor and O(lg3 n)-
time MCOP algorithm.

The algorithm in Figure 17 merges two bands in O(lgn) time using n2/lgn pro-
cessors. Adding the cost of recursive doubling and tree contraction gives a factor of
O(lg2 n) time to the entire algorithm, making the total cost for solving the MCOP
O(lg3 n) time using n2/lgn processors.

The two for loops in step 1 of the algorithm in Figure 17 perform the edge
minimizing. This is the only part of this algorithm that uses n2/lgn processors. In
O(lgn) time using n2/lgn processors we can edge minimize unit paths with contracted
trees such as those depicted in the bottleneck of Figure 5c.

The for loops in step 2 compute the supercritical nodes of the band that are being
created by merging. Step 3 computes the shortest paths forward for all critical nodes
in the inner band.

The base case for the recursive doubling can be established by breaking the canon-
ical subgraphs into bands of constant width. Then for each band sequentially, let the
n/lgn processors set up the inductive invariant in O(lgn) time. Number the nested
bands consecutively according to their nestings by the Euler tour technique so the
algorithm can track adjacent bands for merging.

The correctness of the algorithm in Figure 18 comes from Theorems 7, 9, and 11.
The time complexity of solving the MCOP can be reduced to O(lg2 n) time with

n2/lgn processors by performing band merging and then tree contraction.
THEOREM 12. Recursive doubling with band merging can be done simultane-

ously with tree contraction, thereby solving the MCOP in O(lg2 n) time with n2/lgn
processors.

Proof. Take any canonical tree T with nontrivial bands and leaves. Then T has
at most n− 1 critical nodes. In general, for any arithmetic expression tree with n− 1
nodes, it takes O(lgn) time to contract it. In a canonical tree we have just seen

486 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

Take two adjacent nested bands, say D(i,v)
(j,t) nested around D

(j,t)
(k,s), such that for

each band individually the inductive invariant holds.

1. for all supercritical nodes (x, y) ∈ V [p(j,t)
(k,s)] in parallel do

for all angular edges from (x, y) to all (u, z) ∈ V [p(i,v)
(j,t)] in parallel do

find the angular edge between the bands that gives a shortest
path from (x, y) all the way to (i, v), compute the
cost-of-front-ptrs for these new edges

let each supercritical node (x, y) have a pointer to a shortest path
through p

(i,v)
(j,t) to (i, v)

for the supercritical nodes in p
(j,t)
(k,s) put the angular edge that gives

them a shortest path forward to (i, v) in M
2. for all angular edges in M in parallel do

find the shortest path N from (i, v) back to (0, 0) through D
(i,v)
(k,s)

for all critical nodes in the path N in parallel do
using pointer jumping build the back-ptrs giving any new supercritical
nodes and compute the values of cost-to-back for each new supercritical
node

3. for all non-supercritical nodes in p
(j,t)
(k,s) in parallel do

using pointer jumping expand the tree of front-ptrs through the new
angular edges in M and their minimal values to (i, v). This gives
trees joined by a linked list through the supercritical nodes.

With this find the shortest path to (i, v) for all non-supercritical
nodes in p

(j,t)
(k,s) by computing a partial prefix in a rooted tree.

Also compute all of the new cost-to-front values using a parallel
partial prefix.

FIG. 17. An O(lgn)-time and n2/lgn-processor algorithm for merging two bands.

that each contraction operation (raking) can be done in O(lgn) time using n2/lgn
processors. This is because in the worst case a leaf raking operation in a canonical
tree is the merging of two bands. Now, each band can be seen as no more than a
linked list in the canonical tree that must be contracted where there is one leaf per
list node. Now, we can simply take every band that has k critical nodes and is in
any canonical tree, and we can assume that it has 2c “linked list nodes” such that
2c−1 < k ≤ 2c. With this, each raking operation will cost at most O(lgn) time using
n2/lgn processors. In addition, by assuming k is the nearest power of two greater
than or equal to k, we are at most doubling the number of critical nodes in T . Hence
the asymptotic bound we claim must hold.

5. An efficient polylog-time MCOP algorithm. In this section we reduce
the processor complexity of the band merging algorithm of section 4. The results of
this section are based on a parallel divide-and-conquer form of binary search which is
tied into some classical problems of finding row minima in totally monotone matrices.

Theorems 8 and 10 supply the basis for a parallel divide-and-conquer binary
search algorithm that finds the jumpers that minimize each unit path in a canonical
graph.

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 487

1. Find the middle supercritical node in the inner band, say (x− 1, y).
2. Using m/lgm processors and in O(lgm) time find a shortest path

forward from (x− 1, y) to the front of the outer band. Suppose that this
shortest path forward from the supercritical node (x− 1, y) has an angular
edge between the two bands that terminates in row r.

3. Split the jumpers into two sets:
(a) Those smaller than or equal to (r, x) =⇒ (r, y); call them S. They are

nested inside (r, x) =⇒ (r, y).
(b) Those larger than or equal to (r, x) =⇒ (r, y); call them L. They are

nested around (r, x) =⇒ (r, y).
4. Do the following two steps in parallel:

(a) Assign |S| processors to rows r up through 1 and recursively repeat this
algorithm with the jumpers in S.

(b) Assign |L| processors to rows r down through m and recursively repeat
this procedure with the jumpers in L.

FIG. 18. An O(lg2 n)-time and n/ lgn-processor band merging algorithm.

THEOREM 13. Suppose that r is the row in the outer band such that the dual of
(r, x) =⇒ (r, y) gives a shortest path forward from the supercritical node (x− 1, y) of
the inner band to the front node of the outer band. Then to find shortest paths forward
from other supercritical nodes,

• it is sufficient to consider only larger nested jumpers in any row s below row
r, that is, ws > wr, and

• it is sufficient to consider only smaller nested jumpers in any row i above row
r, that is, wi < wr.

A proof of this theorem comes directly from Theorems 8 and 10.
The next algorithm replaces the two nested for loops in step 1 in the algorithm

of Figure 17. This next algorithm gives shortest paths forward for all supercritical
nodes originally in the inner band and a shortest path back to (0, 0) through the two
merged bands.

Assuming that each band has m critical nodes, the next procedure finds shortest
paths from all supercritical nodes of the inner band to the front of the outer band. In
addition, assume the shortest path information before the merging and all shortest
paths to the front of the outer band. Then the shortest path back from the front
node of the outer band is easily computed. As before, begin assuming the inductive
invariant. Also, all jumpers in the next algorithm are jumpers that get their sp values
from the inner band where the jumpers themselves are in unit rows or columns of the
outer band.

The following algorithm is strikingly similar to those discussed in [1] and [2]. This
key observation leads to some complexity improvements.

Now assign one processor to each unit path in the outer band. For each unit path,
summing the cost to the critical node and the cost from the critical node to the front
supercritical node of the outer band gives a shortest path backwards from the front
node of the outer band to (0, 0). These minimal paths can be computed in O(lgn)
time using n/lgn processors. If a unit path has no edge minimizing jumpers, then
this algorithm just finds the shortest path forward for all supercritical nodes in the

488 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

inner band, since, in this case, the shortest path back to (0, 0) from the front critical
node of the outer band does not go through the inner band.

The algorithm in Figure 18 also breaks through the bottleneck of Figure 5c. It
takes O(lg2 n) time and uses n/lgn processors in the worst case. Considering the
cost of the recursive doubling and the tree contraction gives the O(lg3 n)-time and
n/lgn-processor matrix chain ordering algorithm.

The next corollary shows that the algorithm given here can be improved by using
efficient algorithms for finding row minima in totally monotone matrices. A m × n
matrix M is totally monotone if every 2 × 2 submatrix is monotone. That is, for all
1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n, if M [i, j] > M [i, l], then M [k, j] > M [k, l].

This row minima problem is classical and has been shown to be at the root of
many important problems; see for example [1, 2].

COROLLARY 3. Solving the row minima problem on totally monotone matrices
allows us to merge two bands.

Proof. Given two nested bands to merge, for ease of exposition take only the
horizontal straight unit paths of the outer band. Let each of these straight unit paths
denote the row of a matrix M . Each column of M represents the jumpers that get
their sp values from the supercritical nodes of the inner band. The first column
represents the effect of the innermost jumper, the second column represents the effect
of the immediate jumper containing it, etc. Similarly, several sets of independent
jumpers give several totally monotone matrices.

By Theorem 13, M is a monotone matrix. But, any submatrix of M repre-
sents neighboring straight unit paths in the rows and neighboring jumpers along the
columns. Similarly, every 2 × 2 submatrix is monotone. Since Theorems 8 and 10
still hold, we know that such a submatrix is also monotone since we can again apply
Theorem 13.

Therefore, our algorithm is one of the many known to depend on the row minima
problem on a totally monotone matrix. Hence, by the results of Aggarwal and Park [2]
and Atallah and Kosaraju [6], our algorithm runs inO(lg2 n lg lgn) time using n/lg lgn
processors on a common CRCW PRAM, or in O(lg2 n) time using n processors on an
EREW PRAM. For the EREW PRAM algorithm note that from pointer jumping to
tree contraction the time complexity stays the same asymptotically.

An asymptotically optimal polylog-time row minima algorithm for totally mono-
tone matrices would make the work of our MCOP algorithm the same as the work
of Hu and Shing’s O(n lgn) sequential algorithm. Very recently Bradford, Fleischer,
and Smid [14] give an algorithm for computing the row minima of totally monotone
matrices with O(n

√
lgn) work and O(lgn lg lgn) time on a CREW PRAM (and sev-

eral variations on other PRAM models). The results of [14] lead to an O(n lg1.5 n)
work and polylog time CREW PRAM algorithm for the MCOP.

Hu and Shing’s algorithm has the best known work for solving the MCOP to date
[28, 29]. In this regard, in [38, 39] Ramanan shows that problems closely related to
the MCOP have a Ω(n lgn) lower bound. Furthermore, in [13] Bradford, Choppella,
and Rawlins give several lower bounds for the MCOP on different models of compu-
tation, including a simple Ω(n lgn) lower bound on the comparison based model for
a constrained version of the MCOP.

6. Conclusions. The study of efficient parallel algorithms for problems with
elementary dynamic programming solutions is rich with interesting results. This paper
gives an algorithm that solves the matrix chain ordering problem to within less than

EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 489

a log factor of the best serial solution. Furthermore, the best serial solution is in some
sense optimal. This algorithm also solves a problem of finding an optimal triangulation
of a convex polygon.

Acknowledgments. We acknowledge conversations with Alok Aggarwal,
Venkatesh Choppella, Artur Czumaj, Ming Kao, Larry Larmore, and Kunsoo Park
that were very helpful. In addition, conversations with Danny Chen were highlighted
when, at Midwest Theory Day, he pointed out reference [16] which helps make our
algorithm more efficient on the EREW PRAM.

REFERENCES

[1] A. AGGARWAL, M. M. KLAWE, S. MORAN, P. SHOR, AND R. WILBUR, Geometric applications
of a matrix searching algorithm, Algorithmica, 2 (1987), pp. 195–208.

[2] A. AGGARWAL AND J. PARK, Parallel searching multidimensional monotone arrays, J. Algo-
rithms, to appear; in Proc. 29th Annual IEEE Symp. on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 497–512.

[3] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison–Wesley, Reading, MA, 1974.

[4] R. ANDERSON AND E. W. MAYR, Parallelism and the maximal path problem, Inform. Process.
Lett., 24 (1978), pp. 121–126.

[5] A. APOSTOLICO, M. J. ATALLAH, L. L. LARMORE, AND S. H. MCFADDIN, Efficient parallel
algorithms for string editing and related problems, SIAM J. Comput., 19 (1990), pp. 968–
988.

[6] M. J. ATALLAH AND S. R. KOSARAJU, An efficient parallel algorithm for the row minima of
a totally monotone matrix, J. Algorithms, 13 (1992), pp. 394–413.

[7] M. J. ATALLAH, S. R. KOSARAJU, L. L. LARMORE, G. L. MILLER, AND S.-H. TENG, Construct-
ing trees in parallel, in Proc. 1st ACM Symp. on Parallel Algorithms and Architectures,
ACM, New York, 1989, pp. 499–533.

[8] O. BERKMAN, D. BRESLAUER, Z. GALIL, B. SCHIEBER, AND U. VISHKIN, Highly parallelizable
problems, in Proc. 21st Annual ACM Symposium on the Theory of Computing, ACM, New
York, 1989, pp. 309–319.

[9] O. BERKMAN, B. SCHIEBER, AND U. VISHKIN, Optimal doubly logarithmic parallel algorithms
based on finding all nearest smaller values, J. Algorithms, 14 (1993), pp. 344–370.

[10] P. G. BRADFORD, Efficient Parallel Dynamic Programming, Technical Report 352, Indiana
University, Bloomington, IN, April 1992 and October 1994 (revised).

[11] P. G. BRADFORD, Efficient Parallel Dynamic Programming, extended abstract in the Pro-
ceedings of the 30th Allerton Conference on Communication, Control and Computation,
University of Illinois at Urbana-Champaign, 1992, pp. 185–194. Full version: Techni-
cal Report 352, Indiana University, Bloomington, IN, April 1992 and October 1994 (re-
vised).

[12] P. G. BRADFORD, Efficient Parallel Dynamic Programming, Ph.D. dissertation, February 1995,
Indiana University, Bloomington, IN; also Parallel Dynamic Programming Technical Re-
port TR 424, February 1995, Indiana University.

[13] P. G. BRADFORD, V. CHOPPELLA, AND G. J. E. RAWLINS, Lower bounds for the matrix
chain ordering problem (extended abstract), in the Proceedings of LATIN ’95: Theoretical
Informatics, Lecture Notes in Comp. Sci. 911, R. Baeza-Yates, E. Goles, and P. V. Poblete,
eds., Springer-Verlag, New York, 1995, pp. 112–130.

[14] P. G. BRADFORD, R. FLEISCHER, AND M. SMID, More efficient parallel totally monotone
matrix searching, J. Algorithms, 23 (1997), pp. 386–400.

[15] P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON, Matrix Chain Ordering in Polylog
Time with n/lgn Processors, Technical Report 360, Indiana University, Bloomington, IN,
December 1992.

[16] D. Z. CHEN, Efficient geometric algorithms on the EREW PRAM, in Proceedings of the 28th
Allerton Conference on Communication, Control, and Computation, Monticello, IL, 1990,
pp. 818–827. Full version in IEEE Trans. Parallel Distrib. Systems, 6 (1995), pp. 41–47.

[17] F. Y. CHIN, An O(n) algorithm for determining near-optimal computation order of matrix
chain products, Comm. ACM, 21 (1978), pp. 544–549.

490 P. G. BRADFORD, G. J. E. RAWLINS, AND G. E. SHANNON

[18] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, McGraw–
Hill, New York, 1990.

[19] A. CZUMAJ, An optimal parallel algorithm for computing a near-optimal order of matrix mul-
tiplications, in SWAT 92, Lecture Notes in Comput. Sci. 621, Springer-Verlag, New York,
1992, pp. 62–72.

[20] A. CZUMAJ, Parallel algorithm for the matrix chain product and the optimal triangulation
problem, in STACS 93, Lecture Notes in Comput. Sci. 665, Springer-Verlag, New York,
1993, pp. 294–305.

[21] L. E. DEIMEL, JR. AND T. A. LAMPE, An Invariance Theorem Concerning Optimal Compu-
tation of Matrix Chain Products, Technical Report TR79-14, North Carolina State Univ.,
Raleigh, NC.

[22] Z. GALIL AND K. PARK, Parallel algorithms for dynamic programming recurrences with more
than O(1) dependency, J. Parallel Distrib. Comput., 21 (1994), pp. 213–222.

[23] A. GIBBONS AND W. RYTTER, Efficient Parallel Algorithms, Cambridge University Press,
Cambridge, 1988.

[24] D. HILLIS AND G. L. STEELE, JR., Data parallel algorithms, Comm. ACM, 29 (1986), pp. 1170–
1183.

[25] S.-H. S. HUANG, H. LIU, AND V. VISWANATHAN, Parallel dynamic programming, in Proc. 2nd
Annual IEEE Symposium on Parallel and Distributed Processing, IEEE Computer Society
Press, Los Alamitos, CA, 1990, pp. 497–500.

[26] S.-H. S. HUANG, H. LIU, AND V. VISWANATHAN, A sublinear parallel algorithm for some
dynamic programming problems, Theoret. Comput. Sci., 106 (1992), pp. 361–371.

[27] T. C. HU AND M. T. SHING, An O(n) algorithm to find a near-optimum partition of a convex
polygon, J. Algorithms, 2 (1981), pp. 122–138.

[28] T. C. HU AND M. T. SHING, Computation of matrix product chains. Part I, SIAM J. Comput.,
11 (1982), pp. 362–373.

[29] T. C. HU AND M. T. SHING, Computation of matrix product chains. Part II, SIAM J. Comput.,
13 (1984), pp. 228–251.

[30] O. H. IBARRA, T.-C. PONG, AND S. M. SOHN, Hypercube algorithms for some string comparison
problems, in Proc. IEEE International Conference on Parallel Processing, IEEE Computer
Society Press, Los Alamitos, CA, 1988, pp. 190–193.

[31] J. JÁJÁ, An Introduction to Parallel Algorithms, Addison–Wesley, Reading, MA, 1992.
[32] D. G. KIRKPATRICK AND T. PRZYTYCKA, Parallel construction of near optimal binary search

trees, in Proc. 2nd ACM Symposium on Parallel Algorithms and Architectures, ACM, New
York, 1990, pp. 234–243.

[33] R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in
Handbook of Theoretical Computer Science, Vol. A, V. Van Leeuwen, ed., Elsevier, Ams-
terdam, 1990, pp. 869–941.

[34] S. K. KIM, Optimal Parallel Algorithms on Sorted Intervals, Technical Report TR 90-01-04,
Department of Computer Science and Engineering, University of Washington, Seattle, WA,
1990.

[35] P. N. KLEIN AND J. H. REIF, Parallel time O(lgn) acceptance of deterministic CFLs on an
exclusive-write P-RAM, SIAM J. Comput., 17 (1988), pp. 463–485.

[36] V. KUMAR, A. GRAMA, A. GUPTA, AND G. KRAYPIS, Introduction to Parallel Computing,
Benjamin/Cummings, Redwood City, CA, 1994.

[37] L. L. LARMORE AND W. RYTTER, Efficient sublinear time parallel algorithms for the recogni-
tion of context-free languages, in SWAT 91, Lecture Notes in Comput. Sci. 577, Springer
Verlag, New York, 1991, pp. 121–132.

[38] P. RAMANAN, A new lower bound technique and its application: Tight lower bounds for a poly-
gon triangularization problem, in Proc. 2nd Annual ACM–SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1991, pp. 281–290.

[39] P. RAMANAN, A new lower bound technique and its application: Tight lower bounds for a
polygon triangularization problem, SIAM J. Comput., 23 (1994), pp. 834–851.

[40] P. RAMANAN, An Efficient Parallel Algorithm for Finding an Optimal Order of Computing a
Matrix Chain Product, Technical Report WSUCS-92-2, Wichita State University, Wichita,
KS, June 1992.

[41] P. RAMANAN, An Efficient Parallel Algorithm for the Matrix Chain Product Problem, Technical
Report WSUCS-93-1, Wichita State University, Wichita, KS, January 1993.

[42] W. RYTTER, On efficient parallel computation for some dynamic programming problems, The-
oret. Comput. Sci., 59 (1988), pp. 297–307.

[43] L. G. VALIANT, S. SKYUM, S. BERKOWITZ, AND C. RACKOFF, Fast parallel computation of
polynomials using few processors, SIAM J. Comput., 12 (1983), pp. 641–644.

[44] F. F. YAO, Speed-up in dynamic programming, SIAM J. Algebraic Discrete Methods, 3 (1982),
pp. 532–540.

COMPUTING MANY FACES IN ARRANGEMENTS OF LINES
AND SEGMENTS∗

PANKAJ K. AGARWAL† , JIŘÍ MATOUŠEK‡ , AND OTFRIED SCHWARZKOPF§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 491–505, April 1998 009

Abstract. We present randomized algorithms for computing many faces in an arrangement of
lines or of segments in the plane, which are considerably simpler and slightly faster than the previously
known ones. The main new idea is a simple randomized O(n logn) expected time algorithm for
computing

√
n cells in an arrangement of n lines.

Key words. arrangements, random sampling, duality

AMS subject classifications. 68Q20, 68R05, 68U05

PII. S009753979426616X

1. Introduction. Given a finite set S of lines in the plane, the arrangement of
S, denoted by A(S), is the cell complex induced by S. The 0-faces (or vertices) of
A(S) are the intersection points of S, the 1-faces (or edges) are maximal portions
of lines of S that do not contain any vertex, and the 2-faces (called cells) are the
connected components of R2 −

⋃
S. For a finite set S of segments we define the

arrangement, A(S), in an analogous manner. Notice that while the cells are convex
in an arrangement of lines, they need not even be simply connected in an arrangement
of segments.

Line and segment arrangements have been extensively studied in computational
geometry (as well as in some other areas), as a wide range of computational geom-
etry problems can be formulated in terms of computing such arrangements or their
parts [11, 14].

Given a set S of n lines and a set P of m points in the plane, we define A(S, P)
to be the collection of all cells of A(S) that contain at least one point of P . The
combinatorial complexity of a cell C in A(S), denoted by |C|, is the number of edges
of C. Let κ(S, P) =

∑
C∈A(S,P) |C| denote the total combinatorial complexity of all

cells in A(S, P), and let

κ(n,m) = maxκ(S, P) ,

where the maximum is taken over all sets of n lines and over all sets of m points in

∗Received by the editors April 18, 1994; accepted for publication (in revised form) March 11,
1996. A part of this work was done while the first and third authors were visiting Charles University
and while the first author was visiting Utrecht University. The first author has been supported by
National Science Foundation grant CCR–93–01259 and an NYI award. The second author has been
supported by Charles University grant 351 and Czech Republic grant GAČR 201/93/2167. The
third author has been supported by the Netherlands’ Organization for Scientific Research (NWO)
and partially supported by ESPRIT Basic Research Action 7141 (project ALCOM II: Algorithms
and Complexity).

http://www.siam.org/journals/sicomp/27-2/26616.html
†Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129

(pankaj@euclid.cs.duke.edu).
‡Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha

1, Czech Republic (matousek@kam.mff.cuni.cz).
§Department of Computer Science, Utrecht University, P. O. Box 80.089, 3508 TB Utrecht, the

Netherlands. Current address: Department of Computer Science, Hong Kong University of Science
& Technology, Clear Water Bay, Kowloon, Hong Kong.

491

492 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

the plane. It is known that

κ(n,m) = Θ(n2/3m2/3 + n+m) .

The upper bound was proven by Clarkson et al. [9] and the lower bound follows from
a result of Szemerédi and Trotter [21]; previous results and related work can be found
in Canham [4] and Edelsbrunner and Welzl [13].

In this paper we study the problem of computing A(S, P), that is, for each cell
C ∈ A(S, P), we want to return the vertices of C in, say, clockwise order. We will
refer to the cells of A(S, P) as the marked cells of A(S). Edelsbrunner, Guibas,
and Sharir [12] presented a randomized algorithm, based on the random-sampling
technique [16], for computing A(S, P), whose expected running time was

O(m2/3−εn2/3+2ε logn+ n logn logm),

for any fixed ε > 0. A deterministic algorithm with running time

O(m2/3n2/3 logO(1) n+ n log3 n+m logn)

was given by Agarwal [1]. These algorithms thus are nearly worst-case optimal, but
both of them are rather involved.

Recently, randomized incremental algorithms have been developed for a variety
of geometric problems, which add the input objects one by one in random order
and maintain the desired structure; see e.g., [6, 10, 18, 19]. In our case, we can
add the lines of S one by one in random order and maintain the marked cells in
the arrangement of lines added so far. However, the expected running time of this
approach is Ω(n

√
m + m logn) in the worst case. We, therefore, do not quite follow

the randomized incremental paradigm.
We begin by presenting an expected O((m2+n) logn)-time randomized algorithm

for computing A(S, P). Notice that for m ≤
√
n, the expected running time of

the algorithm is O(n logn), which matches the known lower bound for computing a
single cell in line arrangements. We then apply the randomized geometric divide-and-
conquer technique in a standard way, obtaining an algorithm with expected time

O

(
m2/3n2/3 log

n√
m

+ (m+ n) logn
)
.

We also study a similar but more difficult problem of computing the marked cells
in an arrangement of n line segments. Let S be a set of n segments in the plane. We
use an analogous notation A(S, P) to denote the set of cells in A(S) containing at
least one point of P , and η(n,m) to denote the maximum combinatorial complexity
of A(S, P) over all sets S of n segments and over all sets P of m points in the plane.
Aronov et al. [2] proved that

η(n,m) = O
(
m2/3n2/3 + n logm+ nα(n)

)
.

A randomized algorithm with expected running time

O(m2/3−εn2/3+2ε logn+ nα(n) log2 n logm)

is described by Edelsbrunner, Guibas, and Sharir [12], and a slightly faster determin-
istic algorithm is presented by Agarwal [1]. See [20] for results on computing a single
cell in arrangements of segments.

COMPUTING MANY FACES IN ARRANGEMENTS 493

Following the same strategy as for the case of lines, we first develop a randomized
algorithm with O((m2 logm + n logm + nα(n)) logn) expected running time. Note
that the above upper bound for η(n,m) is not known to be tight, and a bound such
as η(n,

√
n) = O(nα(n)) (which is conjectured to be the complexity of

√
n cells) will

immediately improve the expected running time of our algorithm to O(n lognα(n)).
Plugging this algorithm into the standard random-sampling technique, as in the case
of lines, we obtain a randomized algorithm for computing A(S, P) whose expected
running time is

O

(
m2/3n2/3 log2 n√

m
+ (m+ n logm+ nα(n)) logn

)
.

If the segments of S have only k = o(n2) intersection points, the expected running
time of the algorithm is

O

(
m2/3k1/3 log2 k

m
+ (m+ n logm+ nα(n)) logn

)
.

For the analysis of the expected running time of our algorithms we will use a
generalization of a lemma due to Chazelle and Friedman [7]. (An alternative analysis
could probably be obtained using a method similar to that of Chazelle et al. [6], but
we hope that our approach is somewhat more intuitive).

2. A generalization of the Chazelle–Friedman lemma. Let S be a set of
lines or segments and P a set of points in the plane. For a cell C in the collection
A(S, P), let C || denote the collection of trapezoids in the vertical decomposition1

of C, and let A||(S, P) =
⋃
C∈A(S,P) C

|| denote the set of trapezoids in the vertical
decomposition of A(S, P). Abusing the notation slightly, we will use A||(S, P) to
denote the corresponding planar subdivision as well. For any subset X ⊆ S and any
trapezoid ∆ ∈ A||(X,P), let w(∆) denote the number of elements of S intersecting
the interior of ∆.

Let n = |S|, and let R be a random subset of S of size r. For the analysis of our
algorithms, we are interested in estimating the expectation, over all random choices
of R,

E

 ∑
∆∈A||(R,P)

w(∆)c

 ,(2.1)

where c is a small constant; for instance, c = 2. Well-known results concerning the
so-called ε-nets (Haussler and Welzl [16]) imply that, for every ∆ ∈ A||(R), w(∆) ≤
a(n/r) log r with high probability, where a is a suitable constant. This inequality
can be used to derive a weaker bound for (2.1). We are, however, interested in the
following, slightly stronger bound (better by a factor of logc r).

PROPOSITION 2.1. (i) Let S be a set of n lines and P a set of m points in the
plane. If R ⊆ S is a random subset of size r, where each subset of size r is chosen
with equal probability, then for any constant c ≥ 1,

E

 ∑
∆∈A||(R,P)

w(∆)c

 = κ(r,m) ·O((n/r)c) .

1The vertical decomposition C|| of a cell C in an arrangement of segments (or of lines) is obtained
by drawing a vertical line segment from each vertex of C in both directions (within C) until it hits
another edge of C. If the segment does not intersect any edge of C, then it is extended to infinity.

494 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

(ii) Let S be a set of n segments and P a set of m points in the plane. If R ⊆ S is a
random subset of size r, where each subset of size r is chosen with equal probability,
then for any constant c ≥ 1,

E

 ∑
∆∈A||(R,P)

w(∆)c

 = η(r,m) ·O((n/r)c) .

These bounds essentially say that the cth moment of the quantities w(∆) behaves
as if w(∆) were O(n/r). If we sum w(∆) over all cells in A(R)—the case where every
cell of A(R) contains a point of P—then Proposition 2.1 follows from a result of
Clarkson and Shor [10]. In our situation, where the sum is taken over only some of
the cells, the Clarkson–Shor framework does not apply directly anymore (the main
distinction between these two situations will be outlined below). We give a proof
based on a generalization of the approach by Chazelle and Friedman [7], which is
somewhat different from the Clarkson–Shor method. Recently, de Berg, Dobrindt,
and Schwarzkopf [3] gave an alternative proof of Proposition 2.1.

We derive a key lemma in a somewhat abstract framework; see also [6, 7, 10] for
various approaches to axiomatize similar situations.

Let S be a set of objects. For a subset R ⊆ S, we define a collection of “regions”
called CT(R); in Proposition 2.1 the objects are lines or segments, the regions are
trapezoids, and CT(R) = A||(R,P). Let T = T (S) =

⋃
R⊆S CT (R) denote the set of

regions defined by all possible subsets of S. We associate two subsets D(∆),K(∆) ⊆ S
with each region ∆ ∈ T .

D(∆), called the defining set , is a subset of S defining the region ∆ in a suitable
geometric sense.2 We assume that for every ∆ ∈ T , |D(∆)| ≤ d for a (small) constant
d. In Proposition 2.1, each trapezoid ∆ is defined by at most four segments (or lines)
of S, which constitute the set D(∆); details can be found in Chazelle et al. [6].

K(∆), called the killing set , is a set of objects of S such that including any object
of K(∆) into R prevents ∆ from appearing in CT(R). In many applications, K(∆) is
the set of objects intersecting the cell ∆; this is also the case in Proposition 2.1. Set
w(∆) = |K(∆)|.

Let S,CT(R), D(∆), andK(∆) be such that for any subsetR ⊆ S, CT(R) satisfies
the following axioms:

(i) For any ∆ ∈ CT(R), D(∆) ⊆ R and R ∩K(∆) = ∅, and
(ii) If ∆ ∈ CT(R) and R′ is a subset of R with D(∆) ⊆ R′, then ∆ ∈ CT(R′).
It is easily checked that these axioms hold in the situations of Proposition 2.1.
For any natural number t, let

CTt(R) = {∆ ∈ CT(R) | w(∆) ≥ tn/r} .

We establish the following.
LEMMA 2.2. Given a set S of n objects, let R be a random sample of size r ≤ n

drawn from S, and let t be a parameter, 1 ≤ t ≤ r/d, where d = max |D(∆)|.
Assuming that CT(R), D(∆), and K(∆) satisfy axioms (i) and (ii) above, we have

E [|CTt(R)|] = O(2−t) · E [|CT(R′)|] ,(2.2)

where R′ ⊆ S denotes a random sample of size r′ = br/tc.

2We need not make this precise here, as this is only an intuitive meaning of D(∆). The analysis
depends only on the axioms involving D(∆) given below, and these will be satisfied in our specific
applications.

COMPUTING MANY FACES IN ARRANGEMENTS 495

Roughly speaking, Lemma 2.2 says that the expected number of “large” trape-
zoids in CT(R), that is, trapezoids for which the value of w(∆) exceeds the “right”
value n/r more than t times, decreases exponentially with t.

Chazelle and Friedman [7] proved a result analogous to Lemma 2.2 under the
following stronger axiom replacing (ii):

(ii′) If D(∆) ⊆ R and K(∆) ∩R = ∅, then ∆ ∈ CT(R).
This assumption implies that the presence of ∆ in CT(R) depends only on D(∆)

and K(∆); thus it is determined purely “locally.” Notice that (ii′) may fail in the
situation of Proposition 2.1. However, (ii′) holds in the special case, when CT(R) is
the vertical decomposition of all cells in A(R).

Proof of Lemma 2.2. Let Tt =
⋃
R⊆S CTt(R). We have

E [|CTt(R)|] =
∑

∆∈Tt

Pr[∆ ∈ CT(R)] ,(2.3)

E [|CT(R′)|] =
∑
∆∈T

Pr[∆ ∈ CT(R′)]

≥
∑

∆∈Tt

Pr[∆ ∈ CT(R′)] .(2.4)

We will prove that, for each ∆ ∈ Tt,

Pr[∆ ∈ CT(R)] = O(2−t) · Pr[∆ ∈ CT(R′)] ,(2.5)

which in conjunction with (2.3) and (2.4) implies (2.2).
Let A∆ denote the event D(∆) ⊆ R and K(∆) ∩ R = ∅, and let A′∆ denote the

event D(∆) ⊆ R′ and K(∆) ∩R′ = ∅.
We rewrite Pr[∆ ∈ CT(R)] using the following definition of conditional probabil-

ity:

Pr[∆ ∈ CT(R)] = Pr[A∆] · Pr[∆ ∈ CT(R) | A∆]

and analogously,

Pr[∆ ∈ CT(R′)] = Pr[A′∆] · Pr[∆ ∈ CT(R′) | A′∆] .

We observe that, by axiom (ii), we have

Pr[∆ ∈ CT(R) | A∆] ≤ Pr[∆ ∈ CT(R′) | A′∆] .(2.6)

To see this, consider the following random experiment. Select a set R′ by including all
the elements of D(∆) into it, and adding r′−|D(∆)| elements chosen randomly among
the elements of S \ (D(∆) ∪K(∆)). By definition of the conditional probability, the
probability that ∆ appears in CT(R′) is precisely Pr[∆ ∈ CT(R′) | A′∆]. Now take
this R′ and add r − r′ randomly chosen elements of S \ (R′ ∪K(∆)) to it, obtaining
a set R. The distribution of this R is clearly the same as if we took the elements of
D(∆) and added r − |D(∆)| random elements of S \ (D(∆) ∪K(∆)), and hence the
probability of ∆ ∈ CT(R) is Pr[∆ ∈ CT(R) | A∆]. On the other hand, since R was
created by adding extra elements to R′, whenever ∆ is present in CT(R) it must be
in CT(R′) as well, and thus (2.6) holds.

496 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

Therefore,

Pr[∆ ∈ CT(R)]
Pr[∆ ∈ CT(R′)]

≤ Pr[A∆]
Pr[A′∆]

.

(Note that r′ = br/tc ≥ d, and hence both denominators are nonzero.)
It remains to estimate the latter ratio, which can be done in the same way as by

Chazelle and Friedman. Let δ = |D(∆)| ≤ d, w = w(∆), and for two nonnegative
integers a ≤ x, let xa = x(x− 1) · · · (x− a+ 1). Then

Pr[A∆]
Pr[A′∆]

=

(
n−w−δ
r−δ

)(
n
r

) ·
(
n
r′

)(
n−w−δ
r′−δ

)
≤ rd

r′d
· (n− w − r′)r−r′

(n− r′)r−r′ .

By our assumption, r′ ≥ d, so we obtain
r − i
r′ − i ≤ dt for i = 0, 1, . . . , d− 1.

Thus, the first factor in the above expression is O(td). To bound the second factor,
we observe that, for i = r′, r′ + 1, . . . , r − 1,

n− w − i
n− i = 1− w

n− i ≤ 1− w

n
≤ exp(−w/n) .

Since w ≥ tn/r, we have w/n ≥ t/r, and therefore,

Pr[A∆]
Pr[A′∆]

≤ O(td) exp
(
−t(r − r′)

r

)
= O(td) exp(−(t− 1)) = O(2−t) ,

as desired.
We now prove Proposition 2.1.
Proof of Proposition 2.1. We will only prove the first part; the second part is

identical. For any subset R ⊆ S of size r, let CT (R) denote the set of trapezoids
in the vertical decomposition of the marked cells of A(R), i.e., CT (R) = A||(R,P).
Obviously, |CT (R)| ≤ κ(r,m). Now

E

 ∑
∆∈A||(R,P)

w(∆)c

= E

∑
t≥1

(
t
n

r

)c
(|CTt(R)| − |CTt−1(R)|)

≤
(n
r

)c∑
t≥0

(t+ 1)c · E [|CTt(R)|]

=
(n
r

)c∑
t≥0

tcO(2−t) · κ
(r
t
,m
)

≤ κ(r,m)
(n
r

)c∑
t≥0

O(tc · 2−t)

= κ(r,m) ·O ((n/r)c) .

COMPUTING MANY FACES IN ARRANGEMENTS 497

3. Computing cells in line arrangements. Let S be a set of n lines and
P a set of m points in the plane. We assume that the points of P are sorted in
nondecreasing order of their x-coordinates, and that the lines of S are sorted by their
slopes. In this section we describe a randomized algorithm for computing A(S, P).
In fact, it computes the vertical decomposition A||(S, P) of A(S, P). Each face of
A||(S, P) is a trapezoid, bounded by at most two vertical segments and portions of at
most two edges of a cell of A||(S, P). We begin by presenting a very simple randomized
algorithm for computing A||(S, P) with O((m2 + n) logn) expected time, which we
will use as a subroutine in the main algorithm. This algorithm is optimal for m ≤

√
n.

If n ≤ n0, where n0 is an appropriate constant, the algorithm computes the vertical
decomposition of the entire arrangement using any standard algorithm. Otherwise, it
proceeds as follows.

1. Let t be a sufficiently large constant. Choose a random subset R ⊆ S of
r = bn/tc lines.

2. Partition P into q = d
√
t e subsets P1, . . . , Pq, each of size at most k =

bm/
√
tc, where

Pi = {p(i−1)k+1, . . . , pik} for i < q,

Pq = {p(q−1)k+1, . . . , pm}.

3. For each i ≤ q, compute A||(R,Pi) recursively. If a cell C of A(R) is computed
more than once, retain only one copy of C. (Note that multiple copies of a
cell C are computed if C contains the points of more than one Pi.) Since P
is sorted in the x-direction, it is easy to detect multiple copies of a cell. In
this way, we obtain A||(R,P).

4. For each line ` ∈ S \R, compute the cells of A(R,P) that ` intersects.
5. For each trapezoid ∆ of A||(R,P), compute the set S∆ ⊆ S \R of lines that

intersect the interior of ∆.
6. For each trapezoid ∆ ∈ A||(R,P), compute the arrangement of lines of S∆,

clip it within ∆, and compute the vertical decomposition of the clipped ar-
rangement. For each cell C ∈ A(R,P), perform a graph search on trapezoids
of these vertical decompositions to merge appropriate trapezoids and to dis-
card superfluous ones, thus forming the portion of A||(S, P) within the cell
C.

Steps 1–3 are trivial, so we only describe steps 4–6 in more detail.
Step 4. We want to compute the cells of A(R,P) intersected by each line in

S \ R. The situation can be viewed as follows: we have a collection C of disjoint
convex polygons (the cells of A(R,P)), and a set S \ R of lines. The collection C
has at most m polygons with a total of O(n+m2) edges.3 For each polygon C ∈ C,
consider C∗, the set of points that are dual to the lines intersecting C. C∗ is a
polygonal region, bounded by an infinite convex chain from above and by an infinite
concave chain from below. Each vertex of C∗ is dual to the line supporting an edge
of C. For a pair of polygons C1, C2 ∈ C, an intersection point of the edges of C∗1 , C

∗
2

is dual to a common tangent of C1 and C2. Since C1, C2 are disjoint, the boundaries
of C∗1 , C

∗
2 intersect in at most four points.

Consider the arrangement A(C∗) of the polygonal chains bounding the regions C∗,
for all C ∈ C. It has O(n + m2) complexity and can be computed in expected time

3The latter estimate follows from the bound for κ(n,m) mentioned in Section 1, in fact it is the
weaker bound proved by Canham [4].

498 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

O((m2 + n) logn), using a randomized incremental algorithm [6, 18]. This algorithm
actually computes the vertical decomposition A||(C∗) of the arrangement, together
with a point-location data structure with O(logn) expected query time. We use this
data structure to locate the points `∗ dual to all lines ` ∈ S \ R. From this we can
determine, for every `, the regions of C∗ containing `∗, or in other words, the polygons
of C intersecting `. Indeed, after having located all points of the form `∗, we traverse
the adjacency graph of the trapezoids in A||(C∗). At each trapezoid τ ∈ A||(C∗) we
compute C∗(τ), the set of regions that contain the trapezoid τ ∈ A||(C∗), and output
the pairs (`, C) for `∗ ∈ τ and C∗ ∈ C∗(τ). Suppose we arrive at τ from τ ′; then C∗(τ)
and C∗(τ ′) differ by at most one region (the region whose boundary separates τ from
τ ′), and thus C∗(τ) can be obtained from C∗(τ ′) in O(1) time.

The total time spent in this step is O((m2 + n) logn) plus the number of poly-
gon/line incidences. The expected number of these incidences is bounded byO(κ(r,m)·
(n/r)) = O(m2 + n), using Proposition 2.1 with r = n/t and c = 1.

Step 5. Let C be a cell in A(R,P), and let SC ⊆ S \ R be the set of lines
intersecting the interior of C. For each line ` ∈ SC , we compute the trapezoids of C ||

intersected by `, as follows. We compute, in O(logn) time, the intersection points of
∂C and ` and also the trapezoids of C || containing these intersection points. Next, by
tracing ` through C ||, we compute all b trapezoids of C || that ` intersects. The time
spent in finding the intersection points and tracing ` is O(logn+b). By repeating this
procedure for all cells C and all lines ` ∈ L\R, we obtain S∆, for every ∆ ∈ A||(R,P).
The running time of this step is O(

∑
∆∈A||(R,P) w(∆) logn). The expected value of

O(
∑

∆∈A||(R,P) w(∆)), by Proposition 2.1 as before, is O(m2+n). Hence, the expected
time spent in step 5 is O((m2 + n) logn).

Step 6. Let ∆ be a trapezoid of A||(R,P). After having computed S∆, we com-
pute the arrangement A(S∆) using, say, a randomized incremental algorithm. We
clip A(S∆) within ∆ and compute the vertical decomposition of the clipped arrange-
ment. For each point p ∈ P ∩ ∆, we also compute the trapezoid of this verti-
cal decomposition containing p. The time spent in this step is easily seen to be
O(w(∆)2 + |P ∩∆| logw(∆)) per trapezoid ∆ ∈ A||(R,P).

For a cell C ∈ A(R,P), let ∆C be the set of resulting trapezoids that lie in C. We
now define a graph GC on the trapezoids of ∆C . The vertices of GC are the trapezoids
of ∆C , and two trapezoids are connected by an edge if they share a vertical edge.
By performing a depth-first search on GC , we can extract all connected components
of GC whose trapezoids contain any point of P . That is, we pick a point p ∈ P ∩ C.
Let τp ∈ ∆C be the trapezoid containing p. We perform a depth first search in GC
starting from τp until we find the entire connected component of GC containing τp. Let
∆C(p) be the set of trapezoids in this component; then the union of these trapezoids
is exactly the cell of A(S, {p}). The vertices of the cell, sorted in clockwise order, can
be obtained by merging the trapezoids of ∆C(p) in an obvious manner.

If there is a point q ∈ P ∩ C that does not lie in ∆C(p), we repeat the same
procedure with q. We continue this process until we have extracted all components
of GC that contain any point of P ∩ C. This gives A(S, P ∩ C).

Repeating this step for all cells of A(R,P), we obtain all cells of A(S, P). Finally,
we compute the vertical decomposition of all the cells. The total running time for
Step 6 is

O(m logn) +
∑

∆∈A(R,P)

O(w(∆)2) ,

COMPUTING MANY FACES IN ARRANGEMENTS 499

and its expected value is

O(m logn+ κ(r,m)(n/r)2) = O(m2 + n) .

Putting all the pieces together, the total expected running time of Steps 4–6 is
O((m2 + n) logn). Let T (n,m) denote the maximum expected time of the entire
algorithm; then we obtain the following recurrence.

T (n,m) ≤

c1 if n ≤ n0,
q∑
i=1

T (bn/tc ,mi) + c2(m2 + n) logn if n > n0,

where mi ≤ m/
√
t for i ≤ q =

⌈√
t
⌉
,
∑q
i=1mi = m, and c1, c2 are appropriate

constants. The solution of this recurrence is

T (n,m) = O((m2 + n) logn) .

If m >
√
n, we can divide the points of P into groups of size

√
n and solve the

subproblems separately. This standard batching technique yields a more convenient
bound for the expected running time, namely O((m

√
n + n) logn). Hence, we can

conclude the following lemma.
LEMMA 3.1. Given a set S of n lines and a set P of m ≤ n2 points in the

plane, the cells of A(S) containing the points of P can be computed by a randomized
algorithm in expected time O((m

√
n+ n) logn).

We now present another randomized algorithm whose running time is significantly
better for larger values of m. Although the basic idea is the same as in [1], the
algorithm presented here is simpler because we allow randomization.

We choose a random subset R ⊆ S of size r, where r =
⌈
m2/3/n1/3

⌉
. Using

a randomized incremental algorithm, we construct A||(R) plus a point-location data
structure for A||(R) in expected time O(r2) [6]. For each trapezoid ∆ ∈ A||(R), let
S∆ ⊆ S \R be the set of lines that intersect the interior of ∆ and P∆ ⊆ P the set of
points that are contained in ∆. S∆ can be computed in time O(nr) by tracing each
line through A||(R) and P∆ can be computed in expected time O(m logn) by locating
each point of P in A||(R). Set n∆ = |S∆| and m∆ = |P∆|. For the sake of convenience,
we assume that A(S∆),A(S∆, P∆) are clipped within ∆, and A||(S∆),A||(S∆, P∆) are
their vertical decompositions. Let Z∆ denote the set of cells in A(S∆) that intersect
the vertical edges of ∆. It is well known that the number of edges in the faces in Z∆
is O(n∆) [9].

Let p be a point of P∆. If the cell A(S∆) containing p lies entirely in the interior
of ∆, then A(S, {p}) = A(S∆, {p}). Otherwise, A(S, {p}) may have edges that lie
outside ∆, but each such edge lies on the boundary of faces in Z∆′ , ∆′ ∈ A||(R).
Hence, for each trapezoid ∆, it is sufficient to compute A(S∆, P∆) and Z∆. We
compute A(S∆, P∆) in expected time O((m∆

√
n∆ +n∆) logn∆) using Lemma 3.1. If

we clip the lines of S∆ within ∆, then Z∆ is the unbounded face in the arrangement
of the clipped segments, and we can compute it in expected time O(n∆ logn∆) using
a (simplified version of) the algorithm by Chazelle et al. [6]. Hence, the expected
running time of the algorithm is

E

 ∑
∆∈A||(R)

O ((m∆
√
n∆ + n∆) logn∆)

+O(nr) +O(m logn) .

500 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

By a result of Clarkson and Shor [10, Theorem 3.6], we have

E

 ∑
∆∈A||(R)

n∆ logn∆

 = O
(
nr log

n

r

)
and

E

 ∑
∆∈A||(R)

m∆
√
n∆ logn∆

 = O

(
m

√
n

r
log

n

r

)
.

Thus, the expected running time of the algorithm is bounded by

O

((
m

√
n

r
+ nr

)
log

n

r
+m logn

)
.

Substituting the value r in the above expression, we obtain the following theorem.
THEOREM 3.2. Given a set S of n lines and a set P of m points in the plane, the

faces of A(S) containing the points of P can be computed by a randomized algorithm
in expected time

O

(
m2/3n2/3 log

n√
m

+ (m+ n) logn
)
.

4. Computing cells in segment arrangements. Next, we present an algo-
rithm for computing marked cells in arrangements of segments. Let S be a set of n
segments and P a set of m points in the plane. The goal is to compute A(S, P) and
its vertical decomposition A||(S, P). Again, we begin with a simpler algorithm, which
is effective for computing few cells, and then plug in the random-sampling technique
to handle larger values of m.

The outline of the first algorithm is the same as in the previous section except
that we must now interpret the operations in terms of segments. Since the cells of
A||(R,P) are not necessarily simply connected, the boundary of m cells may consist of
m+n polygonal chains. Consequently, the computation of the sets of cells intersected
by each segment of S \R in Step 4 and the computation of S∆ for each trapezoid ∆ ∈
A||(R,P) in Step 5 now become considerably more complicated. Another difficulty in
computing S∆ is that we now have to detect intersections between simple polygons
and segments rather than between convex polygons and lines. In the remainder of
this section we will describe the details of Steps 4 and 5.

The boundary ∂C of each cell C ∈ A(R,P) is composed of (at most) one outer
component and a family of inner components; C lies in the interior of the outer
component and in the exterior of each inner component. Each component of ∂C can be
regarded as a simple polygonal chain. Let O be the set of outer boundary components
of the cells in A(R,P), and let I be the set of the inner boundary components of these
cells. We have |O| ≤ m and |I| ≤ m + n. Let µ be the total number of edges of all
polygons in O ∪ I; obviously,

µ ≤ η(n/t,m) = O(m2 logm+ n logm+ nα(n));(4.1)

the last inequality follows from a weaker result of Aronov et al. [2].
We first decompose each segment g ∈ S\R into maximal subsegments so that each

subsegment lies in the interior of some outer component O. We cut each segment at
the intersection points of O and S and discard the subsegments that lie in the exterior

COMPUTING MANY FACES IN ARRANGEMENTS 501

of O. Let Σ be the set of resulting subsegments. Next, for each subsegment σ ∈ Σ,
we compute the trapezoids of A||(R,P) intersected by σ.

Suppose that we have already computed Σ in Step 4. Then in Step 5 we compute
S∆, for all ∆ ∈ A||(R,P), as follows. We preprocess each polygonal chain I ∈ I, in
linear time, for ray-shooting queries, so that the first intersection point of a query
ray and I can be computed in logarithmic time; see [5, 15]. The total time spent in
preprocessing I is O(µ) = O(η(n,m)).

Let σ be a subsegment of Σ that lies in the interior of the outer component of
the boundary of a cell C. We trace σ through C|| to compute the trapezoids of C ||

intersected by σ. In more detail, let a, b be the endpoints of σ, and let ∆(a) be the
trapezoid of C || containing a. If a is not an endpoint of a segment of S \ R, then a
lies on the boundary of ∆(a). We check whether b ∈ ∆(a). If the answer is “yes,”
then ∆(a) is the only trapezoid of C|| intersected by σ, and we stop. If b 6∈ ∆(a), we
compute the other intersection point, a1, of σ and ∆(a). If a1 lies on a vertical edge of
∆(a), we also compute, in constant time, the next trapezoid ∆(a1) of C || intersected
by σ and repeat the same step with a1 and ∆(a1). If a1, on the other hand, lies on
an edge of the cell C, then a1 lies on the boundary of some inner component I ∈ I of
C, and the portion of the segment σ immediately following a1 lies outside C. Using
the ray-shooting data structure, we compute the next intersection point a2 of the

polygonal chain I and the segment
−→
a1b. Once we know a2, we can also compute the

trapezoid of C || containing a2, and we continue tracing σ through C ||.
For each trapezoid intersected by σ, we spend O(logn) time, so the total time

spent in computing the kσ trapezoids intersected by σ is O(kσ logn). Summing over
all segments of Σ, the total time spent is

∑
σ∈Σ

O(kσ logn) = O

 ∑
∆∈A||(R,P)

n∆ logn

 ,

where n∆ = |S∆|.
Next, we describe how to compute the set Σ. Notice that it is sufficient to compute

all intersection points between the segments of S \R and the outer polygonal chains
in O.

Let J be the set of intervals corresponding to the x-projections of the polygonal
chains in O. We construct in time O(m logm) an interval tree T on J ; see [17] for
details on interval trees. T is a minimum-height binary tree with at most 2m leaves,
each of whose nodes v is associated with a vertical strip Wv and a point xv; xv is the
median of the endpoints of Jv that lie in the interior of Wv. For the root u, Wu is the
entire plane. If v, z are the children of u, then Wv and Wz are obtained by splitting
Wu into two vertical strips by the vertical line passing through xu. An interval J ∈ J
is stored at the highest node v of T for which xv ∈ J .

Let Ov ⊆ O be the subset of polygonal chains whose projections are stored at v.
Each chain belongs to exactly one Ov. Let Zv =

⋃
wOw, where the union is taken over

all descendants of v, including v; set zv = |Zv|. Finally, let ζv denote the total number
of edges in Zv. Since each polygonal chain of O appears in at most O(logm) Zv’s,
we have

∑
v∈T ζv = O(µ logm), where µ is, as above, the total number of edges in O.

Moreover, by the construction of T , if v1, v2 are the children of v, then zv1 , zv2 ≤ zv/2,
and therefore

∑
v∈T z

2
v = O(m2).

The polygonal chains in Ov are pairwise disjoint and all of them intersect the
vertical line passing through xv, so we can regard Ov along with appropriate portions

502 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

of the vertical line as a simple polygon and preprocess it in linear time for answering
ray-shooting queries. The time spent in this step is O(µ), as each polygonal chain
belongs to exactly one Ov. Using this data structure, all a intersection points of a
segment g and Ov can be reported in time O((a+ 1) logn).

Next, we take the convex hull of each polygonal chain in Zv and preprocess the
resulting convex polygons into a data structure, as described in the previous section, so
that all convex polygons intersected by a query line can be reported quickly. Since any
two polygonal chains of O are disjoint, the boundaries of their convex hulls intersect
in at most two points and they have at most four common tangents. Consequently,
the line intersection-searching structure has size O(z2

v+ζv), and it can be computed in
time O(z2

v + zv log ζv + ζv), using the algorithm described in [19]. We also preprocess
each O ∈ O in linear time for ray-shooting queries as in [15]. The total time spent in
preprocessing O is therefore

O

(
m logm+ µ+

∑
v

(
z2
v + zv log ζv + ζv

))
= O(m2 +m logm logn+ µ logm)(4.2)

= O((m2 logm+ n logm+ nα(n)) logm),

where the last inequality follows from (4.1).
Let g ∈ S \R be a segment. All intersection points of g and O can be computed

as follows. We search the tree T with g starting from the root. Let v be a node
visited by the query procedure. We need to compute the intersection points of g
and the polygonal chains in Zv. If the endpoints of g do not lie in the vertical strip
Wv, that is, g completely crosses Wv, then g intersects a polygonal chain O ∈ Zv
if and only if the line supporting g intersects the convex hull of O. Thus, we first
compute all polygonal chains of Zv intersected by the line supporting g, using the
line intersection-searching structure, and then, for each O ∈ Zv intersected by g, we
compute the intersection points of g and O using the ray-shooting data structure. If
a is the number of intersection points between g and the polygonal chains of Zv, then
the total time in reporting these intersections is O((a + 1) logn). If, on the other
hand, one of the endpoints of g lies in Wv, we can compute all b intersection points
between Ov and g in time O((b + 1) logn) using the ray-shooting data structure for
Ov. Let v1, v2 be the children of the node v. If g intersects Wv1 (resp., Wv2), we
recursively visit v1 (resp., v2).

It is easily seen that the query procedure visits O(logm) nodes and that the
query time is O((logm+kg) logn), where kg is the total number of intersection points
reported. We repeat this procedure for all segments g ∈ S \R. Since∑

g∈S\R
kg ≤

∑
∆∈A||(R,P)

n∆ ,

the total cost of computing the intersection points between S \R and O is

∑
g∈S\R

O((logm+ kg) logn) = O

n logm logn+
∑

∆∈A||(R,P)

n∆ logn

 .

The expected value of
∑

∆ n∆ is η(r,m)O(n/r) = O(η(r,m)); therefore we obtain∑
g∈S\R

O((logm+ kg) logn) = O(n logm logn+ η(r,m) logn).(4.3)

COMPUTING MANY FACES IN ARRANGEMENTS 503

As in the previous section, the time spent in step 6 (refining the cells of A||(R,P)) is
O(
∑

∆ n2
∆). Using Proposition 2.1 (ii), we obtain that

E

[∑
∆

n2
∆

]
= η(r,m)O((n/r)2) = O(η(r,m)).(4.4)

Summing (4.2), (4.3), and (4.4), and using the fact that m ≤ n2, the total expected
time spent in the merge step is O((m2 logm+ n logm+ nα(n)) logn).

This gives the following recurrence for T (n,m) (the maximum expected running
time):

T (n,m) ≤

c1 if n ≤ n0,
√
t∑

i=1

T
(n
t
,mi

)
+O((m2 logm+ n logm+ nα(n)) logn) if n > n0,

where mi ≤ m/
√
t for all i ≤

√
t. The solution of this recurrence is

T (n,m) = O((m2 logm+ n logm+ nα(n)) logn).

Hence, we can conclude that the expected running time of the overall algorithm for
computing A(S, P) is

O
(
(m2 logm+ n logm+ nα(n)) logn

)
.

We can again use the same batching technique if m is large. That is, partition P
into groups of size

√
n and solve the subproblems separately. Omitting the details,

we obtain the following lemma.
LEMMA 4.1. Given a set S of n segments and a set P of m points in the plane, the

faces of A(S) that contain at least one point of P can be computed by a randomized
algorithm in expected time O ((m

√
n logn+ n logm+ nα(n)) logn).

For larger values of m, we again use the random-sampling technique as in the
previous section. That is, we choose a random subset R ⊆ S of size r =

⌈
m2/3/n1/3

⌉
and compute A||(R). For each ∆ ∈ A||(R), we compute P∆ = P ∩∆ and S∆, the set of
segments that intersect ∆. We clip the segments within ∆. The total expected time
spent in this step is O(r2 + (m+ nr) log r). Let z be a point lying in the unbounded
face of A(S). For each ∆ ∈ A||(R), we compute A||(S∆, P∆ ∪ {z}), in expected time

O((m∆
√
n∆ logm∆ + n∆ logm∆ + n∆α(n∆)) logn∆),

using Lemma 4.1, and then glue these faces together. The overall expected running
time of the algorithm is

E

 ∑
∆∈A||(R)

O((m∆
√
n∆ logn∆ + n∆α(n∆) + n∆ logm∆) logn∆)

+ O((m+ nr) log r) .(4.5)

Again, using the results by Clarkson–Shor [10], we have

E

 ∑
∆∈A||(R)

m∆
√
n∆ logn∆

 = O

(
m

√
n

r
log

n

r

)
(4.6)

∑
∆∈A||(R)

n∆ = E [|A||(R)|]O
(n
r

)
= O(nr).(4.7)

Substituting (4.5), (4.6), and the value of r in (4.7), we obtain the following theorem.

504 P. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF

THEOREM 4.2. Given a set S of n segments and a set P of m points in the
plane, the faces of A(S) that contain a point of P can be computed by a randomized
algorithm in expected time

O

(
m2/3n2/3 log2 n√

m
+ (m+ n logm+ nα(n)) logn

)
.

Finally, we remark that if A(S) has only k = o(n2) vertices, then using the fact
that the expected number of trapezoids in A||(R) is O(kr2/n2 + r) we can obtain a
better bound on the expected running time of the algorithm. In particular, choosing
r =

⌈
n(m/k)2/3

⌉
and using (4.4), (4.5), it can be shown that the expected running

time of the algorithm is

O

(
m2/3k1/3 log2 k

m
+ (m+ n logm+ nα(n)) logn

)
.

Acknowledgments. The authors thank Mark de Berg, Mark Overmars, and
Micha Sharir for several useful discussions. The comments by an anonymous referee
helped improve the presentation of the paper.

REFERENCES

[1] P. K. AGARWAL, Partitioning arrangements of lines: II. Applications, Discrete Comput. Geom.,
5 (1990), pp. 533–573.

[2] B. ARONOV, H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, Improved bounds on the com-
plexity of many faces in arrangements of segments, Combinatorica, 12 (1992), pp. 261–274.

[3] M. DE BERG, K. DOBRINDT, AND O. SCHWARZKOPF, On lazy randomized incremental con-
struction, Discrete Comput. Geom., 14 (1995), pp. 261–286.

[4] R. CANHAM, A theorem on arrangements of lines in the plane, Israel J. Math., 7 (1969),
pp. 393–397.

[5] B. CHAZELLE, H. EDELSBRUNNER, M. GRIGNI, L. GUIBAS, J. HERSHBERGER, M. SHARIR,
AND J. SNOEYINK, Ray shooting in polygons using geodesic triangulations, Algorithmica,
12 (1994), pp. 54–68.

[6] B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND J. SNOEYINK, Computing a
face in an arrangement of line segments, SIAM J. Comput., 22 (1993), pp. 1286–1302.

[7] B. CHAZELLE AND J. FRIEDMAN, A deterministic view of random sampling and its use in
geometry, Combinatorica, 10 (1990), pp. 229–249.

[8] K. CLARKSON, Computing a single face in an arrangement of segments, 1990, manuscript.
[9] K. CLARKSON, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND E. WELZL, Combinatorial

complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom., 5
(1990), pp. 99–160.

[10] K. CLARKSON AND P. SHOR, Applications of random sampling in computational geometry II,
Discrete Comput. Geom., 4 (1989), pp. 387–421.

[11] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.
[12] H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, The complexity of many faces in arrange-

ments of lines and of segments, Discrete Comput. Geom., 5 (1990), pp. 161–196.
[13] H. EDELSBRUNNER AND E. WELZL, On the maximal number of edges of many faces in an

arrangement, J. Combin. Theory Ser. A, 41 (1986), pp. 159–166.
[14] L. GUIBAS AND M. SHARIR, Combinatorics and algorithms of arrangements, in New Trends

in Discrete and Computational Geometry, J. Pach, ed., Springer-Verlag, Heidelberg, 1993,
pp. 9–36.

[15] J. HERSHBERGER AND S. SURI, A pedestrian approach to ray shooting: Shoot a ray, take a
walk, J. Algorithms, 18 (1995), pp. 403–431.

[16] D. HAUSSLER AND E. WELZL, ε-nets and simplex range queries, Discrete Comput. Geom., 2
(1987), pp. 127–151.

[17] K. MEHLHORN, Data Structures and Algorithms 3: Multi-dimensional Searching and Compu-
tational Geometry, Springer-Verlag, Berlin, 1984.

[18] K. MULMULEY, A fast planar partition algorithm, I, J. Symbolic Comput., 10 (1990), pp. 253–
280.

COMPUTING MANY FACES IN ARRANGEMENTS 505

[19] K. MULMULEY, A fast planar partition algorithm, II, J. Assoc. Comput. Mach., 38 (1991),
pp. 74–103.

[20] M. SHARIR AND P. K. AGARWAL, Davenport-Schinzel Sequences and Their Geometric Appli-
cations, Cambridge University Press, New York, 1995.

[21] E. SZEMERÉDI AND W. TROTTER JR., Extremal problems in discrete geometry, Combinatorica,
3 (1983), pp. 381–392.

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION
MODEL∗

ODED GOLDREICH† , SHAFI GOLDWASSER‡ , AND NATHAN LINIAL§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 506–544, April 1998 010

Abstract. We initiate an investigation of general fault-tolerant distributed computation in the
full-information model. In the full information model no restrictions are made on the computational
power of the faulty parties or the information available to them. (Namely, the faulty players may be
infinitely powerful and there are no private channels connecting pairs of honest players).

Previous work in this model has concentrated on the particular problem of simulating a single
bounded-bias global coin flip (e.g., Ben-Or and Linial [Randomness and Computation, S. Micali,
ed., JAI Press, Greenwich, CT, 1989, pp. 91–115] and Alon and Naor [SIAM J. Comput., 22 (1993),
pp. 403–417]). We widen the scope of investigation to the general question of how well arbitrary fault-
tolerant computations can be performed in this model. The results we obtain should be considered
as first steps in this direction.

We present efficient two-party protocols for fault-tolerant computation of any bivariate function.
We prove that the advantage of a dishonest player in these protocols is the minimum one possible
(up to polylogarithmic factors).

We also present efficient m-party fault-tolerant protocols for sampling a general distribution
(m ≥ 2). Such an algorithm seems an important building block towards the design of efficient
multiparty protocols for fault-tolerant computation of multivariate functions.

Key words. fault-tolerant multiparty protocols, influences in general two-party computations,
sampling with weak sources of randomness

AMS subject classifications. 68Q10, 68Q22, 68Q75

PII. S0097539793246689

1. Introduction. The problem of how to perform general distributed compu-
tation in an unreliable environment has been extensively addressed. Two types of
models have been considered. The first model assumes that one-way functions exist
and considers adversaries (faults) which are computationally restricted to probabilis-
tic polynomial time [24, 13, 25, 14, 11, 2]. The second model postulates that private
channels exist between every pair of players [3, 7, 8, 17, 15]. Hence, in both models
fault-tolerance is achieved at the cost of restricting the type of faults.

We want to avoid any such assumption and examine the problem of fault-tolerant
distributed computation where the faults are computationally unrestricted, and no
private channels are available. Clearly, the assumption that one-way functions exist
is of no use here. The situation here corresponds to games of complete information.

The general problem can be described informally as follows: m players are inter-
ested in globally computing v = f(x1, . . . , xm), where f is a predetermined m-variate
function and xi is an input given to party i (and initially known only to it). The input
xi is assumed to have been drawn from probability distribution Di (which without
loss of generality can be assumed to be uniform). A coalition F of faulty players may

∗Received by the editors April 2, 1993; accepted for publication (in revised form) March 14, 1996.
This research was supported by grants 89-00312, 89-00126, and 92-00226 from the United States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel. An extended abstract of this work
has appeared in the Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 447–457.

http://www.siam.org/journals/sicomp/27-2/24668.html
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot, Israel (oded@wisdom.weizmann.ac.il).
‡Laboratory for Computer Science, MIT, Cambridge, MA 02139 (shafi@theory.les.mit.edu).
§Institute of Computer Science, Hebrew University, Jerusalem, Israel (nati@humus.huji.ac.il).

506

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 507

favor a particular value v for f and play any strategy to maximize the probability of
such an outcome. We want to bound, for each value v in the range of f , the proba-
bility (under the best strategy for the faults) that the outcome of the protocol used
to distributively compute f is v. How good can this bound be?

Regardless of the protocol under consideration, there is always one avenue that is
open for the faulty players, namely, alter their input values to ones under which the
value v is most likely. This is always possible, since players’ inputs are not visible to
others. That is,

qv := max
xi,i∈F

{Prob(f(~x) = v where xj ∈R Dj , j /∈ F)}

is a lower bound on the influence of coalition F towards value v, no matter what
protocol is used.

Consider the simple procedure in which each player announces its xi, and the
global output is taken to be f(x1, . . . , xm). If all players (including the faulty ones)
act simultaneously, then for every v, the probability of v being the outcome is indeed at
most qv. Unfortunately, in a distributed network simultaneity cannot be guaranteed,
and a delayed action by the faults can result in much better performance for them
(e.g., for f =

∑m
i=1 xi mod N with xi ∈ {0, 1, . . . , N − 1}, q0 = 1

N , but a single faulty
player acting last has complete control of the outcome).

In both of the previously studied models (private channels or computationally
bounded faults) protocols were developed where for all values v and all minority
coalitions F , the probability of outcome v is as close to qv as desired. The key to
these protocols is the notion of simultaneous commitment. At the outset of these
protocols, each player Pi commits to its input xi. It should be stressed that a faulty
party may alter its input in this “committing phase” but not later and that a party’s
commitment is “independent” of the inputs of the other honest parties.

Obviously, in the full-information model such a qualitative notion of commitment
cannot be implemented (even if the faulty parties are in minority). Instead, we need
to look for quantitative results. Faulty players can and will be able to “alter their
inputs” throughout the execution of the protocol in order to influence the outcome.
Yet, we can bound the advantage gained by their improper behavior.

1.1. Results concerning the two-party case. The main focus of this paper is
on the two-player case of this problem. Even this restricted case provides interesting
problems and challenges. We resolve the main problems in this case, showing:

1. A lower bound: for every bivariate function f , for any protocol to compute f ,
and every value v in the range of f , there is a strategy for one of the players,
so that if the other player plays honestly, then the probability for the outcome
f = v is at least max(qv,

√
pv), where pv = Prob(f(~x) = v|xi ∈R Di)).

2. More interestingly, we show a matching (up to polylogarithmic factor) con-
structive upper bound. We describe a probabilistic polynomial-time protocol
that computes f , given a single oracle access to f , such that for all v,

Pr(f evaluates to v) = O(poly log(1/pv) ·max(qv,
√
pv)).

In the special case where qv = pv, this protocol is shown to match the lower
bound up to a constant factor. Namely,

Pr(f evaluates to v) = O(
√
pv).

The spirit of our protocol is best illustrated by the following example.

508 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

Example. Define id(x, y) = 1 if x = y and 0 otherwise. Suppose that the local
inputs x, y are chosen uniformly in {0, 1}n. Clearly, p1 = 1

N , and p0 = 1− 1
N , where

N = 2n. A protocol in which the first player declares x and then the second player
declares y allows the second player complete control on the value of id. A protocol in
which the two players alternately exchange bits in the description of their inputs is
no better if these bits are exchanged in the same order (i.e., both parties send their
respective ith bit in round i). A much better idea is for the two players to alternate
in describing the bits of their inputs but do so from opposite directions (i.e., in round
i the first party sends its ith bit, whereas the second party sends its (n− i+ 1)st bit).
Clearly, whichever player is faulty, the probability that the outcome of this protocol
is “1” is bounded by 1√

N
. In light of the lower bound, this is the best result possible.

This idea of gradually revealing appropriately chosen “bits of information” is the key
to the general problem of two-party computation.

1.2. Results concerning the multiparty case. The problem of m-party com-
putations, where a subset of t < m faults may exist, is more involved than the two-
party case (even for m = 3); see discussion in section 5. Here, we only consider the
problem of collectively sampling a given distribution. Without loss of generality, it
suffices to consider the uniform distribution (say, on strings in {0, 1}l). We provide a
probabilistic polynomial-time sampling protocol such that for every S ⊂ {0, 1}l, for
every t faults,

Pr(sample ∈ S) <
(
|S|
2l

)1−c· tm

for some constant c > 0. This result is the best possible (up to the constant c), and
is superior to the bound obtained by the trivial protocol which consists of l repeated
applications of “collective coin flipping”; consider, for example, the set S consisting of
all strings having at least (1

2 + t
m) · l ones; under the trivial protocol, t faulty parties

can influence the output to almost always hit S, whereas our result guarantees that
this set S which forms a negligible fraction of {0, 1}l is hit with negligible probability
(for, say, t < m/2c).1

The above sampling protocol can be used to present a (generic probabilistic
polynomial-time) protocol that works well for computing almost all functions (see
our technical report [12]).

1.3. Previous work in the full-information model. Previous work in this
model [4, 5, 16, 1] has focused on the task known as collective coin flipping, which in
our terminology amounts to fault-tolerant multiparty sampling in {0, 1}. Matching
lower and (constructive) upper bounds of 1

2 + θ(tm) have been shown (by Ben-Or
and Linial [4] and Alon and Naor [1],2 respectively). Our work can be viewed as an
extension of these investigations which were concerned with the influences of players on
Boolean functions (i.e., Range(f) = {0, 1}). The general case considered in this paper
gives rise to additional difficulties. Let us stress that even the problem of sampling
in arbitrary sets is more difficult than collective coin flipping. As mentioned above,
the obvious approach to the sampling problem fails; namely, a sampling protocol that

1Using the above choice of parameters, we have a set S of density ρ ≈ exp{−(t/m)2 · l} which
our protocol hits with probability at most

√
ρ, as long as at most t players are faulty. On the other

hand, when repeated collective coin flippings are used, t faulty players can influence the outcome to
be in S with probability at least 1− ρ, by biasing each coin flip toward 1.

2Furthermore, the upper bound can be met by protocols of logarithmic round-complexity [9, 19].

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 509

consists of repeatedly applying a given coin-tossing protocol can be easily influenced
to almost always output strings in a subset of negligible size.3

However, fault-tolerant computation (of arbitrary functions) is more complex than
sampling, which can be viewed as fault-tolerant computation of a function specially
designed for this purpose.

1.4. Relation to work on slightly random sources. In this paper we present
a multiparty protocol for sampling a set of strings {0, 1}l. In “sampling” we mean
producing a single string in {0, 1}l so that, for every subset S ⊂ {0, 1}l, the prob-
ability that the sample hits S is related to the density of S. Our protocol uses the
collective coin flipping of [1] as a subroutine. In fact, our sampling protocol can be
viewed as a deterministic reduction to the problem of collective coin tossing. The
collective coin can be viewed as a slightly random source in the sense of Santha and
Vazirani [22], i.e., an SV-source.4 Hence, our result can be interpreted as presenting
a sampling algorithm which uses an SV-source (with a parameter γ < 1√

2
). Our

sampling algorithm performs much better than the obvious algorithm which uses as
a sample a sequence of coins produced by the source. (The situation is analogous to
the discussion of the multiparty sampling protocols above.)

Our sampling algorithm provides an alternative way of recognizing languages in
BPP by polynomial-time algorithms which use an SV-source with a parameter γ < 1√

2
.

First, reduce the error probability in the BPP-algorithm so that it is bounded by a
sufficiently small constant. Next, use our sampling algorithm to produce a sequence
of coin tosses for a single run of the new BPP-algorithm. Since the “bad runs”
form a negligible fraction of all possible runs of the BPP-algorithm, it follows that
the probability we will sample a bad run (when using an SV-source with parameter
γ < 1√

2
) is bounded by 1

3 . This simulation method is different from the original
method of Vazirani and Vazirani [23] (adopted also in [6]) where the BPP-algorithm
is invoked many times, each time with a different sequence of coin tosses.

1.5. Other related work. We also present efficient sampling protocols for the
two-party case. The basic sampling protocol guarantees, for every set S ⊆ {0, 1}l, that
as long as one party is honest the output hits S with probability at most O(4

√
|S|/2l).

(The basic sampling protocol is essential for efficiently implementing our generic two-
party function-computation protocol. Interestingly, the basic sampling protocol is
also used as a building block for a better sampling protocol, which is optimal up to a
constant factor.)

Our basic two-party sampling protocol is very similar to a protocol, called inter-
active hashing, which was discovered independently by Ostrovsky, Venkatesan, and
Yung [20] (see Naor et al. [18]). Interactive hashing has found many applications in
cryptography (cf. [20, 18, 21, 10]). For details see Remark 4.26.

1.6. Organization. We start with some preliminaries (section 2) and lower
bounds (section 3). The main part of this paper is section 4, which presents effi-
cient fault-tolerant two-party protocols. The construction of fault-tolerant multiparty
protocols is discussed in section 5.

3An alternative method which also fails is to try to generalize the work of Alon and Naor [1]
as follows: The method of [1] consists of randomly selecting one of the players who is appointed to
flip a fair coin. Letting this player select a random string is a natural idea, but it is obvious that
this approach performs very poorly for a sample space of nonconstant size. Specifically, each set
S ⊂ {0, 1}l can be hit with probability at least t

m
, independently of S and l.

4An SV-source with parameter γ is a sequence of binary random variables X1, X2, . . . , so that
for every n, α ∈ {0, 1}n and σ ∈ {0, 1}, Prob(Xn+1 =σ|X1, . . . , Xn=α) ≤ γ.

510 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

2. Preliminaries. In this section, we present our conventions regarding func-
tions and protocols. We also explain what we mean when we talk of influence and
sampling.

2.1. Bivariate functions. Throughout the paper we represent the bivariate
function f :{0, 1}n×{0, 1}n 7→{0, 1}∗ as an N -by-N matrix, where N def= 2n. An entry,
(x, y), in the matrix which has value v (i.e., f(x, y) = v) is called a v-entry. The
following quantities, related to the function f and a value v in its range, are central
to our analysis.

Notation. The density of v, denoted pv, is the fraction of v-entries in the matrix
of f (i.e., pv = |{(x, y) : f(x, y) = v}|/22n). The maximum row density of v, denoted
rv, is the maximum, taken over all rows, of the fraction of v-entries in a row of f
(i.e., rv = maxx∈{0,1}n{|{y : f(x, y) = v}|/2n}). The maximum column density of v is
denoted cv = maxy∈{0,1}n{|{x :f(x, y)=v}|/2n}, and qv is defined as max{rv, cv}.

Throughout the paper, we consider the case of uniform input distribution. Namely,
we assume that each input is selected uniformly from {0, 1}n and independently of
the other input(s). The more general case, where each input is selected from an ar-
bitrary distribution (yet independently of the other inputs) can be reduced to the
uniform case as follows. Suppose that the probability for each input can be expressed
as q

2poly(n) , where q is an integer (for some polynomial poly). Then we can replace this
input, say z, by q inputs, denoted (z, 1), (z, 2), . . . , (z, q), and consider the function
F ((x, i), (y, j)) def= f(x, y) (1≤ i≤φ(x)2poly(n) and 1≤ j≤ψ(y)2poly(n), where φ(x) is
the probability of the row-input x and ψ(y) is the probability of the column-input
y). Protocols for computing F (under the uniform distribution) translate easily to
protocols for computing f (under the distribution (φ, ψ)) and vice versa. To efficiently
transform protocols for computing F into protocols for computing f , an efficient al-
gorithm is needed for computing the original density functions (i.e., φ and ψ).

2.2. Protocols. The communication model consists of a single broadcast chan-
nel. Each party can, at any time, place a message on this channel which arrives
immediately (bearing the identity of its originator) to all other parties. It is not
possible to impose “simultaneity” on the channel; namely, the protocols may not con-
tain a mechanism ensuring simultaneous transmission of messages by different parties.
Thus, it is best to think of the model as being asynchronous and of the protocols as
being message-driven. However, asynchronicity is not a major issue here as all parties
share the unique communication medium and thus have the same view.

The output of an execution of a protocol is defined as the last message sent during
the execution. We consider the output of the protocol when the inputs are selected
uniformly.

We call a player honest if it follows the protocol. Dishonest players may deviate
arbitrarily from the protocol. In discussing our protocols we assume, without loss of
generality, that dishonest players do not deviate from the protocol in a manner which
may be detected. This assumption can be easily removed by augmenting our protocols
with simple detection and recovery procedures (which determine the output of the
protocol in case deviation from the protocol is detected). For example, the protocol
may be restarted with the input of the cheating party fixed to some predetermined
value and all its actions being simulated by the other parties.

All our protocols are generic: Players are instructed to take steps that depend
only on their inputs, but not on the function f . When the inputs are finally revealed,
f is evaluated once, and the protocol terminates.

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 511

2.3. Influences. Unlike previous work, we use the term “influence” in a collo-
quial manner. Typically, by talking “the influence of a party towards a value” we
mean the probability that this party can make this value appear as output of the
protocol. When discussing the computation of functions, we treat only the influence
towards a single value; the influence towards a set of values can be treated by defining
a corresponding indicator function.

2.4. Sampling. We also consider the problem of designing two-party and multi-
party protocols for sampling in a universe {0, 1}l. The objective here is to provide
upper bounds for the probability that the output falls in some subset S ⊂ {0, 1}l.
We note that the problem of designing a two-party protocol for sampling {0, 1}l
can be reduced to the problem of designing a protocol for computing any function
f : {0, 1}n × {0, 1}n 7→ {0, 1}l for which all values have the same density and this
density equals the maximum row/column densities (i.e., qv = pv = 2−l for every
v ∈ {0, 1}l). An analogous reduction holds also in the multiparty case.

3. Lower bounds. In this section we present lower bounds which will guide our
search for the best possible fault-tolerant protocols.

THEOREM 3.1. Let f :D1×D2× · · ·×Dm 7→R be a function of m variables, Π
an m-party protocol for computing f , and v ∈ R a value in the range of f . Consider
performing Π where players in the set S are dishonest, while all other players are
honest. Let φS be the maximum, over all strategies of coalition S of the probability of
the outcome being v. Then, for any 1≤ t≤ m there is a coalition Q of t players with
φQ ≥ p

1− t
m

v .
In particular, we have the following result.
COROLLARY 3.2. Let f be any bivariate function, Π any two-party protocol for

computing f , and v a value in the range of f . Then at least one of the players can,
by playing (possibly) dishonestly, force the outcome to be v with probability at least
max{qv,

√
pv} (the other party plays honestly).

Proof of Theorem 3.1. The proof is very similar to that of Theorem 5 in [4],
although some changes are required. One observes first that if the time complexity of
the protocol is no issue, and the only consideration is to keep influences down, then
nothing is lost if all actions are taken sequentially and not in parallel. Therefore, Π can
be encoded by a tree T as follows: leaves of T are marked with values in the range of
f , and each internal node of T is marked with a name of a player. The run of Π starts
at the root of T . Whenever an internal node is reached, player Pi, whose name marks
that node, is to take the next step. For each input value in Di, the protocol Π specifies
a probability distribution according to which the next node, a child of the present one,
is selected (assuming Pi is honest). The key observation, beyond the technique of [4],
is that these distributions (together with the input distribution over Di) induce a
single distribution for the next move of (honest) player i, conditioned on the execution
having reached the present node. The outcome of this process is determined by the
leaf it reaches (i.e., f = u, where u is the mark of the leaf that is reached).

For the analysis, let z be an internal node of T , and consider the same process as
above, performed on the subtree of T rooted at z. Suppose that coalition S plays its
best strategy to make the outcome f = v most likely, and let φ<z>S be that maximum
probability (clearly, when z is taken to be the root of T , then φ<z>S = φS). The key
step in the proof is to establish the following inequality for every internal z:∏

|R|=t
φ<z>R ≥ p(

m−1
t)

v,z ,(1)

512 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

where pv,z is the probability of reaching a v-marked leaf on that subtree, when
all players are honest. Extracting the

(
m
t

)
th root of the above inequality, we get

max|R|=t φ<z>R ≥ p(m−t)/m
v,z . Taking z to be the root of T the theorem follows.

Inequality (1) is proven by induction on the distance from the leaves in T . In
the induction step, we assume that the inequality holds for the children of an internal
node z and derive the inequality for node z. Let I denote the set of edges emanating
from z and let {zi : i ∈ I} denote the corresponding children. Suppose, without loss
of generality, that node z is marked by player 1. The protocol Π and the probability
distributions on the sets Di determine the probabilities, {λi > 0 : i ∈ I}, governing
the player’s next move provided that the player is honest and conditioned on the
execution having reached node z. (This distribution may not be easy to determine,
but we only need to know that it exists.) Now, clearly pv,z =

∑
i∈I λipv,zi and

φ<z>R =
∑
i∈I λiφ

<zi>
R , for every coalition R that does not contain player 1. On

the other hand, for every coalition R which does contain player 1, we have φ<z>R =
maxi∈I φ<zi>R . Now, denoting φ<zi>R by ai,R (where R ⊆ [m], |R| = t) and pv,zi by bi,
the inductive step reduces to proving the following numerical lemma, which in turn
is a generalization of Lemma 5.3 in [4].

LEMMA 3.3. Let I be a finite set, let {ai,R : i ∈ I,R ⊆ [m], |R| = t}, {bi : i ∈ I}
be nonnegative reals, let {λi : i ∈ I} be positive with

∑
i∈I λi = 1, and assume that

for every i ∈ I, ∏
R⊆[m],|R|=t

ai,R ≥ b
(m−1

t)
i .

Furthermore, let αR equal maxi∈I ai,R if 1 ∈ R and
∑
i∈I λiai,R otherwise. Also, let

β =
∑
I λibi. Then, ∏

R⊆[m],|R|=t
αR ≥ β(m−1

t).

Lemma 5.3 in [4] is a special case of Lemma 3.3 (in which |I| = 2 and λ1 = λ2 =
1
2). However, the ideas presented in the proof of Lemma 5.3 in [4] suffice for proving
the general case. In fact, we further generalize Lemma 3.3.

LEMMA 3.4. Let J,K, and I be disjoint finite sets, let {ai,j |i ∈ I, j ∈ J ∪ K},
{bi|i ∈ I} be nonnegative reals, let {λi|i ∈ I} be positive, with

∑
i∈I λi = 1, and

assume that for every i ∈ I, ∏
j∈J∪K

ai,j ≥ b|K|i .

For every j ∈ J , let αj equal maxi∈I ai,j and for every k ∈ K, let αk =
∑
i∈I λiai,k.

Also β =
∑
I λibi. Then, ∏

j∈J∪K
αj ≥ β|K|.

Lemma 3.3 follows from Lemma 3.4 by letting J be the set of all t-subsets of [m]
which contain the element 1 and K be the set of all t-subsets which do not contain 1.

Proof of Lemma 3.4. There is, of course, no loss in assuming

bi =

 ∏
j∈J∪K

ai,j

1/|K|

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 513

for every i ∈ I. Fix all ai,j (over all i ∈ I, j ∈ J) as well as all ai,k (all i ∈ I, k ∈
K \ {k1, k2}). Now consider the minimum of (

∑
i∈I λiai,k1)(

∑
i∈I λiai,k2) subject to

the condition that ai,k1 · ai,k2 are fixed, for all i. A simple calculation with Lagrange
multipliers shows that the vectors (ai,k1 |i ∈ I) and (ai,k2 |i ∈ I) are proportionate.
In other words, there is a nonnegative vector (ui|i ∈ I) and nonnegative constants
ρk(k ∈ K) such that ai,k = ρk · ui for every i ∈ I, k ∈ K. Multiply by λi and sum
over i ∈ I to conclude that for any k ∈ K, αk = ρk

∑
I λiui. We can write now, for

every i ∈ I: ∏
j∈J

αj

1/|K|

=

∏
j∈J

(max
i∈I

ai,j)

1/|K|

≥

∏
j∈J

ai,j

1/|K|

and, (∏
k∈K

ρk

)1/|K|

ui =

(∏
k∈K

ai,k

)1/|K|

.

So, for every i ∈ I,∏
j∈J

αj

1/|K|(∏
k∈K

ρk

)1/|K|

ui ≥

 ∏
j∈J∪K

ai,j

1/|K|

= bi.(2)

Multiply equation (2) by ρtλi, sum over i ∈ I, and use αt = ρt
∑
i∈I λiui and β =∑

i∈I λibi, to conclude that for every t ∈ K,

∏
j∈J

αj

1/|K|(∏
k∈K

ρk

)1/|K|

αt ≥ ρt · β.

Now multiply over all t ∈ K to get the desired conclusion.

4. Two-party protocols. In this section we present protocols which meet the
lower bounds presented in section 3, up to a polylogarithmic factor. We first present a
general framework for the construction of such protocols (subsection 4.1), argue that
this framework does indeed yield protocols meeting the lower bound (subsection 4.2),
and finally use the framework to present efficient protocols meeting the lower bound
(subsection 4.3).

Without loss of generality, we assume throughout that every value v in the range
of f appears in each row and column in the matrix of f at least pv

4 · 2n times. If some
row or column has too few occurrences of v, we’d like to augment them, without a
significant increase in qv. This can be done as follows: Let (A1, . . . , Ak) be a partition
of {1, . . . , 2n}, where each Ai has cardinality between pv

4 · 2n and pv
2 · 2n. It is easy

to see that by changing some elements within the Ai ×Ai minors of the matrix to v,
it is possible to guarantee that v-values have density ≥ pv

4 in every row and column
without increasing the largest density in any row or column beyond qv + pv

4 = O(qv).
Also, without loss of generality, we assume pv ≤ 1/2 (otherwise, the claims hold

vacuously).

514 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

4.1. Framework for protocols meeting the lower bounds. The goal of the
protocol is to enable the parties to gradually reveal their inputs to each other, without
granting any party a substantial influence on the value of f .

The protocol proceeds in rounds, each consisting of two steps. In each step one
party sends one bit of information about its input to the other party. In the next step
the other party sends such a bit. The bits sent by each party specify in which side, of
a bipartition of the residual input space, its actual input lies. These partitions must
satisfy some “value-balance” properties to be discussed below. Following is the code
of the generic protocol.

Inputs: x∈X0
def= {0, 1}n for the row player, y ∈Y0

def= {0, 1}n for the column
player.
Round i: Let (X0

i−1, X
1
i−1) be a partition of Xi−1, and (Y 0

i−1, Y
1
i−1) a partition

of Yi−1.
The row player sends σ∈{0, 1} such that x ∈ Xσ

i−1. Let Xi
def= Xσ

i−1.

The column player sends σ∈{0, 1} such that y∈Y σi−1. Let Yi
def= Y σi−1.

Output: When both residual sets become singletons (i.e., |Xt| = |Yt| = 1 after
round t) the protocol terminates and the output is defined as f(x, y), where
Xt = {x} and Yt = {y}).

The reader may think of the partitions as splitting the current set evenly and, in
fact, this is almost the case as asserted in Property (P0). In such a case, the protocol
terminates after n rounds. For the protocol to achieve its goal (of minimizing the
advantage of each party), it employs bipartitions satisfying various (additional) value-
balance properties. There will be several different types of value-balance properties all
sharing the following features, and being applied to both row partitions and column
partition. A typical row-partition property (resp., column-partition property) requires
that a subset of the rows (resp., columns), specified by some pattern of v-entries, is
split almost evenly between the two sides of the partition. For example, Property (P1)
below (regarding column-partitions) requires that, for each row, the set of columns
containing a v-entry in this row is split almost evenly.

We will introduce the various properties in an ad-hoc manner, each property
being introduced just where it becomes essential for analyzing the generic protocol.
Thus, at the end of this subsection, we will have a set of properties and a proof that
if the protocol utilizes only partitions having these properties, then the advantage of
both parties is bounded as claimed in the introduction. The question of whether such
partitions exist will be ignored altogether in the current subsection but will be the
focus of the next subsection, whereas the third subsection shows how to efficiently
generate “pseudorandom” partitions which satisfy these properties.

4.1.1. Motivation to the analysis of the protocol. In analyzing the influ-
ence of a dishonest party we consider, without loss of generality, the probability that
the row player (following an arbitrary adversarial strategy) succeeds in having the
protocol yield a particular value v (in the range of f). For simplicity, we consider first
the special case where qv = pv. In this case there are exactly K

def= pv ·N entries of
value v in each row of the matrix. The analysis proceeds in three stages:

Stage 1. Consider the first log2K rounds. If every column (resp., row) par-
tition employed halves the number of v-entries in each row (resp., column),
then at the end of this stage the residual 1/pv-by-1/pv matrix contains a single
v-entry in each row (resp., column), thus preserving the density of v-entries
in each row and column. Using a v-balance property of the partitions called
(P1), we show that this is roughly the situation (see Corollary 4.6).

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 515

Stage 2. Consider the next 1
2 · log2(1/pv) rounds. If each row (resp., column)

partition employed halves the number of v-entries in the residual matrix, then
at the end of this stage the residual 1√

pv
-by- 1√

pv
matrix contains a single v-

entry, thus preserving the density of v-entries. Using a v-balance property
of the partitions called (P2), we show that this is roughly the situation (see
Lemma 4.7).
Stage 3. At the last 1

2 · log2(1/pv) rounds the row player can force the outcome
to be v only if the input of the column player is a column containing a v-entry.
The probability that the input column of the column player contains a v-entry
does not exceed ∆ · √pv, where ∆ is the number of v-entries at the outset of
this stage.

4.1.2. Preliminaries. All value-balance properties are geared to guarantee an
“almost even split” of certain sets. This is quantified in the following definition
with bounds that depend on the size of the set to be split. The size ranges are
parameterized by b. For sets smaller than b we require nothing. For sets larger than
b4 we require sublinear discrepancy/bias, and in the midrange we require a small-but-
linear discrepancy.

DEFINITION 4.1 (almost unbiased partitions). Let S ⊆ U be finite sets and b > 1.
A partition (U0, U1) of U is at most b-biased with respect to S if

(1) If |S| ≥ b4 then
∣∣∣|U0 ∩ S| − |S|2

∣∣∣ < |S|3/4.

(2) If b < |S| < b4 then
∣∣∣|U0 ∩ S| − |S|2

∣∣∣ < |S|
20 .

In our analysis of the protocol, we assume that it utilizes partitions which are
at most δ · log2(1/pv))-biased with respect to specific sets, where δ is a constant to
be determined as a function of other constants which appear in the analysis (see
subsections 4.2 and 4.3). We stress that pv denotes the density of v-entries in the
original matrix corresponding to the function f (and not the density in any residual
submatrices defined by the protocol). We denote ∆v

def= δ log2(1/pv). Whenever
obvious from the context, we abbreviate ∆v by ∆.

In addition to value-balance properties, we use the following more elementary
property asserting that the partitions are into almost equal sizes. The parameter of ap-
proximation is determined by the frequency of the value being discussed in the context.

DEFINITION 4.2 (balance property P0). A partition (U0, U1) of U is said to have
Property (P0) (with respect to a parameter ∆) if the partition is at most ∆-biased
with respect to U .When |U | ≥ 2 it is also required that the partition be nontrivial;
namely |U0|, |U1| ≥ 1.

The additional condition guarantees that if the generic protocol uses only parti-
tions with Property (P0) then it terminates. The main condition in Property (P0) im-
plies termination in at most n+∆ rounds (see Claim 4.4 and the proof of Lemma 4.5).

We consider executions of the generic protocol under various strategies of the
row player, typically assuming that the column player plays honestly. The residual
submatrix after i rounds is the submatrix corresponding to Xi × Yi. We denote by
#v(X,Y) the number of v-entries in the submatrix induced by X × Y . When X is
a singleton, X = {x}, we abbreviate and write #v(x, Y) instead of #v(X,Y). For
example, for x ∈ Xi, the number of v-entries in the residual x-row after i rounds
(resulting in the residual submatrix Xi × Yi) is denoted #v(x, Yi).

4.1.3. Analysis of the protocol: The special case of qv = pv . For the
analysis of this special case, we need two types of “value-balance” properties. The

516 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

definition is phrased for column partition. An analogous definition holds for row
partitions.

DEFINITION 4.3 (value-balance properties P1 and P2). Let Xi and Yi be residual
sets of rows and columns and let (Y 0

i , Y
1
i) be a (column) partition of Yi, and v be a

value in the range of f . We consider the following two properties:
Property (P1). The partition is v-balanced with respect to individual rows if
the following holds. For every (remaining) row x∈Xi, the partition is at most
∆v-biased with respect to set of columns having v-entries in row x (i.e., w.r.t.
the sets {y∈Yi : f(x, y)=v}, for each x ∈ Xi).
Property (P2). Either |Yi| ≥ 2/pv or the partition is v-balanced with respect
to the standard coloring in the following sense. Consider a standard minimum
coloring, ξ, of the v-entries in Xi × Yi, where no two v-entries in the same
column or row are assigned the same color. For every color α, the partition
is at most ∆v-biased with respect to the set of columns containing a v-entry
of color α (i.e., w.r.t. the sets {y∈Yi : ∃x∈Xi s.t. f(x, y)=v and ξ(x, y)=α},
over α ∈ Range(ξ)).

The following is an elementary technical claim, which we use extensively in the
analysis.

CLAIM 4.4. Let α < 1. Suppose that zi+1 <
zi
2 + (zi)α, for every i = 0, . . . , T .

Then, there exists a constant cα, so that zt < z0
2t−1 , for every t < min{T, (log2 z0)−

cα}. Likewise, if zi+1 >
zi
2 − (zi)α, for every 0≤ i≤ T , then zt >

z0
2t+1 , for every

t < min{T, (log2 z0)− cα}.
Proof. By successively applying the inequality t times, we get zt < z0

2t +
∑t
i=1

zαt−i
2i−1 .

Using induction on t, we get

zt <
z0

2t
+

t∑
i=1

(z0/2t−i−1)α

2i−1

=
z0

2t
+ 2 ·

(
2z0

2t

)α
·

t∑
i=1

(
1

21−α

)i
<
z0

2t
+ 21+α ·

(z0

2t
)α
· 1

21−α − 1
,

which is bounded by z0
2t−1 , provided that z0

2t > 2cα where cα
def= 1

1−α ·log2(21+α/(21−α−
1)).

We start by showing that the density of v-entries in individual rows and columns
hardly changes as long as each such row/column contains enough v-entries and the
partitions split them almost evenly. This assertion corresponds to stage (1) in the
motivating discussion.

LEMMA 4.5 (stage 1). Let v be a value in the range of f , and suppose that the
protocol uses column partitions satisfying Property (P1) w.r.t. the value v. Let Kx

denote the number of v entries in the original row x. Then, regardless of the players’
steps, if row x is in the residual matrix after the first i def= log2Kx rounds, then there
are at most ∆v residual v-entries in row x. (i.e., #v(x, Yi) ≤ ∆v). Furthermore, after
t < Kx rounds #v(x, Yt) ≤ ∆v · 2Kx−t.

Proof. The analysis uses the fact that the column partitions are v-balanced with
respect to each row. Using condition (1) of the almost unbiased property (Def. 4.1)
and Claim 4.4, we see that after the first s def= log2Kx − 4 log2 ∆ rounds the residual
row x has at most Kx

2s−1 = 2∆4 entries of value v. For the remaining r
def= 4 log2 ∆

rounds we use condition (2) of the almost unbiased property, to show that the number

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 517

of v-entries in the row is at most ∆. This follows by considering r iterations of
condition (2), namely,

2∆4 ·
(

1
2

+
1
20

)4 log2 ∆

= 2 ·
(

1 +
1
10

)4 log2 ∆

= 2 ·∆4 log2(1+ 1
10)

< 2 ·∆2/3

≤ ∆,

where in the last inequality we use δ ≥ 8 (and pv ≤ 1/2). The lemma follows.
As an immediate corollary, we get the following.
COROLLARY 4.6 (stage 1 for qv = pv). Let v ∈ Range(f), and suppose that

qv = pv. Suppose that the protocol uses column (resp., row) partitions satisfying
Property (P1) w.r.t. the value v. Then after the first n−log2(1/pv) rounds, the number
of v-entries in each residual row (resp., column) is at most ∆v (= δ · log 1/pv). This
statement holds regardless of the steps taken by the players.

Proof. Observe that qv = pv implies that each (original) row has pv · 2n entries of
value v, and apply Lemma 4.5.

When the number of v-entries in individual rows and columns is small, but not
too small, we’d like to assert something in the spirit of stage (2) of the motivating
discussion. Namely, that the density of v-entries in the entire matrix is preserved as
long as their total number is not too small and the partitions behave nicely w.r.t the
existing v-entries.

LEMMA 4.7 (stage 2). Let M < 2/pv. Consider an M -by-M matrix where no
row or column contains more than B v-entries. Suppose that the protocol is applied
to this matrix, using column and row partitions that satisfy Property (P2) w.r.t. the
value v. Then, after the first 1

2 log2M rounds, the number of v-entries in the residual
submatrix is at most (2B+ 1) ·∆v. This statement holds regardless of the steps taken
by the players.

Proof. The analysis uses only the fact that the row and column partitions are
v-balanced with respect to the standard coloring. (The upper bound on M implies
that this is the only way to satisfy Property (P2).) Note that the standard coloring,
being a minimum coloring, uses at most 2B + 1 colors since the underlying graph
has maximum degree ≤ 2B. Let α be a color. In each row and column there is at
most one v-entry of color α, hence each row/column partition approximately halves
the number of remaining v-entries of color α. Hence, using the same arguments as in
Lemma 4.5, we see that after 1

2 log2M rounds the residual matrix contains at most
∆v v-entries of color α. The lemma follows.

Finally, when the total number of v-entries in the residual matrix is small we
observe that v may be the output only if the input of the column player corresponds to
a residual column containing a v-entry. This corresponds to stage (3) in the motivating
discussion. Thus, using Corollary 4.6 and Lemma 4.7, we get the following.

COROLLARY 4.8 (advantage in case qv = pv). Let qv=pv for v ∈ Range(f). Sup-
pose that the protocol uses only partitions that satisfy Properties (P0), (P1) and (P2)
w.r.t. v. Then the protocol outputs v with probability at most O(∆2

v
√
pv)

(= O((δ log 1/pv)2√pv)), regardless of the row player’s steps.
Proof. Corollary 4.6 and Lemma 4.7 imply that after the first log2(pvN) +

1
2 log2(1/pv) rounds, the number of v-entries in the residual matrix is at most O(∆2).
If in all partitions the two parts have equal size, then the residual matrix has dimen-

518 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

sion
√

1/pv-by-
√

1/pv. Property (P0) is applied to show that the residual submatrix
has size at least 1

2

√
1/pv-by- 1

2

√
1/pv. To this end we use Claim 4.4 and the observa-

tion that
√

1/pv > ∆4
v = (δ log2(1/pv))4, provided that pv is bounded above by some

constant. Such a bound on pv may be assumed, possibly increasing some constants
in the O-terms. Finally, we observe that the output of the protocol is v only if the
input of the column player specifies a column containing a v-entry in the residual
submatrix. The corollary follows.

Using “sufficiently random” partitions, the above bound can be improved to
O(
√
pv). For details see Theorem 4.27.

4.1.4. Analysis of the protocol: The general case — row classes. The
analysis of the general case (where qv may exceed pv) is more cumbersome. To facili-
tate the understanding we precede each technical step by a motivating discussion. As
before, we analyze the advantage of the row player towards some value v. Through-
out the analysis we introduce additional value-balance properties that the partitions
used in the protocol should satisfy for the analysis to proceed. Later in the paper
we discuss how to find such partitions and show that “slightly random” partitions do
have these properties.

We classify the rows by density and apply the analysis separately to each class.
Let ρv(x) denote the density of v-entries in row x of the original matrix; that is,

ρv(x) def=
|{y∈Y0 : f(x, y)=v}|

|Y0|
=

#v(x, Y0)
|Y0|

.(3)

By our assumption, pv
4 < ρv(x) ≤ qv, for every x ∈ X0, and the average of ρv, over

all x ∈ X0, equals pv. For 0≤ j ≤ log2(1/pv) + 1, define Rj as the class of all rows
with v-entry density between 2−j and 2−j−1; that is,

Rj
def= {x∈X0 : blog2(1/ρv(x))c=j}.(4)

Note that the last class, Rlog2(1/pv)+1, contains all rows with v-entry density smaller
than pv/2.

Clearly, the influence of the row player towards value v is bounded by the sum
of its influences (towards v) when restricting itself to inputs/rows of a certain class.
Recall that the row player behavior is always restricted (by our hypothesis that it is
not detected cheating) to sending a single bit in each round. The assumption that the
row player restricts itself to inputs/rows in a particular set means that its answers
must be consistent with some input in the set (i.e., in round i he may send σ only
if Xσ

i intersects the restricted set). The above is summarized and generalized in the
following claim.

CLAIM 4.9. For Z ⊆ X a set of rows, we let θZ be the probability for an outcome
of v, assuming that the actions of the row player are consistent with some row in Z,
but is otherwise free to choose any adversarial strategy. If (Z1, . . . , Zr) is a partition
of the set of rows, then the probability for the protocol to have outcome v does not
exceed

∑
i θZi .

Proof. The claim follows applying a union bound.
We now partition the row classes into two categories: heavy rows with density

above
√
pv and rows below this density. First, we bound the advantage of the row

player when it restricts itself to heavy inputs/rows. A simple counting argument
implies that there are at most

√
pvN heavy rows. We will consider the situation after

log2(
√
pvN) rounds of the protocol. Using an additional v-balance property, denoted

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 519

P3, which asserts that the row partitions split almost evenly the set of heavy rows,
we will show that after log2(

√
pvN) rounds at most ∆ of the heavy rows remain in the

residual matrix and furthermore that each such row maintains its original v-density up
to a multiplicative factor of ∆. Loosely speaking, the row player can now choose only
between ∆ possible inputs/rows with probabilities of success that equal the density of
the residual row. Thus, the advantage of the row player (towards v) when restricting
itself to heavy rows is bounded by ∆2 · qv = O((log2(1/pv))2qv).

DEFINITION 4.10 (value-balance property P3). Let Xi and Yi be residual sets of
rows and columns and and let v ∈ Range(f). A row partition has Property (P3) (is
said to be v-balanced with respect to heavy rows) if it is at most ∆v-biased with respect
to the set of the (remaining) heavy rows (i.e., w.r.t. the set {x∈Xi : ρv(x)≥√pv}).

LEMMA 4.11 (advantage via heavy-row strategies). Suppose that the protocol is
performed using column and row partitions satisfying Properties (P0), (P1), and (P3)
w.r.t. the value v. Then, as long as the row player restricts itself to heavy rows and
the column player plays honestly, the output equals v with probability at most 2∆2

v ·qv.
Proof. Consider the situation after log2(

√
pvN) rounds of the protocol. Heavy

rows have at least
√
pvN entries of value v and so we will be able to apply Lemma 4.5

to these rows. Using Property (P1) and applying Lemma 4.5 to each heavy row, we
conclude that every remaining heavy row x contains at most ∆ · 2i v-entries, where

i
def= log2(ρv(x)N)− log2(

√
pvN)

≤ log2(qvN)− log2(
√
pvN)

= log2(qv/
√
pv).

(We are assuming that heavy rows exist, i.e., qv ≥
√
pv, whence i ≥ 0.) Thus, each

such heavy row contains at most ∆ · qv/
√
pv v-entries. Also, using Property (P3) and

an argument as in the proof of Lemma 4.5, it follows that the residual matrix has at
most ∆ heavy rows. Thus, the entire residual matrix contains at most ∆2 · qv/

√
pv

v-entries in heavy rows. Using Property (P0) we know that the residual matrix at
this stage contains at least 1

2

√
1/pv columns. Thus, by an argument as in the proof of

Corollary 4.8, the probability that the protocol terminates with a pair (x, y) so that
x is heavy and f(x, y)=v does not exceed

#v(H ∩Xi, Yi)
|Yi|

≤
∆2 · qv/

√
pv

1/(2
√
pv)

= 2∆2qv,

where H is the set of heavy rows and Xi × Yi is the residual matrix. The lemma
follows.

Having analyzed strategies where the row player confines itself to heavy rows, we
turn to strategies where it refrains from heavy rows. The analysis is split according
to the remaining row classes; that is, for every 1 ≤ j ≤ 1

2 log2(1/pv), we bound the
advantage of the row player assuming that it restricts itself to the class (of rows)
R

def= Rj+
1
2 log2(1/pv) that have density ≈ √pv2−j . By a counting argument,

|R| ≤ √pv2jN.(5)

Consider the situation after log2(
√
pv2−jN) rounds. Note that this corresponds to

stage (1) in the motivating discussion and thus we can apply Lemma 4.5 and assert
that after these log2(

√
pv2−jN) rounds no residual row of R has more than ∆ v-

entries. Using an additional v-balance property, denoted P4, which asserts that the

520 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

row partitions split R almost evenly, we will show that after these log2(
√
pv2−jN)

rounds the residual matrix contains at most max{∆, 22j+1} rows of R.
DEFINITION 4.12 (value-balance property P4). Let Xi and Yi be residual sets of

rows and columns and v ∈ Range(f). A row partition has Property (P4) (is said
to be v-balanced with respect to row-density classes) if, for every j (1

2 log2(1/pv)≤
j≤1 + log2(1/pv)), it is at most ∆v-biased with respect to the set of the (remaining)
rows in Rj (i.e., w.r.t. the sets {x ∈ Xi : blog2 ρv(x)c = j}, for 1

2 log2(1/pv) ≤ j ≤
1 + log2(1/pv)).

LEMMA 4.13 (strategies restricted to R = Rj+
1
2 log2(1/pv) — the first rounds). Let

v ∈ Range(f), and suppose that the protocol uses row and column partitions satisfying
Properties (P0), (P1), and (P4) w.r.t. the value v. Then after the first i def= n − j −
1
2 log2(1/pv) rounds, the resulting Xi×Yi submatrix satisfies the following conditions,
regardless of the players’ steps:

1. each remaining row of R contains at most ∆v entries of value v (i.e., #v(x, Yi)
≤ ∆v, for every x ∈ R ∩Xi);

2. at most ∆v · 22j+1 rows of R remain (i.e., |R ∩Xi| ≤ ∆v · 22j+1);
3. the number of columns is at least 1

2 ·
2j√
pv

(i.e., |Yi| ≥ 1
2 ·

2j√
pv

).
Proof. Item (1) follows from Lemma 4.5 (using Property (P1)). Using Prop-

erty (P4), we derive item (2) as in the second part of the proof of Lemma 4.11.
Finally, item (3) follows using Property (P0).

For “small” j’s (say, j ≤ log2 ∆) we get into a situation as in the analysis of heavy
rows. Actually, the following applies to any j, but is useful only for j = O(log ∆v).

COROLLARY 4.14 (advantage via R = Rj+
1
2 log2(1/pv) strategies — simple anal-

ysis). Consider a protocol in which all column and row partitions satisfy Proper-
ties (P0), (P1), and (P4) w.r.t. the value v. Then, as long as the row player restricts
itself to rows in R and the column player plays honestly, the output equals v with
probability at most 2j+2∆2

v ·
√
pv.

Proof. Using Lemma 4.13 we infer that the residual matrix after i rounds has
at most ∆2 · 22j+1 v-entries in rows of R and at least 1

2 ·
2j√
pv

columns. Thus, the
probability that the column chosen by the column player has a v-entry in a residual
row of R does not exceed

#v(R ∩Xi, Yi)
|Yi|

≤ ∆2 · 22j+1

1
2 ·

2j√
pv

= 2j+2∆2√pv.

The corollary follows.
So far we dealt with heavy rows and the row classes Rj+

1
2 log2(1/pv) for “small”

j’s, j ≤ log2 ∆v. The rest of the analysis concentrates on row classes Rj+
1
2 log2(1/pv)

for j > log2 ∆v.

4.1.5. Analysis of the protocol: The general case — column subclasses.
Lemmas 4.11 and 4.13 summarize what we can infer by considering only row classes
defined by the density of v-entries. We learned that after i = n − j − 1

2 log2(1/pv)
rounds the resulting matrix has approximately 22j rows of the classR = Rj+

1
2 log2(1/pv)

with no more than ∆ v-entries in each such row. Thus, in total the resulting submatrix
has approximately 22j v-entries in rows of R. Had these v-values been distributed
evenly among the columns, then we could apply an argument analogous to Lemma 4.7
(corresponding to stage (2) in the motivating discussion). At the other extreme, if
these v-values are all in one column, then we should have further applied Lemma 4.5

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 521

to this column. In general, however, the distribution of these v-entries may be more
complex and in order to proceed we classify columns according to the approximate
density of v-entries within each particular row class. Once this is done, the matrix is
split to submatrices such that the density of v-entries in each induced subcolumn is
about the same. Each such submatrix is easy to analyze and we can combine these
analyses to derive the final result.

Let ` def= 1
2 log2(1/pv). Recall that we are currently dealing with an arbitrary

R = Rj+`, where 1 < j ≤ `+ 1. For 0≤k ≤2j, let

Ckj
def= {y∈Y0 : blog2(1/µv(y,Rj+`))c=k},(6)

where µv(y,R) is the density of v-entries in the portion of column y restricted to rows
R, that is

µv(y,R) =
|{x∈R : f(x, y)=v}|

|R| .(7)

Columns having lower v-density within R (i.e., µv < 2−2j−1) are defined to be in
Cj = C2j+1

j and will be treated separately. The advantage of the row player towards
v when restricting its input to R is the sum, over all k, of the probabilities of the
following 2j + 2 events. For k = 0, . . . , 2j + 1, the kth event occurs if the input of
the column player happens to be in Ckj and the output of the protocol is v (when the
row player restricts its input to be in R). Thus, it suffices to bound the probability of
each of these 2j+ 2 events. We first observe that, for j = 0, . . . , l+ 1 and 0 ≤ k ≤ 2j,

|Ckj | ≤
#v(Rj+`, Y0)

miny∈Ckj {#v(Rj+`, y)} ≤
|Rj+`| · (√pv2−j ·N)

2−k−1 · |Rj+`| = 2k+1−j√pv ·N.(8)

Thus, the probability that the input of the column player is in Ckj is bounded by
2k+1−j√pv. This by itself provides a sufficiently good bound for the case k ≤ j and
so it is left to consider the case where j < k ≤ 2j and to deal with the columns in Cj .
We start with the latter. (Warning: the next two paragraphs consist of an imprecise
motivating discussion; a rigorous treatment follows.)

Considering the submatrix R × Cj and using item (2) of Lemma 4.13 we know
that, after i = n− j − ` rounds, each residual row in this submatrix contains at most
∆ v-entries. Assuming that the row partitions split the v-entries in the subcolumn of
this submatrix almost evenly (as postulated in an additional value-balance property,
denoted P6), we conclude that residual subcolumns of the submatrix contain at most
∆ v-entries (note that there are at most 22j+1 rows of R and that the v-density of
columns in R × Cj is at most 2−2j−1). Thus, we can apply an analysis analogous to
stage (2) in the motivating discussion. It follows that after an additional j rounds,
the resulting submatrix contains at most ∆2 v-entries. At this stage, there are still
` = 1

2 log2(1/pv) rounds to go so we conclude that the probability that the column
player’s input is in Cj and the output is v (when the row player restricts its input to
be in R) is at most ∆2√pv. This argument will be made precise as a special case of
the argument for Ckj , k > j.

We now consider the submatrix R × C, where C def= Ckj for k > j. Again, by
Property (P6) we expect each residual subcolumn to contain 2−k · 22j entries of value
v. Assuming that the column partitions split C almost evenly, as postulated in yet
another value-balance property (P5 below), and using equation (8), we expect the
residual submatrix to contain at most 2k+1 columns of Ckj (and, recall, 22j rows of R).

522 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

Thus, the next 2j − k < k rounds are expected to preserve the density of C columns
in the residual matrix as well as the density of v-entries in residual subcolumns of the
submatrix R × C, provided that Properties (P5) and (P6) hold. Thus, at this point
(after a total of (n− j − `) + (2j − k) rounds) each remaining row of R is left with at
most ∆ entries of value v and each remaining column of C has at most ∆ entries of
value v in the portion of the rows of R. Furthermore, we expect the residual R × C
to have 22j−(2j−k) = 2k rows and 2k−(2j−k) = 22k−2j columns. We can now apply
an argument analogous to Lemma 4.7 (corresponding to stage (2) in the motivating
discussion). To this end we introduce the last value-balance property, denoted P7,
which analogously to (P2) asserts that, with respect to each color in a standard
minimum coloring of the v-entries in R × C, the row (resp., column) partitions split
almost evenly the set of rows (resp., columns) having v-entries colored by this color.
Finally, consider the situation after another additional k− j rounds. Using (P7) in an
argument analogous to Lemma 4.7, we show that after these k−j rounds, the residual
R × C submatrix has at most ∆2 v-entries. Furthermore, this residual submatrix is
expected to have 2k−(k−j) = 2j rows and 2(2k−2j)−(k−j) = 2k−j columns. Thus,
assuming that the column player’s input, denoted y, is in C the probability that it
falls in one of the residual columns which has a v-entry in the R-portion is at most
∆2/2k−j . It follows that the probability for the input column to be in Ckj and the
output be v (when the row player restricts its input to R) is at most

∆2

2k−j
· 2k−j√pv = ∆2 · √pv.

Thus, the claimed bound follows also in this case.
We now turn to a rigorous analysis of the advantage of the row player in executions

where it restricts itself to inputs in R = Rj+` and the input column happens to fall
in C

def= Ckj , for some k > j > 0. (Recall that for k ≤ j, equation (8) by itself asserts
that input column falls in Ckj with probability at most

√
pv.)

DEFINITION 4.15 (value-balance properties P5, P6, and P7). Let Xi and Yi be
residual sets of rows and columns. Let (X0

i , X
1
i) be a row partition, (Y 0

i , Y
1
i) be a

column partition, and v ∈ Range(f). We consider the following three properties.
Property (P5). The column partition (Y 0

i , Y
1
i) is v-balanced with respect to

column subclasses if, for every j, k satisfying 0 < j < k ≤ 2j ≤ 2` + 2, the
partition is at most ∆v-biased with respect to the set of columns in Ckj (i.e.,
w.r.t. the sets Yi ∩ Ckj , for each j, k s.t. 0 < j < k ≤ 2j ≤ 2`+ 2).

Property (P6). For every j and every y ∈ Yi, either #v(Xi∩Rj+`,y)
|Yi| ≤ pv

4∆v
or

the row partition (X0
i , X

1
i) is v-balanced with respect to the jth subcolumn y

in the sense that the partition is at most ∆v-biased with respect to the set of
rows in Rj+` having v-entries in y (i.e., w.r.t. {x∈Xi ∩ Rj+` : f(x, y) = v},
for each y ∈ Yi and j s.t. 0 < j ≤ `+ 1).
Property (P7). Either |Yi| ≥ 4/pv or the partition (Y 0

i , Y
1
i) is v-balanced with

respect to the standard coloring of subclasses in the following sense. For every
j, k as in (P5), consider a standard minimum coloring ξ, of the v-entries in
(Xi∩Rj+`)× (Yi∩Ckj) so that every two v-entries in the same column or row
are colored differently. For every color α, the partition is at most ∆v-biased
with respect to the set of columns containing a v-entry of color α (i.e., w.r.t.
the sets {y∈Yi ∩ Ckj : ∃x∈Xi ∩ Rj+` s.t. f(x, y) =v and ξ(x, y) =α}, for each
j, k, and α.)

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 523

DEFINITION 4.16 (the (j, k)-event). Let 0 < j ≤ ` + 1 and 0 ≤ k ≤ 2j + 1. Fix
an arbitrary strategy in which the row player restricts its input to rows in Rj+`. The
(j, k)-event (or kth event) is said to occur if both the input column is in Ckj and the
output is v.

LEMMA 4.17 (bounding individual events). Let 0 < j ≤ `+ 1 and 0 ≤ k ≤ 2j+ 1.
Suppose that the protocol uses partitions which satisfy Properties (P0), (P1), (P4),
(P5), (P6), and (P7). Then, for any strategy in which the row player restricts its
input to rows in Rj+`, the probability of the (j, k)-event is at most 5∆4

v ·
√
pv.

We remark that a lower power of ∆v can be obtained by a more careful analysis.
Proof. As observed above, the bound holds in case k ≤ j, since in this case

equation (8) implies that the column player’s input is in Ckj with probability at most√
pv. We thus turn to the case j < k ≤ 2j + 1.

First, we consider the situation after i def= (n − j − `) + (2j − k) = n + j − k − `
rounds. Note that j < k ≤ 2j + 1 implies i ≥ (n − j − `) − 1 ≥ n − log2(2/pv)
and i < n − `. We first bound the number of v-entries in the residual subrows and
subcolumns of R× C.

Claim 4.17.1. Each remaining row of R def= Rj+` contains at most ∆ v-entries;
namely, #v(x, Yi) ≤ ∆, for every x ∈ R ∩Xi.

Proof. Since i ≥ (n− j − `)− 1, we can apply Lemma 4.13, and the claim follows
by item (1).

Claim 4.17.2. Each remaining column of C def= Ckj contains at most ∆ entries of
value v within its R-portion; namely, #v(R ∩Xi, y) ≤ ∆, for every y ∈ C ∩ Yi.

Proof. We first bound the number of v-entries in the R-portion of each column
y ∈ C. By combining the definition of C and equation (5), we get

#v(R, y) ≤ 2−k · |R|
≤ √pv · 2j+n−k

= 2j+n−k−`

= 2i.

We now wish to apply Property (P6) and argue that #v(R∩Xi, y) ≤ ∆·#v(R, y)·2−i,
but we need to be careful since Property (P6) is useful only when #v(R ∩ Xt, y) ≥
pv
4∆ · |Yt|. Thus, before applying Property (P6), we consider the simple case in which
there are many v-entries in the R-portion of y; namely, #v(R, y) ≥ pv · |Y0|. Using
Properties (P6) and (P0), we infer inductively that the ratio #v(R ∩ Xi, y)/|Yi| is
maintained after r < i rounds. In the induction step we assume that the ratio after
r rounds is at least pv/2 and applying Proposition (P6) infer the same for r + 1
rounds, provided #v(R∩Xr, y) ≥ ∆4. In the last (≈ 4 log2 ∆) rounds we maintain as
invariant the assumption that the ratio is at least pv/∆v. We conclude (analogously
to Lemma 4.5) that #v(R ∩ Xi, y) ≤ ∆ · 2i−i = ∆ as claimed. Yet, all the above
is valid only in case the initial number of v-entries in the subcolumn is large enough
(i.e., #v(R, y) ≥ pv · |Y0|), which need not be the case in general. Intuitively, this
cannot be a problem since fewer v-entries in the subcolumn can only help. Formally,
we proceed as follows. Let y0

def= |Y0| and z0
def= #v(R, y). Consider i iterations of the

following rule:
• If yt > ∆4 then set yt+1 to be in the interval [(yt/2)± y3/4

t]. If yt > ∆ then
set yt+1 to be in the interval [(yt/2)± (yt/20)]. Otherwise, set yt+1 to be in
the interval [0, yt].

524 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

• If zt > (pv/∆) ·yt then set zt+1 analogously to the way yt+1 is set. Otherwise,
(i.e., zt ≤ (pv/∆) · yt), set zt+1 to be in the interval [0, zt].

The above process corresponds to the decline (with t = 0, . . . , i) of |Yt| (represented
by yt) and #v(R∩Xt, y) (represented by zt), as governed by Properties (P0) and (P6).
In case the initial ratio z0/y0 is sufficiently large, say at least pv/∆, Claim 4.4 implies
that zi ≤ ∆. As far as the yt’s are concerned, Claim 4.4 can be applied to yield
yi ≤ ∆ · 2`+k−j , which by k ≤ 2j + 1 and j ≤ `+ 1 yields yi ≤ 2∆ · (1/pv). Thus, it
is clear that zi is bounded by the maximum of the bound obtained in the simple case
(i.e., ∆) and (pv/∆) · yi ≤ 2. The claim follows.

We are now in a situation analogous to the end of stage (1) in the motivating
discussion, except that the bounds on v-entries hold with respect to the residual
R × C submatrix (rather than to the entire residual matrix). Our goal is to now
apply a process analogous to stage (2) in the motivating discussion. To this end we
first consider a minimum coloring of the v-entries in this residual submatrix (i.e., a
coloring in which no v-entries in the same row/column are assigned the same color).
Using Claims 4.17.1 and 4.17.2, we first observe that this coloring requires at most
2∆ + 1 colors (since the degrees in the induced graph do not exceed 2∆). Next we
derive an upper bound on the size of independent sets in the graph, (i.e., on individual
color classes in this coloring). An independent set in this graph meets every row and
column at most once, so its cardinality cannot exceed min{|R ∩Xi|, |C ∩ Yi|}.

Claim 4.17.3. min{|R ∩Xi|, |C ∩ Yi|} ≤ 2∆ · 22(k−j).
Proof. Using Property (P4) and equation (5), we get |R∩Xi| ≤ ∆ · 2(n+j−`)−i =

∆ · 2k, so the claim holds when k ≥ 2j − 1 and in particular for the class Cj =
C2j+1
j . Likewise, using Property (P5) and equation (8) and assuming k ≤ 2j, we get
|Ckj ∩ Yi| ≤ ∆ · 2(n+k+1−j−`)−i = ∆ · 22(k−j)+1. This proves the claim for the range
k ≤ 2j.

We now consider an execution of the next (k−j) rounds. Using Property (P7), we
proceed analogously to Lemma 4.7. First, we upper bound the size of each residual
color class by ∆ · 2∆22(k−j)

22(k−j) = 2∆2 (essentially, its size after i rounds divided by a
factor of 2 for each of the 2(k − j) steps in the next k − j rounds). Adding up the
bounds for all color classes, we obtain a bound on the total number of v-entries in the
resulting R× C submatrix; namely,

#v(Xi+k−j ∩R, Yi+k−j ∩ C) ≤ (2∆ + 1) · 2∆2 < 5∆3.(9)

We are now in a situation analogous to the end of stage (2) in the motivating discus-
sion. We note that till now i+ (k− j) = n− ` rounds were performed. We distinguish
two cases.

Case 1. If |C| < ∆3√pv · N then the bound on the (j, k)-event is obvious by
equation (8) (as in case k ≤ j).

Case 2 (the interesting case). Suppose |C| ≥ ∆3√pv · N . In this case we use
Property (P5) to infer that |C ∩ Yn−`| ≥ 1

∆ ·
|C|√
pvN

. Thus, using equation (9), the
probability for the (j, k)-event is at most

|C|
N
· #v(Xi+k−j ∩R, Yi+k−j ∩ C))

|C ∩ Yn−`|
≤ |C|

N
· 5∆3

|C|/(∆√pvN)

= 5∆4 · √pv.

The lemma follows.

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 525

Combining Lemmas 4.11 and 4.17, we get the following.
THEOREM 4.18 (advantages in the general case). Let f be an arbitrary bivariate

function and suppose the generic protocol is performed with row and column partitions
satisfying Properties (P0) through (P7). Then, for every value v in the range of f , if
one party plays honestly then, no matter how the other player plays, the outcome of
the protocol is v with probability at most O(log6(1/pv) ·max{qv,

√
pv}).

Proof. Just sum up the bounds for the probabilities of the `2 events corresponding
to the advantage from “nonheavy” strategies (provided by Lemma 4.17) and add
the bound on the advantage from heavy strategies provided by Lemma 4.11. (The
summation over the strategies is an upper bound, whereas summation over the events
corresponding to different column subclasses is exact.)

We stress that some logarithmic factors (but not all) can be eliminated by a more
careful analysis.

4.1.6. Digest of the value-balanced properties. The value-balance prop-
erties, referred to in Theorem 4.18, are tabulated in Table 1. Property (P2) is a
specialization of Property (P7) for the case qv = pv and is not used in the proof of
Theorem 4.18 (but rather in the proof of Corollary 4.8). Properties (P2) and (P7)
differ from all other value-balance properties in that their definition depends on a
standard coloring of a graph induced by the current residual matrix Xi × Yi. In
particular, the sets relevant to these properties in different rounds vary in size. In
contrast, we stress that sets relevant to the other properties reduce to about a half
with every round. This “irregularity” of Properties (P2) and (P7) introduces dif-
ficulties in the subsequent subsections. To compensate for these difficulties, these
properties were defined to hold vacuously as long as the residual matrix is “large”
(i.e., Ω(1/pv)). As we pointed out, this convention does not affect the analysis, since
Properties (P2) and (P7) are applied only to “small” residual matrices. For similar
reasons, Property (P6) which refers to many (i.e., |Yi|) sets which may be very small
is also defined to hold vacuously in case the number of sets is much larger than the
size of these sets. Note that all other properties either apply to fewer (i.e., poly(`))
sets or refer to relatively big sets. Specifically, Properties (P3), (P4), and (P5) apply
to poly(`) sets. On the other hand, whenever Properties (P0) and (P1) are applied
to many, say M , sets each of these sets has cardinality at least M/2 and (pv/4) ·M ,
respectively.

4.2. On the existence of value-balanced partitions. In this subsection we
prove the existence of partitions that have all the value-balanced properties used in
the previous subsection. We first bound the probability that a random partition is not
balanced with respect to a specific set. In the analysis we use an unspecified constant,
denoted c1. The constant δ (in the definition of ∆v) is determined in terms of c1 (in
fact δ = O(c1) will do, c1 ≥ 2 suffices for the results of the current subsection and
c1 ≥ 10 suffices for all the results of the entire section).

LEMMA 4.19. Let S ⊆ U be finite sets, with |S| = k. Then, for every c1 > 0 there
exists δ, so that a uniformly selected bipartition of U is ∆v-biased with respect to S
with probability ≥ 1− (pv/k)c1 .

Proof. We consider two cases corresponding to the two conditions of Defini-
tion 4.1. By Chernoff’s Bound, the probability that a uniformly selected partition
fails condition (1) in Definition 4.1 (with respect to a set S with k ≥ ∆4

v) does not
exceed

2 exp{−2(k−1/4)2 · k} = 2 exp{−2k1/2}.(10)

526 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

TABLE 1
Value-balanced properties (recall ` def= (1/2) log2(1/pv)).

stated Description of the property: Number of sets Applicable
for the partition approximately halves the number of for M ×M matrix for

P0 col columns 1 all M
P1 col columns with v-entries in row x, per row M all M
P2 col columns with v-entries in color φ, per color ≤ 2M + 1 M ≤ 2/pv
P3 row heavy rows 1 all M
P4 row rows of approximate weight 2−j , per j = 0, . . . , ` ≤ ` all M
P5 col columns of a weight class inside a row class, < 2`2 all M

per row class and column subclass
P6 row rows with v-entries in subcolumn, M · ` all M

per column and row class
(provided residual subcolumn is sufficiently dense)

P7 col columns with v-entries in color φ, ≤ (2M + 1) · `2 M ≤ 4/pv
per color in rectangle

Using k ≥ (δ log2(1/pv))4, we upper bound equation (10) by

exp{−k1/2} · exp{(δ · log2(1/pv))2},

which for sufficiently large δ (or 1/pv) yields the desired bound (of (pv/k)c1). Similarly,
the probability that condition (2) is not satisfied by a random partition is bounded
by

2 exp{−2(1/20)2 · k} = 2 exp{−k/200}.(11)

Using k > δ log2(1/pv) and δ ≥ 400c1, we upper bound equation (11) by

exp{−k/400} · exp{c1 log2(1/pv)},

which for sufficiently large δ (or 1/pv) yields again the desired bound.
PROPOSITION 4.20 (existence of value-balance partitions). Let the generic pro-

tocol run for i rounds, using only partitions which satisfy all value-balance properties
w.r.t. all values in Range(f). Let Xi× Yi be the residual matrix after these i rounds.
Then there exist a row partition (of Xi) and a column partition (of Yi) that satisfy all
value-balance properties w.r.t. all values. Furthermore, for every v ∈ Range(f), all
but a pc1−1

v fraction of the possible partitions satisfy all v-balance properties.
Proof. We consider only row partitions, the proof for column partitions being

identical. Let v ∈ Range(f). For |Xi| < ∆v every nontrivial partition will do,
so henceforth we assume |Xi| ≥ ∆v. Lemma 4.19 yields an upper bound on the
probability that a uniformly chosen partition of Xi violates one of the v-balance
properties. For each property, we multiply the number of sets considered by the
probability that a uniformly selected bipartition of Xi is not ∆v-biased with respect
to an individual set. An obvious (lower) bound on the size of an individual set
considered is ∆v, but in some cases better lower bounds hold. For each of the eight
properties, we prove an upper bound of pc1−1

v /8 on the probability that a uniformly
chosen partition violates the property.

• Property (P0) is violated with probability at most |Xi| ·(pv/|Xi|)c1 which can
be bounded by pc1−1

v /8.
• Property (P1) is violated with probability at most |Yi|·maxy∈Yi{(pv/#v(Xi, y))c1}.

In case |Yi| < ∆/pv, this probability is easily bounded by (pv/∆v)c1−1 <

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 527

pc1−1
v /8. Otherwise, we argue as follows. Since Property (P1) was satisfied

in previous rounds, it follows (as in Lemma 4.5) that

#v(Xi, y) ≥ 2−i−1 ·#v(X0, y)

≥ pv
8
· |Xi|

and so Property (P1) is violated with probability at most |Yi| · (8/|Xi|)c1 .
Using Property (P0) for the previous rounds we get |Xi| ≥ |Yi|/4 and again
obtain a bound of O((pv/∆v)c1−1) < pc1−1

v /8.
• For Property (P2), we need only consider the case |Xi| < (2/pv). In this

case, Property (P2) is violated with probability at most (|Xi| + |Yi| + 1) ·
(pv/∆v)c1 which is bounded by O(pc1−1

v /∆c1
v) < pc1−1

v /8. Property (P7) is
dealt similarly, but the bound here is O(pc1−1

v /∆c1−2) < pc1−1
v /8.

• For Property (P6) we need to consider only j ≤ ` + 1 and y ∈ Yi such that
#v(Rj+` ∩Xi, y) ≥ max{∆v, (pv/4∆v) · |Yi|}. Let us denote the set of these
pairs by Pi. Then, Property (P6) is violated with probability at most

∑
(j,y)∈Pi

(
pv

#v(Rj+` ∩Xi, y)

)c1
≤
(pv

∆

)c1−1
·
(
|Pi| ·

pv
(pv/4∆v) · |Yi|

)

≤
(pv

∆

)c1−1
· (`+ 1) · |Yi|
|Yi|/4∆

<
pc1−1
v

8
.

• For the remaining properties (i.e., (P3), (P4), and (P5)) we have a total of
O(log2(1/pv)) sets and so the bound holds easily.

Thus, the probability that a random partition of Xi violates some property with
respect to the value v is at most pc1−1

v . The main claim of the proposition follows by
summing the bounds obtained for all possible v’s and using c1 ≥ 2.

Combining Theorem 4.18 and Proposition 4.20, we get the following.
COROLLARY 4.21 (existence of a protocol meeting the lower bound). Let f be as in

Theorem 4.18. Then, there exists a (deterministic) two-party protocol for computing
the function f , so that for every v ∈ Range(f), if one party plays honestly, then the
outcome of the protocol is v with probability at most O(log6(1/pv) ·max{qv,

√
pv}).

4.3. Efficient protocols meeting the lower bounds. The protocols guaran-
teed by Corollary 4.21 are not efficient. In particular, merely specifying the partitions
used by the protocol takes space that is exponential in length of the inputs, not to
mention that the proof is nonconstructive and that a naive construction would require
double exponential time. An efficient implementation of the protocols is achieved by
using partitions which can be specified by polynomially many bits. These partitions
will not be hardwired into the protocol but rather selected online by the two parties.
Namely, at the outset of each step, the parties perform a sampling protocol to select
a partition for that step. The partition is specified by an mth degree (m = poly(n))
polynomial over the field F

def= GF (2n) and a fixed partition of the elements of F
into two equal parts F 0 and F 1. For example, suppose polynomial P (over F) is
chosen to specify a partition of Yi, then Y σi is defined as the set of all points y ∈ Yi
satisfying P (y)∈Fσ. This plan is materialized via a two-party protocol for sampling
these partitions and a proof that, with probability at least 1 − Pv, every partition

528 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

selected (for the generic protocol) by the sampling protocol satisfies all v-balance
properties. To this end we first bound the probability that, for an appropriately cho-
sen m = poly(n), a random mth degree polynomial induces a partition that fails to
satisfy some v-balance properties. Next, we present a two-party protocol for sampling
l-bit strings and bound the advantage of each party towards any set as a function of
the density of that set.

Terminology. Partitions induced by (δn)4-degree polynomials are hereafter called
polynomial partitions. We modify these partitions so that they are never trivial (e.g.,
by replacing each trivial partition by a fixed nontrivial partition). Recall that Prop-
erty (P0) forbids trivial partitions, except if the universe is a singleton. The modifi-
cation is introduced to guarantee this.

4.3.1. Bounding the probability of nonbalanced polynomial partitions.
We start by bounding the probability for a random polynomial partition to fail some
v-balance property.

LEMMA 4.22. For every c1 > 0 there exists δ, so that for every set S of cardinality
k, a uniformly selected polynomial partition is not ∆v-biased with respect to S with
probability at most (pv/k)c1 .

Proof. The modification described in the terminology (above) can only decrease
the probability that a partition is not ∆-biased (w.r.t. any set S). Thus, it suffices to
analyze the distribution of unmodified polynomial partitions.

A 2tth moment argument easily shows that if x1, x2, . . . , xk are m-wise indepen-
dent random variables uniformly distributed in {0, 1} then Prob(|

∑k
i=1 xi − k

2 | >
B) < (

√
kt
B)2t, for every t≤m/2. Therefore, the probability for a uniformly chosen

polynomial partition to fail condition (1) in Definition 4.1 does not exceed(√
k · t
k3/4

)2t

=
(

t

k1/4

)2t

(12)

for any t ≤ (δn)4/2. We now use equation (12) with two different settings for t. First
we set t = ∆v/2 (since pv ≥ 2−n, it follows that ∆v ≤ δ · 2n and this t is indeed
smaller than (δn)4/2) and using k ≥ ∆4, we bound equation (12) by(

∆v/2
∆v

)∆v

= pδv < p2c1
v ,

where the last inequality comes from δ ≥ 2c1. Secondly, we set t = 8c1, and bound
equation (12) by (

8c1
k1/4

)16c1

=
(

(8c1)8

k2

)2c1

<
1
4
· k−2c1 ,

where we have used k ≥ ∆4 ≥ 4 · (8c1)8. Multiplying these two bounds, we bound
equation (12) by √

p2c1
v · k

−2c1

4
=

1
2
· (pv/k)c1

as desired. To bound the probability for failure in condition (2), note that for k≤∆4

we have, k ≤ (δn)4 (as previously observed ∆v ≤ δn). Thus, a uniformly selected

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 529

polynomial partition splits k elements exactly as a totally random partition and
so the bound obtained for this case (i.e., for k ≤ ∆4) in Lemma 4.19 holds also
here.

PROPOSITION 4.23 (polynomial-partition satisfy value-balance properties). Fix
v ∈ Range(f), and consider an execution of the generic protocol with uniformly se-
lected polynomial partitions. Let πi be the probability that the first failure of some
v-balance property occurs on the ith round. Then,∑

i≥1

4
√
πi ≤ O(∆v · pv).

The mysterious choice of the 4th roots will be clarified when we apply the propo-
sition (in the proof of Theorem 4.27).

Proof. It suffices, of course, to consider only row partitions. Let πi,t be the
probability that our first failed row partition occurred in round i and that Property
(Pt) was violated (for some 0 ≤ t ≤ 7 and i ≥ 1). Clearly,

∑
i≥1

4
√
πi ≤

∑
i≥1

4

√√√√ 7∑
t=0

πi,t

≤
7∑
t=0

∑
i≥1

4
√
πi,t.

So it remains to bound,
∑
i≥1

4
√
πi,t, for each t = 0, . . . , 7. Analogously to the proof of

Proposition 4.20, we use Lemma 4.22 to upper bound the probability that a uniformly
chosen polynomial partition violates one of the v-balance properties. (Again, for
each property, we multiply the number of sets considered by the probability that a
uniformly selected polynomial partition is not ∆v-biased with respect to an individual
set. An obvious (lower) bound on the size of an individual set considered is ∆v, but
in some cases better lower bounds hold). We now assume c1 ≥ 10.

• We upper bound the probability that Property (P0) is violated for the first
time in the ith round by |Xi−1| · (pv/|Xi−1|)c1 . Letting xj := |Xj |, we have

πi,0 ≤ xi−1 · (pv/xi−1)c1 ,(13)
where xj ≥ max{∆, |X0|/2j−1},(14)

where the lower bound on xj follows, since Property (P0) held in the previous
rounds. Furthermore, if Property (P0) held in all first n rounds, then |Xn| ≤
∆ and henceforth every nontrivial partition satisfies all properties vacuously.
Therefore, ∑

i≥1

4
√
πi,0 =

n∑
i=1

4
√
πi,0

≤
n∑
i=1

4

√
xi−1 ·

(
pv
xi−1

)c1
<

n∑
i=1

pv
xi−1

< pv ·
n∑
i=1

2i+2

2n
,

530 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

where the last inequality uses the lower bounds for the xj ’s. It follows that∑
i≥1

4
√
πi,0 = O(pv).

• Adopting the analysis in the proof of Proposition 4.20, we know that the prob-
ability that the first failure is with Property (P1) in round i is at most 4|Xi−1|·
(pv/|Xi−1|)c1 . Using the same analysis as above, we conclude

∑
i≥1

4
√
πi,1 =

O(pv).
• For Properties (P2) and (P7), we need only consider rounds i so that |Xi| <

(2/pv). Using the analysis in the proof of Proposition 4.20, we bound the
probability that the partition in such a round violates Property (P2) (resp.,
(P7)) by O(pc1−1

v /∆c1
v) (resp., O(pc1−1

v /∆c1−2)). The bound on
∑
i≥1

4
√
πi,t,

for t = 2, 7, follows, since there are at most ∆ such rounds.
• Following the analysis in the proof of Proposition 4.20, we consider for Prop-

erty (P6) only j ≤ ` + 1 and y ∈ Yi such that #v(Rj+` ∩Xi, y) ≥ max{∆v,
(pv/4∆v) · |Yi|}. Let us denote the set of these pairs by Pi. The probability
that our first violation is on round i and Property (P6) is being violated, is
at most∑
(j,y)∈Pi

(
pv

#v(Rj+` ∩Xi, y)

)c1
≤ |Pi| ·

(pv
∆

)(c1+1)/2
·
(

pv
(pv/4∆v) · |Yi|

)(c1+1)/2

≤ ((`+ 1) · |Yi|) ·
(pv

∆

)4
·
(

4∆
|Yi|

)5

<

(
∆v · pv
|Yi|

)4

.

Using the same analysis as for Property (P0), we obtain
∑
i≥1

4
√
πi,6 < ∆v ·pv.

• For the remaining properties (i.e., (P3), (P4), and (P5)) we have a total
of O(log2(1/pv)) sets and so we can handle each of these sets separately.
Consider, for example, the set Rj+` from the definition of Property (P4).
The row partition of round i + 1 violates the balance property on this set
with probability at most (pv

|Rj+`∩Xi|)
c1 . Setting xi

def= |Rj+` ∩ Xi|, we can
apply the same analysis as applied to equation (13), except that here we use
Property (P4) for the previous rounds. The desired bound for

∑
i≥1

4
√
πi,t

follows, for t = 3, 4, 5.
Having shown that

∑
i≥1

4
√
πi < ∆v · pv, for each t = 0, . . . , 7, the proposition fol-

lows.

4.3.2. A protocol for string sampling. We now present a two-party protocol
for sampling l-bit strings and bound the advantage of each party towards any set as
a function of the set’s density. The protocol is a simplification of the protocol for
computing a function. The parties proceed in l rounds. In each round one party
should select a pseudorandom partition of the residual sample space and the other
party should flip a coin to select a side of this partition. In the next round the parties
switch roles. All partitions selected by each party must divide the residual space
into two sets of equal cardinality. Specifically, the partition is defined by a linear
combination of the bits in the representation of the sample point. Following is the
code of the protocol (the parties are called P0 and P1).

Round i:
• Pi mod 2 uniformly selects an l-dimensional binary vector vi, which is lin-

early independent of the vectors used in previous rounds, and sends vi
to the other party.
• P(i+1) mod 2 uniformly selects σi∈{0, 1} and sends it to the other party.

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 531

Intuition: The residual sample space after round i consists of all l-dimensional
binary vectors x so that < x, vj > = σj for every j ≤ i (< ·, · > is mod-2
inner product, and this residual set is an affine subspace).

PROPOSITION 4.24 (analysis of the two-party sampling protocol). Let S ⊆ {0, 1}l

be arbitrary and let p def= |S|/2l. If one of the parties that participate in the above
protocol plays honestly, then the probability for the protocol’s outcome to be in S is at
most O(p

1
4).

Proof. Let Ui denote the residual sample space after round i; namely,

Ui
def= {x :< x, vj > = σj ∀j≤ i}.

Let Si
def= S ∩ Ui denote the residual target set (U0 = {0, 1}l and S0 = S). We want

to consider the cardinality of Si as i grows (i.e., the execution proceeds) and treat
differently “small” and “large” Si. For “small” Si we bound the probability of hitting
Si as |Si| times the probability of hitting any specific element. If Si is “large,” then
with sufficiently high probability |Si+1| ≈ |Si|/2 and hence the density, |Si|/|Ui|, is
approximately preserved. Details follow.

The following three claims do not depend on the residual sample space Ui. Thus,
Si (the residual target set after i rounds) can be considered fixed, too.

Claim 4.24.1. If the (i+ 1)st partition is chosen by an honest player, then, with
probability at least 1− |Si|−

4
5 :

|Si|
2
− |Si|

9
10 < |Si+1| <

|Si|
2

+ |Si|
9
10 ,

regardless of the choice of σi+1.
Proof. By hypothesis, vi+1 is uniformly selected among the vectors which are

linearly independent of v1, . . . , vi. Instead, let us select vi+1 uniformly at random
from the entire space Zl2. The additional partitions come from vi+1 in the linear span
of (v1, . . . , vi), and thus induce a trivial partition on Ui, so the modified partitioning
procedure is only less likely to yield good partitions.

We show that with very high probability, even the partition induced by a uni-
formly chosen vector is quite balanced. For any σ ∈ {0, 1}, we consider random
variables ζs, (s ∈ Si) where ζs = 1 if < s, vi+1 >= σ and 0 otherwise. Since vi+1
is selected uniformly, each ζs is uniformly distributed in {0, 1}. Furthermore, these
random variables are pairwise independent, as long as |Ui| ≥ 2 (i.e., the protocol did
not terminate). Thus, we have

Prob

(∣∣∣∣∣∑
s∈Si

ζs −
|Si|
2

∣∣∣∣∣ ≥ |Si| 9
10

)
<
|Si|
|Si|2·

9
10

and the claim follows.
On the other hand, the following claim is obvious.
Claim 4.24.2. If σi+1 is selected by an honest player, then the expected cardinality

of Si+1 is |Si|/2.
The probability of hitting Si is bounded by |Si| times the probability of hitting

any specific element of Si, so we have the following.
Claim 4.24.3. With the above notation, the probability that the output of the

protocol is in S (or, equivalently, in Si) does not exceed |Si| · 2−(l−i−1)/2.
Proof. Clearly |Ui| = 2l−i and there remain r

def= l − i rounds to termination,
of which σ will be chosen by an honest player at least br/2c times. Any s ∈ Si

532 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

survives each such round with probability 1
2 , and is the output with probability at

most ·2−br/2c, as claimed.
In case |S| < p−

1
2 the proposition follows by using Claim 4.24.3; namely, the

probability for output in S is bounded by

|S0| · 2−l/2 =

√
|S| · |S|

2l

=
√
|S| · p

< p
1
4 .

So in what remains we consider the case |S| ≥ p− 1
2 . Let the protocol be executed for

t
def= log2 |S|− 1

2 log2(1/p) ≥ 0 rounds. In the rest of the proof we essentially show that,
at this stage, |St| ≈ p−

1
2 . Using Claim 4.24.3 at this point, we obtain (again) the upper

bound of |St|·2−(l−t)/2 = p
1
4 (using l−t = l−log2 |S|+ 1

2 log2(1/p) = (1+ 1
2)·log2(1/p)).

We assume, without loss of generality, that the honest party picks the partitions
at the even rounds. Also, there is no loss in assuming that his opponent plays a pure
(i.e., deterministic) strategy: since the honest party’s strategy is fixed, the adversary’s
optimal move maximizes his expected payoff. On even-numbered rounds he selects
one side of a partition presented by the honest player, while on round 2i+1 he selects
a partition that is determined by a function Πi. Formally, each of his moves is a
function of the history of the execution, but this whole history is encoded by the
current residual sample space. Thus, we may view each Πi as a mapping Πi : 2U 7→
2U , where U2i−2, the residual sample space after 2i − 2 rounds is partitioned into
(Πi(U2i−2), U2i−2 − Πi(U2i−2)). Having fixed the adversary’s strategy, the residual
sample space after j rounds, Uj is a well-defined random variable. The following
two sequences of random variables, depend now only on the coin tosses of the honest
party:

1. πi is the cardinality of S ∩Πi(U2i−2), for i ≥ 1;
2. ζj is the cardinality of S ∩ Uj , for j ≥ 0 (where, ζ0 = |S| is constant).

The following facts are immediate by the definitions and Claims 4.24.1 and 4.24.3.
Claim 4.24.4. For every i ≥ 1,
1. (effect of round 2i− 1: adversary presents partition)

Prob(ζ2i−1 = πi) = Prob(ζ2i−1 = ζ2i−2 − πi) = 1
2 .

2. (effect of round 2i: adversary selects side)

|ζ2i− ζ2i−1
2 | < ζ

9
10
2i−1 with probability at least 1−ζ−

4
5

2i−1. Always 0 ≤ ζ2i ≤ ζ2i−1.

3. (termination: as a function of the situation after t def= log2 |S| − 1
2 log2(1/p)

rounds)
The protocol terminates with output in S with probability at most

Exp(ζt) · 2−(l−t)/2 = Exp(ζt) · p3/4

the expectation being over the coin tosses of the honest player in the first t
rounds.

In proving item (3), use Exp(ζt · 2−(l−t)/2) = Exp(ζt) · 2−(l−t)/2 and l − t =
l − log2 |S|+ 1

2 log2(1/p) = (1 + 1
2) · log2(1/p). It remains to use items (1) and (2) in

order to prove the following.
Claim 4.24.5. Let tdef= log2 |S| − 1

2 log2(1/p) and suppose t ≥ 0. Then

Exp(ζt) = O(p−1/2)

the expectation being over the coins tossed by the honest player in the first t rounds.

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 533

Proof. Using item (2) of Claim 4.24.4, we obtain

Exp(ζ2i+2) ≤ Exp
(
ζ2i+1

2
+ ζ

9
10
2i+1 + ζ

− 4
5

2i+1 · ζ2i+1

)
≤ Exp

(
ζ2i+1

2
+ 2 · ζ

9
10
2i+1

)
.

On the other hand, using item (1) of Claim 4.24.4, we obtain both

Exp(ζ2i+1) =
1
2
· Exp(ζ2i)

and

Exp(ζ
9
10
2i+1) =

1
2
· Exp(π

9
10
i) +

1
2
· Exp((ζ2i − πi)

9
10).

Combining the three (in)equalities, we get

Exp(ζ2i+2) ≤ 1
4
· Exp(ζ2i) + Exp(π

9
10
i) + Exp((ζ2i − πi)

9
10)

<
1
4
· Exp(ζ2i) + 2 · Exp(ζ

9
10
2i).

For 0 < α < 1, the function xα over x ≥ 0 is concave, so we may apply Jensen’s
inequality, and conclude

Exp(ζ2i+2) <
1
4
· Exp(ζ2i) + 2 · Exp(ζ2i)

9
10 .

Setting zi
def= Exp(ζ2i), a minor adaptation of Claim 4.4 yields Exp(ζt) = O(ζ02t).

Recall now that t = log2 |S| − 1
2 log2(1/p)) and ζ0 = |S|, to conclude the claim.

The proposition follows.
Remark 4.25. The bound provided in Proposition 4.24 is not tight. Yet, it suffices

for the purpose of sampling partitions in the generic protocol (see the proof of Theo-
rem 4.27). Much better protocols can be obtained — see Theorem 4.28. These (more
complex) sampling protocols use the above protocol and the bound from Proposition
4.24 as a bootstrapping step. In our best sampling protocol, if one party plays hon-
estly, the probability for the protocol to land in an element of any set of density p
does not exceed O(

√
p).

Remark 4.26. Our two-party sampling protocol is very similar to interactive
hashing, a protocol that was discovered independently by Ostrovsky, Venkatesan, and
Yung [20] (see Naor et. al. [18]). However, in interactive hashing one party always
picks the partition and the other always chooses the side. Also, interactive hashing
terminates after l − 1 (rather than l) rounds. Interactive hashing was invented for
completely different purposes and consequently its analysis, as in [18] (and subsequent
studies), is very different from what appears above. Interactive hashing was used for
implementing various types of commitment protocols (cf. [20, 18, 21, 10]).

4.3.3. The main result. Combining Propositions 4.23 and 4.24 with Theo-
rem 4.18, we get the following.

THEOREM 4.27 (efficient protocol meeting the lower bound). There exists a
(generic) two-party protocol, for evaluating an arbitrary bivariate function f . This
protocol is performed by a pair of uniform probabilistic polynomial-time programs with
a single oracle call to the function f and satisfies the following properties:

534 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

• If both parties play honestly and their inputs are x and y respectively, then
the output is f(x, y).
• For every value v in the range of f , if one party plays honestly then the

outcome of the protocol is v with probability at most

O(log6(1/pv) ·max{qv,
√
pv}).

Furthermore, in case qv=pv, this bound can be improved to O(
√
pv).

Proof. The protocol is an implementation of the generic protocol where the parti-
tions are determined by poly(n)-degree polynomials that are selected using the sam-
pling protocol described above. This proves the first item. For the second item we
consider the event in which during the execution of the protocol (with at least one
party being honest) a partition was selected which does not satisfy all v-balanced prop-
erties. Using Propositions 4.23 and 4.24, the probability of this event is O(∆v · pv).
(Here we use the fact that Proposition 4.23 bounds the sum of the fourth root of the
density of “bad” partitions.) In the complementary case, when every partition that
is used satisfies all v-balance properties, Theorem 4.18 applies, and the main part of
the second item follows.

A bound of O(
√
pv log2(1/pv)) for the special case of qv =pv can be obtained by

using Corollary 4.8 instead of Theorem 4.18. The better bound of O(
√
pv) requires a

slightly more careful analysis that we turn to perform.
We slightly change the classification of rounds as appearing in the motivating

discussion (subsection 4.1). We first consider the situation after i def= n− log2(1/pv)−
4 log2 ∆v rounds. Following the ideas in the proof of Lemma 4.5 (and using Propo-
sition 4.23 and 4.24), we first observe that, with probability ≥ 1 − pv, the num-
ber of v-entries in each row (column) of the residual matrix is at most 2 · ∆4

v (i.e.,
#v(x, Yi) ≤ 2∆4

v, ∀x ∈ Xi). (Here and below the probability space is comprised
of runs of the generic protocol in which polynomial partitions are selected using the
sampling protocol of Proposition 4.24.) Next, we consider the situation after an addi-
tional ` def= 1

2 log2(1/pv) rounds. Using similar ideas (this time following Lemma 4.7),
we conclude that, with probability ≥ 1 − pv, the total number of v-entries in the
entire residual matrix, is at most (4∆4

v + 1) ·2∆4
v < 9∆8

v (i.e., #v(Xi+`, Yi+`) < 9∆8
v).

Furthermore, with probability at least 1 − pv, the residual matrix at this point is of
size approximately ∆4

v√
pv

by ∆4
v√
pv

. In the original analysis, we did not try to argue
that the number of v-entries in each row/column decreases during these additional `
rounds. But this is most likely to be the case as shown below.

Claim 4.27.1. There exists a constant c so that with probability at least 1 − pv,
after i+ ` = n− 1

2 log2(1/pv)− 4 log2 ∆v rounds, there are at most c v-entries in each
residual row (resp., column) (i.e., #v(x, Yi+`) ≤ c, ∀x ∈ Xi+`).

Proof. We consider again these additional ` rounds, assuming that previously (i.e.,
after i rounds) each residual row/column contains at most 2∆4

v v-entries. We want to
bound, for each individual row x ∈ Xi, the probability that #v(x, Yi+`) > c. Say that
a column partition is good if either there are fewer than c v-entries in the x-row, or
each side of the partition contains at least one-third of these entries. (In a good round,
a good column partition is performed). A uniformly selected polynomial partition fails
to be good with probability that is exponentially small in the number of v-entries,
since at this point, the degree of the polynomials that determine the partition exceeds
the number of v-entries in row x. However, the polynomial partitions are selected
using the sampling protocol of Proposition 4.24. As Proposition 4.24 states, the same
remains valid also when using the sampling algorithm to select the partitions (at the

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 535

cost of a different constant in the exponent). Therefore, there exists a constant c
so that, as long as row x has more than c v-entries, the next round is good with
probability at least 16/17 (a great underestimate for all but the very last rounds). On
the other hand, if we go through at least t def= log3/2(2∆4

v) good rounds, then row x

has at most c v-entries. Thus #v(x, Yi+`) > c only if fewer than t� ` = 1
2 log2(1/Pv)

out of the last ` rounds are good, and the probability of this event is bounded above
by (

`

t

)
· (1/17)`−t < (1/16)(1+ε)·` = p(1+ε)·2

v ,

where ε > 0 is some small constant, the inequality follows by t = o(`) and the equality
uses the definition of `. Summing over all possible x ∈ Xi, the claim follows.

Combining Claim 4.27.1 with the discussion which precedes it, we conclude that
after i+` = n− 1

2 log2(1/pv)−4 log2 ∆v rounds, with very high probability, the residual
matrix contains at most 9∆8

v entries of value v with at most c such entries in any row
or column. Since we are seeking an O(

√
pv) bound, we can and will ignore those rare

runs (of probability O(pv)), for which this is not the case. Proceeding analogously
to subsection 4.1, we could consider the situation after another r = 4 log2 ∆v rounds
and bound by pv the probability that after a total of i + ` + r = n − 1

2 log2(1/pv)
rounds the residual submatrix contains more than ∆v entries of value v. This would
yield a bound of O(∆v ·

√
pv) on the influence towards v. To obtain the better bound

claimed above, we observe that it suffices to bound the expected number of v-entries
in the residual matrix (rather than bounding the probability that too many v-entries
remain). Specifically, we consider a standard coloring of the v-entries after i+` rounds.
This coloring uses at most 2 · c + 1 colors. Fixing one of these colors, we consider
the next r def= 4 log2 ∆v rounds, and bound the expected number of the remaining
v-entries. A diagonal is a set of entries in a matrix that has no more than a single
element in common with any row/column.

Claim 4.27.2. Consider a diagonal D of at most 9∆8
v entries in the residual matrix

(Xi+` × Yi+`). Then the expected number of entries from D in the residual matrix
Xi+`+r × Yi+`+r is O(1).

Proof. It suffices to analyze a process in which 2r = 8 log2 ∆v polynomial parti-
tions, selected by the sampling protocol of Proposition 4.24, are applied to a space
containing 9 ·∆8

v elements so that after selecting each partition we proceed with the
side containing more elements. Our claim is that the expected number of elements
after applying these 2r partitions is O(1). To prove this claim, let us consider first
what happens after applying a single partition. Namely, let S be a subset (of some
universe) and ζ be a random variable representing the number of S-elements in the
S-heavier side (i.e., the side containing more S-elements) of a partition, selected by
the sampling protocol. Clearly,

Exp(ζ) <
[
|S|
2

+ |S|3/4
]

+ Prob
(
ζ >
|S|
2

+ |S|3/4
)
· |S|.

For a uniformly selected polynomial partition the probability that the S-heavy side
contains more than |S|/2 + |S|3/4 elements of S is exponentially small in

√
|S| and

by Proposition 4.24 the same holds (with a smaller constant in the exponent) when
the polynomial partition is selected by the sampling protocol. Thus, Exp(ζ) < |S|

2 +
|S|3/4 +O(1). Hence, we have a sequence of random variables, ζ0, ζ1, . . . , ζ2r, so that
ζ0 < 9∆8

v and Exp(ζi|ζi−1 = s) < s
2 + s3/4 +O(1), for i = 1, . . . , 2r. Manipulating the

536 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

expectation operators (as in the proof of Claim 4.24.5), we conclude that Exp(ζ2r) =
O(1) and the current claim follows.

Combining Claims 4.27.1 and 4.27.2, we conclude that with probability 1− pv we
reach round i+ `+ r = n− 1

2 log2(1/pv) with an expected number of O(1) entries of
value v. Using the analysis of Corollary 4.8 (corresponding to stage 3 in the motivating
discussion) we establish the claimed O(

√
pv) bound and the theorem follows.

As stated in Remark 4.25, we have sampling protocols that improve on Proposi-
tion 4.24. This can be done either directly (with the techniques used in proving Theo-
rem 4.27) or by applying Theorem 4.27 to any function f with qv = 2−l (∀v ∈ {0, 1}l).
In either case, the resulting sampling protocols use the simple sampling protocol (and
the bound presented in Proposition 4.24 as a bootstrapping step).

THEOREM 4.28 (a better two-party sampling protocol). There exists a protocol
for sampling {0, 1}l that is performed by a pair of uniform probabilistic polynomial-
time programs, so that: For every S ⊆ {0, 1}l of density p, if one party plays honestly,
the outcome of the protocol is in S with probability at most O(

√
p).

Proof (using the second alternative). Let f : {0, 1}n×{0, 1}n 7→ {0, 1}l satisfy
qv = 2−l for every v ∈ {0, 1}l. For example, f(x, y) = x + y mod 2l, where x and y
are viewed as residues mod 2n (and n ≥ l, say n = l). An honest party is supposed to
select its input uniformly in {0, 1}n and to invoke the protocol of Theorem 4.27. The
current theorem follows from the (furthermore part of) Theorem 4.27, by considering
the indicator function χS(v) = 1 if v ∈ S (and χS(v) = 0 otherwise). Namely, we
consider the function g(x, y) def= χS(f(x, y)) and take advantage of the fact that the
protocol in Theorem 4.27 is generic (i.e., determines a pair of inputs (x, y) for the
function independently of the function).

5. Towards the multiparty case. We believe that the ideas developed in the
two-party case will prove useful also for the multiparty case. However, even the prob-
lem of computing a 3-argument function by a 3-party protocol in the presence of one
dishonest party is much more involved than the problem of computing a bivariate
function by a 2-party protocol, as in the previous section. A natural extension of our
two-party protocol is to let each round consist of three steps (rather than two) and re-
fer to three partitions of the three residual input spaces. In each step, a predetermined
party announce in which side of the partition its input lies, and by doing so makes its
residual input space smaller. We believe that this (generic) protocol when used with
random partitions, nearly minimizes the advantage of any dishonest party, regardless
of the function that is being computed. We also believe that this protocol nearly min-
imizes the advantage of any coalition of two dishonest players. However, this seems to
require a much more complex analysis, and additional parameters of the function need
to be taken into account. In particular, the advantage of a single adversary towards
a value v depends not only on the density of v-entries in the entire function (denoted
pv above) and on the density of v-entries in the function restricted by the best input
(denoted qv). For example, a single party can influence any protocol for computing
the function f(x, y, z) = x+ y + z mod N to produce output 0 (or any other residue
mod N) with probability N−2/3 (and the generic protocol can be shown to bound
the advantage of a dishonest party to about this value). On the other hand, a single
party can influence any protocol for computing the function g(x, y, z) = x+ y mod N
to produce output 0 with probability N−1/2 (and again the generic protocol meets
this bound). However, both functions have the same pv = qv = 1/N .

Another difficulty which arises in the context of multiparty protocols is that, when
the number of parties is large, we cannot afford to let the parties reveal information

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 537

in a predetermined order (as in the two-party case and the three-part case above).
This difficulty is best demonstrated in the special case where each input is one bit
(i.e., Domain(f) = {0, 1}×{0, 1} · · · ×{0, 1}). Here, the influence of parties which
are last to reveal their input is more substantial than the influence of parties which
reveal their input first. This calls for choosing a random permutation to determine
the order of playing. Thus, the role of a sampling protocol in the multiparty case
is more fundamental than in the two-party situation. (Recall that in the two-party
protocols, sampling was introduced only for increased efficiency.)

5.1. A multiparty sampling protocol. In this paper we confine ourselves to
the presentation of an efficient fault-tolerant multiparty sampling protocol.

THEOREM 5.1 (multiparty sampling protocol). There exists an m-party sampling
protocol that is performed by m (identical) uniform probabilistic polynomial-time pro-
grams, so that: For every set S ⊆ {0, 1}l, if m − t parties play honestly, then the
outcome of the protocol is in S with probability at most O(log(1/p) · p1−O(tm)), where
p

def= |S|/2l.
Our proof of Theorem 5.1 adapts the ideas used in Theorem 4.28 to the multiparty

context. Namely, our protocol uses partitions which are in turn selected by a lower
quality sampling protocol. Specifically, the protocol proceeds in l rounds. In each
round, the m parties first select at random (using a simpler sampling protocol) a
poly(n ·m)-degree polynomial specifying a partition of the residual sample space, and
next use the collective coin tossing protocol of Alon and Naor [1] to choose one side
of this partition. The sampling protocol used to choose poly(nm)-degree polynomials
is similar except that the partitions are specified by linear transformations (as in the
protocol of Proposition 4.24). These linear transformations are selected using a trivial
sampling protocol which consists of selecting each bit individually by the collective
coin tossing protocol of Alon and Naor [1].

We prefer an alternative presentation of our proof, in which the construction of
multiparty sampling protocols is reduced to the construction of sampling algorithms
that use an SV -source as their source of randomness. Recall that an SV-source with
parameter γ ≥ 1

2 (cf. [22]) is a sequence of Boolean random variables, X1, X2, . . . , so
that for each i and every α ∈ {0, 1}i and every σ ∈ {0, 1}:

Prob(Xi+1 =σ|X1 · · ·Xi=α) ≤ γ.

Theorem 5.1 follows from the next proposition.
PROPOSITION 5.2 (sampling with an SV-source). For every constant γ, 1

2 ≤ γ <
1√
2

, there exist a probabilistic polynomial-time algorithm, A1, which on input 1n uses
any SV -source with parameter γ for its internal coin tosses and satisfies, for every
sufficiently large n and every set S ⊆ {0, 1}n,

Prob(A1(1n)∈S) = O(log(1/p) · plog2(1/γ)),

where p def= |S|
2n , and the probability is taken over an arbitrary SV -source with param-

eter γ.
In particular, for γ = 1

2 (1 + ε), we have log2(1/γ) = 1− log2(1 + ε) ≥ 1− 1
ln 2 · ε.

Thus, observing that the Alon–Naor protocol implements an SV -source with param-
eter γ = 1

2 (1 + O(tn)), we derive Theorem 5.1 as a corollary of Proposition 5.2.
Furthermore, Proposition 5.2 yields an alternative way of recognizing BPP languages
in polynomial time using an arbitrary SV-source with parameter γ < 1√

2
≈ 0.7. Con-

sider, without loss of generality, an algorithm A that using n (perfect) random coins

538 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

errs with probability at most ε, where ε > 0 is a small constant (depending on γ).
In order to utilize A when only an SV-source is available, we first use algorithm A1
(with the SV-source) to generate a “somewhat random” n-bit string, r, and then
invoke algorithm A with the string r as a substitute for the n coins required by A.
We stress that algorithm A is only invoked once. To analyze the performance of the
new algorithm, let S be the set of coin sequences on which A errs. By our hypothesis
|S| ≤ ε ·2n and thus using Proposition 5.2 a string r ∈ S is generated with probability
at most log(1/ε) ·εlog(1/γ) < 1/3 for sufficiently small ε > 0. Thus, using an SV-source
(with parameter γ < 1√

2
), our algorithm errs with probability at most 1/3.

The logarithmic factors in Theorem 5.1 and Proposition 5.2 can be eliminated;
see subsection 5.3.

5.2. Proof of Proposition 5.2. Following is a description of the algorithm A1.
The constant δ used in the description will be determined later (as a function of γ).
On input 1n, the algorithm proceeds in rounds, each round consisting of two steps. In
the first step, algorithm A1, uses a second sampling algorithm, denoted A2, to select
a succinct description of a “pseudorandom” partition of the residual sample space. In
the second step, algorithm A1 uses the next bit of the SV-source to determine a side
of this partition and so further restricts the residual sample space. We use two types
of partitions. In the first n − 4 log2 δn rounds, algorithm A1 uses partitions defined,
as in subsection 4.3, by a polynomial of degree (δn)4 over GF (2n). In the remaining
rounds, where the residual sample space is most likely to be smaller than 2(δn)4,
algorithm A1 uses partitions uniformly chosen from the set of all perfectly balanced
partitions (i.e., bipartitions in which the cardinalities of the two sides are either equal
or differ by one). The two-step process is repeated until the residual sample space
contains a unique element. We will see that algorithm A1(1n) almost certainly halts
after no more than n + 2 rounds. (Longer executions can be truncated after n + 2
rounds with an arbitrary output.)

We now turn to the description of algorithm A2, which is invoked by A1(1n) on
input 1m, where m = (δn)4 · n for the first n− 4 log2 δn rounds of A1(1n) and where
m is the size of the residual sample space of A1 later on. On input 1m, algorithm A2
proceeds in m rounds. In the ith round, the algorithm uses a third sampling algo-
rithm, denoted A3, to selects a random m-dimensional binary vector vi that is linearly
independent of previously used vectors. Clearly, the candidate vectors constitute an
(m − (i − 1))-dimensional vector space over GF2. The chosen vector partitions the
residual sample space into two subsets of equal cardinality (as in Proposition 4.24).
Algorithm A2 uses the next bit of the SV-source to select a side of this partition.

Algorithm A3, invoked by A2(1m), on input 1k (for k = m,m − 1, . . . , 1), is the
trivial sampling algorithm which generates a sample point in {0, 1}k by merely using
the next k bits of the SV-source.

We now turn to the analysis of the sampling algorithm A1. We first consider
what happens if one replaces algorithm A2 by an algorithm that uniformly selects the
appropriate partitions (i.e., (δn)4-degree polynomial for the first n− 4 log2 δn rounds
and perfectly balanced partitions for later rounds). The analysis is done following the
paradigm of the previous section. Namely, we first analyze the performance of the
algorithm assuming it employs partitions which satisfy some combinatorial properties
(cf., Claim 5.2.1), and next consider the probability that uniformly selected partitions
satisfy these properties (cf., Claim 5.2.2).

Claim 5.2.1 (A1 with balanced partitions). Let Ui be the residual sample space
after round i, and Si

def= S ∩ Ui (U0
def= {0, 1}n). Suppose that, for every i, algorithm

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 539

A1 partitions Ui−1 in a way that is ∆-balanced with respect to Si−1 as well as to
Ui−1. Furthermore, suppose that for every i > n− 4 log2 ∆, the ith partition chosen
for algorithm A1 is perfectly balanced (i.e., −1 ≤ 2|Ui| − |Ui−1| ≤ 1.) Then

Prob(A1(1n) ∈ S) ≤ 2∆ · plog2(1/γ).

In addition, |Un−4 log2 δn| < 2(δn)4, provided that ∆ ≤ δn.
Proof. The proof is analogous to the proof of Corollary 4.8. Using an argument

analogous to one used in the proof of Lemma 4.5, we conclude that after t def= n −
log2(1/p) rounds the residual sample space contains at most ∆ elements of S (i.e.,
|St| ≤ ∆). Actually, the argument only uses the hypothesis that the ith partition is
∆-balanced with respect to Si−1, for every i ≤ t, and is indifferent to the way in which
the sides of the partitions are selected in these t rounds. Using the hypothesis that the
ith partition is ∆-balanced with respect to Ui−1, for every i ≤ t, we conclude that after
these t rounds, the residual sample space contains at least 1

2p elements (i.e., |Ut| ≥
1/2p). Furthermore, using the hypothesis that also the following s

def= log2(1/p) −
4 log2 ∆ rounds use partitions which are ∆-balanced with respect to the residual
sample space, we conclude that after t+ s = n− 4 log2 ∆ rounds the residual sample
space has cardinality at least 1

2∆4 (use Claim 4.4). Now, since all the remaining

partitions are assumed to be perfectly balanced, there must be at least l def= (4 log2 ∆)−
1 rounds until termination. We now return to the situation after t rounds, and consider
the remaining rounds, which by the above are at least r def= s + l = log2(1/p) − 1 in
number. Since the side of the partition is selected by an SV-source with parameter
γ, the probability that any specific element in Ut survives the remaining (i.e., at least
r) rounds is at most γr. Thus, the probability that some element of St survives these
rounds does not exceed

|St| · γr ≤ ∆ · γlog2(1/p)−1

≤ ∆ · plog2(1/γ) · 2log2(1/γ).

But γ ≥ 1/2, whence log2(1/γ) ≤ 1 and the main part of the claim follows.
The additional part (i.e., |Un−4 log2 δn| < 2(δn)4) follows easily by using Claim

4.4.
Claim 5.2.2 (A1 — probability of balanced partitions). For every ε > 0 there exists

a δ > 0 so that the following holds. Let πi denote the probability that a uniformly
chosen partition for round i is not δ · log2(1/p)-balanced with respect to either Si−1
or Ui−1. Then, ∑

i≥1

πεi < p.

As in Proposition 4.23, it is very useful for the sequel (though, admittedly, not
very natural) to raise the probabilities to the εth power.

Proof. For i ≤ n−4 log2 δn, the proof is identical to the simpler cases (e.g., Prop-
erties (P0) and (P1)) considered in the proof of Proposition 4.23. For i > n−4 log2 δn,
we observe that the probability of any event, assuming a uniformly selected perfectly-
balanced partition is at most

√
|Ui−1| times larger than its probability assuming a

uniformly selected partition. Since the argument of Proposition 4.23 can tolerate
such factors, the claim follows also for i > n− 4 log2 δn.

540 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

Combining Claims 5.2.1 and 5.2.2, we conclude that it suffices to show that for
some constant ε > 0 and for any set of “bad” partitions, B ⊆ {0, 1}m, the probability
that A2(1m) produces an output in B is at most (|B|/2m)ε. Once this is done, the
proposition follows by considering B(i), the set of partitions which are not δ ·log2(1/p)-
balanced with respect to either Si−1 or Ui−1, and noting that δ ·log2(1/p) ≤ δn (which
guarantees that in the last 4 log2(δ log2(1/p)) rounds perfectly-balanced partitions are
used). Namely,

Prob(A(1n)∈S) < Prob(A(1n)∈S|∀i A(1m) 6∈B(i))
+Prob(∃i s.t. A(1m)∈B(i))

< 2δ log(1/p) · plog2(1/γ) +
∑
i≥1

(
|B(i)|
2m

)ε
< 3δ log(1/p) · plog2(1/γ),

where the second inequality is based on Claim 5.2.1 and our hypothesis concerning A2
and the last inequality follows from Claim 5.2.2. Also note that Claim 5.2.1 guarantees
that the residual sample space after n − 4 log2(δn) rounds has size at most poly(n),
whence it is possible to represent and generate random partitions of it. Thus, we turn
to the analysis of algorithm A2. Recall that our goal is to show that for some ε, (that
depends on γ), and for every B ⊆ {0, 1}m of cardinality q · 2m,

Prob(A2(1m)∈B) = O(qε).(15)

Let ε def= log2(1/γ)− 1
2 > 0 and β

def= 1
1+ε < 1 (recall that γ < 1√

2
is assumed). Also,

ε ≤ 1
2 and β ≥ 2

3 , since γ ≥ 1
2 . Henceforth, we fix an arbitrary set B ⊆ {0, 1}m and

let q def= |B|
2m (as above). We separately analyze the performance of A2 throughout the

first t rounds (hereafter referred to as phase 1), and in the remaining m − t rounds
(phase 2), where

t
def= max{0,m− 2β

2β − 1
log2(1/q)}.(16)

Let Bi denote the residual set (of bad polynomials) after i rounds of algorithm A2
(e.g., B0 = B).

Claim 5.2.3 (A2 — phase 1).

Prob(|Bt| > 2q · 2m−t) ≤ O(q2ε).

That is, the probability that Bt is greater than twice its “expected size” is small.
Note that by definition of t, we have m−t = 2β

2β−1 · log2(1/q) and q ·2m−t = 2(m−t)/2β .

Proof. For every i, let bi
def= |B|

2i . Our plan is to prove that with very high
probability, |Bi| ≈ bi for every i ≤ t, which would establish our claim. We consider
the first time when |Bi| 6≈ bi. Thus, the probability that |Bt| > 2q · 2m−t is bounded
above by

Prob
[
∃i < t :

(∣∣∣∣|Bi+1| −
|Bi|

2

∣∣∣∣ > |Bi| 1+β
2

)
∧
(
∀j < i :

∣∣∣∣|Bj+1| −
|Bj |

2

∣∣∣∣ ≤ |Bj | 1+β
2

)]
.

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 541

Now, using Chebyshev’s Inequality (as in the proof of Proposition 4.24), we can show
that for a uniformly chosen random linear partition,

Prob
(∣∣∣∣|Bi+1| −

|Bi|
2

∣∣∣∣ > |Bi| 1+β
2

)
<

1
|Bi|β

.

Call a linear partition for round i+ 1 bad, if
∣∣∣|Bi+1| − |Bi|2

∣∣∣ > |Bi| 1+β
2 . We now know

that the number of bad partitions is bounded by 1
|Bi|β · 2

m−i. We need to bound the
probability that A3(1m−i) selects a bad partition in round i + 1. Using the union
bound, the definition of A3 and Claim 4.4 (for |Bi|), we have

Prob(A3(1m−i) is bad) ≤ 2m−i

|Bi|β
· γm−i

< 2 · γm−i · 2m−i

bβi
,

where the last inequality uses our assumption that all previous partitions are good
(whence for each j < i, |Bj+1| > |Bj |

2 − |Bj |
1+β

2 and, consequently, |Bi| > bi
2). Since

bi = 2t−i · bt and bβt = (q2m−t)β = 2(m−t)/2 (see remark above), we get

Prob(A3(1m−i) is bad) < 2 · γm−i · 2m−i

2(t−i)β · 2(m−t)/2

= 2 · γm−i · 2(m−i)−m−t2 −β(t−i)

= 2 ·
(
γ
√

2
)m−i

· 2−(β− 1
2)·(t−i).

Letting ρ
def= γ ·

√
2 < 1 (as γ < 1√

2
) and using m − i ≥ m − t > 2 log2(1/q) (as

m− t = 2β
2β−1 log2(1/q) and β < 1), we get

Prob(A3(1m−i) is bad) < 2 · ρ2 log2(1/q) · 2−(β− 1
2)·(t−i)

= 2 · q2 log2(1/ρ) · 2−(β− 1
2)·(t−i)

= a · bt−i,

where a def= 2q2 log2(1/ρ) and b
def= 2−(β− 1

2) < 1 (as β > 1
2). Hence, the probability

that A3 chooses a bad partition for some round i, throughout phase 1, is bounded by∑t
i=1 a · bt−i < a

1−b . Using ε = log2(1/γ)− 1
2 = log2(1/ρ) ≤ 1

2 and β = 1
1+ε , we get

a

1− b =
2q2ε

1− 2−
1−ε

2(1+ε)

≤ 2q2ε

1− 2−1/6

< 20 · q2ε,

and the claim follows.
Claim 5.2.4 (A2 — phase 2). Let Bt be the residual target set after t rounds and

consider an execution of the m− t remaining rounds. Suppose that |Bt| ≤ 2bt, where

542 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

bt
def= |B|

2t (as in Claim 5.2.3). Then the probability that A2(1m) terminates with
output in Bt is at most 2qε.

Proof. We consider the executions of rounds t + 1 through m. Regardless of
which linear partitions are used in the remaining m − t rounds, the probability that
a particular element of Bt is output by A2(1m) is bounded by γm−t. Hence,

Prob(A2(1m) hits Bt) ≤ |Bt| · γm−t

≤ 2bt · γm−t

= 2 · 2
m−t
2β · γm−t

= 2 ·
(
γ · 2 1

2β

)m−t
.

Setting (as before) ρ = γ
√

2, and using ε = log2(1/ρ) and β = 1
1+ε , we get 2

1
2β =√

2/ρ. Hence, using again ρ < 1 and m− t > 2 log2(1/q), we get

Prob(A2(1m) hits Bt) ≤ 2 ·
(
γ ·
√

2
ρ

)m−t
< 2 · √ρ 2 log2(1/q)

= 2qlog2(1/ρ)

= 2qε,

and the claim follows.
Combining Claims 5.2.3 and 5.2.4, we have established equation (15) and the

proposition follows.

5.3. Further improvements. Actually, the result of Proposition 5.2 can be
improved using a slightly more careful analysis of the algorithm A1 provided in the
above proof. The improved analysis is analogous to the proof of the tighter bound for
the case qv = pv of Theorem 4.27. Namely, we replace Claims 5.2.1 and 5.2.2 by the
following three claims. In the first two claims we assume that algorithm A2 satisfies
equation (15).

Claim 1. With probability at least 1−p, after i def= n−log2(1/p)−4 log2(δ log2(1/p))
rounds the residual sample space contains at most 2(δ log2(1/p))4 elements
of S; namely,

Prob(|Si| > 2(δ log2(1/p))4) < p.

Claim 2. Consider an arbitrary subset S′ of Ut so that |S′| ≤ 2(δ log2(1/p))4.
Then the expected number of elements of S′ which survive an additional
number of 4 log2(δ log2(1/p)) rounds is bounded above by O(1).

Claim 3. Let t def= n− log2(1/p). Then,

Prob(A(1n) ∈ S) ≤ Exp(|St|) · γlog2(1/p)−1.

(Here, we do use a part of the proof of Claim 5.2.1 to assert that with prob-
ability 1− p the protocol does not terminate before n− 1 rounds.)

Consequently, we get

FAULT-TOLERANT COMPUTATION IN THE FULL INFORMATION MODEL 543

• Improvement to Proposition 5.2: For every constant γ, 1
2 ≤ γ < 1√

2
, the

algorithm A1 appearing in the proof of Proposition 5.2 satisfies, for every set
S ⊆ {0, 1}n,

Prob(A1(1n)∈S) = O(plog2(1/γ)),

where p def= |S|/2n, and the probability is taken over an arbitrary SV -source
with parameter γ.

• Theorem 5.1 can be improved analogously. Namely, for every set S ⊆ {0, 1}l,
if m − t parties plays honestly then the outcome of the protocol is in S with
probability bounded above by O(p1−O(tm)), where pdef= |S|/2l.

Acknowledgments. Oded Goldreich would like to thank the Computer Science
Department of the Hebrew University for providing him shelter in times of war. The
authors wish to thank the Computer Science Department of Tel-Aviv University for
use of its computing facilities.

REFERENCES

[1] N. ALON AND M. NAOR, Coin-flipping games immune against linear-sized coalitions, SIAM
J. Comput., 22 (1993), pp. 403–417.

[2] D. BEAVER AND S. GOLDWASSER, Distributed computation with faulty majority, in Proc.
30th Annual IEEE Symp. on Foundations of Computing, IEEE Computer Society Press,
Los Alamitos, CA, 1989, pp. 468–473.

[3] M. BEN-OR, S. GOLDWASSER, AND A. WIGDERSON, Completeness theorems for non-
cryptographic fault-tolerant distributed computation, in Proc. 20th Annual ACM Symp.
on Theory of Computing, ACM, New York, 1988, pp. 1–10.

[4] M. BEN-OR AND N. LINIAL, Collective coin flipping, in Randomness and Computation, S.
Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 91–115.

[5] M. BEN-OR, N. LINIAL, AND M. SAKS, Collective coin flipping and other models of imperfect
randomness, Colloq. Math Soc. János Bolyai 52, Combinatorics Eger 1987, pp. 75–112.

[6] B. CHOR AND O. GOLDREICH, Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.

[7] D. CHAUM, C. CREPEAU, AND I. DAMGÅRD, Multiparty unconditionally secure protocols,
in Proc. of 20th Annual ACM Symp. on Theory of Computing, ACM, New York, 1988,
pp. 11–19.

[8] B. CHOR AND E. KUSHILEVITZ, A zero-one law for boolean privacy, SIAM J. Discrete Math.,
4 (1991), pp. 36–47.

[9] J. COOPER AND N. LINIAL, Fast perfect-information leader election protocol with linear
immunity, in 25th Annual ACM Symposium on the Theory of Computing, San Diego,
ACM, New York, 1993, pp. 662–671; Combinatorica, to appear.

[10] I. DAMGÅRD, Interactive hashing can simplify zero-knowledge protocol design without com-
putational assumptions, in Advances in Cryptology, Proceedings of Crypto93, Lecture
Notes in Computer Science 773, Springer-Verlag, New York, 1983, pp. 100–109.

[11] Z. GALIL, S. HABER, AND M. YUNG, Cryptographic computation: Secure faulty-tolerant
protocols and the public key model, in Advances in Cryptology, Proceedings of Crypto87,
Lecture Notes in Computer Science 293, Springer-Verlag, New York, 1987, pp. 135–155.

[12] O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL, Fault-tolerant Computation in the Full
Information Model, Tech. report TR-682, Computer Science Dept., Technion, Haifa,
Israel, July 1991.

[13] O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity
and a methodology for cryptographic protocol design, J. Assoc. Comput. Mach., 38
(1991), pp. 691–729.

[14] O. GOLDREICH, S. MICALI, AND A. WIGDERSON, How to play any mental game, in Proc.
19th Annual ACM Symp. on Theory of Computing, ACM, New York, 1987, pp. 218–229.

[15] S. GOLDWASSER AND L. A. LEVIN, Fair computation of general functions in presence of
immoral majority, in Advances in Cryptology, Proceedings of Crypto90, Lecture Notes
in Computer Science 537, Springer-Verlag, New York, 1990, pp. 77–93.

544 O. GOLDREICH, S. GOLDWASSER, AND N. LINIAL

[16] J. KAHN, G. KALAI, AND N. LINIAL, The influence of variables on boolean functions, in
29th Annual IEEE Symp. on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1988, pp. 68–80.

[17] J. KILIAN, Founding cryptography on oblivious transfer, in Proc. of 20th Annual ACM Symp.
on Theory of Computing, ACM, New York, pp. 20–29, 1988.

[18] M. NAOR, R. OSTROVSKY, R. VENKATESAN, AND M. YUNG, Perfect zero-knowledge argu-
ments for NP can be based on general complexity assumptions, in Advances in Cryptol-
ogy, Proceedings of Crypto92, Lecture Notes in Computer Science 740, Springer-Verlag,
New York, 1992; J. Cryptology, to appear.

[19] R. OSTROVSKY, S. RAJAGOPALAN, AND U. VAZIRANI, Simple and efficient leader elec-
tion in the full information model, in Proc. 26th Annual ACM Symp. on Theory of
Computing, ACM, New York, 1994, pp. 234–242.

[20] R. OSTROVSKY, R. VENKATESAN, AND M. YUNG, Fair games against an all-powerful ad-
versary, in DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
Vol. 13, Jin-Yi Cai ed., AMS, Providence, RI, 1993, pp. 155–169.

[21] R. OSTROVSKY, R. VENKATESAN, AND M. YUNG, Interactive hashing simplifies zero-
knowledge protocol design, in Proc. Eurocrypt93, Lecture Notes in Computer Science
765, Springer-Verlag, New York, 1983, pp. 267–273.

[22] M. SANTHA AND U. V. VAZIRANI, Generating quasi-random sequences from slightly-random
sources, in 25th Annual IEEE Symp. on Foundation of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 1984, pp. 434–440.

[23] U. V. VAZIRANI AND V. V. VAZIRANI, Random polynomial time is equal to slightly-random
polynomial time, in 26th Annual IEEE Symp. on Foundation of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1985, pp. 417–428.

[24] A. C. YAO, Protocols for secure computations, in 23rd Annual IEEE Symp. on Foundations
of Computer Science, 1982, pp. 160–164.

[25] A. C. YAO, How to generate and exchange secrets, in 27th Annual IEEE Symp. on Founda-
tions of Computer Science, 1986, pp. 162–167.

A SPECTRAL APPROACH TO LOWER BOUNDS
WITH APPLICATIONS TO GEOMETRIC SEARCHING∗

BERNARD CHAZELLE†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 545–556, April 1998 011

Abstract. We establish a nonlinear lower bound for halfplane range searching over a group.
Specifically, we show that summing up the weights of n (weighted) points within n halfplanes requires
Ω(n logn) additions and subtractions. This is the first nontrivial lower bound for range searching
over a group. By contrast, range searching over a semigroup (which forbids subtractions) is almost
completely understood.

Our proof has two parts. First, we develop a general, entropy-based method for relating the linear
circuit complexity of a linear map A to the spectrum of A>A. In the second part of the proof, we
design a “high-spectrum” geometric set system for halfplane range searching and, using techniques
from discrepancy theory, we estimate the median eigenvalue of its associated map. Interestingly, the
method also shows that using up to a linear number of help gates cannot help; these are gates that
can compute any bivariate function.

Key words. lower bounds, eigenvalues, range searching, circuit complexity

AMS subject classifications. 68P05, 68Q20, 68R99, 51M99

PII. S0097539794275665

1. Introduction. Given n weighted points in the plane and n halfplanes, we
consider the classical halfplane range searching problem, which is to compute the sum
of the weights of the points within each of the given regions. If subtractions are
not allowed (the semigroup model) the problem is almost completely solved [7, 11,
15]; see also [9, 16, 17, 19] for surveys of the vast literature on the subject. In the
(commutative) group model, where subtractions are allowed, there is little evidence
that any power should be gained beyond polylog speedups, but proving it has been
elusive. In fact, in that model no superlinear lower bound has ever been established
for any range searching problem of any kind. The problem is equivalent to asking
for the nonmonotone circuit complexity of some fairly unwieldy linear transformation
over the reals, so the lack of progress should not come as a big surprise.

This paper takes a first, modest step toward resolving this question. We establish
a lower bound of Ω(n logn) on the complexity of range searching with respect to n
points and n halfplanes (given in advance). The model of computation is a straight-
line program: each step performs a group operation of the form

z ← x± y,

where x and y are previously computed variables or input weights. The underlying
group is assumed to be commutative. Note that it is easy to prove an Ω(n logn) lower
bound by reduction from sorting, but this says nothing about the number of times
weights have to be added or subtracted. In the group model, memory accesses are not

∗Received by the editors October 17, 1994; accepted for publication (in revised form) March
20, 1996. A preliminary version of this paper appeared as A spectral approach to lower bounds, in
Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science (FOCS),
IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 674–682.

http://www.siam.org/journals/sicomp/27-2/27566.html
†Department of Computer Science, Princeton University, Princeton, NJ 08544 (chazelle@

cs.princeton.edu). This research was supported in part by NSF grant CCR-93-01254 and by The
Geometry Center, University of Minnesota, a Science and Technology Center funded by the NSF,
DOE, and Minnesota Technology, Inc.

545

546 BERNARD CHAZELLE

charged; only group operations are. Note that this makes lower bounds even stronger.
The program must work for all groups and all weight assignments.

This formulation of the group model is probably the most natural. But one
might ask what happens if we extend the model by allowing extra computations free
of charge. For example, can adding the same variable a large number of times, e.g.,
z ←Mx (M integral), possibly help? How about encoding special functions in lookup
tables? In general, we call a free computation any assignment of the form

z ← f(x, y),

where f is an arbitrary function. We show that allowing close to n/4 free computations
cannot help. To put this result in perspective, one should note that over the reals 2n
free computations suffice to make the problem trivial.

THEOREM 1.1. Range searching with respect to n points and n halfplanes requires
Ω(n logn) group operations. This remains true even with the help of up to n/4 − εn
free computations, for any fixed ε > 0. On the other hand, over the reals, the problem
can be solved in linear time with only 2n− 1 free computations.

It is likely that the lower bound is far from optimal. The best known upper bound
is slightly above O(n4/3) [15], and in the semigroup model the best lower bound (for
the on-line version) is also Ω(n4/3) [7]. On the brighter side, Theorem 1.1 provides
the only lower bound known for the group model, so at least it is a step in the right
direction.

Proof. The proof consists of two distinct parts. First, we establish a general
spectral lemma, which asserts a lower bound of Ω((k−2m) log λk) on the linear circuit
complexity of any linear transformation A (with integer coefficients) from Rn to Rn,
where λk is the kth largest eigenvalue of A>A, and m is the number of help gates.
These are the circuit equivalent of free computations. (This shows that allowing up
to roughly k/2 help gates does no good.) The lower bound holds for any value of k
between 2m and n. This freedom is useful because often only a small range of the
whole spectrum can be accurately estimated without too much effort.

In the second part of the proof, we design a hard instance of range searching by
nonconstructive means. Then we use spectral methods from discrepancy theory to es-
timate the median eigenvalue of the quadratic form associated with the corresponding
set system.

Remark 1. Our technique trivially implies an Ω(n logn) lower bound for range
searching over a finite projective plane. In general, the technique will yield a lower
bound on any instance of range searching whose corresponding spectrum can be
mapped out reasonably well. Powerful techniques in discrepancy theory [4], such
as those used in section 3 of this paper, raise hope that more lower bounds can be
derived by this approach.

Remark 2. A simple application of the spectral lemma is that computing Hx,
where H is the n × n Sylvester Boolean matrix, takes Ω(n logn) time even in the
presence of about n/2 help gates. (All the eigenvalues λk of H>H are equal to n.)
Note that the choice of ground field is crucial, since Hx can be computed in linear
time over GF(2) [2]. If we forbid help gates, the same bound can be obtained more
simply by using Morgenstern’s volume argument [18]. The spectral lemma works in
a model that is ideally suited for range searching. If, instead of a group, the linear
transformation operates over a ring or a field (like the discrete Fourier transform),
then for the lemma to hold, the (nonhelp) gates must evaluate linear forms with
bounded coefficients. This is the same limitation found in Morgenstern’s result. Help
gates can be thought of as a way of partly overcoming this limitation.

A SPECTRAL APPROACH TO LOWER BOUNDS 547

Remark 3. The proof of the spectral lemma is based on entropy considerations.
By avoiding standard volume arguments, we are able to accommodate help gates.
Indeed, a weakness of the volume argument of [18] is that it collapses even in the
presence of a single help gate. Intuitively, the idea of that argument is to relate the
work of the circuit to the volume of the ellipsoid into which the circuit “transforms”
the unit sphere. Any such argument is vulnerable to even a single help gate, because
any one of them has the ability to blow up the entire sphere. On the contrary, our
entropy-based approach ensures that the “contribution” of a single help gate to the
work of the circuit is always bounded, regardless of the gate’s power.

There has been a substantial amount of work in arithmetic circuit complexity—
see surveys in [13, 20]—but, to our knowledge, nothing that allows us to tackle a
geometric problem such as range searching. Most of the recent research in circuit
complexity [5], including work involving help bits or oracle queries (variants of our
help gates) [3, 6], has been mostly concerned with problems over finite fields and
seems of little relevance to our problem.

2. Eigenvalues, entropy, and linear circuits. Let A be an n × n matrix
with integer elements. A linear circuit for computing y = Ax, where x ∈ Rn, is
a directed acyclic graph with n input nodes x = (x1, . . . , xn) and n output nodes
y = (y1, . . . , yn). The size of the circuit is its number of edges. A node is a gate that
computes a real-valued function

f(z1, z2) = α1z1 + α2z2,

where zi ∈ R and αi ∈ {−1, 0, 1}. In addition, we allow the presence of m help gates:
these gates can evaluate any function f(z1, z2) from R2 to R. Recall that the matrix
M

def= A>A is diagonalizable and its eigenvalues are real:

λ1 ≥ · · · ≥ λn ≥ 0.

All logarithms are to the base 2.
SPECTRAL LEMMA. Given any 1 ≤ k ≤ n, any circuit for computing Ax has size

at least c(k − 2m) log λk, for some constant c > 0, where m ≤ k/2 is the number of
help gates and λk is the kth largest eigenvalue of A>A.

Proof. Let K be the invariant subspace spanned by the eigenvectors for M asso-
ciated with λ1, . . . , λk. We ensure that K is of dimension exactly k by dropping some
of the eigenvectors for λk, in case of multiplicity. Let Bn(p, r) denote the Euclidean
n-ball of radius r centered at p and let Vn(r) be its volume. Consider the cubes of
the form Zn + [0, 1]n that intersect K ∩Bn(O,R), for some (large enough) parameter
R. Let L be the set of centers of these cubes. Finally, let H(x) denote the entropy of
a random variable x with values distributed uniformly in L. We estimate the entropy
of x (Lemma 2.1) and then we prove the key lemma, which says that if the spectrum
of M is not too low we can suitably hash the image of x under A without losing much
entropy (Lemma 2.2).

LEMMA 2.1.

H(x) ≥ log Vk(R)− log Vk(
√
n).

Proof. Let M−R (n, k) denote the minimum number, over all k-flats F containing
the origin, of the n-cubes of the form Zn+[0, 1]n that intersect F ∩Bn(O,R). Observe
that the cubes to be counted cover the ball Bk(O,R) embedded in F . Furthermore,

548 BERNARD CHAZELLE

the intersection of F with each of these cubes fits into a k-ball of radius
√
n/2, so

M−R (n, k) ≥ Vk(R)/Vk(
√
n).

The lemma follows from the fact that |L| ≥M−R (n, k) and H(x) = log |L|.
Another useful quantity, denoted by M+

r (n,m), is the maximum number over
all m-flats F of the n-cubes of the form Zn + [0, 1]n that intersect F ∩ Bn(O, r). In
the case n −m = 0, the cubes counted by M+

r (n,m) all lie within Bn(O, r +
√
n);

therefore

M+
r (n, n) ≤ Vn(r +

√
n).(1)

Assume now that n−m > 0. In the appendix we show that, for n and r large enough,

M+
r (n,m) ≤ 3nVm(r).(2)

LEMMA 2.2. If A is a matrix with real elements, such that 1 ≤ λk ≤ 2, then1

H(bAxc) ≥ H(x)− log Vn(5
√
n).

Proof. Let x, x′ ∈ L be such that bAxc = bAx′c. It follows that ‖A(x − x′)‖2 ≤√
n. Write x as the direct sum x0 + u, where x0 ∈ K, u ∈ K⊥, and do the same with

x′. Observe that

‖u− u′‖2 ≤ ‖u‖2 + ‖u′‖2 ≤
√
n.

By the variational characterization of eigenvalues, ‖A(x0 − x′0)‖2 ≥
√
λk ‖x0 − x′0‖2

and, because K⊥ contains u − u′ and is spanned by eigenvectors corresponding to
λj ≤ λk, we have ‖A(u− u′)‖2 ≤

√
λk ‖u− u′‖2. It follows that (for 1 ≤ λk ≤ 2)

‖x− x′‖2 ≤ ‖x0 − x′0‖2 + ‖u− u′‖2
≤ ‖A(x0 − x′0)‖2 + ‖u− u′‖2
≤ ‖A(x− x′)‖2 + ‖A(u− u′)‖2 + ‖u− u′‖2
≤
√
n+ 3‖u− u′‖2 ≤ 4

√
n.

Thus, the preimage of a fixed z ∈ Rn under x ∈ L 7→ bAxc lies entirely in a ball
Bn(x, 4

√
n), where x ∈ L, and therefore, the uniform distribution within that preim-

age has entropy at most logM+
4
√
n
(n, n). By (1) this does not exceed log Vn(5

√
n).

Standard identities on the entropy of joint distributions, namely,

H(x) = H(x, bAxc) = H(bAxc) +H(x | bAxc),

complete the proof.
Let z = (z1, . . . , zs) be the vector of Rn whose coordinates are the intermediate

variables computed by the gates. For convenience, we append the input variables
at the beginning of the list (zj = xj , for 1 ≤ j ≤ n) and the output variables at
the end (zs−n+j = yj , for 1 ≤ j ≤ n). We also assume that the list corresponds to a
topological ordering of the DAG (directed acyclic graph), meaning that for any j > n,

zj = αjzf(j) + βjzg(j),

1Given z = (z1, . . . , zn) ∈ Rn, we use the shorthand bzc for (bz1c, . . . , bznc).

A SPECTRAL APPROACH TO LOWER BOUNDS 549

where f(j) ≤ g(j) < j and |αj |, |βj | ≤ 1. In the case of a help gate, zj is an arbitrary
real function of zf(j) and zg(j). Let

µk = b
√
λk c.

The input x to the circuit is chosen so that x̃ = µkx is a random variable uniformly
distributed in L. We shall now assume that λk is large enough, which the spectral
lemma obviously allows us to do. We now argue that bzc has high entropy. Lemmas
2.4–2.6 will then show that only a large circuit can produce a “hashed” vector bzc
with that much entropy.

LEMMA 2.3.

H(bzc) ≥ log Vk(R)− log Vk(
√
n)− log Vn(5

√
n).

Proof. Because A is a linear map, the circuit outputs Bx̃, where B
def= A/µk,

obviously satisfies the conditions of Lemma 2.2. Thus,

H(bzc) ≥ H(bBx̃c) ≥ H(x̃)− log Vn(5
√
n).

The proof now follows from Lemma 2.1.
To be able to isolate the action of help gates, we devise the following arti-

fice. Regard the outputs of the help gates, zh(1), . . . , zh(m), as new (help) vari-
ables, and express each zj (1 ≤ j ≤ s) as a linear form over the set of variables
Z = {x1, . . . , xn, zh(1), . . . , zh(m) }. How this is done is best seen by induction. The
input gates are linear forms over single variables. For any other gate zj , if it is of the
helping type, then the form is zj itself. Otherwise, zj = αjzf(j) + βjzg(j) and, by in-
duction, zj is a linear combination of two linear forms over Z and hence a linear form
itself. (Note that even though the outputs of the help gates might be algebraically
related, the zh(j) are added by adjunction and so are considered independent.) In the
expression for zj , let zxj (resp., zyj) denote the linear form obtained by taking only the
nonhelp (resp., help) variables. A key step now is to look at zxj and zyj no longer as
linear forms but as real functions zxj (x1, . . . , xn) and zyj (x1, . . . , xn). While the circuit
computes zj = zxj + zyj , we wish to monitor the information contents of the complex
number,2

zcj
def= bzxj c+ izyj .

We denote by zc the vector (zc1, . . . , z
c
s). Our strategy is this: first, we establish that

a small circuit can produce only a small entropy H(zc). We do this in three steps:
Lemma 2.4 looks at the effect of the hashing on the entropy of the input variables.
Lemmas 2.5 and 2.6 bound how much entropy the nonhelp and help gates, respectively,
can inject into the vector of hashed variables. Finally, we show that H(zc) cannot be
much smaller than H(bzc), which by Lemma 2.3 is already known to be big.

LEMMA 2.4.

H(zc1, . . . , z
c
n) ≤ 2n+ log Vk(R/µk).

Proof. Let C be the set of cubes of the form (µkZ)n + [0, µk]n. Any cube of C
that contains a point of L contains the entire unit cube centered at that point, and so

2We use complex numbers simply as a device for representing ordered pairs.

550 BERNARD CHAZELLE

it intersects K ∩ Bn(O,R). Thus, the number of such cubes is at most M+
R/µk

(n, k),
which, by (2), does not exceed 3nVk(R/µk) so that (recall that zci = bxic, for i =
1, . . . , n)

H(zc1, . . . , z
c
n) = H(bx̃1/µkc, . . . , bx̃n/µkc)
≤ 2n+ log Vk(R/µk).

LEMMA 2.5. For any nonhelp variable zj, n < j ≤ s, we have

H(zcj | zcf(j), z
c
g(j)) ≤ 3.

Proof. Recall that zcj = bzxj c + izyj . Obviously, since the imaginary part is
completely determined by those of zcf(j) and zcg(j), we have

H(zyj | z
y
f(j), z

y
g(j)) = 0.

To deal with the real part, we use the inequality H(A |B) ≤ H(A |C) + H(C |B)
to derive

H(bzxj c | bzxf(j)c, bzxg(j)c)
≤ H(bzxj c | bαjzxf(j)c, bβjzxg(j)c)
+H(bαjzxf(j)c | bzxf(j)c)
+H(bβjzxg(j)c | bzxg(j)c).

Given two random variables ξ, ξ′ arbitrarily distributed in R,

H(bξ + ξ′c | bξc, bξ′c) ≤ 1.

Intuitively, the only information missing is a one-bit carry. Similarly, given a fixed
α ∈ Z, |α| ≤ 1, and a real random variable ξ, we have H(bαξc | bξc) ≤ 1. The lemma
follows from the fact that zj = αjzf(j) + βjzg(j).

LEMMA 2.6. For any help variable zj, n < j ≤ s, we have H(zcj | zcf(j), z
c
g(j)) ≤

2(logµk + 1).
Proof. We have zcj = izyj , where zyj is an arbitrary function of zf(j) and zg(j).

Regarding zf(j) = zxf(j) +zyf(j), the only information we have at our disposal is zcf(j) =
bzxf(j)c+iz

y
f(j). There is no loss of information in the imaginary part. The same is not

true of the real part, however. The key observation is that zxf(j) is a linear form over
x1, . . . , xn with integer coefficients. Thus, since 2µkxi is itself integral, so is 2µkzxf(j).
It follows that the fractional part of zxf(j) can be one of only 2µk possible values, and
hence, H(zxf(j) | bzxf(j)c) ≤ logµk + 1, from which the lemma follows.

We can use the last three lemmas to upper bound H(bzc):

H(zc) = H(zc1, . . . , z
c
n) +

∑
n+1≤j≤s

H(zcj | zc1, . . . , zcj−1)

≤ H(zc1, . . . , z
c
n) +

∑
n+1≤j≤s

H(zcj | zcf(j), z
c
g(j)).

By Lemmas 2.4, 2.5, and 2.6,

H(zc) ≤ 2n+ log Vk(R/µk) + 3(s− n−m) + 2m(logµk + 1)
≤ 3s− n+ log Vk(R/µk) + 2m logµk,

A SPECTRAL APPROACH TO LOWER BOUNDS 551

and therefore,

H(bzc) ≤ H(zc, bzc) = H(zc) +H(bzc | zc)

≤ H(zc) +
s∑

j=n+1

H(bzxj + zyj c | bzxj c+ izyj)

≤ 4s+ 2m logµk + log Vk(R/µk).

Bringing the lower bound of Lemma 2.3 to bear, we derive

4s ≥ −2m logµk − log Vk(R/µk) + log Vk(R)
− log Vk(

√
n)− log Vn(5

√
n).

Using the approximation [12],

Vd(r) =
πd/2rd

Γ(d/2 + 1)
≈ 1√

πd

(2eπ
d

)d/2
rd,

and the fact that log Vd(rs) = log Vd(r) + d log s, we find that

4s ≥ −2m logµk + k logµk − log Vk(
√
n)− log Vn(5

√
n).

The last two terms add up to O(n); therefore,

s ≥ 1
8

(k − 2m) log λk −O(n),

which establishes the spectral lemma.

3. Range searching over a group. Let P be the point set consisting of the
vertices of a (

√
n − 1) × (

√
n − 1) square grid. Each point xi of P is weighted by

some real number, which by abuse of notation we also call xi. Our goal is to exhibit
n halfplanes h1, . . . , hn, and prove that computing the sum of the weights within each
hk, i.e.,

∑
xi∈hk xi, requires Ω(n logn) time.

The model of computation is a straight-line program: each step performs a group
operation of the form z ← α1x+ α2y, where x and y are input weights or previously
computed variables and αi ∈ {−1, 0, 1}. As a bonus, we also allow the use of close to
n/4 instructions of the form z ← f(x, y), where f is an arbitrary real function. The
only requirement is that the same program should work for any assignment of real
weights to the points. The analogy with the previous section is obvious. Let A be the
n × n matrix whose kth row is the characteristic vector of P ∩ hk. By the spectral
lemma, the lower bound of Theorem 1.1 follows directly from this lemma.

LEMMA 3.1. There is a choice of n halfplanes, for which the matrix A of the
corresponding set system is such that the kth largest eigenvalue of A>A is nΩ(1), for
some k ≥ n/2− εn, for any fixed ε > 0.

Proof. We use a nonconstructive configuration of halfplanes. Scale down the
square grid so that it fits within [1/

√
n, 1 − 1/

√
n]2. Let ω be the motion-invariant

measure for lines: we normalize ω to provide a probability measure for the lines
crossing [0, 1]2. Given a halfplane h+ bounded below by a nonvertical line h, consider
the discrepancy function f(h) def=

∑
xi∈h+ xi. A beautiful result of Alexander [1] (see

[8, 10] for a simpler proof and various extensions) says that if x1 + · · ·+xn = 0, then3∫
f2(h) dω(h)� 1√

n
‖x‖22.

3We use the notation � and � to denote inequality up to a constant factor.

552 BERNARD CHAZELLE

Subdivide the space of lines crossing [0, 1]2 into N + O(n2) regions within which
the form f(h) remains invariant. By choosing N large enough, say, N = 2n, we
can also ensure that the ω-area of N of these regions is exactly the same; call it σ,
which is about 1/N . The other O(n2) regions may have smaller areas. (Consider
the arrangement in dual space to obtain this result.) Thus, the difference between
integrating f2 over the whole probability space and over the equal-area regions only
is at most O(n2/N) sup f2. Because |f | cannot exceed

|x1|+ · · ·+ |xn| ≤
√
n ‖x‖2,

the error is bounded by O(n3‖x‖22/N). This provides us with a good discrete ap-
proximation of the L2-norm of f . Indeed, let B be the N × n matrix whose rows are
indexed by the N equal-area regions σ̂ and are the characteristic vectors of the set of
xi’s appearing in (the unique form) f(h), for h ∈ σ̂. We have∣∣∣ ‖Bx‖22 − 1

σ

∫
f2(h) dω(h)

∣∣∣ = O(n3)
‖x‖22
Nσ

.

But σ = 1/N ±O(n2/N2), so∣∣∣ ‖Bx‖22 −N ∫ f2(h) dω(h)
∣∣∣ = O(n3‖x‖22).

LEMMA 3.2.

detB>B = Ω
(
N
/√

n
)n−1

.

Proof. Let µ1 ≥ · · · ≥ µn ≥ 0 be the eigenvalues of B>B and let {vi} be an
orthonormal eigenbasis, where vi is associated with µi. We express x = (ξ1, . . . , ξn) in
the basis {vi}. The solution space of the system of equations, x1 + · · ·+ xn = 0 and
ξj = 0 (j < n− 1), is of dimension at least 1. Since it lives in the (ξn−1, ξn) plane, it
intersects the cylinder ξ2

n−1 + ξ2
n = 1. For any point x of the intersection,

‖Bx‖22 =
n∑
i=1

µiξ
2
i = µn−1ξ

2
n−1 + µnξ

2
n ≤ µn−1.

This implies that for this unit vector x,

µn−1 ≥ N
∫
f2(h) dω(h)−O(n3‖x‖22)� N√

n
−O(n3),

and hence,

µn−1 �
N√
n
.(3)

We need a lower bound on the smallest eigenvalue, but almost any one will do. With
N being large enough, we can always assume that for each point xi there exist two
lines, each represented by a distinct row of B, that pass right above and below xi.
The contribution of these two rows to ‖Bx‖22 is of the form Φ2 + (Φ + xi)2, which
is always at least x2

i /2. It follows that ‖Bx‖22 ≥ 1
2‖x‖22, and hence, µn ≥ 1/2.

The lemma follows from (3) and the fact that detB>B is the product of the eigen-
values.

A SPECTRAL APPROACH TO LOWER BOUNDS 553

Of course, the set system B is much too big. Indeed, the map x 7→ Bx is actually
trivial to compute. We use a nonconstructive argument to prove the existence of a
hard n× n set system A. By the Binet-Cauchy formula,4

detB>B =
∑

1≤ j1<···<jn≤N

∣∣∣∣ detB
(
j1 j2 . . . jn
1 2 . . . n

) ∣∣∣∣2 .
Therefore, there exists an n× n submatrix A of B such that

detA>A =
∣∣∣∣ detB

(
j1 j2 . . . jn
1 2 . . . n

) ∣∣∣∣2
≥
(
N

n

)−1

detB>B = Ω(1)n
(n

eN

)n(N√
n

)n−1

≥ nn/2−o(n),

from which we find that

log detA>A ≥
(n

2
− o(n)

)
logn.(4)

By Morgenstern’s result [18], it follows easily that in the absence of any help gates,
halfplane range searching requires Ω(n logn) operations. To be able to deal with help
gates we must collect more information about the spectrum of A>A. Let λ1 ≥ · · · ≥
λn ≥ 0 be the eigenvalues of A>A.

LEMMA 3.3. For some constant c > 0,

λk ≤
cn2 log(k + 1)

k
.

Proof. Let L be a set of representative lines whose corresponding upper halfplanes
define the sets encoded in the rows of A. Subdivide the unit square into a regular
r × r grid of lines (r to be chosen later), and throw in a random sample of r lines
chosen among L. Form the arrangement of these 3r lines and triangulate it. With
high probability, no triangle is cut by more than cn(log r)/r lines of L, and none
contains more than cn/r2 points, for some constant c (assumed large enough for
future purposes). For each triangle write the linear constraint expressing that the
sum of the xi’s within the triangle is null. This gives us a set of k0 ≤ cr2 linear
constraints, called canonical. Assume that all are satisfied. Then, A can be rewritten
in simpler form by means of a sparse matrix C. Specifically, by the zone theorem for
line arrangements, we know that no line can cut more than cr triangles. Therefore,
within the restriction to the constraint space, each row of A corresponds to a linear
form with at most c2n/r nonzero coefficients. Let C be the new matrix formed by
those relevant entries. Note that no column (resp., row) of C contains more than
cn(log r)/r (resp., c2n/r) ones.

It is a standard result [14] that the spectral norm of a matrix Q satisfies

‖Q‖2s ≤
(

max
i

∑
j

|qij |
)(

max
j

∑
i

|qij |
)
,

4The notation refers to the matrix obtained by picking the rows indexed j1, . . . , jn in B.

554 BERNARD CHAZELLE

and therefore the Rayleigh quotient x>C>Cx/x>x (x 6= 0) is at most c3n2(log r)/r2.
As a result, for any x satisfying the canonical constraints and ‖x‖2 = 1, we have

‖Ax‖22 ≤
c3n2 log r

r2 .(5)

Let {ui} be an orthonormal eigenbasis for A>A, where ui is associated with λi. We
express x = (ξ1, . . . , ξn) in the basis {ui}. The solution space of the system of equa-
tions consisting of ξj = 0 (j ≥ k0 +2) and the canonical constraints is of dimension at
least 1. It is embedded in the (k0 + 1)-flat spanned by (ξ1, . . . , ξk0+1), so it intersects
the cylinder ξ2

1 + · · ·+ ξ2
k0+1 = 1. For any point x in the intersection, ‖x‖2 = 1 and

‖Ax‖22 =
n∑
i=1

λiξ
2
i =

k0+1∑
i=1

λiξ
2
i ≥ λk0+1,

so by (5), λk0+1 ≤ c3n2(log r)/r2. In the worst case, k0 is proportional to r2, so the
lemma is true for any k large enough. For small k, we can use the straightforward
bound λk ≤ n2.

From the lemma we find that

log detA>A =
n∑
i=1

log λi

≤ (n− k) log λk +
k∑
j=1

log
cn2 log(j + 1)

j

≤ (n− k) log λk + k(2 logn
− log k + log log k + c′).

In view of (4) we find that we can set k = n/2 − εn, for any fixed ε > 0, and still
derive the lower bound log λk = Ω(logn), which proves Lemma 3.1.

We conclude that halfplane range searching requires Ω(n logn) time, even in the
presence of close to n/4 free computations. Notice that over the reals the problem
can be solved in linear time with only 2n−1 free computations: the circuit is a tree of
help gates whose leaves are the xi’s and whose root “collects” the vector (x1, . . . , xn)
and encodes it as a real. Then, with another n help gates, we can distribute the
correct n outputs: the total number of help gates is 2n− 1. This completes the proof
of Theorem 1.1.

Appendix. We prove (2): M+
r (n,m) ≤ 3nVm(r), for n > m. Let C be the

set of cubes counted by M+
r (n,m). Any cube c ∈ C has at least one (n − m)-face

intersecting F ∩ Bn(O, r) in exactly one point (call it qc). This face is supported by
an (n −m)-flat which is specified by fixing exactly m integer coordinates. In other
words, it is specified by an integral point pc in the m-flat spanned by a set of m axes.
Since by convexity such a point pc corresponds to at most 2n−m(n−m)-faces and at
most 2m cubes can share the same (n − m)-face, counting the number of points pc
gives an upper bound on M+

r (n,m), up to a factor of 2n. Of course, we can restrict
the counting to the number of integral points that lie within any of the projections
of F ∩ Bn(O, r) onto m-flats spanned by xi1 , . . . , xim . Furthermore, we can discount
projections that map F to a flat of dimension less than m (because qc is uniquely
defined). Let Ei1,...,im be the ellipsoid obtained by projecting F ∩ Bn(O, r) onto

A SPECTRAL APPROACH TO LOWER BOUNDS 555

the flat (xi1 , . . . , xim). We say that a point pc is peripheral if it is the upper corner
(upper with regard to all m dimensions) of a cube not fully contained in the projected
ellipsoid, and we let N denote the total number of peripheral points. We have

M+
r (n,m) ≤ 2nN + 2n

∑
1≤i1<···<im≤n

volEi1,...,im .(6)

Let v1, . . . , vm be an orthonormal basis for F and let U be the n ×m matrix whose
columns are the vi’s. (Note that U>U is the identity matrix.) The determinant of the
m ×m submatrix of U specified by the rows (i1, . . . , im) is equal, in absolute value,
to the volume of Ei1,...,im divided by Vm(r). (We need only sketch the proof of this
simple fact: lift to F the principal vectors of the ellipsoid and scale them to unit
length; this provides an orthonormal basis for F that satisfies the claim. Because the
basis {vi} can be derived from it by a unitary transformation within F , the claim
follows.) By the Binet-Cauchy formula, the determinant of U>U can be expressed as

∑
1≤ i1<···<im≤n

∣∣∣∣ detU
(
i1 i2 . . . im
1 2 . . . m

) ∣∣∣∣2 ,
and by Cauchy-Schwarz,

∑
i1,...,im

volEi1,...,im ≤ Vm(r)
(
n

m

)1/2√
detU>U = Vm(r)

(
n

m

)1/2

.

On the other hand, in the flat (xi1 , . . . , xim), every cube of the unit lattice that
has a vertex in Ei1,...,im and that intersects ∂Ei1,...,im does so along at least one edge:
at most four such edges can be collinear, and no more than 2m−1 cubes can charge the
same edge. Projecting Ei1,...,im by dropping one coordinate gives an (m− 1)-ellipsoid
whose integral points are contained in an (m − 1)-ball of radius r. Within a factor
of 2m+1, the total number of such points is an upper bound on N . Each such point
is the upper corner of a distinct unit cube in a ball of radius r +

√
m− 1; therefore,

N ≤ m2m+1
(
n
m

)
Vm−1(r +

√
m− 1), and by (6),

M+
r (n,m) ≤ m 4n

(
n

m

)
Vm−1(r +

√
m− 1) + 2n

(
n

m

)1/2

Vm(r).

As r goes to infinity the second term becomes dominant, and for n large enough, (2)
follows.

Acknowledgments. I wish to thank Dick Lipton, Ran Raz, Avi Wigderson, and
Andy Yao for helpful discussions. I also thank the referees for many useful comments
and suggestions.

REFERENCES

[1] R. ALEXANDER, Geometric methods in the study of irregularities of distribution, Combinator-
ica, 10 (1990), pp. 115–136.

[2] N. ALON, M. KARCHMER, AND A. WIGDERSON, Linear circuits over GF(2), SIAM J. Comput.,
19 (1990), pp. 1064–1067.

[3] A. AMIR, R. BEIGEL, AND W. GASARCH, Some connections between bounded query classes and
nonuniform complexity, 5th Annual IEEE Structure in Complexity Theory Conference,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 232–243.

556 BERNARD CHAZELLE

[4] J. BECK AND W. W. L. CHEN, Irregularities of Distribution, Cambridge Tracts in Mathematics
89, Cambridge University Press, Cambridge, 1987.

[5] R. B. BOPPANA AND M. SIPSER, The complexity of finite functions, in Handbook of Theo-
retical Computer Science, Vol. A, Algorithms and Complexity, MIT Press/Elsevier, Cam-
bridge/New York, 1990, pp. 757–804.

[6] J. Y. CAI, Lower bounds for constant depth circuits in the presence of help bits, in Proc.
30th Annual Symp. Foundation Comput. Sci., (FOCS), IEEE Computer Society Press,
Los Alamitos, CA, 1989, pp. 532–537.

[7] B. CHAZELLE, Lower bounds on the complexity of polytope range searching, J. Amer. Math.
Soc., 2 (1989), pp. 637–666.

[8] B. CHAZELLE, Geometric discrepancy revisited, in Proc. 34th Annual IEEE Symp. Foundation
Comput. Sci., (FOCS), IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 392–
399.

[9] B. CHAZELLE, Computational geometry: A retrospective, in Computing in Euclidean Geometry,
2nd ed., D.-Z. Du and F. Hwang, eds., World Scientific Press, River Edge, NJ, 1995, pp. 22–
46.

[10] B. CHAZELLE, J. MATOUŠEK, AND M. SHARIR, An elementary approach to lower bounds in
geometric discrepancy, Discrete Comput. Geom., 13 (1995), pp. 363–381.

[11] M. L. FREDMAN, Lower bounds on the complexity of some optimal data structures, SIAM J.
Comput., 10 (1981), pp. 1–10.

[12] M. GRÖTSCHEL, L. LOVÁSZ, AND A. SCHRIJVER, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, New York, 1988.

[13] J. VON ZUR GATHEN, Algebraic complexity theory, Ann. Rev. Comput. Sci., 1988, pp. 317–347.
[14] P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, 2nd ed., Academic Press,

New York, 1985.
[15] J. MATOUŠEK, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom.,

10 (1993), pp. 157–182.
[16] J. MATOUŠEK, Geometric range searching, Tech. Report B-93-09, Free Univ. Berlin, 1993.
[17] K. MEHLHORN, Data Structures and Algorithms 3: Multidimensional Searching and Compu-

tational Geometry, Springer-Verlag, Heidelberg, 1984.
[18] J. MORGENSTERN, Note on a lower bound of the linear complexity of the fast Fourier trans-

form, J. ACM, 20 (1973), pp. 305–306.
[19] K. MULMULEY, Computational Geometry: An Introduction Through Randomized Algorithms,

Prentice–Hall, Englewood Cliffs, NJ, 1994.
[20] V. STRASSEN, Algebraic complexity theory, in Handbook of Theoretical Computer Science, Vol.

A, Algorithms and Complexity, MIT Press/Elsevier, Cambridge/New York, 1990, pp. 633–
672.

INCREMENTAL STRING COMPARISON∗

GAD M. LANDAU† , EUGENE W. MYERS‡ , AND JEANETTE P. SCHMIDT§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 557–582, April 1998 012

Abstract. The problem of comparing two sequences A and B to determine their longest common
subsequence (LCS) or the edit distance between them has been much studied. In this paper we
consider the following incremental version of these problems: given an appropriate encoding of a
comparison between A and B, can one incrementally compute the answer for A and bB, and the
answer for A and Bb with equal efficiency, where b is an additional symbol? Our main result is
a theorem exposing a surprising relationship between the dynamic programming solutions for two
such “adjacent” problems. Given a threshold k on the number of differences to be permitted in
an alignment, the theorem leads directly to an O(k) algorithm for incrementally computing a new
solution from an old one, as contrasts the O(k2) time required to compute a solution from scratch.
We further show, with a series of applications, that this algorithm is indeed more powerful than
its nonincremental counterpart. We show this by solving the applications with greater asymptotic
efficiency than heretofore possible. For example, we obtain O(nk) algorithms for the longest prefix
approximate match problem, the approximate overlap problem, and cyclic string comparison.

Key words. string matching, edit-distance, dynamic programming

AMS subject classification. 68P99

PII. S0097539794264810

1. Introduction. Sequence comparison is an extensively studied topic. Appli-
cations are numerous and include file comparison [HS-77], spelling correction [HD-80],
information retrieval [WM-92], and searching for similarities among biosequences
[NW-70, Se-80, SW-81]. Given string A = a1a2a3 . . . am and B = b1b2b3 . . . bn, one
seeks an alignment between the two strings that exposes their similarity. An align-
ment is any pairing of symbols subject to the restriction that if lines were drawn
between paired symbols as in Figure 1 below, the lines would not cross. Scores are
assigned to alignments according to the concept of similarity or difference required by
the context of the application, and one seeks alignments of optimal score [WF-74].

While for applications such as comparing protein sequences the methods of scor-
ing can involve arbitrary scores for symbol pairs and for gaps of unaligned symbols,
in many other contexts simple unit cost schemes suffice. Two of these, the longest
common subsequence (LCS) and the edit-distance measures, have been studied exten-
sively within computer science, and the unit cost nature of the scoring provides com-
binatorial leverage not found in the more general framework [Hi-77, HS-77, NKY-82,
Uk-85a, Uk-85b, My-86a, LV-89, GP-90]. In the edit distance problem, each mis-
matched aligned pair and unaligned symbol is called a difference and scores 1. All

∗Received by the editors March 21, 1994; accepted for publication (in revised form) March 27,
1996.

http://www.siam.org/journals/sicomp/27-2/26481.html
†Department of Computer Science, Polytechnic University, 6 MetroTech, Brooklyn, NY 11201

(landau@pucs2.poly.edu). The research of this author was partially supported by NSF grant
CCR-9305873 and the New York State Science and Technology Foundation Center for Advanced
Technology.
‡Department of Computer Science, University of Arizona, Tucson, AZ 85721 (gene@cs.

arizona.edu). The research of this author was partially supported by NLM grant LM-04960, NSF
grant CCR-9002351, and DOE grant DE-FG05-91ER61132.
§Department of Computer Science, Polytechnic University, 6 MetroTech, Brooklyn, NY 11201

(jps@pucs4.poly.edu). The research of this author was partially supported by NSF grants CCR-
9305873 and HRD-9627109 and by the New York State Science and Technology Foundation Center
for Advanced Technology.

557

558 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

A T G C G

A A T G C

T T C TAC

T T C C T T

Gap

Unaligned Symbol

Mismatch

LCS = ATGCTTCT

Edit Distance = 5

FIG. 1. An alignment between two strings.

pairs of equal aligned characters score 0. One seeks an alignment that minimizes the
score or number of differences and this minimal score, ED(A,B), is called the edit
distance between A and B. Conversely, in the LCS problem matched pairs score 1,
mismatches and unaligned symbols score 0, and the goal is to find an alignment of
maximum score LCS(A,B). In this case, the sequence of matched characters is a
subsequence common to both sequences and is of maximum length, hence the name
longest common subsequence. Figure 1 illustrates these measures.

Although certainly complementary, the LCS and edit distance problems are not
formal duals. The LCS problem is equivalent to finding the minimum edit distance,
where mismatches are not allowed, or equivalently, where a mismatch scores 2, so that
it is no better than leaving the two characters unaligned. The reader may wish to
also verify that the edit distance problem is equivalent to the following “LCS-like”
problem: find an alignment of maximum score where matches score 1, unaligned
characters score 0, and mismatches score 1

2 .
In this paper we consider the following incremental version of the sequence com-

parison problem: given a solution for the comparison of A and B, can one in-
crementally compute a solution for A versus bB, where b is an additional symbol
prepended to B? By solution we mean some encoding of a relevant portion of the
traditional dynamic programming matrix D computed in comparing A and B. D is
an (m + 1) × (n + 1) matrix, where entry D[i, j] is the best score for the problem
of comparing Ai with Bj , and Ai is the prefix, a1a2 . . . ai, of A’s first i symbols.
As will be seen in detail later, the data-dependencies of the fundamental recurrence,
used to compute an entry D[i, j], is such that it is easy to extend D to a matrix D′

for A versus Bb by computing an additional column. However, efficiently comput-
ing a solution for A versus bB given D is much more difficult, in essence requiring
one to work against the “grain” of these data-dependencies. The further observa-
tion that the matrix for A versus B, and that the matrix for A versus bB can differ
in O(mn) entries, suggests that the relationship between such adjacent problems is
nontrivial.

One might immediately suggest that by comparing the reverse of A and B,
prepending symbols becomes equivalent to appending symbols, and so the problem,
as stated, is trivial. But in this case, we would ask for the delivery of a solution for A
versus Bb. The point is that our method allows one to append and prepend symbols
to A and/or B in any order, efficiently solving one problem from the previous one.
More formally, given an initial solution S(0) for A(0) = A versus B(0) = B, and a
sequence of operations op(t) that either prepend or append a single symbol to A(t−1)

or B(t−1) to produce A(t) and B(t), we can deliver the corresponding sequence of so-
lutions S(t) with linear efficiency. Moreover, we can do so online, i.e., the sequence of

INCREMENTAL STRING COMPARISON 559

operations need not be known in advance. To keep matters simple, however, we will
focus on the core problem of computing a solution for A versus bB, given a “forward”
solution for A versus B. A “forward” solution of the problem contains an encoding
of a comparison of all (relevant) prefixes of A with all (relevant) prefixes of B. It
turns out that the ability to efficiently prepend a symbol to B when given all the
information contained in a “forward” solution allows one to solve the applications
given in section 4 with greater asymptotic efficiency than heretofore possible.

As an example of such application, consider the problem of approximate string
matching within k differences: find all substrings of a text B of length n whose edit
distance from a query A is not greater than threshold k. With our O(k) incremental
version of the well-known O(n+ k2) greedy algorithm for edit distance, the problem
can be solved in O(nk) time by starting with an empty text and building it up from
the right, one character at a time. Proceeding formally, let Bl denote the suffix of
B starting at its l + 1st symbol, bl+1bl+2 . . . bn. Begin the search by building the
trivial k-thresholded solution for A versus Bn (= ε). Then incrementally compute
the solutions to A versus Bl for l = n − 1, n − 2, n − 3 . . . 0 in O(k) time per step.
While the overall time, O(nk), is no better than previous results, [LV-89, GP-90], the
algorithm is superior in that for each left index l it reports all right indexes r, (and
for each right index r it hence reports all left indexes l), delimiting a substring Brl =
bl+1bl+2 . . . br that matches A within k differences. For each such match-pair (l, r),
the algorithm delivers the number of differences, ED(A,Brl), in the match. Previous
algorithms either report for each right index r, the matches with the smallest number
of differences ending at r (the “forward” solution), or report the matches with the
smallest number of differences starting at l (the “backward” solution). In our solution
at each potential left-index l, the entire k-thresholded solution for A versus Bl is
available and can be examined in O(k) time to find any corresponding right-indices
and their match score. In addition, if A does not match any prefix of Bl with at most
k differences, we can report the longest prefix of A that matches a prefix of Bl with
k differences. If desired, one can also build an O(nk) table T [0 . . . n][−k . . . k] during
the search where T [l][r− (l+m)] equals ED(A,Brl), if (l, r) delimits a k-match (i.e.,
a match with at most k differences) and k + 1 otherwise. The table T is a record
of all k-matches found, as r must be in the interval [l + m − k, l + m + k] if (l, r)
delimits a k-match. It is impossible for previous string-matching algorithms to be
augmented (1) to report, at each position of B, the longest prefix of A matching with
k differences, (2) to build T , or, equivalently, (3) to report all k-matching substrings
and their match distances in O(nk) time. Such a capability is essential, for example,
if one is searching for the best match under a scoring criterion that is a complex
function of the length and number of differences in the match.

The algorithmic results of this paper hinge on what we find to be the rather
surprising fact that there are exploitable relationships between the dynamic program-
ming solutions of adjacent problems computed by several well-known comparison algo-
rithms for LCS and edit distance. Throughout the paper we will focus on formulating
incremental versions of the well-known O(n + k2) greedy algorithms for finding the
edit distance and the LCS between two sequences [My-86a, LV-88]. A similar and
somewhat simpler incremental version [My-86b] also holds for the O(r logn) Hunt–
Szymanski algorithm [HS-77]. After a presentation of preliminary concepts and a
review of the O(n+ k2) greedy algorithm in section 2, we present the main theorem
exposing the relationship between adjacent solutions and sketch an incremental algo-
rithm based on it in section 3. Section 4 then presents four applications of incremental
algorithms in order to demonstrate the power of such algorithms.

560 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

A G G A T A T T A
0 1 2 3 4 5 6 7 8 9 0

A 1 0 1 2 3 4 5 6 7 8 1
T 2 1 1 2 3 3 4 5 6 7 2
G 3 2 1 1 2 3 4 5 6 7 3
G 4 3 2 1 2 3 4 5 6 7 4
T 5 4 3 2 2 2 3 4 5 6 5
A 6 5 4 3 2 3 2 3 4 5 6
T 7 6 5 4 3 2 3 2 3 4 7
A 8 7 6 5 4 3 2 3 3 3 8

0 1 2 3 4 5 6 7 8 9

FIG. 2. A sample dynamic programming matrix.

2. Preliminaries.

2.1. The dynamic programming algorithm. Consider the problem of com-
puting the edit distance between strings A = a1a2 . . . am and B = b1b2 . . . bn where
without loss of generality we assume that m ≤ n hereafter. The well-known dy-
namic programming algorithm [NW-70, WF-74] computes an (m+ 1)× (n+ 1) edit-
distance matrix D[0 . . .m][0 . . . n], where entry D[i, j] is the edit distance ED(Ai, Bj)
between the prefixes Ai and Bj of A and B, and where Ai = Ai0 = a1 . . . ai and
Bj = Bj0 = b1 . . . bj as defined in the introduction. Figure 2 gives an example of the
matrix D[0 . . . 8, 0 . . . 9] for A = ATGGTATA versus B = AGGATATTA. The edit
distance between A and B is given in entry D[8, 9] which is 3. Conceptually we think
of D as an (m+ 1)× (n+ 1) grid of points (i, j) to which we assign value D[i, j].

A best alignment between Ai = a1 . . . ai and Bj = b1 . . . bj must either (1) leave
ai unaligned and optimally align Ai−1 and Bj , (2) leave bj unaligned and optimally
align Ai and Bj−1, or (3) align ai and bj and optimally align Ai−1 and Bj−1. This
observation leads immediately to the following fundamental dynamic programming
recurrence.

LEMMA 2.1. For all i+ j > 0,

D[i, j] = min

 D[i−1, j] + 1 if i > 0
D[i, j−1] + 1 if j > 0
D[i−1, j−1] + δai,bj if i, j > 0

where δa,b is 1 or 0 depending on whether or not a = b, respectively.

Coupled with the obvious boundary condition that D[0, 0] = 0, this recurrence
can be used to efficiently compute the O(mn) entries of the matrix D in an order
of i and j that observes the data-dependencies of the recurrence, i.e., an order that
computes D[i−1, j], D[i, j−1], and D[i−1, j−1] before D[i, j]. Traditionally, the
lexicographical order of (i, j) (which clearly observes data-dependencies) is used to
determine the value of the equation in Lemma 2.1 in O(1) time. An algorithm based
on this recurrence thus takes O(mn) time to compute the value of every point of D.
The edit distance ED(A,B) is delivered in D[m,n].

The matrix D has a number of useful monotonicity properties with respect to
diagonals that are essential to our result.

DEFINITION 2.2. Diagonal d is the list of all points (i, j) for which j = i+ d.
Note that with this definition the lowest, leftmost diagonal is numbered −m and

the highest, rightmost diagonal is numbered n. The first essential property is that
values are nondecreasing along diagonals and never increase by more than one.

INCREMENTAL STRING COMPARISON 561

LEMMA 2.3 (see [Uk-85a]). For all points (i, j): D[i, j]−D[i−1, j−1] ∈ {0, 1}.
The second essential property is that adjacent values in adjacent diagonals never

differ by more than one.
LEMMA 2.4 (see [Uk-85b]). For all points (i, j): D[i, j]−D[i−1, j], D[i, j]−D[i, j−

1] ∈ {−1, 0, 1}.

2.2. The greedy algorithm. In the mid-80s [NKY-82, Uk-85a] came upon
the idea of computing the points of the matrix D in an order dictated by a greedy
approach, (i.e., to compute the values in nondecreasing order), instead of the lexico-
graphic order of (i, j). In this way entries whose values are 0 are computed first, then
those whose values are 1, and then 2, and so on until either (i) some threshold k is
reached, or (ii) the value D[m,n] is determined.

By Lemma 2.1, D[0, j] = j for j = 0, . . . , n, and D[i, 0] = i for i = 0, . . . ,m.
By Lemma 2.3, the values along a diagonal are nondecreasing, so that D[0, d] (resp.,
D[d, 0]) are the smallest values on diagonal d, (resp., −d). We conclude that all values
not greater than k are on diagonals −k,−k+ 1, . . . , k in D, and there are therefore at
most (2k + 1)m entries with such values. This idea gives rise to an O(km) algorithm
to determine the k-thresholded edit distance of A and B.

The algorithm can be realized by a modified version of Dijkstra’s shortest path
algorithm on a directed, weighted edit graph G = (V,E). V consists of the set of all
points (i, j) of D. For each point (i, j) there is an edge into it from (i−1, j) weighted
1, another from (i, j−1) also weighted 1, and a third edge from (i−1, j−1) weighted
δai,bj . For points along the left and upper boundaries of D, there is an edge from a
predecessor of (i, j) only if the predecessor exists. Observe that the edge weights are
chosen in exact correspondence with Lemma 2.1, and that D[i, j] is the length of the
shortest path from (0, 0) to (i, j) in this edit graph. The algorithm stops when either
(i) the distance to (m,n) is determined, or (ii) the first node with distance greater
than k from (0, 0) is reached. Since the lengths of all paths are integers in [0 . . . k],
and the outdegree of each node in the graph is at most 3, a standard modification of
Dijkstra’s algorithm will run in O(km) time and space.

Ukkonen [Uk-85a] noticed that it suffices to determine, for all h, the last h on
each diagonal d of the matrix D, as this determines all other values in D by Lemma
2.3. More precisely, let Lh(d) denote the largest row index of a point on diagonal d
that has value h.

DEFINITION 2.5. Lh(d) = max { i : D[i, i+d] = h }.
Figure 3 illustrates this definition by labeling just these furthest h-points with their

values. Note that the row number, i = Lh(d), of the furthest h-point on diagonal d
identifies the point itself as (i, i + d). So henceforward, we will liberally use Lh(d)
to denote either the point (i, i+ d) or the row i. The interpretation of Lh(d) will be
obvious from context.

As observed earlier, there are no h-points outside diagonals [−h . . . h]. Thus it
suffices to compute for each value h, the h-wave.

DEFINITION 2.6. Lh = 〈Lh(−h), Lh(−h+1), . . . , Lh(0), . . . , Lh(h−1), Lh(h)〉.
That is, Lh is the orderered list consisting of the 2h + 1 furthest h-points in

diagonals −h up to h.
The algorithm then computes wave Lh, for h = 0, 1, 2, . . . , until either (i) a wave

e is computed for which Le(n−m) = m, or (ii) wave Lk is computed in the case that
the algorithm is thresholded by k. In the event that termination is by condition (i) it
follows that ED(A,B) = D[m,n] = e.

Note that the highest values on some of the diagonals may be less than h. In
Figure 3 for example, the highest value in diagonal −2 is 2 (in D[8, 6]), and L3(−2)

562 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

A G G A T A T T A
• 0

A 0 1 2 • 1
T • • 3 2
G • 1 2 3 3
G 1 • 4
T • 2 • 5
A • • 6
T • 2 • 7
A 2 3 3 3 8

3 3 ∞

0 1 2 3 4 5 6 7 8 9 ∞

FIG. 3. The h-waves of the matrix of Figure 2.

therefore does not exist, as there is no 3-point in diagonal −2. We handle this overflow
by adding a “dummy” point Lh(d) with value ∞ to wave h, whenever no real point
Lh(d) exists, so that Lh always has 2h + 1 points. In addition, when the extreme
point on diagonal d has value h, it is also convenient to set Lh(d) to ∞ whenever (1)
this extreme point is (m,m+ d), D[m,m+ d] = h, and D[m,m+ d+ 1] = h− 1, or
when (2) this extreme point is (n−d, n), D[n−d, n] = h, and D[n−d+ 1, n] = h−1.
Intuitively, this is justified because if we were to extend the matrix D with one more
row and column, then D[m+1,m+d+1] (resp., D[n−d+1, n+1]) would still always
have value h, regardless of how we interpret the “dummy” character associated with
that row (resp., column). This is shown in Figure 3, where L3(−3) is shown outside
the boundary of the matrix and hence assigned ∞, although the preceding point on
that diagonal, D[8, 5], also has value 3.

Given wave Lh−1, wave Lh is computed from it by induction. Consider i =
Lh−1(d), the furthest (h−1)-point in diagonal d, and a corresponding optimal align-
ment between Ai and Bj , where j = i+d. The alignment involves h−1 differences
and ai+1 6= bj+1, as otherwise (i+1, j+1) would also be an (h−1)-point (a contra-
diction). Observe that in this case this alignment can be maximally extended, with
one additional difference, in the following three ways: (1) leave ai+1 unaligned and
then align ai+1+q with bj+q for q > 0 as long as the symbols are equal, (2) leave bj+1
unaligned and then align ai+q with bj+1+q for q > 0 as long as the symbols are equal,
and (3) mismatch ai+1 with bj+1 and then align ai+1+q with bj+1+q for q > 0 as long
as the symbols are equal. In each case, we visualize the alignment of equal symbols
as “sliding down” the relevant diagonal: d− 1 in case (1), d+ 1 in case (2), and d in
case (3).

We capture such a substring of equal characters, resulting in a slide down a
diagonal, with the following definition.

DEFINITION 2.7. Slided(i) = max{ q : Aqi = Bq+di+d }.
That is, Slided(i) corresponds to a slide in diagonal d starting on row i. In order

to correctly handle the cases where Lh(d) is or becomes ∞, we define Slided(i) =∞,
when i > m or i + d > n. Note that by definition Slided(i) = i when i = m or
i+ d = n.

The gist of earlier papers was a proof that the furthest point reached in di-
agonal d over the relevant extensions from the points Lh−1(d − 1), Lh−1(d), and

INCREMENTAL STRING COMPARISON 563

Lh−1(d + 1) on wave h − 1 is the point Lh(d).1 Combining this with the identity,
max{Slided(a), Slided(b)} = Slided(max{a, b}), leads to the following recurrence for
a furthest h-point in terms of furthest (h−1)-points.

LEMMA 2.8.

For all h > 0, Lh(d) = Slided

max

 Lh−1(d+ 1) + 1 if d < h− 1
Lh−1(d) + 1 if −h < d < h
Lh−1(d− 1) if d > −h+ 1

 .

Using Lemma 2.8 one can immediately compute the 2h+1 points of wave Lh,
given the 2h−1 points of wave Lh−1. The induction of the algorithm is started by
observing that wave L0 is the single point L0(0) = Slide0(0).

In Figure 3 the furthest points of waves 0 through 3 are indicated by the placement
of their value at their location, and the solid circles annotate points that the function
Slide extends through to reach a furthest point. Note that many of the points in the
matrix D of Figure 2, that have value 3 or less, are not marked in Figure 3.

The time complexity of the greedy algorithm depends on the efficiency with which
the function Slide is realized. When Slide is computed by a brute-force comparison
of the relevant characters, computing s = Slided(i) takes O(s−i) time, resulting in
O(km) total time. However, Myers [My-86a] has shown that when one of the strings,
say A, is a random string2 then the algorithm takes O(m + k2) expected time. This
result is true even if B is chosen so as to maximize the time spent by the Slide function.

2.3. An O(n+ k2) algorithm. The worst-case time of the previous algorithm
is improved to O(n+ k2) by computing Slide in constant time [My-86a, LV-88].

In a preprocessing step one computes a suffix tree [Wn-73, Mc-76] of the string
AxBy = a1a2 . . . amxb1b2 . . . bny where x 6= y are two symbols not in the alphabets
of A and B. One further preprocesses this suffix tree using any of the algorithms
[HT-84, SV-88, BV-93], to allow any LCA (least common ancestor) query over the
tree to be answered in O(1) time. This preprocessing takes O(n) time.3

For given indices i, j the Slide function must return the largest q for which
ai . . . ai+q = bj . . . bj+q. The key observation is that this q can be retrieved from
the suffix tree described above with an LCA query in O(1) time. Specifically, it has
been shown that Slided(i) = depth(LCA(leaf(i),leaf(m + 1 + i + d))) where leaf(t) is
the leaf in the suffix tree for suffix (AxBy)t, LCA(u, v) is the LCA of vertices u and
v, and depth(v) is the length of the string that labels the path from the root of the
suffix tree to vertex v.

As noted earlier, wave Lh has 2h+ 1 points, each of which can now be computed
in O(1) time. Thus it takes O(k2) worst-case time to compute the (k + 1)2 points in
waves L0 through Lk after the initial O(n) preprocessing. This results in an O(n+k2)
worst-case time algorithm.

3. The central theorem and basic algorithm. Given two stringsA = a1a2 . . .
am and B = b1b2 . . . bn, we now show how to compute the k+1 waves L0

new, . . . , L
k
new

of the edit-distance matrix Dnew[i, j] of A and bB, when given the k + 1 waves
L0
old, . . . , L

k
old of the edit-distance matrix Dold[i, j] of A versus B.

1This is not immediately obvious as indicated by the fact that this property is not true for more
general, weighted-cost comparison models.

2Specifically, the result of Bernoulli trials over a finite distribution.
3O(n log Σ) time if the alphabet size, Σ, is not considered fixed.

564 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Dnew, when viewed as a leftward extension of Dold, is an (m+1)× (n+2) matrix
Dnew[0 . . .m][−1 . . . n], with main diagonal labeled −1. Labeling the columns in Dnew

from −1 to n (as opposed to 0 . . . n + 1) has the advantage that entry Dnew[i, j]
corresponds to the edit distance, ED(Ai, bBj) between the prefixes Ai and bBj of
A and bB, establishing the correspondence of the points Dnew[i, j] and Dold[i, j].
Furthermore, for any index pair (i, j) that is valid in both Dold and Dnew, Slidej−i(i)
is the same in both matrices.

Since the waves for Dnew are computed after those for Dold have been computed,
we shall refer to Lhold and Dold as the old h-wave and old matrix and to Lhnew and Dnew

as the new h-wave and matrix. We show that Lhnew is composed of a concatenation
of a prefix of Lh+1

old , a sublist of Lhold, a suffix of Lh−1
old , and at most two points p1 and

p2, separating the sublists of Lold, not included in any of the old waves Lh−1
old , Lhold,

Lh+1
old . Furthermore, the two points p1 and p2 can be computed in O(1) time and the

entire list Lhnew can be pasted together from the lists Lh+1
old , Lhold, L

h−1
old in O(1) time.

The following five observations define the concepts and terminology needed to
formulate and prove our central theorem.

The first observation relates the values in the matrices Dold and Dnew. We note
that any alignment between Ai and Bj with k differences can easily be used to obtain
an alignment between Ai and bBj with at most k + 1 differences, and any alignment
between Ai and bBj with k differences can easily be used to obtain an alignment
between Ai and Bj with at most k + 1 differences. This implies the following.

Observation 1.

∀(i, j) ∈ [0 . . .m, 0 . . . n], Dold[i, j]− 1 ≤ Dnew[i, j] ≤ Dold[i, j] + 1
∀i ∈ [0 . . .m], Dnew[i,−1] = i.

Dold is not defined on (i,−1). The point following (i,−1) on diagonal −i−1 is (i+1, 0)
and Dold[i+ 1, 0] = i+ 1.

The second observation is an immediate consequence of the recurrence for com-
puting Lh(d) from Lh−1(d−1), Lh−1(d), and Lh−1(d+1) given in Lemma 2.8. Recall
that we identify the points on a given diagonal by their row number. Hence, an in-
equality p > q (even if p and q are not on the same diagonal) is always interpreted as
“the row number of p is higher than the row number of q.”

Observation 2. If the three points of wave Lg−1
old on diagonals d− 1, d, and d+ 1

are all less than or equal to (resp., greater than or equal to) the three points on
those diagonals for Lh−1

new , then Lgold(d) ≤ Lhnew(d) (resp., Lgold(d) ≥ Lhnew(d)). If
the three points on the two waves are all equal, then clearly Lgold(d) = Lhnew(d).
Furthermore, if max{Lg−1

old (d+ 1) + 1, Lg−1
old (d) + 1, Lg−1

old (d− 1)} is less than or equal
to max{Lh−1

new(d+ 1) + 1, Lh−1
new(d) + 1, Lh−1

new(d− 1)}, then Lgold(d) ≤ Lhnew(d).
In the following it will be important to distinguish how a given point Lh(d) got

its value in the equation of Lemma 2.8. We will say that
Lh(d) was obtained from above iff Lh(d) = Slided(Lh−1(d+ 1) + 1).
Lh(d) was obtained diagonally iff Lh(d) = Slided(Lh−1(d) + 1).
Lh(d) was obtained from the left iff Lh(d) = Slided(Lh−1(d− 1)).

Note that a point can be obtained in more than one way.
Our third observation compares the scope of the new h wave with the scope of

the old h− 1, h, and h+ 1 wave.
Observation 3. Wave Lhnew = 〈Lhnew(−h− 1), . . . , Lhnew(h− 1)〉, and so it has a

point on each of diagonals −h− 1 through h− 1 and only these diagonals. Similarly,
observe that Lgold has a point on each (and only) the diagonals −g through g. Thus

INCREMENTAL STRING COMPARISON 565

the leftmost diagonal of Lhnew, −h− 1, is also the leftmost diagonal of Lh+1
old and both

Lhold and Lh−1
old do not have a point on this diagonal or to the left of this diagonal. On

the other hand, the rightmost diagonal of Lhnew, h− 1 is also the rightmost diagonal
of Lh−1

old , and both Lhold and Lh+1
old do have a point on this diagonal as well as to the

right of this diagonal.
Crucial to our central result is the idea of the key value of a point, p = Lhnew(d), on

a new wave, which describes p’s position relative to points in the old waves. Informally,
if a point p = Lhnew(d) of a new wave coincides with a point Lgold(d) of an old wave,
then the key value of p is the wave number, g, of the old wave. The other possibility
is that p is an in-between point that does not coincide with any old point and, in this
case, its key value is g− 1

2 , where g is the smallest wave number for which p < Lgold(d).
Note that if wave Lg−1

old has a point on diagonal d, then clearly p lies on diagonal d
between the points of the old g − 1 and g waves; hence the term in-between point.

DEFINITION 3.1. Formally, for a point p on diagonal d,

key(p) = min { g : g ∈
{

0,
1
2
, 1, 1

1
2
, . . . ,

}
and

(
p = L

bgc
old (d) or p < L

bg+ 1
2 c

old (d)
)
}.

In terms of key values, Observation 1 yields the following fact.
Observation 4. ∀ h, d, h− 1 ≤ key(Lhnew(d)) ≤ h+ 1.
Also in terms of key values, Observations 2 and 3 yield the following.
Observation 5. If key(Lhnew(d − 1)), key(Lhnew(d)), and key(Lhnew(d + 1)) are all

≤, =, or ≥ g, (for g ∈ {h − 1, h, h + 1}), then key(Lh+1
new(d)) is ≤, =, or ≥ g + 1,

respectively. However, Lh+1
new(d) may exist, although some of the above h-wave points

do not exist, i.e., when d is in {−h−2,−h−1, h−1, h}. If those that do exist all have
key values ≤ g, then it still follows that key(Lh+1

new(d)) ≤ g+ 1. Greater care has to be
taken for the = and ≥ case. If for all diagonals δ ∈ {d−1, d, d+1}, for which Lhnew(δ)
does not exist, Lgold(δ) does not exist either, and all other relevant h-wave points have
key values = or ≥ g, then key(Lh+1

new(d)) will still be =, or ≥ g + 1, respectively.
We now have the concepts and terminology needed to proceed with our central

theorem.
THEOREM 3.2. Lhnew is the concatenation of (up to) five pieces: (i) a prefix of

Lh+1
old , (ii) an in-between point p1, with key(p1) = h+ 1

2 , (iii) a sublist of Lhold, (iv) an
in-between point p2, with key(p2) = h− 1

2 , and (v) a suffix of Lh−1
old . Each individual

piece may be empty.
Proof. The proof of Theorem 3.2 is essentially by induction on h, but we will first

show that certain monotonicity properties imply Theorem 3.2 and then prove these
properties inductively.

We will prove that the following monotonicity property on key values holds for
all h waves. The key values of the points along Lhnew are nonincreasing and strictly
decreasing around in-between points as one proceeds from left to right (i.e., from
diagonal −h− 1 to h− 1). Formally, we have the following key property.

First key property. For d ∈ [−h, h− 1], bkey(Lhnew(d− 1))c ≥ key(Lhnew(d)).
Observation 4 says that all key values on Lhnew are between h− 1 and h+ 1. The

first key property says that key values are strictly decreasing along in-between points
and are otherwise nonincreasing. This implies that there is at most one point with
key value h+ 1

2 , (and it is to the right of any points with key value h+ 1, and to the
left of any points with key value h), and at most one point with key value h− 1

2 , (to
the right of any points with key value h, and to the left of any points with key value
h− 1). It follows that the first key property implies that Lhnew is the concatenation of
the (up to) five pieces given in Theorem 3.2.

566 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

We shall prove by induction on h that the first key property holds for all h waves.
Before proceeding with a formal proof, we provide some intuition on why the

Theorem holds and, at the same time, point to some of the difficulties in proving it.
Suppose that Lhnew is indeed a concatenation of a prefix 〈Lh+1

old (−h− 1), . . . , Lh+1
old (r)〉

of Lh+1
old , a point p1 on diagonal r + 1, a sublist 〈Lhold(r + 2), . . . , Lhold(s)〉 of Lhold, a

point p2 on diagonal s + 1, and a suffix 〈Lh−1
old (s + 2), . . . , Lhold(h − 1)〉 of Lh−1

old . By
Observation 2, clearly Lh+1

new will be equal to Lh+2
old on diagonals −h− 2 . . . r − 1, will

be equal to Lh+1
old on diagonals r + 3 . . . s − 1, and will be equal to Lhold on diagonals

s+3 . . . h−1. It is hence easy to see that the Theorem can be proven by induction for
“most points.” One of the difficulties lies in proving that at most one of the diagonals
in {r, r + 1, r + 2} and at most one in {s, s + 1, s + 2} can contain an in-between
point. A further (more serious) difficulty comes from the fact that any individual
piece (of the five pieces composing Lhnew) can be empty, resulting in the necessity
to examine an enormous number of cases. In addition, points on extreme diagonals
behave differently than points on the inner diagonals. In particular, since the various
scopes of the waves Lhnew, Lh−1

new , Lh−1
old , Lhold, and Lh+1

old are different, special care has
to be taken to cover all cases, where a diagonal is in the scope of one wave but outside
the scope of another (see Observations 3 and 5).

Therefore, instead of proving Theorem 3.2 directly, we choose to prove that the
first key property holds for all waves. This will allow us to reduce the number of cases
we need to examine significantly, although a large number still remain.

In order to prove the first key property, it is very helpful to have established the
following second key property for wave h, which is implied by the first key property
on wave h− 1, as shown below in Lemma 3.3.

Second key property. If key(Lhnew(d))=g+ 1
2 , then Lg+1

old (d) was obtained from
above.

In other words, the second key property asserts that if there is a new point p in
diagonal d between the g- and g+1-points of the old waves, then the g+1-point must
have been obtained from the g-point on diagonal d+ 1.

See Figure 4(a) for an illustration of the situation.
The second key property is quite intuitive, but its proof is not immediate. Key

values (on wave h− 1) are nonincreasing, hence if the old g+ 1 value was not reached
on diagonal d in the new h wave, it would seem likely that this happened because the
key value on diagonal d+ 1 of Lh−1

new “dropped below” g, and the old g + 1 point was
obtained from this “missing” old g point, Lgold(d+ 1).

The remainder of the proof of Theorem 3.2 is complex enough that we capture
it in three lemmas below. First we prove in Lemma 3.3 that if the first key property
holds on new wave h−1, then the second holds on new wave h. Then a useful corollary
(Lemma 3.4) of Lemma 3.3 is given. Finally, with the aid of the second key property
and its corollary, we complete the proof of Theorem 3.2 by inductively showing the
first key property to hold for all waves in Lemma 3.5.

LEMMA 3.3. If the first key property holds up to wave h − 1 of Dnew, then the
second key property holds up to wave h of Dnew.

Proof. The lemma is proven by induction on h.
Basis: Wave L0

new has only one point, which is on diagonal −1. By Observation 4
key(L0

new(−1)) ≤ 1, and since L0
old does not have a point on diagonal −1, we also

know that key(L0
new(−1)) > 0. Hence key(L0

new(−1)) is either 1 or 1
2 . L1

old(−1),
(whether it collides with the new zero point or not) was obtained from the (only) old
zero point L0

old(0), i.e., from above. It follows that the second key property holds for
wave 0 of Dnew.

INCREMENTAL STRING COMPARISON 567

L

old

old

g

g+1

g
L

old
g-1

L

old

old L

L

g+1

L

L

g

>0-Lold
g-1

old

-

g
old

>0

(a) (b)

d d+1

p

dd-1

r

p

(=q)

FIG. 4. The second key property. Old points are shown as solid circles and new points as open
squares. (a) If the new point p has key value g + 1

2 , then Lg+1
old (d) was obtained from above, i.e.,

from Lgold(d+ 1). (b) Shown are new points p and r on diagonals d and d− 1 with key values g− 1
2

and g+ 1
2 , respectively. The second key property implies that p could not have been obtained from r.

Induction: Assume that our claim holds for all new waves up to wave h− 1, i.e.,
given an in-between point Lh−1

new(d) with key(Lh−1
new(d)) = g − 1

2 , Lgold(d) was obtained
from Lg−1

old (d+ 1). As easily seen in Figure 4(a), with p = Lh−1
new(d) and g replaced by

g − 1, the inductive assumption implies that
(1) if key(Lh−1

new(d)) = g − 1
2 , then Lg−1

old (d+ 1) ≥ Lh−1
new(d).

Henceforward, consider an in-between point p = Lhnew(d), for which key(Lhnew(d)) =
g+ 1

2 . That is, Lgold(d) (if it exists) < p < Lg+1
old (d), and Observation 4 further implies

that g ∈ {h− 1, h}.
To prove the second key property it suffices to show that q = Lg+1

old (d) could not
have been obtained diagonally or from the left. If Lgold(d) exists, then Slided(L

g
old(d)+

1) is at most p as Lgold(d) < p and p is a furthest point. Thus since p < q, q could not
have been obtained diagonally.

It remains to show that q could not have been obtained from the left. Again we
only need to examine the case when Lgold(d−1) exists. (If it did not exist, then clearly
q could not have been obtained from the left.) This implies by Observation 3 that
d− 1 ≥ −g, and since g ≤ h, d− 1 is at least −h and Lh−1

new(d− 1) exists also.
The assumption that key(p) = g+ 1

2 , (p = Lhnew(d)) implies by Observation 5 that
one of the three points Lh−1

new(d−1), Lh−1
new(d), Lh−1

new(d+1) must have a key value greater
than g−1, and since key(Lh−1

new(d−1)) ≥ key(Lh−1
new(d)) (if it exists) ≥ key(Lh−1

new(d+1))
(if it exists), it must always be that the key value of r = Lh−1

new(d− 1) is greater than
g − 1. Hence key(r) = g − 1

2 or key(r) ≥ g.
key(r) ≥ g means that r = Lh−1

new(d− 1) ≥ Lgold(d− 1); hence if q = Lg+1
old (d) were

obtained from Lgold(d − 1) (i.e., the left), then Lh−1
new(d − 1) would produce a point

greater than or equal to q, but Lhnew(d), the point reached on diagonal d, is strictly
less than q, which is a contradiction.

We now show that assuming that key(r) = g− 1
2 leads to a contradiction because

none of the three points Lh−1
new(d − 1), Lh−1

new(d), or Lh−1
new(d + 1) could have produced

Lhnew(d). Figure 4(b) will help in understanding the argument that follows. Since
r = Lh−1

new(d−1) is an in-between point in this case, it follows from (1) that Lg−1
old (d) ≥

r; hence r cannot produce p = Lhnew(d), a point with key value (much) higher than

568 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

g − 1. On the other hand, key(Lh−1
new(d − 1)) = g − 1

2 implies that the key values of
both Lh−1

new(d) and Lh−1
new(d + 1) are at most g − 1 (if they exist); hence neither could

have produced Lhnew(d) with key value g + 1
2 .

We have shown that for all legal key values of Lh−1
new(d− 1), q could not have been

obtained from the left, and we have shown earlier that q could not have been obtained
diagonally. It must be that q was obtained from the right.

The following lemma is an immediate corollary of Lemma 3.3.
LEMMA 3.4. If the first key property holds up to wave h − 1, then the following

holds. If key(Lh−1
new(d)) = g − 1

2 , then key(Lhnew(d+ 1)) ≤ g. Moreover, if Lhnew(d+ 1)
was obtained from Lh−1

new(d), then key(Lhnew(d+ 1)) ≤ g − 1.
Proof. Since Lh−1

new(d) is an in-between point, Lgold(d) was obtained from Lg−1
old (d+

1). As observed earlier and seen in Figure 4(a), it must be the case that Lg−1
old (d+1) ≥

Lh−1
new(d). Hence Slided+1(Lh−1

new(d)) cannot be greater than Lg−1
old (d + 1) (a furthest

point), which proves the second part of the lemma. Moreover, if the first key property
holds for wave h− 1, the key values of both Lh−1

new(d+ 1) and Lh−1
new(d+ 2) are at most

g − 1, and hence key(Lhnew(d+ 1)) ≤ g by Observation 2.
We conclude the proof of Theorem 3.2 by proving by induction that the first key

property holds for all waves in Dnew.
LEMMA 3.5. The first key property holds for all waves in Dnew.
Proof. The proof is by induction on h.
Basis: Wave 0 in Dnew has only one point L0

new(−1). The first key property
therefore trivially holds for L0

new.
Induction: Assume now that the first key property holds up to wave h−1 and the

second key property holds up to wave h. We shall prove that the first key property also
holds for wave h. To achieve this it suffices to examine all adjacent pairs of diagonals
in wave h and to prove the required inequality on their key values. Henceforward
consider the pair of points Lhnew(d) and Lhnew(d + 1). The proof is divided into two
cases depending on whether Lhnew(d) is the leftmost point of the wave.

Case 1. Diagonal d is not the leftmost (lowest) diagonal on Lhnew, i.e., d ≥ −h.
By Observation 3, Lh−1

new also has a point on diagonal d. On the other hand, we
do not assume that d < h − 1, and hence the point Lh−1

new(d + 1) may not exist. Let
g = bkey(Lh−1

new(d))c and note that by Observation 4, g ∈ {h − 2, h − 1, h}, and by
definition, key(Lh−1

new(d)) ∈ {g, g + 1
2}. We now further divide the proof of this case

into four subcases depending on the key values of Lh−1
new(d) and Lh−1

new(d+1) in relation
to g. Table 1 illustrates the four cases factored into two conditions on the key value of
Lh−1
new(d) and two conditions on the key value of Lh−1

new(d+1), and for each case gives the
implication on the key values of Lhnew(d) and Lhnew(d+ 1) that will be proven below.
Note in each of the four cases we prove that bkey(Lhnew(d))c ≥ key(Lhnew(d+ 1)).

Subcase 1(a). key(Lh−1
new(d)) = g and key(Lh−1

new(d+ 1)) = g.
It suffices to show that key(Lhnew(d)) ≥ g + 1 ≥ key(Lhnew(d + 1)). Either
key(Lh−1

new(d + 2)) does not exist, (i.e., d + 1 is the rightmost diagonal of
Lh−1
new), or by the first key property on wave h − 1 key(Lh−1

new(d + 2)) ≤ g. In
either case, Observation 5 implies key(Lhnew(d + 1)) ≤ g + 1. We now show
that key(Lhnew(d)) ≥ g + 1. Either key(Lh−1

new(d − 1)) ≥ g, (by the first key
property on wave h−1), or key(Lh−1

new(d−1)) does not exist because d = −h is
the leftmost diagonal of wave Lh−1

new , in which case, by Observation 3, neither
Lh−2
old , L

h−1
old , nor Lhold have points on diagonal d−1, and d is also the leftmost

diagonal on Lgold. In either case, Observation 5 implies key(Lhnew(d)) ≥ g+ 1.
Subcase 1(b). key(Lh−1

new(d))=g and key(Lh−1
new(d+ 1))≤g − 1

2 (or doesn’t exist).
If key(Lhnew(d+1)) ≤ g we are immediately done, as Lhnew(d) is always greater
than Lh−1

new(d), and since key(Lh−1
new(d)) = g, we have key(Lhnew(d)) > g. So

INCREMENTAL STRING COMPARISON 569

TABLE 1
The key values of the pair Lhnew(d), Lhnew(d + 1), as implied by the key values of the pair

Lh−1
new(d), Lh−1

new(d+ 1).

key(Lh−1
new(d + 1)) = g key(Lh−1

new(d + 1)) ≤ g − 1
2 (or doesn’t exist)

key(Lh−1
new(d)) = g key(Lhnew(d)) ≥ g + 1 ≥ key(Lhnew(d + 1))

key(Lhnew(d)) > g ≥ key(Lhnew(d + 1))
or

key(Lhnew(d)) ≥ g + 1 ≥ key(Lhnew(d + 1)) > g

key(Lh−1
new(d)) = g + 1

2 key(Lhnew(d)) ≥ g + 1 ≥ key(Lhnew(d + 1)) key(Lhnew(d)) ≥ g + 1
2 > key(Lhnew(d + 1))

we assume key(Lhnew(d + 1)) ≥ g + 1
2 and show that key(Lhnew(d)) ≥ g +

1 ≥ key(Lhnew(d + 1)). Lhnew(d + 1) got its value from one of the points in
{Lh−1

new(d), Lh−1
new(d+1), Lh−1

new(d+2)}. Since all three points have key values of
g or less, clearly key(Lhnew(d+1)) ≤ g+1. In addition, since key(Lh−1

new(d+1))
is either g− 1

2 or ≤ g−1, key(Lh−1
new(d+2)) (if it exists) ≤ g−1 by the first key

property, and cannot produce Lhnew(d+1), a point with key value greater than
g. Lh−1

new(d+ 1) (if it exists) < Lgold(d+ 1), (by definition of Subcase 1(b)) and
hence Lh−1

new(d+1) cannot produce a point beyond Lgold(d+1) either. It follows
that Lhnew(d + 1) got its value from the left, (i.e., from Lh−1

new(d) = Lgold(d)).
Since key(Lhnew(d+ 1)) is also ≥ g + 1

2 , it must be the case that

Lh−1
new(d) > Lgold(d+ 1); and by Subcase 1(b) Lgold(d+ 1) > Lh−1

new(d+ 1).

It follows that Lhnew(d) was not obtained from above. If Lh−1
new(d − 1) exists,

then key(Lh−1
new(d−1)) ≥ g, (by the first key property), otherwise d = −h and

Lgold(d − 1) does not exist either (since by Observation 3 none of the three
relevant old waves have a point on diagonal −h). Thus Lhnew(d) was obtained
from the left or diagonally, and both of these source points in the Lh−1

new wave
have key values of g or greater (or do not exist on both Lh−1

new and Lgold). Thus
by Observation 5 key(Lhnew(d)) ≥ g + 1.

Subcase 1(c). key(Lh−1
new(d)) = g + 1

2 and key(Lh−1
new(d+ 1)) = g.

Immediately note that because key(Lh−1
new(d)) = g+ 1

2 ∈ [h−2, h] by Observa-
tion 4, it follows that g < h. It suffices to show that key(Lhnew(d)) ≥ g + 1 ≥
key(Lhnew(d + 1)). Lemma 3.4 immediately implies that key(Lhnew(d + 1)) ≤
g+1. Lh−1

new(d) and Lh−1
new(d+1) have key values g or more and the key value of

Lh−1
new(d−1) (if it exists) is also > g (by the first key property). If Lh−1

new(d−1)
does not exist, then Lgold(d) does not exist either, (Observation 3), and it
follows from Observation 5 that key(Lhnew(d)) ≥ g + 1.

Subcase 1(d). key(Lh−1
new(d))=g+ 1

2 and key(Lh−1
new(d+1))≤g− 1

2 (or doesn’t exist).
It suffices to show that key(Lhnew(d)) ≥ g + 1

2 > key(Lhnew(d + 1)). Clearly
Lhnew(d) > Lh−1

new(d) and hence key(Lhnew(d)) ≥ g + 1
2 . The first key property

on wave h − 1 implies that key(Lh−1
new(d + 2)) ≤ g − 1 (if it exists); hence

key(Lhnew(d+ 1)) ≤ g if it was obtained from above. Similarly, key(Lhnew(d+
1)) ≤ g if it was obtained diagonally, as key(Lh−1

new(d + 1)) ≤ g − 1
2 . Lastly,

the second part of Lemma 3.4 also implies key(Lhnew(d + 1)) ≤ g if it was
obtained from Lh−1

new(d), whose key value is g + 1
2 . Thus, regardless of how it

was obtained, key(Lhnew(d+ 1)) ≤ g.
Case 2. Diagonal d is the leftmost (lowest) diagonal on Lhnew, i.e., d = −h− 1.
This case is not covered by Table 1, since Lh−1

new(d) does not exist. We need

570 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

to prove that bkey(Lhnew(−h − 1))c ≥ key(Lhnew(−h)). The key value of the point
Lh−1
new(−h), (the leftmost point on Lh−1

new), is strictly greater than h − 1, since Lh−2
old

and Lh−1
old do not have a point on diagonal −h, (Observation 3), and obviously ≤ h

by Observation 4; hence key(Lh−1
new(−h)) ∈ {h, h− 1

2}.
Subcase 2(a). key(Lh−1

new(−h)) = h.
Lh−1
new does not have a point on either diagonal −h − 1 or −h − 2; hence

Lhnew(−h − 1) was obtained from Lh−1
new(−h) which is the same point as

Lhold(−h) since key(Lh−1
new(−h)) = h. Lhold does not have points on these two

diagonals either; hence Lh+1
old (−h− 1) was obtained from Lhold(−h). It follows

that Lhnew(−h−1) = Lh+1
old (−h−1), or equivalently key(Lhnew(−h−1)) = h+1.

Since all key values on the new h wave are less or equal to h + 1, (Observa-
tion 4), key(Lhnew(−h)) ≤ h+ 1, which proves the required inequality.

Subcase 2(b). key(Lh−1
new(−h)) = h− 1

2 .
In this case key(Lh−1

new(−h+1))(if it exists) ≤ h−1, (by the first key property),
(while Lh−1

new(−h − 1) does not exist), and hence if Lhnew(−h) was obtained
from above, then key(Lhnew(−h)) ≤ h. On the other hand, if Lhnew(−h) was
obtained diagonally, we also have key(Lhnew(−h)) ≤ h, since Lh−1

new(−h) <
Lhold(−h), and Lhold(−h) is a furthest point. On the other hand, (as noted
earlier), the key value of the lowest diagonal on the new h wave (Lhnew(−h−1))
is always strictly greater than h, which proves that key(Lhnew(−h− 1)) > h ≥
key(Lhnew(−h)). This terminates the proof of this last subcase and hence the
proof of Lemma 3.5.

In summary, Observation 4 says that all key values on Lhnew are between h−1 and
h+1, and Lemma 3.5 shows that for all diagonals−h−1 ≤ d < h−1, bkey(Lhnew(d))c ≥
key(Lhnew(d+ 1)). The key values are hence nondecreasing and Lhnew has at most two
in-between points. It follows that Theorem 3.2 holds: Lhnew can be pasted together
from a prefix of Lh+1

old , a sublist of Lhold, and a suffix of Lh−1
old and at most two additional

points, which may occur between sublists. Any individual piece may be empty.

3.1. Formal presentation of algorithm. We now show how Theorem 3.2 and
the lemmas and observations of the previous subsection directly lead to an efficient
algorithm for computing L0

new . . . L
k
new from L0

old . . . L
k
old.

Suppose the wave Lhnew has been constructed, and let Lhnew[a . . . b] denote the
sublist 〈Lhnew(a), Lhnew(a + 1), . . . , Lhnew(b)〉 of Lhnew, (when b < a Lhnew[a . . . b] de-
notes the empty list). Let δ1 ∈ {0, 1} be the number of points on Lhnew with key
value h + 1

2 , and let δ2 ∈ {0, 1} be the number of points with key value h − 1
2 .

Define ph1 to be the largest (rightmost) diagonal for which key(Lhnew(ph1)) = h +
1, or let ph1 be −h − 2 if no such diagonal exists. Similarly, let ph2 = max{d :
(key(Lhnew(d)) = h) or (d = ph1 + δ1)}. Theorem 3.2 says that Lhnew[−h− 1 . . . ph1]
= Lh+1

old [−h− 1 . . . ph1], Lhnew[ph1 + 1 + δ1 . . . p
h
2] = Lhold[p

h
1 + 1 + δ1 . . . p

h
2], and that

Lhnew[ph2 + 1 + δ2 . . . h− 1] = Lh−1
old [ph2 + 1 + δ2 . . . h− 1]. Notice that the above equal-

ities hold even if individual pieces are empty. By Observation 2 it follows that if
Lhnew[a . . . b] = Lgold[a . . . b], then Lh+1

new[a+ 1 . . . b− 1] = Lg+1
old [a+ 1 . . . b− 1]. In ad-

dition, if g = h + 1, we also have Lh+1
new[a] = Lg+1

old [a], and if g = h − 1 we also have
Lh+1
new[b] = Lg+1

old [b]. Thus, all of Lh+1
new is determined by these equalities except for the

two or three points on the diagonals in the interval [ph1 , p
h
1 + 1 + δ1] and the two or

three points on the diagonals in the interval [ph2 , p
h
2 + 1 + δ2]. In addition, Lemma 3.4

implies that if key(Lhnew(ph2 + 1)) = h− 1
2 , (i.e., δ2 = 1), then key(Lh+1

new(ph2 + 2)) ≤ h,
and hence key(Lh+1

new(ph2 + 2)) = h (since all key values on Lh+1
new are at least h). Simi-

INCREMENTAL STRING COMPARISON 571

larly, if key(Lhnew(ph1 + 1)) = h+ 1
2 , (i.e., δ1 = 1), then key(Lh+1

new(ph1 + 2)) ≤ h+ 1, and
if in addition ph2 > ph1 + 2, then key(Lh+1

new(ph1 + 2)) = h+ 1. Thus, the only points on
Lh+1
new that cannot be determined by merely examining the key value of the points on

Lhnew are the four points on diagonals ph1 , ph1 + 1, ph2 , and ph2 + 1.
If Lgold is a doubly linked list so that, given a pointer to Lgold(d), one can move

to Lgold(d − 1) or Lgold(d + 1) in constant time, and each diagonal across the waves
is a doubly linked list, so that given a pointer to Lgold(d), one can move to Lg+1

old (d)
or Lg−1

old (d) in constant time, we can construct Lh+1
new from Lhnew and the old L waves

by performing at most O(1) computations and pointer changes. To do so requires
knowing the break diagonals ph1 and ph2 of Lhnew and determining the new break diago-
nals ph+1

1 and ph+1
2 during the computation of Lh+1

new. Notice that all but O(1) of the
diagonal links from Lhnew to Lh+1

new will be imported directly from the corresponding
diagonal links of Lh−1

old , L
h
old, and Lh+1

old so that only those for the points on diagonals
ph1 , ph1 + 1, ph2 , ph2 + 1 need to be recomputed. A formal algorithmic description is
given in Figures 5, 6, and 7, which shows that such a cross-linked structure can be
maintained to realize an incremental update in O(k) time of L0

new, . . . , L
k−1
new.

For reasons of simplicity, the explicit algorithm in Figures 5, 6, and 7 is given as if
the waves were stored in an array and O(1) access to Lhnew(d), for any d, were possible.
The cross-linked structure is clearly necessary to realize an incremental update in O(k)
time, but the description of the algorithm is much simpler in the latter form. The
reader can verify that, given the cross-linked structure and pointers to Lhnew(ph1) and
Lhnew(ph2), as well as to Lh+1

old (ph1 + 1) and Lhold(p
h
2 + 1), every pertinent wave element

in Construct new wave in Figure 6 is O(1) links away from either of these four “break
pointers,” or the first element of a completed new wave or an as yet unused old
wave. In more detail (which is not necessary to understand the explicit algorithms in
Figures 5, 6, and 7), the following elements can be accessed in O(1) time.

1. The firstO(1) elements of Lhnew and Lh+2
old : Lhnew(−h−1+O(1)) and Lh+2

old (−h−
2 +O(1)).

2. All points on Lhnew within O(1) diagonals of ph1 and ph2 : Lhnew(ph1 ±O(1)) and
Lhnew(ph2 ±O(1)).

3. Points on old waves that are identical to the above points:
Lh+1
old [−h− 1 . . . ph1] = Lhnew[−h− 1 . . . ph1].

4. The first O(1) points on the suffixes of the relevant old L lists:
Lh+1
old (ph1 + 1 +O(1)) and Lhold(p

h
2 + 1 +O(1)).

5. Points accessible from any of the above points through old diagonal links:
Lh+2
old (ph1), which is diagonally linked to Lh+1

old (ph1) = Lhnew(ph1), as well as
Lh+2
old (ph1±O(1)). If Lhnew(ph2) = Lhold(p

h
2) (which is always true when ph2 > ph1 +

1), then Lh+1
old (ph2) is accessible through the diagonal link from Lhold(p

h
2), and

hence Lh+1
old (ph2±O(1)) is also accessible in O(1) time. If Lhnew(ph2) < Lhold(p

h
2),

(and hence ph2 ∈ {ph1 , ph1 +1}), then Lh+1
old (ph2 ±O(1)) is still accessible in O(1)

steps, as ph2 = ph1 +O(1).
The computation of the last wave Lknew and its diagonal links from and to Lk−1

new

may take an additional O(k) time since the required Lk+1
old piece and its diagonal links

from Lkold have not been computed previously and need to be computed now (see lines
6 and 7 in Figure 7). In total, the computation of the k waves requires computing
O(k) new points and updating O(k) links. The computation of each new point is done
by calling the Slide function (line 2 in Figure 6), which takes O(1) time. In total the
computation of the k waves for Dnew takes O(k) time, when given the k waves for D,
cross-linked across waves and diagonals as described above.

572 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Procedure Construct new wave(h, ph1 , p
h
2 , p

h+1
1 , ph+1

2)
1. Lh+1

new[−h−2 . . . ph1−1]← Lh+2
old [−h−2 . . . ph1−1]

2. Compute(Lh+1
new(ph1))

3. Compute(Lh+1
new(ph1 + 1))

4. ph+1
1 ←

 ph1 − 1 if Lh+1
new(ph1) < Lh+2

old (ph1)
ph1 if Lh+1

new(ph1) = Lh+2
old (ph1) and Lh+1

new(ph1 + 1) < Lh+2
old (ph1 + 1)

ph1 + 1 otherwise
5. if ph2 > ph1 + 2 then
6. { Lh+1

new[ph1+2 . . . ph2−1]← Lh+1
old [ph1+2 . . . ph2−1]

7. Double Link(Lh+1
new(ph1 + 2), Lh+1

new(ph1 + 1))
8. }
9. if ph2 ≥ ph1 + 2 then Compute(Lh+1

new(ph2))
10. if ph2 ≥ ph1 + 1 then Compute(Lh+1

new(ph2 + 1))

11. ph+1
2 ←

 ph2 − 1 if Lh+1
new(ph2) < Lh+1

old (ph2)
ph2 if Lh+1

new(ph2) = Lh+1
old (ph2) and Lh+1

new(ph2 + 1) < Lh+1
old (ph2 + 1)

ph2 + 1 otherwise
12. if ph2 + 2 ≤ h then
13. { Lh+1

new[ph2+2 . . . h]← Lhold[p
h
2+2 . . . h]

14. Double Link(Lh+1
new(ph2 + 2), Lh+1

new(ph2 + 1))
15. }

FIG. 5. Construction of Lh+1
new from Lhnew and auxiliary pointers.

Procedure Compute(Lhx(d))
1. if x = new then δ ← 1 else δ ← 0

2. Lhx(d)← Slided

max

 Lh−1
x (d+ 1) + 1 if d < h− 1− δ

Lh−1
x (d) + 1 if −h− δ < d < h− δ

Lh−1
x (d− 1) if d > −h+ 1− δ

3. if h > 0 and d > −h− δ then
4. { Double Link(Lhx(d), Lhx(d− 1))
5. if d < h− δ then Double Link(Lhx(d), Lh−1

x (d))
6. }

FIG. 6. Computation of Lhnew(d) or Lhold(d) and update of all relevant pointers.

Procedure New Wave
1. L0

new(−1)← Slide−1(0)
2. p0

2 ← −1
3. if L0

new(−1) < L1
old(−1) then p0

1 ← −2 else p0
1 ← −1

4. for h← 0 to k − 2 do
5. Construct new wave(h, ph1 , p

h
2 , p

h+1
1 , ph+1

2)
6. for d← −k − 1 to pk1 + 1 do
7. Compute(Lk+1

old (d))
8. Construct new wave(k − 1, pk−1

1 , pk−1
2 , pk1 , p

k
2)

FIG. 7. Construction of L0
new . . . L

k
new from the corresponding old waves.

3.2. An analogous theorem for longest common subsequences. As
pointed out in the introduction, the model in which one allows insertions and dele-
tions, called indels, but not mismatches is an important variation because it is dual

INCREMENTAL STRING COMPARISON 573

to finding the longest common subsequence. A theorem similar to Theorem 3.2, but
simpler, holds in this situation. We simply sketch the result here, since the proof
method and outline remain the same.

When mismatches are not allowed, several of the preliminary lemmas of section
2 change in small ways. In Lemma 2.1, the term δai,bj should be multiplied by
two, as a substitution can now only be achieved by an insertion and deletion. In
Lemma 2.3, values increase along a diagonal by zero or two, i.e., D[i, j]−D[i−1, j−1] ∈
{0, 2}. Next note that with an even number of indels one must end in an even
numbered diagonal and an odd diagonal with an odd number of indels. Thus for this
variation of the problem, an h-wave has h+ 1 points on every other diagonal, i.e., Lh

= 〈Lh(−h), Lh(−h+2), . . . , Lh(h−2), Lh(h)〉. Finally, in Lemma 2.8, one must drop
the term Lh−1(d) + 1 from the 3-way maximum as it represents the contribution of
extension via a substitution. As a consequence, a point is either obtained from the
left or from above.

We continue to define key values as in Definition 3.1. Note however that the
diagonals on a new h wave do not contain old h points, and hence an in-between
point p on Lhnew is between the old h− 1 and the old h+ 1 wave. As a result of our
definitions, a key value of a point p on a new h wave will assume one of the three
values in {h− 1, h+ 1

2 , h+ 1}. In spirit, all the observations in section 3 continue to
hold with the obvious modifications that follow from the fact that points can only be
obtained in two ways. Theorem 3.2 becomes the following.

THEOREM 3.6. Wave h in Dnew (Lhnew) is the concatenation of (up to) three
pieces: (i) a prefix of Lh+1

old , (ii) an in-between point p with key(p) = h + 1
2 , and (iii)

a suffix of Lh−1
old . Not all pieces must be present.

The proof of Theorem 3.6 is in some sense a subset of the proof of Theorem 3.2.
So rather than prove it formally, we sketch the main elements and leave the details as
an exercise. The informal statement of the first key property remains the same, but
its formal statement becomes the following.

First key property. For d ∈ [−h+1, h−1], bkey(Lhnew(d− 2))c ≥ key(Lhnew(d)),
to account for the fact that only alternate diagonals are relevant. This first key
property can similarly be proven by induction on h using the second key property
and its immediate consequence, the analogue of Lemma 3.4.

Second key property. If key(Lhnew(d))=h+1
2 , then Lh+1

old (d) was obtained from
above.

Because the proof in this case is simpler, we combine the proof of the second key
property and of the analogue of Lemma 3.4 in Lemma 3.7.

LEMMA 3.7. If the first key property holds up to wave h, and if key(Lhnew(d)) =
h+ 1

2 , then (1) key(Lh+1
old (d)) was obtained from above, and key(Lh+1

new(d+ 1)) = h.
Proof (sketch). The proof is by induction.
Basis: We need to show that if key(L0

new(−1)) = 1
2 , then L1

old(−1) was obtained
from above and key(L1

new(0)) = 0. L1
old(−1) (whether it collides with L0

new(−1) or
not) was obtained from the (only) old zero point L0

old(0), i.e., from above. In addition,
if key(L0

new(−1)) = 1
2 , then L0

new(−1) must be ≤ L0
old(0); hence L1

new(0) will be equal
to L0

old(0).
Induction: Assume that Lemma 3.7 holds up to wave h. Consider an in-between

point Lhnew(d), for which key(Lhnew(d)) = h+ 1
2 . We need to show that Lh+1

old (d) could
not have been obtained from the left and that key(Lh+1

new(d+ 1)) = h. key(Lhnew(d)) =
h + 1

2 implies that one of the two points Lh−1
new(d − 1), Lh−1

new(d + 1) must have a key
value of h− 1

2 or h, and since key(Lh−1
new(d− 1)) ≥ key(Lh−1

new(d+ 1)), it must be that
key(Lh−1

new(d − 1)) ∈ {h − 1
2 , h}. key(Lh−1

new(d − 1)) = h − 1
2 can be ruled out, since it

574 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Procedure Construct new LCS wave(h, ph, ph+1)
1. Lh+1

new[−h− 2...ph − 1]← Lh+2
old [−h− 2...ph − 1]

2. Compute LCS(Lh+1
new(ph + 1))

3. ph+1 ←
{
ph − 1 if Lh+1

new(ph + 1) < Lh+2
old (ph + 1)

ph + 1 otherwise
4. Lh+1

new[ph + 3..h]← Lhold[p
h + 3...h]

5. Double Link(Lh+1
new(ph + 3), Lh+1

new(ph + 1))

FIG. 8. Construction of Lh+1
new from Lhnew and auxiliary pointers.

Procedure Compute LCS(Lhx(d))
1. if x = new then δ ← 1 else δ ← 0

2. Lhx(d)← Slided

(
max

{
Lh−1
x (d+ 1) + 1 if d < h− δ

Lh−1
x (d− 1) if d > −h− δ

})
3. if h > 0 and d > −h− δ then
4. { Double Link(Lhx(d), Lhx(d− 2))
5. if d < h− δ then Double Link(Lhx(d), Lh−1

x (d+ 1))
6. }

FIG. 9. Computation of Lhnew(d) or Lhold(d) and update of all relevant pointers.

contradicts the inductive hypotheses, which says that in this case key(Lhnew(d)) = h−1.
If Lh+1

old (d) was obtained from Lh−1
new(d−1) (i.e., the left) and key(Lh−1

new(d−1)) = h, we
would have key(Lhnew(d)) = h+1; again a contradiction. Hence Lh+1

old (d) was obtained
from Lhold(d+ 1) (i.e., from above). This in turn implies that Lhold(d+ 1) ≥ Lhnew(d).
If Lh+1

new(d + 1) was obtained from Lhnew(d), then the above inequality would imply
that Lh+1

new(d + 1) ≤ Lhold(d + 1), but since Lh+1
new(d + 1) ≥ Lhold(d + 1) (always), it

follows in this case that Lh+1
new(d + 1) = Lhold(d + 1). On the other hand by the first

key property on wave h, key(Lhnew(d+ 2)) = h− 1; hence if Lh+1
new(d+ 1) was obtained

from Lhnew(d + 2), we also have Lh+1
new(d + 1) = Lhold(d + 1). Hence regardless of how

Lh+1
new(d+ 1) was obtained, key(Lh+1

new(d+ 1)) = h.
Given the second key property and Lemma 3.7, the proof of the first key property,

and hence Theorem 3.6, is outlined in a nutshell as follows. Given a pair of consecutive
points on wave h, Lhnew(d − 2) and Lhnew(d), we consider the point Lh−1

new(d − 1).
If key(Lh−1

new(d − 1)) = g, (g ∈ {h − 2, h}), then key(Lhnew(d − 2)) ≥ g + 1, while
key(Lhnew(d)) ≤ g+ 1. If Lh−1

new(d− 1) is an in-between point, then key(Lh−1
new(d− 1)) =

h − 1
2 , and by Lemma 3.7 key(Lhnew(d)) = h − 1, while key(Lhnew(d − 2)) is always

greater than or equal to h− 1.

3.3. Explicit algorithm for LCS. The explicit algorithm given in Figures 8, 9,
and 10 is similar to and simpler than the one for edit distance. Waves are still doubly
linked lists, with Lh(d) doubly linked to Lh(d− 2) and Lh(d+ 2). Diagonal-links will
be slightly different in that Lh(d + 1) is linked to Lh+1(d) (as Lh+1 does not have a
point on diagonal d + 1). ph is defined as the largest (rightmost) diagonal on Lhnew
for which key(Lhnew(ph)) = h+ 1 and is set to −h− 2 if there is no such diagonal.

4. Four applications. The power of the incremental algorithm of the proceed-
ing section is that it delivers an encoding of the dynamic programming solution for
each and every problem so obtained. In the context of the four applications of this
section, this feature of the method allows the algorithm to completely explore the
space of solutions to each subproblem. In the case of some of the applications, this

INCREMENTAL STRING COMPARISON 575

Procedure New LCS Wave
1. L0

new(−1)← Slide−1(0)
2. if L0

new(−1) < L1
old(−1) then p0 ← −2 else p0 ← −1

3. for h← 0 to k − 2 do
4. Construct new LCS wave(h, ph, ph+1)
5. for d← −k − 1 to pk1 + 1 by 2 do
6. Compute LCS(Lk+1

old (d))
7. Construct new LCS wave(k − 1, pk−1, pk)

FIG. 10. Construction of L0
new . . . L

k
new from the corresponding old waves.

is essential to their efficient solution, and in others it provides leverage not found in
previous algorithms that can only keep track of the best solution to a set of sub-
problems. For each application, we show how to apply the incremental algorithm as
a subprocedure and focus on how its wave structure is processed at each stage to
provide the desired solutions.

Before proceeding with the description of the applications, we introduce a no-
tation for the wave structure that is different from the one introduced in section 3
but is convenient for the discussion of applications. In section 3 we showed how to
compute the k + 1 waves L0

new, . . . , L
k
new of the edit-distance matrix Dnew[i, j] of A

and bB, when given the k+ 1 waves L0
old, . . . , L

k
old of the matrix Dold[i, j] of A versus

B. In all of our applications the overall outline of the algorithm is to start with a
k-thresholded solution for A versus some suffix Bs of B. (Recall that Brl is the sub-
string bl+1bl+2 . . . br, and that Bl = Bnl and Br = Br0 .) When s = n this is the trivial
solution of A versus the empty string, and when s < n the initial solution can be com-
puted with the standard O(n+ k2) algorithm. Thereafter, the application algorithm
incrementally computes the solutions to A versus Bl for l = s− 1, s− 2, . . . , 0 using
the incremental algorithm of section 3 as a subroutine.

At any moment we will have k + 1 waves L0, L1 . . . Lk modeling the solution to
a comparison between some suffix Bl of B and A. Let the origin diagonal for this
problem be l, and denote by Dl the dynamic programming matrix of the comparison
of A with Bl. Further let Ch(d) = Lh(l+d) denote the wave value that is at diagonal
d of the matrix Dl. In this way Lh = 〈Ch(−h), Ch(−(h− 1)), . . . , Ch(h− 1), Ch(h)〉
regardless of the suffix of B at hand. Recall from the preliminaries that, in order to
be compliant with the recursion for computing Lh in terms of Lh−1, it was convenient
to sometimes set Lh(d) to ∞ even though the extreme point on diagonal d in D had
value h. But in the context of our applications, it is now convenient to reset these ∞
values so that Ch always holds the furthest h point on the corresponding diagonal,
within the boundary of D, if such an h point exists. Formally if Lh(l + d) =∞ while
Lh−1(l + d) 6= plast(d), where plast(d) = min{m,n − l − d} is the row number of the
last point on diagonal d in matrix D, then set Ch(d) = plast(d). Note that the D
value of plast(d) on diagonal d is indeed equal to h in this case. It is easy to see that
this “adjustment” of values can be done O(k) time per Dl matrix.

Recall from the previous section that each wave is implemented as a doubly linked
list so that given a pointer to Ch(d) one can move to Ch(d−1) or Ch(d+1) in constant
time, and each diagonal across the waves is in a doubly linked list so that given a
pointer to Ch(d) one can move to Ch+1(d) or Ch−1(d) in constant time.

4.1. Approximate string matching and longest prefix. The approximate
string matching problem was used in the introduction as an example of how our
incremental alignments algorithm could be used to find all matching substrings in
O(nk) time. We begin by exploring in greater detail how our incremental algorithm

576 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

is applied to the following slightly more general problem and the leverage it provides
over other algorithms. Consider first finding for each position l ∈ [0, n] of a text B
the length m(l) of the longest prefix Am(l) of A that can be matched to some prefix
of Bl with no more than k differences. Formally, m(l) = max{p ∈ [0,m] : ∃r ∈
[l, n], ED(Ap, Brl) ≤ k}. Further consider finding for each l the set of all r such that
the substring Brl of the text B and the prefix Am(l) are within edit distance k of each
other. When m(l) = m we call such a substring of the text a k-match, and otherwise
a longest prefix k-match. In summary, the longest prefix approximate match problem
is, given strings A, B, and threshold k, to find for each l the length m(l) and the
set of indices r such that ED(Am(l), Brl) ≤ k. The problem obviously generalizes the
approximate string matching problem which seeks all (l, r) for which m(l) = m.

We start by building the trivial k-thresholded solution for A versus Bn (= ε)
and then proceed incrementally. First observe that constructing the trivial solution
for A versus Bn simply requires building an initial cross-linked wave structure and
setting Ch(d) to h if d = −h and to ∞ otherwise. The algorithm then proceeds to
produce solutions for A versus progressively longer suffixes of B taking O(k) time per
incremental shift using our central result. The only remaining detail is to show how,
given the k-thresholded solution for A versus some suffix Bl, one finds the longest
prefix of A and all r and h such that ED(Am(l), Brl) = h ≤ k. Note that when
m(l) < m the corresponding edit distance is always k, since we would otherwise
choose a longer prefix of A. Even when m(l) = m there is at least one diagonal d
for which Ck(d) is exactly m. This is easily seen by observing that the least possible
number of differences on diagonal −k is k; hence Dl[m,m − k] is always ≥ k, and
hence Ck(−k) ≤ m. For d < 0, Ck(d) < m implies that Ck−1(d+ 1) < m and hence
Ck(d + 1) ≤ m. Hence even if Ck(d) = ∞ for some d ≤ 0, we have Ck(d′) = m for
some diagonal d′ between −k and d. We can therefore determine m(l) by examining
all non-∞ values on wave k; hence m(l) = maxd{Ck(d) | Ck(d) ≤ m}, and we wish to
find d and h such that Ch(d) = m(l), for this will give us all points (m(l),m(l) + d)
for which Dl[m(l),m(l) + d] = h.

It suffices to first traverse wave Ck to determine m(l) and thereafter traverse
the wave structure in order of diagonals, moving up or down along a diagonal list
to find the entry on that diagonal equal to m(l), if any. The algorithm fragment
in Figure 11 gives the details. Note that we start by looking for a match with k
differences on diagonal −k. Thereafter d and h are advanced in unit increments to
suggest the pointer-based traversal of the cross-linked structure. The traversal again
takes advantage of the fact that adjacent D-values never differ by more than one,
implying that if we move from a best point on wave h and diagonal d to the adjacent
wave point on the next diagonal, at most one move up or down to wave h+ 1 or wave
h− 1 along that diagonal will reach a point on row m(l) if there is one.

Figure 11 clearly takes O(k) time which is no more expensive than the time to
produce the wave structure for the given index l. Thus the overall algorithm takes
O(nk) time. Note that a corollary is that there are at most O(nk) k-matches to
A. While there are other algorithms for approximate string matching that take only
O(nk) time, none delivers or can be trivially extended to deliver the longest prefix
of A that can be matched with k differences to some substring of B and to deliver
all the k-matching substrings and their associated edit distances. Finding the longest
prefix that can be matched to a given string turns out to be crucial in an algorithm
for finding approximate repeats, i.e., adjacent substrings whose edit distance is no
more than k [LS-93] and is almost certain to find additional applications. Finding
all matching substrings is crucial if one has some secondary criteria that is a non-
linear function of match length and edit distance. In this case one needs to examine

INCREMENTAL STRING COMPARISON 577

1. m(l)← maxd{Ck(d) | Ck(d) ≤ m}
2. h← k
3. for d = −k to k by 1 do
4. { if h < k and Ch+1(d) ≤ m(l) then
5. h← h+ 1
6. else if Ch(d) =∞ then
7. h← h− 1
8. if Ch(d) = m(l) then
9. Report Am(l) matches Bl+m(l)+d

l with h differences
10. }

FIG. 11. Reporting matching substrings.

all matches and not simply the best one ending or beginning at a given index. For
example, if A = aaaacbbbbccccc and B = xxxxxaaaaccccccbbbbcccccxxxx . . ., then
both B15

5 and B24
14 match A (of length 14) with 4 differences but B24

5 matches with
5 differences. The last match is conceivably more significant than the two others,
(involving 14 identical symbols versus 10), but would not be revealed by previous
algorithms. These algorithms can only determine the match(es) with the minimum
number of differences ending at a given character of B, or (in a backward solution)
the match(es) with the minimum number of differences starting at a given character
of B. That is, previous algorithms only detect the difference 4 match B24

14 to the suffix
of B24 when run left-to-right over B, and the difference 4 match B15

5 to the prefix
of B5 when run right-to-left over B. The difference 5 match B24

5 is missed in both
directions.

The next application treats this issue in more detail.

4.2. Approximate overlap. Our second example comes from a problem in
molecular biology that arises in sequencing DNA. Current methods for determining
sequence allow the direct determination of the DNA sequence of a string of length less
than 1,000. To determine the sequence of a very long DNA strand, say 50,000 symbols
in length, an experimentalist employing the “shotgun” sequencing method randomly
extracts fragments of sufficiently small length from the subject strand and determines
the sequence of these fragments via a direct experimental method. The resulting
fragment assembly problem is to determine the subject strand given the collected set
of fragments.

The first step in solving the fragment assembly problem is to compare every
sequence against every other sequence to see if a suffix of one matches a prefix of
another.4 Such detected overlaps indicate the possibility (but not the certainty) that
the two fragments came from overlapping regions of the subject stand. Detecting the
overlaps is complicated by the fact that direct sequencing experiments are imperfect
and so do not produce the exact sequence. Typically, the error rate runs at about a
1–10% difference between the reported string and the true fragment sequence. Thus,
fragments must be compared to determine if there is an approximate overlap between
them. A fast method is essential for this fundamental subproblem since it must be
solved for a quadratic number of fragment pairs.

More precisely, given a threshold k (reflective of the length of the fragments and
the error rate of the sequencing method), and two fragments A and B, we say A

4[GLS-92] describes an algorithm that finds the exact (0 differences) matches between prefixes
and suffixes of a set of strings.

578 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

approximately overlaps B within threshold k if either (a) a prefix of A aligns with a
suffix of B with not more than k differences, or (b) A aligns with a substring of B with
not more than k differences. Matches of type (a) are called dovetail matches and those
of type (b) are containment matches. Unfortunately, wheneverA andB approximately
overlap within k-difference, there are typically a number of possible ways to do so. One
way to compare the significance of different alignments is to choose the overlap which
is the least likely to occur by chance, as suggested in [KM-94]. Let PrΣ(m,n, k) be
the probability, or some approximation thereof, that two strings of respective lengths
m and n formed by random Bernoulli trials over a Σ symbol alphabet can be aligned
with k-or-less differences. For this discussion, let us assume a precomputed table
containing values PrΣ[m,n, k] between 0 and 1 for the relevant range of m, n, and k
(e.g., 0 ≤ m,n ≤ 2,000, and 0 ≤ k ≤ 400 for most DNA sequencing projects). Note
that PrΣ is typically a nonlinear function of m, n, and k.

Given a threshold k and strings A and B of length m and n, the approximate
overlap problem can now be stated as finding three indices l, r, and p such that

(a) r = n or p = m, and
(b) ED(Ap, Brl) = h ≤ k, and
(c) PrΣ[p, r − l, h] is minimal.

When r = n the approximate overlap is of the dovetail variety (prefix Ap versus suffix
Bl), and when p = m it is of the containment type (A versus substring Brl).

As for the approximate match problem, the approximate overlap problem is solved
by incrementally computing the solution for A versus Bl for l = n, n − 1, . . . , 0. As
before, the initial solution for Bn versus A is easy to compute and O(k) time is spent
thereafter incrementally delivering each additional k-thresholded solution as cross-
threaded lists of the k + 1 waves, L0, L1, . . . , Lk. For each suffix Bl, one traverses
the wave structure finding all p and r that satisfy conditions (a) and (b) above. We
term such a triple, (l, r, p), a candidate. As each candidate is discovered, its PrΣ
“score” is compared against the minimum scoring triple (L,R, P) of probability score
S encountered thus far in the algorithm and entered as the new best if its score is
lower. Thus, at the end of the algorithm the indices delimiting a minimum scoring
approximate overlap and its probability score are delivered. The algorithm is shown
in Figure 12.

As for approximate match, the tricky detail is the discovery of the candidates
within a given solution. Suppose we have the k-thresholded solution for A versus
Bl. Like approximate match, containment candidates correspond to those d and h
for which Ch(d) = m for this implies ED(A,Bl+m+d

l) = h. Dovetail candidates
correspond to those furthest points in the structure that reach the extreme column
n − l of Dl, the dynamic programming matrix for the problem of comparing A and
Bl. That is, we seek d and h for which Ch(d) = n − l − d and is therefore a point
on the extreme column of Dl, for this implies Dl[n − l − d, n − l] = h which in turn
implies ED(An−l−d, Bl) = h.

Observe that the algorithm given in Figure 12 has exactly the same wave-traversal
logic as the one given in Figure 11. The modifications are related to differences
between the applications: lines 1 and 8–9 in Figure 11 versus lines 2, 11–14, and 17
in Figure 12. As a consequence, it is clear the algorithm takes O(nk) time.

The algorithm can be further refined to deliver not only the indices of the best
approximate overlap in O(nk) time but an alignment achieving it as well. An align-
ment can of course be produced in all applications but it is particularly appealing
here since we output only the “best matching substring” with respect to our scoring
function, and we can produce O(1) alignments per substring Bl in the desired time

INCREMENTAL STRING COMPARISON 579

1. Compute initial solution for A versus Bn.
2. (L,R, P, S)← (n, n, 0, 1) # Bnn overlaps A0 with 0 errors with probability 1.
3. for l = n− 1 downto 0 by 1 do
4. { Incrementally compute solution for A versus Bl.
5. h← k
6. for d = −k to k by 1 do
7. { if h < k and Ch+1(d) <∞ then
8. h← h+ 1
9. else if Ch(d) =∞ then
10. h← h− 1
11. if Ch(d) = m or Ch(d) + d = n− l then
12. s← PrΣ[Ch(d), d+ Ch(d), h]
13. if s < S then
14. (L,R, P, S)← (l, l + d+ Ch(d), Ch(d), s)
15. }
16. }
17. Best overlap is AP with BRL with score S.

FIG. 12. Approximate overlap algorithm.

bound. During the traversal of the k-thresholded solution for A versus Bl, record the
best candidate encountered in the traversal and if it becomes the best candidate seen
thus far in the algorithm, then take O(k) additional time to record the alignment of
the overlap modeled by the candidate. In order to take only O(k) additional time,
the alignment must be recorded as the ordered sequence of its O(k) differences, often
called a ∆-encoding of the alignment. Building this encoding simply requires tracing
back from the entry Ch(d) corresponding to the candidate. Specifically, from Ch(d)
trace back to whichever entry yields the maximum of Ch−1(d − 1), Ch−1(d) + 1, or
Ch−1(d + 1) + 1 (by Lemma 2.8), and then trace back from that entry recursively
until C0(0) is reached. If u = Ch−1(d − 1) gave the maximum, then append “Insert
bl+u+d” to the ∆-encoding. If v = Ch−1(d) gave the maximum, then append “Sub-
stitute bl+v+d+1 for av+1.” Finally, if w = Ch−1(d + 1) gave the maximum, then
append “Delete aw+1.” Upon completion of the algorithm, the ∆-encoding of the
best approximate overlap will have been recorded, and one can use it to produce a
display of the alignment in O(n+m) time if desired.

4.3. Cyclic string comparison. Yet another variation of traditional string
comparison involves considering cyclic shifts of the two strings A and B in question.
Let cycle(a1a2 . . . am) = a2 . . . ama1, and let cyclep(A) be the result of applying cycle
exactly p times. The cyclic string comparison problem is to determine p and q such
that e = ED(cyclep(A), cycleq(B)) is minimal. It is quite easy to see that if the
minimum is obtained for cyclep(A) and cycleq(B), then by simply cyclically shifting
an alignment one obtains an equally good alignment between A and cycler(B) for
some r. Thus the problem really reduces to the simpler one of finding q such that
ED(A, cycleq(B)) is minimal. This problem was introduced by Mathias Maes [Ma-
90] and he gives an O(mn logm) algorithm for the problem that permits arbitrarily
weighted edit costs. Our incremental alignment algorithm leads to a more efficient
O(ne) time algorithm for the case of unit cost editing operations.

First we present an O(n2) algorithm, and later show how to refine it to give an
O(ne) algorithm. Consider comparing A and B = B ·B (B concatenated with itself).

580 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Let the threshold k = n so that for any threshold structure computed Ck(n−m) ≥ m.
Begin by computing the threshold structure for A versus Bn (=B) using the greedy
algorithm in O(n2) time. Then incrementally compute the thresholded structure for
A versus Bl, for l = n − 1, n − 2 . . . 0. We examine each threshold structure to find
ED(A, cyclel(B)) in O(k) time. Specifically, it is that h for which Ch(n −m) = m
and this is easily found by starting with Ck(n−m) and walking the diagonal list until
h is encountered. Note that because k was chosen to be n it follows that h is always
on the diagonal list. It takes O(k) time to compute each incremental solution and
O(k) additional time to find the edit distance for the given cyclic shift of B. Thus
the algorithm takes O(kn) = O(n2) time to find the minimum edit distance, e, over
all possible cyclic shifts.

To bring the complexity down to O(ne) time, consider running the algorithm with
a threshold k < n. If for a given cyclic shift, Ck(n−m) < m, then the edit distance
for that cyclic shift of B cannot be determined. On the other hand, if Ck(n−m) ≥ m
then the edit distance can be computed and k upper bounds the answer e to the
overall problem. So consider running the algorithm with k = 1, and then with k = 2,
and k = 4, and so on in geometric sequence until the edit distance for at least one
cyclic shift is determined in a given trial. Of course, in this last trial, the best edit
distance obtained in the trial is the answer, e, to the cyclic string comparison problem.
Since k is doubled with each trial, the total time complexity is bounded by the time
of the last trial and k = O(e) in that trial. Thus the algorithm takes O(ne) time.

4.4. Text screen updating. Screen oriented programs maintain a representa-
tion of an object and present a view of it on the screen. For example, screen editors
keep an internal edit buffer and display a block of lines from the buffer. The screen
must be updated when the object is changed. In one solution, procedures that modify
the object must also update the view or at least specify how the view has changed.
A cleaner approach lets an autonomous screen manager module determine how to
update the screen by comparing its record of the screen contents with views of the
modified object. The interface to the screen manager is then a single routine, refresh,
that updates the screen with respect to the current object. It is given no informa-
tion other than the object and screen contents. Unfortunately, the simplicity of the
interface requires the screen manager to solve a difficult comparison problem.

The feasibility of this design is demonstrated by the UNIX EMAC editor [Go-81]
and the Maryland Window System [Ws-85]. In a two level approach, sequences of lines
are compared to decide at the top level which lines to delete, insert, and replace. At
the bottom level, the sequences of characters in two lines are compared to appraise
and perform line or row replacements. The approach is not guaranteed to update
the screen with a minimal set of terminal commands but nonetheless performs well.
However, a number of improvements are possible at both levels. At the lower level,
Myers and Miller [MM-89] developed algorithms that account for the nonuniformity
of terminal command costs and produce optimal update command sequences for the
row replacement subproblem. At the top level, a weakness of the earlier approach is
the assumption that the screen-sized segment of buffer lines that is to replace the cur-
rent screen contents is known a priori. More realistically, the screen manager should
determine the optimal window position, i.e., the screen-sized segment of the buffer
that most closely resembles the current screen contents subject to the constraint that
the current cursor position be in this segment. A useful approximation to the theoret-
ically optimal choice can be computed economically with our incremental algorithm
by finding a window position minimizing the number of screen rows that need to be
updated, inserted, or removed.

INCREMENTAL STRING COMPARISON 581

Suppose B is the current buffer contents, c is the current cursor position, and S
is the current screen contents, where B and S are viewed as strings over the infinite
alphabet of lines of ASCII text. Suppose B is n lines long and that the screen displays
m lines. Formally, the window positioning problem is to find a position p ∈ [c−m, c−1]
that minimizes e = ED(Bp+mp , S). Given the cursor position c it is clear that we can
restrict our attention to the substring B = Bc+m−1

c−m of B because the window Bp+mp

must contain line c. Now observe that this problem is very similar to the one we
solved for the cyclic string comparison problem. Namely, we compute solutions for
Bl for l = m−1,m−2, . . . 0, and for each determine ED(B

l+m
l , S) which is the value

h for which Ch(0) = m. Using the same geometric progression of threshold increases,
as in the cyclic string comparison problem, gives an O(me) algorithm for the window
positioning problem.

Acknowledgment. We would like to thank Esko Ukkonen for bringing the
Cyclic String Comparison problem to our attention.

REFERENCES

[BV-93] O. BERKMAN AND U. VISHKIN, Recursive star-tree parallel data-structure, SIAM J.
Comput., 22 (1993), pp. 221–242.

[GP-90] Z. GALIL AND Q. PARK, An improved algorithm for approximate string matching, SIAM
J. Comput., 19 (1990), pp. 989–999.

[Go-81] J. GOSLING, A redisplay algorithm, in Proc. ACM SIGPLAN/SIGOA Symposium on
Text Manipulation, ACM, New York, 1991, pp. 123–129.

[GLS-92] D. GUSFIELD, G. M. LANDAU, AND B. SCHIEBER, An efficient algorithm for the all
pairs suffix-prefix problem, Inform. Process. Lett., 41 (1992), pp. 181–185.

[HD-80] P. A. HALL AND G. R. DOWLING, Approximate string matching, Comput. Surveys, 12
(1980), pp. 381–402.

[HT-84] D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput., 13 (1984), pp. 338–355.

[Hi-77] D. S. HIRSCHBERG, Algorithms for the longest common subsequence problem, J. ACM,
24 (1977), pp. 664–675.

[HS-77] J. W. HUNT AND T. G. SZYMANSKI, An algorithm for differential file comparison,
Comm. ACM, 20 (1977), pp. 350–353.

[KM-94] J. KECECIOGLU AND E. MYERS, Exact and approximate algorithms for the sequence
reconstruction problem, Algorithmica, 13 (1995), pp. 180–210.

[LS-93] G. M. LANDAU AND J. P. SCHMIDT, An algorithm for approximate tandem repeats, in
Proc. 4th Symp. Combinatorial Pattern Matching, Lecture Notes in Comput. Sci.
648, Springer-Verlag, New York, 1993, pp. 120–133.

[LV-88] G. M. LANDAU AND U. VISHKIN, Fast string matching with k differences, J. Comput.
System Sci., 37 (1988), pp. 63–78.

[LV-89] G. M. LANDAU AND U. VISHKIN, Fast parallel and serial approximate string matching,
J. Algorithms, 10 (1989), pp. 157–169.

[Ma-90] M. MAES, On a cyclic string-to-string correction problem, Inform. Process. Lett., 35
(1990), pp. 73–78.

[Mc-76] E. M. MCCREIGHT, A space-economical suffix tree construction algorithm, J. ACM, 23
(1976), pp. 262–272.

[My-86a] E. MYERS, An O(ND) difference algorithm and its variations, Algorithmica, 1 (1986),
pp. 251–266.

[My-86b] E. MYERS, Incremental Alignment Algorithms and Their Applications, Tech. report
86-22, Dept. of Computer Science, University of Arizona, Tucson, AZ, 1986.

[MM-89] E. MYERS AND W. MILLER, Row replacement algorithms for screen editors, ACM Trans.
Prog. Lang. Systems, 11 (1989), pp. 33–56.

[NKY-82] N. NAKATSU, Y. KAMBAYASHI, AND S. YAJIMA, A longest common subsequence algo-
rithm suitable for similar text string, Acta Inform., 18 (1982), pp. 171–179.

[NW-70] S. B. NEEDLEMAN AND C. D. WUNSCH, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol. Bio., 48 (1970),
pp. 443–453.

582 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

[SV-88] B. SCHIEBER AND U. VISHKIN, On finding lowest common ancestors: Simplification
and parallelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[Se-80] P. H. SELLERS, The theory and computation of evolutionary distances: Pattern recog-
nition, J. Algorithms, 1 (1980), pp. 359–373.

[SW-81] T. F. SMITH AND M. S. WATERMAN, Identification of common molecular subsequences,
J. Mol. Bio., 147 (1981), pp. 195–197.

[Uk-85a] E. UKKONEN, Algorithms for approximate string matching, Inform. Control, 64 (1985),
pp. 100–118.

[Uk-85b] E. UKKONEN, On approximate string matching, J. Algorithms, 6 (1985), pp. 132–137.
[WF-74] R. A. WAGNER AND M. J. FISCHER, The string-to-string correction problem, J. ACM,

21 (1974), pp. 168–173.
[Wn-73] P. WEINER, Linear pattern matching algorithm, in Proc. 14th IEEE Symposium on

Switching and Automata Theory, IEEE Computer Society Press, Los Alamitos,
CA, 1973, pp. 1–11.

[Ws-85] M. WEISER, CWSH: The windowing shell of the Maryland window system, Software—
Practice and Experience, 15 (1985), pp. 515–519.

[WM-92] S. WU AND U. MANBER, Fast text searching allowing errors, Comm. ACM, 35 (1992),
pp. 83–91.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL∗

GREGORY DUDEK† , KATHLEEN ROMANIK‡ , AND SUE WHITESIDES†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 583–604, April 1998 013

Abstract. We consider the problem of localizing a robot in a known environment modeled by a
simple polygon P . We assume that the robot has a map of P but is placed at an unknown location
inside P . From its initial location, the robot sees a set of points called the visibility polygon V of its
location. In general, sensing at a single point will not suffice to uniquely localize the robot, since the
set H of points in P with visibility polygon V may have more than one element. Hence, the robot
must move around and use range sensing and a compass to determine its position (i.e., localize itself).
We seek a strategy that minimizes the distance the robot travels to determine its exact location.

We show that the problem of localizing a robot with minimum travel is NP-hard. We then give a
polynomial time approximation scheme that causes the robot to travel a distance of at most (k−1)d,
where k = |H|, which is no greater than the number of reflex vertices of P , and d is the length of
a minimum length tour that would allow the robot to verify its true initial location by sensing. We
also show that this bound is the best possible.

Key words. robot, localization, positioning, navigation, sensing, visibility, optimization, NP-
hard, competitive strategy

AMS subject classifications. 68Q25, 68T99, 68U05, 68U30

PII. S0097539794279201

1. Introduction. Numerous tasks for a mobile robot require it to have a map
of its environment and knowledge of where it is located in the map. Determining the
position of the robot in the environment is known as the robot localization problem.
To date, mobile robot research that supposes the use of a map generally assumes
either that the position of the robot is always known or that it can be estimated using
sensor data acquired by displacing the robot only small amounts [4, 24, 30]. However,
self-similarities between separate portions of the environment prevent a robot that has
been dropped into or activated at some unknown place from uniquely determining its
exact location without moving around. This motivates a search for strategies that
direct the robot to travel around its environment and to collect additional sensory
data [5, 25, 14] to deduce its exact position.

In this paper, we view the general robot localization problem as consisting of
two phases: hypothesis generation and hypothesis elimination. The first phase is to
determine the set H of hypothetical locations that are consistent with the sensing data
obtained by the robot at its initial location. The second phase is to determine, in the

∗Received by the editors December 23, 1994; accepted for publication (in revised form) March 28,
1996. An earlier version of this paper appeared as McGill University School of Computer Science
Technical Report SOCS-94.5 in August 1994. Also, an abridged version of this paper appeared in
Proc. Sixth Annual ACM–SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1995,
pp. 437–446.

http://www.siam.org/journals/sicomp/27-2/27920.html
†Research Centre for Intelligent Machines and School of Computer Science, McGill Uni-

versity, 3480 University Street, Montréal, Québec, Canada H3A 2A7 (dudek@cim.mcgill.ca,
sue@cs.mcgill.ca). The research of these authors was supported by NSERC research grants pro-
gramme.
‡Center for Automation Research, University of Maryland, College Park, MD 20742

(romanik@cfar.umd.edu). This research was done while the author was at McGill University and
DIMACS Center for Discrete Mathematics and Theoretical Computer Science. It was supported
by IRIS National Network of Centres of Excellence, NSERC, and DIMACS. DIMACS is an NSF
Science and Technology Center, funded under contract STC-88-09648 and also receives support from
the New Jersey Commission on Science and Technology.

583

584 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

case that H contains two or more locations (see Fig. 2.1), which location is the true
initial position of the robot; i.e., to eliminate the incorrect hypotheses.

Ideally, the robot should travel the minimum distance necessary to determine its
exact location. This is because the time the robot takes to localize itself is proportional
to the distance it must travel (assuming sensing and computation time are negligible
in comparison). Also, the most common devices for measuring distance, and hence
position, on actual mobile robots are relative measurement tools such as odometers.
Therefore, they yield imperfect estimates of orientation, distance, and velocity, and
the errors in these estimates accumulate disastrously with successive motions [13].
Our strategy is well suited to handling the accumulation of error problem via simple
recalibration, as we will point out later.

A solution to the hypothesis generation phase of robot localization has been given
by Guibas, Motwani, and Raghavan in [19]. We describe this further in the next sec-
tion after making more precise the definitions of the two phases of robot localization.
Our paper is concerned with minimizing the distance traveled in the hypothesis elim-
ination phase of robot localization. It begins where [19] left off. Together, the two
papers give a solution to the general robot localization problem.

In this paper, we define a natural algorithmic variant of the problem of localizing
a robot with minimum travel and show that this variant is NP-hard. We then solve
the hypothesis elimination phase with what we call a greedy localization strategy. To
measure the performance of our strategy, we employ the framework of competitive
analysis for on-line algorithms introduced by Sleator and Tarjan [29]. That is, we
examine the ratio of the distance traveled by a robot using our strategy to the length
d of a minimum length tour that allows the robot to verify its true initial position.
The worst case value of this ratio over all maps and all starting points is called the
competitive ratio of the strategy. If this ratio is no more than k, then the strategy
is called k-competitive. Since our strategy causes the robot to travel a distance no
more than (k − 1)d, where k = |H| (|H| is no greater than the number of reflex
vertices of P), our strategy is (k − 1)-competitive. We also show that no on-line
localization strategy has a competitive ratio better than k− 1, and thus our strategy
is optimal.

The rest of this paper is organized as follows. In section 2 we give a formal
definition of the robot localization problem, we define some of the terms used in the
paper, and we comment on previous work. In section 3 we prove that, given a solution
set H to the hypothesis generation phase of the localization problem that contains
more than one hypothetical location, the hypothesis elimination phase, which localizes
the robot by using minimum travel distance, is NP-hard. In section 4 we define
the geometric structures that we use to set up our greedy localization strategy. In
section 5 we give our greedy localization strategy and prove the previously mentioned
performance guarantee of k − 1 times optimum. We also give an example of a map
polygon for which no on-line localization strategy is better than (k − 1)-competitive.
Section 6 summarizes and comments on open problems.

2. Localization through traveling and probing. In this section, we describe
our robot abstraction and give some key definitions.

The most common application domain for mobile robots is indoor “structured”
environments. In such environments it is often possible to construct a map of the
environment, and it is acceptable to use a polygonal approximation P of the free
space [26] as a map. A common sensing method used by mobile robots is range
sensing (for example, sonar sensing or laser range sensing).

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 585

2.1. Assumptions about the robot. We assume the following throughout this
paper.

1. The robot moves in a static two-dimensional, obstacle-free environment for
which it has a map. The robot has the ability to make error-free motions between
arbitrary locations in the environment.1 We model the movement of the robot in the
environment by a point p moving inside and along the boundary of an n-vertex simple
polygon P positioned somewhere in the plane.

2. The robot has a compass and a range sensing device. It is essential that the
robot be able to determine its orientation (with the compass); otherwise it can never
uniquely determine its exact location in an environment with nontrivial symmetry
(such as a square).

3. The robot’s sensor can detect the distances to those points on walls for which
the robot has an unobstructed straight line of sight, and the robot’s observations at
a particular location determine a polygon V of points that it can see (see the next
subsection for a definition of V). This is analogous to what can be extracted by
various real sensors such as laser range finders. The robot also knows its location
in V .

2.2. Some definitions and an example. Two points in P are visible to each
other or see each other if the straight line segment joining them does not intersect the
exterior of P . The visibility polygon V (p) for a point p ∈ P is the polygon consisting
of all points in P that are visible from p. The data received from a range sensing
device is modeled as a visibility polygon. The visibility polygon of the initial location
of the robot is denoted by V , and the number of its vertices is denoted by m. Since
the robot has a compass, we assume that P and V have a common reference direction.

We break the general problem of localizing a robot into two phases as follows.

The robot localization problem.
HYPOTHESIS GENERATION: Given P and V , determine the set H of all points

pi ∈ P such that the visibility polygon of pi is congruent under translation to V
(denoted by V (pi) = V).

HYPOTHESIS ELIMINATION: Devise a strategy by which the robot can correctly
eliminate all but one hypothesis from H, thereby determining its exact initial location.
Ideally, the robot should travel a distance as small as possible to achieve this.

As previously mentioned, the hypothesis generation phase has been solved by
Guibas, Motwani, and Raghavan. We describe their results in the next subsection.
This paper is concerned with the hypothesis elimination phase.

Consider the example illustrated in Fig. 2.1. The robot knows the map polygon P
and the visibility polygon V representing what it can “see” in the environment from
its present location. Suppose also that it knows that P and V should be oriented as
shown. The black dot represents the robot’s position in the visibility polygon. By
examining P and V , the robot can determine that it is at either point p1 or point p2
in P , i.e., H = {p1, p2}. It cannot distinguish between these two locations because
V (p1) = V (p2) = V . However, by traveling out into the “hallway” and taking another
probe, the robot can determine its location precisely.

An optimal strategy for the hypothesis elimination phase would direct the robot
to follow an optimal verification tour, defined as follows.

1In practice, position estimation errors accrue in the execution of such motions; however, the
strategy we present here is exceptionally well suited to various methods for limiting these errors using
sensor feedback (see section 5.1).

586 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

P V

p p1 2

21V(p) = V(p) = V
FIG. 2.1. Given a map polygon P (left) and a visibility polygon V (center), the robot must

determine which of the 2 possible initial locations p1 and p2 (right) is its actual location in P .

DEFINITION 2.1. A verification tour is a tour along which a robot that knows
its initial position a priori can travel to verify this information by probing and then
return to its starting position. An optimal verification tour is a verification tour of
minimum length d.

Since we do not assume a priori knowledge of which hypothetical location in H
is correct, an optimal verification tour for the hypothesis elimination phase cannot be
precomputed. Even if we did have this knowledge, computing an optimal verification
tour would be NP-hard. This can be proven using a construction similar to that
in section 3 and a reduction from hitting set [16]. For these reasons, we seek an
interactive probing strategy to localize the robot. In each step of such a strategy, the
robot uses its range sensors to compute the visibility polygon of its present position
and from this information decides where to move next to make another probe. To be
precise, the type of strategy we seek can be represented by a localizing decision tree,
defined as follows.

DEFINITION 2.2. A localizing decision tree is a tree consisting of two kinds of
nodes and two kinds of weighted edges. The nodes are either sensing nodes (S-nodes)
or reducing nodes (R-nodes), and the node types alternate along any path from the
root to a leaf. Thus, tree edges directed down the tree either join an S-node to an
R-node (SR-edges) or join an R-node to an S-node (RS-edges).

1. Each S-node is associated with a position defined relative to the initial position
of the robot. The robot may be instructed to probe the environment from this position.

2. Each R-node is associated with a set H ′ ⊆ H of hypothetical initial locations
that have not yet been ruled out. The root is an R-node associated with H, and each
leaf is an R-node associated with a singleton hypothesis set.

3. Each SR-edge represents the computation that the robot does to rule out hy-
potheses in light of the information gathered at the S-node end of the edge. An SR-edge
does not represent physical travel by the robot and hence has weight 0.

4. Each RS-edge has an associated path defined relative to the initial location of
the robot. This is the path along which the robot is directed to travel to reach its next
sensing point. The weight of an RS-edge is the length of its associated path.

Since we want to minimize the distance traveled by the robot, we define the
weighted height of a localizing decision tree as follows.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 587

S

R

R R

S

RR

S

R R

FIG. 2.2. A map polygon and 4 hypothetical locations {p1, p2, p3, p4} (above) with a localizing
decision tree for determining the true initial position of the robot (below).

DEFINITION 2.3. The weight of a root-to-leaf path in a localizing decision tree
is the sum of the weights on the edges in the path. The weighted height of a local-
izing decision tree is the weight of a maximum-weight root-to-leaf path. An optimal
localizing decision tree is a localizing decision tree of minimum weighted height.

In the next section, we show that the problem of finding an optimal localizing
decision tree is NP-hard.

We call a localization strategy that can be associated with a localizing decision
tree a localizing decision tree strategy. As an example of such a strategy, consider the
map polygon P shown in Fig. 2.2.

Imagine that, from the visibility polygon sensed by the robot at its initial location,
it is determined that the set of hypothetical locations is H = {p1, p2, p3, p4}. Hence
the root of the localizing decision tree (shown in Fig. 2.2) is associated with H. In
the figure, the SR-edges are labeled with the visibility polygons seen by the robot
at the S-node endpoints of these edges. Assuming that north points straight up, the
strategy given by the tree directs the robot first to travel west a distance d1, which
is the distance between pi and p′i, for 1 ≤ i ≤ 4, and then to take another probe
at its new location. Depending on the outcome of the probe, the robot knows it is
located either at one of {p′1, p′2} or at one of {p′3, p′4}. If it is located at p′1 or p′2, then
the strategy directs it to travel south a distance d2, which is the distance between p′i
and p′′i , for 1 ≤ i ≤ 2, to a position just past the dotted line segment shown in P .
By taking a probe from below this line segment, it will be able to see the vertex at

588 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

the end of the segment if it is at location p′′1 , and it will not see this vertex if it is
at location p′′2 . Thus after this probe it will be able to determine its unique location
in P . Similarly, if the robot is located at p′3 or p′4, then the strategy directs it to
travel south a distance d3 and take another probe to determine its initial position.
The farthest that the robot must travel to determine its location is d1 + d3, so the
weighted height of this decision tree is d1 + d3.

2.3. Previous work. Previous work on robot localization by Guibas, Motwani,
and Raghavan [19] showed how to preprocess a map polygon P so that, given the
visibility polygon V that a robot sees, the set of points in P whose visibility polygon is
congruent to V , and oriented the same way, can be returned quickly. Their algorithm
preprocesses P in O(n5 logn) time and O(n5) space, and it answers queries in O(m+
logn+k) time, where n is the number of vertices of P , m is the number of vertices of
V , and k is the size of the output (the number of places in P at which the visibility
polygon is V). They also showed how to answer a single localization query in O(mn)
time with no preprocessing.

Kleinberg [23] has independently given an interactive strategy for localizing a
robot in a known environment. As in our work, he seeks to minimize the ratio of the
distance traveled by a robot using his strategy to the length of an optimal verification
path (i.e., the competitive ratio). Kleinberg’s model differs from ours in several ways.
First of all, he models the robot’s environment as a geometric tree rather than a
simple polygon. A geometric tree is a pair (V,E), where V is a finite point set in
Rd and E is a set of line segments whose endpoints all lie in V . The edges E do
not intersect except at points of V and do not form cycles. Kleinberg only considers
geometric trees with bounded degree ∆. Also, his robot can make no use of vision
other than to know the orientation of all edges incident to its current location. Using
this model, Kleinberg gives an O(n2/3)-competitive algorithm for localizing a robot
in a geometric tree with bounded degree ∆, where n is the number of branch vertices
(vertices of degree greater than two) of the tree.

The competitive ratio of Kleinberg’s algorithm appears to be better than the
lower bound illustrated by Fig. 5.2 in section 5.3. However, if this map polygon were
modeled as a geometric tree it would have degree n, where n is the number of branch
vertices, rather than a constant degree, and the distance traveled by a robot using
Kleinberg’s algorithm can be linear in the degree of the tree. If Kleinberg’s algorithm
ran on this example, it would only execute step 1, which performs a spiral search, and
it would cause the robot to travel a distance almost 4n times the length of an optimal
verification path. Our algorithm causes the robot to travel a distance less than 2n
times the length of an optimal verification path on this example. Our algorithm is
similar to step 3 of Kleinberg’s algorithm, and he gives a lower bound example (Fig. 3
of [23]) illustrating that an algorithm using only steps 1 and 3 of his algorithm is no
better than O(n)-competitive. Although this example does not directly apply to our
model since the robot in our model has the ability to see to the end of the hallway,
by adding small jogs in the hallway a similar example can be constructed where our
strategy is no better than O(n)-competitive. In this example, the number of branch
vertices of the geometric tree represented by P would be n and the number of vertices
of P would be O(n). However, in this example |H| = n, so this does not contradict
our results.

Other theoretical work on localizing a robot in a known environment has also
been done. Betke and Gurvits [8] gave an algorithm that uses the angles subtended

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 589

by landmarks in the robot’s environment to localize a robot. Their algorithm runs in
time linear in the number of landmarks, and it assumes that a correspondence is given
between each landmark seen by the robot and a point in the map of the environment.
Avis and Imai [2] also investigated the problem of localizing a robot using angle
measurements, but they did not assume any correspondence between the landmarks
seen by the robot and points in the environment. Instead they assumed that the
environment contains n identical markers, and the robot takes k angle measurements
between an unknown subset of these markers. They gave polynomial time algorithms
to determine all valid placements of the robot, both in the case where the robot has a
compass and where it does not. In addition they showed that, with polynomial-time
preprocessing, location queries can be answered in O(logn) time.

Theoretical work with a similar flavor to ours has also been done on navigating
a robot through an unknown environment. In this work a point robot must navigate
from a point s to a target t, which is either a point or an infinite wall, where the
Euclidean distance from s to t is n. There are obstacles in the scene, which are not
known a priori, but which the robot learns about only as it encounters them. The
goal is to optimize (i.e., minimize) the ratio of the distance traveled by the robot to
the length of a shortest obstacle-free path from s to t. As with localization strategies,
the worst case ratio over all environments where s and t are distance n apart is called
the competitive ratio of the strategy.

Papadimitriou and Yannakakis [28] gave a deterministic strategy for navigating
between two points, where all obstacles are unit squares, that achieves a competitive
ratio of 1.5, which they show is optimal. For squares of arbitrary size they gave a
strategy achieving a ratio of

√
26/3. They also showed, along with Eades, Lin, and

Wormald [15], that when t is an infinite wall and the obstacles are oriented rectangles,
there is a lower bound of Ω(

√
n) on the ratio achievable by any deterministic strategy.

Blum, Raghavan, and Schieber [9] gave a deterministic strategy that matched
the Ω(

√
n) lower bound for navigating between two points with oriented, rectangular

obstacles. Their strategy combines strategies for navigating from a point to an infinite
wall and from a point on the wall of a room to the center of the room, with competitive
ratios of O(

√
n) and O(2

√
3 log n), respectively. The competitive ratio for the problem

of navigating from a corner to the center of a room was improved to O(lnn) by a
strategy of Bar-Eli et al. [3], who also showed that this ratio is a lower bound for
any deterministic strategy. Berman et al. [7] gave a randomized algorithm for the
problem of navigating between two points with oriented, rectangular obstacles with a
competitive ratio of O(n4/9 logn).

Several people have studied the problem of navigating from a vertex s to a vertex
t inside an unknown simple polygon. They assume that at every point on its path the
robot can get the visibility polygon of that point. Klein [21] proved a lower bound of√

2 on the competitive ratio and gave a strategy achieving a ratio of 5.72 for the class
of street polygons. A street is a simple polygon such that the clockwise chain L and
the counterclockwise chain R from s to t are mutually weakly visible. That is, every
point on L is visible to some point on R and vice versa. Kleinberg [22] gave a strategy
that improved Klein’s ratio to 2

√
2, and Datta and Icking [12] gave a strategy with a

ratio of 9.06 for a more general class of polygons called generalized streets, where every
point on the boundary is visible from a point on a horizontal line segment joining L
and R. They also showed a lower bound of 9 for this class of polygons.

Previous work in the area of geometric probing has examined the complexity of
constructing minimum height decision trees to uniquely identify one of a library of

590 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

polygons in the plane using point probes. Such probes examine a single point in
the plane to determine if an object is located at that point. If each polygon in the
library is given a fixed position, orientation and scale, then it has been shown that
both the problem of finding a minimum cardinality probe set (for a noninteractive
probing strategy) [6] and the problem of constructing a minimum height decision tree
for probing (for an interactive strategy) [1] are NP-complete. Arkin et al. [1] give
a greedy strategy that builds a decision tree of height at most dlog ke times that
of an optimal decision tree, where k is the number of polygons in the library. The
minimum height decision tree used for probing in [1] is different than our localizing
decision tree. It is a binary decision tree whose internal nodes represent point probes
whose outcome is either positive or negative and whose edges are unweighted. The
height of such a decision tree is the number of levels of the tree, and it represents the
maximum number of probes necessary to identify any polygon in the library.

3. Hardness of localization. In this section we show that the problem of con-
structing an optimal localizing decision tree, as defined in the previous section, is
NP-hard. To do this, we first formulate the problem as a decision problem.
Robot Localizing Decision Tree (RLDT).

INSTANCE: A simple polygon P and a star-shaped polygon V , both with a common
reference direction, the set H of all locations pi ∈ P such that V (pi) = V , and a
positive integer h.
QUESTION: Does there exist a localizing decision tree of weighted height less than or
equal to h that localizes a robot with initial visibility polygon V in the map polygon P?

We show that this problem is NP-hard by giving a reduction from the Abstract

Decision Tree problem, proven NP-complete by Hyafil and Rivest in [20]. The
Abstract Decision Tree problem is stated as follows.
Abstract Decision Tree (ADT).

INSTANCE: A set X = {x1, . . . , xk} of objects, a set T = {T1, . . . , Tn} of subsets of
X representing binary tests, where test Tj is positive on object xi if xi ∈ Tj and is
negative otherwise, and a positive integer h′ ≤ n.
QUESTION: Does there exist an abstract decision tree of height less than or equal to
h′, where the height of a tree is the maximum number of edges on a path from the
root to a leaf, that can be constructed to identify the objects in X?

An abstract decision tree has a binary test at all internal nodes and an object
at every leaf. To identify an unknown object, the test at the root is performed on
the object, and if it is positive the right branch is taken, otherwise the left branch is
taken. This procedure is repeated until a leaf is reached, which identifies the unknown
object.

THEOREM 3.1. RLDT is NP-hard.
Proof. Given an instance of ADT, we create an instance of RLDT as follows. We

construct P to be a staircase polygon, with a stairstep for each object xi ∈ X (see
Fig. 3.1). For each stairstep we construct n = |T | protrusions, one for each test in T
(see Fig. 3.2). If test Tj is a positive test for object xi, then protrusion Tj on stairstep
xi has an extra hook on its end (such as T3, T4, and Tn in Fig. 3.2). The length of a
protrusion is denoted by l and the distance between protrusions T1 and Tn is denoted
by d, where d and l are chosen so that dh′ < l. The vertical piece between adjacent
stairsteps is longer than (2l+ d)h′, and the width w of each stairstep is much smaller
than the other measurements. The polygon P has O(nk) vertices, where n = |T | and
k = |X|.

Consider a robot that is initially located at the shaded circle shown in Fig. 3.2 on
one of the k stairsteps. The visibility polygon V at this point has O(n) vertices and is

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 591

...

FIG. 3.1. Construction showing localization is NP-hard.

n-1T T T T T nT1 2 3 4

l

.

. . .

. . .

. . .

. . .

. . .

w

d

FIG. 3.2. Close-up of a stairstep xi in NP-hard construction. Not to scale: l >> d >> w.

the same at an analogous point on any internal stairstep xi. We output the polygons
P and V , which can be constructed in polynomial time, the k locations pi ∈ P such
that V (pi) = V , and weighted height h = (2l + d)h′ as an instance of RLDT.

In order for the robot to localize itself, it must either travel to one of the “ends” of
P (either the top or the bottom stairstep) to discover on which stairstep it was located
initially, or it must examine a sufficient number of the n protrusions on the stairstep
where it is located to distinguish that stairstep from all the others. Since the vertical
piece of each stairstep is longer than h = (2l + d)h′, only a strategy that directs the
robot to remain on the same stairstep can lead to a decision tree of weighted height
less than or equal to h.

Any decision tree that localizes the robot by examining protrusions on the stairstep
corresponds to an equivalent abstract decision tree to identify the objects of X using

592 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

tests in T , and vice versa. Each time the robot travels to the end of protrusion Tj
to see if it has an extra hook on its end, it corresponds to performing binary test Tj
on an unknown object to observe the outcome. The robot must travel 2l to perform
this test, and it travels at most d in between tests. Therefore, if the robot can always
localize itself by examining no more than h′ protrusions, then it has a decision tree
of weighted height no more than h = (2l + d)h′, which corresponds to an abstract
decision tree of height h′ for the ADT problem. Since dh′ < l, in a localizing decision
tree of weighted height ≤ h the robot cannot examine more than h′ protrusions on
any root-to-leaf path.

4. Using a visibility cell decomposition for localization. In this section
we discuss the geometric issues involved in building a data structure for our greedy
localization strategy.

4.1. Visibility cells and the overlay arrangement. When we consider po-
sitions where the robot can move to localize itself, we reduce the infinite number of
locations in P to a finite number by first creating a visibility cell decomposition of
P [10, 11, 19]. A visibility cell (or visibility region) C of P is a maximally connected
subset of P with the property that any two points in C see the same subset of vertices
of P [10, 11]. A visibility cell decomposition of P is simply a subdivision of P into
visibility cells. This decomposition can be computed in O(n3 logn) using techniques
in [10, 11]. It is created by introducing O(nr) line segments, called visibility edges,
into the interior of P , where r is the number of reflex vertices2 of P . Each line seg-
ment starts at a reflex vertex u, ends at the boundary of P , and is collinear with a
vertex v that is either visible from u or is adjacent to it. The number of cells in this
decomposition, as well as their total complexity, is O(n2r) (see [19] for a proof).

Although two points p and q in the same visibility cell C see the same subset
of vertices of P , they may not have the same visibility polygon (i.e., it may be that
V (p) 6= V (q)). This is because some edges of V (p) may not actually lie on the
boundary of P (these edges are collinear with p and are produced by visibility lines),
so these edges may be different in V (q). Therefore, in order to represent the portion
of P visible to a point p in a visibility cell C in such a way that all points in C are
equivalent, we need a different structure than the visibility polygon. The structure
that we use is the visibility skeleton of p.

DEFINITION 4.1. The visibility skeleton V ∗(p) of a location p ∈ P is the skeleton
of the visibility polygon V (p). That is, it is the polygon induced by the nonspurious
vertices of V (p), where a spurious vertex of V (p) is one that lies on an edge of V (p)
that is collinear with p, and the other endpoint of this edge is closer to p. The non-
spurious vertices of V (p) are connected to form V ∗(p) in the same cyclical order that
they appear in V (p). The edges of the skeleton are labeled to indicate which ones
correspond to real edges from P and which ones are artificial edges induced by the
spurious vertices. If p is outside P , then V ∗(p) is equal to the special symbol ∅.

For a complete discussion of visibility skeletons and a proof that V ∗(p) = V ∗(q)
for any two points p and q in the same visibility cell, see [10, 11, 19].

As stated in section 2, the hypothesis generation phase of the robot localization
problem generates a set H = {p1, p2, . . . pk} ⊂ P of hypothetical locations at which the
robot might be located initially. The number k of such locations is bounded above
by r (see [19] for a proof). From this set H, we can select the first location p1 (or
any arbitrary location) to serve as an origin for a local coordinate system. For each

2A reflex vertex of P is a vertex that subtends an angle greater than 180◦.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 593

FIG. 4.1. A visibility polygon, a map polygon and the corresponding overlay arrangement.

location pj , 1 ≤ j ≤ k, we define the translation vector tj = p1 − pj that translates
location pj to location p1, and we define Pj to be the translate of P by vector tj .
We thus have a set {P1, P2, . . . , Pk} of translates of P corresponding to the set H
of hypothetical locations. The point in each Pj corresponding to the hypothetical
location pj is located at the origin.

In order to determine the hypothetical location corresponding to the true initial
location of the robot, we construct an overlay arrangement A that combines the
k translates Pj that correspond to the hypothetical locations, together with their
visibility cell decompositions. More formally, we define A as follows.

DEFINITION 4.2. The overlay arrangement A for the map polygon P corresponding
to the set of hypothetical locations H is obtained by taking the union of the edges of
each translate Pj as well as the visibility edges in the visibility cell decomposition
of Pj.

See Fig. 4.1 for an example of an overlay arrangement. Since each visibility cell
decomposition is created from O(nr) line segments introduced into the interior of Pj ,
a bound on the total number of cells in the overlay arrangement as well as their total
complexity is O(k2n2r2), which may be O(n6).

4.2. Lower bound on the size of the overlay arrangement. Figure 4.2
shows a map polygon P whose corresponding overlay arrangement for the visibility
polygon shown in Fig. 4.3(a) has Ω(n5) cells. This polygon has a long horizontal
“hallway” with k identical, equally spaced “rooms” on the bottom side of it (k = 4
in Fig. 4.2). Each room has width 1 unit, and the distance between rooms is 2k − 1
units. If the robot is far enough inside one of these rooms so that it cannot see any of
the rooms on the top of the hallway, then its visibility polygon is the same no matter
which room it is in. The k − 1 rooms on the top side of the hallway are identical,
have width 1 unit, and are spaced 2k + 1 units apart. Each top room is between two
bottom rooms. The ith top room from the left has its left edge a distance 2i − 1 to
the right of the right edge of the bottom room to its left, and it has its right edge a
distance 2(k − i) − 1 to the left of the left edge of the bottom room to its right (see
Fig. 4.2).

Consider the visibility edges starting from the reflex vertices of the bottom rooms
that are generated by (i.e., collinear with) the reflex vertices of the top rooms. The
ith bottom room from the left will have 2(k− i) such visibility edges starting from its
right reflex vertex and 2(i− 1) starting from its left reflex vertex. Due to the spacing
of the top rooms, the visibility edges starting from the reflex vertices of one bottom

594 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

2k-3

2k-1

1

1

1

2k-53

FIG. 4.2. A map polygon whose overlay arrangement contains Ω(n5) cells.

FIG. 4.3. (a) A visibility polygon. (b) Visibility cells in a bottom room.

room will be at different angles than those in any other bottom room. See the picture
in Fig. 4.3(b) for an illustration of the visibility cells inside a bottom room.

When the overlay arrangement A for the visibility polygon shown in Fig. 4.3(a)
is constructed, it will consist of k translates, one for each of the bottom rooms of
P . Since these rooms are identical and equally spaced, A will have 2k − 1 rooms on
its bottom side. Since the visibility edges inside each bottom room are at different
angles, these edges will not coincide when bottom rooms from two different translates
overlap in A. This means that A will have Ω(k) bottom rooms with Ω(k2) visibility
edges starting from the left reflex vertex, and Ω(k2) visibility edges starting from the
right reflex vertex, resulting in Ω(k4) cells inside each of these bottom rooms of A.
Therefore, A will have Ω(k5) cells in total. Since the number of vertices of P is 8k, A
has Ω(n5) cells.

Closing the gap between the upper and lower bounds on the size of the arrange-
ment is an open problem.

4.3. The reference point set Q. Each cell in the overlay arrangement A rep-
resents a potential probe position, which can be used to distinguish between different
hypothetical locations of the robot. For each cell C of A and for each translate Pj

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 595

that contains C, there is an associated visibility skeleton V ∗j (C). If two translates Pi
and Pj have different skeletons for cell C, or if C is outside of exactly one of Pi and
Pj , then C distinguishes pi from pj .

For our localization strategy we choose a set Q of reference points in A that will
be used to distinguish between different hypothetical locations. For each cell C in A
that lies in at least one translate of P , and for each translate Pj that contains C, let
qC,j denote the point on the boundary of C that is closest to the origin. Here, the
distance dj(qC,j) from the origin to the closest point in C is measured inside Pj . We
choose Q = {qC,j}. In the remainder of this paper we drop the subscripts from qC,j
when they are not necessary.

Computing the reference points in Q involves computing Euclidean shortest paths
in Pj from the origin to each cell C. To compute these paths we can use existing
algorithms in the literature for shortest paths in simple polygons. We first compute
for each hypothetical initial location pj the shortest path tree from the origin to all
of the vertices of Pj in linear time using the algorithm given in [18]. This algorithm
also gives a data structure for storing the shortest path tree so that the length of
the shortest path from the origin to any point x ∈ Pj can be found in time O(logn)
and the path from the origin to x can be found in time O(logn + l), where l is the
number of segments along this path. We can use this data structure later to extract
the shortest path to any cell C in A within any translate Pj .

We use π(pj , x) to denote the shortest path from the origin to x in Pj . To find
the shortest path from the origin to a segment xy contained in Pj we use the following
theorem.

THEOREM 4.3. If P is a simple polygon, then the Euclidean shortest path π(s, xy)
from a point s in P to a line segment xy in P is either the shortest path π(s, x) from
s to x, the shortest path π(s, y) from s to y, or a polygonal path with l edges such that
the first l − 1 edges are the first l − 1 edges on either π(s, x) or π(s, y), and the last
edge is perpendicular to xy.

Proof. The theorem follows from standard geometry results. We sketch the proof
here. It is shown in [27] that the shortest paths π(s, x) and π(s, y) are polygonal
paths whose interior vertices are vertices of P , and if v is the last common point on
these two paths, then π(v, x) and π(v, y) are both outward-convex (i.e., the convex
hull of each of these subpaths lies outside the region bounded by π(v, x), π(v, y) and
the segment xy). As in [27] we call the union π(v, x) ∪ π(v, y) the funnel associated
with xy, and we call v the cusp of the funnel. See Fig. 4.4 for an example of a simple
polygon with edges of this funnel shown as dashed line segments.

The shortest path π(s, xy) has π(s, v) as its initial subpath. To complete the
shortest path π(s, xy) we must find a shortest path π(v, xy). If v has a perpendicular
line of sight to xy, then this visibility line will be π(v, xy). If v does not have a
perpendicular line of sight to xy, then consider the edge e adjacent to v on the funnel
that is the closest to perpendicular. Without loss of generality, assume e is the first
edge on π(v, y). The path π(v, xy) will follow π(v, y) until it reaches y or it reaches a
vertex that has a perpendicular line of sight to xy.

Using this theorem we can in O(n) time determine the length of the shortest path
in Pj from the origin o to xy and the closest point on xy to o. We first use the data
structure in [18] to determine in O(logn) time the length dx and the last edge ex
on the shortest path π(o, x), and the length dy and the last edge ey on the shortest
path π(o, y). For each of these edges we check its angle with respect to xy. Note that
both of these angles cannot be 90◦ or greater, or else it would be impossible to form

596 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

x y

s

v

FIG. 4.4. A simple polygon with shortest paths from s to x, y, and xy shown.

a funnel with π(o, x) and π(o, y). If the angle between ex (ey) and xy is at least 90◦,
then we return dx (dy) as the shortest distance to xy and x (y) as the closest point
on xy.

If both the angles formed by ex and ey with xy are less than 90◦, then the last
edge on the shortest path π(o, xy) will be a perpendicular drawn from one of the
vertices on the funnel associated with xy. To find this edge we again use the data
structure in [18] to examine the edges of the funnel in order, starting with ex. For
each edge we calculate the angle formed by its extension with xy. That is, for each
edge (u,w) whose extension intersects xy at point z, we calculate the angle ∠uzy. As
we move around the funnel these angles increase. When the angle becomes greater
than 90◦, we have found the vertex from which to drop a perpendicular to xy. It
takes O(n) time to find this vertex, and an additional O(logn) time to calculate the
distance to xy and the closest point (this is the time it takes to determine the length
of the shortest path from o to this vertex).

To compute the reference point qC,j , we compute the shortest path distance in Pj
from the origin to each edge of C. We then choose the smallest distance as the distance
to the cell C. For each cell C we will have up to k reference points {qC,1, . . . , qC,k}
and their corresponding distances {d1(qC,1), . . . , dk(qC,k)}. We define dj(q) = ∞ for
all points q not within Pj .

Partition of H. For each cell C we compute a partition of H that represents
which hypothetical locations can be distinguished from one another by probing from
inside C. If two translates Pi and Pj have the same visibility skeleton for cell C, or if
C is outside of both Pi and Pj , then pi and pj are in the same subset of the partition
of H corresponding to cell C.

Since the visibility polygon and the visibility skeleton for a point p ∈ P can be
computed in O(n) time (see [17]) and we can compare two visibility skeletons with m
vertices in O(m) time to see if they are identical, we can compute the partition of H
for C in O(kn + k2m) time, where m is the maximum number of vertices on any of
the k visibility skeletons.

Although there may be O(n6) cells in the overlay arrangement A, yielding up to
O(kn6) reference points, we show in section 5.4 that only O(k2) reference points are
needed for our localization strategy, so we do not need to compute a partition of H
for all O(n6) cells.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 597

5. A greedy strategy for localization. In this section we present a localiz-
ing decision tree strategy, called Minimum Distance Localization Strategy or Strategy
MDL for short, for completing the solution of the hypothesis elimination phase of the
robot localization problem. Our strategy, which has a greedy flavor, uses the set Q
of reference points described in the previous section for choosing probing locations.
Strategy MDL has a competitive ratio of k − 1, where k = |H|.

In devising a localizing decision tree strategy, there are two main criteria to con-
sider when deciding where the robot should make the next probe: (1) the distance
to the new probe position, and (2) the information to be gained at the new probe
position. It is easy to see that a strategy that only considers the second criterion
can do arbitrarily worse than an optimal localizing decision tree strategy. Strategy
MDL considers (2) only to the extent that it never directs the robot to make a useless
probe. Nevertheless, its performance is the best possible. Although it would seem
beneficial to weight each possible probe location with the amount of information that
could be gained in the worst case by probing at that location, this change will not
improve the worst case behavior of Strategy MDL, as the lower bound example given
in section 5.3 illustrates.

Even a strategy that considers both the distance and the information criteria when
choosing the next probe position can do poorly. For example, if the robot employs an
incremental strategy that at each step tells it to travel to the closest probe location
that yields some information, then a map polygon can be constructed such that in
the worst case the robot will travel distance 2kd.

Using Strategy MDL for hypothesis elimination, a strategy for the complete robot
localization problem can be obtained as follows. Preprocess the map polygon P using
a method similar to that in [19]. This preprocessing yields a data structure that stores
for each equivalence class of visibility polygons either the location in P yielding that
visibility polygon, if there is only one location, or a localizing decision tree that tells
the robot how to travel to determine its true initial location.

5.1. Strategy MDL. In this subsection we present the details of Strategy MDL.
Using the results of section 4, it is possible to precompute Strategy MDL’s entire
decision tree. However, for ease of exposition we will only describe how the strategy
directs the robot to behave on a root-to-leaf path in the tree. In practice, it may also
sometimes be preferable not to precompute the entire tree, but rather to compute the
robot’s next move on an interactive basis, as the robot carries out the strategy.

Strategy MDL uses the map polygon P , the set H generated in the hypothesis
generation phase, and the set Q of reference points defined in section 4.3. Also, for
each point qC,j ∈ Q the strategy uses the distance dj(qC,j) of qC,j from the origin, a
path pathj(qC,j) within Pj of length dj(qC,j), and the partition of H associated with
cell C, as defined in section 4.3.

Next we describe how Strategy MDL directs the robot to behave. Initially, the
set of hypothetical locations used by Strategy MDL is the given set H. As the
robot carries out the strategy, hypothetical locations are eliminated from H. Thus
in our description of Strategy MDL, we abuse notation and use H to denote the
shrinking set of active hypothetical locations; i.e., those that have not yet been ruled
out. Similarly, we use Q to denote the shrinking set of active reference points; i.e.,
those that nontrivially partition the set of active hypothetical locations. We call a
path pathj(q) active if pj ∈ H and q ∈ Q are both active. We let d∗(q∗) denote the
minimum of { dj(q) | q ∈ Q and pj ∈ H are active } and let path∗(q∗) denote an active
path of length d∗(q∗).

598 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

Using the initial H and Q, an initial path∗(q∗) can be selected. The strategy
directs the robot to travel along this path and to make a probe at its endpoint. The
robot then uses the information gained at the probe position to update H and Q.
The strategy then directs the robot to retrace its path back to the origin and repeat
the process until the size of H shrinks to 1.

Note that Strategy MDL is well suited to handling the problem of accumulation
of errors caused by successive motions in the estimates of orientation, distance, and
velocity made by the robot’s sensors. This is because the robot always returns to the
origin after making a probe, so it can recalibrate its sensors.

5.2. A performance guarantee for Strategy MDL. The following theorems
show that Strategy MDL is correct and has a competitive ratio of k − 1. First we
show that Strategy MDL never directs the robot to pass through a wall. Then we
show that Strategy MDL eliminates all hypothetical locations except the valid one
while directing the robot along a path no longer than k − 1 times the length of an
optimal verification tour. A corollary of Theorem 5.2 is that the localizing decision
tree associated with Strategy MDL has a weighted height that is at most 2(k − 1)
times the weighted height of an optimal localizing decision tree.

THEOREM 5.1. Strategy MDL never directs the robot to pass through a wall.
Proof. The proof is by contradiction. Suppose that pj is the true initial location

of the robot and xj is the point on the boundary of Pj where the robot would first
hit a wall. Furthermore, suppose that when the robot attempts to pass through the
wall at xj , the path it has been directed to follow is pathi(q). Let C denote the cell
of arrangement A that contains the portion of pathi(q) just before xj . Since cell C is
contained in Pj , it contributes a reference point qC,j to the set Q of reference points.

In order to arrive at a contradiction, it suffices to show that qC,j is active at
the time Strategy MDL chooses pathi(q) for the robot to follow. This is because
dj(qC,j) ≤ dj(xj) by definition of qC,j , dj(xj) ≤ di(xj) since the portion of pathi(q)
from the origin to xj is contained within Pj , and di(xj) < di(q) because xj is an
intermediate point on pathi(q). Thus dj(qC,j) < di(q), so Strategy MDL would choose
pathj(qC,j) rather than pathi(q) if qC,j is active.

Point qC,j is active when pathi(q) is selected because cell C distinguishes be-
tween the two active hypothetical locations pi and pj . This is because the skele-
ton V ∗j (C) associated with C relative to Pj has a real edge through the point xj ,
whereas the skeleton V ∗i (C) associated with C relative to Pi does not have a real edge
through xj .

THEOREM 5.2. Strategy MDL localizes the robot by directing it along a path whose
length is at most (k−1)d, where k = |H| and d is the length of an optimal verification
tour for the robot’s initial position.

Proof. Let pt denote the true initial location of the robot. First we show by
contradiction that Strategy MDL eliminates all hypothetical initial locations in H
except pt. Suppose Q becomes empty before the size of H shrinks to one, and let
pi be an active hypothetical location different from pt at the time Q becomes empty.
Translates Pi and Pt are not identical, so there is some point xt on the boundary of
Pt that does not belong to the boundary of Pi. Let C be the cell of arrangement A
contained in Pt and containing xt. C distinguishes between pi and pt, so qC,t is still
in the active set Q — a contradiction.

Next we establish an upper bound on the length of the path determined by Strat-
egy MDL. Because the strategy always directs the robot to a probing site that elim-
inates one or more elements from H, the robot makes at most k − 1 trips from its

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 599

initial location to a sensing point and back. To show that each round trip has length
at most d, we consider how a robot traveling along an optimal verification tour L
would rule out an arbitrary incorrect hypothetical location pi. Then we consider how
Strategy MDL would rule out pi.

Consider a robot traveling along tour L that eliminates each invalid hypothet-
ical location at the first point x on L where the visibility skeleton of x relative
to the invalid hypothetical location differs from the visibility skeleton of x relative
to Pt.

Let x be the first point on L where the robot can eliminate pi. The point x must
lie on the boundary of some cell C in the arrangement A that distinguishes pi from pt.
Cell C generates a reference point qC,t ∈ Q, and dt(qC,t) ≤ dt(x). Since pt is the true
initial location of the robot, the distance dt(x) is no more than the distance along L
of x from the origin, as well as the distance along L from x back to the origin. Thus
dt(qC,t) is no more than half the length of L.

At the moment Strategy MDL directs the robot to move from the origin to the
probing site where it eliminates pi, both pi and pt are active, so point qC,t is active
since it distinguishes between them. At this time Strategy MDL directs the robot to
travel along path∗(q∗). By definition, the length d∗(q∗) of this path is the minimum
over all dj(q) for active pj ∈ H and q ∈ Q. In particular, since point qC,t is still
active, d∗(q∗) ≤ dt(qC,t), which is no more than half the length of L. Therefore,
Strategy MDL directs the robot to travel along a loop from the origin to some probing
position where the robot eliminates pi and back, and the length of this loop is at
most d.

Using the definition of competitive ratio given in section 1, Theorem 5.2 can
be stated as “Strategy MDL is (k − 1)-competitive, where k = |H|.” Note that if a
verifying path is not required to return to its starting point, the bound for Theorem 5.2
becomes 2(k− 1)d. Note also that even if the robot were continuously sensing rather
than just taking a probe at the end of each path path∗(q∗), a better bound could not
be achieved. This is because the robot always goes to the closest point that yields
useful information, so no point on path∗(q∗) before q∗ will allow it to eliminate any
hypothetical locations.

COROLLARY 5.3. The weighted height of the localizing decision tree constructed
by Strategy MDL is at most 2(k−1) times the weighted height of an optimal localizing
decision tree for the same problem.

Proof. Consider the decision tree of Strategy MDL. Let ph denote the initial
location associated with the leaf that defines the weighted height of the tree. The
weighted height of the tree is thus the distance Strategy MDL will direct the robot
to travel to determine that ph is the correct initial location, and by Theorem 5.2 this
distance is at most k − 1 times the minimum verification tour length for ph. But the
minimum verification tour length for ph is at most twice the weight of a path from
the root to ph in an optimal localizing decision tree, which is at most the weighted
height of the tree. The result follows from these inequalities.

If the robot is required to return to its initial position, the bound on the weighted
height of the localizing decision tree constructed by Strategy MDL drops to k − 1.

It should be clear from the discussions in sections 4 and 5 that Strategy MDL can
be computed and executed in polynomial time. In this paper, we do not comment
further on computation time as there are many ways to implement Strategy MDL.
Also, if travel times are large compared to computation times, the importance of our
results is that they obtain good path lengths.

600 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

.. .

..

.

FIG. 5.1. Part of the map polygon that gives lower bound. Not to scale: d >> ε, δ.

5.3. Lower bounds. In Corollary 5.3 we proved that the weighted height of the
localizing decision tree built by Strategy MDL is no greater than 2(k − 1)d, where
k = |H| and d is the weighted height of an optimal localizing decision tree. This bound
is also a lower bound for Strategy MDL, as illustrated in Fig. 5.1. Consider a map
polygon that is a staircase polygon with k+2 stairs, such as the one in Fig. 3.1, where
each stairstep except the first and last one is similar to the one shown in Fig. 5.1. Each
such stairstep has k protrusions placed in a circle, with the end of each protrusion a
distance d from the center of the circle. In each stairstep a different protrusion has
its end extended, which uniquely identifies the stairstep. Each stairstep also has a
longer protrusion, with k smaller protrusions sticking out of it. One of these smaller
protrusions is extended to uniquely identify the stairstep. The first small protrusion
is a distance d+ ε from the center of the circle, and the last one is a distance d+ ε+ δ
from the center of the circle.

For this map polygon, if the robot is initially placed in the center of the circle on
one stairstep, Strategy MDL will direct it to travel up the k protrusions of length d
until it finds one that has a longer piece at the end, or until it has examined all but
one of these protrusions. In the worst case the robot will travel a distance 2(k − 1)d.
An optimal strategy would direct the robot to travel down the protrusion of length
d + ε + δ and examine all the small protrusions coming out of it until it found one
that was longer. In the worst case the robot would travel a distance d+ ε+ δ. Since
ε and δ can be made arbitrarily small, in the worst case Strategy MDL travels Ω(k)
times as far as the optimal strategy. Even if we used a strategy that weighted each
potential probe location with the amount of information that could be gained from
that location in the worst case, we would still build the same decision tree because
any probe location in the stairstep yields at most one piece of information in the worst
case.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 601

. .

d

.

FIG. 5.2. Part of the map polygon that shows Strategy MDL is best possible.

Although there are map polygons for which Strategy MDL builds a localizing
decision tree whose weighted height is Ω(k) times the weighted height of an optimal
localizing decision tree, there are other map polygons for which any localizing decision
tree strategy builds a tree with weighted height at least k − 1 times the length of an
optimal verification tour. Consider a map polygon that is a staircase polygon with
k+ 2 stairs, such as the one in Fig. 3.1, where each stairstep except the first and last
one is similar to the one shown in Fig. 5.2. Each such stairstep has k protrusions
placed in a circle, with the end of each protrusion a distance d from the center of the
circle, and has one protrusion extended at the end to uniquely identify the stairstep.
The vertical piece between adjacent stairsteps is longer than 2(k − 1)d.

As with the map polygon shown in Fig. 5.1, Strategy MDL will direct the robot
to explore the k protrusions of length d, and in the worst case the robot will travel a
distance 2(k − 1)d. Consider any other localizing decision tree strategy. If it directs
the robot to travel to any stairstep besides the one where it starts, then the localizing
decision tree that it builds will have weighted height greater than 2(k − 1)d. The
only way to localize the robot while remaining on the initial stairstep is to direct it
to examine the protrusions, and in the worst case the robot must travel a distance
2(k − 1)d before it has localized itself (assuming that it must return to the origin at
the end).

Since no localizing decision tree strategy can build a tree with weighted height
less than k − 1 times the length of an optimal verification tour for all map polygons,
Strategy MDL is the best possible strategy.

5.4. Creating a reduced set of reference points. The set Q of reference
points has size upper bounded by k times the number of cells in the arrangement A,
which may be very large as shown in section 4.2. In this subsection, we show that
when Strategy MDL is run with only a small subset Q′ ⊆ Q of the original reference
points, the (k − 1)d performance guarantee of section 5.2 still holds. The size of Q′

will be no more than k(k − 1).
Set Q′ is defined as the union of subsets Qi ⊆ Q, where there is one Qi for each

pi ∈ H and |Qi| ≤ k − 1. Ignoring implementation issues, we define Qi as follows.
Initially Qi is empty, and the subset of Q consisting of reference points qC,i generated
for translate Pi is processed in order of increasing di(qC,i). For each successive point
qC,i, the partition of H induced by Qi ∪ {qC,i} is compared to that induced by Qi

602 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

alone. If the subset of H containing location pi is further subdivided by the additional
reference point qC,i, then qC,i is added to Qi. Conceptually, the reference point qC,i
is added if it distinguishes another hypothetical initial location from pi. This process
continues until pi is contained in a singleton in the partition of H induced by Qi.
Since there are only k−1 initial locations to be distinguished from pi, Qi will contain
at most k − 1 points.

We denote by Strategy MDLR, which stands for Minimum Distance Localization
with Reduced reference point set, the strategy obtained by replacing set Q with Q′ in
Strategy MDL.

THEOREM 5.4. Strategy MDLR, which uses a set of at most k(k − 1) reference
points, localizes the robot by directing it along a path whose length is at most (k−1)d,
where k = |H| and d is the length of an optimal verification tour for the robot’s initial
position.

Proof. Both the proof that Strategy MDLR directs the robot along a path that
determines its initial location and the proof of the (k − 1)d bound are essentially the
same as the proofs of the corresponding results in Theorems 5.1 and 5.2 of section
5.2. The only additional observation needed is that if a reference point qC,i is used in
one of the previous proofs to distinguish between two hypothetical initial locations,
and if qC,i does not belong to set Q′, then Q′ contains some reference point qC′,j that
distinguishes the same pair of locations and that satisfies dj(qC′,j) ≤ di(qC,i). Hence,
set Q′ always contains an adequate substitute for any reference point of Q required
by the proofs of Theorems 5.1 and 5.2.

6. Conclusions and future research. We have shown that the problem of
localizing a robot in a known environment by traveling a minimum distance is NP-
hard, and we have given an approximation strategy that achieves a competitive ratio
of k−1, where k is the number of possible initial locations of the robot. We have also
shown that this bound is the best possible.

The work in this paper is one part of a strategy for localizing a robot. The
complete strategy will preprocess the map polygon and store the decision trees for
ambiguous initial positions so that the robot only needs to follow a predetermined
path to localize itself.

There are many variations to this problem which can be considered. If the robot
must localize itself in an environment with obstacles, then the map of the environment
can be represented as a simple polygon with holes. If these obstacles are moving, then
the problem becomes more difficult.

In this paper we assigned a cost of zero for the robot to take a probe and analyze
it. In a more general setting we would look for an optimal decision tree, where the
edges of a decision tree associated with the outcome of a probe would be weighted
with the cost to analyze that probe. A pragmatic variation of the problem would
weight reference locations so that those that produce more reliable percepts would be
selected first.

REFERENCES

[1] E. M. ARKIN, H. MEIJER, J. S. MITCHELL, D. RAPPAPORT, AND S. S. SKIENA, Decision trees
for geometric models, in Proc. 9th Annual ACM Symposium on Computational Geometry,
San Diego, CA, May 19-21, 1993, ACM, New York, pp. 369–378.

[2] D. AVIS AND H. IMAI, Locating a robot with angle measurements, J. Symbolic Comput.,
10 (1990), pp. 311–326.

LOCALIZING A ROBOT WITH MINIMUM TRAVEL 603

[3] E. BAR-ELI, P. BERMAN, A. FIAT, AND P. YAN, On-line navigation in a room, in Proc. 3rd
Annual ACM–SIAM Symposium on Discrete Algorithms, Orlando, FL, January 27–29,
1992, SIAM, Philadelphia, pp. 237–249.

[4] R. BASRI AND E. RIVLIN, Homing using combinations of model views, in Proc. 13th Internat.
Joint Conference on Artificial Intelligence (IJCAI-93), Chambery, France, August 1993,
Morgan Kaufmann Publishers, San Francisco, CA, pp. 1586–1591.

[5] K. BASYE AND T. DEAN, Map learning with indistinguishable locations, in Uncertainty in
Artificial Intelligence 5, M. Henrion, L. N. Kanal, and J. F. Lemmer, eds., Elsevier Science
Publishers, New York, 1990, pp. 331–340.

[6] P. BELLEVILLE AND T. C. SHERMER, Probing polygons minimally is hard, Comput. Geom.,
2 (1993), pp. 255–265.

[7] P. BERMAN, A. BLUM, A. FIAT, H. KARLOFF, A. ROSEN, AND M. SAKS, Randomized robot nav-
igation algorithms, in Proc. 7th Annual ACM–SIAM Symposium on Discrete Algorithms,
Atlanta, GA, January 28–30, 1996, SIAM, Philadelphia, pp. 75–84.

[8] M. BETKE AND L. GURVITS, Mobile robot localization using landmarks, in Proc. IEEE/RSJ/GI
Internat. Conference on Intelligent Robots and Systems, Munich, Germany, September
1994, IEEE Computer Society Press, Los Alamitos, CA, pp. 135–142. To appear in IEEE
Trans. on Robotics and Automation.

[9] A. BLUM, P. RAGHAVAN, AND B. SCHIEBER, Navigating in unfamiliar geometric terrain, in
Proc. 23rd Annual ACM Symposium on Theory of Computing, ACM, New York, 1991,
pp. 494–504; SIAM J. Comput., 26 (1997), pp. 110–137.

[10] P. K. BOSE, Visibility in Simple Polygons, Master’s thesis, University of Waterloo, Waterloo,
Ontario, Canada, December, 1991.

[11] P. K. BOSE, A. LUBIW, AND J. I. MUNRO, Efficient visibility queries in simple polygons, in Proc.
4th Canadian Conference on Computational Geometry, C. A. Wang, ed., St. John’s, New-
foundland, Canada, August 10-14, 1992, Memorial University of Newfoundland, pp. 23–28.

[12] A. DATTA AND C. ICKING, Competitive searching in a generalized street, in Proc. 10th Annual
ACM Symposium on Computational Geometry, Stony Brook, NY, June 6–8, 1994, ACM
Press, New York, pp. 175–182.

[13] E. DAVIS, Representing and Acquiring Geographic Knowledge, Pitman and Morgan Kaufmann
Publishers, Inc., London and Los Altos, CA, 1986.

[14] G. DUDEK, M. JENKIN, E. MILIOS, AND D. WILKES, Map validation and self-location in a
graph-like world, in Proc. 13th International Joint Conference on Artificial Intelligence
(IJCAI-93), Chambery, France, August, 1993, Morgan Kaufmann Publishers, San Fran-
cisco, CA, pp. 1648–1653.

[15] P. EADES, X. LIN, AND N. WORMALD, Performance guarantees for motion planning with
temporal uncertainty, Austral. Comput. J., 25 (1993), pp. 21–28.

[16] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, New York, 1979.

[17] H. A. E. GINDY AND D. AVIS, A linear algorithm for computing the visibility polygon from a
point, J. Algorithms, 2 (1981), pp. 186–197.

[18] L. J. GUIBAS, J. HERSHBERGER, D. LEVEN, M. SHARIR, AND R. E. TARJAN, Linear-time
algorithms for visibility and shortest path problems inside triangulated simple polygons,
Algorithmica, 2 (1987), pp. 209–233.

[19] L. J. GUIBAS, R. MOTWANI, AND P. RAGHAVAN, The robot localization problem, SIAM J. Com-
put., 26 (1997), pp. 1120–1138.

[20] L. HYAFIL AND R. L. RIVEST, Constructing optimal binary decision trees is NP-complete,
Inform. Process. Lett., 5 (1976), pp. 15–17.

[21] R. KLEIN, Walking an unknown street with bounded detour, Comput. Geom., 1 (1992), pp. 325–
351.

[22] J. KLEINBERG, On-line search in a simple polygon, in Proc. Fifth Annual ACM–SIAM Sym-
posium on Discrete Algorithms, SIAM, Philadelphia, 1994, pp. 8–15.

[23] J. KLEINBERG, The localization problem for mobile robots, in Proc. 35th Annual IEEE Sym-
posium on Foundations of Computer Science, Santa Fe, NM, November 20–22, 1994, IEEE
Computer Society Press, Los Alamitos, CA, pp. 521–533.

[24] A. KOSAKA, M. MENG, AND A. C. KAK, Vision-guided mobile robot navigation using retroac-
tive updating of position uncertainty, in Proc. IEEE Internat. Conference on Robotics
and Automation, Volume 2, Atlanta, GA, May, 1993, IEEE Computer Society Press, Los
Alamitos, CA, pp. 1–7.

[25] B. J. KUIPERS AND Y. T. BYUN, A qualitative approach to robot exploration and map-learning,
in Proc. IEEE Workshop on Spatial Reasoning and Multi-Sensor Fusion, Los Altos, CA,
1987, IEEE Computer Society Press, Los Alamitos, CA, pp. 390–404.

604 GREGORY DUDEK, KATHLEEN ROMANIK, AND SUE WHITESIDES

[26] J.-C. LATOMBE, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA, 1991.
[27] D. LEE AND F. P. PREPARATA, Euclidean shortest paths in the presence of rectilinear barriers,

Networks, 14 (1984), pp. 393–410.
[28] C. PAPADIMITRIOU AND M. YANNAKAKIS, Shortest paths without a map, Theoret. Comput.

Sci., 84 (1991), pp. 127–150.
[29] D. D. SLEATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules,

Comm. ACM, 28 (1985), pp. 202–208.
[30] R. TALLURI AND J. K. AGGARWAL, Position estimation for an autonomous mobile robot in an

outdoor environment, IEEE Trans. on Robotics and Automation, 8 (1992), pp. 573–584.

LISTING ALL MINIMAL SEPARATORS OF A GRAPH∗

T. KLOKS† AND D. KRATSCH‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 605–613, June 1998 001

Abstract. An efficient algorithm listing all minimal vertex separators of an undirected graph is
given. The algorithm needs polynomial time per separator that is found.

Key words. graph, algorithm, listing algorithm, minimal separator, good pair, minimal pair

AMS subject classifications. 68R10, 05C85

PII. S009753979427087X

1. Introduction. Given a graph, one is often interested in listing certain sub-
sets of vertices, or their cardinality, which possess a certain property. For example,
the clique number of a graph G is the maximum cardinality of a subset S such that
G[S] is complete. Similar questions are the independence number, the domina-

tion number, or the chromatic number. For many of these problems, it would
be convenient if one could use a decomposition of the graph by means of certain
separators.

This is perhaps best illustrated by the recent results for classes of graphs of
bounded treewidth. For these classes, linear time algorithms exist for many NP-
complete problems exactly because a decomposition can be made using separators of
bounded size [1, 2, 3, 4, 12]. A decomposition of this type can be found in linear
time [5, 12]; however, the huge constants involved in these algorithms do not make
them of much practical use.

A closely related but somewhat different approach was surveyed in [19]. In that
paper (see also [8]) it is shown that for many classes of graphs (for example chordal
graphs, clique separable graphs, and edge intersection graphs of paths in a tree (EPT-
graphs)) a decomposition by clique separators is possible, and it is illustrated that such
a decomposition can also be used to solve efficiently many NP-complete problems like
minimum fill-in, maximum clique, graph coloring, and maximum indepen-

dent set. In [20] an algorithm is given for finding clique separators efficiently (the
algorithm uses O(nm) time to find one clique separator). Recent results have shown
how the above-mentioned results can be generalized in the sense that at least the NP-
complete problems treewidth and minimum fill-in can be solved by polynomial
time algorithms for many more graph classes, i.e., certain graph classes for which the
number of minimal separators is polynomial bounded [6, 7, 12, 13, 14, 15, 17].

In [11] an algorithm is given which finds all of what the authors call minimum
size separators. By this they mean that, given a graph which is k-connected, the
algorithm finds all separators with k vertices. Moreover, they show in this paper that
the number of these separators is bounded by O(2k n

2

k). Their algorithm, which lists
all minimum size separators, runs in O(2kn3) time. We call a subset of vertices S a

∗Received by the editors July 11, 1994; accepted for publication (in revised form) February 1,
1996. A preliminary version of this paper appeared in Proceedings of the 11th Annual Symposium on
Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 775, Springer-Verlag,
Berlin, 1995, pp. 759–768.

http://www.siam.org/journals/sicomp/27-3/27087.html
†Faculty of Applied Mathematics, University of Twente, P.O. Box 217, AE Enschede, The Nether-

lands (ton@win.tue.nl).
‡Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität, 07740 Jena, Germany

(dieter.kratsch@mathematik.uni-jena.dbp.de).

605

606 T. KLOKS AND D. KRATSCH

minimal separator if there are nonadjacent vertices x and y such that the removal of
S separates x and y into disjoint connected components in such a way that no proper
subset of S also does this (see Definition 1). A closely related concept which we call
inclusion minimal separators lies more or less between the minimum size separators
and the minimal separators, i.e., all minimum size separators are inclusion minimal
and all inclusion minimal separators are minimal separators.

The following example shows that the minimum size separators and the inclusion
minimal separators are only of limited use. Consider any graph G. Take a new vertex
x and make this adjacent to all vertices of G. Take another new vertex y and make
this adjacent to x. Call this new graph H. The only inclusion minimal separator
which is also the only minimum size separator of H is {x}. However, if S is some
minimal separator of G, then S ∪ {x} is a minimal separator in H. Hence H has at
least as many minimal separators as G.

In [6, 12, 13, 14, 15] it is shown that many important classes of graphs have a
polynomial number of minimal vertex separators. These graph classes include per-
mutation graphs, circular permutation graphs, trapezoid graphs, circle graphs, circu-
lar arc graphs, distance hereditary graphs, chordal bipartite graphs, cocomparability
graphs of bounded dimension, and weakly triangulated graphs. For some of these
graph classes there are efficient algorithms listing all minimal vertex separators, of-
ten using so-called “scanlines” (see, e.g., [6, 12, 17]). In this paper we present an
algorithm for listing all minimal vertex separators of any given graph. Notice that,
in general, the number of minimal separators can be exponential, as the following
example shows. Consider the graph consisting of two nonadjacent vertices s and t
and a set of n−2

2 (internally) vertex disjoint paths of length 3 from s to t. The number
of minimal s, t-separators in this graph is 2(n−2)/2.

Our listing algorithm has been applied as an important subroutine in O(n5R +
n3R3) algorithms computing the treewidth and minimum fill-in of a given asteroidal
triple-free graph with n vertices and R minimal separators [16, 17]. (Notice that aster-
oidal triple-free graphs are a relatively large class of graphs containing cocomparability
graphs and permutation graphs.) Furthermore, it has been suggested in [18] to use a
so-called “separator graph” for obtaining polynomial time treewidth and minimum fill-
in algorithms. Thereby the vertex set of the separator graph is the set of all minimal
separators of the given graph. Typically, applications require our listing algorithm.

For listing other types of combinatorial structures we refer to [9].

2. Preliminaries. If G = (V,E) is a graph and W ⊆ V is a subset of vertices,
then we use G[W] as a notation for the subgraph of G induced by the vertices of W .
For a vertex x ∈ V we use N(x) to denote the neighborhood of x.

The following definition can be found, for example, in [10].
DEFINITION 1. Given a graph G = (V,E) and two nonadjacent vertices a and b,

a subset S ⊂ V is an a, b-separator if the removal of S separates a and b in distinct
connected components. If no proper subset of S is an a, b-separator, then S is a
minimal a, b-separator. A minimal separator is a set of vertices S for which there
exist nonadjacent vertices a and b such that S is a minimal a, b-separator.

The following lemma appears, for example, as an exercise in [10]. It provides an
easy test of whether or not a given set S of vertices is a minimal separator.

LEMMA 2. Let S be a separator of the graph G = (V,E). Then S is a minimal
separator if and only if there are two different connected components of G[V −S] such
that every vertex of S has a neighbor in both of these components.

LISTING ALL MINIMAL SEPARATORS OF A GRAPH 607

Proof. Let S be a minimal a, b-separator and let Ca and Cb be the connected
components containing a and b, respectively. Let x ∈ S. Since S is a minimal a, b-
separator, there is a path between a and b passing through x but using no other vertex
in S. Hence x must have a neighbor in Ca and Cb.

Now let S be a separator and let Ca and Cb be two connected components such
that every vertex of S has a neighbor in Ca and Cb. Let a ∈ Ca and b ∈ Cb. Then,
clearly, S is a minimal a, b-separator, for if x ∈ S, then there is a path between a and
b which uses no vertices of S \ {x}.

Notice that this also proves the following. Let S be a minimal separator and let
C1 and C2 be two connected components of G[V −S] such that every vertex of S has
a neighbor in both C1 and C2. If a is a vertex of C1 and b is a vertex of C2, then S
is a minimal a, b-separator.

It may be a bit surprising at first to see that it is very well possible for one
minimal separator to be contained in another. An example of this can be found
in [10]. However, for minimal a, b-separators things are different since, by definition,
one minimal a, b-separator cannot be properly contained in another.

We now show that at least some of the minimal separators are easy to find.
DEFINITION 3. Let a and b be nonadjacent vertices. If S is a minimal a, b-

separator which contains only neighbors of a, then S is called close to a.
LEMMA 4. If a and b are nonadjacent, then there exists exactly one minimal

a, b-separator close to a.
Proof. Let S be a minimal a, b-separator close to a. For every vertex in S there is

a path to b which does not use any other neighbors of a, since S is minimal. On the
other hand, if x is a neighbor of a such that there is a path to b without any other
neighbors of a, then x must be an element of S; otherwise, there is a path between
x and b which avoids S and this is a contradiction since x is in the component of
G[V − S] that contains a.

Notice that a minimal separator close to a can easily be computed as follows.
Start with S = N(a). Clearly, since a and b are nonadjacent, S separates a and b.
Let Cb be the connected component of G[V − S] containing b. Let S′ ⊆ S be the set
of those vertices of S which have at least one neighbor in Cb. By Lemma 2, S′ is a
minimal a, b-separator, and since it only contains neighbors of a, it is close to a.

LEMMA 5. Let S be a minimal a, b-separator close to a and let Ca and Cb be
the connected components containing a and b, respectively. Let S∗ 6= S be another
minimal a, b-separator. Then S∗ ⊂ S ∪ Cb.

Proof. Since S∗ is a minimal a, b-separator, S∗ ⊂ Ca ∪ Cb ∪ S. Assume S∗ has a
vertex x ∈ Ca. S∗ \ {x} does not separate a and b; hence there is a path P between
a and b using x but no other vertex of S∗. Since S is a minimal separator, P goes
through a vertex y ∈ S. Since S is close to a, y is adjacent to a. Hence there is a
path P ′ ⊂ P between a and b that does not contain x. This is a contradiction since
P ′ contains no vertex of S∗.

In sections 3 and 4 we show how to obtain new minimal a, b-separators from a
given one using so-called minimal pairs. A minimal pair is in some sense the smallest
step to go from one minimal a, b-separator to the next one. The main difficulty is to
prove that we indeed obtain all minimal separators by using small steps only.

In section 5 we describe an algorithm that computes all minimal a, b-separators
for a given pair of nonadjacent vertices a and b in a breadth-first-search manner;
we prove that it is correct and we analyze its time complexity. We end with some
concluding remarks and open problems.

608 T. KLOKS AND D. KRATSCH

3. Good pairs. Let G = (V,E) be a graph and let a and b be nonadjacent
vertices in G. Let S be a minimal a, b-separator and let Ca and Cb be the connected
components containing a and b, respectively.

DEFINITION 6. Let ∆ ⊆ Ca \ {a} and let C ′a be the connected component of
G[Ca −∆] that contains a. Let N ⊆ S be the set of vertices in S that do not have a
neighbor in C ′a. The pair (∆, N) is called good for S if the following conditions are
satisfied:

1. N 6= ∅.
2. Each δ ∈ ∆ has at least one neighbor in C ′a.
3. Each δ ∈ ∆ either has a neighbor in N or there exists a vertex x ∈ N and

a connected component D of G[Ca −∆] such that both x and δ have at least
one neighbor in D.

LEMMA 7. If S is close to a, then there is no good pair.
Proof. Assume (∆, N) is a good pair. Hence ∆ ⊆ Ca \ {a}. Let C ′a be the

connected component of G[Ca − ∆] that contains a. The set N is defined as the
subset of S that does not contain any neighbor in C ′a. Then N = ∅ since S contains
only neighbors of a, but by definition N 6= ∅.

Theorem 8 shows that a good pair defines a new separator. In Theorem 9 we show
that each minimal a, b-separator can be obtained by a good pair for the separator that
is close to b. In section 4 we show that only a restricted type of good pairs, called
minimal pairs, has to be considered.

THEOREM 8. Let (∆, N) be a good pair. Define S∗ = (S ∪∆) \N . Then S∗ is a
minimal a, b-separator.

Proof. Let C ′a be the connected component of G[Ca−∆] that contains a. Clearly,
S∗ separates a and b, since vertices of N do not have neighbors in C ′a. Let C ′b be the
connected component of G[V − S∗] that contains b. Notice that Cb ⊂ C ′b, and since
each vertex of N has a neighbor in Cb, N ⊂ C ′b.

Each vertex of S∗ has at least one neighbor in C ′a by definition of a good pair,
and each vertex of S∗ \ ∆ has at least one neighbor in C ′b since it has at least one
neighbor in Cb. The only thing left to show is that each vertex of ∆ has a neighbor
in C ′b. Let δ ∈ ∆. By definition, either δ has a neighbor in N (and hence in C ′b) or
there is a vertex x ∈ N and a connected component D of G[Ca −∆] such that both
δ and x have a neighbor in D. D is also connected in G[V − S∗] and, since x has a
neighbor in D, D ⊂ C ′b.

THEOREM 9. Assume S is close to b. Let S∗ 6= S be a minimal a, b-separator.
There exists a good pair (∆, N) such that S∗ = (S ∪∆) \N .

Proof. Let C∗a and C∗b be the connected components of G[V − S∗] containing a
and b, respectively.

First notice that S∗ ⊂ Ca ∪Cb ∪ S, since S∗ is minimal. Since S is close to b, by
Lemma 5, S∗ ⊂ S ∪Ca. Let ∆ = S∗ ∩Ca and N = S \ S∗. We show that (∆, N) is a
good pair.

Since S∗ 6= S and both are minimal a, b-separators then N 6= ∅.
Let C ′a be the connected component of G[Ca−∆] containing a. We show that N

is exactly the set of vertices in S which do not have a neighbor in C ′a. In order to do
this we claim that C ′a = C∗a . Since C ′a is a connected component of G[V − (∆ ∪ S)]
and since S∗ ⊂ ∆ ∪ S, C ′a ⊆ C∗a . Now assume there is a vertex x ∈ N which has a
neighbor y ∈ C ′a. Since S is close to b, x is a neighbor of b. This is a contradiction
since there would be a path between a and b which does not use any vertex of S∗.

LISTING ALL MINIMAL SEPARATORS OF A GRAPH 609

This shows that C ′a = C∗a . Since S∗ is minimal, N is exactly the set of vertices in S
that do not have a neighbor in C ′a, and every vertex of ∆ ∪ (S \N) has at least one
neighbor in C ′a.

To prove the last item, first notice that N ⊂ C∗b and that C∗b contains exactly
those connected components D of G[Ca−∆] for which there is a vertex y ∈ N which
has a neighbor in D. Now let δ ∈ ∆. Since S∗a is minimal, δ has a neighbor x in
C∗b . Since δ only has neighbors in Ca ∪ S, x must be an element of N or of some
component D of G[Ca −∆]. In this second case, there must also be a vertex y ∈ N
which has a neighbor in D.

4. Minimal pairs. Again let G = (V,E) be a graph and let a and b be non-
adjacent vertices in G. Let S be a minimal a, b-separator and let Ca and Cb be the
connected components of G[V − S] containing a and b, respectively. In this section
we show how to find some good pairs.

DEFINITION 10. Let x ∈ S be nonadjacent to a. Let Ca(x) be the subgraph induced
by Ca ∪ {x}. Let ∆ be the minimal x, a-separator in Ca(x) close to x, and let C ′a be
the connected component containing a. Now let N be the set of vertices of S which do
not have a neighbor in C ′a. The pair (∆, N) is called the minimal pair for S and x.

LEMMA 11. A minimal pair is good.
Proof. Notice that x ∈ N ; hence N 6= ∅.
Now, ∆ is a minimal x, a-separator in Ca(x) and hence every vertex of ∆ has a

neighbor in C ′a.
Finally, if δ ∈ ∆, then δ is adjacent to x since ∆ is close to x. Hence each vertex

of ∆ has a neighbor in N .
We want to prove that we can find every minimal a, b-separator by starting with

the minimal a, b-separator that is close to b and by recursively using minimal pairs.
The following technical lemma proves this.

LEMMA 12. Let (∆, N) be a good pair for S. Let x ∈ N and let (∆∗, N∗) be
the minimal pair for S and x. Let S∗ = (S ∪ ∆∗) \ N∗. Define ∆ = ∆ \ ∆∗ and
N = (N \N∗) ∪ (∆∗ \∆). Then

1. if N = ∅, then (S ∪∆) \N = S∗, and
2. if N 6= ∅, then (∆, N) is a good pair for S∗ and (S ∪∆) \N = (S∗ ∪∆) \N .

Proof. We start with some easy observations. Let C ′a be the connected component
of G[Ca −∆] that contains a and let C∗a be the connected component of G[Ca −∆∗]
that contains a. Let ∆′ = N(x) ∩∆.

• C ′a ⊆ C∗a since ∆∗ contains no vertices of C ′a.
• ∆′ ⊆ ∆∗ since every vertex of ∆′ has a neighbor in C ′a.
• ∆ \∆′ ⊆ C∗a since every vertex of ∆ has a neighbor in C ′a.
• N∗ ⊆ N since C ′a ⊆ C∗a .
• C ′a is exactly the connected component of G[C∗a− (∆\∆′)] containing a since
C∗a − (∆ \∆′) contains all vertices of C ′a but no vertex of ∆.
• The set of vertices in S∗ without a neighbor in C ′a is exactly N , which is easy

to check.
Assume N = ∅. Then ∆∗ ⊆ ∆ and N = N∗ (since N∗ ⊆ N). Now it is also clear

that ∆∗ = ∆; otherwise S∗ and (S ∪∆) \N are two minimal a, b-separators of which
one is properly contained in the other—which is impossible. Hence S∗ = (S ∪∆) \N .

Now assume N 6= ∅. We show that (∆, N) is good for S∗. Notice that every
vertex of ∆ has a neighbor in C ′a, since this holds for every vertex of ∆.

610 T. KLOKS AND D. KRATSCH

Let δ ∈ ∆ and assume that δ has no neighbors in N . Since δ ∈ C∗a , δ has no
neighbor in N∗. Hence δ has no neighbor in N . Now (∆, N) is a good pair; hence
there is a vertex z ∈ N and a connected component D of G[Ca −∆] such that δ and
z have a neighbor in D. Assume by way of contradiction that for no vertex of N
there is a connected component in G[C∗a −∆] such that both this vertex and δ have
a neighbor in this component. The following observations lead to a contradiction.

• N(δ) ∩D ⊆ C∗a . Otherwise, since ∆∗ \∆′ ⊂ N , δ has a neighbor in N .
• G[D − ∆∗] is connected. Since otherwise every connected component has a

vertex with a neighbor in ∆∗ \∆, and hence there is a connected component
and some vertex in N such that both this vertex and δ have a neighbor in
this component.
• D contains no vertices of ∆∗ by the same argument.

This shows that D ⊂ C∗a . If z ∈ N∗ then z can have no neighbors in D, since z has
no neighbors in C∗a . Hence z ∈ N \ N∗. This is a contradiction, since now there is
a connected component D in G[C∗a −∆] and a vertex z ∈ N such that both z and δ
have a neighbor in D.

The fact that (S ∪∆) \N = (S∗ ∪∆) \N is obvious.
Starting with the minimal separator close to b, Theorem 9 ensures that a good pair

(∆, N) exists for every minimal separator. If, at one point, we arrived at a minimal
separator S, Lemma 12 shows that we can find the minimal separator (S ∪ ∆) \ N
by successively choosing minimal pairs (∆∗, N∗). Notice that the component of S∗

containing a is smaller than the component of S containing a. Hence, after a finite
number of steps we reach (S ∪∆) \N . Consequently we obtain the following result.

COROLLARY 13. Let S be a minimal a, b-separator and let S1 be the minimal
a, b-separator close to b. There exists a sequence (∆1, N1), . . . , (∆t, Nt) such that

1. (∆1, N1) is a minimal pair for S1 and some vertex x1 ∈ N1.
2. for i = 2, . . . , t, (∆i, Ni) is a minimal pair for Si = (Si−1 ∪∆i−1) \Ni−1 and

some vertex xi ∈ Ni.
3. for i = 1, . . . , t, ∆i and a are in the same connected component of G[V −Si].
4. S = (St ∪∆t) \Nt.

5. An algorithm listing minimal separators. In this section we give an
algorithm that, given a graph G and two nonadjacent vertices a and b, finds all
minimal a, b-separators. This algorithm is displayed in Figure 1.

THEOREM 14. Let S be the minimal a, b-separator that is close to b and let
T = {S} and Q = {S}. Then a call separators(G, a, b, T ,Q) determines a set Q
containing all minimal a, b-separators.

Proof. By Corollary 13 the set Q contains all minimal a, b-separators. By
Lemma 11 and Theorem 8 all sets in Q are minimal separators.

Remark. If we let T = {{b}} and Q = ∅, then a call separators(G, a, b, T ,Q) has
the same result.

THEOREM 15. Let R(a, b) be the number of minimal a, b-separators (for nonad-
jacent vertices a and b). The algorithm to determine all minimal a, b-separators can
be implemented to run in time O(n3R(a, b)).

Proof. Assume that the graph is given with an adjacency matrix. The minimal
separator S that is close to b can easily be found in O(n2) time as follows. Initialize
S = N(b). Determine the connected component Ca of G[V − S]. Remove vertices
from S that do not have a neighbor in Ca.

Consider the time it takes to compute T ′. For each S ∈ T and for each x ∈ S
not adjacent to a we have to do the following computations. Determining ∆ takes at

LISTING ALL MINIMAL SEPARATORS OF A GRAPH 611

procedure separators(G, a, b, T ,Q)
input: Graph G and non adjacent vertices a and b and

sets T and S of minimal a, b-separators.
output: Set Q of all minimal a, b-separators in G.
begin

T ′ := ∅;
for each S ∈ T do
begin

Determine Ca;
{ Ca is the connected component of G[V − S] that contains a.}
for each x ∈ S which is not adjacent to a do
begin

Determine ∆;
{∆ is the minimal x, a-separator in Ca(x) that is close to x.}
Determine C′a;
{ C′a is the connected component of G[Ca −∆] that contains a.}
Determine N ;
{N is the set of vertices in S that do not have a neighbor in C′a,}
S∗ := (S ∪∆) \N ;
T ′ := T ′ ∪ {S∗}
{Add S∗ to T ′ only if not yet present!}

end for
end for;
Q := Q∪ T ′;
separators(G, a, b, T ′,Q)

end.

FIG. 1. Algorithm listing minimal separators.

most O(n2) time. Computing C ′a and N can clearly be done in O(n2) time. Hence
the time to compute T ′ (which may contain elements that are already in Q) can be
performed in O(n3| T |) time.

We have to remove minimal separators that have been found before from the
new set T ′. We can do this by keeping Q in a suitable data structure, allowing an
update in O(n| T ′ | logR(a, b)) = O(n2| T ′ |) = O(n3| T |) time. It follows that the
computation of T ′, containing only new minimal separators, can be performed in
O(n3| T |) time. Since each newly computed set T ′ contains only minimal separators
that have not been found before, it follows that the total time needed by the algorithm
is O(n3R(a, b)).

COROLLARY 16. The set of all minimal separators of a graph can be found in
O(n5R) time, where n is the number of vertices in the graph and R is the total number
of minimal separators.

A somewhat different result is the following.
THEOREM 17. Assume G has at least R minimal separators. There exists an

algorithm that finds R different minimal separators in O(n5R) time.
Proof. The claimed algorithm is simply the following. The algorithm listing

minimal separators described above is stopped when R different ones have been found.
It may take time at most O(n5R), trying different pairs of nonadjacent vertices for
which the total number of different minimal separators is smaller than R. Assume a
pair of vertices has been found with enough new minimal separators. Now the analysis
in the proof of Theorem 15 shows the claimed result.

612 T. KLOKS AND D. KRATSCH

6. Conclusions. In this paper we have presented an algorithm to determine a
list of all minimal vertex separators of a graph. The algorithm needs only polynomial
time per separator that is found. We would like to mention some open problems.

First of all, we feel that it should be possible to improve the running time of the
algorithm presented here.

A related concept is that of an inclusion minimal separator . This is a minimal
separator with the additional constraint that no proper subset is also a minimal sepa-
rator. The following lemma shows that our algorithm can be used to find all inclusion
minimal separators. However, the example given in the introduction illustrates that
this may not be an efficient way to do this.

LEMMA 18. A separator S of a graph G = (V,E) is inclusion minimal if and only
if every vertex of S has a neighbor in every connected component of G[V − S].

It follows that a list of all inclusion minimal separators can easily be obtained
from the list of all minimal separators. Until now, we have not been able to find an
efficient algorithm which finds all inclusion minimal separators.

Acknowledgments. We thank B. Monien (University of Paderborn, Germany)
for drawing our attention to this important problem. We are grateful to an anonymous
referee for helpful comments.

REFERENCES

[1] S. ARNBORG, Efficient algorithms for combinatorial problems on graphs with bounded
decomposability—A survey, BIT, 25 (1985), pp. 2–23.

[2] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J.
Algorithms, 12 (1991), pp. 308–340.

[3] S. ARNBORG AND A. PROSKUROWSKI, Linear time algorithms for NP-hard problems restricted
to partial k-trees, Discrete Appl. Math., 23 (1989), pp. 305–314.

[4] H. BODLAENDER, A tourist guide through treewidth, Acta Cybernet., 11 (1993), pp. 1–21.
[5] H. BODLAENDER, A linear time algorithm for finding tree-decompositions of small treewidth,

in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1993, pp. 226–234.

[6] H. BODLAENDER, T. KLOKS, AND D. KRATSCH, Treewidth and pathwidth of permutation
graphs, SIAM J. Discrete Math., 8 (1995), pp. 606–616.

[7] H. BODLAENDER, T. KLOKS, D. KRATSCH, AND H. MÜLLER, Treewidth and Minimum Fill-in
on d-Trapezoid Graphs, Technical Report UU-CS-1995-34, Utrecht University, The Nether-
lands, 1995.

[8] F. GAVRIL, Algorithms on clique separable graphs, Discrete Math., 19 (1977), pp. 159–165.
[9] L. A. GOLDBERG, Efficient Algorithms for Listing Combinatorial Structures, Cambridge Uni-

versity Press, Cambridge, 1993.
[10] M. C. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[11] A. KANEVSKY, On the number of minimum size separating vertex sets in a graph and how to

find all of them, in Proceedings of the First Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, PA, 1990, pp. 411–421.

[12] T. KLOKS, Treewidth—Computations and Approximations, Lecture Notes in Computer Science
842, Springer-Verlag, Berlin, 1994.

[13] T. KLOKS, Treewidth of circle graphs, Internat. J. Found. Comput. Sci., 7 (1996), pp. 111–120.
[14] T. KLOKS, Minimum Fill-in for Chordal Bipatite Graphs, Technical Report RUU-CS-93-11,

Department of Computer Science, Utrecht University, The Netherlands, 1993.
[15] T. KLOKS AND D. KRATSCH, Treewidth of chordal bipartite graphs, J. Algorithms, 19 (1995),

pp. 266–281.
[16] T. KLOKS, D. KRATSCH, AND J. SPINRAD, On treewidth and minimum fill-in of asteroidal

triple-free graphs, Theoret. Comput. Sci., 175 (1997), pp. 309–335.
[17] D. KRATSCH, The Structure of Graphs and the Design of Efficient Algorithms, Habilitation

thesis, F.-Schiller-Universität, Jena, Germany, 1996.

LISTING ALL MINIMAL SEPARATORS OF A GRAPH 613

[18] A. PARRA AND P. SCHEFFLER, How to use the minimal separators of a graph for its chordal tri-
angulation, in Proceedings of the 22rd International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science 944, Springer-Verlag, Berlin, 1995,
pp. 123–134.

[19] R. E. TARJAN, Decomposition by clique separators, Discrete Math., 55 (1985), pp. 221–232.
[20] S. H. WHITESIDES, An algorithm for finding clique cut-sets, Inform. Process. Lett., 12 (1981),

pp. 31–32.

EFFICIENT SELF-EMBEDDING OF BUTTERFLY NETWORKS
WITH RANDOM FAULTS∗

HISAO TAMAKI†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 614–636, June 1998 002

Abstract. We study the embedding of the butterfly network in its faulty version, where each
node is independently faulty with some constant probability p. We give a method of such self-
embedding of the N -node butterfly with O(1) load, O((log logN)2.6) dilation, and O((log logN)c)
congestion, which succeeds with probability at least 1 − N−1 if p < 1 −

√
2/3 ' 0.1835, where

c is a constant that depends on p; c is about 8.84 for p = 0.1 and approaches log2 40 ' 5.32 as
p → 0. The method is constructive and in fact yields an N logO(1) N time deterministic algorithm
to construct the claimed embedding with the claimed success probability when given the random
faulty butterfly. We also show that we can make the dilation as low as O(log logN), although at
the cost of logO(1) N congestion. These embeddings are level-preserving in the sense that each node
is mapped to a node in the same level of the butterfly as the original node. We also derive a lower
bound of log logN − o(log logN) on the dilation of a level-preserving embedding with Nα load, for
any constant α < 1/3 and any constant node-failure probability p > 0. Thus, the bounds on dilation
are tight up to a constant factor, as far as level-preserving embeddings are concerned.

Key words. butterfly network, random faults, network embedding, interconnection networks,
embedding

AMS subject classifications. 60C05, 68M07, 68Q22

PII. S0097539794270364

1. Introduction. In this paper, we study the robustness of interconnection net-
works against random static faults. We assume that each node of the network is
faulty with some constant probability, independently of other nodes. Faulty nodes
are conceptually removed from the network together with all of its incident edges.
The question we address is if the remaining subnetwork can efficiently embed the
fault-free version of the network in the following sense. In general, an embedding of a
network G in a network H maps each node of G to a node of H and each edge of G
to a path of H so that, if an edge (u, v) of G is mapped to a path P of H, then nodes
u and v are mapped to the endpoints of P . In our context of self-embedding, G is the
fault-free network and H is the network after the removal of faulty nodes. The load
of the embedding is the maximum number of nodes of G mapped to a single node of
H, the dilation is the maximum length of a path of H to which some edge is mapped,
and the congestion is the maximum number of edges of G whose image paths share a
common edge of H. A self-embedding with small load, dilation, and congestion im-
plies an efficient simulation of the fault-free network by the faulty network and thus
can be considered as evidence of the robustness of the network structure. (In fact,
the slowdown factor of the simulation is O(load + dilation + congestion) due to the
result of Leighton, Maggs, and Rao [12] on off-line routing.)

Under this model, H̊astad, Leighton, and Newman [6] show that the hypercube is
highly robust, supporting a self-embedding with O(1) load, O(1) dilation, and O(1)
congestion, with high probability. Aiello and Leighton [1] give another proof of this
result as an application of their more general embedding technique. This result heavily

∗Received by the editors June 27, 1994; accepted for publication (in revised form) February 7,
1996.

http://www.siam.org/journals/sicomp/27-3/27036.html
†IBM Tokyo Research Laboratory, 1623-14 Shimotsuruma, Yamato, 242 Japan (htamaki@

trl.ibm.co.jp). This work was done while the author was at the University of Toronto.

614

BUTTERFLY NETWORKS WITH RANDOM FAULTS 615

depends on the logarithmic degree of the hypercube, and one naturally asks if a similar
robustness can be achieved by bounded-degree networks. For the two-dimensional
array, this question is resolved by Kaklamanis et al. [7], who show the upper bound of
O(1) load, O(logN) dilation, and O(1) congestion (with high probability), together
with a matching lower bound that anyO(1)-load embedding requires Ω(logN) dilation
with high probability. Here, and throughout this paper, we use N to denote the
number of nodes in the network. Kaklamanis et al. also give almost tight bounds for
the three-dimensional array. Tamaki [16] introduces a new bounded-degree network
called cube-connected arrays which admits O(1) load self-embedding with dilation
and congestion both (log logN)1+o(1). However, the problem has remained open for
the so-called hypercubic networks, such as the butterfly, the cube-connected-cycles
(CCC), the shuffle-exchange, and the de Bruijn networks. Annexstein [3] gives self-
embeddings with O(log logN) dilation and O(1) congestion for these networks, but
under a weaker model in which an edge is allowed to be mapped to a path containing
faulty nodes. Karlin and Nelson [8] show that a faulty butterfly contains a linear-sized
connected component with high probability. This means that O(1)-load embedding is
possible, but their proof technique does not seem to lead to good bounds for dilation
and congestion.

Recently, Leighton, Maggs, and Sitaraman [11] extensively studied worst-case
faults in bounded-degree networks, and as one of the consequences, interestingly,
derived a result on the butterfly with random faults: a faulty butterfly can simulate the
complete butterfly with slowdown factor 2O(log∗N), which is very close to a constant.
This simulation is not based on embedding but uses the more involved scheme of
replication [10].

In this paper, we give an efficient self-embedding of the butterfly network with
random faults.

THEOREM 1.1. For node-failure probability p < 1 −
√

2/3 ' 0.1835, a faulty N -
node butterfly can embed a fault-free N -node butterfly with O(1) load, O((log logN)2.6)
dilation, and O((log logN)c) congestion, with probability at least 1−N−1, where c is a
constant that depends on p; c is about 8.84 for p = 0.1 and approaches log 40 ' 5.321

as p→ 0.
The proof is constructive in the sense that we can extract an efficient deterministic

algorithm (that runs in N logO(1)N steps) for constructing the embedding.
We also show that if we allow congestion of logO(1)N , then we can make the

dilation of the embedding as small as O(log logN).
Following [11], we call a self-embedding of the butterfly level-preserving if it maps

each node of the butterfly to a node in the same level as the original. Both of our
embeddings in the above results are level-preserving. We also prove the following
matching lower bound on the dilation of level-preserving self-embeddings.

THEOREM 1.2. For any positive constants p and α < 1/3, the probability is
1 − 2−N

Ω(1)
that any level-preserving self-embedding with load Nα in a faulty N -

node butterfly with node failure probability p requires dilation at least log logN −
o(log logN).

The work of Leighton, Maggs, and Sitaraman [11] includes a negative result for
worst-case faults: to ensure a self-embedding with O(1) load and dilation, only poly-
logarithmic number of worst case faults can be allowed in a butterfly. Their technique
does not seem to apply to random faults, nor does ours to worst-case faults.

1Throughout the paper, all logarithms are base 2.

616 HISAO TAMAKI

This paper improves on its preliminary version [15] in three major points: (1) we
give an explicit allowable value of the node-failure probability p for our embedding;
(2) we include a dilation upper bound of O(log logN); and (3) we have a matching
lower bound on the dilation of level-preserving embeddings, improving on the weaker
lower bound of log log logN in the preliminary version.

The rest of the paper is organized as follows. In section 2, we define some nec-
essary notions and introduce notations. In section 3, we show that a faulty butterfly
maintains a large connected component and a reasonably good routing capability with
very high probability. In section 4, we improve the congestion of the routing of section
3 at a slight expense of dilation. In section 5, this result of section 4 is applied to
small subbutterflies of a faulty butterfly and yields our main embedding result. On
the other hand, the result of section 3, similarly applied, yields the embedding with
better dilation and exponentially worse congestion. In section 6, we prove the dilation
lower bound. Finally, in section 7 we discuss some open problems.

2. Preliminaries. In this section, we define the butterfly network and review
some of its structural properties. We review some probabilistic tools we use and also
introduce some terminology for routing.

For two integers m and n, we denote by [m, . . . , n] the set of integers i satisfying
m ≤ i ≤ n. We also write [n] for [1, . . . , n]. Let m be a positive integer. The m-stage
butterfly, denoted by Bm, is an undirected graph on node set [0, . . . ,m]× {0, 1}m. If
v is a node of the form 〈i, x〉, i ∈ [0, . . . ,m] and x ∈ {0, 1}m, we call i the level index
and x the row index of v. Two nodes 〈i, x〉 and 〈j, y〉 are adjacent if and only if (1)
|i − j| = 1, and (2) x and y are equal at all bit positions except possibly the kth,
where k is the larger of i and j. For a fixed i, we refer to the set of all nodes with level
index i as level i and to the set of all edges between level i− 1 and level i as stage i.
We call an edge (〈i− 1, x〉, 〈i, y〉) a straight edge if x = y; a cross edge if x and y do
differ at the ith bit position. We also refer to the set of all nodes with row index x,
for a fixed x, as row x. Note that if we collapse each row x into a single node, Bm
degenerates into an m-dimensional hypercube, with a cross edge in stage i becoming
an edge in dimension i. As in Figure 1, our convention is to draw, and regard, the
lower levels to be on the left-hand side.

The following notions and facts about the butterfly will be frequently used. We
call a path in Bm monotone if it visits each level at most once. If the leftmost node
of a monotone path is u and the rightmost node is v, then we say that the monotone
path starts at u and ends at v. It is sometimes convenient to see a monotone path
as being specified by the starting node and a binary string. Let us label each edge
(〈i− 1, x〉, 〈i, y〉) of Bm with the ith bit of y. When the butterfly is drawn as in
Figure 1, of those two edges that go out to the right from each node, the upper one
is labeled with 0 and the lower one is labeled with 1. The label of a monotone path
(v0, v1, . . . , vk), where the vertices are listed from left to right, is defined to be a bit
string b1, . . . , bk, where each bi, i ∈ [k] is the label of the edge (vi−1, vi). The following
facts about Bm can be easily verified. For x ∈ {0, 1}∗, |x| denotes the length of x.

1. A node v on level i and a binary string w, |w| ≤ m − i, uniquely specify a
monotone path that starts at v and has w as its label.

2. If a monotone path starts at node 〈i, x〉 and has label w, then it ends at node
〈i+ |w|, ywz〉, where y is the prefix of x with length i and z is the suffix of x
with length m− |w| − i.

3. For each pair of nodes u on level 0 and v on level m, there is a unique
monotone path in Bm that starts at u and ends at v. The label of this unique
monotone path is the row index of v.

BUTTERFLY NETWORKS WITH RANDOM FAULTS 617

stages

0000

levels

1000

0100

0010

0110

1110

0001

0101

1101

0011

0111

2 3

1100

1010

1001

1011

1111

1 4
43210rows

FIG. 1. The 4-stage butterfly.

4. For each node u on level 0, the graph formed by all the monotone paths of
length m starting at u is a complete binary tree rooted at u.

5. For any monotone path (v0, v1, . . . , vm) from level 0 to level m, there is an
automorphism of Bm that maps each vi to node 〈i, 0m〉.

Let k and d be integers such that 0 ≤ k ≤ k + d ≤ m. For x ∈ {0, 1}k and y ∈
{0, 1}m−k−d, the subgraph of Bm induced by the set of nodes {〈k + l, xwy〉 | 0 ≤ l ≤
d,w ∈ {0, 1}d} is isomorphic to Bd; the standard isomorphism maps node 〈k + l, xwy〉
of Bm to node 〈l, w〉 of Bd. We call this subgraph a d-stage subbutterfly of Bm starting
at level k (and ending at level k + d). When we refer to a subbutterfly, we usually
view the graph through the standard isomorphism above. If B is a subbutterfly of Bm,
Left (B) will denote the set of nodes of B on its leftmost (lowest) level and Right (B)
will denote the set of nodes on its rightmost (highest) level. In particular, Left (Bm)
and Right (Bm) are, respectively, the set of nodes on levels 0 and m.

Let F be a subset of V (Bm). We write Bm〈F 〉 to denote the subgraph of Bm
induced by the node set V (Bm) \ F . Informally, we will view Bm〈F 〉 as the faulty
butterfly with fault set F . For a subgraph B of Bm, we extend this notation by defining
B〈F 〉 to be the intersection of B and Bm〈F 〉. We are primarily interested in the case
where F is a random subset of V (Bm). Let S be a finite set and let X be a random
subset of S such that each element of S is independently included inX with probability
p. In other words, each fixed X is assigned probability p|X|(1− p)|S|−|X|. We denote
this probability distribution by randsub(S, p) and write X ∈ randsub(S, p) to mean
that X is chosen at random according to this distribution. Then Bm〈F 〉, where
F ∈ randsub(V (Bm), p), induces a probability distribution over the subgraphs of
Bm. We denote this probability distribution by Bm〈p〉 and call it the randomly faulty
m-stage butterfly with node-failure probability p.

We will use the following forms of the bound on the probability of a large devi-
ation of a sum of independent random variables, usually called the Chernoff bound.
The proofs can be found in the standard textbooks such as Alon and Spencer [2] or

618 HISAO TAMAKI

Motwani and Raghavan [13]. Let X be a sum of independent random variables, each
of which takes either 0 or 1 as its value. Let µ = E(X) be the expected value of X.

PROPOSITION 2.1. Let ε > 0. Then, P (|X − µ| > εµ) < e−cεµ, where cε is a
positive constant depending only on ε.

In one occasion, where we want to bound the probability that X deviates from
its mean by more than a constant fraction, we will use the following.

PROPOSITION 2.2. For any T > µ, P (X > T) < (eµT)T .
There will be a few occasions where we need to deal with a sum of random

variables which are not totally independent. If those random variables can be grouped
so that the random variables in a single group are mutually independent, then we
can apply the Chernoff bound to each subset. This reasoning gives the following
proposition which we will refer to as the partition Chernoff bound.

PROPOSITION 2.3. Let ε > 0 be a constant and let 0 < p < 1 be a value that
possibly depends on n. Let Xi, for each i ∈ [n], be a random variable which assumes
value 1 with probability p and 0 with probability 1− p. Let X =

∑
i∈[n]Xi. Let f(n)

and g(n) be functions such that log f(n) = o(pg(n)), and suppose the set [n] can be
partitioned into f(n) subsets with at least g(n) elements each so that, for each part
S of the partition, random variables Xi, i ∈ S are mutually independent. Then,
P (|X − pn| > εpn) = 2−Ω(pg(n)).

Proof. For |X − pn| > εpn to happen, there must be some part S of the partition
such that |

∑
i∈S Xi − p|S| > εp|S|. The probability of this event for a fixed S is at

most 2−Ω(pg(n)) by Proposition 2.1. Therefore, the probability that this happens for
any S in the partition is at most f(n)2−Ω(pg(n)) = 2−Ω(pg(n)).

Now we turn to some terminology for routing. A routing request on a graph G
is a multiset of ordered pairs of nodes of G. A routing request is one-to-one if each
node appears at most once as the first component of a pair and at most once as the
second component of a pair in the request. Otherwise it is many-to-many. A routing
request on a butterfly is end-to-end if each pair consists of a node at level 0 and a
node at the last level. A multiset Π of paths of G realizes a routing request R if it
provides each pair in the request with a path connecting the pair; more formally, if
there is a one-to-one mapping f from R to Π such that f(u, v) for every (u, v) ∈ R
is a path with endpoints u and v. The congestion of a multiset of paths Π is the
maximum number of times a single edge of G appears in the paths of Π. Let U and
V be some sets of nodes of G. We say the pair (U, V) is (λ, γ)-routable in G if every
one-to-one routing request R ⊆ U × V can be realized by a multiset of paths with
maximum length λ and congestion γ. We say U is (λ, γ)-routable in G if (U,U) is
(λ, γ)-routable in G.

Let Qm = {0, 1}m denote the set of nodes of the m-cube and let Qm(i, b), i ∈ [m]
and b ∈ {0, 1} denote the set of nodes of the subcube of the m-cube where the ith
coordinate is fixed to b. For 0 < δ < 1, we say that a subset U of Qm is δ-dense if
at least a (1 − δ)-fraction of each Qm(i, b) is contained in U , i.e., |U ∩ Qm(i, b)| ≥
(1 − δ)2m−1 for every i ∈ [m] and b ∈ {0, 1}. We will apply this notion to a subset
U of a single level of Bm, viewing this level as the set of nodes of the m-cube in the
obvious manner.

3. (O(m), O(2m))-routing in the faulty butterfly. The goal of this section
is to show that, for appropriate values of δ and p, Bm〈p〉 almost surely contains a δ-
dense subset of level 0 that is (O(m), O(2m))-routable. This fact will later be applied
to small subbutterflies of Bn with m = O(log n) to provide small dilation paths in the
embedding of Bn into Bn〈p〉.

BUTTERFLY NETWORKS WITH RANDOM FAULTS 619

Let θp = (1− p)2(1− p2(2−p)2

(1−p)4).
THEOREM 3.1. Let δ, 0 < δ < 1 be given and fix p so that θp > 1 − δ. Then,

with probability at least 1 − 2−2Ω(m)
, Bm〈p〉 has a δ-dense subset of level 0 that is

(4m, 2m+2)-routable.
In our later application, we need to take δ < 1/2 and hence θp > 1/2. To achieve

this, it suffices to choose p < 1−
√

2/3 ' 0.1835.
The remainder of this section is devoted to the proof of Theorem 3.1. Let δ > 0

be fixed. We first define a mapping Φm which is intended to map a faulty butterfly
Bm〈F 〉 to a set of nodes U ⊆ Left (Bm〈F 〉) such that U is δ-dense and (O(m), O(2m))-
routable. We will later prove that Φm succeeds with high probability in satisfying
these conditions when applied to Bm〈p〉, provided θp > 1− δ.

We need some auxiliary definitions first. Let u and v be nodes on level 0 of Bm
and let meet (u, v) denote the smallest integer k such that u and v belong to the
same k-stage subbutterfly starting at level 0. Let F ⊆ V (Bn) be a fault set. We
say u and v are confluent in Bm〈F 〉 if Bm〈F 〉 contains two monotone paths of length
meet (u, v) that start at u and v and end at a common node. By convention, a node in
Left (Bm〈F 〉) is confluent with itself. For each v ∈ Left (Bm〈F 〉), let ConfF (v) denote
the set of all nodes that are confluent in Bm〈F 〉 with v.

Now we define Φm. If there exists a node v such that ConfF (v) is δ-dense, then
we set Φm(Bm〈F 〉) = ConfF (v0), where v0 is the first node in the natural ordering of
rows such that ConfF (v0) is δ-dense; otherwise we set Φm(Bm〈F 〉) = ∅.

It is clear that Φm(Bm〈F 〉) is either δ-dense or empty; we say that Φm succeeds
on Bm〈F 〉 in the first case and that it fails in the second case. The following lemma
shows that Φm provides what is required, whenever it succeeds.

LEMMA 3.2. Φm(Bm〈F 〉) is (4m, 2m+2)-routable in Bm〈F 〉, when nonempty.
Proof. Suppose a one-to-one routing request Q ⊆ U × U is given where U =

ConfF (v0) 6= ∅. Given a pair (u, v) ∈ Q, we arbitrarily choose two monotone paths
that witness the confluence of u with v0 and two monotone paths that witness the
confluence of v with v0. Then, to the pair (u, v), we assign the path consisting of
these four paths concatenated together. The total length of the path is at most 4m.
The congestion is at most 2m+2 because the number of monotone paths involved is
4|Q|.

To estimate the probability that Φm succeeds on Bm〈p〉, the following result
from the theory of branching processes is needed. We define a binary branching
process with birth probability q as the following special case of the Galton–Watson
process. We start from a single organism in generation 0, which gives birth to some
organisms in generation 1, which in turn have some children in generation 2, and so
on. Each organism has exactly two potential children, each of which is actually born
independently of each other and of any other organisms in the process (except for the
obvious dependence to the birth of its ancestors), with probability q. Thus the number
of children of each organism obeys a simple binomial distribution with generating
function f(z) = (qz + 1 − q)2. Let Z0, Z1, . . ., denote the number of organisms in
generation 0, 1, . . . , respectively. It is well known that if E(Z1) = 2q > 1, there is a
positive probability that the process will continue forever (Zk > 0 for every k ≥ 0);
the probability of extinction ξq = P (∃kZk = 0) is given as the unique root of f(z) = z
in the range 0 < z < 1. Thus ξq = ((1− q)/q)2 in our binary branching process. (See
[4].) The following lemma due to Pippenger [14] states that the probability of Zk
being much smaller than its expected value (2q)k is almost as small as the extinction
probability. More informally, a branching process is likely to thrive when it survives.

620 HISAO TAMAKI

101

v

u

0

1

0
1 01 0

010

1 0
10 0

1

100

FIG. 2. A confluence tree (rows are permuted from the standard drawing).

LEMMA 3.3. Suppose 2q > 1 and let τ be an arbitrary constant 0 < τ < 1. Then
P (Zk < (2q)τk) = ξq + o(1), as k →∞.

We use this lemma to estimate the probability that two nodes are confluent in
Bm〈p〉. Let F ⊆ V (Bm) be a fault set. For each pair of nodes u, v ∈ Left (Bm), we
define the confluence tree of u and v with respect to F , denoted by Tuv(F), as follows.
Tuv(F) is a rooted binary tree in which each node is a binary string of length at most
meet (u, v). Each such string w is a node of Tuv(F) if and only if both monotone
paths of Bm with label w that starts at u and v are contained in Bm〈F 〉. It is clear
that the node set of Tuv(F) is closed under the prefix operation; if ww′ is a node of
Tuv(F), then so is w. The edge set of Tuv(F) is defined so that there is an edge from
w1 to w2 if and only if w2 = w10 or w2 = w11. Thus, the empty string is the root of
Tuv(F) and, in general, each string with length i, i ∈ [0, . . . ,meet (u, v)] is at depth i
of the tree if it is a node of Tuv(F). Note that u and v are confluent in Bm〈F 〉 if and
only if their confluence tree has a node at depth meet (u, v). See Figure 2.

When F is randomly chosen, Tuv(F) gives rise to a binary branching process, to
which we can apply the tools described above.

PROPOSITION 3.4. For any two fixed nodes u, v ∈ Left (Bm), the probability that
u and v are confluent in Bm〈p〉 is at least θp = (1− p)2(1− p2(2−p)2

(1−p)4).
Proof. Fix u, v ∈ Left (Bm) and let F ∈ randsub(V (Bm), p). We first observe

that Tuv(F) is essentially a binary branching process with birth probability (1− p)2.
To see this, consider a potential node w of Tuv(F) with |w| < meet (u, v) and its two
potential children w0 and w1. Let u0 be the node at which the monotone path with
label w0 starting at u ends and define v0 similarly with u replaced by v. If w is indeed
a node of Tuv(F), then w0 is a node of Tuv(F) if and only if u0 6∈ F and v0 6∈ F . Note
that u0 = v0 if and only if |w0| = meet (u, v). Therefore,

P (w0 ∈ Tuv(F) | w ∈ Tuv(F)) =

{
(1− p)2 if |w0| < meet (u, v)
1− p if |w0| = meet (u, v).

The same equality holds for the probability P (w1 ∈ Tuv(F) | w ∈ Tuv(F)) for the
other potential child. Moreover, for any set W of potential nodes of Tuv(F), events for

BUTTERFLY NETWORKS WITH RANDOM FAULTS 621

w ∈ W and b ∈ {0, 1} that wb ∈ Tuv(F) are mutually independent when conditioned
that w ∈ Tuv(F) for all w ∈W . Thus, we can view Tuv(F) up to depth meet (u, v)−1
as an initial part of a binary branching process with birth probability (1−p)2. Though
our process deviates at the last depth from the binary branching process, the change is
the increased birth probability. Therefore, the probability that there is a descendant
in generation meet (u, v) only increases. It follows that the probability of Tuv(F)
having a node at depth meet (u, v) is at least the survival probability (1− ξ(1−p)2) of
the branching process, provided that neither u nor v is in F . The probability that
neither u nor v is in F is (1−p)2. Therefore the probability that u and v are confluent
in Bm〈F 〉 is at least (1− p)2(1− ξ(1−p)2) = θp.

If the confluence of pairs were mutually independent, then we would be done;
we would take p small enough so that θp is greater than 1 − δ and then apply the
Chernoff bound to conclude that ConfF (v) is δ-dense with high probability for any
v ∈ Left (Bm). We cope with the dependency in the following way.

Fix a positive constant τ < 1 and let α be a constant that satisfies

0 < α/(1− α) < τ(1 + 2 log(1− p))/(1− 2 log(1− p)).

We assume log(1 − p) > −1/2, or equivalently p < 1 −
√

2/2, so that the above
range for α/(1− α) is nonempty. Set s = d(1− α)me. In the following reasoning, we
view Bm as split at level s and work with s-stage subbutterflies Ly, y ∈ {0, 1}m−s,
starting at level 0 and m− s-stage subbutterflies Rx, x ∈ {0, 1}s, starting at level s.
More precisely, Ly consists of the nodes {〈i, xy〉 | x ∈ {0, 1}s, i ∈ [0, . . . , s]} and Rx
consists of the nodes {〈i, xy〉 | y ∈ {0, 1}m−s, i ∈ [s, . . . ,m]}. We call each Ly a left
subbutterfly and Rx a right subbutterfly. Observe that, for each pair of left and right
subbutterflies Ly and Rx, there is a unique row of Bm that intersects both Ly and
Rx, namely row xy. For each node v ∈ Left (Bm), let y(v) denote the length m − s
suffix of the row index of v. Note that y(u) = y(v) if and only if meet (u, v) ≤ s.

Let F ∈ randsub(V (Bm), p). For each pair of nodes u, v ∈ Left (Bm) such that
meet (u, v) > s, let Euv denote the event that the confluence tree Tuv(F) has at
least (2(1 − p)2)τs nodes at depth s. Note that (2(1 − p)2)s is the expected number
of generation s descendants in a binary branching process with birth probability
(1 − p)2. Thus, informally, Euv is the event that the branching process associated
to the confluence tree of u and v thrives up to generation s.

LEMMA 3.5. P (Euv) ≥ θp − o(1) as m→∞.
Proof. Since meet (u, v) > s, assuming that u, v 6∈ F , we can view the confluence

tree Tuv(F) up to depth s as a binary branching process with birth probability (1−p)2.
Apply Lemma 3.3 to this branching process.

We next show that event Euv implies the confluence of u and v with high proba-
bility.

LEMMA 3.6. For every u, v ∈ Left (Bm) such that meet (u, v) > s, the probability
that u and v are confluent in Bm〈F 〉 conditional on the event Euv is at least 1−2−2αm .

Proof. Fix u, v ∈ Left (Bm) such that meet (u, v) > s. Note that meet (u, v) > s
implies Ly(u) 6= Ly(v). Let W be the set of nodes at depth s of Tuv(F) and suppose
that event Euv occurs, i.e., |W | ≥ (2(1 − p)2)τs. Let w ∈ W ; w is a binary string
of length s such that the two monotone paths with label w starting at u and v both
avoid F . Let uw and vw be the nodes at which these monotone paths end, respectively.
Since the row indices of uw and vw both have the same prefix w, they are in the same
right subbutterfly Rw. (See Figure 3.) The probability that uw and vw are confluent
in Rw〈F 〉 is at least (1 − p)2(m−s), considering only one pair of monotone paths

622 HISAO TAMAKI

v

w

w

u

Rw

FIG. 3. Confluent paths lead to a common right subbutterfly.

that potentially connect these two nodes. Note here that conditioning on event Euv
does not affect the selection of faulty nodes at levels higher than s. Because this
event that uw and vw are confluent in Rw〈F 〉 is independent for each w, and because
|W | ≥ (2(1 − p)2)τs, the probability that none of these subbutterflies completes the
confluence between u and v is at most

(1− (1− p)2(m−s))(2(1−p)2)τs ≤ e−(1−p)2(m−s)(2(1−p)2)τs

≤ e−(1−p)2αm(2(1−p)2)τ(1−α)m

≤ e−2αm ,

where the last inequality follows from (2(1 − p)2)τ(1−α)m > (2/(1 − p)2)αm which is
immediate from our choice of α.

Let u be a node in Left (Bm) and let H be a fixed subgraph of Ly(u). For
each v ∈ Left (Bm) such that y(v) 6= y(u), consider the conditional probability
P (Euv | Ly(u)〈F 〉 = H). Since this conditional event depends only on Ly(v)〈F 〉,
this probability does not depend on the location of Ly(v) in the entire butterfly. It
does not depend on the location of v in Ly(v) either, because for any node v′ in
Left (Ly(v)), there exists an automorphism of Ly(v) that maps v to v′ and maps each
node in Right (Ly(v)) to itself; the above conditional probability is invariant under this
automorphism. Therefore, this conditional probability does not depend on the choice
of v as long as y(v) 6= y(u). We say that a subgraph H of Ly(u) is η-good for u, if this
conditional probability P (Euv | Ly(u)〈F 〉 = H) is at least η.

LEMMA 3.7. For any positive constant η < θp, the probability that Ly(u)〈F 〉 is
η-good for u is at least ζ − o(1), where ζ = (θp − η)/(1− η) > 0.

BUTTERFLY NETWORKS WITH RANDOM FAULTS 623

Proof. By Lemma 3.5, we have

P (Euv) ≥ θp − o(1)

for every pair u, v such that y(u) 6= y(v). On the other hand,

P (Euv) =
∑

H⊆Ly(u)

P (Euv | Ly(u)〈F 〉 = H)P (Ly(u)〈F 〉 = H)

<
∑

H: η-good

1 · P (Ly(u)〈F 〉 = H) +
∑

H: not η-good

ηP (Ly(u)〈F 〉 = H)

= 1 · P (Ly(u)〈F 〉 is η-good) + ηP (Ly(u)〈F 〉 is not η-good)

= (1− η)P (Ly(u)〈F 〉 is η-good) + η.

Combining these two inequalities, we get (1−η)P (Ly(u)〈F 〉 is η-good)+η > θp−o(1),
from which the required bound follows.

LEMMA 3.8. Let δ, 0 < δ < 1 be given and suppose θp > 1−δ. Then the probability
is at least 1 − 2−Ω(2αm) that there exists some v0 ∈ Left (Bm) such that ConfF (v0) is
δ-dense.

Proof. Choose η and ε so that 1− δ < η(1− 2ε) < η < θp. Consider the following
experiment in which we expose nodes (more precisely, expose their membership to
the fault set F) in three stages. Let t = bε2αmc and let Y be an arbitrary subset
of {0, 1}m−s with |Y | = t. In the first stage we look at the left subbutterflies Ly,
y ∈ Y and expose faulty nodes in those subbutterflies. For each y ∈ Y , designate
vy ∈ Left (Ly) arbitrarily and let Ay denote the event that Ly〈F 〉 is η-good for vy.
Events Ay are mutually independent and P (Ay) = ζ − o(1), ζ > 0 for each y ∈ Y by
Lemma 3.7. Therefore, with probability at least 1 − 2−Ω(t) = 1 − 2−Ω(2αm), at least
one of the events Ay occurs.

Suppose now that at least one of the events Ay does occur. Thus, we have some
node v0 such that Ly(v0)〈F 〉 is η-good for v0. We now enter the second stage of the
experiment and expose nodes in the remaining 2m−s− t subbutterflies Ly, y 6∈ Y . Let
V =

⋃
y 6∈Y Left (Ly) and let U = {u ∈ V | Euv0}.

Having fixed this set U , we enter the third stage and now expose nodes on levels
higher than s. By Lemma 3.6, for each u ∈ U , the probability that u is confluent with
v0 is at least 1 − 2−2αm and therefore, the probability that every u ∈ U is confluent
with v0 is at least 1− 2m2−2αm = 1− 2−Ω(2αm). Thus, with at least this probability,
U ⊆ ConfF (v0).

Now we return to the second stage and show that U is δ-dense with high prob-
ability. Fix i ∈ [m] and b ∈ {0, 1} and let V ′ = {〈0, z〉 ∈ V | the ith bit of z is b}.
Note |V ′| ≥ 2m−1− ε2m = (1− 2ε)2m−1 and therefore, the expected number of nodes
u ∈ V ′ such that Euv0 occurs is at least η(1 − 2ε)2m−1 because Ly(v0) is η-good for
v0. Noting that η(1− 2ε) > 1− δ, we estimate the tail probability that the number of
such nodes is less than (1− δ)2m−1 in the following way. Partition V ′ into 2s subsets
V ′x, x ∈ {0, 1}s, where 〈0, z〉 is in V ′x if and only if x is the length s prefix of z. Thus,
each subset contains at most one node from each of the subbutterflies Ly, y ∈ Y , and
the size of each subset is at least (1 − ε)2m−t−1 = Ω(2αm). Since the events Euv0

are mutually independent for nodes u belonging to a single subset, we can apply the
partition Chernoff bound (Proposition 2.3): the probability is 1 − 2−Ω(2αm) that we
have at least (1− δ)2m−1 nodes u ∈ V ′ for which Euv0 occurs. The probability that
this is true for all choices of i and b, hence implying that U is δ-dense, is at least
1− 2m2−Ω(2αm) = 1− 2−Ω(2αm).

624 HISAO TAMAKI

We have shown that Φm succeeds on Bm〈p〉 with probability at least 1− 2−2Ω(m)

which together with Lemma 3.2 establishes Theorem 3.1.
COROLLARY 3.9. For any positive constant δ < 1/2 and a positive constant p

such that θp > 1− δ, the probability is 1− 2−2Ω(m)
that Bm〈p〉 contains a δ-dense set

Uj on each level j ∈ [0, . . . ,m] such that
⋃
j Uj is connected.

Proof. Let F be randomly chosen from randsub(V (Bm), p). For each j ∈
[0, . . . , dm/2e], apply the theorem to each subbutterfly starting at level j and end-
ing at level m. Because there are only O(2m) subbutterflies to consider and each
subbutterfly has at least m/2 stages, each of those subbutterflies will yield a δ-dense
subset of its left end, which is connected in Bm〈F 〉 with probability 1−2−2Ω(m)

. Collect
these δ-dense subsets from all subbutterflies starting at level j and call their union Uj .
Then Uj is δ-dense by definition. We claim that U =

⋃
j Uj is connected in Bm〈F 〉.

To see this, focus on a particular subbutterfly starting at level j, j ≤ dm/2e − 1 and
on one of its two subbutterflies starting at level j + 1. The δ-dense sets of these sub-
butterflies we have obtained share at least one row, since δ < 1/2 by the assumption;
hence, these sets are connected through a straight edge. Applying this argument to
every interface of two subbutterflies starting at consecutive levels, we conclude that
U is connected. Applying the argument symmetrically to the right half of Bm〈F 〉,
we obtain a set U ′ that is connected in Bm〈F 〉 and includes a δ-dense set on each
level j, bm/2c ≤ j ≤ m. Now, U and U ′ share at least one node and thus are
connected.

4. (O(mlog 6),mO(1))-routing. In this section, we prove the following theorem
which improves the congestion of routing from O(2m) of the previous section to mO(1),
at the expense of the path length of routing. Due to the inductive structure of the
proof, we need to consider end-to-end routings instead of routings among nodes at
one end of the butterfly.

THEOREM 4.1. Let δ and p be positive constants satisfying δ < 1/2 and θp > 1−δ.
Then, with probability 1− 2−2Ω(m)

, Bm〈p〉 contains a δ-dense set U of nodes on level
0 and a δ-dense set V of nodes on level m such that (U, V) is (O(mlog 6),mO(1))-
routable.

Fix δ < 1/2. In the following, we define a mapping Ψm that takes a faulty butter-
fly Bm〈F 〉 and is supposed to give a pair (U, V) such that U and V are δ-dense subsets
of Left (Bm) and Right (Bm), respectively, and such that (U, V) is (O(mlog 6),mO(1))-
routable in Bm〈F 〉. We will later show that Ψm succeeds in giving such a pair with
high probability when applied to Bm〈p〉, where p is sufficiently small.

The definition of Ψm is by induction on m. The induction is based on the following
structure of the butterfly.

First consider the 2m-stage butterfly B2m. Split this butterfly at level m, let Ly,
y ∈ {0, 1}m be the left m-stage subbutterflies, and let Rx, x ∈ {0, 1}m be the right
m-stage subbutterflies. As before, the node set of Ly is {〈i, xy〉 | x ∈ {0, 1}m, i ∈
[0, . . . ,m]} and the node set of Rx is {〈i, xy〉 | y ∈ {0, 1}m, i ∈ [m, . . . , 2m]}. Observe
as before that each pair (Ly, Rx) intersects at exactly one node 〈m,xy〉. To depict
this global structure of B2m, we define a complete bipartite graph S2m on node sets
{ly | y ∈ {0, 1}m} and {rx | x ∈ {0, 1}m}. The intention here is to associate left
subbutterfly Ly with node ly, right subbutterfly Rx with node rx, and the intersection
node of Ly and Rx with edge (ly, rx) of S2m. We call S2m the skeleton graph of B2m.

We have similar definitions for the odd-stage butterfly B2m+1. The left subbutter-
fly Ly, y ∈ {0, 1}m+1 is an m-stage subbutterfly consisting of the nodes {〈i, x′y〉 | x′ ∈

BUTTERFLY NETWORKS WITH RANDOM FAULTS 625

{0, 1}m, i ∈ [0, . . . ,m]} and the right subbutterfly Rx, x ∈ {0, 1}m+1 is an m-stage
subbutterfly consisting of the nodes {〈i, xy′〉 | y′ ∈ {0, 1}m, i ∈ [m+ 1, . . . , 2m]}. Ob-
serve that each pair (Ly, Rx) is connected by exactly one edge, (〈m,x′y〉, 〈m+ 1, xy′〉),
where x′ is the length m prefix of x and y′ is the length m suffix of y. The skeleton
graph S2m+1 is defined similarly, with edge (ly, rx) of S2m+1 now corresponding to
the edge of B2m+1 that connects Ly and Rx.

As we remove faulty nodes from the butterfly B2m or B2m+1, we will remove
nodes and edges of its skeleton graph, in a manner to be made precise later. Roughly
speaking, if the shared node of Ly and Rx of B2m is removed or disconnected from the
major connected component of Ly or Rx, then we remove edge (ly, rx) of the skeleton
graph. If the resulting subgraph of the skeleton graph is dense, we can expect that
the faulty butterfly is still capable of efficient routing. This motivates the following
definition of a measure of the density of a bipartite graph.

Let u and v be nodes on the same side of a bipartite graph. The codegree of u
and v is the number of common neighbors of u and v. The minimum codegree of a
bipartite graph is the minimum of codegrees of all pairs (u, v) where u and v are nodes
on the same side of the bipartite graph.

Now we are ready to define the mapping Ψm. The definition depends on positive
constants δ, g, p, α, m0, and β, chosen as follows. We have already fixed δ < 1/2. Fix
g ≤ 1/2 and, according to Corollary 3.9, choose positive constants p, α < 1/2, and
m′0 so that Bm〈p〉 contains a connected set that includes a δ(1− g)-dense set at each
level with probability at least 1−2−2αm for every m ≥ m′0. Choose β < (1−2δ)2. Let
m0 ≥ m′0 be a constant that satisfies the following conditions. Let µm = 2−2αm2m−1

and Tm = δg(2g1/m0)m/2. We require that for every m ≥ m0,
M1 Tm ≥ 22αm + logm+ 3,
M2 eµm/Tm < 1/2,
M3 2−2αm ≤ δgm, and

M4 e−cε(1−2δ)22m ≤ 2−(2αm+2m+2), where ε = (1−2δ)2/β−1 and cε is the constant
in Proposition 2.1.

The meaning of these conditions will become clear when they are used later. We note
here that all of these conditions can be satisfied by choosing m0 sufficiently large.

Define δm = δ(1− g
m
m0) for every m ≥ m0. Note that δm is increasing in m and

less than δ.
As the base case, we first define Ψm for m0 ≤ m < 2m0. Consider Bm, m0 ≤

m < 2m0, and fix a fault set F ⊆ V (Bm). Suppose Bm〈F 〉 contains a connected
component C such that C ∩ Left (Bm) and C ∩ Right (Bm) are both δm-dense. Then,
set Ψm(Bm〈F 〉) = (C ∩ Left (Bm), C ∩ Right (Bm)), choosing one such C with an
arbitrary criterion. Otherwise set Ψm(Bm〈F 〉) = (∅, ∅), indicating the failure of the
mapping.

Suppose Ψm is already defined. Now we define Ψ2m and Ψ2m+1. We first deal with
Ψ2m. Fix a fault set F ⊆ V (B2m). We apply Ψm to each left subbutterfly Ly〈F 〉 and
each right subbutterfly Rx〈F 〉 of B2m〈F 〉 through the standard isomorphisms. More
precisely, for each y ∈ {0, 1}m, let ψy denote the standard isomorphism mapping
Ly to Bm and set (Uy, Vy) = ψ−1

y (Ψm(ψy(Ly〈F 〉))). Similarly for each x ∈ {0, 1}m,
let ψ′x denote the standard isomorphism mapping Rx to Bm and set (Wx, Zx) =
ψ′−1
x (Ψm(ψ′x(Rx〈F 〉))). The skeleton graph S2m(F) of the faulty butterfly B2m〈F 〉 is

a subgraph of S2m, where (1) node ly is included if and only if Vy 6= ∅; (2) node
rx is included if and only if Wx 6= ∅; and (3) edge (ly, rx) is included if and only if
Vy ∩Wx 6= ∅. We set

626 HISAO TAMAKI

Ψ2m(B2m〈F 〉) =

 ⋃
y∈{0,1}m

Uy,
⋃

x∈{0,1}m
Zx

 ,

if the minimum codegree of S2m(F) is at least β2m and, moreover,
⋃
y Uy and

⋃
x Zx

are both δ2m-dense; otherwise set

Ψ2m(B2m〈F 〉) = (∅, ∅).

Ψ2m+1 is defined similarly. We apply Ψm to subbutterflies Ly〈F 〉 and Rx〈F 〉 of
B2m+1〈F 〉 to obtain pairs (Uy, Vy) and (Wx, Zx). The skeleton graph S2m+1(F) is also
defined similarly as above, with item (3) replaced by: (3′) edge (ly, rx) is included
if and only if there is some v ∈ Vy and some w ∈ Wx such that (v, w) is an edge of
B2m+1. Then, set Ψ2m+1(B2m+1〈F 〉) = (

⋃
y Uy,

⋃
x Zx) if the minimum codegree of

S2m+1(F) is at least β2m+1 and, moreover,
⋃
y Uy and

⋃
x Zx are both δ2m+1-dense;

otherwise set Ψ2m+1(B2m+1〈F 〉) = (∅, ∅).
It is easy to see that we can compute Ψm(Bm〈F 〉) for given Bm〈F 〉 in time poly-

nomial in the number of nodes of Bm.
We say that Ψm succeeds on Bm〈F 〉 if Ψm(Bm〈F 〉) 6= (∅, ∅); otherwise it fails.

By definition, Ψm gives δ-dense sets when it succeeds. To show that it also gives an
(O(mlog 6),mO(1))-routable pair, we first need the following lemma, which is intended
to be applied to the skeleton bipartite graph of a faulty butterfly.

LEMMA 4.2. Let G be a bipartite graph on node sets A and B such that |A|, |B| ≤ n
and the minimum codegree of G is at least βn, where β is some positive constant. Let
Q be an arbitrary multiset of pairs from A×B in which each node appears at most n
times. Then we can route all pairs of Q in G with a multiset of paths of length 3 so
that each edge is used at most Γβ times, where Γβ is some constant depending only
on β.

Proof. Assume, without loss of generality, that 2/β is an integer (otherwise reason
with the largest β′ < β for which this is true) and set Γβ = 4

β (4
β + 1). We prove a

stronger claim by induction on the size of Q: the multiset of paths described above
can be chosen to have an additional property that each node appears as an internal
node of at most 2n/β paths from the multiset.

The base case Q = ∅ is trivial. Suppose Q is nonempty and the claim holds for
all Q′ with |Q′| = |Q| − 1. Removing one pair (a, b) of Q, we can route the remaining
pairs of Q in G with paths Π , as in the claim, by the induction hypothesis. We show
that we can add a path for (a, b) to Π without violating the constraints in the claim.
We say that an edge of G is saturated (with respect to Π) if the edge appears Γβ times
in Π . Similarly, a node of G is saturated if it appears as an internal node in 2n/β
paths of Π . Because each node appears at most n times in Q, Q contains at most
n2 pairs. Therefore, the number of paths in Π which equals the number of pairs in
Q \ {(a, b)} is strictly less than n2. Because each path has exactly one internal node
in A, these paths in Π can saturate strictly fewer than βn/2 nodes of A; the same
holds for B. Next consider the set of edges incident to an arbitrary node c. Because
at most n paths of Π end at c and at most 2n/β paths go through c, these edges are
used at most (4

β + 1)n times in total. Therefore, at most (4
β + 1)n/Γβ = βn/4 edges

incident to c are saturated.
Now we can choose the path for (a, b). Since a has at least βn edges, of which at

least βn− βn/4 > βn/2 are unsaturated, there is at least one unsaturated neighbor,
say b′, such that the edge (a, b′) is unsaturated. We take this b′ as the first intermediate

BUTTERFLY NETWORKS WITH RANDOM FAULTS 627

node in the path. Nodes b and b′ have at least βn common neighbors, of which at
least βn−βn/4−βn/4 = βn/2 are reachable from both b′ and b through unsaturated
edges. One of these βn/2 neighbors must be unsaturated, completing a path for (a, b)
free of saturated edges or nodes. Adding this path to Π preserves the conditions in
the claim.

LEMMA 4.3. If Ψm succeeds on Bm〈F 〉 and Ψm(Bm〈F 〉) = (U, V), then (U, V)
is (c1mlog 6, c2mlog Γβ)-routable in Bm〈F 〉 where c1 and c2 are some constants inde-
pendent of m, β is the constant fixed in the definition of Ψm, and Γβ is the constant
given in Lemma 4.2.

Proof. The proof is by induction on m. Since m0 is a constant, we can choose
c1 and c2 so that the statement holds for all Ψm in the base cases m0 ≤ m < 2m0.
Suppose the statement holds for Ψm. We first show that it also holds for Ψ2m.
Fix a faulty butterfly B2m〈F 〉, let Ψ2m(B2m〈F 〉) = (U, V), and assume U and V
are nonempty. Recall the definition of Ψ2m(B2m〈F 〉) and notation used there. In
particular, (Uy, Vy), y ∈ {0, 1}m is the pair produced by Ψm applied to the left
subbutterfly Ly〈F 〉 of B2m〈F 〉, and (Wx, Zx), x ∈ {0, 1}m is the pair for the right
subbutterfly Rx〈F 〉. Let A = {ly | Vy 6= ∅} and B = {rx | Wx 6= ∅}. Recall that A
and B are the node sets of the skeleton graph S2m(F).

Now, let Q ⊆ U × V be an arbitrary one-to-one routing request. We define a
many-to-many routing request Q̂ on (A,B) induced by Q as follows. For each node
u ∈ U , let l(u) denote ly ∈ A such that u belongs to Ly and, for each node v ∈ V ,
let r(v) denote rx ∈ B such that v belongs to Rx. Now, we construct multiset Q̂
by putting an occurrence of (l(u), r(v)) for each pair (u, v) of Q. Then, each ly or
rx appears at most 2m times in Q̂. On the other hand, by the definition of Ψm, the
minimum codegree of S2m(F) is at least β2m. Therefore, we can apply Lemma 4.2
to Q̂ and S2m(F), with n = 2m, obtaining a realization of Q̂ with paths of length
exactly 3 and with congestion at most Γβ .

We now translate this realization of Q̂ on S2m(F) back to the realization of Q on
B2m〈F 〉. Suppose (ly, rx′ , ly′ , rx) is the path in S2m(F) assigned to pair (l(u), r(v)) ∈
Q̂. The path from u to v in our realization of Q consists of four parts: a path in Ly
from u to the intersection node of Ly and Rx′ ; a path in Rx′ from this node to the
intersection node of Rx′ and Ly′ via some node in Zx′ ; a path from this intersection
node to the intersection node of Ly′ and Rx via some node in Uy′ ; and finally a
path in Rx from this intersection node to v. (See Figure 4.) When we provide such
paths for all pairs in Q, the number of times the intersection node of a particular pair
Ly and Rx appears in the above path construction is exactly the congestion of the
edge (ly, rx) in our realization of Q̂ in S2m(F), which is at most Γβ . Thus, within
each subbutterfly Ly (or Rx), the total routing request can be decomposed into at
most Γβ one-to-one routing requests for the pair (Uy, Vy) (or (Wx, Zx), respectively).
Because all pairs (Uy, Vy) and (Wx, Zx) involved are (c1mlog 6, c2m

log Γβ)-routable by
the induction hypothesis, each subbutterfly can realize all the routing requirements
with path length at most c1mlog 6 and congestion at most Γβc2mlog Γβ = c2(2m)log Γβ .
Since the path assigned to a pair (l(u), r(v)) is a concatenation of six end-to-end
routing paths in the subbutterflies, its length is at most 6 · c1mlog 6 = c1(2m)log 6.
This completes the proof that Ψ2m produces a (c1(2m)log 6, c2(2m)log Γβ)-routable
pair when it succeeds.

The proof for Ψ2m+1 is similar and therefore omitted. We note that we need a
variation of Lemma 4.2 which assumes each node to appear in the routing request at
most n/2 times and gives the congestion bound of Γβ/2.

628 HISAO TAMAKI

l

r
x’

r = r(v)

u

v

L

L

R

l(u) = l

Rx’

x

x

y

y

y’

y’

FIG. 4. Bipartite routing to butterfly routing.

It remains to show that the probability of Ψm failing is small.
LEMMA 4.4. Let p and α be constants as fixed in the definition of Ψm. Then, the

probability that Ψm(Bm〈p〉) = (∅, ∅) is at most 2−2αm .
Proof. The proof is by induction on m. The base cases, m0 ≤ m < 2m0, are

immediate from the definition of Ψm.
For the induction step, we assume that the claim holds for Ψm, m ≥ m0 and

show that it also holds for Ψ2m and Ψ2m+1. We first consider Ψ2m. Let F ∈
randsub(V (B2m), p), let Ψ2m(B2m〈F 〉) = (U, V), and recall the notation in the def-
inition of Ψ2m. More specifically, Ψm applied to the left subbutterfly Ly〈F 〉 yields
(Uy, Vy) and, similarly, Ψm applied to the right subbutterfly Rx〈F 〉 yields (Wx, Zx).
There are two ways in which Ψ2m(B2m〈F 〉) fails: (1) Ψm applied to left and right
subbutterflies fails on too many subbutterflies and thus

⋃
y Uy or

⋃
x Vx fails to be

δ2m-dense; (2) the minimum codegree of the skeleton graph of B2m〈F 〉 is less than
β2m.

We bound the probability of each of these cases in turn.
We first bound the probability that

⋃
y Uy is not δ2m-dense. Recall that δm is

defined to be δ(1 − g
m
m0) for every m ≥ m0. Now define εm = δg(mm0

+1) so that
δm + εm ≤ δ2m. Let Y bi , i ∈ [m], b ∈ {0, 1}, denote the set of bit strings y ∈ {0, 1}m
such that the ith bit of y is b and Uy = ∅.

CLAIM 4.5. If
⋃
y Uy is not δ2m-dense, then |Y bi | ≥ εm2m−1 must hold for some i

and b.
Proof. Suppose

⋃
y Uy is not δ2m-dense. Then, for some h ∈ [2m] and b′ ∈ {0, 1},

the number of nodes of
⋃
y Uy whose row indices have b′ as their hth bit must be less

than (1− δ2m)22m−1. Fix h and b′ such that this holds and call this set of nodes U .
We have two cases.

Case h ≤ m. Because each nonempty Uy, y ∈ {0, 1}m is δm-dense, each such Uy
contributes at least (1−δm)2m−1 nodes to U . Therefore, Uy must be empty for at least
εm2m values of y because otherwise, |U | ≥ (1−εm)2m(1−δm)2m−1 ≥ (1−δ2m)22m−1,
contradicting our assumption. Therefore, for any i ∈ [m], we have |Y 0

i ∪Y 1
i | ≥ εm2m.

Choose any i and choose an appropriate b so that |Y bi | ≥ εm2m−1.
Case h > m. Set i = h −m and b = b′. Note that each Uy is entirely included

in U if the ith bit of y is b and is entirely excluded from U otherwise. Because each

BUTTERFLY NETWORKS WITH RANDOM FAULTS 629

nonempty Uy has at least (1− δm)2m nodes, Uy must be empty for at least εm2m−1

values of y such that the ith bit of y is b.
Fix i and b. We bound the probability of event |Y bi | ≥ εm2m−1. Note the

probability of Uy = ∅ for a fixed y is at most 2−2αm by the induction hypothesis and,
since this event is independent among y ∈ Y bi , we can use the Chernoff bound.

Applying Proposition 2.2, we have

P (|Y bi | ≥ Tm) <
(
eµm
Tm

)Tm
,

where µm = 2−2αm2m−1 and Tm = εm2m−1. By condition M1 on the choice of m0,
we have Tm ≥ 22αm + logm+ 3. Moreover, we have eµm/Tm ≤ 1/2 by condition M2.
Combining these inequalities, we get

P (|Y bi | ≥ εm2m−1) <
1

8m
2−22αm

,

and because we have only 2m pairs (i, b) to consider,

P (
⋃
y Uy is not δ2m-dense) < 2−22αm−2.

The bound for the probability that
⋃
x Zx is not δ2m-dense is the same.

We now bound the probability that the minimum codegree of B2m〈F 〉 is less than
β2m. Let vxy = 〈m,xy〉 denote the intersection node of Ly and Rx for each pair
x, y ∈ {0, 1}m. We first claim that P (vxy ∈Wx) ≥ 1− δ. To show this, first note that
Ψm gives δm-dense sets with probability at least 1 − 2−2αm when applied to Rx〈F 〉.
Each node of Left (Rx) is equally likely to be in Wx due to the symmetry of Ψm with
respect to automorphisms of Bm. Thus, conditional on the event that Wx is δm-dense,
which implies that |Wx|/|Left (Rx)| ≥ 1−δm, the probability that vxy ∈Wx is at least
1− δm. It follows that the probability that vxy ∈Wx is at least 1− 2−2αm − δm. By
condition M3 on the choice of m, we have 2−2αm + δm ≤ δ(gm + 1 − g

m
m0) ≤ δ,

establishing the claim.
Fix distinct bit strings y, y′ ∈ {0, 1}m. We bound the probability that nodes ly

and ly′ are both in the skeleton graph S2m(F) and the codegree of ly and ly′ is smaller
than β2m. This probability is at most the conditional probability that the codegree of
ly and ly′ is smaller than β2m under the condition that ly and ly′ are nodes of S2m(F).
To bound this conditional probability, consider an experiment in which we expose the
membership of nodes to F in two stages: in the first stage we expose the nodes in
the left subbutterflies Ly and Ly′ and in the second stage we expose the remaining
nodes. The first stage determines whether or not ly and ly′ are nodes of S2m(F).
Suppose that ly and ly′ are nodes of S2m(F). Let Xyy′ = {x | vxy ∈ Vy, vxy′ ∈ Vy′}.
Because both Vy and Vy′ are nonempty, and hence δm-dense, by the definitions of the
skeleton graph and the mapping Ψm, we have |Vy|, |Vy′ | ≥ (1 − δ)2m and therefore
|Xyy′ | ≥ (1 − 2δ)2m. Now consider Rx where x ∈ Xyy′ . The only nodes of Rx that
are exposed in the first stage of the experiment are vxy and vxy′ . The condition
x ∈ Xyy′ implies that these two nodes are revealed to be not in F . Thus, since the
event that a fixed node is in Wx is increasing, the inequalities P (vxy ∈ Wx) ≥ 1 − δ
and P (vxy′ ∈ Wx) ≥ 1 − δ that we observed earlier are valid even when conditioned
on the result of the first stage of the experiment. Therefore, we have

P (vxy, vxy′ ∈Wx) ≥ 1− 2δ

630 HISAO TAMAKI

in the second stage. Thus, the expected number of values of x such that x ∈ Xyy′ and
vxy, vxy′ ∈Wx is at least (1−2δ)22m. Since the event in the second stage that both vxy
and vxy′ are in Wx is mutually independent for different values of x ∈ Xyy′ and since
(1 − 2δ)2 > β by our choice of β, we can apply the Chernoff bound: the probability
is at most 2−Ω(2m) that the number of values of x ∈ Xyy′ such that vxy, vxy′ ∈ Wx,
or equivalently the codegree of ly and ly′ , is less than β2m. By condition M4 on the
choice of m0, this probability bound is at most 2−(2αm+2m+2).

Summing up this probability for all pairs of distinct y, y′ ∈ {0, 1}m and also
considering the codegree of the pairs rx, rx′ , the overall probability that the codegree
condition is violated anywhere is at most 2−2αm−1.

Summing up the above two cases, we conclude that the probability that Ψ2m fails
is at most 2−2αm .

The analysis for Ψ2m+1 is similar and is omitted.
Finally, Theorem 4.1 follows immediately from Lemmas 4.3 and 4.4.

5. Embedding. In this section we prove our main embedding results using the
routing results in the previous sections.

The overall structure of our embedding is as follows. We look at the n-stage
butterfly Bn as a collection of overlapping m-stage subbutterflies, where m = Θ(logn).
We partition each level of Bn into blocks based on these subbutterflies. A set of nodes
is a left-block if it is Left (B) for some m-stage subbutterfly B; it is a right-block if
it is Right (B) for some m-stage butterfly B. In our embedding, a node on level
i ∈ [0, . . . , n − m] is mapped to a node within the left-block it belongs to; an edge
in level i ∈ [1, . . . , n−m] joining two left-blocks Left (B) and Left (B′) is mapped to
a path that goes through B and B′. We call this part of the embedding the left-
embedding. The mapping of nodes and edges in the last m stages are similar, with
right-blocks replacing the role of left-blocks in the left-embedding. We call this part
of the embedding the right-embedding. However, in the above scheme, the left- and
right-embeddings give two possibly inconsistent mappings of nodes at level n − m.
We resolve this problem by providing a path between the two images of each node on
level n−m.

Let us formalize the above embedding strategy. A range assignment ρ for Bn
is a pair of mappings (ρl, ρr), where ρl assigns to each m-stage subbutterfly B a
subset of Left (B), and ρr assigns to each m-stage subbutterfly B ending at level i
∈ [n −m, . . . , n] a subset of Right (B). The intention of a range assignment ρ is to
specify the range of the node mapping in our embedding; we map a node in each
Left (B) to a node in ρl(B) and map a node in each Right (B), where B is ending at
level i ∈ [n−m, . . . , n], to a node in ρr(B).

We say that a range assignment ρ is (λ, γ, δ, β)-good for Bn〈F 〉 if it satisfies the
following three conditions C1, C2, and C3; we first describe the first two conditions.

C1 For every m-stage subbutterfly B of Bn, ρl(B) is disjoint from F , δ-dense,
and (λ, γ)-routable in B〈F 〉.

C2 For every m-stage subbutterfly B of Bn that ends at level i ∈ [n−m, . . . , n],
ρr(B) is disjoint from F , δ-dense, and (λ, γ)-routable in B〈F 〉.

Condition C1 will ensure the existence of an efficient left-embedding and condition
C2 an efficient right-embedding. To describe the third condition which would allow us
to efficiently resolve the inconsistency of the left- and right-embeddings, we need some
definitions. Let D be a 2m-stage subbutterfly that ends at level n, let Ly, y ∈ {0, 1}m
be the left m-stage subbutterflies of D, and let Rx, x ∈ {0, 1}m be the right m-stage
subbutterflies of D. Define a bipartite graph SD(ρ) to be a subgraph of the skeleton

BUTTERFLY NETWORKS WITH RANDOM FAULTS 631

graph S2m in which all nodes are included and edge (ly, rx) is included if and only if
ρr(Ly) ∩ ρl(Rx) 6= ∅.

C3 For each 2m-stage subbutterfly D that ends at level n, the bipartite graph
SD(ρ) has co-degree at least β2m.

LEMMA 5.1. Let ρ be a range assignment that is (λ, γ, δ, β)-good for Bn〈F 〉. Let D
be a 2m-stage subbutterfly that ends at level n, let Ly, y ∈ {0, 1}m be the left m-stage
subbutterflies of D, and let Rx, x ∈ {0, 1}m be the right m-stage subbutterflies of D.
Then the set of nodes

⋃
y ρr(Ly) ∪

⋃
x ρl(Rx) on level n−m is (8λ, (Γβ+1)γ)-routable

in D〈F 〉, where Γβ is the constant that depends on β as given in Lemma 4.2.
Proof. The proof uses Lemma 4.2 and is similar to the proof of Lemma 4.3. The

details are omitted.
LEMMA 5.2. If there exists a (λ, γ, δ, β)-good range assignment for Bn〈F 〉, where

δ < 1/2 and β are positive constants, then Bn can be embedded in Bn〈F 〉 with O(1)
load, O(λ) dilation, and O(mγ) congestion.

Proof. Let ρ be a (λ, γ, δ, β)-good range assignment for Bn〈F 〉. We first provide
a left-embedding. Since ρl(B) is δ-dense (δ < 1/2) for each m-stage subbutterfly B,
for each B we can map nodes of the left-block Left (B) to nodes of ρl(B) with load at
most 2; choose and fix such a mapping for each B. To provide the mapping of edges,
consider an m-stage subbutterfly B that starts with level i, i < n−m. The left-block
Left (B) is adjacent to two left-blocks on level (i+ 1), one of which we call Left (B′).
There are 2m edges between Left (B) and Left (B′) of which 2m−1 are straight edges
and the rest are cross edges. We call a straight edge a bridge between these two blocks
if it spans ρl(B) and ρl(B′). Because ρl(B) and ρl(B′) are both δ-dense, there are at
least (1−2δ)2m−1 bridges between Left (B) and Left (B′). We map each edge between
Left (B) and Left (B′) to a path consisting of three parts: a path in B, a bridge, and
a path in B′. To choose such a path for each edge, we first choose a bridge (x, y)
for each edge (u, v) so that each bridge is chosen for at most 2/(1 − 2δ) edges. Let
u′ ∈ ρl(B) and v′ ∈ ρl(B′), respectively, denote the nodes to which u and v are
mapped. Then we connect u′ with x by a path of B〈F 〉 and connect y with v′ by
a path of B′〈F 〉. The routing requirements in B〈F 〉 generated by all edges between
Left (B) and Left (B′) can be decomposed into at most 2/(1− 2δ) one-to-one routing
requests on ρl(B), because each node of ρl(B) appears at most that many times as
the endpoint x of a bridge. Therefore, they can be realized by a set of paths with
length at most O(λ) and congestion at most O(γ). The routing in B′〈F 〉 is done
similarly. To provide paths for every adjacent pairs of blocks, we have to multiply the
congestion by 4m, because each block is adjacent to four blocks (to the right and to
the left) and each edge belongs to m overlapping subbutterflies. We also have to add
the congestion of an edge as a bridge, but this is at most a constant because an edge
can be a bridge of at most one pair of blocks. Therefore, the overall congestion for
the left-embedding is O(mγ). The dilation is clearly O(λ).

The right-embedding is provided similarly using condition C2 on the range as-
signment. Let ψ1 denote the left-embedding and ψ2 denote the right-embedding. Our
final task is to provide a path between ψ1(v) and ψ2(v) for each node v on level n−m.
Let Dv denote the 2m-stage subbutterfly of Bn ending at level n and containing node
v. Then, Dv also contains both ψ1(v) and ψ2(v). Now, for each such subbutterfly D,
consider the routing request Q = {(ψ1(v), ψ2(v)) | Dv = D}. Since the loads of ψ1
and ψ2 are both 2, we can decompose Q into at most two one-to-one routing requests.
Therefore, by Lemma 5.1 Q can be realized by paths of length O(λ) and congestion
O(γ). Our final embedding maps a node v to ψ1(v) if v is on levels 0 up to n −m

632 HISAO TAMAKI

and to ψ2(v) if v is on levels n−m+ 1 up to n; it maps an edge (u, v), where u is on
level n −m and v is on level n −m + 1, to a path consisting of the path connecting
ψ1(u) and ψ2(u) as given above, followed by the path ψ2(u, v).

Now we are ready to prove our main theorem.
THEOREM 5.3. For p < 1−

√
2/3, Bn〈p〉 admits a level-preserving self-embedding

with O(1) load, O(loglog 6 n) dilation, and logO(1) n congestion, with probability at least
1− 2−n.

Proof. In view of Lemma 5.2, it suffices to show that we can find a good range
assignment with high probability.

Fix p < 1 −
√

2/3. Then, since θp ≥ 1/2, we can choose δ < 1/2 so that
θp > 1 − δ. Choose positive constants α and β < (1 − 2δ)2 so that mapping Ψm

applied to Bm〈p〉 gives a δ-dense (O(mlog 6), O(mlog Γβ))-routable set on its leftmost
level with probability at least 1− 2−2αm for large enough m.

Set m = (1/α)(log n + 2) so that the probability of Ψm failing on a single m-
stage subbutterfly of Bn〈p〉 is at most 2−4n. We apply Ψm to these subbutterflies
to obtain a range assignment. If Ψm yields a pair (U, V) for subbutterfly B, then
we set ρl(B) = U and, if B ends at one of the last m + 1 levels, set ρr(B) = V .
The probability that Φm fails at any of the subbutterflies is at most 2−3n in total
because there are fewer than 2n such subbutterflies. If none fail, then we have a range
assignment that satisfies conditions C1 and C2. Moreover, by an analysis similar to
the one in the proof of Lemma 4.4, we can bound the probability to be at most 2−2n

that condition C3 is violated by the resulting range assignment ρ. Therefore, overall,
with probability at least 1−2−n, the range assignment is (O(mlog 6), O(mlog Γβ), δ, β)-
good for Bn〈p〉. Therefore by Lemma 5.2, with that probability we have an embedding
with O(1) load, O(loglog 6 n) dilation, and O(logΓβ+1 n) congestion.

Note that the embedding can be constructed by a deterministic algorithm with
running time N logO(1)N , where N is the number of nodes of Bn. This is because
the mapping of each node or edge can be determined locally by looking at one or two
subbutterflies consisting of logO(1)N nodes. The time of such local computation, the
main task of which is to compute the mapping Ψm, is polynomial in the size of the
subbutterflies involved.

Using Theorem 3.1 instead of Theorem 4.1, we get the following theorem with
better dilation although with exponentially worse congestion.

THEOREM 5.4. For p ≤ 1−
√

2/3, Bn〈p〉 admits a level-preserving self-embedding
with O(1) load, O(log n) dilation, and nO(1) congestion, with probability at least 1 −
2−n.

6. A tight dilation lower bound for level-preserving embeddings. In this
section, we prove a lower bound on the dilation of a level-preserving embedding in
the faulty butterfly. The lower bound for Bn is log n − o(log n), matching the upper
bound of Theorem 5.4 up to a constant factor.

In fact, our lower bound is on a quantity called drift which in turn gives a lower
bound for the dilation. We first define the drift of a path and then define the drift of
a level-preserving embedding. Consider a path in Bn with an endpoint v at level i.
The drift of the path from endpoint v is the maximum integer d such that the path
contains a node on level i− d or i+ d. The drift of a path is the greater of the drifts
of the path from its two endpoints. Finally, let Π denote the multiset of paths used
in a level-preserving embedding, i.e., each single edge of the butterfly is mapped to a
path of Π under the embedding. Then, the drift of the embedding is the maximum

BUTTERFLY NETWORKS WITH RANDOM FAULTS 633

of the drifts of the paths in Π . Note that the two endpoints of a path used in a
level-preserving embedding always lie on consecutive levels. If such a path has drift
d, then its length must be at least 2d−1. Therefore, the dilation of a level-preserving
embedding with drift d is at least 2d− 1.

Our strategy in proving the lower bound is to reduce the problem to the prob-
lem of simple embedding. We call a self-embedding of the butterfly simple if it is
level-preserving and its dilation is one. We first show that, if a level-preserving self-
embedding in Bn〈p〉 with drift d exists, then there must be a simple self-embedding
in a smaller butterfly in which the distribution of faults depends on d as well as p.
Then, we show that such a simple self-embedding is highly unlikely for small d.

Let i be in the range d ≤ i ≤ n−d, x ∈ {0, 1}i−d, and y ∈ {0, 1}n−i−d. The d-disc
on level i specified by x and y, denoted by Dd(x, y), is the set of nodes {〈i, xwy〉 | w ∈
{0, 1}2d}. Note that a d-disc on level i is the center level of a 2d-stage subbutterfly.
Also note that there is a path of drift at most d between every pair of vertices in a
d-disc. The size of a d-disc is 22d.

We say two d-discs D and D′ are adjacent if there exist u ∈ D and v ∈ D′ such
that u and v are adjacent in Bn. Let Dn,d denote the graph where the nodes are
d-discs of Bn and the adjacency is defined as above.

PROPOSITION 6.1. Dn,d is isomorphic to Bn−2d. More specifically, ψn,d : Bn−2d →
Dn,d is an isomorphism if we set ψn,d(〈i, xy〉) = Dd(x, y) for each i ∈ [0, . . . , n− 2d],
x ∈ {0, 1}i, and y ∈ {0, 1}n−2d−i.

Proof. Because x and y with xy ∈ {0, 1}n−2d uniquely determines a d-disc
Dd(x, y), ψn,d is clearly one-to-one. It is also onto because the numbers of nodes
of the two graphs are the same. Now consider two adjacent nodes u = 〈i, x1bx2〉
and v = 〈i+ 1, x1b

′x2〉 of Bn−d, where |x1| = i and b, b′ ∈ {0, 1}. The d-disc
ψn,d(u) = Dd(x1, bx2) contains node 〈i+ d, x1b

′02d−1bx2〉 and the d-disc ψn,d(v) =
Dd(x1b

′, x2) contains node 〈i+ d+ 1, x1b
′02d−1bx2〉; these nodes are adjacent and so

are these discs. On the other hand, suppose d-discs Dd(x1, x2) and Dd(y1, y2), where
|x1| = i and |y1| = i + 1, are adjacent in Dn,d. Then, there is a node of the form
〈i+ d, x1xx2〉 ∈ Dd(x1, x2) and a node of the form 〈i+ d+ 1, y1yy2〉 ∈ Dd(y1, y2),
which are adjacent in Bn. This means that x1xx2 and y1yy2 may possibly disagree
only at the (i + d + 1)th bit. Therefore, x1 is a prefix of y1 and y2 is a suffix of x2;
hence nodes 〈i, x1x2〉 and 〈i+ 1, y1y2〉 are adjacent in Bn−2d.

PROPOSITION 6.2. If node u on level i, d ≤ i < n − d, and node v on level
i+ 1 have a path of drift at most d connecting them, then the d-discs of u and v are
adjacent.

Proof. Simply note that any path from u with drift at most d keeps us in the
rows that intersect with the d-disc of u.

Now we can relate a level-preserving embedding of Bn with drift d to a simple
embedding of Bn−2d. For a fault set F ∈ V (Bn), let F̂ ∈ V (Bn−2d) be defined by
F̂ = {v | ψn,d(v) ⊆ F}, where ψn,d is the isomorphism defined in Proposition 6.1.
Intuitively, we regard a node in Bn−2d faulty if its corresponding d-disc is completely
knocked out.

LEMMA 6.3. Suppose there is a level-preserving embedding of Bn in Bn〈F 〉 with
load l and drift d. Then there is a simple embedding of Bn−2d in Bn−2d〈F̂ 〉 with load
at most l22d.

Proof. Let φ be a level-preserving embedding of Bn in Bn〈F 〉 with load l and drift
d. Let ψ denote the standard isomorphism that maps Bn−2d to some fixed (n− 2d)-
stage subbutterfly of Bn starting at level d. We define a mapping φ′ of nodes of Bn−2d

634 HISAO TAMAKI

to those of Bn−2d〈F̂ 〉 by φ′(v) = ψ−1
n,d(D), where ψn,d is the isomorphism from Bn−2d

to Dn,d and D is the d-disc that contains node φ(ψ(v)). In other words, φ′ maps v
to a node that corresponds to the d-disc into which φ maps ψ(v). Since φ avoids a
d-disc completely contained in F , φ′ avoids F̂ . Since each d-disc has 22d nodes, φ′

maps at most l22d nodes to a single node. Finally, by Propositions 6.1 and 6.2 it maps
adjacent nodes to adjacent nodes.

To prove our lower bound on the dilation of a level-preserving embedding, we use
the unlikelihood of a simple embedding with small load. A simple embedding maps a
monotone path to a monotone path preserving the levels of the endpoints. Therefore,
the mapping of nodes on the outermost levels completely determines the embedding.
We exploit this lack of flexibility of simple embeddings. In particular, we use the fact
that the image of a simple embedding must contain a large number of binary trees
rooted at level 0 which have an identical “shape” in the following sense.

Let h be an integer in [n] and let P be a nonempty subset of {0, 1}h. A P -tree of
Bn is a binary tree of height h contained in Bn such that

1. its root is on level 0; and
2. if the root is 〈0, xy〉, where |x| = h, then the set of its leaves is
{〈h, zy〉 | z ∈ P}.

Note that for each P there are exactly 2n P -trees of Bn, one for each node on
level 0. These roots can be partitioned into 2n−h subsets, the 2h elements of each
subset sharing a single set of leaves.

LEMMA 6.4. Suppose there is a simple embedding of Bn in Bn〈F 〉 with load l.
Then, for every h ∈ [n], there must be some P ⊆ {0, 1}h with |P | ≥ 2h/l such that
the number of P -trees of Bn contained in Bn〈F 〉 is at least 2n/l.

Proof. Let ψ be a simple embedding of Bn in Bn〈F 〉 with load l. Since ψ maps
a monotone path to a monotone path, if u is a node on level 0 and v is a node on
level n, then the monotone path from ψ(u) to ψ(v) does not intersect F . Let U =
ψ(Left(Bn)) and V = ψ(Right(Bn)). Because the load of ψ is l, we have |U | ≥ 2n/l
and |V | ≥ 2n/l. Fix h and define P = {z ∈ {0, 1}h | ∃w ∈ {0, 1}n−h : 〈n, zw〉 ∈ V }.
Since |V | ≤ 2n−h|P |, we have |P | ≥ 2h/l from the bound on V above. Let u ∈ U
and consider the P -tree T of Bn rooted at u. Since the monotone path from u to any
leaf of T is the initial segment of some path from u to V , it must avoid F . Therefore
T is contained in Bn〈F 〉. Because this is true for any u ∈ U , the number of P -trees
contained in Bn〈F 〉 is at least |U |.

Now we are ready to prove our lower bound.
THEOREM 6.5. For any positive constants p < 1 and α < 1/3, the probability is

1 − 2−Ω(2n/3) that any level-preserving embedding of Bn in Bn〈p〉 with load at most
2αn requires drift at least (1/2− o(1)) logn.

Proof. Let β be an arbitrary constant such that 0 < β < 1. Suppose we have an
embedding of Bn in Bn〈F 〉 with load 2αn and drift at most d = (β/2) log n. Then by
Lemma 6.3, there is a simple embedding of Bm in Bm〈F̂ 〉 with load at most l = 2αnnβ ,
where m = n − 2d = n − β log n. This in turn implies, by Lemma 6.4, that for any
h ∈ [m], there exists a subset P of {0, 1}h with |P | ≥ 2h/l such that the number of
P -trees contained in Bm〈F̂ 〉 is at least 2m/l.

Set h = n/3. Let F ∈ randsub(V (Bn), p). Then F̂ is distributed according
to randsub(V (Bm), pn

β

) because the size of a d-disc is nβ and d-discs are mutually
disjoint. Call a P -tree good if it is contained in Bm〈F̂ 〉. Our goal is to bound the
probability that there exists P ⊆ {0, 1}h with |P | ≥ 2h/l such that the number of
good P -trees is at least 2m/l. We start by estimating the probability of this event for
a fixed P ⊆ {0, 1}h. We first claim that, for a fixed node u on level 0, the probability

BUTTERFLY NETWORKS WITH RANDOM FAULTS 635

that the P -tree rooted at u is good is at most 1/2l for sufficiently large n. This
probability is simple to calculate:

(1− pnβ)2h/l ≤ exp[−pnβ2h/l]

= exp[−2h−αn−o(n)],

but the negative exponent of this expression is exponential in Ω(n), while the exponent
in l = 2αnnβ is linear in n. Therefore this probability is definitely smaller than 1/(2l)
for sufficiently large n. It follows that the expected number of P -trees contained in
Bm〈F 〉 is at most 2m/(2l). To obtain a tail estimate, we partition the set of 2m nodes
on level 0 of Bm into 2h subsets Ux = {〈0, xy〉 | y ∈ {0, 1}m−h}, x ∈ {0, 1}h. Then,
for each fixed x ∈ {0, 1}h, the P -trees rooted at nodes in Ux do not intersect each
other and hence the events that they are contained in Bm〈F̂ 〉 are independent of each
other. Therefore, we can apply the partition Chernoff bound (Proposition 2.3): the
probability that at least 2m/l nodes on level 0 are roots of good P -trees is

2−Ω(2m−h/l) = 2−Ω(2(2/3−α)n−o(n))

= 2−Ω(2γn),

where γ is a constant 1/3 < γ < 2/3− α.
Now consider all possible subsets P ⊆ {0, 1}h. There are at most 22h such subsets

to consider so that the probability that there exist any P with the required property
is at most 22h−Ω(2γn) = 2−Ω(2γn).

7. Open questions. Although our upper bound easily transfers to the CCC,
it is not clear if the result can be extended to the shuffle-exchange or the de Bruijn
network, which belong to the other type of hypercubic bounded-degree networks.
For the butterfly itself, although we have a tight bound for the dilation of level-
preserving embeddings, no nontrivial lower bound is known for general embeddings.
We might also ask for the best possible load/dilation/congestion ever achievable by
any bounded-degree network.

Recently, Karlin, Nelson, and Tamaki [9] have shown the existence of a critical
probability for the presence of a linear-sized connected component in the random sub-
graph of the butterfly. In their edge fault model, where each edge fails independently
with probability p, the critical probability pc is shown to be between 0.564 and 0.663;
for p < pc the faulty butterfly contains a component with Ω(N) nodes with high
probability, whereas for p > pc it lacks such a component with high probability. A
similar critical probability can be obtained for our node fault mode. It is an interest-
ing question whether the embedding results of this paper can be extended to every
node-failure probability smaller than the critical probability.

Even more recently, Cole, Maggs, and Sitaraman [5] have provided yet more
evidence that the butterfly network is highly fault tolerant: in a faulty butterfly
with some constant node-failure probability, it is possible to identify a set of Θ(N)
nodes among which any permutation routing is performed in O(n) steps with high
probability. Constant-factor slowdown simulation of the butterfly by such a faulty
butterfly, however, is still open.

Acknowledgments. I would like to thank Allan Borodin for valuable comments
on this work, Nick Pippenger for his suggestion of the use of branching processes in
tackling the problem, and Tino Tamon for reading an earlier manuscript and making
useful comments.

636 HISAO TAMAKI

REFERENCES

[1] B. AIELLO AND F. T. LEIGHTON, Coding theory, hypercube embeddings, and fault tolerance, in
Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures,
ACM, New York, 1991, pp. 125–136.

[2] N. ALON AND J. H. SPENCER, The Probabilistic Method, John Wiley and Sons, New York,
1992.

[3] F. ANNEXSTEIN, Fault tolerance in hypercube-derivative networks, in Proceedings of the 1st
Annual ACM Symposium on Parallel Algorithms and Architectures, ACM, New York,
1989, pp. 179–188.

[4] K. B ATHREYA AND P. E. NEY, Branching Processes, Springer-Verlag, Berlin, 1972.
[5] R. COLE, B. MAGGS, AND R. SITARAMAN, Routing on butterfly networks with random faults,

in Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 558–570.

[6] J. HÅSTAD, F. T. LEIGHTON, AND M. NEWMAN, Fast computation using faulty hypercubes, in
Proceedings of the 21st Annual ACM Symposium on Theory of Computing, ACM, New
York, 1989, pp. 251–263.

[7] C. KAKLAMANIS, A. R. KARLIN, F. T. LEIGHTON, V. MILENKOVIC, P. RAGHAVAN, S. RAO, C.
THOMBORSON, AND A. TSANTILAS, Asymptotically tight bounds for computing with faulty
arrays of processors, in Proceedings of the 31st Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 285–296.

[8] A. KARLIN AND G. NELSON, On the Existence of the Ocean in a Faulted Butterfly, unpublished
note, 1989.

[9] A. KARLIN, G. NELSON, AND H. TAMAKI, On the fault tolerance of the butterfly, in Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, ACM, New York, 1994,
pp. 125–133.

[10] R. KOCH, T. LEIGHTON, B. MAGGS, S. RAO, AND A. ROSENBERG, Work-preserving emula-
tions of fixed-connection networks, in Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, ACM, New York, 1989, pp. 227–240.

[11] F. T. LEIGHTON, B. MAGGS, AND R. SITARAMAN, On the unexpected fault-tolerance of some
popular bounded-degree networks, in Proceedings of the 33d Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 542–552.

[12] F. T. LEIGHTON, B. MAGGS, AND S. RAO, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–186.

[13] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithms, Cambridge University Press, Cam-
bridge, MA, 1995.

[14] N. PIPPENGER, The asymptotic optimality of spider-web networks, Discrete Appl. Math., 37/38
(1992), pp. 437–450.

[15] H. TAMAKI, Efficient self-embedding of butterfly networks with random faults, in Proceedings of
the 33rd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1992, pp. 533–541.

[16] H. TAMAKI, Robust bounded-degree networks with small diameters, in Proceedings of the 4th
Annual ACM Symposium on Parallel Algorithms and Architectures, ACM, New York,
1992, pp. 247–256.

SPLITTINGS, ROBUSTNESS, AND STRUCTURE
OF COMPLETE SETS∗

HARRY BUHRMAN† , ALBRECHT HOENE‡ , AND LEEN TORENVLIET§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 637–653, June 1998 003

Abstract. We investigate the structure of EXP-complete and hard sets under various kinds
of reductions. In particular, we are interested in the way in which information that makes the set
complete is stored in the set. We study for various types of reductions the question of whether the
set difference A − S for a hard set A and a sparse set S is still hard. We also address the question
of which complete sets A can be split into sets A1 and A2 such that A ≡Pr A1 ≡Pr A2 for reduction
type r, i.e., which complete sets are mitotic. We obtain both positive and negative answers to these
questions depending on the reduction type and the structure of the sparse set.

Key words. reductions, mitoticity, completeness, complexity

AMS subject classifications. 03D15, 03D20, 68Q15

PII. S0097539795279724

1. Introduction. The structure of complete sets under various types of reduc-
tions is a well-studied subject in complexity theory. The question “Which sets can be
complete under which type of reductions?” has been posed many times and answered
for many complexity classes. (See [9] for an overview.)

A complete set represents, through the reduction under which it is complete, an
entire complexity class. A membership algorithm for the complete set combined with
a reduction (of the appropriate type) gives a membership algorithm for a set in the
class. Viewed as such, the complete set contains the information of any particular set
in the class.

In this paper we investigate the structure of the information that makes the set
complete for deterministic exponential time and for various types of reductions. We
take an approach pioneered by Schöning [21]. To investigate the structure of a com-
plete set we compare this set with another set. Schöning in particular showed that
for a ≤Pm-complete set A in EXP and a polynomial time computable set D, the set
A∆D is of exponential density. Tang, Fu, and Liu took in [23] the approach of taking
the difference of sets complete in exponential time with a sparse subexponential time
computable (sub)set and asked the question of whether the resulting set is complete.
In section 3, we extend their work by studying analogous questions for other types of
completeness. We obtain similar results and show that for several types of reductions
and arbitrary sparseness conditions there exists a single subexponential time com-
putable set S that meets this sparseness condition and, furthermore, has the property
that for any set A, complete under the reduction for which this S is constructed, the
set A − S is no longer complete. In addition, it seems possible to make S “almost

∗Received by the editors January 11, 1995; accepted for publication (in revised form) February
19, 1996.

http://www.siam.org/journals/sicomp/27-3/27972.html
†Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

(buhrman@cwi.nl). The research of this author was partially supported by the NWO through NFI
Project ALADDIN number NF 62-376.
‡Department of Computer Science, Technische Universität Berlin, D-1000 Berlin 10, Germany.

The research of this author was partially supported by Deutsche Forschungsgemeinshaft, Postdok-
torandenstipendium.
§Department of Mathematics and Computer Science, University of Amsterdam, Plantage Muider-

gracht 24, 1018 TV Amsterdam, The Netherlands (leen@wins.ua.nl).

637

638 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

polynomial time computable.” It follows from the constructions that, by taking a
sufficiently slow enumeration of reductions, we can lower the time complexity of S
to any reasonably behaved superpolynomial function. We also address the flip ques-
tion in this section: “For which reductions and which sparse sets is it the case that
the set A − S is complete?” We study sparse sets S of simple structure rather than
computationally simple sets. Selman [22] introduced p-selective sets as a resource
bounded analog of semirecursive sets introduced by Jockusch [13]. For any tally set, a
polynomial time Turing equivalent p-selective set can be found. Therefore p-selective
sets can be computationally very complex. Nonetheless, p-selective sets are intuitively
easy to compute since, for any two strings x and y, it can be decided in polynomial
time which of the two is more likely (or actually no less likely) to be in the set. It
turns out that for most of the reductions studied in subsection 3.1 the set A − S
remains complete if S is a p-selective set. We prove this theorem for disjunctive,
conjunctive, and 2-truth-table (2-tt) reductions. One might expect that, as is the
case with many results on reductions, our 2-truth-table theorem can be extended to
at least bounded truth-table reductions. From a recent result of Buhrman, Fortnow,
and Torenvliet [6] it follows, however, that the 2-tt result cannot be extended even to
3-tt.

In section 4 we study sets that remain complete even when another complete set
is removed, i.e., we study sets that can be “split” into two or more sets that are again
complete. Such sets have been studied in recursion theory and are called mitotic sets.
We follow the line of Ambos-Spies [1] and prove that≤Pm-complete sets for EXP indeed
are (weakly p-m) mitotic. In contrast, we show that there exists a ≤P3-tt-complete set
that is not weakly p-m mitotic. Finally, we show a counterpart to Ladner’s splitting
theorems [16], i.e., we construct a set that can be split into two parts that are strictly
below the degree of complete sets and that are ≡Pm instead of incomparable.

2. Definitions and notation. We assume that the reader is familiar with stan-
dard notions in structural complexity theory as they are defined, e.g., in [2]. All
kinds of polynomial-time bounded reductions—many-one, (disjunctive and conjunc-
tive) truth-table and Turing—are frequently used without explanation. We use the
following notation for the (polynomial-time computable versions) of the different types
of reductions: ≤Pm for many-one reductions, ≤P1 for one-one reductions, ≤Pk-tt for k-
truth-table reductions, ≤Pbtt for bounded truth-table reductions, ≤Ptt for truth-table
reductions, ≤Pc for conjunctive truth-table reductions, ≤Pd for disjunctive truth-table
reductions, ≤Pk−d for k-disjunctive truth-table reductions, and ≤PT for Turing reduc-
tions. The symbols ≤m and ≤T also appear in the paper, without the superscript P ,
to indicate the version of these reductions without time bound.

Various definitions for these types of reductions can be found in the literature,
e.g., in [17, 7, 5, 8]. We think of polynomial-time bounded reductions as being modeled
by adaptive and nonadaptive oracle machines. We use various enumerations {Mi}i of
(oracle) Turing machine programs with varying properties. If the type of machine is
not clear from the context, we explicitly mention the machine type. An enumeration
{Mi}i can thus stand for an enumeration of all polynomial-time bounded machines
in one theorem and an enumeration of all bounded truth-table reductions in the
next. In the case of enumeration of many-one reductions, i.e., where the machines are
transducers, we also use {fi}i to emphasize this fact. For polynomial-time bounded
machines we always assume machineMi in such an enumeration to be time bounded by
ni+ i, where n is the length of the input. Usually, we denote the set of strings queried
on input x by machine i with oracle A by QAi (x), or by Qi(x) if Mi is non-adaptive.

STRUCTURE OF COMPLETE SETS 639

The result of the computation (accept/reject or the value computed) of machine Mi

on input x (relative to oracle A) is sometimes denoted as Mi(x) (MA
i (x)), where

Mi(x) = 0 or 1 means that the computation rejects or accepts, respectively.
Sets of strings are denoted by capital letters and are subsets of Σ∗, where Σ =

{0, 1}. Strings are denoted as small letters x, y, u, v, The length of a string x is
denoted by |x|.

We assume pairing and projection functions that are easy to compute. For strings,
the pairing of x1, . . . , xn is denoted by <x1, . . . , xn>, and πi(y) is the projection of y
onto its ith coordinate. We assume all kinds of convenient properties of these pairing
functions, e.g., pairing functions can be designed such that<x, y> < <x, z> whenever
y < z or such that |<x, z>| = |<x, z′>| for a large (exponential in this length) number
of pairs z and z′. In fact, the specific properties of different pairing functions may
depend on the context of the proof in which they are used. Integer numbers can
also appear as arguments to pairing functions. If so, the integer is identified with its
binary representation.

An ordering on Σ∗ is assumed where x < y if |x| < |y| and that coincides with
the lexicographical ordering if |x| = |y|. The cardinality of a set A is denoted as
||A||. The value of the characteristic function of a set A on a string x is denoted by
χA(x), i.e., χA(x) = 1 if x ∈ A and 0 otherwise. Following Kelly [14], we let the
notation

⋃
{S : S meets condition } stand for the union of all sets S that meet the

given condition. For sets A and B the notation A ⊕ B stands for the disjoint union
of A and B, i.e., {0x : x ∈ A} ∪ {1x : x ∈ B}.

For a set A
• for n ∈ ω, we let the notation A≤n stand for the set consisting of all strings

in A of length ≤ n; and
• for a string x, we let A[x] stand for the x section of A, i.e., the set {<y, z> :
y = x and <y, z> ∈ A}.

• in order to measure the density of A, we say that A is g(n) sparse for some
nondecreasing total function g : ω → ω, if for all n, ||A≤n|| < g(n).

The main complexity classes considered in this paper are P (polynomial time),
EXP (exponential time), and NEXP (nondeterministic exponential time). For the
latter classes, we allow polynomials to act as exponents in the time bounds, e.g.,
EXP =

⋃
{DTIME (2n

i

) : i ∈ ω}. For EXP , the set K is the universal complete set.
K = {<i, x, l> : Mi accepts x in ≤ l steps }.

3. The robustness of completeness notions for exponential time. In this
section we study the question of which sparse sets can be removed from exponential-
time complete sets of different types without disturbing the completeness of these
sets. The question originates from work of Schöning [21], who showed that for every
≤Pm-hard set A for EXP and every set D in P , the set A∆D is of exponential density.
In [23], Tang, Fu, and Liu showed, as a corollary to an analogous result on parity
reductions, that even for subexponential time computable D, the difference A∆D
remains ≤Pm-hard for exponential time.

They further show that for an arbitrary sparseness condition, there exists a single
subexponential time computable set S, such that for any exponential time complete
set A, the set A−S is no longer exponential time hard. Their proof hinges on the fact
that for any exponential time computable set B and any exponential time complete
set A, there exists a length increasing reduction from B to A. Subsequently, the
subexponential time computable set is constructed by choosing a sufficiently sparse
polynomial-time computable subset of {0}∗ and defining S as the image of this set

640 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

varying over all polynomial-time computable functions, i.e., S = {0bi : |fi(0bi)| > bi},
where bi are chosen sufficiently far apart.

A closer look at the proof shows although the theorem just states that S is subex-
ponential time computable, that there are various ways of making S come arbitrarily
close to polynomial time. It therefore seems reasonable to ask whether we can also
choose S to be polynomial-time computable. The answer to this question is negative,
as observed in [23]. From the ≤P1 -reduction of K ′ = K × Σ∗ to the EXP complete
set A, we can easily construct a ≤Pm-reduction to A − S for any polynomial-time
computable sparse set S. In this section we will investigate, for different types of
reductions, which sparse sets can destroy the completeness of a given set, and for
which sparse sets completeness is preserved.

3.1. Sparse sets that destroy completeness. The set K ′ defined above is,
of course, ≤Pm-complete for EXP . In fact it is ≤Pd -complete for EXP in a special
way. For a given string x either all strings <x, y> are in this set, or all are out
depending on x ∈ K. Therefore, as long as S is p(n) sparse, the set K ′ − S remains
≤Pd -complete for EXP . The reduction from K to K ′ on input x queries just the set
{<x, y>|0 ≤ y ≤ p(2n) + 1}. Since all of these strings have length ≤ 2|x|, at least one
of them is not in S and it is in K ′ iff x ∈ K. This explains why the theorem “there
exists a sparse set S, such that for any ≤Pd -complete set A for EXP, the set A− S is
not ≤Pd -complete for EXP” cannot exist.

The best we can hope for is a theorem for reductions that can query at most ||S≤n||
strings for each length n. Since we want the construction of S to meet any given
sparseness condition, this implies that the number of queries cannot be a function
of n that grows to infinity with n. In other words, the number of queries must be
some fixed constant. Such reductions are called bounded truth-table reductions, and
for these reductions we can obtain the theorem. In fact, since the proof method of
our theorem is not dependent on the reductions being nonadaptive, we can obtain the
theorem for bounded Turing reductions (≤bT).

THEOREM 3.1. Let g be a recursively computable nondecreasing function with
limn 7→∞ g(n) = ∞, and let f be a function that is superpolynomial, subexponential,
and time constructible. There exists a g(n)-sparse O(f(n))-time computable set S such
that for any ≤Pbtt-complete set A for EXP, the set A−S is no longer ≤Pbtt-complete.

Proof. For a given set A, we demonstrate the existence of a set LA such that
LA ≤Pbtt A iff there exists a reduction Mi that queries at least one string y ∈ A with
|y| > b(i) on input 0b(i). Next, we let all such strings be elements of S, thereby pre-
venting the existence of such a reduction from LA−S to A−S and hence completeness
of A− S. This technique was borrowed from Watanabe [25].

Let {Mi}i be an enumeration of all ≤Pbtt-reductions. Without loss of generality,
we may assume that machine Mi generates ≤ i queries on any input. First we define
a set of numbers {b(i)} sufficiently far apart and sufficiently easy to recognize, i.e., we
want that, for each n, the question “∃i : n = b(i)?” can be answered in time O(n),
and furthermore we want for each i that g(b(i)) > i2. This means that we can define
at least i2 strings in S≤b(i) without disturbing the sparseness condition on S. In fact,
we will put just ≤ i strings in each interval S≤b(i+1) − S≤b(i). Finally, we wish to
compute Qi(0b(i)) to define strings in S. To be able to do this in time f(b(i)), we
need that 2b(i) > f(b(i)) > (b(i))i + i, for all i.

We let S = {y : ∃i[y ∈ Qi(0b(i))∧ |y| > b(i)]} and claim that S is the set searched
for. First, ||S≤n|| ≤ g(n) for each n, since for each n the only strings that are in S≤n

are in
⋃
{Qj(0b(j)) : j ≤ i} for i maximal such that b(i) ≤ n. Hence, there are at

STRUCTURE OF COMPLETE SETS 641

most i2 strings in S≤n, and b(i) was chosen such that g(n) ≥ g(b(i)) > i2 as required.
Next, S is O(f(n))-time computable by the choice of b(i). Finally, the set A − S is
not ≤Pbtt-complete. To see this, assume that A−S is ≤Pbtt-complete and define the set

LA−S = {0b(i) : M (A−S)≤b(i)

i (0b(i)) = 0}. LA−S is exponential time computable since
2b(i) > b(i)i+ i and since both A and S are exponential time computable and are only
queried on inputs of length ≤ b(i) on input 0b(i). It follows that LA−S ≤Pbtt A − S.
Let Mj be the reduction from LA−S to A−S. Then Qj(0b(j))∩ (A−S) ⊆ Σ≤b(j) and
therefore 0b(j) ∈ LA−S iff MA−S

j (0b(j)) rejects, which is a contradiction.
If we change S in the construction above to {min{y : y ∈ Qi(0bi) ∧ |y| > bi} : i ∈

ω}, we get the following corollary from the same construction.
COROLLARY 3.2. Given a recursively computable nondecreasing function g(n)

with limn 7→∞ g(n) = ∞, there exists a g(n)-sparse subexponential time computable
set S such that for any ≤Pc -complete set A for EXP the set A − S is no longer ≤Pc
complete.

Conjunctive truth-table (c-tt) reducibilities form an exception in yet another way.
For these reductions we can even let the set A be EXP hard instead of EXP complete.
We use the fact that for conjunctive truth-table reductions we can get a kind of 1-1
behavior for the query sets. A similar result for ≤Pm-hard sets that uses the fact that
these sets are also hard under ≤P1 -reductions appears in [23]. We isolate and prove
this property in the following lemma.

LEMMA 3.3. If A is ≤Pc -hard for EXP, then for any set B in EXP there exists a
≤Pc -reduction Mj from B to A such that Qj(x) 6⊂

⋃
{Qj(y) : y ∈ B ∧ y < x}.

Proof. Let {Mi}i be an enumeration of ≤Pc -reductions We construct a set W
as follows. On input <i, x> compute Qi(<i, x>). If Qi(<i, x>) ⊆

⋃
{Qi(<i, y>) :

<i, y> < <i, x> ∧ <i, y> ∈ W}, then we let <i, x> 6∈ W ; otherwise <i, x> ∈ W iff
x ∈ B.

It is easy to see that W is in EXP , so there exists a ≤Pc -reduction from W
to A, say, Mj . For this reduction it follows that Qj(<j, x>) 6⊂

⋃
{Qj(<j, y>) :

<j, y> ∈W∧<j, y> < <j, x>}. By assumption on the pairing function that<i, x> <
<i, y> ↔ x < y the function M ′(x) = Mj(<j, x>) computes a ≤Pc -reduction with
the required property.
From this lemma we get the following theorem.

THEOREM 3.4. Let g(n) be a recursively computable nondecreasing function with
limn 7→∞ g(n) = ∞. There exists a g(n)-sparse set S in EXP such that for any ≤Pc -
hard set A for EXP the set A− S is no longer ≤Pc -hard.

Proof. Again, we let the numbers b(i) be sufficiently far apart to guarantee g(n)
sparseness of S if we put one string in S for each b(i) and such that 0b(i) is again easy
to recognize. Furthermore, we let 2× (b(i−1))(i−1) < b(i) to avoid confusion later on.
Then we put the least string in

⋃
{Qi(<0b(i), y>) : |y| ≤ b(i)} of length ≥ b(i)/2− 1

in S. (If no such string exists we do nothing.)
S is exponential time computable since, to decide membership of a string x in S,

we search for a 0b(i) such that b(i) ≤ 2 × |x| and |x| < (b(i))i. (There can be only
one candidate.) Now compute the query sets on the, at most, 22|x| different y in time
≤ 22|x| × (2|x|)i + i, and see if x is the least string of the right length in the union of
these sets.

A − S is not ≤Pc -hard. If it were, then one of the ≤Pc -reductions from D =
{<x, y> : x ∈ {0}∗, y ∈ Σ∗} to A would behave as predicted by Lemma 3.3.

Let Mj be such a reduction. It follows that ||
⋃
{Qj(<0b(j), y>) : |y| ≤ b(j)}|| ≥

2b(j) from Lemma 3.3. Hence there is one string in this set of length ≥ b(j)/2 − 1.

642 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

The least of these strings z0 is not in A− S by construction, and Mj must reject any
input <0b(j), y> for which z0 is in Qj(<0b(j), y>). Yet <0b(j), y> ∈ D, so Mj cannot
be a reduction from D to A− S.

Conjunctive and disjunctive truth-table reducibilities are kind of each other’s com-
plement. If a set is conjunctive truth-table reducible to a set A, then its complement
is disjunctive truth-table reducible to A. So we find the following.

COROLLARY 3.5. Let g(n) be a recursively computable nondecreasing function
with limn 7→∞ g(n) = ∞. There exists a g(n)-sparse subexponential time computable
set S such that for any ≤Pd -complete set A for EXP the set A ∪ S is no longer ≤Pd -
complete.
In addition we have the following.

COROLLARY 3.6. Let g(n) be a recursively computable nondecreasing function
with limn 7→∞ g(n) = ∞. There exists a g(n)-sparse set S in EXP such that for any
≤Pd -hard set A for EXP the set A ∪ S is no longer ≤Pd -hard.

Proof. If K ≤Pc A via Mi, then

x ∈ K ⇔ Qi(x) ⊂ A,
or x 6∈ K ⇔ Qi(x) ∩A 6= ∅.

Now K ∈ EXP so K ≤Pm K, say, via f .

So x ∈ K ⇔ f(x) ∈ K ⇔ Qi(f(x)) ⊂ A,
or x 6∈ K ⇔ f(x) 6∈ K ⇔ Qi(f(x)) ∩A 6= ∅,
or x ∈ K ⇔ f(x) 6∈ K ⇔ Qi(f(x)) ∩A 6= ∅,

so A is ≤Pd -hard via Mi(f(x)). Along the same lines, if A is ≤Pd -hard then A is ≤Pc -
hard. So A is ≤Pd -complete (hard) iff A is ≤Pc -complete (hard) for EXP . But if A
is ≤Pc -complete (hard), then there exists a g(n)-sparse subexponential (exponential)
time computable set S such that A − S is no longer ≤Pc -complete (hard), and then
A ∪ S is no longer ≤Pd -complete (hard).

3.2. Easy sparse sets. As in the case of ≤Pm-complete sets, we can let the
time complexity of the set S in the previous subsection come arbitrarily close to
polynomial time. For some—but surprisingly not all—reductions, a polynomial-time
computable sparse set that destroys completeness does not exist. To show this we
take a slightly more general view of the complexity of the set S. Instead of taking S
polynomial-time computable, we let S be p-selective. p-selective sets were introduced
by Selman [22] as a resource bounded analogue of semirecursive sets, which were
introduced by Jockusch [13].

DEFINITION 3.7. A set A is called p-selective iff there exists a polynomial-time
computable function f : Σ∗×Σ∗ 7→ Σ∗, called a p-selector, such that for any x, y ∈ Σ∗

1. f(x, y) ∈ {x, y}, and
2. χA(f(x, y)) = max{χA(x), χA(y)}.

The following “ordering lemma” is used in the proofs of the theorems in this
section and can be found (in various forms) in, e.g., [24, 10, 11].

LEMMA 3.8. Let V = {v1, . . . , vn} be a finite set of strings, and let A be a p-
selective set with p-selector f . The strings in V can be ordered “according to f” as
vi1 , . . . , vin such that vij ∈ A→ vij+1 ∈ A in time polynomial in |v1|+ · · ·+ |vn|.

As only polynomial time is involved, we sometimes assume a finite set “ordered
according to a p-selector,” without loss of generality.

For any (nonfinite) sparseness condition a p-selective set (which may be infinite)
that meets this condition can be constructed. For polynomially sparse p-selective

STRUCTURE OF COMPLETE SETS 643

sets we can show counterparts to the theorems of subsection 3.1. For conjunctive,
disjunctive, and 2-tt reductions, for a set A that is complete under this reduction,
and for a set S that is polynomially sparse and p-selective, the set A − S remains
complete under the same reduction. Since all sets in P are p-selective, the same
results follow for sparse polynomial-time computable sets.

It might be instructive here to compare our results to those of Tang, Fu, and
Liu [23, Theorems 3.6 and 3.7]. They show that sets complete under conjunctive and
disjunctive reductions stay complete when a sparse subexponential-time computable
subset is removed. Our sparse set may be any set.

THEOREM 3.9. For any set A that is ≤Pc -hard for EXP and any p(n)-sparse
p-selective set S, the set A− S remains ≤Pc -hard for EXP.

Proof. Let f be a p-selector for S. We construct an exponential time-computable
set W such that, for some index w of a conjunctive truth-table reduction Mw from W
to A, it holds that the universal set K is many-one reducible to W [w] and W [w] is in
turn conjunctive truth-table reducible to A − S. This then establishes completeness
of A− S.

The set W consists of strings <i, x, z> for i ∈ ω, x ∈ Σ∗, and z ranging from 0|x|

through 1|x|. Fix i and x and let n = |<i, x, x>|. By appropriate assumptions on the
pairing function, all of the pairs <i, x, z> are of the same length. So, since S is p(n)
sparse, there exists some polynomial q such that at most q(n) of the different strings
queried on such an input can be in S. Let Z be the set of the lexicographically first
q(n) + 1 strings in the interval 0|x| through 1|x|. We describe membership of <i, x, z>
in W . If z 6∈ Z, then <i, x, z> 6∈W . Let U =

⋃
{Qi(<i, x, z>) : z ∈ Z}. Assume that

U = {u1, u2, . . . , um} such that ui ∈ S → ui+1 ∈ S and let U ′ = {um−q(n)+1, . . . , um}.
If U = ∅ or time 2n is insufficient to compute U and sort U according to the p-selector,
then no string <i, x, z> is in W . It will follow from the construction that the first
case cannot occur if i is a program that computes a c-tt reduction from W to A. The
latter case can only occur for finitely many different x.

Now there are two cases.
Case 1. There is a z ∈ Z such that Qi(<i, x, z>) ⊆

⋃
{Qi(<i, x, z′>) : z′ ∈

Z ∧ z′ 6= z}. Let z0 be the least such z. We let <i, x, z> ∈W ⇐⇒ z 6= z0.
Case 2. There is no such z. Then ||Qi(<i, x, z>)−

⋃
{Qi(<i, x, z′>) : z′ ∈ Z∧z′ <

z}|| ≥ 1 for all z ∈ Z and hence, there is a z such that Qi(<i, x, z>) − U ′ 6= ∅ and
Qi(<i, x, z>) ∩ U ′ ⊆

⋃
{Qi(<i, x, z′>) : z′ ∈ Z ∧ z′ < z}. Let z0 be the least such z.

We let <i, x, z0> ∈ W ↔ x ∈ K. We let <i, x, z> ∈ W for all z < z0 in Z and let
<i, x, z> 6∈W for all z > z0 in Z.

This ends the construction of W .
Since W is computable in exponential time, there is a conjunctive truth-table

reduction from W to A. Let Mw be such a reduction. We show a reduction from
W [w] to A− S. Let <w, x, z> be some input.

1. As mentioned above, there is a finite number of cases for which the string
<w, x, z> is not in W because of insufficient computation time. In these
cases, or in the case where z is not among the first q(|<w, x, x>|) + 1 strings,
our reduction rejects. (Or, equivalently, produces some fixed string not in
A− S.)

2. Otherwise, compute the set U = {u1, . . . , um} as described above. (Since w
is a fixed constant, this can be done in polynomial time in |<w, x, z>|.) Since
Mw is a reduction from W to A it follows that the construction falls in Case 2.
If z is the least string in Z satisfying Case 2, then produceQw(<w, x, z>)−U ′.
Otherwise accept or reject according to Case 2.

644 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

This reduction accepts <w, x, z> iff <w, x, z> ∈W [w] and queries only strings in
A− S.

The reduction from K to W [w] is the following. If x belongs to the finite number
of exceptional cases, then we find out by table-lookup if x ∈ K and accept or reject
accordingly. Otherwise, we compute U for this w and x and the least z satisfying
Case 2 and let f(x) = <w, x, z>.

In the proof of this theorem we defined a set W such that the reduction of W
to A must query strings that are in A on certain inputs. We did this by defining
certain strings in W (hence a conjunctive reduction must get the answer yes on queries
produced on this input). On the other hand, the reduction of W to A must query some
strings outside S on some inputs. We did this by diagonalizing against reductions for
which the cardinality of the union of the query sets on the inputs <i, x, z> was small
enough to “fit” inside S. Then a reduction from any exponential time-computable set
to A − S can be constructed, using W , by assuming that queries that may be in S
are answered yes, and querying the remaining ones.

For ≤Pd -hard sets, we can change the strategy of the proof to construct a set W
such that we know that queries that may be in S are answered negatively (by leaving
enough strings out of W). A completely analogous proof then yields the following.

THEOREM 3.10. For any set A that is ≤Pd -hard for EXP and any p(n)-sparse
p-selective set S, the set A− S remains ≤Pd -hard for EXP.

By complementation Theorems 3.9 and 3.10 yield the following corollaries, re-
spectively.

COROLLARY 3.11. For any set A that is ≤Pd -hard for EXP and any p(n)-sparse
p-selective set S, the set A ∪ S remains ≤Pd -hard for EXP.

COROLLARY 3.12. For any set A that is ≤Pc -hard for EXP and any p(n)-sparse
p-selective set S, the set A ∪ S remains ≤Pc -hard for EXP.

We can also prove the same theorem for ≤P2-tt-hard sets.
THEOREM 3.13. Let A be ≤P2-tt-hard for EXP and let S a p-selective p(n)-sparse

set. The set A− S is still ≤P2-tt-hard for EXP.
Proof. We will construct an exponential time-computable set W that is used in

defining a ≤P2-tt-reduction from K to A−S. Let f be the p-selector for S. W consists
of strings <i, x, z>, where |z| = |x|.

Fix some i and x. Let n = |<i, x, x>|. We will define membership of <i, x, z> in
W for all z. For this proof we will assume that ||Qi(x)|| = 2 for all i and all x.

There exists some polynomial q′ such that S can contain at most q′(n) of the
strings in

⋃
{Qi(<i, x, z>) : |z| = |x|}. There exists some polynomial q′′ such that S

can contain at most q′′(n) different pairs of strings in
⋃
{Qi(<i, x, z>) : |z| = |x|}.

We let q(n) = q′(n) + q′′(n) + 1. It holds for all but finitely many x that ||{z:|z| =
|x|}|| > q(n) and q′′(|x|) > 2q′(|x|) + 1. (Note that q′′ is quadratic in q′.)

In the remainder of this proof we will consider only strings for which both in-
equalities hold. (We will use tabular lookup in the reduction for other strings.) Let
Z consist of the lexicographically first 3 × q(n) strings of length |x|. Only strings
<i, x, z> with z ∈ Z may enter W . Let U =

⋃
{Qi(<i, x, z>) : z ∈ Z}. Assume

U = {u1, . . . , um}, where ui ∈ S → ui+1 ∈ S, and let U ′ = {um−q′(n)+1, . . . , um}.
Note that U ∩ S ⊆ U ′.

There are two cases.
Case 1. ||U || < q′′(n).

As there are more than 3 × q′′(n) strings in Z it must hold that there are
z1 6= z2 6= z3 in Z such that Qi(<i, x, z1>) = Qi(<i, x, z2>) = Qi(<i, x, z3>).
Consider the truth table(s) produced on this input. By setting <i, x, z> in

STRUCTURE OF COMPLETE SETS 645

'
&

$
%

q q q q q q q q q q q q q q q q q q�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
CC

%
%
%
%
%
%
%
%
%%

S
S
S
S
S
S
S
S
SS

!!
!!
!!
!!
!!

!!
!!

!!
!!

!!
!!

�
�
�
�
�
�
�
��

u1 um

U ′

<i, x, z0> <i, x, z1> <i, x, z2>

y0y2 y1

FIG. 3.1. Possible query sets.

or out of W we can eliminate at least half of the possible settings (element
of A or not) of the two queries in Qi(<i, x, z1>). As there are only four
possible settings for these two strings, repeating this procedure for z2 and z3,
we eliminate all possible settings, thereby forcing the fact that Mi is not a
reduction from W to A.

Case 2. ||U || ≥ q′′(n). (It then follows that ||U || ≥ 2× q′(n) + 1.)
Either of the following holds (see also Figure 3.1):
Case 2a. There is a z in Z such that Qi(<i, x, z>) ∩ U ′ = ∅. Let the least

such z be z0. We let <i, x, z0> be in W iff x ∈ K and let <i, x, z> 6∈W
for all other z.

Case 2b: There is no such z. Then for each of the ≥ q′(n) + 1 strings uj
in U − U ′ there is a z(uj) in Z such that ||Qi(<i, x, z(uj)>) ∩ U ′|| =
||Qi(<i, x, z(uj)>) ∩ U − U ′|| = 1. It follows that there is a pair zj , z′j
such that ||Qi(<i, x, zj>) ∩ Qi(<i, x, z′j>) ∩ U ′|| = 1. Without loss of
generality, we assume that z1 and z2 are minimal with this property and
z1 < z2. Let

{y0} = Qi(<i, x, z1>) ∩Qi(<i, x, z2>) ∩ U ′,
{y1} = Qi(<i, x, z1>) ∩ U − U ′,
{y2} = Qi(<i, x, z2>) ∩ U − U ′.

Then we know that {y1, y2} ∩ S = ∅. In the following we will set,
depending on the truth table computed by Mi on input <i, x, z1>, the
string <i, x, z1> in W such that <i, x, z2> ∈W can be computed from
the queries y1 and y2 and hence from queries to A− S.
We let <i, x, z2> ∈ W ↔ x ∈ K. In the case we are considering here,
only the strings <i, x, z1> and <i, x, z2> may enter W . So <i, x, z> 6∈
W for all z ∈ Z − {z1, z2}.
Let α be the truth table computed by Mi on input <i, x, z1>. There
are sixteen possible truth tables that fall into four cases.

i. If α ≡ 1, we let <i, x, z1> 6∈W and if α ≡ 0, we let <i, x, z1> ∈W .
This prohibits Mi from being a 2-truth-table reduction of W to A.
This covers two of the sixteen cases.

ii. If there is only one combination of a, b ∈ {0, 1} for which α(a, b) = 1,
then <i, x, z1> ∈ W , and if there is only one such combination
where α(a, b) = 0, then <i, x, z1> 6∈ W . If this Mi is a 2-truth-

646 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

table reduction from W to A, then for this particular input we can
compute χA(y0) and χA(y1) in polynomial time. This covers eight
of the sixteen cases.

iii. If α is in fact a 1 truth table then the value of α depends on either
y0 or y1. In the first case we put <i, x, z1> in W if and only if α
takes on true if the entry for y0 is fixed to false. Otherwise we let
<i, x, z1> ∈W iff x ∈ K.

iv. In the remaining two cases, α is either χA(y0) = χA(y1) (equality)
or χA(y0)⊕ χA(y1) (parity). In the first case we let <i, x, z1> ∈W
and in the second case we let <i, x, z1> 6∈ W (then in both cases
y0 ∈ A⇔ y1 ∈ A.)

This completes the construction of W .
We will now show that we can use W to compute a ≤P2-tt-reduction for any set in

EXP to A−S. Since W is exponential-time computable there is some ≤P2-tt-reduction
of W to A. Let Mw be the machine that computes this reduction. For any set B in
EXP let fB be the many-one reduction of B to K. The ≤P2-tt-reduction from B to
A− S works as follows.

On input y, first compute fB(y). Let x = fB(y). Now use w and x to compute
the set Z as above. Compute U , sort it according to the p-selector, find U ′, and find
out which of the two cases (Case 2a or Case 2b) holds. (We have already argued that
Case 1 cannot occur if w is the reduction from W to A.) In Case 2a, find the least
z such that Qw(w, x, z) ∩ U ′ = ∅ and produce Qw(w, x, z) as a query set. In Case 2b
find z1 and z2. We are in one of the subcases ii–iv. In subcases ii and iii we have
either fixed the value of χA(y0) or this value doesn’t influence the value of the truth
table, so we need only query y1. Then we can compute membership of x ∈ K from
either the truth table produced by Mw on input <i, x, z1> or <i, x, z2>, respectively.
In subcase iv we fixed things such that χA(y0) = χA(y1). We can query y1 and y2
and use these values as χA(y0) and χA(y2) in the truth table computed by Mw on
input <w, x, z2>.

As every set in P is p-selective, we note the following corollary.
COROLLARY 3.14. Theorems 3.9, 3.10, and 3.13 also hold when “p-selective” is

replaced by “polynomial-time computable.”
We notice an interesting phenomenon here. In a recent paper, Buhrman, Fortnow,

and Torenvliet [6] proved the existence of a 3-tt complete set in EXP that is not b-tt
autoreducible. (Recall that a set A is r autoreducible if A ≤Pr A via a reduction that
does not query its input.) Inspection of the proof shows that the set is constructed by
diagonalizing against autoreductions on inputs in the set {0b(n) : n ∈ ω}, where b(n)
is some suitably chosen gap function. They prove that a 3-tt complete set A can be
constructed such that every b-tt reduction (from A to A) that does not query its input
must, for some n, incorrectly compute membership of 0b(n) in A. Without essentially
changing the proof, b(n) can be chosen such that {0b(n) : n ∈ ω} is a polynomial-time
computable sparse set. The following corollary follows immediately from their proof.

COROLLARY 3.15 (see [6]). There exists a 3-tt complete set A in EXP and a
sparse set S in P such that A− S is not b-tt hard for EXP.

So Theorem 3.13 states an optimal result. A set that is not b-tt hard may of
course still be Turing hard. Hence the corollary above hence does not rule out that
every Turing-complete set may remain Turing complete when a sparse set is removed.
However, we can show that such a result can only be obtained by nonrelativizing
methods. We show that there exists an oracle set A relative to which EXP has a

STRUCTURE OF COMPLETE SETS 647

≤Ptt-complete tally set T . Then T −{0}∗ = ∅, which cannot be complete. We suspect
the following to be a folk theorem. We prove it here just for completeness.

LEMMA 3.16. If EXP ⊆ P/poly , then there exists a tally set T that is ≤Ptt-complete
for EXP.

Proof. It is well known that A is in P/poly iff A ≤Ptt T for some tally set T . So
from our hypothesis this gives us a tally set T , that is, truth-table hard for EXP . We
will show how to construct a tally set T ′ (from T) that is complete for EXP .

The fact that there exists a tally set T that is hard for EXP gives us a truth-table
reduction, say, by machine Mi from K to T . Now fix n and consider all strings of
length n. Without loss of generality, we may assume that Mi queries on input x of
length n, always the same strings to T , namely, y1, . . . , yni , where yi = 0i. The idea
is to find the minimal (in some way) setting of the yj ’s in T such that x ∈ K iff Mi(x)
accepts with this setting. Let xj indicate the jth string of length n in lexicographic
order. Let Pj = {<a1, . . . , ani> : when ai used as answer to query yi then Mi(xj)
accepts iff xj ∈ K}.

Pj codes exactly those tally sets T ′ that, when used as an oracle for Mi(xj), let
Mi compute the correct answer for xj ∈ K. Note here that ||Pj || ≤ 2n

i

for 0 ≤ j < 2n.
Set P ′ =

⋂2n

i=1 Pi and let pi be the ith projection of the tuple y, where y is the minimal
y ∈ P ′. Put 0<n,i> in T ′ iff pi = 1. Obviously, T ′ is tally and from the construction
it is clear that T ′ is computable in exponential time. From the fact that T exists we
get that T ′ exists and that K ≤Ptt T ′.

THEOREM 3.17. There exists an oracle A, such that there exists a ≤PAtt -complete
set B for EXPA and a polynomial-time computable, sparse set S, such that B − S is
not ≤PAtt -hard for EXPA.

Proof. Wilson [26] showed the existence of an oracle A where EXPA ⊆ PA/poly .
Using this oracle, together with Lemma 3.16, we get that there exists a tally set T
that is complete for EXPA. Setting B = T and S = {0}∗, we get that B−S = ∅ and
∅ is not ≤PAtt -complete for EXPA.

4. Splittings of EXP complete sets. In this section we want to investigate
to what extent one can split EXP -complete sets. A splitting of an r.e. (EXP) set
is the construction of two r.e. (EXP) sets A0, A1 ⊆ A, such that A0

⋂
A1 = ∅ and

A0
⋃
A1 = A. One of the questions to look at is: “Can this splitting be done so that

both subsets have the same information as A?” For complete sets this would mean
that the complete set can be split into subsets that are themselves again complete.
This type of question has been studied in a recursion theoretical setting by Ladner [15].
He observed that there exist sets that are nonsplittable, or non-mitotic, as he called
them. The recursion theoretical definition is as follows.

DEFINITION 4.1. An r.e. set A is called mitotic iff there exist r.e. sets A1 and
A0 such that

1. A1 ⊆ A, A0 ⊆ A, A1
⋂
A0 = ∅, A1

⋃
A0 = A.

2. A ≡T A1 ≡T A0.
If additionally A ≡m A1 ≡m A0, then A is called m-mitotic.

Note here that point 2 in the definition can be weakened, in the case of ≤T
reductions, to A1 ≡T A0. To see this note that A ≤T A1 ⊕ A0 and A1 ⊕ A0 ≤T A1.
To reduce A1 to A, the reduction queries on input x whether or not x is in A. If this
is not the case, it rejects straight out. Otherwise, it starts enumerating A1 and A0,
since x must be in one of them.

648 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

Ambos-Spies [1] studied the complexity theoretical variant of mitotic sets and
introduced the term p-mitotic sets. It is not clear how to define mitoticity in the
complexity theoretical setting. Ambos-Spies introduced four definitions; two for the
Turing reductions and two for the many-one reductions. One option is to change
point 2 in Definition 4.1 into demanding A ≡PT A1 ≡PT A0. Since we are interested
in complete sets for complexity classes, we could demand that A0 and A1 should be
in the complexity class under consideration. A problem is that this definition cannot
be weakened to A1 ≡PT A0. (Take, for example, Σ∗ = A

⋃
A for some EXP Turing-

complete set A. Now both A and A are in EXP , split Σ∗, and are Turing equivalent
but obviously do not Turing reduce to Σ∗.)

Ambos-Spies chose a Breidbart–Owings [4, 19] type of splitting (by another set).
DEFINITION 4.2 (see [1]). A recursive set A is p-m(T) mitotic if there is a set

B ∈ P such that A ≡Pm(T) A
⋂
B ≡Pm(T) A

⋂
B.

When using this definition, the problem of reducing A1 to A is settled for the
Turing case. Namely, x is in A1 iff x is in B and x is in A. A disadvantage of this
definition, however, is that the requirement that the splitting has to be polynomial-
time computable seems too strong. In order to capture this feeling, we also want to
look at the definition discussed above. Note here also that since our main interest is
in complete sets, we will not have the trouble that A0 (or A1) does not reduce to A.
(This is because A is complete.)

DEFINITION 4.3. An r.e. set A is called weakly p-T mitotic iff there exist r.e.
sets A1 and A0, such that

1. A1 ⊆ A, A0 ⊆ A, A1
⋂
A0 = ∅, A1

⋃
A0 = A.

2. A ≡PT A1 ≡PT A0.
If additionally A ≡Pm A1 ≡Pm A0, then A is called weakly p-m mitotic.

One of the questions that arise is: “Are ≤Pm-complete sets for EXP (weakly)
p-m mitotic?” In order to answer this question, we first take a look at the r.e.-
complete sets. There it is known, due to Myhill [18], that all of the ≤m-complete sets
are isomorphic. Now, using the fact that K, the standard r.e. ≤m-complete set, is m
mitotic and that this property is preserved under isomorphisms, it follows that all ≤m-
complete sets are m mitotic. Unfortunately it is not known whether the ≤Pm-complete
sets for EXP are p isomorphic, but it is known that they are all 1-1 length increasing
equivalent [3, 12, 25]. This is sufficient to prove that they are weakly p-m mitotic.

THEOREM 4.4. All ≤Pm-complete sets for EXP are weakly p-m mitotic.
Proof. Let A be a ≤Pm-complete set for EXP . Let A ⊕ A ≤Pm A via f that is

1-1 and length increasing. Set A0 = {y : ∃0x[x ∈ A ∧ y = f(0x)]}. Since f is
1-1 and length increasing, A0 is in EXP . It is also ≤Pm-complete, because x ∈ A
iff f(0x) ∈ A0. Now set A1 = A − A0. Then A0

⋃
A1 = A and A0

⋂
A1 = ∅. It

remains to show that A1 is also ≤Pm-complete. Let A1 = {1x : x ∈ A}. Note that
A1 ⊆ A⊕ A and is ≤Pm-complete. Because f is 1-1, 1x ∈ A1 ⇒ f(1x) ∈ A− A0, and
1x /∈ A1 ⇒ 1x /∈ A⊕A⇒ f(1x) /∈ A⇒ f(1x) /∈ A−A0.

For EXP , the 1-1 length increasing property is enough to get weak p-m mitoticity.
For NEXP the situation is somewhat different, because we do not know whether
we have the length increasing property for complete sets. We do however have the
1-1 property and the fact that the reductions are not more than exponential length
decreasing, i.e., 2|f(x)| > |x|. (The precise term here is “exponentially honest” [12].)
The main problem, however, is that when applying the same proof as above, the
set difference used to define A1 = A − A0 is not known to be in NEXP , because it
is not known whether NEXP is closed under complementation (and thus under set
difference). We can prove something that at first glance looks hopeful in order to
prove weakly p-m mitoticity for NEXP -complete sets.

STRUCTURE OF COMPLETE SETS 649

THEOREM 4.5. Every ≤Pm-complete set A for NEXP can be split into infinitely
many disjoint subsets A1, A2, . . . such that

⋃∞
i=0Ai = A, such that for all i, Ai ⊆ A

and Ai is complete for NEXP.
Proof. We start the same way as in the EXP case. Let A ⊕ A ≤Pm A via f that

is 1-1 and exponentially honest. Set A0 = {y : ∃ 0x[y = f(0x) ∧ y ∈ A]}. Note
that it is equivalent, in the definition of A0, to say that x ∈ A or y ∈ A, because
f is a many-one reduction. Now A0 is in NEXP : on input y guess 0x such that
f(0x) = y. This can be done in nondeterministic exponential time because |x| < 2|y|,
by the exponential honesty of f . Now accept y iff y ∈ A. We define A1 in a similar
way. A1 = {y : ∃ 1x[y = f(1x) ∧ y ∈ A]}. We now have two complete sets A0 and
A1 and some leftover of A, namely, T0 = A− (A0

⋃
A1). At this point we repeat this

procedure with A0 resulting in A00 and A01 and again have some leftover T1. The
process of repeatedly splitting the set A0` thus results in an infinite sequence of sets
(A0`1)`∈ω and a set T =

⋃∞
i=0 Ti so that (

⋃∞
`=0A0`1)

⋃
T = A. Since T is countable

(it is a subset of ω), we can add the ith element of T to A0i1 resulting in a sequence
A′0i1 satisfying the properties of the theorem.

Although this looks hopeful, the following example shows that the infinite version
of mitoticity can be independent of mitoticity. Ladner [15] showed the existence of
nonmitotic sets. Together with the following observation this yields the somewhat
bizarre existence of a set that cannot be split into two parts but can be split into
infinitely many parts of the same complexity.

OBSERVATION 4.6. Every infinite r.e. set A can be split into infinitely many
disjoint r.e. subsets A1, A2, . . . of A such that they remain in the same Turing degree
as A.

Proof. It is well known that every infinite r.e. set A has an infinite subset B that
is recursive. Let B be such an infinite recursive subset of A. Since B is recursive and
infinite, it is (recursively) isomorphic to Σ∗. So we can code A into B, i.e., let f be
the isomorphism between Σ∗ and B and define A′ = {f(x) | x ∈ A}. Obviously A′

is an infinite r.e. set and A′ ≡T (A − B). Furthermore there exists a T1 such that
A = (A − B)

⋃
A′

⋃
T1. Now using the same “divide and split” trick as in the

previous theorem, we get the desired sequence of subsets.
We follow the same line as Ladner [15] and try to prove that there exist non-

(weakly p-m) mitotic sets in EXP . We succeed in this and can also prove that those
sets can be ≤P3 -tt-complete. (Note that this also proves that the same result is true
for p-m mitoticity.)

THEOREM 4.7. There exists a set A in EXP that is not weakly p-m mitotic and
≤P3−tt-complete.

Proof. In order to prove this, we prove the following: there exists a set A so that
for all sets A0, A1 ∈ EXP that split A, A0 6≡Pm A1. First note that if Ai 6∈ EXP , then
Ai 6≡Pm A so, in the construction, we may assume that both A0 and A1 are recognized
by exponential-time bounded machines. Or, equivalently, only pairs of exponential-
time bounded machines represent candidate splittings of A against which we have to
diagonalize.

Let {Mi}i be an enumeration of exponential-time machines that run in time 2n
i

,
and let {fk}k be an enumeration of polynomial-time many-one reductions computable
in time nk.

To construct A, we have requirements for all n = <i, j, k, `>: if L(Mi) and L(Mj)
split A, then either L(Mj) 6≤Pm L(Mi) via f` or L(Mi) 6≤Pm L(Mj) via fk.

We introduce a function b having a set of strings to diagonalize on. Let b(0) = 1
and b(i) = b(i − 1)i−1 + 1. At each stage n we will also define a number dn+1
such that if n + 1 = <i′, j′, k′, `′>, i.e., the next stage will diagonalize against ma-

650 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

chines Mi′ and Mj′ and functions fk′ and f`′ , then dn+1 is some number satisfying
b(n + 1)1/max{i′,j′} > dn+1 > max{k′, l′} × log b(n+ 1). We will assume appropriate
properties on the pairing function such that the interval from dn to dn+1 is suitable
for the construction. All strings in A with length between dn and dn+1 will be defined
at stage n.

The idea is to put three copies of K into A and make sure that at least one of
the pairs <i, x> (i = 1, 2, 3) is in A. A is then ≤P3-tt(in fact ≤P3-d)-complete by the
following reduction from K to A: x ∈ K iff <i, x>(i = 1, 2, 3) in A. On the other
hand we can leave out at most two of the pairs <i, x> to prevent A from becoming a
mitotic set.
Construction:
stage 0: A = {<i, x> | i = 1, 2, 3 and x ∈ K}. This is the “base set A.” At any
subsequent stage n of the construction, at most two strings y0 and y1, respectively,
with dn ≤ |y0|, |y1| < dn+1 and the string 0b(n) will be added to or removed from A.
A will be decided for all strings of length ≤ dn+1 after stage n.

Without loss of generality, we assume for this proof that the pairing function does
not output strings that start with a 0. Then, we can define strings of the form 0b(i)

in or outside A without disturbing the completeness.
stage n:

Let n = <i, j, k, `>. This stage will diagonalize against the possibility that
A = L(Mi) ∪ L(Mj) and/or that L(Mi) ≡Pm L(Mj) via the functions fk and f`
Consider fk(0b(n)) = y0 and f`(0b(n)) = y1.

We have several cases to consider.
1. y0 = 0b(n) or y1 = 0b(n) in this case we put 0b(n) into A.
2. y0 = y1, and not case 1. We have two subcases:

(a) |y0| > dn. Leave y0 out of A and put 0b(n) in A.
(b) |y0| ≤ dn. Put 0b(n) in A iff y0 /∈ A

3. y0 6= y1, and not case 1. We have three subcases:
(a) |y0| > dn and |y1| > dn. Leave both y0 and y1 out of A and put 0b(n) in

A.
(b) |y0| > dn and |y1| ≤ dn. (|y0| ≤ dn and |y1| > dn is treated analogously.)

We leave y0 out of A and have two subcases:
i. y1 /∈ A. Put 0b(n) in A.

ii. y1 ∈ A. 0b(n) ∈ A iff Mj(y1) accepts.
(c) |y0| ≤ dn and |y1| ≤ dn. We have three subcases:

i. y1 /∈ A and y0 /∈ A. Put 0b(n) in A.
ii. y1 ∈ A and y0 /∈ A. (The other way around is symmetric) 0b(n) ∈ A

iff Mj(y1) accepts.
iii. y1 ∈ A and y0 ∈ A. 0b(n) ∈ A iff Mi(y0) accepts and Mj(y1) accepts.

end of stage n
End of Construction

This ends the construction of A. The proof of correctness of the construction is
an analysis of the cases in the construction. First, A is exponential-time computable.
A consists of strings <i, x> where x ∈ K. Possible membership of these strings in
A can be decided because K is exponential-time computable. To decide membership
of other strings y in A, we need to compute f`(0b(n)) where dn ≤ |y|. This can be
done in (linear) exponential time since |y| ≥ max{`, k} × log b(n). Finally, to decide
membership of 0b(n) in A we sometimes need to compute Mj(y) and/or Mk(y) on
some input y of length ≤ dn. This can be done in linear exponential time since
b(n) ≥ dmax{i,j}

n .

STRUCTURE OF COMPLETE SETS 651

Next, if A were m mitotic, then there exists a pair k, ` such that A is split into
A0 and A1 and A0 ≤Pm A1 via fk and A1 ≤Pm A0 via f`. Moreover, A0 ∈ EXP as is
witnessed by machine Mi and A1 ∈ EXP as is witnessed by machine Mj .

The cases of the construction can be split into two types, namely, the type where
both y0 and y1 are free, i.e., > dn, and the type where either y0 or y1 is forced (≤ dn).
In the “free” cases we diagonalize by putting 0b(n) in A and leaving both y1 and y0 out
of A. Since 0b(n) ∈ A, it has to be in either A0 or A1, but if it is in either one then the
corresponding reduction fails since its image is not in A (and therefore certainly not
in the other part of A). In these cases we diagonalize directly against the many-one
reductions. In the other cases we are forced to leave y1 and y0 in A in order not to
destroy the work done at previous stages. But in these cases we are able to compute
in exponential time the splittings we want to diagonalize against. We will show the
correctness of case 3c(iii) in the construction. The other cases have a similar proof.
In this case, both y0 and y1 are fixed and in A. By putting 0b(n) in A, we force y0 and
y1 for any possible correct splitting both to be in either A0 or A1. Yet, the machines
Mi and Mj witness that y0 and y1 are in A0 and A1, respectively. On the other hand,
by leaving 0b(n) out of A, y1 has to be in Ap and and y0 in A1−p (p = 0, 1). Since one
of the machines rejects in this case, the other machine has to witness that y0 and y1
are both in A0 or A1. If, for instance, Mi witnesses that both strings are in A0, then,
since 0b(n) 6∈ A1, reduction f` fails to be a reduction from A1 to A0.

The next logical step would be to prove this result for Turing-complete sets and
T mitoticity. This question remains open for further research.

Another line of splittings in recursion theory is the existence of a splitting of
an r.e. set A in A0 and A1 that are incomparable. Examples of this are the splitting
theorem of Sacks [20] and the time bounded versions by Ladner [16]. The next theorem
is in a way a counterpart to this.

In the original splittings one gets the following structure: A0 and A1 are Turing
(or many one) incomparable but do reduce to A, thus achieving that A does not
reduce to A0 or A1, i.e., A0 and A1 are strictly below A. In the next theorem the
sets A0 and A1 are strictly below A, but are in the same many-one degree. Seen in
another light, this theorem can be seen as a generalization of the fact that there exists
≤P2−d-complete sets for EXP that are not ≤Pm-complete [25, 12].

THEOREM 4.8. If A is ≤Pm-complete for EXP, then A can be split into A0 and
A1, such that

• A0 ≡Pm A1.
• A0 and A1 are ≤P2-d-complete for EXP but not ≤Pm-complete.

Proof. Let A be ≤Pm-complete and K be the standard ≤Pm-complete set. Since
the ≤Pm-complete sets for EXP are 1-1 length increasing equivalent, we can construct
the following length increasing 1-1 function h from A to A. Let f be the 1-1, length
increasing reduction from A to K, and let g be the one from K to A. Let h(x) =
f(g(x)). We say that x is a root if h−1(x) is undefined and x is on a chain if h−1(x)
is defined.

One possible way to construct A0 and A1 is as follows (the real construction
follows later): A0 = {x | x ∈ A and x is a root }

⋃
{x | x ∈ A and x is on a chain and

hi(xr) = x and xr is a root and i is even} and A1 = {x | x ∈ A and x is on a chain
and hi(xr) = x and xr is a root and i is odd}.

Clearly A0 and A1 split A, are in EXP , and A0 ≡Pm A1 via h. A0 and A1 are ≤P2-d-
complete: x ∈ A⇐⇒ (x ∈ A0 or x ∈ A1)⇐⇒ (x ∈ A0 or h(x) ∈ A0). The only thing
to do now is to show that A0 and A1 are not ≤Pm-complete. Note here that in order
to get the above properties (i.e., splitting of A, the ≡Pm, and the ≤P2-d-completeness)

652 H. BUHRMAN, A. HOENE, AND L. TORENVLIET

it doesn’t matter if the roots are in A0 or A1 as long as it holds that x ∈ Ai, then
h(x) ∈ A1−i. This gives enough freedom to diagonalize against ≤Pm-reductions. We
are going to construct a set W ∈ EXP so that W 6≤PmA0. Note that then A1 cannot be
≤Pm-complete either. Again let {fi}i be an enumeration of ≤Pm-reductions such that
fi runs in time ni + i. We also need a function b(n) to denote the set of strings to
diagonalize on. Let b(0) = 1 and b(i+ 1) = b(i)i + 1. W is going to be a subset of 0∗.

We construct W , A0, and A1 in stages such that elements of A0 and A1 are either
roots or successive elements on a chain and W is exponential-time computable, but
reducible to neither A0 nor A1.

At stage 0, W = A0 = A1 = ∅.
stage n:

We have constructed W,A0, and A1 up to strings of length ≤ b(n−1)n−1. We
simulate fn(0b(n)) = y. We now have three cases for the construction of W :

1. |y| ≤ b(n− 1)n−1. Put 0b(n) in W iff y /∈ A0.
2. ∃ y′ ≤ b(n− 1)n−1 such that hi(y′) = y. Put 0b(n) in W iff y′ /∈ Ai mod 2.
3. Otherwise put 0b(n) in W .

This ends the construction of W .
Construction of A0 and A1.

Let b(n− 1)n−1 < |x| < b(n)n + 1 and x ∈ A.
1. x 6= y.

(a) x is a root.
• ∃ i such that hi(x) = y

– put x in A0 iff i is odd.
– put x in A1 iff i is even.

• put x in A0.
(b) x is on a chain, xr is the root of x, xr ∈ Aj , and hi(xr) = x. Put x in

A(i+j) mod 2.
2. x = y. Put x in A0 iff 0b(n) 6∈W .

end of stage n
It is not hard to see that W,A0, and A1 are all in EXP . Furthermore A0 and

A1 split A and A0 ≡Pm A1. It remains to be shown that W 6≤PmA0. Suppose it is
via reduction fj ; then fj(0b(j)) = y. For cases 1 and 2 in the above construction,
0b(j) ∈ W iff y 6∈ A0, and from the construction of A0 and case 3, 0b(j) ∈ W and
y /∈ A0.

Acknowledgments. We thank Peter van Emde Boas for discussions about the
results. We thank Steven Homer, Dick de Jongh, and Jan van Neerven for discussions
and ideas. We thank Stephen Wilcox for pointing out an error that we thought was
grammatical but that turned out to be mathematical.

REFERENCES

[1] K. AMBOS-SPIES, On the structure of polynomial time degrees, in Proc. Symposium on Theo-
rectical Aspects of Computer Science, Lecture Notes in Comput. Sci. 166, M. Fontet and
K. Mehlhorn, eds., Springer-Verlag, Berlin, 1984, pp. 198–208.

[2] J. BALCÁZAR, J. Dı́AZ, AND J. GABARRÓ, Structural Complexity I, Springer-Verlag, Berlin,
1988.

[3] L. BERMAN, Polynomial Reducibilities and Complete Sets, Ph.D. thesis, Cornell University,
Ithaca, NY, 1977.

[4] S. BREIDBART, On splitting recursive sets, J. Comput. System Sci., 17 (1978), pp. 56–64.
[5] H. BUHRMAN, Resource Bounded Reductions, Ph.D. thesis, University of Amsterdam, 1993.
[6] H. BUHRMAN, L. FORTNOW, AND L. TORENVLIET, Using autoreducibility in separating com-

plexity classes, in Proc. 36th Annual IEEE Symposium on Foundations of Computer Sci-
ence, Milwaukee, WI, IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 520–527.

STRUCTURE OF COMPLETE SETS 653

[7] H. BUHRMAN, S. HOMER, AND L. TORENVLIET, On complete sets for nondeterministic classes,
Math. Systems Theory, 24 (1991), pp. 179–200.

[8] H. BUHRMAN, E. SPAAN, AND L. TORENVLIET, The relative power of logspace and polynomial
time reductions, Comput. Complexity, 3 (1993), pp. 231–244.

[9] H. BUHRMAN AND L. TORENVLIET, On the structure of complete sets, in Proc. 9th Annual
IEEE Conference on Structure in Complexity Theory, Amsterdam, Holland, IEEE Com-
puter Society Press, Los Alamitos, CA, 1994, pp. 118–133.

[10] H. BUHRMAN, L. TORENVLIET, AND P. V. EMDE BOAS, Twenty questions to a p-selector,
Inform. Process. Lett., 48 (1993), pp. 201–204.

[11] H. BUHRMAN, AND L. TORENVLIET, P-selective self-reducible sets: A new characterization of
P, J. Comput. System Sci., 53 (1996), pp. 210–217.

[12] K. GANESAN AND S. HOMER, Complete problems and strong polynomial reducibilities, SIAM
J. Comput., 21 (1992), pp. 733–742.

[13] C. JOCKUSCH, Semirecursive sets and positive reducibility, Trans. Amer. Math. Soc., 131
(1968), pp. 420–436.

[14] J. KELLY, General Topology, D. van Nostrand Company Inc., New York, 1955.
[15] R. LADNER, Mitotic recursively enumerable sets, J. Symbolic Logic, 38 (1973), pp. 199–211.
[16] R. LADNER, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22

(1975), pp. 155–171.
[17] R. LADNER, N. LYNCH, AND A. SELMAN, A comparison of polynomial time reducibilities,

Theoret. Comput. Sci., 1 (1975), pp. 103–123.
[18] J. Myhill, Creative sets, Zeit. Math. Log. Grund. Math., 1 (1955), pp. 97–108.
[19] J. OWINGS, Splitting a context-sensitive set, J. Comput. System Sci., 10 (1975), pp. 83–87.
[20] G. SACKS, On degrees less than 0′, Ann. of Math., 2 (1963), pp. 211–231.
[21] U. SCHÖNING, Complete sets and closeness to complexity classes, Math. Systems Theory, 19

(1986), pp. 29–41.
[22] A. SELMAN, P-selective sets, tally languages, and the behavior of polynomial time reducibilities

on NP, Math. Systems Theory, 13 (1979), pp. 55–65.
[23] S. TANG, B. FU, AND T. LIU, Exponential time and subexponential time sets, Theoret. Comput.

Sci., 115 (1993), pp. 371–381.
[24] S. TODA, On polynomial-time truth-table reducibilities of intractable sets to P-selective sets,

Math. Systems Theory, 24 (1991), pp. 69–82.
[25] O. WATANABE, A comparison of polynomial time completeness notions, Theoret. Comput.

Sci., 54 (1987), pp. 249–265.
[26] C. WILSON, Relativized circuit complexity, J. Comput. System Sci., 31 (1985), pp. 169–181.

CONSTRUCTING LEVELS IN ARRANGEMENTS AND HIGHER
ORDER VORONOI DIAGRAMS ∗

PANKAJ K. AGARWAL† , MARK DE BERG‡ , JIŘÍ MATOUŠEK§ ,
AND OTFRIED SCHWARZKOPF¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 654–667, June 1998 004

Abstract. We give simple randomized incremental algorithms for computing the ≤k-level in an
arrangement of n lines in the plane or in an arrangement of n planes in R3. The expected running
time of our algorithms is O(nk + nα(n) logn) for the planar case and O(nk2 + n log3 n) for the
three-dimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes
to computing the ≤k-level in an arrangement of discs or x-monotone Jordan curves in the plane.
Our approach can also compute the k-level; this yields a randomized algorithm for computing the
order-k Voronoi diagram of n points in the plane in expected time O(k(n− k) logn+ n log3 n).

Key words. arrangements, random sampling, Voronoi diagrams

AMS subject classifications. 65Y25, 68Q25, 68U05

PII. S0097539795281840

1. Introduction. Arrangements of hyperplanes have been studied for a long
time in combinatorial and computational geometry and yet they have kept some of
their secrets. Some of the intriguing open questions are related to the concept of
levels. We say that a point p is at level k with respect to a set H of nonvertical
hyperplanes in Rd if there are exactly k hyperplanes in H that lie strictly above p.
The k-level of an arrangement A(H) of hyperplanes is the closure of all (d−1)-cells of
A(H) whose interior points have level k with respect to H. It is a monotone piecewise-
linear surface; see Figure 1. The ≤k-level of A(H) is the complex induced by all cells
of A(H) lying on or above the k-level. The k-level and the ≤k-level of arrangements
of monotone surfaces are defined analogously. In fact, one can give a more general
definition of levels, which is useful in certain applications. Given a family Γ of subsets
(also called ranges) of Rd, define the level of a point p with respect to Γ to be the
number of ranges that contain p in their interior; k-level and ≤k-level are defined as
above. For a set H of hyperplanes, if we choose ranges to be the halfspaces lying
below the hyperplanes of H, then the level of p is the same under the two definitions.

∗Received by the editors February 22, 1995; accepted for publication (in revised form) March 11,
1996. The work of the first author was supported by National Science Foundation grant CCR-93-
01259 and by an NYI award. The second and fourth authors were supported by the Netherlands’
Organization for Scientific Research (NWO) and partially supported by ESPRIT Basic Research
Action 7141 (project ALCOM II: Algorithms and Complexity). Work by the third author was
supported by Charles University grant 351, Czech Republic grant GAČR 201/93/2167, and EC
Cooperative Action IC-1000 (project ALTEC: Algorithms for Future Technologies). Part of this
research was done when the first and fourth authors visited Charles University and when the first
author visited Utrecht University. These visits were supported by Charles University and NWO.

http://www.siam.org/journals/sicomp/27-3/28184.html
†Department of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129

(pankaj@cs.duke.edu).
‡Vakgroep Informatica, Universiteit Utrecht, Postbus 80.089, 3508 TB Utrecht, the Netherlands

(markdb@cs.ruu.nl).
§Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha

1, Czech Republic (matousek@kam.mff.cuni.cz).
¶Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the

Netherlands. Current address: Department of Computer Science, Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong (otfried@cs.ust.hk).

654

CONSTRUCTING LEVELS IN ARRANGEMENTS 655

FIG. 1. The 2-level in an arrangement of lines.

We will not distinguish between the two definitions of levels, as it will be clear from
the context to which of them we are referring.

The maximum combinatorial complexity of the ≤k-level in an arrangement of
hyperplanes in Rd is known precisely. Using a probabilistic argument, Clarkson and
Shor [CS89] proved that it is Θ(nbd/2ckdd/2e). By a similar technique, Sharir [Sha91]
proved that the maximum complexity of the ≤k-level for a set of n discs is Θ(nk).
He also proved that the complexity of the ≤k-level for n x-monotone Jordan curves,
each pair of which intersects in at most s points, is O(k2λs(n/k)). Here λs(m) is the
maximum length of an (m, s) Davenport–Schinzel sequence; λs(m) is roughly linear
in m for any constant s [ASS89].

The problem of efficiently computing the ≤k-level has not been resolved com-
pletely. Mulmuley [Mul91b] gave a randomized incremental algorithm for computing
the ≤k-level in hyperplane arrangements in any dimension. For d ≥ 4, the expected
running time of his algorithm is O(nbd/2ckdd/2e), which is optimal. For d = 2, 3 the ex-
pected running time of his algorithm is O(nkdd/2e log(n/k)), which exceeds the output
size by a logarithmic factor. Recently, Everett, Robert, and van Kreveld [ERvK96]
gave an optimal O(n log n+ nk) expected time randomized algorithm for computing
the ≤k-level in an arrangement of lines in the plane. Their algorithm does not easily
extend to more general ranges.

Mulmuley’s algorithm can be applied to compute the ≤k-level of arrangements
of x-monotone Jordan curves in the plane, but it is not clear how to generalize it for
computing the ≤k-level for more general ranges like discs. Sharir [Sha91] presented a
divide-and-conquer algorithm for computing the ≤k-level of rather general ranges in
the plane. Its worst-case running time is roughly log2 n times the maximum size of
the ≤k-level.

In this paper we give a somewhat different randomized incremental algorithm
for computing the ≤k-level whose expected running time is O(nk + n log nα(n)) in
the plane and O(nk2 + n log3 n) in 3-space, which is worst-case optimal unless k is
very small. The main difference of this algorithm compared with Mulmuley’s algo-
rithm [Mul91b, Mul93] is as follows. Mulmuley’s algorithm inserts the hyperplanes
one by one in a random order and maintains the ≤k-level of A(R), the arrangement of
the hyperplanes that have already been inserted. When adding a new hyperplane h,
the algorithm first updates the arrangement locally at cells that are intersected by h.
Then it removes cells that have “fallen off” because they are now on level k+1; Mulmu-
ley calls this the peeling step. Our algorithm maintains a part ofA(R) that is in general

656 P. AGARWAL, M. DE BERG, J. MATOUŠEK, AND O. SCHWARZKOPF

smaller than the ≤k-level. Namely, when inserting a new hyperplane, the algorithm
estimates the level of each of the newly created cells of the current cell complex with
respect to H, the full set of hyperplanes. Mulmuley’s algorithm, in contrast, looks
at the level with respect to R, the set of hyperplanes already inserted. As soon as
our estimate shows that a cell lies completely outside the ≤k-level, it is discarded.
This strategy can also be used in situations where Mulmuley’s algorithm has difficulty
accessing the cells of the current complex that must be peeled off. This is, for instance,
the case where one wants to compute the ≤k-level in an arrangement of discs.

Our approach can also be used to compute the k-level in an arrangement. This
time a cell of the current cell complex is discarded as soon as it becomes clear that
it does not intersect the k-level of A(H). The complexity of this algorithm depends
on combinatorial bounds on the complexity of a k-level, and here the knowledge is
less satisfactory than for the ≤k-level. Lovász proved that a k-level in an arrange-
ment of n lines in the plane has O(n

√
k) vertices [Lov71], and Erdős et al. [ELSS73]

proved a lower bound of Ω(n log(k + 1)). There was no progress on this problem
for the last twenty-five years except for a slightly improved upper bound by Pach,
Steiger, and Szemerédi [PSS92]. Recently, Dey [Dey97] improved the upper bound
to O(nk1/3). See [AAS97, DE93, ZV92] for known results on k-levels in higher di-
mensions. Edelsbrunner and Welzl [EW86] gave an algorithm for computing the
k-level in the plane, which was later slightly improved by Cole, Sharir, and Yap
[CSY87] to O(n log n + m log2 k) running time, where m stands for the actual com-
plexity of the k-level. Our algorithm yields O(nk1/3 log2/3 n + n log2 n) expected
time complexity. (If one could prove better worst-case bounds for the k-level max-
imum complexity, we would get an improvement in the algorithm’s complexity as
well; see section 4 for exact bounds.) This compares favorably to the worst-case
running times of previous algorithms; however, our algorithm is not fully output
sensitive (its running time depends on the complexity of levels in arrangements of
various random subsets of the given lines). In principle, our algorithm for computing
the k-level also works in higher dimensions, and its running time can be obtained
by plugging the known bounds on the complexity of the k-level in higher dimen-
sions [ABFK92, DE93, ZV92] into the analysis of our algorithm. We, however, do not
discuss it in this paper, because our main interest lies in the special three-dimensional
case discussed next.

If all the hyperplanes are tangent to the unit paraboloid, the maximum complex-
ity of the k-level of a three-dimensional arrangement is known to be Θ(k(n−k)). This
situation arises when the planes are the images of a set of points in the plane under the
transformation that maps the order-k Voronoi diagram of these points to the k-level
of the planes (see, e.g., [Ede87]). Most known algorithms for computing the k-level
in three-dimensional space actually compute the ≤k-level [Mul91b, CE87, BDT93].
Since the complexity of the ≤k-level is Θ(nk2) in the situation sketched above, the
running time of these algorithms is at least Ω(nk2 + n log n). The randomized in-
cremental algorithm by Aurenhammer and Schwarzkopf [AS92] maintains only the
k-level, but it can be shown that any randomized incremental algorithm that main-
tains the k-level of the intermediate arrangements must take time Ω(nk2) as well,
since the expected number of structural changes in the k-level is Ω(nk2) [AS92]. The
only algorithm that approaches the desired O(k(n−k)) time bound was presented by
Clarkson [Cla87], and it runs in time O(n1+εk), where ε > 0 is an arbitrarily small
constant. His algorithm can probably be improved somewhat by using more recent
results on geometric cuttings.

CONSTRUCTING LEVELS IN ARRANGEMENTS 657

We show that our algorithm for computing the k-level for n planes tangent to the
unit paraboloid runs in O(k(n − k) log n + n log3 n) expected time in this case. We
conjecture that the running time is in factO(k(n−k)+n log n), which is asymptotically
optimal, but currently we cannot prove it.

2. Preliminaries.
Arrangements. Let H be a set of n hyperplanes in d-dimensional space. We

denote the arrangement of H by A(H). We regard it as a cell complex with cells (also
called faces) of dimensions 0 to d that are relatively open. We define the level of a
cell of A(H) as the level of any point of its relative interior.

For simplicity of exposition, we assume that the hyperplanes are in general po-
sition. This assumption can be removed by a more careful (and technically a little
more complicated) treatment or by standard perturbation arguments [Ede87].

Canonical triangulations. Let C be a subcomplex of A(H), that is, a collection
of cells of A(H) such that whenever C ∈ C and C ′ is a face of C, then also C ′ ∈ C.
The canonical triangulation1 of C ([Cla88]), which we denote by C∇, is defined as
follows. Let C be a j-dimensional cell of C (thus, a convex polytope), and let v be
the bottom vertex of C, that is, the lexicographically smallest vertex of C. If j = 1,
then C is a segment and it is already a (one-dimensional) simplex. If j > 1, then we
recursively triangulate the (j − 1)-dimensional faces of C and extend each (j − 1)-
simplex to a j-simplex using the vertex v. (Unbounded cells require some care in
this definition [Cla88].) The canonical triangulation of a cell with m vertices has
O(m) simplices. The canonical triangulation C∇ of the subcomplex C is the simplicial
complex obtained by triangulating each cell of C in this manner.

Let R be a subset of H. For a (relatively open) simplex ∆ ∈ A(R)∇, let K(∆)
denote the set of hyperplanes of H intersecting ∆, and put w(∆) = |K(∆)|+ 1. The
hyperplanes from K(∆) are said to be in conflict with ∆, and w(∆) is called the
weight of ∆.

For each simplex ∆ of the canonical triangulation, let D(∆) ⊆ H be a set of
hyperplanes such that ∆ appears in the canonical triangulation of the arrangement
of D(∆), but does not appear in the canonical triangulation of A(D′) for any proper
subset D′ ⊂ D(∆). It can be shown that if H is in general position, D(∆) is unique
and its size is bounded by a constant b = b(d). This D(∆) is called the defining set of
∆. For instance, for d = 2 a typical triangle ∆ is defined by five lines—the two lines
whose intersection is the bottom vertex, the line containing the side opposite to the
bottom vertex, and the two lines intersecting this side at the other two vertices of ∆,
so b(2) = 5. The following fact is often used in the analysis of randomized geometric
algorithms; among others, it captures the above-mentioned uniqueness of the defining
set. For a proof and detailed discussion, see Chazelle and Friedman [CF90, sec. 5].

FACT 2.1. Let S ⊆ H, and let ∆ be a simplex of A(S)∇. Then the following
condition holds: for any R ⊆ H, ∆ ∈ A(R)∇ if and only if D(∆) ⊆ R and R∩K(∆) =
∅.

When generalizing the algorithm below to computing the ≤k-level in more gen-
eral arrangements (for example, in an arrangement of discs), we need to define an
appropriate analog of the canonical triangulation having the above property.

A tool for analyzing randomized incremental algorithms. We now discuss a random-
sampling result that we need for the analysis of our algorithms. We do not state it in
a full generality but only in the specific setting in which we need it.

1Sometimes the name bottom vertex triangulation is used in the literature.

658 P. AGARWAL, M. DE BERG, J. MATOUŠEK, AND O. SCHWARZKOPF

LEMMA 2.2. For each R ⊆ H, let C(R) be a subcomplex of the arrangement A(R).
Assume that the subcomplexes have the following “monotonicity” property:

(∗)
Let R′ ⊆ R ⊆ H, let C be a cell of C(R), and let C ′ be the cell of A(R′)
containing C. Then C ′ ∈ C(R′).

(For instance, C(R) may be the collection of all cells in A(R) intersecting some fixed
set X ⊆ Rd, plus their lower-dimensional faces. Then (∗) clearly holds. In our
applications, the definition of C(R) will be a bit more technical, but it will have a
similar flavor.)

Let f : N → R+ be a nondecreasing function so that f(r) is an upper bound for
the expected total number of vertices of C(R), where R is a randomly chosen r-element
subset of H. Then we have the following:

(i) Let R be a randomly chosen r-element subset of H, and let c be a constant.
Then

E

 ∑
∆∈C(R)∇

w(∆)c

 = O
((n

r

)c
f(r)

)
.

(ii) Consider a randomized incremental algorithm that inserts the hyperplanes
of H one by one in a random order and maintains C(R)∇, where R =
{h1, h2, . . . , hr} is the set of hyperplanes already inserted. Let Nr denote the
set of simplices newly created at step r, that is, Nr = C({h1, h2, . . . , hr})∇ \
C({h1, h2, . . . , hr−1})∇. Then for any constant c ≥ 0 we have

E

[∑
∆∈Nr

w(∆)c
]

= O

(
nc

rc+1 f(r)
)
.

Part (i) says that, under condition (∗), the expected average weight w(∆) of a
simplex in C(R)∇ is about n/r even if we take the cth degree averages. Often the
amount of work that a randomized algorithm performs at step r is directly related to
the weight of the newly created simplices; part (ii) can then be used to analyze the
running time.

Sketch of proof. Results of this type were first obtained by Chazelle et al. [CEG+93],
who essentially proved (ii) with c = 1 (in a more general setting) by analyzing a ran-
domized incremental algorithm. The general case, where c > 1, can be obtained by
an extension of their analysis, as is shown by de Berg, Dobrindt, and Schwarzkopf
[dBDS94]. A somewhat different approach, going via the “static” part (i) and gen-
eralizing an approach of Chazelle and Friedman [CF90], is presented by Agarwal,
Matoušek, and Schwarzkopf [AMS97]. In order to apply the general framework of
[AMS97] to our situation, we need the following properties of the canonical triangu-
lation of C(R):

(a) If a simplex ∆ is present in C(R)∇, then D(∆) ⊆ R and K(∆) ∩R = ∅.
(b) For any ∆ ∈ C(R)∇, we have ∆ ∈ C(R′)∇ whenever R′ ⊆ R and D(∆) ⊆ R′.

Condition (a) is immediate from Fact 2.1, and condition (b) follows from Fact 2.1
together with property (∗). Under these conditions, (i) is proved by Agarwal, Ma-
toušek, and Schwarzkopf [AMS97]. Part (ii) can now be derived from (i) by backward
analysis: the simplices of Nr are those destroyed by deleting the hyperplane hr from
R = {h1, h2, . . . , hr}. Since the order of hyperplanes is random, hr is a random hy-
perplane of R. Each simplex of C(R)∇ is only destroyed by deleting hr if hr ∈ D(∆).

CONSTRUCTING LEVELS IN ARRANGEMENTS 659

Therefore, the expected sum
∑

∆ w(∆)c over the simplices destroyed by deleting a
random hyperplane of R is at most b/r times the expectation of

∑
∆∈C(R)∇ w(∆)c,

and since R is a random r-element subset of H, we can use (i).

3. Computing the ≤ k-level and k-level for hyperplanes.
Outline of the algorithm. We describe the algorithm for an arbitrary dimension

d ≥ 2 because it may be a useful alternative to Mulmuley’s algorithm even for d ≥ 4
(although the asymptotic running time for d ≥ 4 is the same as that of his algorithm).

We first generate a random permutation h1, h2, . . . , hn of H and then insert the
hyperplanes one by one in this order. Let R denote the set {h1, . . . , hr} of hyperplanes
inserted in the first r steps. As the hyperplanes are inserted, the algorithm maintains
the following structures:

• The canonical triangulation K∇r of a subcomplex Kr of A(R) (more precisely,
we store the simplices as well as their adjacency relations).
• The conflict lists: for every simplex ∆ ∈ K∇r , the list K(∆) of hyperplanes of
H \ R intersecting its relative interior, and for every hyperplane h ∈ H \ R,
the list of all simplices with h ∈ K(∆).

• For every simplex ∆ ∈ K∇r , the level `∆ of one of its (arbitrarily chosen)
interior points with respect to A(H).

At a high level, the insertion of a new hyperplane hr can be described as follows.
1. Find all cells of Kr−1 intersected by hr using the conflict lists. Split such

cells, retriangulate them as necessary, update the conflict lists, and compute
the level information for the new simplices.

2. Test each of the newly created cells to see whether it is active (the meaning
of this will be described below). If a new cell is not active, its simplices and
their conflict lists are discarded. The resulting complex is Kr.

We now discuss these steps in more detail.
Updating the information. In the first step, we identify all the simplices in K∇r−1

intersected by hr using the conflict lists. Since we know the adjacency relations among
the simplices, we can compute the intersected simplices as a collection of groups, one
for each cell that hr intersects. Consider such a group, and let C be the corresponding
cell. All the simplices in the group have to be deleted and replaced by a number of new
simplices. We first consider the situation for d = 2, which is illustrated in Figure 2.
To deal with the part of C that lies on the same side of hr as the bottom vertex v of C,
we draw new diagonals from v to the two intersection points of hr with the boundary
of C; this creates three new simplices. The part of C lying on the opposite side of
hr is simply triangulated from scratch. This way the canonical triangulations of the
two cells that result from the splitting of C are constructed in time that is linear in
the number of new simplices that are created. The adjacency relations among the
simplices can easily be determined during the process.

Things are not very different in higher dimensions. Consider a three-dimensional
cell C. We first retriangulate the two-dimensional facets that are intersected, in the
way we just described. We also triangulate the facet C∩hr. It remains to connect the
triangles of the boundary triangulation to the correct bottom vertex (this is necessary
only if they were not already connected to this vertex in the triangulation of C, of
course); this is analogous to the two-dimensional case. In general, in dimension d we
first treat the parts of the (d− 1)-facets incident to intersected simplices recursively,
and then we connect the (d−1)-simplices that still need to be extended to d-simplices
to the correct bottom vertex.

Our second task is to compute the conflict lists of the new simplices. Let C be a
cell that has been split by hr into two new cells C ′ and C ′′, where C ′ is the cell that

660 P. AGARWAL, M. DE BERG, J. MATOUŠEK, AND O. SCHWARZKOPF

FIG. 2. Retriangulation of a cell that is split.

contains the bottom vertex of C. Let S be the set of new simplices in C ′ and C ′′.
Some of the simplices of C ′ may already have existed in C; these simplices already
have the correct conflict list and are not present in S. The union of the conflict lists
for the simplices in S is the same as the union of the conflict lists of the simplices
of C that were destroyed by hr (minus hr itself). We denote this set of hyperplanes
by K(S). To find the conflict lists for the simplices in S, we first determine for each
hyperplane h ∈ K(S) one simplex of S that it intersects — its initial simplex — as
follows.

Consider a hyperplane h ∈ K(S). If h intersects some simplex of S in an edge
that is also an edge of the old cell C, then this simplex can serve as initial simplex for
h. We can find it through the conflict list of a destroyed simplex of C that contained
that edge. If h intersects none of the simplices of S in an edge of C, then h must
separate the bottom vertex of C ′ from C ∩ hr. Hence, any simplex of C ′ that has a
facet on C ∩ hr can serve as an initial simplex for h. We conclude that we can find
initial simplices for all hyperplanes in K(S) in time linear in the total size of the old
conflict lists. (We may find more than one initial simplex for a hyperplane, but this
is no problem.)

Once we have an initial simplex for each hyperplane h ∈ K(S), we traverse the
adjacency graph of the simplices to find the other simplices in S that are intersected by
h. Since the subgraph of the adjacency graph induced by these simplices is connected,
the total time spent in traversals, over all hyperplanes of K(S), is linear in the total
size of the new conflict lists.

The last thing we have to do in step 1 is to determine for each new simplex the
level of one of its interior points with respect to A(H). To this end, we consider a
simplex of C that was destroyed by hr. Let p be the point interior to the destroyed
simplex that defined its level. Let ∆p be the new simplex that contains p. Trivially,
we now know the level of a point interior to ∆p. To compute the level of an interior
point for each of the other new simplices, we again traverse the adjacency graph. The
traversal starts at ∆p. When we step from one simplex to the next, we can update
the level of an interior point in time proportional to the size of the conflict lists of the
two simplices. Hence, the total time we need is linear in the total size of the conflict
lists of the new simplices.

Testing active cells. Recall that `∆ denotes the level of an interior point of the
simplex ∆. The level of any other point in ∆ must lie in the range

I∆ = `∆ − w(∆), . . . , `∆ + w(∆).

We call ∆ active if I∆ contains a level that we wish to compute. So if we are comput-

CONSTRUCTING LEVELS IN ARRANGEMENTS 661

ing the ≤k-level, then ∆ is active if I∆ ∩ {0, 1, 2, . . . , k} 6= ∅, and if we are computing
the k-level, then ∆ is active if k ∈ I∆. Since we are maintaining a subcomplex of
A(R), we cannot discard individual simplices: a cell either has to be kept as a whole,
or it has to be discarded as a whole. Of course, we should not discard cells that
contain active simplices. Therefore we define a cell to be active if at least one of the
simplices of its canonical triangulation is active. Note that after inserting the last
hyperplane all conflict lists are empty, and so the remaining cell complex is exactly
what we wish to compute. (If we are computing the k-level, the remaining complex
consists of the cells of level k, from which the k-level can be reconstructed easily.)

Step 2 of our algorithm tests whether the new cells created by the insertion of hr
are active. To this end, we store with each cell a counter indicating the number of
active simplices in its canonical triangulation. Let C be a cell that was split, and let
C ′ be one of the two new cells. To compute the counter for C ′ we should only spend
time on its new simplices and on the simplices from C that were destroyed; we should
not spend time on simplices in C ′ that were already present in C. But this is easy
given the counter for C and the levels of the new and old simplices. We conclude that
we can test whether C ′ is active in time proportional to the number of new simplices
in C ′ plus the number of destroyed simplices from C.

4. The analysis. We have seen that the total work for inserting hr is propor-
tional to the total size of the conflict lists of the simplices destroyed by hr and of the
newly created simplices. Since the simplices being destroyed must have been created
before, the total work is proportional to

∑
∆ w(∆), where the summation is over all

simplices created by the algorithm. Observe that it could happen that we create a
new cell, spend time to triangulate it and to compute the conflict lists and the levels
of all its simplices, and then immediately discard it. In other words, we may spend
time on (simplices of) cells that are never active. Our analysis must take this into
consideration, of course.

We are going to apply Lemma 2.2 to estimate the sum
∑

∆ w(∆) over all created
simplices. The complex Kr maintained by the algorithm does not seem to be directly
suitable for the analysis. We thus define for every R ⊆ H an auxiliary complex K̄(R),
which can be used in the role of C(R) in Lemma 2.2.

For a cell C of A(R), its diameter diam(C) is defined as the maximum number of
hyperplanes of H intersecting a segment fully contained in C. We define an auxiliary
set K̄0(R) of d-cells of A(R). The algorithm for computing the (≤ k)-level includes
a d-cell C ∈ A(R) into K̄0(R) if and only if it intersects (≤ k′)-level in A(H), where
k′ = k′(C) = k+ 2(d+ 1) diam(C) + d+ 1 (note that we take cells of the arrangement
of R, but we consider levels in the arrangement of H). Similarly, the algorithm for
computing the k-level includes a d-cell C ∈ A(R) in K̄0(R) if it intersects the region
between the levels k − 2(d+ 1) diam(C) + d+ 1 and k + 2(d+ 1) diam(C) + d+ 1 of
A(H). The complex K̄(R) consists of the cells that belong to K̄0(R) or that share a
facet with a cell of K̄0(R), plus their lower-dimensional faces.

LEMMA 4.1. All simplices ∆ created by the actual algorithm in the rth step are
contained in K̄({h1, . . . , hr})∇ \ K̄({h1, . . . , hr−1})∇; thus, a fictitious algorithm that
maintains K̄(R)∇ will create all simplices created by the actual algorithm.

Proof. We prove the lemma for the algorithm that computes the k-level; the proof
for the computation of the ≤k-level is analogous.

All cells created by the actual algorithm arise by splitting an active cell C. Let
C ′ and C ′′ denote the two cells into which C is split. One of these two cells, say C ′,
has diameter at least (diam(C)− 1)/2. We shall prove that C ′ is in K̄0({h1, . . . , hr}).

662 P. AGARWAL, M. DE BERG, J. MATOUŠEK, AND O. SCHWARZKOPF

Since C ′ and C ′′ share a facet, we get that both C ′ and C ′′ lie in K̄({h1, . . . , hr}),
from which the lemma follows.

Let ∆ be an active simplex of C, and let p be the point in the interior of ∆
defining its level `∆. Since w(∆) ≤ d · diam(C) and ∆ is active, we know that

`∆ − d · diam(C) ≤ k ≤ `∆ + d · diam(C).

Let q be an arbitrary point in C ′. The level of q differs from the level of p by at most
diam(C). Hence,

level of q − (d+ 1) diam(C) ≤ k ≤ level of q + (d+ 1) diam(C),

and since diam(C ′) ≥ (diam(C)− 1)/2, this proves the lemma.
It is easy to check that the complex K̄(R) satisfies the monotonicity condition (∗)

in Lemma 2.2, so we may apply Lemma 2.2(ii) for c = 1 to K̄(R). By Lemma 4.1 we
can now bound the expected running time of our algorithm as follows.

COROLLARY 4.2. Let f be a nondecreasing function such that E
[
|K̄(R)∇|

]
≤ f(r)

for any r = 1, 2, . . . , n, where the expectation is over a random choice of an r-element
set R ⊆ H. Then the expected running time of the algorithm is

O

(
n∑
r=1

n

r2 f(r)

)
.

An ε-net argument. We are going to estimate the function f(r) = E
[
|K̄(R)∇|

]
.

General results of Haussler and Welzl [HW87] imply that, for a suitable constant c =
c(d), a random r-element sample R ⊆ H has the following property with probability
at least 1 − 1/rd: any line segment s that does not intersect any hyperplane of R
intersects at most cnr log r hyperplanes of H. (This is usually expressed by saying that
R is an ε-net with respect to segments, with ε = c log r/r [HW87].) Let ε-NET(R)
be a predicate expressing this property, that is, ε-NET(R) is true if and only if R has
this property. We can write, using conditional expectations

E
[
|K̄(R)∇|

]
= E

[
|K̄(R)∇|

∣∣∣∣ ε-NET(R)
]
· Pr[ε-NET(R)]

+ E
[
|K̄(R)∇|

∣∣∣∣ NOT ε-NET(R)
]
· Pr[NOT ε-NET(R)] .

Since K̄(R)∇ has never more than O(rd) simplices, this is at most

(1− 1/rd) ·E
[
|K̄(R)∇|

∣∣∣∣ ε-NET(R)
]

+ O(1) .(1)

Let us consider the case when ε-NET(R) is true. Let M be the maximum diameter
of a cell in A(R); we thus have M = O((n/r) log r). Consider a cell C of K̄(R). By
definition of K̄(R), C is adjacent to a cell C ′ that intersects the ≤(k+2(d+1)M+d+1)-
level of A(H) (this concerns the algorithm for (≤ k)-level computation). Hence, C is
completely contained in the ≤(k + 2(d+ 2)M + 2d+ 1)-level of A(H) (the constants
could be improved by a more careful argument). Now set δ = 2(d + 2)M + 2d + 1.
so all cells of K̄(R) are contained in the ≤(k + δ)-level of A(H). Similarly, in the
case of computing the k-level, all cells of K̄(R) are contained in the region between
levels k− δ and k+ δ. We denote the region that contains the cells of K̄(R) in either
algorithm by T = T (r). Thus the quantity |K̄(R)∇| that we want to bound is at most
proportional to the number of vertices of A(R) lying in the region T .

CONSTRUCTING LEVELS IN ARRANGEMENTS 663

If R is a random r-element subset of H, then for any fixed vertex v of A(H) the
probability of it being a vertex of A(R) is at most (r/n)d. If R is conditioned to
satisfy ε-NET(R), this probability can increase at most by the factor of (1− r−d)−1.
Hence, the expected number of vertices of A(R) in T is at most (1−r−d)−1(r/n)dNT ,
where NT stands for the number of vertices of A(H) in T . From equation (1) we get
f(r) = O(1 +NT r

d/nd). By Corollary 4.2, we can now bound the expected running
time of the algorithm by

O(n) +
O(1)
nd−1

n∑
r=1

rd−2NT .(2)

(This holds provided that f comes out as a nondecreasing function, which is the case
in all our applications.)

Specific results. We can now bound the expected running time of our algorithm
in various situations by substituting appropriate bounds on NT .

First we look at the computation of the ≤k-level in three-dimensional space. Here
NT is bounded by the number of vertices of the ≤(k+ δ)-level, so NT = O(n(k+ δ)2).

For the computation of the k-level, NT is the total complexity of the levels k− δ
to k+ δ. In the three-dimensional case we are mainly interested in sets of planes that
are the image of a set of points in the plane under the transformation that maps the
order-k Voronoi diagram of the points to the k-level of the planes. In this case all
planes are tangent to the unit paraboloid and NT = O(n(k + δ)δ). For the k-level of
a set of lines in the plane, we can use the following result by Dey [Dey97]: for any
arrangement of n lines in the plane and for any integer s < n− k, the complexity of
all j levels for k ≤ j ≤ k + s is O

(
n(k + s)1/3s2/3

)
. In our situation s = δ, so we

obtain NT = O
(
n(k + δ)1/3δ2/3

)
.

We summarize the results of these calculations in the following theorem.
THEOREM 4.3.
(i) The ≤k-level in an arrangement of n planes in R3 can be computed in O(nk2+

n log3 n) expected time.
(ii) The kth order Voronoi diagram for n points in the plane can be computed

in O((n − k)k log n + n log3 n) expected time by computing the k-level in the
corresponding arrangement of n planes in R3.

(iii) The k-level in an arrangement of n lines in the plane can be computed in
O(nk1/3 log2/3 n+ n log2 n) expected time.

Our algorithm also works in other situations, such as the computation of the
≤k-level of a set of lines, discs, or monotone curves in the plane. In these situations,
however, there is an algorithm that obtains slightly better bounds. The details of this
are described in the next section.

5. Improvements and extensions. The algorithm of the previous section is
suboptimal when k is very small (polylogarithmic in n); in this case Mulmuley’s algo-
rithm is better. We can illustrate this on the algorithm for computing the ≤k-level in
the plane, when k is a constant. The analysis of our algorithm accounts for the main-
tenance of the portion of A(R) roughly within the ≤δ-level, where δ = O((n/r) log r).
According to this analysis we maintain a region of complexity O(r log r). Mulmuley’s
algorithm maintains the ≤k-level in the arrangement of the lines already inserted,
which has only O(r) complexity.

One simple improvement is, of course, to run Mulmuley’s algorithm in parallel
with ours and see which one finishes first. This eliminates the potential advantage
of our algorithm—namely, that no peeling step is necessary—so it cannot be directly

664 P. AGARWAL, M. DE BERG, J. MATOUŠEK, AND O. SCHWARZKOPF

applied to discs, say. We indicate another route to an improvement; currently, how-
ever, it only works for the planar case (which is not so interesting for lines, since
an optimal algorithm has been known there). We first explain the approach for the
construction of the ≤k-level in an arrangement of lines in the plane. We then show
that the improved algorithm also works for discs and curves.

Lazy clean-up and refined activity test. To improve the running time of the algo-
rithm we should maintain fewer cells. In other words, the cells we maintain should
be closer to the ≤k-level. To achieve this we will insist that each cell in the current
complex Kr intersects the ≤(k+2n/r)-level (while the previous analysis used the fact
that with high enough probability, each cell intersects the ≤(k+O((n/r) log r))-level).
There are two issues to be addressed. First, the new requirement is time dependent:
a cell that was acceptable at some step r may have to be eliminated at some later
step r′, though it has not been split. Second, we have to refine the test of activity for
a simplex: there can be simplices intersected by many more than n/r lines at step r,
so we cannot use just one interior point to estimate the level of all points in such a
simplex accurately enough.

To deal with the first issue, we use the so-called lazy strategy [dBDS94]. That is,
we do not worry about cells that are not split but should be deactivated because r has
increased. Thus, when we insert a new line we only perform an activity test for the
newly created cells. Of course, cells that should be eliminated cannot be kept around
for too long. We discard these cells at periodic clean-up steps. In particular, we do
a clean-up after steps 1, 2, 4, 8, and so on. Since we do only a logarithmic number of
clean-ups, we can afford to do them in a brute-force manner: we traverse the entire
current complex and eliminate all cells that do not contain a point of the ≤(k+n/r)-
level, performing an activity test described below for each cell and discarding those
which do not pass the test. In this way, we make sure that at any step r each cell
intersects the ≤(k + 2n/r)-level.

Now we describe the activity test for a cell C at step r. Again, we test each simplex
∆ ∈ C∇ separately. We subdivide the simplex into smaller simplices, each intersected
by at most n/r lines of H \R, and we determine the level of an interior point for each
of these small simplices. Now ∆ is active if and only if at least one of these points
is at level less than or equal to k + n/r. This test is again conservative: cells that
contain a part of the ≤k-level are always active. Subdividing ∆ into smaller simplices
plus determining their levels can be performed in O(w(∆)2r/n) expected time using
a randomized algorithm of Chazelle and Friedman [CF90] (see also [Mat91]). At a
regular insertion step, this refined activity test is performed only for the newly created
cells. At the clean-up steps the test is performed for all the cells. This implies that a
cell that is present at step r must have been tested (and found active) at some step r′

with r/2 ≤ r′ ≤ r. Hence, a cell that is present at time r (that is, after the insertion
of the rth line has been completed) contains a point of level at most k + 2n/r. This
finishes the description of the modifications to the algorithm.

More general ranges. The modified algorithm (and also the basic algorithm) can
be applied to arrangements of ranges other than halfspaces. We only need to supply
a suitable notion of a canonical triangulation (a subdivision of the arrangement into
constant complexity cells) and implement the steps of the algorithm suitably. As
an illustration, we mention two planar cases, namely discs and x-monotone Jordan
curves with a bounded number of intersections for every pair of curves.

As a canonical triangulation, we use the vertical decomposition of the cells: we
extend a vertical segment upward from every intersection point of two curves until
it hits another curve and extend a vertical segment downward until it hits another

CONSTRUCTING LEVELS IN ARRANGEMENTS 665

curve; if a vertical segment does not intersect any curve, it is extended to infinity. We
call the constant complexity cells arising in this decomposition the trapezoids. The
vertical decomposition can be updated is the same way as in randomized incremental
algorithms for computing full planar arrangements of curves [Mul91a]. For the refined
activity test we need one more ingredient: we must be able to decompose a trapezoid
into smaller trapezoids, each intersected by at most n/r curves. An obvious modifica-
tion of the Chazelle and Friedman algorithm [CF90] can compute such a subdivision
in O(w(∆)2r/n) expected time. Now we have all the tools available to implement the
algorithm described above (or the basic one of the previous section).

The analysis. To analyze the modified algorithm we again define an auxiliary,
possibly larger complex K̃(R): a cell C ∈ A(R) belongs to K̃(R) if it has a point of
level ≤(k+2n/r) or is adjacent to a cell with such a point, where r = |R|. The complex
K̃(R) has the monotonicity property (∗) needed in Lemma 2.2. There is also an analog
of Lemma 4.1, namely, that all cells created in the rth step of the algorithm are in
K̃({h1, . . . , hr}) \ K̃({h1, . . . , hr−1}), and all cells present in the actually maintained
collection in the rth step are in K̃({h1, . . . , hr}).

The time needed for the insertion steps (not counting the clean-up phases) is
bounded by

∑
∆ w(∆)2r(∆)/n, where we sum over all simplices created by the algo-

rithm, and where r(∆) is the moment of creation of ∆. Using Lemma 2.2(ii) for c = 2
we get the bound of

O

(
n∑
r=1

n

r2 f(r)

)
,(3)

where f(r) is a nondecreasing upper bound for E
[
|K̃(R)∇|

]
.

The clean-up phases can be accounted for as follows. The simplices that are
discarded in a clean-up phase after inserting the rth line passed an activity test at
some time r′ ≥ r/2, so the time for the activity test that discards them can be
charged to that previous test. Every test gets charged at most once this way. The
simplices that pass the activity test at the clean-up phase after step r belong to
K̃(R)∇, R = {h1, . . . , hr}, and hence the time for these tests at the considered clean-
up phase is at most

∑
∆∈K̃(R)∇(w(∆)2r/n). Applying Lemma 2.2(i) with c = 2 and

summing up over all clean-up phases, we get a contribution of
∑blog2 nc
i=1 (n/2i)f(2i),

which will be of the same order as equation (3).
It remains to provide a good bound on the expected size of K̃(R)∇. This is at

most proportional to the expected number of vertices of K̃(R). We could use an ε-net
argument again, arguing that, with high probability, all such vertices are at level at
most k+O((n/r) log r) in the arrangement of H. This, however, gives nothing better
than the analysis of the basic algorithm. In the planar case, a refined argument can
be given (although the resulting bound is probably still not tight). We start with the
case of lines.

First, we pick a number k′ in the range [k + 2n/r, 2(k + 2n/r)] such that the
k′-level in A(H) has O(n) complexity (this is possible since the total complexity of
all levels in this range is O(n(k + n/r))). Then we divide the vertices of K̃(R) into
two types: those within the ≤k′-level of H and those outside. The expected number
of vertices of the first type is O((r/n)2nk′). As for the vertices of the second type,
they all belong to cells of A(R) intersecting L, the k′-level of A(H), or the adjacent
cells. The collection of such cells can naturally be called the 1-zone of L. It follows
from the probabilistic argument of Clarkson and Shor [CS89] that the complexity of

666 P. AGARWAL, M. DE BERG, J. MATOUŠEK, AND O. SCHWARZKOPF

the 1-zone is of the same order as the complexity of the zone of L, that is, of the cells
intersecting L, and it remains to bound the expected complexity of this zone. Let m
denote the number of intersections of the lines of R with L (a contiguous segment is
counted as one intersection). The number of intersections of the lines of H with L
is O(n) (each line meeting L does so at a vertex), and hence the expectation of m
is O(r). We may now use a standard trick to convert the zone of L to a single cell
in an arrangement of O(m + r) (possibly unbounded) segments, namely, we remove
from each line of R a small portion around its intersections with L. By [GSS89],
the complexity of a single cell in an arrangement of n segments is O(nα(n)), and
so the expected zone complexity in our case is O(rα(n)). We may thus conclude
that f(r) = O(r2k/n + rα(n)), and the expected running time of the algorithm is
O(nk + n log nα(n)).

The same analysis can be applied for other ranges as long as we can bound the
expected complexity of the zone of the k′-level. For the case of discs or x-monotone
Jordan curves, the zone complexity can be bounded using the same argument, since
one has a good bound on the complexity of a single cell in an arrangement of the
corresponding (curvilinear) segments: a single cell defined by n segments of curves
with at most s intersections per pair has complexity O(λs+2(n)) [GSS89]. We obtain
the following result.

THEOREM 5.1. The ≤k-level in an arrangement of n discs in the plane can be
computed in expected O(nk+ λ4(n) log n) time. The ≤k-level in an arrangement of n
x-monotone Jordan curves with each pair having most s intersections can be computed
in expected O(k2λs(n/k) + λs+2(n) log n) time.

6. Concluding remarks. We presented randomized incremental algorithms for
computing ≤k-levels or k-levels in arrangements. The main difference from previous
algorithms is that we use estimates of the level in the final arrangement to decide
which part of the current arrangement to keep, whereas previous algorithms used
the level in the current arrangement. Consequently, our algorithm maintains less
information (unless k is very small) and therefore it is faster. For most values of k we
have shown that our algorithm is optimal. We think that it is also optimal for small
k, but we have not been able to prove this.

This is one of the questions we leave open: is it possible to tighten the analysis of
the basic algorithm and show that it is optimal for any k (both for computing the ≤k-
level and for computing the kth order Voronoi diagram in the plane)? If one cannot
do this for the basic algorithm, then maybe it is possible for the modified algorithm.
Here one has a purely combinatorial question: what is the expected complexity of the
zone of Lk′ in the arrangement of a random sample of size r, where Lk′ is the k′-level
in the full arrangement? (Here k′ can be chosen suitably so that the k′-level has no
more than the average complexity.) It seems quite likely that this expectation should
be O(r) in the plane and O(r2k′/n) in 3-space.

REFERENCES

[AAS97] P. K. AGARWAL, B. ARONOV, AND M. SHARIR, On levels in arrangements of lines,
segments, planes, and triangles, in Proc. 13th Annual ACM Sympos. Comput.
Geom., ACM, New York, 1997, pp. 30–38.

[ABFK92] N. ALON, I. BÁRÁNY, Z. FÜREDI, AND D. KLEITMAN, Point selections and weak ε-nets
for convex hulls, Combin. Probab. Comput., 1 (1992), pp. 189–200.

[AMS97] P. K. AGARWAL, J. MATOUŠEK, AND O. SCHWARZKOPF, Computing many faces in
arrangements of lines and segments, SIAM J. Comput., 27 (1998), pp. 493–507.

CONSTRUCTING LEVELS IN ARRANGEMENTS 667

[AS92] F. AURENHAMMER AND O. SCHWARZKOPF, A simple on-line randomized incremen-
tal algorithm for computing higher order Voronoi diagrams, Internat. J. Comput.
Geom. Appl., 2 (1992), pp. 363–381.

[ASS89] P. K. AGARWAL, M. SHARIR, AND P. SHOR, Sharp upper and lower bounds on the length
of general Davenport-Schinzel sequences, J. Combin. Theory Ser. A, 52 (1989),
pp. 228–274.

[BDT93] J.-D. BOISSONNAT, O. DEVILLERS, AND M. TEILLAUD, A semidynamic construction
of higher-order Voronoi diagrams and its randomized analysis, Algorithmica, 9
(1993), pp. 329–356.

[CE87] B. CHAZELLE AND H. EDELSBRUNNER, An improved algorithm for constructing kth-
order Voronoi diagrams, IEEE Trans. Comput., C-36 (1987), pp. 1349–1354.

[CEG+93] B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND J. SNOEYINK, Com-
puting a face in an arrangement of line segments, SIAM J. Comput., 22 (1993),
pp. 1286–1302.

[CF90] B. CHAZELLE AND J. FRIEDMAN, A deterministic view of random sampling and its
use in geometry, Combinatorica, 10 (1990), pp. 229–249.

[Cha93] B. CHAZELLE, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom.,
9 (1993), pp. 145–158.

[Cla87] K. L. CLARKSON, New applications of random sampling in computational geometry,
Discrete Comput. Geom., 2 (1987), pp. 195–222.

[Cla88] K. L. CLARKSON, A randomized algorithm for closest-point queries, SIAM J. Comput.,
17 (1988), pp. 830–847.

[CS89] K. L. CLARKSON AND P. W. SHOR, Applications of random sampling in computational
geometry, II, Discrete Comput. Geom., 4 (1989), pp. 387–421.

[CSY87] R. COLE, M. SHARIR, AND C. K. YAP, On k-hulls and related problems, SIAM J.
Comput., 16 (1987), pp. 61–77.

[dBDS94] M. DE BERG, K. DOBRINDT, AND O. SCHWARZKOPF, On lazy randomized incremental
construction, Discrete Comput. Geom., 14 (1995), pp. 161–186.

[Dey97] T. DEY, Improved bounds for planar k-sets and related problems, in Proc. 38th An-
nual IEEE Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Miami, FL, 1997, pp. 156–161.

[DE93] T. DEY AND H. EDELSBRUNNER, Counting triangle crossings and halving planes, Dis-
crete Comput. Geom., 12 (1994), pp. 281–289.

[Ede87] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidel-
berg, 1987.

[ELSS73] P. ERDŐS, L. LOVÁSZ, A. SIMMONS, AND E. STRAUS, Dissection graphs of planar point
sets, in A Survey of Combinatorial Theory, J. N. Srivastava, ed., North-Holland,
Amsterdam, 1973, pp. 139–154.

[ERvK96] H. EVERETT, J.-M. ROBERT, AND M. VAN KREVELD, An optimal algorithm for the
(≤k)-levels, with applications to separation and transversal problems, Internat. J.
Comput. Geom. Appl., 6 (1996), pp. 247–261.

[EW86] H. EDELSBRUNNER AND E. WELZL, Constructing belts in two-dimensional arrange-
ments with applications, SIAM J. Comput., 15 (1986), pp. 271–284.

[GSS89] L. J. GUIBAS, M. SHARIR, AND S. SIFRONY, On the general motion planning problem
with two degrees of freedom, Discrete Comput. Geom., 4 (1989), pp. 491–521.

[HW87] D. HAUSSLER AND E. WELZL, Epsilon-nets and simplex range queries, Discrete Com-
put. Geom., 2 (1987), pp. 127–151.

[Lov71] L. LOVÁSZ, On the number of halving lines, Ann. Univ. Sci. Budapest, Sect. Math., 14
(1971), pp. 107–108.

[Mat91] J. MATOUŠEK, Cutting hyperplane arrangements, Discrete Comput. Geom., 6 (1991),
pp. 385–406.

[Mul91a] K. MULMULEY, A fast planar partition algorithm, II, J. ACM, 38 (1991), pp. 74–103.
[Mul91b] K. MULMULEY, On levels in arrangements and Voronoi diagrams, Discrete Comput.

Geom., 6 (1991), pp. 307–338.
[Mul93] K. MULMULEY, Computational Geometry: An Introduction Through Randomized Al-

gorithms, Prentice Hall, New York, 1993.
[PSS92] J. PACH, W. STEIGER, AND E. SZEMERÉDI, An upper bound on the number of planar

k-sets, Discrete Comput. Geom., 7 (1992), pp. 109–123.
[Sha91] M. SHARIR, On k-sets in arrangements of curves and surfaces, Discrete Comput. Geom.

6 (1991), pp. 593–613.
[ZV92] R. ŽIVALJEVIĆ AND S. VREĆICA, The colored Tverberg’s problem and complexes of

injective functions, J. Combin. Theory Ser. A, 61 (1992), pp. 309–318.

A CONSTANT TIME OPTIMAL PARALLEL ALGORITHM
FOR TWO-DIMENSIONAL PATTERN MATCHING∗

MAXIME CROCHEMORE† , LESZEK GA̧SIENIEC‡ , RAMESH HARIHARAN§ ,
S. MUTHUKRISHNAN¶, AND WOJCIECH RYTTER‖

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 668–681, June 1998 005

Abstract. We give an alphabet-independent deterministic parallel algorithm for finding all
occurrences of a pattern array of size mh ×mw in a text array of size nh × nw in the concurrent-
read-concurrent-write–parallel-random-access-machine (CRCW–PRAM) model. Our algorithm runs
in O(1) time performing optimal, that is, O(nh × nw) work, following preprocessing of the pattern.
This improves the previous best bound of O(log logm) time with optimal work [A. Amir, G. Benson,
and M. Farach, Proceedings 5th Annual ACM Symposium on Parallel Algorithms and Architectures,
ACM, New York, 1993, pp. 79–85], following preprocessing of the pattern, where m = max{mh,mw}.

The preprocessing required by our algorithm (and that due to Amir, Benson, and Farach) can be
accomplished in O(log logm) time and O(mh×mw) work [M. Crochemore et al., manuscript, 1993],
[R. Cole et al., manuscript, 1993].

Key words. pattern matching, PRAM, two-dimensional, witnesses, duelling, periodicity

AMS subject classifications. 68Q22, 68Q25

PII. S0097539795280068

1. Introduction. The problem of two-dimensional matching (henceforth called
2D-matching) is to find all occurrences of a pattern array p of size mh×mw in a text
array t of size nh×nw. Without loss of generality, we assume that mw ≥ mh. The text
and the pattern are drawn from an alphabet set Σ. Our interest lies in designing an
alphabet-independent parallel algorithm for this problem, that is, one with complexity
not dependent on the alphabet size |Σ|. The one-dimensional matching problem, or
the string matching problem as it is known, is that of finding all occurrences of a
pattern string of length m in a text string of length n.

The early algorithms for sequential 2D-matching were based on multiple-pattern
matching [Bi77, Ba78] or suffix trees [AL88] and were therefore alphabet-dependent.
More precisely, these algorithms took time O((nh×nw +mh×mw) log |Σ|). The first
alphabet-independent sequential algorithm for 2D-matching was obtained by Amir,
Benson, and Farach [ABF92]. Their algorithm takes linear, i.e., O(nh × nw), time

∗Received by the editors January 17, 1995; accepted for publication (in revised form) March
15, 1996. This paper combines work done by two independent groups comprising Crochemore,
Ga̧sieniec, and Rytter and Hariharan and Muthukrishnan. A preliminary description of the results
in this paper appears in the Proceedings of the 34th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 248–258.

http://www.siam.org/journals/sicomp/27-3/28006.html
†Institute Gaspard Monge, University of Marne-la-Vallée, 93160 Noisy-le-Grand, France

(mac@univ-mlv.fr). This author’s research was partially supported by GDR AMI.
‡Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland

(lechu@mimuw.edu.pl). This author’s research was partially supported by KBN grant 2-11-90-91-01
and European Community Cooperative Action IC-1000 (project ALTEC).
§Max-Planck Institut für Informatik, Saarbrücken (ramesh@csa.iisc.ernet.in). This author’s re-

search was done while at the Courant Institute, New York University and was supported by NSF
grants CCR-8902221, CCR-8906949, CCR-9202900, and CCR-8901484.
¶Bell Labs, 2A-342, 700 Mountain Ave., Murray Hill, NJ 07974 (muthu@research.bell-labs.com).

This author’s research was done while at the Courant Institute, New York University and was
supported by NSF/DARPA grant CCR-89-06949 and NSF grant CCR-91-03953.
‖Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097 Warszawa, Poland (rytter@

mimuw.edu.pl). This author’s research was supported by KBN grant 8T11C01208.

668

OPTIMAL PARALLEL 2D MATCHING 669

following preprocessing of the pattern. They also showed how this preprocessing could
be accomplished in an alphabet-dependent manner in O((mh × mw) log |Σ|) time.
Recently, Galil and Park [GP92] showed how this preprocessing can be accomplished
in O(mh×mw) time, independent of the alphabet size. Thus the sequential complexity
of 2D-matching is O(nh × nh + nw × nw) time, independent of the alphabet size.
Crochemore and Rytter [CR95] give an easier exposition of this preprocessing.

Mathies [M88] gave a parallel deterministic algorithm for 2D-matching which took
O(log2mw) time using linear number of processors in the CRCW–PRAM model. Amir
and Landau [AL88] gave an O(logmw) time algorithm using O(nh×nw) processors in
the CRCW–PRAM model. Both these algorithms are suboptimal. Karp and Rabin
[KR87] obtained the first optimal O(logmw) time algorithm for parallel 2D-matching
on the exclusive-read-exclusive-write–parallel-random-access-machine (EREW–
PRAM) model; however, their algorithm was a Monte Carlo type randomized al-
gorithm. The first optimal deterministic algorithm was obtained by Kedem, Lan-
dau, and Palem [KLP89]. They used the technique of naming due to Karp, Miller,
and Rosenberg [KMR72] to obtain an O(logmw) time optimal algorithm for 2D-
matching in the CRCW–PRAM model using quadratic space. (Also, see [CR91] for
algorithms for 2D-matching based on naming.) Both these optimal algorithms for
2D-matching are alphabet-dependent. The first alphabet-independent optimal par-
allel 2D-matching algorithm was recently obtained by Amir, Benson, and Farach
[ABF93]. They present two optimal algorithms, one that takes O(log logmw) time
on the CRCW–PRAM, and another that takes O(logmw) time on the concurrent-
read-exclusive-write–parallel-random-access-machine (CREW–PRAM), both follow-
ing preprocessing of the pattern. Their algorithms use linear space.

Our main result is a deterministic parallel CRCW–PRAM algorithm for 2D-
matching which takes O(1) time using O(nh×nw) processors, following preprocessing
of the pattern. Our algorithm is alphabet-independent and uses linear space. This
result is analogous to the recent result of Galil [Ga92] stating that string matching can
be performed in O(1) time and optimal work following preprocessing of the pattern.
Indeed, our result is obtained by providing a simple constant time Turing-reduction
from 2D-matching to string matching and utilizing the result in [Ga92]. Our result
also yields a new linear time sequential algorithm for 2D-matching and a new parallel
O(logmw) time optimal algorithm for 2D-matching in the CREW–PRAM model.

Fast parallel algorithms for string matching rely on the concept of periodicity
[Ga85] and witnesses [Vi85]. Similarly, the notions of two-dimensional periodicity
developed by [AB92] have played a significant role in developing both sequential
[ABF92, GP92] and parallel [ABF93] algorithms for 2D-matching. It is particu-
larly interesting that in contrast to these algorithms, our algorithm was obtained
without using any ideas regarding two-dimensional periodicity. Only a version of
one-dimensional periodicity suitably generalized to two dimensions, which we term
h-periodicity (or horizontal periodicity), is used. However, we use ideas from two re-
cent parallel algorithms for string matching, namely, those in [Vi90] and [Ga92]. Our
algorithm uses the notion of deterministic samples, introduced by Vishkin [Vi90] for
string matching, suitably generalized to two dimensions. The constant time optimal
string matching algorithm in [Ga92] is used as a black box. Our overall algorithm is
surprisingly simple.

The crucial preprocessing in all alphabet-independent 2D-matching algorithms
(including ours) is that of computing witnesses for the two-dimensional pattern. Re-
cently it has been shown that witnesses can be computed in O(log logmw) time and

670 CROCHEMORE, GA̧SIENIEC, HARIHARAN, MUTHUKRISHNAN, RYTTER

Copy 2

Copy 1

III

FIG. 1. Quad I and II vectors.

O(mh×mw) work [CG+93b]; this algorithm is both time and work optimal. Addition-
ally, our algorithm (as the string matching algorithms of [Vi90, Ga92]) requires the
computation of deterministic samples suitably generalized to two dimensions. This
can be performed in O(1) time optimally using the ideas in [CC+93], [CG+93a]. Thus
the preprocessing required by our algorithm (and that in [ABF93]) takesO(log logmw)
time and O(mh ×mw) work.

Our algorithm is designed for the Common CRCW–PRAM model, i.e, simultane-
ous writes to the same location by several processors are guaranteed to be of the same
value [Ja91]. Throughout this paper, the complexity bounds are stated in terms of
time and work. Processor scheduling to attain these time and work bounds is always
possible and hence omitted except where it is not obvious.

The paper is organized as follows. Section 2 gives some preliminary definitions.
We describe important ideas underlying our algorithm in section 3. Section 4 describes
the text processing algorithm.

2. Definition and preliminaries. Let p be the pattern array of size mh×mw.
Let t be the text array of size nh × nw. Let m′ = bmw3 c and m′′ = bmh3 c. Let
m = max{mh,mw}. Without loss of generality, assume that m = mw. Let the column
coordinates of p and t increase horizontally to the right and the row coordinates
increase downwards, both starting from 1. The horizontal side of an array is called
the width and its vertical side is called the height.

A pattern instance associated with text position l is a copy of p with top left corner
at l; let pl denote this pattern instance. We say that p occurs at l if pl completely
matches the text, i.e., if l = (i, j), then t(i+r−1, j+c−1) = pl(r, c) for all 1 ≤ r ≤ mh

and 1 ≤ c ≤ mw. In this case, l is said to be an occurrence of p. The problem of
2D-matching is to determine all occurrences of a given pattern p in a given text t.

Consider two copies of p. Place the second copy so that its left margin is either
on or to the right of the left margin of the first copy. In addition, either the top left
corner or the bottom left corner of the second copy must be within the first copy.
The vector v joining the top left corner of the first copy to the top left corner of the
second copy is called a Quad I vector in the former case and a Quad II vector in the
latter case (see Figure 1). A witness for the two copies (or a witness for vector v)
is a position in the first copy, if any, where the two copies mismatch. If a witness
exists, then at least one of the two copies cannot match the text completely (if the
two copies are visualized to lie on the text). One of these two copies can thus be
eliminated by simply comparing the character at the witness in the first copy with
the overlapping text character. This process of eliminating one of two overlapping
copies of p possessing a witness is called a duel [Vi85] between the two copies.

OPTIMAL PARALLEL 2D MATCHING 671

If the two overlapping copies considered above are consistent, i.e., lack a witness,
the vector joining the top left corners of these two consistent pattern copies is called
a period vector of p. A period vector that is horizontal is called a horizontal period
vector or hpv of p.

The length of a vector is either the difference between the row coordinates of its
endpoints or the difference between the column coordinates of its endpoints, whichever
is bigger. A vector is said to be valid if its row length is less than bmw3 c and its column
length is less than bmh3 c. If p has a valid hpv, we call p h-periodic. Otherwise, we call
p h-aperiodic.

The period of a string s is defined to be |s|−k, where k is the length of the longest
prefix of s which is also a suffix of s. s is said to be periodic if its smallest period is
at most bm3 c and aperiodic otherwise. Witnesses and duels are defined for strings in
a manner analogous to the two-dimensional case.

The distance between two locations in a string is one more than the number of
locations between them. This definition is extended to locations in the same row or
column of a two-dimensional pattern in the natural way.

Recall that in the common CRCW–PRAM, given a boolean vector of i bits, their
boolean AND and OR can be computed in O(1) time using i processors. This fact,
as well as the following lemma, are used repeatedly in our algorithm.

LEMMA 2.1 (see [FRW88]). Given a binary vector V of size i, the leftmost or
rightmost 1 in V can be found in O(1) time using i processors on the common CRCW–
PRAM.

3. Horizontal periodicity. The following fact will be utilized repeatedly. It
follows immediately from the definition of the shortest hpv of p.

FACT 3.1. Any two occurrences of p with top left corners in some row of t must
be at least distance l apart, where l is the length of the shortest hpv of p.

Next, we state a crucial property of the h-aperiodic patterns.
LEMMA 3.2. Suppose p is h-aperiodic. Then there exists a row r of p that,

considered as a string, has period at least logm′

2 .
Proof. The length of the smallest hpv of p is clearly the least common multiple

(LCM) of the periods of the various rows of p considered as strings. By a weak form of
the prime number theorem [RS62], the number of primes less than any number j is at
most 2 j

log j . Note that the LCM of the numbers 1, . . . , j is the product of the highest
powers at most j of all such primes. Therefore, the LCM of the numbers 1, . . . , j is
at most j

2j
log j ≤ 4j . If all rows of p have period less than logm′

2 , then the length of

the smallest hpv of p must be less than 4
logm′

2 ≤ m′. Since p has no such hpv, this is
a contradiction.

Next, we present the following two-dimensional variant of Vishkin’s deterministic
sampling lemma [Vi90] for strings.

LEMMA 3.3 (the two-dimensional deterministic sampling lemma). Suppose p is
h-aperiodic. For any e ≤ m′, there exists a number f , 0 ≤ f ≤ e− 1, and a set of at
most log e positions in p, called the (e, f) h-sample, with the following property. Let s
be a text location and suppose all characters at locations in the h-sample of ps match
their aligned text characters. Then p cannot occur at any text location in the same
row as s which is at most e− f − 1 locations to the left of s or at most f locations to
the right of s.

The proof of existence and the construction of an (e, f) h-sample for some suitable
value of e are described in section 5.

672 CROCHEMORE, GA̧SIENIEC, HARIHARAN, MUTHUKRISHNAN, RYTTER

4. Text processing. In what follows, we assume that witnesses in p, if any, for
all valid vectors have been precomputed. We also assume that an (e, f) h-sample
has been precomputed for e = b(m′) 1

4 c. In addition, we assume that the periods of
all rows of p have been precomputed and the row r defined in Lemma 3.2 has been
determined and preprocessed for matching it against any given text string using the
algorithm in [Ga92]. In section 5, we consider the complexity of this precomputation.

4.1. h-aperiodic pattern. Assume that p is h-aperiodic. The case when p is
h-periodic is a standard modification of this case and is described in section 4.2.

Definitions. Recall that pl is the copy of p with top left corner at text position
l. If pl potentially matches the text, then l is a source. If pl matches the text, then
l is a complete match. A source l is eliminated if pl is determined not to match the
text. A source is said to survive at a given instant if it has not yet been eliminated.
Sources k and l are compatible if pk and pl match wherever they overlap.

Initially, all text locations are sources. The algorithm eliminates sources until
only complete matches survive. Consider the subarray t′ of t of size (nh −mh + 1)×
(nw −mw + 1) with the same top left corner as t. Clearly, pattern does not occur at
any location outside t′. The subarray t′ is divided into disjoint blocks of size m′′×m′
(at the bottom and right boundaries of t′, these blocks could be smaller than m′′×m′).
These blocks are called text blocks. There are O(nh×nwmh×mw) text blocks. Each row in a
text block is called a text block row.

Each text block T is processed identically in parallel in two phases. Phase I is
survived only by a set of mutually compatible sources in T . In Phase II, each of these
sources is either confirmed to be a complete match or is eliminated. Each phase takes
O(1) time and O(mh ×mw) work per text block. The total work over all text blocks
is O(nh × nw).

4.1.1. Phase I. Text block T is processed in two steps in this phase.
1. All but at most one of the sources in each text block row in T are eliminated.
2. Of the surviving sources, all but a set of mutually compatible sources are

eliminated.
Each phase takes O(1) time and O(mh ×mw) work per text block.

We describe each step in detail.
Step 1. In each text block row in T , there cannot be more than one complete

match since the pattern has no hpv of length less than m′ (by Fact 3.1). In this step,
all but at most one of the sources in each text block row in T are eliminated. This is
achieved in the following two steps. All text block rows in T are considered in parallel
in these steps. Consider one text block row R[1, . . . ,m′] in T .

Step 1.1. Following this step, at most 2m′
logm′ sources survive in R.

Let r be the row of p given by Lemma 3.2 and suppose that r is the ith row
in p. Consider the text block row R′[1, . . . ,m′] that is i − 1 rows below R. Galil’s
algorithm [Ga92] is used to find all occurrences of r (considered as a string) beginning
at positions in R′. This takes O(1) time and O(m′ + mw) = O(m′) work. Since r
has period at least logm′

2 by Lemma 3.2, r occurs in R′ beginning at, at most, 2m′
logm′

locations. Clearly, p occurs in R with its top left corner at R[j] only if r occurs
beginning at R′[j], where 1 ≤ j ≤ m′. Therefore, at most 2m′

logm′ sources in R survive
this step.

Step 1.2. All but at most one of the sources in R are eliminated in this step.
This is done in several steps as follows. The (e, f) h-sample of p is used in the

process, where e = b(m′) 1
4 c.

OPTIMAL PARALLEL 2D MATCHING 673

Step 1.2a. The text block row R is divided into disjoint subblocks of length
e = b(m′) 1

4 c (the rightmost subblock could be smaller). Following this step, at most
two sources survive in each subblock.

Each surviving source in R is processed in parallel. Consider one source i and the
pattern instance pi associated with it. The set of locations in pi which correspond
to the (e, f) h-sample of p are considered. The characters at these locations are
compared with their aligned text characters in parallel. This takes O(1) time and
O(2m′

logm′ × log e) = O(m′) work for R. We say that source i’s sample matches if all the
above comparisons are successful. Lemma 4.1 shows that the only sources in R which
survive this step are the rightmost and leftmost sources in R whose sample matches
in the above step. These sources are easily found in O(1) time and O(m′) work using
Lemma 2.1.

To perform the above step, blog ec processors have to be allocated to each surviv-
ing source in R from a pool of m′ processors. This is done as follows. The text block
row R is divided into disjoint subblocks of length b logm′

2 c. In each of these subblocks
at most one source survives from Step 1.1. One processor is assigned to each of the m′

locations in the text block row R, and the surviving source, if any, in each subblock,
is determined. The surviving source in the kth subblock from the left in R is stored
at location k in an auxiliary array A of size m′

blogm′/2c = O(2m′
logm′). To each location

in A, blog ec processors are assigned. The blog ec processors assigned to the location
k in A are assigned to the surviving source in the kth subblock of R. That completes
the assignment of O(2m′

logm′ × log e) = O(m′) processors in constant time.
LEMMA 4.1. Source i in R survives Step 1.2a only if it is the rightmost or leftmost

source in R whose sample matches.
Proof. Clearly, if the sample of i does not match then pi cannot be a complete

match. Let j and k be the leftmost and rightmost sources in R whose samples match.
Suppose the sample of i matches and i is between j and k. By Lemma 3.3, p cannot
occur at any text location in R which is at most e − f − 1 locations to the left of k
or at most f locations to the right of j. Since (e− f − 1) + f > e− 2, and i is in the
middle e− 2 characters of R, pi cannot be a complete match.

Step 1.2b. The text block row R is divided into disjoint segments of length
b(m′) 1

2 c (the rightmost segment could be smaller). Following this step, at most one
source survives in each segment.

All segments are processed in parallel. Consider a particular segment S. It
comprises of O(e) disjoint subblocks of length e from Step 1.2a. Each of these sub-
blocks contains at most two surviving sources. In all, there are at most O(2e) surviving
sources in S. All pairs of surviving sources in S are duelled in parallel in O(1) time
and O((2e)2) = O(

√
m′) work. Over all segments, the work done is O(m′). A source

in S survives this step if and only if it survives each of these duels. Clearly, only one
source in S survives all duels since p is h-aperiodic (by Fact 3.1).

Step 1.2c. At most one source survives in each block row R following this step.
Following Step 1.2b, there are O(

√
m′) disjoint segments of length b

√
m′c in R,

each of which contains at most one surviving source. In all there are at most O(
√
m′)

surviving sources in R. Each pair of surviving sources in R is duelled; this takes O(1)
time and O(m′) work. A source survives this phase if and only if it survives each of
these duels. Clearly, only one source in R survives all duels since p is h-aperiodic (by
Fact 3.1).

Step 2. All text blocks are processed in parallel. Consider a particular text block
T . Only sources in T that are mutually compatible survive this step.

674 CROCHEMORE, GA̧SIENIEC, HARIHARAN, MUTHUKRISHNAN, RYTTER

Following Step 1, at most one source per text block row in T survives. In all there
are at most m′′ sources in T . Each pair of surviving sources is duelled in parallel;
this takes O(1) time and O(m′′ ×m′′) work. Recall that mw ≥ mh and m′′ = bmh3 c.
Therefore, the work done in this step is O(mh × mw). A source in T survives this
phase if and only if it survives each of these duels. Clearly, all sources in T that
survive this phase are mutually compatible.

That completes the description of Phase I. There are O(nh×nwmh×mw) blocks in all
and each step for each text block takes O(1) time and O(mh ×mw) work. Therefore
Phase I takes O(1) time and O(nh × nw) work over the entire text.

4.1.2. Phase II. In Phase II, each surviving source in each text block is either
eliminated or confirmed to be a complete match. Each text block is considered in
parallel. We describe Phase II for a particular text block T .

Consider the set of text locations overlapped by at least one of the pi’s, where i
is a surviving source in T . There are at most O(mh ×mw) such text locations, all
of which lie in a text block T ′ of size (m′′ +mh − 1)× (m′ +mw − 1) whose top left
corner coincides with the top left corner of T . From Phase I, all surviving sources in
T are mutually compatible. Therefore, each text location in T ′ is overlapped by the
same character, if any, in all pi’s. Hence, it suffices to compare each text location x
in T ′ with the overlapping character in any of the pi’s which overlap x.

We say that a text location x in T ′ belongs to source y in T if x is overlapped by
py. Phase II proceeds in three steps.

1. Each text location x in T ′ is marked with a source y in T , if any, to which x
belongs.

2. Each text location x in T ′ which is marked with a source y is compared with
the character in py which overlaps x.

3. For each surviving source y in T , if a mismatch occurs in Step 2 at a text
location x overlapped by py, then y is eliminated.

We describe the three steps in Phase II in detail.
Step 1. This step marks each text location x in T ′ with a source y in T to which it

belongs. Initially, none of the text locations in T ′ is marked. There are two substeps.
Step 1a. Each of the m′ leftmost columns of B′ are processed in parallel. Consider

a particular column c. The uppermost and lowermost surviving sources, u and l, in c
are determined. This is done in O(1) time and O(mh) work using Lemma 2.1. Each
text location x in c which is above l but below u (including u) is marked with source
u. Each text location x in c which is at most distance mh − 1 below l (including l) is
marked with source l.

Step 1b. All rows of T ′ are processed in parallel. Consider row R. Let R′ denote
the leftmost m′ locations of R. The leftmost and rightmost text locations in R′ which
were marked in Step 1a are determined in O(1) time and O(mw) work. Let them
be denoted by a and b, respectively. The text locations in R are marked as follows.
Each unmarked text location in R which is to the left of b but to the right of a is
marked with the same source as a. Each unmarked text location in R which is at
most distance mw − 1 to the right of b is marked with the same source as b.

LEMMA 4.2. A text location x in T ′ is marked with exactly one of the sources, if
any, to which it belongs.

Proof. It can be easily seen that if x is marked with source y in Steps 1a or 1b,
then x belongs to y. We show that if x belongs to some source in T , then it is marked
with one such source. We consider two cases.

OPTIMAL PARALLEL 2D MATCHING 675

First, suppose x belongs to some source in the same column as x. Let u and l
denote the uppermost and lowermost surviving sources in this column. If x is above
l, then it must be coincident with or below u; it is then marked with source u in Step
1a. Otherwise, if x is coincident with or below l then it is at most distance mh − 1
below l; it is then marked with source l.

Second, suppose x does not belong to any source in the same column c as x but
belongs to some source in a column to the left of c. In Step 1a, x will not be marked
as all sources in the same column, as x must be the distance of at least mh above x.
Let a and b be the leftmost and rightmost locations in the same row as x which were
marked in Step 1a. Since x belongs to some source in T to the left of c, a and b are
defined by the first argument above, although they are not necessarily distinct.

Let s(a) and s(b) denote the sources with which a and b are marked, respectively.
Note that s(a) is in the same column as a and likewise for s(b). None of the locations
to the right of b in the same row as x is marked in Step 1a. By the first case, none
of these locations belongs to any of the sources in their respective columns. It follows
that x does not belong to any of the sources in these columns. Since x does belong
to some source in T , either x is to the left of b and coincident with or to the right of
a, or x is within distance mw − 1 to the right of b. In the former case, x belongs to
s(a), and in the latter case, x belongs to s(b). In Step 1b, x is marked with s(a) in
the former case and with s(b) in the latter case.

Step 2. Consider each text location x in T ′ marked with a source y. Then the
character at x is compared with the overlapping character in py.

A text location that mismatches in Step 2 is called a bad position.
Step 3. Note that a mismatch at text location x in Step 2 eliminates all sources

in a mh×mw block whose bottom right corner is x. A second kind of marking is done
in this step. Initially none of the locations in T ′ is marked. Finally, for each bad text
location x, all text locations in T ′ which are in a mh ×mw block with bottom right
corner at x are marked. This is done in two steps.

Step 3a. All rows of T ′ are considered in parallel. Consider row R of T ′. We divide
R into two parts; the first part R1 consists of the leftmost mw text locations and the
second part R2 consists of the remaining locations. The rightmost and leftmost bad
text locations a and b, respectively, in R1, and the rightmost and leftmost bad text
locations c and d, respectively, in R2 are determined. This is done in constant time
and O(mw) work using Lemma 2.1.

Every text location that is in R and at most distance mw − 1 to the left of either
a or c is marked, as are those text locations between a and b and between c and d.

Step 3b. All columns of T ′ are considered in parallel. Consider a particular
column C of T ′. We divide C into two parts; the first part C1 consists of the top
mh text locations and the second part C2 consists of the remaining locations. The
lowermost and uppermost marked text locations a and b, respectively, in C1, as well
as the lowermost and uppermost marked text locations c and d, respectively, in C2 are
determined in constant time and O(mh) work using Lemma 2.1. Every text location
which is in C and which is at most distance mh− 1 above either a or c is marked. All
text locations between a and b and between c and d are also marked.

LEMMA 4.3. A surviving source y in T is marked if and only if there exists a bad
location x which belongs to y.

Proof. The argument proceeds as in the proof of Lemma 4.2. In Step 3a, a mark
is placed on a text location in T ′ if and only if it is at most distance mw − 1 to the
left of some bad text location in the same row. In Step 3b, a mark is placed on each
text location in T which is at most distance mh − 1 above some text location in the

676 CROCHEMORE, GA̧SIENIEC, HARIHARAN, MUTHUKRISHNAN, RYTTER

same column that was marked in Step 3a. From these two claims, the lemma follows
as in the proof of Lemma 4.2.

Finally, all surviving sources in T which are not marked are declared to be com-
plete matches in Step 3. It follows from Lemma 4.3 that these are the only complete
matches. Each step in Phase II takes O(1) time and O(nh×nw) work. That completes
the description of the algorithm for h-aperiodic patterns.

4.2. h-periodic patterns. Our approach for this case is essentially an adapta-
tion of the approaches in [BG90, Vi90] to two-dimensional patterns and is described
here for the sake of completeness.

Say the smallest hpv of p has length l, l < mw
3 . Then p = ukv where u comprises

the leftmost l columns in p, v comprises the (mw mod l) rightmost columns of p, and
k = bmwl c ≥ 3. In addition, the (mw mod l) leftmost columns of u and p are identical
to v. Define p′ to be uuv.

LEMMA 4.4. p′ is h-aperiodic and l is the length of its shortest hpv.
Proof. Clearly, p′ has an hpv of length l. Suppose for a contradiction that p′ also

has an hpv of length l′ < l. Then, by a straightforward generalization of the GCD
lemma [LS62], p′ has an hpv of length gcd(l′, l) = l′′ < l. Clearly, l′′ divides l and
therefore u = u′k

′
, where u′ comprises the first l′′ columns of u. It follows that p has

an hpv of length l′′ < l, which is a contradiction.
In order to find all occurrences of p in t, all occurrences of p′ in t are found as

described in section 4.1. Given all occurrences of p′, all occurrences of p are determined
in O(1) time and O(nh × nw) work as described below.

The rows of the text are divided into disjoint blocks of length bmw4 c (the right-
most block in each row could be smaller). All such blocks are processed in parallel.
Occurrences of p with top left corner in each such block are found in O(1) time and
O(mw) work per block. We describe the procedure for one such block B.

For a location x in B, x + l is defined to be the location which is distance l − 1
to the right of x in its row. Given two locations a and b in the same row of the text,
b to the right of a, let b− a denote the distance between a and b. The following steps
are performed.

Step 1. The rightmost location x in B such that p′ matches the top left corner at
x is determined in O(1) time and O(mw) work using Lemma 2.1.

Step 2. The leftmost location y in B such that x − y is a multiple of l and p′

matches the top left corner at y, y + l, y + 2l, . . . , x is determined in O(1) time and
O(mw) work using Lemma 2.1. Similarly, the rightmost location z at most distance
mw − 1 to the right of x such that z − x is a multiple of l and p′ matches the top
left corner at x, x+ l, x+ 2l, . . . , z is determined in O(1) time and O(mw) work using
Lemma 2.1. Note that z need not be in B.

Step 3. All occurrences of p with top left corner in B are found using Lemma 4.5
in O(1) time and O(mw) work.

LEMMA 4.5. Suppose p′ matches the text with top left corner at location a in B.
pa matches the text if and only if z − a ≥ (k − 2)l and a is either coincident with or
to the right of y.

Proof. First, suppose a is either coincident with or to the right of y and z−a ≥ (k−
2)l. Since p′ occurs with top left corner at y, y+ l, . . . , x and since l is the length of the
shortest hpv of p′, a−y is a multiple of l. Further, the right boundary of pa is aligned
with or to the left of the right boundary of the copy of p′ with top left corner at z. It
follows that there is an occurrence of u with top left corner at a+l, a+2l, . . . , a+(k−1)l
and an occurrence of v at a+ kl. Therefore, pa matches the text.

OPTIMAL PARALLEL 2D MATCHING 677

Second, suppose either a is to the left of y or a is coincident with or to the right
of y and z − a < (k − 2)l. We consider the two cases separately.

Suppose a is coincident with or to the right of y and z − a < (k − 2)l. As shown
in the previous paragraph, a−y is a multiple of l. For pa to match the text, p′ should
occur at a+il, for all i, 1 ≤ i ≤ k−2. Since z−a < (k−2)l, there exists i ≤ k−2 such
that a+il = z+ l. So pa matches the text only if p′ occurs with top left corner at z+ l.
By the definition of x, z − x < (k − 2)l and therefore z + l − x ≤ (k − 2)l ≤ mw − 1.
By the definition of z, p′ cannot occur with its top left corner at z + l and therefore
pa does not match the text.

Next, suppose a is to the left of y in B. Let h be the smallest number such that
a+hl ≥ y. If a+hl > y and p′ occurs with top left corner at a+(h−1)l then, since p′

also occurs with top left corner at y, p′ has an hpv of length smaller than l, which is
a contradiction to Lemma 4.4. Therefore, either a+ hl = y or p′ does not occur with
top left corner at a+(h−1)l. This, along with the definition of y, implies that p′ does
not occur with top left corner at a+(h−1)l in either case and a+(h−1)l is to the left
of y. Recall that y, a are in B and k ≥ 3. Therefore, (k− 2)l ≥ mw

4 ≥ y−a ≥ (h− 1)l
and h − 1 ≤ k − 2. For pa to match the text, p′ should occur at a + il, for all i,
1 ≤ i ≤ k− 2. Since p′ does not occur with its top left corner at a+ (h− 1)l, pa does
not match the text.

That completes the description of the entire algorithm and gives the following
theorem.

THEOREM 4.6. There is a deterministic CRCW–PRAM algorithm for 2D-match-
ing which runs in O(1) time performing O(nh × nw) work, following preprocessing of
the pattern.

Consider the complexity of 2D-matching on the CREW–PRAM model, that is, the
PRAM model in which simultaneous writes are forbidden [Ja91]. Our 2D-matching
algorithm uses the string matching algorithm due to Galil which utilizes concurrent
writes. This can be replaced by the text processing of Vishkin’s algorithm [Vi85]
which takes O(logm) time and optimal work on a CREW–PRAM. In addition, in our
2D-matching algorithm, concurrent writes are used only to find either the boolean
AND of the values in a boolean vector or the leftmost and rightmost 1’s of a binary
vector. These computations can easily be performed optimally on a CREW–PRAM
with logarithmic time by computing along a balanced binary tree [Ja91]. That leads
to the following theorem.

THEOREM 4.7. There is a deterministic CREW–PRAM algorithm for 2D-match-
ing which runs in O(logmw) time performing O(nh × nw) operations, following pre-
processing of the pattern.

5. Preprocessing. We assume that p is h-aperiodic. If p is h-periodic then, as
shown in section 4.2, only an h-aperiodic portion of p needs to be preprocessed; this h-
aperiodic portion can be preprocessed similarly. Whether or not p is h-periodic can be
determined in O(1) time and O(mh×mw) work using the string witness computation
algorithm of [BG90].

The following preprocessing is required by the text processing algorithm.
1. Witnesses, if any, for all valid Quad I and Quad II vectors of p.
The witnesses, if any, for valid Quad I and Quad II vectors of p are computed in

O(log logm) time and O(mh ×mw) work [CG+93b].
2. The periods of each row of p considered as a string as well as the row r in

Lemma 3.2.
Periods of each row are computed optimally in O(log logm) [BG90, ABG92] time.

Following this the row r can be identified in O(1) time using mh processors.

678 CROCHEMORE, GA̧SIENIEC, HARIHARAN, MUTHUKRISHNAN, RYTTER

3. The precomputation required for Galil’s string matching algorithm [Ga92]
applied to row r (as defined in Lemma 3.2) of p.

This is accomplished in O(log logm) time and O(mw) work [CG+93a].
4. The (b(m′)1/4c, f) h-sample of p for some f , 0 ≤ f ≤ b(m′)1/4c − 1.
Let α = b(m′)1/4c. We show how to compute an (α, f) h-sample of p for some f ,

0 ≤ f ≤ α−1, in O(1) time and O(mh×mw) work. This is done by a straightforward
generalization of the algorithm of [CG+93a] for computing the deterministic sample
for a string. We describe it here for the sake of completeness.

Definitions. Define an α-block to be a rectangle of width α and height mh. Bi
is defined to be the α-block comprising the columns i, . . . , i+α−1 of p, for 1 ≤ i ≤ α.

First, it is determined if Bi and Bj are identical for some i and j, 1 ≤ i < j ≤
α. This is done in O(1) time and O(mh × mw) work by comparing all such pairs
of α-blocks explicitly in parallel. There are O((α)2) such pairs, comparing each of
which takes O(1) time and O(mh × α) work. In all, this step takes O(1) time and
O(mh × (α)3) = O(mh ×mw) work. There are two cases next.

Case A. Bi and Bj are identical, for some i, j, 1 ≤ i < j ≤ α.
Let j − i = c.
Since p is h-aperiodic and c < α ≤ m′, there exists a column in p which differs

from the cth column to its right. This column cannot be column i, as Bi and Bj are
identical. Therefore, such a column must exist either to the left or right of column i.
We consider two subcases next, depending on where this column lies.

Case A.1. There exists a column in p to the right of column i which differs from
the cth column to its right. Let k be the leftmost such column.

Let l be the topmost row in which columns k and k + c differ. Recall that Bi
and Bj are identical. Note that if column k is in Bi, then column k + c is in Bj and
therefore columns k and k + c are identical, which is a contradiction. It follows that
column k is to the right of Bi, i.e., k ≥ i+ α.

In this case, we claim that the (α, f) h-sample is {(l, k), (l, k+c)}, with f = α−1.
This is shown as follows. In p, the characters at locations (l, k) and (l, k + c) are
different. In addition, by the definition of k, the characters at locations (l, k′) and
(l, k′ + c) are identical for all columns k′, i < k′ < k. Since k ≥ i+ α, any copy p′ of
p shifted at most α− 1 positions horizontally to the right of p has some k′th column
aligned with column k in p, where i < k′ < k. Since the characters at locations
(l, k′) and (l, k′ + c) are identical, p′ differs from p at at least one of the positions
{(l, k), (l, k + c)}.

Case A.2. Every column in p to the right of column i is identical to the cth
column to its right. In addition, there exists a column in p to the left of column i
which differs from the cth column to its right. Let k be the rightmost such column.

Let l be the topmost row in which columns k and k + c differ. In this case, we
claim that the (α, f) h-sample is {(l, k), (l, k + c)}, with f = 0. This is shown as
follows. In p, the characters at locations (l, k) and (l, k+ c) are different. In addition,
by the definition of k, the characters at locations (l, k′) and (l, k′ + c) are identical
for all columns k′, k′ > k. Since k + α < mw, any copy p′ of p shifted at most α− 1
positions horizontally to the left of p has some k′th column aligned with column k in
p, where k′ > k. Since the characters at locations (l, k′) and (l, k′ + c) are identical,
p′ differs from p at at least one of the positions {(l, k), (l, k + c)}.

It remains to show how k and l can be computed in Cases A.1 and A.2. Each
column is compared with the cth column to its right in parallel and the smallest
row in which they differ, if any, is determined in O(1) time and O(mh ×mw) work.
Following that, k and l can be computed easily in O(1) time and O(mh ×mw) work.

OPTIMAL PARALLEL 2D MATCHING 679

Bk p

k

Bk

FIG. 2. The sets S and S′.

This completes Case A.
Case B. Bi and Bj are different, for all i, j, 1 ≤ i < j ≤ α.
Consider the scenario in which B1, . . . , Bα are laid on top of each other with their

boundaries aligned. We show how to compute a value k and a set S of at most logα
locations in Bk satisfying the following property: for each Bi, i 6= k, there exists j ∈ S
such that Bi differs from Bk at location j, i.e., the character in Bi which overlaps
location j in Bk differs from the character at location j in Bk. The required (α, f)
h-sample of p, f = k − 1, is then determined as follows.

We claim that the h-sample of p is the set S ′ of locations in p which correspond
to the locations in Bk which are in S (see Figure 2). This is shown as follows. If p′

is any copy of p shifted horizontally to the right of p by i, 1 ≤ i ≤ k − 1, then the
portion of p′ which overlaps block Bk in p is identical to the block Bk−i. If p′ is any
copy of p shifted horizontally to the left of p by i, 1 ≤ i ≤ α− k, then the portion of
p′ which overlaps block Bk in p is identical to the block Bk+i. In each case, since Bk
differs from all other α-blocks at some location in S, p′ differs from p at some location
in S ′.

Computing k and S. Let A be a two-dimensional table of size α × (mh × α)
initialized to 0. The row i in A stands for Bi. Location (i, j) of A corresponds to the
location (a, b) in Bi, where a ∈ [1, . . . ,mh], b ∈ [1, . . . , α], (a − 1) ×mh + b = j; we
refer to location (a, b) in Bi as location j in Bi.

The table A is filled in so as to satisfy the following criterion: A(i, j) = 1 if and
only if for some l 6= i, 1 ≤ l ≤ α, j is the smallest number such that Bl differs
from Bi at location j in Bi (note that the minimality of j signifies that Bl and Bi
match at all columns to the left of the column containing location j in Bi and at all
locations above location j in the column containing location j in Bi). This is done by
exhaustively comparing all pairs of α-blocks in O(1) time and O((α×α)×(mh×α)) =
O(mh ×α3) = O(mh ×mw) work. Here α×α is the number of pairs of α-blocks and
mh × α is the size of each α-block.

Recall that all α-blocks are distinct; therefore, for all i, 1 ≤ i ≤ α, each Bl, l 6= i,
differs from Bi at some location in Bi in the set Si = {j|A(i, j) = 1}. In Lemma 5.1,
we show that there exists an f such that |Sf | ≤ logα. We also show that one such f
can be found in O(1) time and O(mh ×mw) work. k is chosen to be the f so found
and S is chosen to be Sf .

LEMMA 5.1. There exists an f , 1 ≤ f ≤ α such that |Sf | ≤ logα.
Proof. Recall that we are considering the scenario in which B1, . . . , Bα are laid on

top of each other with their borders aligned. Also recall that all the Bi’s are distinct.
The proof is constructive. The construction has at most logα iterations. In each

iteration, at least half of the α-blocks currently being considered are removed from
further consideration until, finally, only one α-block remains. In iteration l, we also
pick a number jl. The following invariants hold at the end of iteration l.

680 CROCHEMORE, GA̧SIENIEC, HARIHARAN, MUTHUKRISHNAN, RYTTER

1. All α-blocks Bi which remain under consideration after iteration l are iden-
tical at the locations 1, . . . , jl.

2. For all α-blocks Bi which remain under consideration after iteration l,
A(i, j) = 1 if and only if j ∈ {j1, . . . , jl}, where 1 ≤ j ≤ jl.

3. If Bi is removed from consideration in iteration l, then it differs from all Bi′ ’s
which are still under consideration at location jl.

Let Bf be the only α-block which remains finally. We will show that Sf =
{j1, . . . , jr}, where r is the number of iterations. The lemma follows immediately.

We describe the lth iteration. Let C be the set of α-blocks still under consider-
ation. All α-blocks in C are identical at locations 1, . . . , jl−1. jl is chosen to be the
smallest number greater than jl−1 with the property that A(i, jl) = 1 for some Bi ∈ C
is chosen. Clearly, all α-blocks in C are identical at locations 1, . . . , jl − 1, and two
α-blocks in C differ at location jl. Consider the multiset of characters which occur
at location jl in the α-blocks in C; there are at least two such characters. Let a be
the character which appears the least number of times in this multiset. The set D of
α-blocks which remain under consideration is comprised of all those α-blocks which
have the character a in location jl.

Clearly, |D| ≤ b |C|2 c and all α-blocks in D are identical at locations 1, . . . , jl.
Thus invariant 1 holds. In addition, if Bi ∈ D, then A(i, jl) = 1. By the definition
of jl, A(i, j) = 0 for all Bi ∈ D and jl−1 < j < jl. Thus invariant 2 holds. For all
Bi ∈ C −D and Bi′ ∈ D, Bi differs from Bi′ at location jl. Thus invariant 3 holds
as well.

It remains to show that Sf = {j1, . . . , jr}. Suppose for a contradiction that Sf 6=
{j1, . . . , jr}. From invariant 2, it follows that there exists a j > jr such A(f, j) = 1.
Then there exists Bi, i 6= f , such that Bi and Bf are identical at locations 1, . . . , jr
but differ at location j. Since Bi was removed from consideration in some iteration l,
Bl differs from Bf at location jl by invariant 3, which is a contradiction.

Finding a row in A with at most logα 1’s. It remains to determine one
row in table A which contains at most logα 1’s. All rows are considered in parallel.
For each row it is determined if it has at most logα 1’s, and in case it does, the
locations containing 1’s are compacted into an array of size logα. Lemma 5.2 shows
that this can be done in O(1) time and O(mh × α) work per row; this sums to
O(mh × α2) = O(mh ×mw) work over all rows.

LEMMA 5.2 (see [Ra90]). Given a binary array X of size i and a parameter
j, there is an algorithm which determines whether X has at most j 1’s, and if so,
compacts the indices containing 1’s into an array of size j. This algorithm takes time
O(log j/ log log i) time and O(i) work.

This yields the following theorem.
THEOREM 5.3. A two-dimensional pattern of size mh×mw can be matched against

a two-dimensional text of size nh × nw in O(1) time and O(nh × nw) work, after the
pattern has been preprocessed in O(log logmw) time and O(mh ×mw) work.

Acknowledgments. We thank Richard Cole for his comments.

REFERENCES

[AB92] A. AMIR AND G. BENSON, Two dimensional periodicity in rectangular arrays, in Pro-
ceedings of the 3rd Annual ACM Symposium on Discrete Algorithms, ACM, New
York, 1992, pp. 440–452.

[ABF92] A. AMIR, G. BENSON, AND M. FARACH, Alphabet independent two dimensional match-
ing, in Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
ACM, New York, 1992, pp. 59–68.

OPTIMAL PARALLEL 2D MATCHING 681

[ABF93] A. AMIR, G. BENSON, AND M. FARACH, Parallel two dimensional matching in logarith-
mic time, in Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms
and Architectures, ACM, New York, 1993, pp. 79–85.

[ABG92] A. APOSTOLICO, D. BRESLAUER, and Z. GALIL, Optimal parallel algorithms for peri-
ods, palindromes and squares, in Proceedings of the 19th International Colloquium
on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 623,
Springer-Verlag, Berlin, 1992, pp. 296–307.

[AL88] A. AMIR AND G. LANDAU, Fast parallel and serial multidimensional approximate array
matching, Theoret. Comput. Sci., 81 (1988), pp. 347–365.

[Ba78] T. J. BAKER, A technique for extending rapid exact-match string matching to arrays of
more than one dimension, SIAM J. Comput. 7 (1978), pp. 533–541.

[Bi77] R. S. BIRD, Two dimensional pattern matching, Inform. Process. Lett., 6 (1977), pp. 168–
170.

[BG90] D. BRESLAUER AND Z. GALIL, An optimal O(log logm) time parallel string matching
algorithm, SIAM J. Comput., 19 (1990), pp. 1051–1058.

[CC+93] R. COLE, M. CROCHEMORE, Z. GALIL, L. GA̧SIENIEC, R. HARIHARAN,
S. MUTHUKRISHNAN, K. PARK, AND W. RYTTER, Optimally fast parallel
algorithms for preprocessing and pattern matching in one and two dimensions, in
Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 248–258.

[CG+93a] M. CROCHEMORE, L. GA̧SIENIEC, Z. GALIL, K. PARK, AND W. RYTTER, Constant
Time Deterministic Sample Computation and Its Applications, manuscript, 1993.

[CG+93b] R. COLE, Z. GALIL, R. HARIHARAN, S. MUTHUKRISHNAN, AND K. PARK, Optimal
Parallel Two Dimensional Witness Computation, manuscript, 1993.

[CR91] M. CROCHEMORE AND W. RYTTER, Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations in strings and arrays, Theoret. Comput. Sci., 88 (1991),
pp. 59–62.

[CR95] M. CROCHEMORE AND W. RYTTER, On linear-time alphabet-independent 2-dimensional
pattern matching, LATIN’95, Lecture Notes in Comput. Sci. 911, Springer-Verlag,
Berlin, 1995, pp. 220–229.

[FRW88] F. FICH, R. RAGDE, AND A. WIDGERSON, Relations between concurrent-write models
of parallel computation, SIAM J. Comput., 17 (1988), pp. 606–627.

[Ga85] Z. GALIL, Optimal parallel algorithms for string matching, Inform. and Control, 67
(1985), pp. 144–157.

[Ga92] Z. GALIL, Hunting lions in the desert optimally or a constant-time optimal parallel
string matching algorithm, in Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, ACM, New York, 1992, pp. 69–76.

[GP92] Z. GALIL AND K. PARK, Truly alphabet-independent two dimensional matching, in Pro-
ceedings of the 33rd Annual IEEE Symposium on the Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 247–256.

[Ja91] J. JAJA, Introduction to Parallel Algorithms, Addison–Wesley, Reading, MA, 1991.
[KLP89] Z. KEDEM, G. LANDAU, AND K. PALEM, Optimal parallel suffix-prefix matching al-

gorithm and application, in Proceedings of the 1st Annual ACM Symposium on
Parallel Algorithms and Architectures, ACM, New York, 1989, pp. 388–398.

[KMR72] R. M. KARP, R. E. MILLER, AND A. L. ROSENBERG, Rapid identification of repeated
patterns in strings, trees and arrays, in Proceedings of the 4th Annual ACM Sym-
posium on Theory of Computing, ACM, New York, 1972, pp. 125–136.

[KR87] R. KARP AND M. RABIN, Efficient randomized pattern matching algorithms, IBM J.
Res. Develop., 31 (1987), pp. 249–260.

[LS62] R. LYNDON AND M. SCHUTZENBERGER, The equation aM = bN cP in a free group,
Michigan Math. J., 9 (1962), pp. 289–298.

[M88] T. MATHIES, A Fast Parallel Algorithm to Determine Edit Distance, Technical Report
TR CMU-CS-88-130, Carnegie–Mellon Univ., Pittsburgh, PA, 1988.

[Ra90] P. RAGDE, The parallel simplicity of compaction and chaining, in Proceedings of the
17th International Colloquium on Automata, Languages and Programming, Lecture
Notes in Comput. Sci. 443, Springer-Verlag, Berlin, 1990, pp. 744–751.

[RS62] J. B. ROSSER AND L. SCHOENFELD, Approximate formulas for some functions of prime
numbers, Illinois J. Math., 6 (1962), pp. 64–94.

[Vi85] U. VISHKIN, Optimal pattern matching in strings, Inform. and Control, 67 (1985),
pp. 91–113.

[Vi90] U. VISHKIN, Deterministic sampling—A new technique for fast pattern matching, in
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, ACM,
New York, 1990, pp. 170–180.

IMPROVED RANDOMIZED ON-LINE ALGORITHMS
FOR THE LIST UPDATE PROBLEM∗

SUSANNE ALBERS†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 682–693, June 1998 006

Abstract. The best randomized on-line algorithms known so far for the list update problem
achieve a competitiveness of

√
3 ≈ 1.73. In this paper we present a new family of randomized on-

line algorithms that beat this competitive ratio. Our improved algorithms are called TIMESTAMP
algorithms and achieve a competitiveness of max{2− p, 1 + p(2− p)}, for any real number p ∈ [0, 1].
Setting p = (3 −

√
5)/2, we obtain a φ-competitive algorithm, where φ = (1 +

√
5)/2 ≈ 1.62 is the

golden ratio. TIMESTAMP algorithms coordinate the movements of items using some information
on past requests. We can reduce the required information at the expense of increasing the competitive
ratio. We present a very simple version of the TIMESTAMP algorithms that is 1.68-competitive. The
family of TIMESTAMP algorithms also includes a new deterministic 2-competitive on-line algorithm
that is different from the MOVE-TO-FRONT rule.

Key words. linear lists, on-line algorithms, competitive analysis

AMS subject classifications. 68P05, 68P10, 68Q20, 68Q25

PII. S0097539794277858

1. Introduction. The list update problem is among the first on-line problems
that have been studied with respect to competitiveness. The problem consists in
maintaining a set of items as an unsorted linear list. A list of n items is given. A
list update algorithm is presented with a sequence of requests that must be served in
their order of occurrence. Each request specifies an item in the list. In order to serve
a request, a list update algorithm must access the requested item, i.e., it has to start
at the front of the list and search linearly through the items until the desired item
is found. Accessing the ith item in the list incurs a cost of i. Immediately after an
access, the requested item may be moved at no extra cost to any position closer to
the front of the list. These exchanges are called free exchanges. All other exchanges
of two consecutive items in the list cost 1 and are called paid exchanges. The goal
is to serve the request sequence so that the total cost is as small as possible. A list
update algorithm is on-line if it serves every request without knowledge of any future
requests.

We analyze the performance of on-line algorithms for the list update problem
using competitive analysis [6]. In a competitive analysis, an on-line algorithm A is
compared to an optimal off-line algorithm. An optimal off-line algorithm knows the
entire request sequence in advance and can serve it with minimum cost. Given a
request sequence σ, let CA(σ) denote the cost incurred by on-line algorithm A in
serving σ and let COPT (σ) denote the cost incurred by the optimal off-line algorithm
OPT in processing σ. Then the algorithm A is called c-competitive if there is a
constant a such that CA(σ) ≤ c · COPT (σ) + a for all request sequences σ. The
competitive factor of A is the infimum of all c such that A is c-competitive.

Sleator and Tarjan [6] have shown that the well-known MOVE-TO-FRONT al-
gorithm is 2-competitive. This deterministic on-line algorithm moves an item to the

∗Received by the editors December 5, 1994; accepted for publication (in revised form) March 25,
1996.

http://www.siam.org/journals/sicomp/27-3/27785.html
†Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany (albers@mpi-

sb.mpg.de). This research was supported in part by the ESPRIT Basic Research Actions Program
of the European Union under contract no. 7141 (project ALCOM II).

682

RANDOMIZED ALGORITHMS FOR THE LIST UPDATE PROBLEM 683

front of the list each time it is requested. Karp and Raghavan [4] have observed that
no deterministic on-line algorithm for the list update problem can be better than
2-competitive. Thus the MOVE-TO-FRONT algorithm achieves the best possible
competitive factor. A natural question is if the competitive factor of 2 can be improved
using randomization. It was shown that, against adaptive adversaries, no random-
ized on-line algorithm for the list update problem can be better than 2-competitive
[1, 5]. Adaptive adversaries may see the on-line algorithm’s random choices on past
requests when generating a new request in a request sequence σ. On the other hand,
against oblivious adversaries, the optimal competitive factor of randomized on-line
algorithms has not yet been determined. An oblivious adversary specifies a request
sequence in advance and is not allowed to see the random choices made by the on-
line algorithm. A randomized on-line algorithm A is called c-competitive against any
oblivious adversary if there exists a constant a such that for all request sequences σ
generated by oblivious adversaries, E[CA(σ)] ≤ c · COPT (σ) + a, where the expecta-
tion is taken over the random choices made by A. In this paper we always evaluate
on-line algorithms with respect to oblivious adversaries. Irani [3] exhibited the first
randomized on-line algorithm for the list update problem; the SPLIT algorithm she
proposed is 31

16 -competitive. Reingold, Westbrook, and Sleator [5] have given a family
of COUNTER and RANDOM RESET algorithms that achieve a competitive ratio
of
√

3 ≈ 1.73. This has been the best upper bound known so far for randomized
list update algorithms. The best lower bound known is due to Teia [7]. He shows
that no randomized on-line algorithm for the list update problem can be better than
1.5-competitive.

In this paper we present improved randomized on-line algorithms for the list
update problem that beat the competitive ratio of

√
3. Our new algorithms are called

TIMESTAMP algorithms and achieve a competitiveness of max{2− p, 1 + p(2− p)}
for any real number p ∈ [0, 1]. Choosing p = (3 −

√
5)/2, we obtain a φ-competitive

algorithm, where φ = (1+
√

5)/2 ≈ 1.62 is the golden ratio. TIMESTAMP algorithms
do not always move the requested item x to the front of the list but sometimes to
a position that is only a bit closer to the front. This position can be computed
easily when the algorithm scans the items preceding x in the list. However, in the
implementation of the algorithm, the computation of this position requires a second
pass through the list after the item x has been accessed. Moreover, some information
on past requests is necessary in order to determine the desired position. We can
simplify the TIMESTAMP algorithms so that they need less knowledge of previous
requests; this increases the competitive ratio. We present a simplified version of
the TIMESTAMP algorithms that is 1.68-competitive. The family of TIMESTAMP
algorithms also includes two deterministic 2-competitive on-line algorithms, one of
which is the MOVE-TO-FRONT rule. The second, new algorithm is the only other
deterministic on-line algorithm found so far that achieves a competitive factor of
2; Sleator and Tarjan [6] have proved that the well-known deterministic algorithms
TRANSPOSE and FREQUENCY COUNT are not 2-competitive.

The list update problem as defined above is the static version of the problem. Each
request is an access to an item. In the dynamic variant of the problem, insertions and
deletions of items are allowed. A new item is inserted by scanning the entire list
and appending the item at the end of the list. A deletion of an item is processed
by searching for the item in the list and deleting it. In the following sections, when
we develop and analyze randomized list update algorithms, we always consider the
static version of the problem. However, the on-line algorithms we will propose can

684 SUSANNE ALBERS

be extended in the obvious way so that they can handle insertions and deletions, too.
All theorems that we will present also hold for the dynamic list update problem.

2. TIMESTAMP algorithms. We present a new family of randomized on-line
algorithms for the list update problem. The following algorithm works for any real
number p ∈ [0, 1].

Algorithm TIMESTAMP(p). Given a request sequence σ = σ(1), σ(2), . . . ,
σ(m), each request σ(t), 1 ≤ t ≤ m is processed as follows. Suppose that σ(t) is a
request to item x.
With probability p, execute Step (a).

(a) Move x to the front of the list.
With probability 1− p, execute Step (b).

(b) If x has not been requested so far during the time interval [1, t− 1], then do
not change the position of x in the list. Otherwise let t′ ∈ [1, t − 1] be the
time at which x was requested most recently and serve the request σ(t) as
follows. Let vx(t) be the item closest to the front of the list that precedes x
in the list and

(i) that was not requested during the interval [t′, t− 1]
or

(ii) that was requested exactly once during [t′, t−1] and the corresponding
request was served using Step (b) of the algorithm.

If there is no such item, then let vx(t) = x.
Insert x immediately before vx(t).

THEOREM 1. For any real number p ∈ [0, 1], TIMESTAMP(p) is c-competitive,
where c = max{2− p, 1 + p(2− p)}.

COROLLARY 1. TIMESTAMP(3−
√

5
2) is φ-competitive, where φ = 1

2 (1 +
√

5) is
the golden ratio.

An interesting feature of the TIMESTAMP(p) algorithm is that at a request to
item x, all items y satisfying condition (i) or (ii) in Step (b) are stored consecutively
in front of x. In other words, all items stored between x and vx(t) satisfy condition
(i) or (ii); we will prove this later in Lemma 2.

We assume that the algorithm TIMESTAMP(p) maintains a time stamp ST (y)
for each item y in the list. While a request sequence in served, ST (y) always stores
the time of the most recent request to y. When there is a request to item x,
TIMESTAMP(p) can easily determine the first item in the list that satisfies con-
dition (i) in Step (b). The algorithm just has to find the first item y with ST (y) <
ST (x). Finding the first item in the list that satisfies condition (ii) in Step (b) re-
quires more information on previous requests. We can simplify the TIMESTAMP(p)
algorithm at the expense of increasing the competitive ratio. Suppose that we drop
condition (ii) in Step (b). Then vx(t) is simply the item closest to the front of the
list that precedes x and has not been requested during the interval [t′, t− 1]. We can
show the following performance.

THEOREM 2. If condition (ii) is dropped in Step (b) of TIMESTAMP(p), then the
resulting algorithm is c-competitive, where c = max{2− p, 1 + p(2− p), 2− 3

2p+ 2p2−
1
2p

3}. Setting p = 1
2 (5−

√
17), we obtain a competitive ratio of 3

2 (
√

17− 3) ≈ 1.68.
We will prove this theorem after we have proven Theorem 1.
Although the item vx(t) specified in TIMESTAMP(p) can be computed easily,

in a real implementation of the algorithm we need a second pass through the list in
order to actually locate vx(t). Note that a number of on-line algorithms that have
been proposed in the literature, such as the algorithm FREQUENCY COUNT, also

RANDOMIZED ALGORITHMS FOR THE LIST UPDATE PROBLEM 685

require such a second pass after each access to an item. There is an alternative
formulation of TIMESTAMP(p) that does not need a second pass. In this alternative
formulation, we maintain a pointer ptr(x) for each item x in the list; ptr(x) either
points to x or to an item preceding x in the list. At a request to item x, x is inserted
at the front of the list or immediately before ptr(x). The element specified by ptr(x)
always corresponds to vx(t). The drawback of this alternative formulation is that we
need time to update the pointers. Essentially, at a request to item x, the pointers of
all elements y with ptr(y) = x must be set to the successor of x in the list, and ptr(x)
must be set to the front of the list. We prefer the formulation of the TIMESTAMP(p)
algorithm given above because it explicitly describes the properties of the position
vx(t) in front of which an item x is to be inserted.

TIMESTAMP(p) describes two deterministic algorithms. Setting p = 1 we obtain
the MOVE-TO-FRONT algorithm. Theorems 1 and 2 confirm the well-known fact
that the MOVE-TO-FRONT rule is 2-competitive. On the other hand, assume p = 0
and consider the simplified version of the TIMESTAMP algorithm in which condition
(ii) of Step (b) is dropped. The resulting deterministic algorithm always inserts the
requested item x immediately before the first item in the list that has not been
requested since the last request to x. Theorem 2 implies that this deterministic
strategy is 2-competitive.

We now proceed with the proof of Theorem 1. Consider a fixed p ∈ [0, 1]. Let
σ = σ(1), σ(2), . . . , σ(m) be an arbitrary request sequence consisting of m requests
and let σ(t) denote the request at time t, 1 ≤ t ≤ m. We first present two lemmata
that describe the relative positions of items in the list while TIMESTAMP(p) serves
a request sequence.

LEMMA 1. Let x and y, x 6= y be two items. Suppose that x is requested at time
t′ and at time t, t′ < t, and that y is not requested during the interval [t′, t]. Then,
immediately after the service of σ(t), x precedes y in TIMESTAMP(p)’s list and this
relation does not change before the next request to y.

Proof. If TIMESTAMP(p) executes Step (a) when serving σ(t), then x is moved
to the front of the list and must precede y in the list. If TIMESTAMP(p) executes
Step (b) when serving σ(t), then condition (i) in Step (b) of the algorithm ensures
that x is inserted at some position in front of item y because y is not requested during
[t′, t]. In any case, x precedes y in TIMESTAMP(p)’s list immediately after the service
of σ(t). Since y is only moved when it is requested, the relative position of x and y
cannot change before the next request to y.

LEMMA 2. Let t be a time in [1,m]. If the item x = σ(t) was requested at least
once in [1, t−1], then the following two statements hold. Let t′, t′ < t denote the time
at which x was requested most recently.

(a) If item y, y 6= x was requested at least twice during [t′, t− 1], then y precedes
item vx(t) in TIMESTAMP(p)’s list at time t.

(b) If item y, y 6= x was requested exactly once during [t′, t − 1] and the corre-
sponding request was served using Step (a) of TIMESTAMP(p), then y pre-
cedes item vx(t) in TIMESTAMP(p)’s list at time t.

Proof. Suppose that there is a time in [1,m] at which Lemma 2 does not hold.
Then let t0 ∈ [1,m] be the earliest point of time at which the lemma is violated.
Furthermore, let t′0, t′0 < t0 be the time at which item x = σ(t0) was requested most
recently, and let z = vx(t0).

First we examine the case that statement (a) of the lemma does not hold. Thus,
there exists an item y, y 6= x that is requested at least twice in [t′0, t0 − 1] and that
does not precede z at time t0. Let ty be the time of the last request to y in [t′0, t0−1].
We show that after the service of σ(ty), item y precedes z in TIMESTAMP(p)’s list. If

686 SUSANNE ALBERS

σ(ty) is served using Step (a) of the algorithm, then there is nothing to show. Suppose
that σ(ty) is served using Step (b) of TIMESTAMP(p). By the definition of vx(t0),
item z is requested at most once in [t′0, t0 − 1], and such a request is served using
Step (b) of the algorithm. This implies that when TIMESTAMP(p) serves σ(ty), z
cannot precede vy(ty) (due to conditions (i) and (ii) in Step (b) of the algorithm).
Hence y is inserted at some position in front of z. We conclude that y must precede z
after the service of σ(ty). Since, by assumption, z precedes y at time t0, item z must
be requested at some time tz ∈ [ty +1, t0−1] and z must be inserted at some position
in front of y when σ(tz) is served. This implies that y cannot precede vz(tz) at time
tz because σ(tz) is served using Step (b) of the algorithm. Note that at time tz, y
was requested at least twice since the last request to z. Hence statement (a) of the
lemma does not hold at time tz, and we have a contradiction to the minimality of t0.

Now assume that statement (b) of the lemma is violated. Let y, y 6= x be an item
for which statement (b) does not hold, and let ty ∈ [t′0, t0 − 1] be the time at which y
is requested. By assumption, y does not precede z = vx(t0) at time t0. Since σ(ty) is
served using Step (a) of the algorithm, y precedes z after the service of σ(ty). Using
the same arguments as above, we can derive a contradiction to the choice of t0.

In the following we will evaluate TIMESTAMP(p)’s and OPT’s cost on request
sequence σ. Let CTS(σ) be the cost incurred by TIMESTAMP(p) in serving σ. We
will show that

E[CTS(σ)] ≤ c · COPT (σ),(2.1)

where c = max{2−p, 1+p(2−p)}. This proves Theorem 1. Here we assume, without
loss of generality, that TIMESTAMP(p) and OPT start with the same initial list. In
the following, when analyzing on-line and off-line cost, we will always use the (i− 1)-
cost measure, i.e., we assume that an access to the ith item in the list incurs a cost
of i − 1 rather than i. Obviously, an on-line algorithm that is c-competitive in the
(i− 1)-cost measure is also c-competitive in the i-cost measure.

We need some notation. Let L be the set of items in the list. For any t ∈ [1,m] and
any item x ∈ L, let CTS(t, x) be the cost incurred by item x when TIMESTAMP(p)
serves σ(t). More precisely, CTS(t, x) = 1 if at time t, item x precedes the item
requested by σ(t) in TIMESTAMP(p)’s list; otherwise CTS(t, x) = 0. We have

E[CTS(σ)] = E

 ∑
t∈[1,m]

∑
x∈L

CTS(t, x)

= E

∑
x∈L

∑
t∈[1,m]

CTS(t, x)

= E

∑
x∈L

∑
y∈L

∑
t∈[1,m]
σ(t)=y

CTS(t, x)

 .
Let {x, y} be an unordered pair of items x and y with x 6= y. Every pair {x, y}
contributes two terms in the last line of the above equation, namely,

∑
t∈[1,m]
σ(t)=x

CTS(t, y) and
∑
t∈[1,m]
σ(t)=y

CTS(t, x).

RANDOMIZED ALGORITHMS FOR THE LIST UPDATE PROBLEM 687

Thus,

E[CTS(σ)] = E

∑
{x,y}
x6=y

 ∑
t∈[1,m]
σ(t)=x

CTS(t, y) +
∑
t∈[1,m]
σ(t)=y

CTS(t, x)

 .(2.2)

The cost incurred by OPT can be written in a similar way, i.e.,

COPT (σ) =
∑
{x,y}
x6=y

 ∑
t∈[1,m]
σ(t)=x

COPT (t, y) +
∑
t∈[1,m]
σ(t)=y

COPT (t, x) + p(x, y)

 .(2.3)

Here COPT (t, y) and COPT (t, x) denote the costs incurred by items y and x when
OPT serves σ(t). For any unordered pair {x, y} of items x 6= y, p(x, y) denotes the
total number of paid exchanges that OPT incurs in moving x in front of y or y in
front of x.

Now, for any pair {x, y} of items with x 6= y, let σxy be the request sequence
that is obtained from σ if we delete all requests in σ that are neither to x nor to y.
Let E[CTS(σxy)] be the expected cost incurred by TIMESTAMP(p) if it serves σxy
on a list consisting of x and y only. Lemma 2 implies that if TIMESTAMP(p) serves
a request σ(t) in σ using Step (b), then the requested item x = σ(t) never passes an
item that was requested at least twice since the last request to x, or an item that
was requested exactly once and the corresponding request was served using Step (a)
of the algorithm. Thus, for any pair {x, y} of items, the following statement holds.
If TIMESTAMP(p) serves σ on the entire list, then the relative position of x and y
changes in the same way as if TIMESTAMP(p) is run on the two item list consisting
of x and y with request sequence σxy. Therefore, we have

E[CTS(σxy)] = E

 ∑
t∈[1,m]
σ(t)=x

CTS(t, y) +
∑
t∈[1,m]
σ(t)=y

CTS(t, x)

and, by equation (2.2),

E[CTS(σ)] =
∑
{x,y}
x6=y

E[CTS(σxy)].

Let COPT (σxy) be the cost incurred by OPT if it serves σxy on the list consisting of
x and y only. In this two item list, OPT can always arrange x and y optimally, which
might not be possible when OPT serves σ on the entire list. Hence

COPT (σxy) ≤
∑
t∈[1,m]
σ(t)=x

COPT (t, y) +
∑
t∈[1,m]
σ(t)=y

COPT (t, x) + p(x, y),

and equation (2.3) implies

COPT (σ) ≥
∑
{x,y}
x6=y

COPT (σxy).

688 SUSANNE ALBERS

This method of analyzing cost by considering pairs of items was also used in [2, 3].
In the following we show that for any pair of items {x, y} with x 6= y,

E[CTS(σxy)] ≤ c · COPT (σxy),(2.4)

where c = max{2− p, 1 + p(2− p)}. This proves inequality (2.1).
Consider an arbitrary pair {x, y} with x 6= y. Let σxy = σ(t1), σ(t2), . . . , σ(tk)

for some nonnegative integer k. For i = 1, 2, . . . , k, let ui be the item requested by
σ(ti). Lemma 1 suggests partitioning σxy into phases P (1), P (2), . . . , P (l) for some l
so that the following condition holds. If phase P (j), 1 ≤ j ≤ l starts at time tbj , then
it ends at time tej , where

ej = min{i > bj |ui−1 = ui and ui 6= ui+1}.

In other words, a phase ends when, for the first time, there have been two consecutive
requests to the same item and the next request is different. The phases we obtain can
be classified as follows.

Type 1: (a) P (j) = xh or (b) P (j) = yh for some h ≥ 2.
Type 2: (a) P (j) = xyh or (b) P (j) = yxh for some h ≥ 2.
Type 3: (a) P (j) = (xy)h1xh2 or (b) P (j) = (yx)h1yh2 for some h1 ≥ 1, h2 ≥ 2.
Type 4: (a) P (j) = (xy)h1yh2 or (b) P (j) = (yx)h1xh2 for some h1 ≥ 2, h2 ≥ 1.

We may assume, without loss of generality, that the item first requested in a
phase P (j), 1 ≤ j ≤ l is behind the other item of the pair {x, y} in the two item lists
maintained by TIMESTAMP(p) and OPT. This is easy to see for phase P (1). If the
first item in P (1), say x, precedes y in the initial list, then we can simply omit the
first requests to x in σxy until we obtain the first request to y. This does not change
the cost incurred by TIMESTAMP(p) and OPT in P (1) because we assume that
TIMESTAMP(p) and OPT start with the same initial list. Now consider a phase P (j),
2 ≤ j ≤ l. The item first requested in P (j) differs from the item requested by the two
previous requests. Lemma 1 immediately implies that the first item in P (j) is behind
the other item of the pair {x, y} in the list maintained by TIMESTAMP(p). Consider
OPT’s movements when it serves the request sequence σxy on the two item list.
We may assume, without loss of generality, that whenever there are two consecutive
requests to the same item, OPT moves that item to the front of the list, provided that
it has not been there yet. This implies, without loss of generality, that immediately
before the first request in a phase P (j), the item requested first in the phase is also
behind the other item of the pair {x, y} in OPT’s two item list.

In the following we evaluate the expected cost incurred by TIMESTAMP(p) and
the cost incurred by OPT in each phase of σxy. For each j = 1, 2, . . . , l, the expected
cost incurred by TIMESTAMP(p) in phase P (j) of σxy is

E[CTS(P (j))] = E

 ej∑
i=bj

(CTS(ti, y) + CTS(ti, x))

 .
Similarly, for j = 1, 2, . . . , l, let COPT (P (j)) be the cost incurred by OPT when it
serves phase P (j) of σxy. We will prove the following lemmata.

LEMMA 3. If P (j) has type 1, then E[CTS(P (j))] ≤ (2− p)COPT (P (j)).
LEMMA 4. If P (j) has type 2, then E[CTS(P (j))] ≤ (1 + p(2− p))COPT (P (j)).

RANDOMIZED ALGORITHMS FOR THE LIST UPDATE PROBLEM 689

LEMMA 5. If P (j) has type 3 or 4, then E[CTS(P (j))] ≤ max{2 − p, 1 + p(2 −
p)}COPT (P (j)).

Before we prove the lemmata we finish the proof of inequality (2.4). Lemmata
3–5 imply that

E[CTS(σxy)] = E

 l∑
j=1

CTS(P (j))

≤ max{2− p, 1 + p(2− p)}

l∑
j=1

COPT (P (j))

= max{2− p, 1 + p(2− p)}COPT (σxy),

and inequality (2.4) is proved.
We have classified phases P (1), P (2), . . . , P (l) into four types. For each type,

subtypes (a) and (b) are symmetric to each other. In the following, we will always
assume, without loss of generality, that the considered phase has subtype (a). Let P (j)
be an arbitrary phase. By the above discussion we know that immediately before the
first request in P (j), x is behind y in the two item lists maintained by TIMESTAMP(p)
and OPT. Thus E[CTS(tbj , y)] = COPT (tbj , y) = 1, for j = 1, 2, . . . , l.

Claim 1 below will be useful when proving Lemmata 3–5. We will present a proof
of this claim later.

CLAIM 1. After the service of the first request σ(tbj) in a phase P (j), 1 ≤ j ≤ l,
item x = σ(tbj) precedes item y if and only if TIMESTAMP(p) serves σ(tbj) using
Step (a) of the algorithm.

Proof of Lemma 3. We have CTS(P (j)) =
∑ej
i=bj CTS(ti, y). By Lemma 1, x

precedes y in TIMESTAMP(p)’s list after the service of σ(tbj+1). Hence, y cannot
cause a cost at the third and all remaining requests to x in P (j). We obtain

E[CTS(P (j))] = E[CTS(tbj , y)] + E[CTS(tbj+1, y)]
= 1 + E[CTS(tbj+1, y)].

E[CTS(tbj+1, y)] is the probability that item x = ubj+1 is behind item y in TIME-
STAMP(p)’s list when σ(tbj+1) is served. Applying Claim 1 we infer that x is behind
y if and only if TIMESTAMP(p) serves σ(tbj) using Step (b), which happens with
probability 1− p. We conclude E[CTS(tbj+1, y)] = 1− p and E[CTS(P (j))] = 2− p.
Since COPT (P (j)) = 1, the lemma follows.

Proof of Lemma 4. TIMESTAMP(p)’s cost in phase P (j) is CTS(P (j)) = CTS(tbj , y)
+
∑ej
i=bj+1 CTS(ti, x). Lemma 1 implies that x cannot cause a cost at the third and

all remaining requests to y in P (j). Hence

E[CTS(P (j))] = E[CTS(tbj , y)] + E[CTS(tbj+1, x)] + E[CTS(tbj+2, x)]
= 1 + E[CTS(tbj+1, x)] + E[CTS(tbj+2, x)].

We have CTS(tbj+1, x) = 1 if the TIMESTAMP(p) algorithm moves x in front of y
when serving σ(tbj). By Claim 1, this happens if TIMESTAMP(p) processes σ(tbj)
using Step (a). Therefore, E[CTS(tbj+1, x)] = p. We analyze E[CTS(tbj+2, x)]. We
have CTS(tbj+2, x) = 1 if TIMESTAMP(p) moves x in front of y when serving σ(tbj)
and does not move y in front of x when serving σ(tbj+1). Claim 1 implies that with
probability p, TIMESTAMP(p) moves x in front of y when serving σ(tbj). Item y

690 SUSANNE ALBERS

can only stay behind x in TIMESTAMP(p)’s list if σ(tbj+1) is served using Step (b),
which happens with probability 1− p. Thus, the expected cost on σ(tbj+2) is at most
p(1− p). We obtain E[CTS(P (j))] ≤ 1 + p+ p(1− p) = 1 + p(2− p), and the lemma
follows because COPT (P (j)) = 1.

Proof of Lemma 5. We know that CTS(tbj , y) = 1 and, using Claim 1,
E[CTS(tbj+1, x)] = p. First we assume that P (j) has type 3. Then P (j) consists of a
head of 2h1 alternating requests to x and y and of a tail of h2 requests to x. Lemma 1
ensures that in the tail of requests to x, item x must precede y in TIMESTAMP(p)’s
list after the service of the second request to x. Hence y cannot cause a cost at any
of the remaining requests in P (j), i.e., CTS(ti, y) = 0 for i = bj + 2(h1 + 1), . . . , ej .
Thus

CTS(P (j)) = 1 + p+
bj+2h1∑
i=bj+2

CTS(ti, ui−1) + CTS(tbj+2h1+1, y).

For the analysis of the cost incurred at the alternating requests to x and y we need
the following claim that we will prove later.

CLAIM 2. Let σ(ti−3)σ(ti−2)σ(ti−1) = xyx or σ(ti−3)σ(ti−2)σ(ti−1) = yxy
be three consecutive requests in σxy with 4 ≤ i ≤ k. Then, after the service of
σ(ti−1), with probability 1 − p + p2, ui−1 precedes ui−2 in the list maintained by
TIMESTAMP(p).

If we have a phase P (j) with j ≥ 2, then Claim 2 implies that, for i = bj +
2, . . . , bj + 2h1, immediately before the request to σ(ti), item ui−1 precedes ui = ui−2
with probability 1 − p + p2. Therefore, E[CTS(ti, ui−1)] = 1 − p + p2 for i = bj +
2, . . . , bj + 2h1. We remark that we may apply Claim 2 for i = bj + 2 because ubj−1 6=
ubj . For phase P (1), Claim 2 gives E[CTS(ti, ui−1)] = 1−p+p2 for i = b1 +3, . . . , b1 +
2h1. However, it is easy to show that for request σ(tb1+2), E[CTS(tb1+2, ub1+1)] =
1−p+p2. We now evaluate the cost CTS(tbj+2h1+1, y). Claim 2 gives that immediately
before the request σ(tbj+2h1+1), item x precedes item y with probability 1− p+ p2 in
TIMESTAMP(p)’s list. Hence E[CTS(tbj+2h1+1, y)] = 1− (1− p+ p2) = p− p2. We
conclude that

E[CTS(P (j))] = 1 + p+ (2h1 − 1)(1− p+ p2) + p− p2

= 2(h1 + 1)(1− p+ p2)− 2 + 5p− 4p2

≤ 2(h1 + 1)(1− p+ p2)

for all p ∈ [0, 1]. Thus

E[CTS(P (j))] ≤ 2(h1 + 1)(1− p+ p2)
= (h1 + 1)(2− p) + (h1 + 1)(−p+ 2p2)
≤ (h1 + 1)(2− p)

for all p ≤ 1
2 . Moreover,

E[CTS(P (j))] ≤ 2(h1 + 1)(1− p+ p2)
= (h1 + 1)(1 + p(2− p)) + (h1 + 1)(1− 4p+ 3p2)
≤ (h1 + 1)(1 + p(2− p))

for all p ≥ 1
3 . Since COPT (P (j)) = h1 + 1, we obtain

E[CTS(P (j))] ≤ max{2− p, 1 + p(2− p)}COPT (P (j)).

RANDOMIZED ALGORITHMS FOR THE LIST UPDATE PROBLEM 691

The analysis for a phase P (j) having type 4 is very similar. By Lemma 1,
CTS(ti, x) = 0 for i = bj + 2h1 + 1, . . . , ej . Hence

CTS(P (j)) = 1 + p+
bj+2h1−1∑
i=bj+2

CTS(ti, ui−1) + CTS(tbj+2h1 , x).

Applying Claim 2 we obtain E[CTS(ti, ui−1)] = 1−p+p2, for i = bj+2, . . . , bj+2h1−1,
and E[CTS(tbj+2h1 , x)] = p− p2. Thus

E[CTS(P (j))] = 1 + p+ 2(h1 − 1)(1− p+ p2) + p− p2

= h1(2− p) + h1(−p+ 2p2)− 1 + 4p− 3p2

≤ h1(2− p)

for all p ≤ 1
3 . Furthermore, we can show

E[CTS(P (j))] = h1(1 + p(2− p)) + (h1 − 1)(1− 4p+ 3p2)
≤ h1(1 + p(2− p))

for all p ≥ 1
3 . We have COPT (P (j)) = h1 and therefore,

E[CTS(P (j))] ≤ max{2− p, 1 + p(2− p)}COPT (P (j)).

Proof of Claim 1. We know that item x is behind y in TIMESTAMP(p)’s list
before the service of σ(tbj). If TIMESTAMP(p) executes Step (a) when serving σ(tbj),
then x is moved to the front of the list and must precede y. On the other hand, suppose
that σ(tbj) is served using Step (b). If x was not requested during [1, tbj −1], then the
position of x remains unchanged and x stays behind y in the list. If x was requested
at least once in [1, tbj −1], then Lemma 2a implies that y precedes vx(tbj) at time tbj .
Again, x cannot be moved in front of y during the service of σ(tbj).

Proof of Claim 2. We analyze the sequence σ(ti−3)σ(ti−2)σ(ti−1) = xyx. The case
σ(ti−3)σ(ti−2)σ(ti−1) = yxy is symmetric. We have to compute the probability that x
precedes y in TIMESTAMP(p)’s list after the service of σ(ti−1). If TIMESTAMP(p)
serves σ(ti−1) using Step (a) of the algorithm, then x is moved to the front of the list
and precedes y. Now assume that σ(ti−1) is served using Step (b) of TIMESTAMP(p).
If σ(ti−2) was processed using Step (b) of the algorithm, then condition (ii) in Step (b)
ensures that x is inserted at some position in front of y when TIMESTAMP(p) serves
σ(ti−1). On the other hand, if σ(ti−2) was processed using Step (a) of the algorithm,
then Lemma 2b implies that y precedes vx(ti−1) and x is inserted behind y when
TIMESTAMP(p) serves σ(ti−1).

We conclude that item x precedes item y in TIMESTAMP(p)’s list after the ser-
vice of σ(ti−1) if and only if one of the following events occurs. (A) TIMESTAMP(p)
serves σ(ti−1) using Step (a); (B) TIMESTAMP(p) serves σ(ti−2) and σ(ti−1) using
Step (b). Event (A) occurs with probability p whereas event (B) occurs with prob-
ability (1 − p)2. Thus, with probability p + (1 − p)2 = 1 − p + p2, x precedes y in
TIMESTAMP(p)’s list after the service of σ(ti−1).

In the above analysis we assume that the last phase P (l) is a full phase of one of
the phase types 1–4. It is easy to see that Lemmata 3–5 also hold for a phase P (l)
that is a prefix of one of the phase types. The proof of Theorem 1 is complete.

Next we analyze the performance of the simplified TIMESTAMP(p) algorithm.

692 SUSANNE ALBERS

Proof of Theorem 2. The proof has the same structure as the proof of Theorem
1. The statements of Lemmas 1 and 2 can be shown in the same way as before. The
proofs of the lemmata become simpler, though, because we do not have to consider
items that satisfy condition (ii) in Step (b) of the TIMESTAMP(p) algorithm. We
compare the on-line and off-line cost for each pair {x, y} of items with x 6= y and
prove

E

 ∑
t∈[1,m]
σ(t)=x

CTS(t, y) +
∑
t∈[1,m]
σ(t)=y

CTS(t, x)

 ≤ c · COPT (σxy),(2.5)

where c = max{2−p, 1+p(2−p), 2− 3
2p+p2− 1

2p
3}. We partition the request sequence

σxy in the same way as before. Lemmata 3 and 4 as well as their proofs (including
Claim 1) remain the same. In the proof of Claim 2, only a weaker statement can be
shown. We know that item ui−1 precedes item ui−2 after the service of σ(ti−1) if
the simplified TIMESTAMP(p) algorithm serves σ(ti−1) using Step (a). Also, ui−1
cannot precede ui−2 if the simplified algorithm serves σ(ti−2) using Step (a) and
σ(ti−1) using Step (b). Unfortunately, we do not have information about the relative
position of ui−2 and ui−1 if the simplified algorithm processes σ(ti−2) and σ(ti−1)
using Step (b). Therefore, Claim 2 changes to the following statement.

CLAIM 3. Let σ(ti−3)σ(ti−2)σ(ti−1) = xyx or σ(ti−3)σ(ti−2)σ(ti−1) = yxy be
three consecutive requests in σxy with 4 ≤ i ≤ k. Then, after the service of σ(ti−1),
with probability at most 1 − p + p2, ui−1 precedes ui−2 in the list maintained by the
simplified TIMESTAMP(p) algorithm.

For a proof of a statement corresponding to Lemma 5, we first consider a phase
P (j) having type 3. Again,

CTS(P (j)) = 1 + p+
bj+2h1∑
i=bj+2

CTS(ti, ui−1) + CTS(tbj+2h1+1, y).

We examine CTS(tbj+2h1+1, y). We have CTS(tbj+2h1+1, y) = 1 if CTS(tbj+2h1 , y) = 1
and item x = ubj+2h1 is not moved in front of y at time tbj+2h1 . Item x can only stay
behind y if σ(tbj+2h1) is served using Step (b) of the algorithm. The event that the
simplified TIMESTAMP algorithm serves σ(tbj+2h1) using Step (b) is independent of
the event that CTS(tbj+2h1 , y) = 1. Hence E[CTS(tbj+2h1+1, y)] ≤ (1− p+ p2)(1− p).
This implies

E[CTS(P (j))] ≤1 + p+ (2h1 − 1)(1− p+ p2) + (1− p)(1− p+ p2).

Using the same techniques as in the proof of Lemma 5, we can show

E[CTS(P (j))] ≤ max{2− p, 1 + p(2− p)} · COPT (P (j)).

Now consider a phase P (j) having type 4. We have

E[CTS(P (j))] ≤ 1 + p+ 2(h1 − 1)(1− p+ p2) + (1− p)(1− p+ p2).

Hence

E[CTS(P (j))] ≤ 2h1(1− p+ p2)− (1 + p)(−p+ p2)
= h1(2− 2p+ 2p2) + p(1− p2).

RANDOMIZED ALGORITHMS FOR THE LIST UPDATE PROBLEM 693

Since h1 ≥ 2,

E[CTS(P (j))] ≤ h1

(
2− 2p+ 2p2 +

p

2
(1− p2)

)
= h1

(
2− 3

2
p+ 2p2 − 1

2
p3
)
.

The statement corresponding to Lemma 5 is as follows.
LEMMA 6. If P (j) has type 3 or 4, then E[CTS(P (j))] ≤ c · COPT (P (j)), where

c = max{2− p, 1 + p(2− p), 2− 3
2p+ 2p2 − 1

2p
3}.

Lemma 6 and the statements of Lemmata 3 and 4 imply inequality (2.5). The
proof of Theorem 2 is complete.

We conclude with some remarks. TIMESTAMP algorithms use Θ(m) random
bits on a request sequence of length m. We can modify the original version of
TIMESTAMP(p) so that it uses only O(n) random bits during an initialization
phase and runs completely deterministically thereafter. The competitive ratio is still
c = max{2 − p, 1 + p(2 − p)}. The idea is to have two different types of items, item
type (a) and item type (b). Initially, we decide for each item in the list which type
it should have. With probability p an item has type (a), and with probability 1 − p
it has type (b); the initializations are done independently. When a request sequence
is served, each request to a type (a) item is served using Step (a) of the algorithm
and every request to a type (b) item is served using Step (b). This technique can-
not be applied in the simplified TIMESTAMP algorithm in which condition (ii) in
Step (b) is dropped. Our analysis of the simplified TIMESTAMP algorithm makes
use of the fact that the decision of whether a given request is processed using Step (a)
or (b) does not depend on previous requests (see the analysis after Claim 3). In the
simplified TIMESTAMP algorithm we can reduce the number of random bits using
a technique presented by Reingold, Westbrook, and Sleator [5]. For each item in the
list we maintain a mod i counter, where i is a positive integer. These counters are
initialized independently and uniformly at random to a value in {0, 1, . . . , i−1}. Fur-
thermore, we choose a nonempty subset I of {0, 1, . . . , i− 1}. At a request to item x,
the TIMESTAMP algorithm first decrements x’s counter by 1. If the counter is I, the
algorithm serves the request using Step (a); otherwise it executes Step (b). Choosing
i and I appropriately, we can achieve a competitive ratio of c+ ε for any ε > 0; here
c = max{2− p, 1 + p(2− p), 2− 3

2p+ 2p2 − 1
2p

3}.
Acknowledgment. The author thanks Rudolf Fleischer and Stefan Schirra for

reading an earlier version of this paper.

REFERENCES

[1] S. BEN-DAVID, A. BORODIN, R.M. KARP, G. TARDOS, AND A. WIGDERSON, On the power of
randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2–14.

[2] J.L. BENTLEY AND C.C. MCGEOCH, Amortized analyses of self-organizing sequential search
heuristics, Comm. ACM, 28 (1985), pp. 404–411.

[3] S. IRANI, Two results on the list update problem, Inform. Process. Lett., 38 (1991), pp. 301–306.
[4] R. KARP AND P. RAGHAVAN, From a personal communication cited in [5].
[5] N. REINGOLD, J. WESTBROOK, AND D.D. SLEATOR, Randomized competitive algorithms for

the list update problem, Algorithmica, 11 (1994), pp. 15–32.
[6] D.D. SLEATOR AND R.E. TARJAN, Amortized efficiency of list update and paging rules, Comm.

ACM, 28 (1985), pp. 202–208.
[7] B. TEIA, A lower bound for randomized list update algorithms, Inform. Process. Lett., 47 (1993),

pp. 5–9.

COMPUTING THE ADDITIVE COMPLEXITY OF ALGEBRAIC
CIRCUITS WITH ROOT EXTRACTING∗

DIMA GRIGORIEV† AND MAREK KARPINSKI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 694–701, June 1998 007

Abstract. We design an algorithm for computing the generalized (algebraic circuits with root
extracting; cf. Pippenger [J. Comput. System Sci., 22 (1981), pp. 454–470], Ja’Ja’ [Proc. 22nd IEEE
FOCS, 1981, pp. 95–100], Grigoriev, Singer, and Yao [SIAM J. Comput., 24 (1995), pp. 242–246])
additive complexity of any rational function. It is the first computability result of this sort on the
additive complexity of algebraic circuits.

Key words. additive complexity, algebraic circuits, root extracting, minimal computation

AMS subject classifications. 68Q25, 68Q40, 68Q15, 26C15

PII. S0097539793258313

1. Introduction. Whether the additive complexity of functions is computable
is a well-known open problem in the theory of computation. Note that both multi-
plicative and total complexities of functions are computable. In this paper we prove,
somewhat surprisingly, the computability of the generalized additive complexity for
algebraic circuits with root extraction. These circuits were considered in [J 81] where
a lower bound on the number of root extracting operations for computing on algebraic
functions has been proven. This was recently generalized in [GSY 93] for the algebraic
circuits which also contain exponential and logarithmic functions. Our result is the
first computability result of this sort on the additive complexity of algebraic circuits.

Let us give the definition of the generalized additive complexity. Q̄ denotes the
algebraic closure of Q, the set of algebraic numbers. We say that a rational function
f ∈ Q(X1, . . . , Xn) has a generalized additive complexity at most t if there exists a
sequence of algebraic functions:

ui+1 = ε(i+1)X
α

(i+1)
1

1 · · ·Xα(i+1)
n

n u
β

(i+1)
1

1 · · ·uβ
(i+1)
i
i +κ(i+1)X

γ
(i+1)
1

1 · · ·Xγ(i+1)
n
n u

δ
(i+1)
1

1 · · ·uδ
(i+1)
i
i

for 0 ≤ i ≤ t, where κ(t+1) = 0, f = ut+1 and all the exponents α(i+1)
1 , . . . , δ

(i+1)
i ∈

Q, 0 ≤ i ≤ t are rationals, and coefficients ε(i+1), κ(i+1) ∈ Q̄ are algebraic. The
rationality of the exponents (rather than being integers) differs the generalized additive
complexity from the usual additive complexity. In other words, we consider algebraic
circuits in which (in addition to the usual arithmetic operations) extracting arbitrary
roots is allowed.

If t is equal to the generalized additive complexity of f , then we say that compu-
tation u1, . . . , ut+1 of f is generalized additive minimal.

In the section 2 we consider the computations in which the exponents α(i+1)
1 , . . . ,

δ
(i+1)
i , 0 ≤ i ≤ t are allowed to be algebraic, and we refer to it as the quasi-additive

∗Received by the editors October 26, 1993; accepted for publication (in revised form) April 2,
1996.

http://www.siam.org/journals/sicomp/27-3/25831.html
†Dept. of Computer Science, The Pennsylvania State University, University Park, PA 16802

(dima@cs.psu.edu). This research was partially supported by National Science Foundation grant
CCR-9424358.
‡Dept. of Computer Science, University of Bonn, 53117 Bonn, and the International Computer

Science Institute, Berkeley, CA (marek@cs.uni-bonn.de). This research was partially supported by
DFG grant KA 673/4-1 and by the ESPRIT BR grants 7097 and EC-US030.

694

COMPUTING ADDITIVE COMPLEXITY 695

complexity. The computation of the quasi-additive complexity is reduced (see the
lemma below) to the problem of quantifier elimination in the theory of differentially
closed fields (solved in [Se 56]; for its complexity see [G 89]).

In section 3 we prove (see the proposition below) that any quasi-additive minimal
computation of a rational function can be transformed into a generalized additive-
minimal computation with the same number of additions which contain only rational
exponents; thus quasi-additive and generalized additive complexities coincide. More-
over, the corollary in section 3 gives a possibility of constructing the rational exponents
of a generalized additive-minimal computation. In section 4 we describe an algorithm
for producing a generalized additive-minimal computation. In the case of one vari-
able (n = 1) we give an (elementary) complexity bound of the designed algorithm
(see the theorem below) as it uses the quantifier elimination algorithm from [G 89].
In the general case (n ≥ 2) we do not give complexity bounds because the quantifier
elimination method from [Se 56] is used which relies in turn on the efficient bounds
in Hilbert’s idealbasissatz which are not known to be elementary.

Note that first lower bounds on the additive complexity of f in terms of the
variety of real roots of f were obtained in [BC 76] and [G 83] (see also [Ri 85]). One
can find in [G 83] also a survey on other lower bounds, in particular on the additive
complexity (see also [G 82] and [SW 80]). The lower bound from [G 83] is used (see
the end of section 3) to show that there are polynomials with the generalized additive
complexity equal to 3 and arbitrary large additive complexity.

Another interesting issue is the dependence of the (standard) additive complexity
on the coefficients which are involved in straight-line programs (cf. [W 78]). If we allow
only real algebraic coefficients (from Q̄∩R) instead of Q̄ (see above), then the additive
complexity could jump drastically as the following example indicates. The polynomial
(1 + iX)n + (1 − iX)n ∈ Z[x] (cf. [W 78]) evidently has the additive complexity at
most 3 over Q̄. It also has all its roots in Q̄∩R; therefore, its additive complexity over
Q̄ ∩ R is greater than Ω(log

1
2 n) (cf. [G 83], [Ri 85]).

2. Describing the quasi-additive complexity in terms of the first-order
theory of differentially closed fields. We start with designing an algorithm for
testing, whether there exist (and if so, also to produce) algebraic exponents α(i+1)

1 , . . . ,

δ
(i+1)
i ∈ Q̄ (the algebraic closure of Q in C) in the computation u1, . . . , ut+1 provid-

ing an identity ut+1 = f holds. In this case we say that f has the quasi-additive
complexity at most t. For this purpose we introduce the (differential) unknowns

ui+1, α̃
(i+1)
1 , . . . , δ̃

(i+1)
i , v

(i+1)
1 , . . . , v(i+1)

n , w
(i+1)
1 , . . . , w

(i+1)
i ,

ṽ
(i+1)
1 , . . . , ṽ(i+1)

n , w̃
(i+1)
1 , . . . , w̃

(i+1)
i

for all 0 ≤ i ≤ t and the system of (partial) differential equations (denote Di = d
dXi

and by D any of the operators D1, . . . , Dn; denote the Kronecker symbol by δ(l, j)):

(1a)i+1 D(α̃(i+1)
1) = · · · = D(δ̃(i+1)

i) = 0,

(1b)i+1 Dj(v
(i+1)
l) = α̃

(i+1)
l

Xl
v

(i+1)
l δ(l, j), Dj(ṽ

(i+1)
l) = γ̃

(i+1)
l

Xl
ṽ

(i+1)
l δ(l, j),

1 ≤ l, j ≤ n,
(1c)i+1 D(w(i+1)

l) = β̃
(i+1)
l w

(i+1)
l

Dul
ul
, D(w̃(i+1)

l) = δ̃
(i+1)
l w̃

(i+1)
l

Dul
ul
,

1 ≤ l ≤ i,
(1d)i+1 ui+1 = v

(i+1)
1 · · · v(i+1)

n w
(i+1)
1 · · ·w(i+1)

i + ṽ
(i+1)
1 . . . ṽ

(i+1)
n w̃

(i+1)
1 . . . w̃

(i+1)
i

696 DIMA GRIGORIEV AND MAREK KARPINSKI

for all 0 ≤ i ≤ t together with the equation ut+1 = f . The resulting system we denote
by (1).

Note that the equations (1a)i+1 imply that α̃(i+1)
1 , . . . , δ̃

(i+1)
i ∈ Q̄ are the con-

stants; (1b)i+1 imply that v(i+1)
l = µ

(i+1)
l X

α̃
(i+1)
l

l , ṽ
(i+1)
l = µ̃

(i+1)
l X

γ̃
(i+1)
l

l for the appro-

priate constants µ(i+1)
l , µ̃

(i+1)
l ∈ Q̄; (1c)(i+1) imply that w(i+1)

l = ν
(i+1)
l u

β̃
(i+1)
l

l , w̃
(i+1)
l =

ν̃
(i+1)
l u

δ̃
(i+1)
l

l for the appropriate constants ν(i+1)
l , ν̃

(i+1)
l ∈ Q̄.

Thus, the following lemma is proved.
Lemma. The solvability of system (1) (in all its differential unknowns) is equiv-

alent to the fact that the quasi-additive complexity of f is at most t.
Now we consider the statement of solvability of the system (1) as an existential

formula of the first-order theory of differentially closed fields [Se 56]. Applying to it
a quantifier elimination algorithm [Se 56] one can eliminate unknowns

ui+1, v
(i+1)
1 , . . . , v

(i+1)
n , w

(i+1)
1 , . . . , w

(i+1)
i , ṽ

(i+1)
1 , . . . , ṽ

(i+1)
n , w̃

(i+1)
1 , . . . , w̃

(i+1)
i

for all 0 ≤ i ≤ t.

As a result we get an (existential) equivalent formula containing only the unknowns
α̃

(i+1)
1 , . . . , δ̃

(i+1)
i , 0 ≤ i ≤ t. Because of (1a) the latter formula can be considered as

a formula in the language of polynomials (so, without derivatives), thus as a system
of polynomial equations and inequalities with integer coefficients.

Thus, given a rational function f the algorithm tries t = 1, 2, . . . , and for each
t tests (using [CG 83], [C 86]) whether the above constructed system of polynomial
equations and inequalities has a solution (over Q̄). For a minimal such t we take any
of these solutions α(i+1)

1 , . . . , δ
(i+1)
i ∈ Q̄, 0 ≤ i ≤ t. In the next section we show that

in this case there exists as well a rational solution of this system, and moreover we
show how to construct it.

To solve the system (1) of differential equations we applied the algorithm from
[Se 56] for which the elementary complexity bound is unknown since it relies on an
efficient bound in Hilbert’s idealbasissatz. But the complexity of quantifier elimination
is elementary in the case of ordinary differential equations for the algorithm designed
in [G 89], i.e., when n = 1, and in other words when there is only one independent
variable X. In this case system (1) contains O(t2) unknowns, the order of highest
occurring derivatives in the equations is at most 1, the degree of the equations is
at most O(t) + deg f and the number of equations is at most O(t2), and the bit-
size of the coefficients of the occurring equations is at most O(1) + M , where M is
the bit-size of the coefficients of f . Therefore (see the bounds in [G 89]), one can
eliminate quantifiers and produce a system of polynomial equations and inequalities
with integer coefficients (see above) in the unknowns α̃(i+1)

1 , . . . , δ̃
(i+1)
i , 0 ≤ i ≤ t in

time N = MO(1)(deg f)22O(t2)

; the degrees of the polynomials occurring in this system

do not exceed N1 = (deg f)22O(t2)

, the number of these polynomials is at most N1,
and the bit-size of (integer) coefficients occurring in this system can be bounded by
N .

Therefore, to solve this system of polynomial equations and inequalities we apply

the algorithm from [CG 83] (cf. also [C 86]) which requires time MO(1)(deg f)22O(t2)

.
The algorithm from [CG 83] finds (provided that the system is solvable) a solution
α

(i+1)
1 , . . . , δ

(i+1)
i ∈ Q̄, 0 ≤ i ≤ t in the following form. The algorithm produces an ir-

reducible over Q polynomial ϕ(Z) ∈ Q[Z] and polynomials ᾱ(i+1)
1 (Z), . . . , δ̄(i+1)

i (Z) ∈

COMPUTING ADDITIVE COMPLEXITY 697

Q[Z], 0 ≤ i ≤ t such that α(i+1)
1 = ᾱ1

(i+1)(θ), . . . , δ(i+1)
i = δ̄

(i+1)
i (θ), where θ ∈ Q̄ is a

root of ϕ(θ) = 0. From [CG 83] we obtain the following bounds:

deg(ϕ),deg(ᾱ(i+1)
1), . . . ,deg(δ̄(i+1)

i) ≤ (deg f)22O(t2)

, 0 ≤ i ≤ t,

and the bit-size of every coefficient occurring in the listed polynomials does not exceed

MO(1) (deg f)22O(t2)

.

3. Rational exponents in the quasi-additive minimal computation. In
this section we prove (see the proposition below) the equivalence of the generalized
additive and quasi-additive complexities for rational functions. Moreover, we show
(see the corollary below) for given algebraic exponents of a quasi-additive minimal
computation how to produce the exponents of a certain generalized additive-minimal
computation of the same rational function, thus containing only rational exponents.
The similar statements were proved also for the rationality of the exponents in the
minimal sparse representations of a rational function [GKS 92a] and of a real algebraic
function [GKS 92b]. But the latter statements have a nature different from the one in
the present paper; another difference is that we prove here the existence of the rational
exponents rather than the rationality as it was the case in [GKS 92a], [GKS 92b].

So, let

ui+1 = ε(i+1)X
α

(i+1)
1

1 · · ·Xα(i+1)
n

n u
β

(i+1)
1

1 · · ·uβ
(i+1)
i
i +κ(i+1)X

γ
(i+1)
1

1 · · ·Xγ(i+1)
n
n u

δ
(i+1)
1

1 · · ·uδ
(i+1)
i
i ,

where 0 ≤ i ≤ t, κ(t+1) = 0 and all the exponents and coefficients

α
(i+1)
1 , . . . , δ

(i+1)
i , ε(i+1), κ(i+1) ∈ Q̄ .

Proposition. Assume that f = u(t+1) ∈ Q̄(X1, . . . , Xn) is a rational function
and t is the minimal possible (so t is equal to the quasi-additive complexity of f). Then
there exist rational exponents a(i+1)

1 , . . . , d
(i+1)
i ∈ Q, 0 ≤ i ≤ t, respectively, providing

also a computation of f (thus, t is also equal to the generalized additive complexity).
Proof. For each 1 ≤ j ≤ n consider a Q-basis θ̄(1)

j , θ̄
(2)
j , . . . ∈ Q̄ of the Q-linear

hull Q{α(s)
j , γ

(s)
j }1≤s≤t+1. If 1 (thereby Q) is contained in the latter linear hull, then

we set θ̄(1)
j = 1. Denote {θ(1)

j , θ
(2)
j , . . .} = {θ̄(1)

j , θ̄
(2)
j , . . .} \ {1}.

Consider a differential field Fj , 0 ≤ j ≤ n generated over Q̄(X1, . . . , Xn) by the

elements logX1, X
θ
(1)
1

1 , X
θ
(2)
1

1 , . . . , logXj , X
θ
(1)
j

j , X
θ
(2)
j

j , Then in the terminology of
[RC 79] each Fj , 0 ≤ j ≤ n is a log-explicit extension of its field of constants Q̄ (one
can represent Xβ = exp(β logX)).

We claim that the elements X
θ
(1)
j+1
j+1 , X

θ
(2)
j+1
j+1 , . . . ∈ Fj+1 are algebraically independent

over the field Fj(logXj+1). Assume the contrary. Then Corollary 3.2 of [RC 79] (see
also [Ro 76]) implies the existence of a constant κ ∈ Q̄, rational numbers

l
(0)
1 , l

(1)
1 , . . . , l

(0)
j , l

(1)
j , . . . , l

(0)
j+1, l

(1)
j+1, . . . ∈ Q

such that not all l(1)
j+1, l

(2)
j+1, . . . are zeros, and

X
l
(0)
j+1+Σk≥1l

(k)
j+1θ

(k)
j+1

j+1 = κX
l
(0)
1 +Σk≥1l

(k)
1 θ

(k)
1

1 · · ·X l
(0)
j

+Σk≥1l
(k)
j
θ
(k)
j

j ,

698 DIMA GRIGORIEV AND MAREK KARPINSKI

but this leads to a contradiction since the derivative d
dXj+1

of the left side is nonzero,
but the derivative of the right side is equal to zero.

For each 1 ≤ i ≤ t consider a Q-basis η̄(1)
i , η̄

(2)
i , . . . ∈ Q̄ of the Q-linear hull

Q{β(s)
i , δ

(s)
i }i+1≤s≤t+1. If 1 (thereby Q) is contained in the latter linear hull, then we

set η̄(1)
i = 1. Denote {η(1)

i , η
(2)
i , . . .} = {η̄(1)

i , η̄
(2)
i , . . .} \ {1}.

Denote by Ei, 0 ≤ i ≤ t a field generated over Fn by the elements

log u1, u
η

(1)
1

1 , u
η

(2)
1

1 , . . . , log ui, u
η

(1)
i
i , u

η
(2)
i
i ,

It is a log-explicit extension of its field of constants Q̄.

We claim that for 0 ≤ i ≤ t − 1 the elements u
η

(1)
i+1
i+1 , u

η
(2)
i+1
i+1 , . . . ∈ Ei+1 are alge-

braically independent over the field Ei(log ui+1). Assume the contrary. Then again
using Corollary 3.2 of [RC 79] we conclude that there exists a constant ε ∈ Q̄, rational
numbers

p1, p
(1)
1 , p

(2)
1 , . . . , pn, p

(1)
n , p(2)

n , . . . , z1, z
(1)
1 , z

(2)
1 , . . . , zi+1, z

(1)
i+1, z

(2)
i+1, . . . ∈ Q

such that not all z(1)
i+1, z

(2)
i+1, . . . are zeros and

u
zi+1+Σj≥1z

(j)
i+1η

(j)
i+1

i+1 = εX
p1+Σj≥1p

(j)
1 θ

(j)
1

1 · · ·Xpn+Σj≥1p
(j)
n θ(j)

n
n u

z1+Σj≥1z
(j)
1 η

(j)
1

1

· · ·uzi+Σj≥1z
(j)
i
η

(j)
i

i .

This provides an expression of ui+1 as a product of powers ofX1, . . . , Xn, u1, . . . , ui,
and thereby we can diminish t by 1 in the computation of f ; this contradiction with the

minimality of t proves the algebraic independence of u
η

(1)
i+1
i+1 , u

η
(2)
i+2
i+1 , . . . over Ei(log ui+1).

Consider the expansions

α
(s)
j = a

(s)
j +

∑
k≥1

a
(s)
j,kθ

(k)
j , γ

(s)
j = c

(s)
j +

∑
k≥1

c
(s)
j,kθ

(k)
j , 1 ≤ j ≤ n, 1 ≤ s ≤ t+ 1,

β
(s)
i = b

(s)
i +

∑
k≥1

b
(s)
i,kη

(k)
i , δ

(s)
i = d

(s)
i +

∑
k≥1

d
(s)
i,kθ

(k)
i , 1 ≤ i ≤ t+ 1, i < s ≤ t+ 1,

(2)
where a(s)

j , . . . , d
(s)
i,k ∈ Q are suitable rationals. Remark that if 1 6∈ {θ̄(1)

j , θ̄
(2)
j , . . .},

then a
(s)
j = c

(s)
j = 0; also if 1 6∈ {η̄(1)

i , η̄
(2)
i , . . .}, then b

(s)
i = d

(s)
i = 0. Then we can

rewrite the initial computation u1, u2, . . . as follows:

ui+1 = ε(i+1)X
a

(i+1)
1

1 (Xθ
(1)
1

1)a
(i+1)
1,1 (Xθ

(2)
1

1)a
(i+1)
1,2 · · ·Xa(i+1)

n
n (Xθ(1)

n
n)a

(i+1)
n,1 · · ·

u
b
(i+1)
1

1 (uη
(1)
1

1)b
(i+1)
1,1 (uη

(2)
1

1)b
(i+1)
1,2 · · ·ub

(i+1)
i
i (uη

(1)
i
i)b

(i+1)
i,1 (uη

(2)
i
i)b

(i+1)
i,2 · · ·

+ κ(i+1)X
c
(i+1)
1

1 (Xθ
(1)
1

1)c
(i+1)
1,1 (Xθ

(2)
1

1)c
(i+1)
1,2 · · ·Xc(i+1)

n
n (Xθ(1)

n
n)c

(i+1)
n,1 · · ·

u
d

(i+1)
1

1 (uη
(1)
1

1)d
(i+1)
1,1 (uη

(2)
1

1)d
(i+1)
1,2 · · ·ud

(i+1)
i
i (uη

(1)
i
i)d

(i+1)
i,1 (uη

(2)
i
i)d

(i+1)
i,2 · · · .

(3)

From the latter expression one can show by induction on i that ui+1 (and thereby
each of the previous elements u1, . . . , ui) is algebraic over the field E′i ⊂ Ei generated
over Q̄(X1, . . . , Xn) by the elements

X
θ
(1)
1

1 , X
θ
(2)
1

1 , . . . , X
θ(1)
n
n , X

θ(2)
n
n , . . . , u

η
(1)
1

1 , u
η

(2)
1

1 , . . . , u
η

(1)
i
i , u

η
(2)
i
i ,

COMPUTING ADDITIVE COMPLEXITY 699

Above we have proved that the latter elements are algebraically independent over
Q̄(X1, . . . , Xn). Because ut+1 = f ∈ Q̄(X1, . . . , Xn) we can substitute in the expres-
sion (3) instead of the elements

X
θ
(1)
1

1 , X
θ
(2)
1

1 , . . . , X
θ(1)
n
n , X

θ(2)
n
n , . . . , u

η
(1)
1

1 , u
η

(2)
1

1 , . . . , u
η

(1)
t
t , u

η
(2)
t
t , . . .

almost (in the sense of Zariski topology) arbitrary constants

y
(1)
1 , y

(2)
1 , . . . , y(1)

n , y(2)
n , . . . , z

(1)
1 , z

(2)
1 , . . . , z

(1)
t , z

(2)
t , . . . ∈ Q̄ ,

respectively, with the mere requirement that in the intermediate computations of
u1, u2, . . . , ut+1 = f no nonpositive powers of zero are taken (each time we choose
some branch of a rational power).

As a result we get a computation of ũ1, ũ2, . . . , ũt+1 = f in which only rational
exponents occur; namely,

ũi+1 = ε̃(i+1)X
a

(i+1)
1

1 · · ·Xa(i+1)
n
n ũ

b
(i+1)
1

1 · · · ũb
(i+1)
i
i +κ̃(i+1)X

c
(i+1)
1

1 · · ·Xc(i+1)
n
n ũ

d
(i+1)
1

1 · · · ũd
(i+1)
i
i

(4)

for some ε̃(i+1) , κ̃(i+1) ∈ Q̄. The proposition is proved.
From the proof of the proposition we extract the following corollary.
Corollary. For every 1 ≤ i ≤ t, 1 ∈ Q{β(s)

i , δ
(s)
i }i+1≤s≤t+1. For any Q-basis

θ̄
(1)
j , θ̄

(2)
j , . . . of Q{α(s)

j , γ
(s)
j }1≤s≤t+1 and any Q-basis η̄(1)

i , η̄
(2)
i , . . . of Q{β(s)

i , δ
(s)
i }i+1≤s≤t+1

we get the rational exponents of the resulting computation of ũ1, . . . , ũt+1 (see (4))
from the expansions (2).

In order to show that 1 ∈ Q{β(s)
i , δ

(s)
i }s, observe that otherwise b(s)i = d

(s)
i = 0

for all i+ 1 ≤ s ≤ t+ 1, and we could diminish t by deleting ũi from the computation
ũ1, . . . , ũt+1 and get a contradiction with a minimality of t.

Remark that the corollary together with Lemma 12 of [GKS 92a] entail that for
any i the constructible set of all the possible exponent vectors (β(i+1)

i , . . . , β
(t+1)
i , δ

(i+1)
i ,

. . . , δ
(t)
i) ∈ Q̄2t−2i+1 is contained in a finite union of the hyperplanes of the kind∑

i+1≤j≤t+1

b̂
(j)
i β

(j)
i +

∑
i+1≤j≤t

d̂
(j)
i δ

(j)
i = d̂,

where b̂(j)i , d̂
(j)
i , d̂ ∈ Z. The similar case also holds for the vectors (α(1)

i , . . . , α
(t+1)
i ,

γ
(1)
i , . . . , γ

(t)
i) ∈ Q̄2t+1. But we will not use this remark.

Note also that in the resulting computation (4) the rational exponents depend on
the choice of the Q-basis (see the corollary). The following simple example demon-
strates that the dependency really can happen:

u1 = Xα(X + 1), u2 = X−aαua1 +X−bαub1 = (X + 1)a + (X + 1)b,

where α ∈ Q̄ \ Q, a, b ∈ Q. Choosing a basis α + z, 1 ∈ Q{1, α} for arbitrary z ∈ Q,
we get

u1 = (Xα+z)X1−z + (Xα+z)X−z,
u2 = (Xα+z)−aXzaua1 + (Xα+z)−bXzbub1,

and by the corollary we get

u1 = wX1−z + wX−z,

u2 = w−aXzaua1 + w−bXzbub1

for arbitrary w ∈ Q̄ \ {0}.

700 DIMA GRIGORIEV AND MAREK KARPINSKI

4. Constructing a generalized additive-minimal computation. The pre-
vious two sections (see the lemma and corollary) give us a possibility of computing a
generalized additive complexity t of a rational function f . Now we complete an algo-
rithm which finds some generalized additive-minimal circuit computing f . Using the
corollary from section 3, the algorithm finds rational exponents α(i+1)

1 , . . . , δ
(i+1)
i ∈

Q, 0 ≤ i ≤ t; it remains to find the coefficients ε(i+1), κ(i+1) ∈ Q̄, 0 ≤ i ≤ t.
Denote byM a bound on the bit-sizes of the rational exponents α(i+1)

1 , . . . , δ
(i+1)
i ∈

Q, 0 ≤ i ≤ t. Then by induction on i one can easily show that each ui+1, v
(i+1)
1 , . . . ,

w̃
(i+1)
i , 0 ≤ i ≤ t is an algebraic function of the degree (i.e., the degree of a mini-

mal polynomial which satisfies the function) at most N = (exp(M))t
O(t)

. Hence the
coefficients ε(i+1), κ(i+1), 0 ≤ i ≤ t fit if and only if for every 1 ≤ x1, . . . , xn ≤ N2

for which all the intermediate computations of the circuit are definable, the equality
ut+1(x1, . . . , xn) = f(x1, . . . , xn) holds. So, for every fixed 1 ≤ x1, . . . , xn ≤ N2 we
introduce the variables

ut+1(x1, . . . , xn), v(i+1)
1 (x1, . . . , xn), . . . , w̃(i+1)

i (x1, . . . , xn), 0 ≤ i ≤ t
and write down a system of polynomial equations and inequalities expressing all the
operations of the circuit (provided that they are all definable) and finally the relation
ut+1(x1, . . . , xn) = f(x1, . . . , xn). Then the algorithm invoking [CG 83] solves this
system in N2n + 2t+ 1 variables and finds in particular ε(i+1), κ(i+1) ∈ Q̄, 0 ≤ i ≤ t.
More precisely, for each subset J ⊂ {1, . . . , N2}n we consider a system as above
including in it just the points (x1, . . . , xn) ∈ J (so J plays the role of the set of points
in which the computation is defined). The algorithm solves this system and takes J
with the maximal cardinality for which the system is solvable. In a more sophisticated
way we can partition the cube {1, . . . , N2}n into Nn subcubes with sides equal to N
and as J take each of these subcubes, but this improvement does not change the
complexity bounds below.

In the ordinary case (n = 1) we can bound the complexity of the described

algorithm. First, observe that in this case M ≤ MO(1)(deg f)22O(t2)

(see the end of
section 1). Therefore, the system of polynomial equations and inequalities constructed

above contains exp(MO(1)(deg f)22O(t2)

) polynomials of degrees at most exp(MO(1)

(deg f)22O(t2)

) in exp(MO(1)(deg f)22O(t2)

) variables. Hence one can solve it using the

algorithm from [CG 83] in time exp(exp(MO(1)(deg f)22O(t2)

)) and find ε(i+1), κ(i+1) ∈
Q̄, 0 ≤ i ≤ t, representing them as algebraic numbers as at the end of section 1 with
the size also bounded by the latter value.

Summarizing, we formulate the following theorem.
Theorem. (a) There is an algorithm calculating the generalized additive complex-

ity of a rational function f ∈ Q(x1, . . . , xn) and constructing a generalized additive-
minimal circuit computing f .

(b) In the case of one-variable rational functions f the running time of the al-

gorithm from (a) can be bounded by exp(exp(MO(1)(deg f)22O(t2)

)), where M bounds
the bit-size of each (rational) coefficient of f . The absolute values of the numerators
and denominators of the found rational exponents in a generalized additive-minimal

circuit computing f do not exceed exp(MO(1)(deg f)22O(t2)

).
At the end we demonstrate that there could be a big gap between the additive

complexity and generalized additive complexity. Consider a polynomial

fn = (1 +X
1
2)n + (1−X 1

2)n ∈ Z[X]

COMPUTING ADDITIVE COMPLEXITY 701

with the generalized additive complexity at most 3. Because all its bn2 c roots are
negative reals, the additive complexity of fn is at least Ω((log n)

1
2) because of the

result of [G 83] (see also [Ri 85]) based on the method from [Kh 91].

5. Further research. It remains an interesting open problem on improving the
complexity bounds of our algorithm. Also it will be very interesting to shed some more
light on the status of the problem of computing the standard additive complexity of
rational functions. At this point we do not know much about this problem.

Acknowledgments. We are thankful to Richard Cleve for starting us thinking
about the additive complexity of polynomials and to Allan Borodin, Joachim von zur
Gathen, Thomas Lickteig, Michael Singer, Volker Strassen, and Andy Yao for many
interesting discussions.

REFERENCES

[BC 76] A. Borodin and S. Cook, On the number of additions to compute specific polynomials,
SIAM J. Comput., 5 (1976), pp. 146–157.

[C 86] A. Chistov, Algorithms of polynomial complexity for factoring polynomials and finding
the components of varieties in subexponential time, J. Soviet Math., 34 (1986),
pp. 1838–1882.

[CG 83] A. Chistov and D. Grigoriev, Subexponential-time solving systems of algebraic equa-
tions, LOMI Preprints E-9-83, E-10-83, Steklov Math. Institute, 1983.

[G 82] D. Grigoriev, Additive complexity in directed computations, Theoret. Comput. Sci.,
19 (1982), pp. 39–67.

[G 83] D. Grigoriev, Lower bounds in algebraic complexity, Transl. in J. Soviet Math., 29
(1985), pp. 1388–1425.

[G 89] D. Grigoriev, Complexity of quantifier elimination in the theory of differential equa-
tions, Lecture Notes in Comput. Sci., 378 (1989), pp. 11–25.

[GK 91] D. Grigoriev and M. Karpinski, Algorithms for sparse rational interpolation, in
Proc. ACM ISSAC, 1991, pp. 7–13.

[GKS 90] D. Grigoriev, M. Karpinski, and M. Singer, Interpolation of sparse rational func-
tions without knowing bounds on exponents, in Proc. 31st IEEE FOCS, 1990,
pp. 840–846.

[GKS 92a] D. Grigoriev, M. Karpinski, and M. Singer, Computational complexity of sparse
rational interpolation, SIAM J. Comput., 23 (1994), pp. 1–11.

[GKS 92b] D. Grigoriev, M. Karpinski, and M. Singer, Computational complexity of sparse
real algebraic function interpolation, Progr. Math., 109 (1993), pp. 91–104.

[GSY 93] D. Grigoriev, M. Singer, and A. Yao, On computing algebraic functions using log-
arithms and exponentials, SIAM J. Comput., 24 (1995), pp. 242–246.

[J 81] J. Ja’Ja’, Computations of algebraic functions with root extractions, in Proc. 22nd
IEEE FOCS, 1981, pp. 95–100.

[KW 93] M. Karpinski and T. Werther, VC dimension and uniform learnability of sparse
polynomials and rational functions, SIAM J. Comput., 22 (1993), pp. 1276–1285.

[Kh 91] A. Khovanski, Fewnomials, AMS Transl. Math. Monogr. 88, 1991.
[P 81] N. Pippenger, Computational complexity of algebraic functions, J. Comput. System

Sci., 22 (1981), pp. 454–470.
[Ri 85] J. J. Risler, Additive complexity and zeros of real polynomials, SIAM J. Comput., 14

(1985), pp. 178–183.
[Ro 76] M. Rosenlicht, On Liouville’s theory of elementary functions, Pacific J. Math., 65

(1976), pp. 485–492.
[RC 79] M. Rothstein and B. Caviness, A structure theorem for exponential and primitive

functions, SIAM J. Comput., 8 (1979), pp. 357–366.
[Se 56] A. Seidenberg, An elimination theory for differential algebra, Univ. of Calif. Press, 3,

N 2, (1956), pp. 31–66.
[SW 80] C. Schnorr and J. van de Wiele, On the additive complexity of polynomials, Theoret.

Comput. Sci., 10 (1980), pp. 1–18.
[W 78] J. P. van de Wiele, Complexité additive et zéros des polynômes à coefficients réels et

complexes, Rapport de Recherche Laboria No 292, Mars 1978.

AN Ω(D log(N/D)) LOWER BOUND FOR BROADCAST IN
RADIO NETWORKS∗

EYAL KUSHILEVITZ† AND YISHAY MANSOUR‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 702–712, June 1998 008

Abstract. We show that for any randomized broadcast protocol for radio networks, there
exists a network in which the expected time to broadcast a message is Ω(D log(N/D)), where D is
the diameter of the network and N is the number of nodes. This implies a tight lower bound of
Ω(D logN) for any D ≤ N1−ε, where ε > 0 is any constant.

Key words. radio networks, broadcast, lower bounds

AMS subject classifications. 68Q22, 68M10

PII. S0097539794279109

1. Introduction. Traditionally, radio networks have received considerable at-
tention due to their military significance. The growing interest in cellular telephones
and wireless communication networks has reinforced the interest in radio networks.
The basic feature of radio networks, which distinguishes them from other networks, is
that a processor can receive a message only from a single neighbor at a certain time.
If two (or more) neighbors of a processor transmit concurrently, then the processor
would not receive either messages.

In many applications, the users of the radio network are mobile, and therefore
the topology is unstable. For this reason, it is desirable for radio-networks algorithms
to refrain from making assumptions about the network topology, or about the infor-
mation that processors have concerning the topology. In this work we assume that
none of the processors initially have any topological information, except for the size
of the network and its diameter.1 See [Tan81, Gal85, BGI92, BGI91] for a discussion
on this model and related models.

We study broadcast protocols; those protocols are initiated by a single processor
(the originator) that has a messageM it wishes to propagate to all the other processors
in the network. In many of the radio-networks applications (e.g., cellular phones)
broadcast is a central primitive which is frequently used, for example, to perform a
network-wide search for a user.

Bar-Yehuda, Goldreich, and Itai [BGI92] present a randomized broadcast algo-
rithm, that runs in expected O(D logN + log2N) time slots, where N is the number
of processors in the network and D is its diameter. In contrast, they show that for any
deterministic broadcast algorithm there are networks of constant diameter on which
the algorithm needs Ω(N) time slots.

∗Received by the editors September 8, 1994; accepted for publication (in revised form) April 3,
1996. An early version of this paper appeared in Proc. 12th ACM Symp. on Principles of Distributed
Computing, ACM, New York, 1993, pp. 65–74.

http://www.siam.org/journals/sicomp/27-3/27910.html
†Aiken Computation Lab., Harvard University, Cambridge, MA 02138-2901. Current address:

Dept. of Computer Science, Technion, Haifa, 32000, Israel (eyalk@cs.technion.ac.il). This research
was supported by research contracts ONR-N0001491-J-1981 and NSF-CCR-90-07677.
‡Computer Science Dept., Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel and IBM –

T. J. Watson Research Center (mansour@cs.tau.ac.il).
1Usually, when the topology is unstable, the diameter is unknown to the processors and only a

bound on the size of the network is available. However, since we are proving a lower bound, this
assumption only makes the result stronger.

702

LOWER BOUND FOR BROADCAST IN RADIO NETWORKS 703

Alon et al. [ABLP91] made the first step towards proving the optimality of the
upper bound of [BGI92]. Their result can be viewed as a graph-theoretic result; they
show that there exist networks of diameter D = 3 on which any schedule needs at
least Ω(log2N) time slots. This lower bound shows that there are networks on which
broadcast requires this many time slots, and it matches the known upper bounds
[BGI92, CW87], in the case of constant-diameter networks.

In this work we complete the picture by proving an Ω(D log(N/D)) lower bound.
Our result is of a different nature; we show that for any randomized broadcast algo-
rithm and parameters N and D, there is an ordering of the N processors in a network
of diameter D such that the expected number of time slots, used by the algorithm,
is Ω(D log(N/D)). For D ≤ N1−ε this gives an Ω(D logN) lower bound. Hence,
it proves the tightness of the upper bound of [BGI92] for all N and D ≤ N1−ε.
Moreover, the lower bound holds even if each of the N processors is allowed to use a
different program (e.g., the processors can use their IDs). In a recent work, Gaber and
Mansour [GM95] have shown that for every network, there exists a schedule whose
time is O(D+ log5N). The scheduler there needs to get the topology of the network
in advance, in order to build the schedule. The result of [GM95] shows that the lower
bound presented here must rely heavily on the lack of topological knowledge at the
processors.

Broadcast in radio networks has received considerable attention in previous works.
[CW87] present a deterministic sequential algorithm that, given the network, finds
in polynomial time a legal schedule that requires at most O(D log2N) time slots.
Broadcast that is based on using a spanning tree was suggested in [CK85a, CK87]. In
[BII93] it is shown how to reduce the amortized cost per broadcast by using a breadth-
first-search (BFS) tree. Simulation of point to point networks on radio networks is
found in [CK85b, ABLP92, BGI91].

An important issue in the study of radio networks is whether collisions can be
detected; namely, whether a listener can distinguish between the case when none of
its neighbors transmit and the case when two or more of them transmit. In our model
it is assumed that the listener cannot distinguish between the two cases (say, it hears
noise in both cases). There is another common model in which it is assumed that
the two cases are distinguishable (say, if no neighbor transmits, the listener hears
silence, while if two or more neighbors transmit, the listener hears noise). A discus-
sion justifying both models can be found in [Gal85, BGI92]. Willard [Wil86] studies
a broadcast problem in a single multiaccess channel under this second model (i.e.,
when collision detection is available). He shows matching upper and lower bounds of
Θ(log logn) expected time slots2 in this model. Our main lemma implies an Ω(logn)
lower bound for the same problem in our model. Again, this lower bound holds even if
the processors use different programs. Hence, we demonstrate a provable exponential
gap between these two models.

The rest of this paper is organized as follows: section 2 contains some necessary
definitions. Section 3 contains the proof of the main lemma in the uniform case, where
all the processors use the same program. Section 4 contains the proof of the main
lemma in the nonuniform case, where processors may use different programs. The

2Willard shows an Ω(log log n) lower bound in the single multiaccess channel model. Although
this bound applies to a different model, it should be noted that his bound is also significantly
restricted by the types of algorithms for which it applies. In particular, he requires independence
between the decision whether to transmit in a certain time slot and the decisions made in previous
time slots. In our case such a restriction is unacceptable, as the upper bound of [BGI92] has such
dependencies. Also, he does not handle the case where each processor uses a different program.

704 EYAL KUSHILEVITZ AND YISHAY MANSOUR

proof for this case is based on a probabilistic reduction to the uniform case. Finally,
in section 5, we prove the main theorem. The proof involves constructing a “difficult”
network in a probabilistic way.

2. Preliminaries. A radio network is described by an undirected graphG(V,E),3

where N = |V | and D is the diameter of the graph. The nodes of the graph represent
processors of the network, and an edge between nodes v and u implies that v can send
messages to u (and vice-versa). The neighborhood of a node u includes all the nodes
v such that there is an edge (u, v) in E.

The time is viewed as divided into slots (or rounds). In any given slot, a node
(processor) can either transmit some message (a string in {0, 1}∗) or not (i.e., re-
main silent). A radio network has the property that if two or more nodes in the
neighborhood of a node u transmit at the same time slot, then none of the messages
is received at u. More formally, we can define the set of possible transmissions as
W = {0, 1}∗ ∪{silent}. If exactly one of the node’s neighbors transmits at time t and
the message that this neighbor transmits is some m ∈ {0, 1}∗, then m is received by
the node. In any other case (i.e., if either none of the neighbors transmits or more
than one neighbor transmits) this node hears silent. The history of length ` of a node
is a vector in W ` which consists of its view of the first ` rounds.

Each processor Pi in the radio network uses a probabilistic program. This program
defines whether the processor will transmit at the next time slot j or not. As we are
not concerned with the computational power of the processors we can simply view
this program as a probability distribution, which may depend on the history. More
formally, for each processor Pi and step j there is a probabilistic function Γji : W j−1 →
W that, based on the history, determines the action of Pi in step j (i.e., whether it
remains silent, or else the value of the message it sends). The program of Pi is a
collection Γi = (Γ1

i ,Γ
2
i , . . .) that defines the actions of Pi in each step. A protocol

PN,D is simply a collection of N such programs, one per processor. A protocol is
uniform if all processors use the same program. Otherwise, if each processor has
a different program, the protocol is nonuniform. The above definition allows the
protocols to use the values of N and D. On the other hand, the protocol “does not
know” the topology of the graph, meaning that the same protocol must work for all
graphs of N nodes and diameter D.

A broadcast protocol is a protocol that is initiated by a single processor, called
originator, that holds a message M . Any other processor is inactive (i.e., it remains
silent) until receiving a message for the first time. The aim of the protocol is that
each processor in the network will receive a copy of the message M .

3. Uniform processors. In this section we prove the main lemma for the uni-
form case, where all processors use the same program. It shows that if there are
n processors4 arranged in a clique, then there exists a t (2 ≤ t ≤ n) such that if
t processors wish to transmit (we call these t processors the participants), then the
expected number of rounds (time slots) until a round in which exactly one of them
transmits is Ω(log n). In fact, we show that this is the case for most of the t’s of
the form t = 2i. Note that the assumption that the topology is not known to the
processors, in the context of this lemma, means that t, the number of processors that

3None of the results presented in this work will be changed if the network is a directed one.
However, it is common in this area to assume that the network is undirected.

4Note that we use here n (and not N) as the number of processors. This will be convenient while
using the lemma in the proof of the theorem.

LOWER BOUND FOR BROADCAST IN RADIO NETWORKS 705

are trying to transmit, is not known to any processor. We can view the scenario as
having a family of networks with n+1 nodes, composed from a clique of size n and an
originator which is connected to t of the nodes in the clique. The (unknown) topology
is chosen to be one of these networks.

For a broadcast protocol Π, we call a round successful if exactly one processor
transmits. Let E(TΠ

`) denote the expected number of rounds until the first successful
round, given that the number of participants is 2` (the expectation is taken over the
probabilistic choices of the processors).

Lemma 1. Let Π be a broadcast protocol, let the network be as above, and let n
be an upper bound on the number of participants. Then,

E`[E(TΠ
`)] = Ω(logn),

where E` denotes the expectation when ` is chosen uniformly from the range 1 ≤ ` ≤
log n.

Proof. The first observation that we make is that the lemma deals only with the
first success. This, in a sense, allows us to get rid of the dependency in the history—
we can assume that the (probabilistic) decision as to which rounds a processor tries
to transmit is made at the beginning of the protocol. This is done by letting each of
the 2` processors choose whether to transmit in round s or not in the same way as it
chooses in the original protocol, when all previous rounds were unsuccessful. Clearly,
as far as the first success is concerned, this modification has no effect on the protocol.
Also, as only the first success is considered, it does not matter what the values of the
messages that the processors try to transmit are. Hence, the decision of a processor
on whether to transmit in round s may depend on the round number, s, and the
probabilistic choices of the processor in the first s− 1 rounds, but it does not depend
on choices made by other processors.5 Therefore, we can think about the processors
as if they choose in advance, for every round s = 1, 2, . . ., whether they will try to
transmit.6

For simplicity of notation, we assume that n is a power of 2. Define

ps,`
4
= Pr(failure in rounds 1, . . . , s− 1 and success in round s|2` participants).

As the events described in the definition are disjoint (for fixed ` and different s’s),
and assuming that the protocol succeeds with probability 1 (no matter what ` is), we
have for all `

∞∑
s=1

ps,` = 1.(1)

At some point in the proof below, it will be inconvenient if ps,` depends on events
that happen in previous rounds. However, we can get rid of this dependency simply
by writing

ps,` ≤ Pr(success in round s|2` participants).(2)

5The message M that the processors need to broadcast also influences their decisions. However,
it can be thought of as part of the program used by the processors.

6To avoid measurability concerns, it is convenient to assume that the protocol is such that s is
in the range 1, . . . , F , for some finite F . If this is not the case, we can always choose F such that
the probability of choosing only in the range 1, . . . , F is arbitrarily close to 1. This will cause minor
changes in our proof.

706 EYAL KUSHILEVITZ AND YISHAY MANSOUR

The next claim gives a bound on the sum of the success probabilities in a given
round. Intuitively it says that you cannot have high probability of success in (a fixed)
round s for more than a few values of 2`. This would imply that since the number of
participants is unknown, Ω(logn) rounds would be required to reach a success for all
numbers of participants. Formally, we make the following claim.

Claim 2. For any s,

logn∑
`=1

Pr(success in round s | 2` participants) < 2.

Proof. Fix s. As already discussed, we assume that the processors make all their
choices in advance. The history of choices of a processor is a string in {0, 1}s−1, where
the value of the ith bit means trying (“1”) or not trying (“0”). Define

q(s)
4
= Pr(trying in round s) =

∑
history h

Pr(h) · Pr(trying in round s|h).

Note that q(s) does not depend on `. We assume, without loss of generality, that
q(s) > 0 (rounds with q(s) = 0 can be omitted from the protocol). Recall that a
successful round is one in which exactly one processor is trying to transmit. Therefore,

Pr(success in round s | 2` participants) = 2` · q(s) · (1− q(s))2`−1.

We get

logn∑
`=1

Pr(success in round s|2` participants) =
logn∑
`=1

2`q(s)(1− q(s))2`−1

= q(s)
logn∑
`=1

2`(1− q(s))2`−1

≤ 2 · q(s)
n−1∑
j=1

(1− q(s))j

= 2 · q(s) · 1− (1− q(s))n
q(s)

< 2

which completes the proof of the claim.
Let k be a parameter (to be fixed later). We are interested in

∑k
s=1 ps,`, which

is intuitively the probability that, given that there are 2` participants, the algorithm
succeeds in one of the first k rounds. Using equation (2) and Claim 2, we get

logn∑
`=1

k∑
s=1

ps,` ≤
k∑
s=1

logn∑
`=1

Pr(success in round s|2` participants) < 2k.(3)

By definition,

E`[E(TΠ
`)] =

logn∑
`=1

1
log n

∞∑
s=1

ps,` · s ≥
k

log n

logn∑
`=1

∞∑
s=k

ps,`.

LOWER BOUND FOR BROADCAST IN RADIO NETWORKS 707

By equation (1), this equals

k

log n

logn∑
`=1

(
1−

k−1∑
s=1

ps,`

)
,

which, by equation (3), is greater than

k

log n
· (log n− 2(k − 1)).

By choosing k = 1
4 log n, we have that

E`[E(TΠ
`)] ≥ 1

8
log n+

1
2
,

which completes the proof of the lemma.7

4. Nonuniform processors. In this section we prove the main lemma for the
nonuniform case, where the n processors may use different programs. The main idea
of the proof is to “reduce” the nonuniform case to the uniform one, and use the result
of the previous section (Lemma 1).

Lemma 3. Let Π be a protocol for n distinct processors P1, . . . , Pn that run
(possibly) different programs. Let E(TΠ

`) denote the expected number of rounds until
the first successful round, given that a random set of 2` processors participates (the
expectation is taken over the choice of the set and the probabilistic choices made by
the processors). Then

E`[E(TΠ
`)] = Ω(logn),

where ` is chosen uniformly from the range 1 ≤ ` ≤ log n.
Proof. As argued in the previous section, as only the first successful round is

considered, each program can be thought of as a “schedule”—a choice of a subset of
rounds in which the processor will transmit. Processor Pi chooses its schedule from a
distribution µi.

We now define, based on the (possibly different) programs used by P1, . . . , Pn, a
new program that will be used by each of L uniform processors Q1, . . . , QL: processor
Qj chooses (uniformly) at random 1 ≤ i ≤ n and simulates the program of processor
Pi. Namely, it chooses a schedule s with probability 1

n

∑n
i=1µi(s), where µi(s) is

the probability that processor Pi chooses the schedule s. We denote by c(Qj) the
processor Pi that Qj chose to simulate. We emphasize that all the Qj ’s run the same
program (i.e., they are uniform), and that different Qj ’s may choose to simulate the
same processor Pi (we will choose L “small enough” so that this will happen only
with a “small” probability).

The following claim says that, given that all the c(Qj)’s are distinct forQ1, . . . , Q2` ,
then the probability distribution of the schedules chosen by the Qj ’s is the same as
that of a random set of 2` processors Pi.

Claim 4. Let Q = {Q1, . . . , Q2`}. For every Qj ∈ Q, let c(Qj) be a random
processor Pi. If ∀j1 6= j2 : c(Qj1) 6= c(Qj2), then P = {c(Qj)|Qj ∈ Q} is a random

7In the original version of this paper [KM93], we proved a slightly better lower bound of 1
4 logn;

however, the proof here is simpler.

708 EYAL KUSHILEVITZ AND YISHAY MANSOUR

set of 2` processors (in P1, . . . , Pn), and the following holds: for every choice of 2`

schedules ~s2` = (s1, . . . , s2`),

Pr[~s2` |processors Q run] = Pr[~s2` |processors P run].

The following claim is the main tool in the reduction from the nonuniform case
to the uniform case.

Claim 5. Let Q be as above and let Q′ = {Q′1, . . . , Q′2`} be a set of 2` processors.
Each processor Q′j runs the program of Qj at the odd steps and the [BGI92] program
at the even steps. (Note that the [BGI92] program is also a uniform protocol, and
therefore, so is the program run by the processors Q′.) Let β` be the probability that
∀j1 6= j2, c(Qj1) 6= c(Qj2). Let TQ

′

` be the random variable indicating the time
of first success when the 2` identical programs in Q′ run, and recall that TΠ

` is the
random variable indicating the time of first success when a random subset of 2` distinct
programs Pi1 , . . . , Pi2` run. Then,

E[TQ
′

`] ≤ 2β`E[TΠ
`] + 8(1− β`) log n.

In the above claim we mixed the given (unknown) protocol with the [BGI92] pro-
tocol. This is because we have no guarantee about the running time of the simulation,
in the case when some Qj ’s choose to simulate the same Pi. For example, a protocol
that lets processor Pi transmit at time slot i would not terminate if all the Qj simulate
the same processor Pi.

Proof. Let unique be the event that ∀Qj1 , Qj2 ∈ Q′, c(Qj1) 6= c(Qj2). Then,

E[TQ
′

`] = E[TQ
′

` |unique] · Pr[unique] + E[TQ
′

` |not unique] · Pr[not unique].

By definition, Pr[unique] = β`. By Claim 4,

E[TQ
′

` |unique] ≤ 2E[TΠ
`],

where the additional factor of 2 is due to the interleaving of the two protocols. In
the case when the choices of c(Qj) are not unique, we cannot use the properties of
the original protocol. However, we can use the fact that the [BGI92] protocol has the
expected time until the first success of at most 4 log n. Therefore,

E[TQ
′

` |not unique] ≤ 8 log n,

which completes the proof of the claim.
The next claim says that with “high probability” the choices c(Qj) are unique.
Claim 6. Let β` be the probability that ∀j1 6= j2, c(Qj1) 6= c(Qj2), and assume

that 2` ≤ n1/4. Then,

β` > 1− 1√
n
.

Proof. Note that

Pr[j1 6= j2 and c(Qj1) = c(Qj2)] =
1
n
.

LOWER BOUND FOR BROADCAST IN RADIO NETWORKS 709

Therefore,

β` = Pr[∀j1 6= j2 : c(Qj1) 6= c(Qj2)] ≥ 1−
(

2`

2

)
1
n
.

Since 2` ≤ n1/4 the lemma follows.
Let L = n1/4. By Claims 5 and 6,

E[TQ
′

`] ≤ 2β`E[TΠ
`] + (1− β`)8 log n ≤ 2E[TΠ

`] +
8 log n√

n

or

E[TΠ
`] ≥ 1

2
E[TQ

′

`]− 4 log n√
n

.

We now take the expectation over all values 1 ≤ ` ≤ logL and get

E`[E[TΠ
`]] ≥ 1

2
E`[E[TQ

′

`]]− 4 log n√
n

.

By Lemma 1,

E`[E[TQ
′

`]] = Ω(logL) = Ω(log n),

which implies that

E`[E[TΠ
`]] = Ω(logn),

as desired.

5. Main theorem. In this section we prove the main theorem. We show that
for every broadcast algorithm that does not know the topology of the network, for
every N and every D, there exist networks of N processors and diameter D such that
the expected running time of the algorithm (until all processors receive the message)
is Ω(D log(N/D)). This implies a similar lower bound for the worst case running
time, when a small probability of error is allowed (which is the scenario in which the
upper bound of [BGI92] is described).

Given an algorithm and the values N and D, we construct a network as follows.
Let n = N/D, and assume for simplicity that n is a power of 2. We construct
a complete layered network of D + 2 layers. The first layer (layer 0) contains one
node, s, which will be the originator of the broadcast. Each of the next D layers
(layers 1, 2, . . . , D) consists of ni = 2`i ≤ n nodes, where `i is chosen uniformly (and
independently for each layer i) in the range 1, . . . , log n. The last layer contains all
the other nodes (so that the total number of nodes will be N). Each node in layer i
is connected to all nodes in layers i− 1 and i+ 1. (See Figure 1.)

Recall that the topology of the network is not known to the processors. (If the
topology was known, then an efficient uniform protocol would be to let a processor
at layer i broadcast with probability 1/ni, with expected time O(D). A nonuniform
protocol that knows the topology simply lets one node in each layer transmit.) The
algorithm can depend, however, on other information that the processors have, in
particular, the history, the number of steps, etc. (As mentioned, other information
which is independent of the graph, such as the message M to be broadcast, the

710 EYAL KUSHILEVITZ AND YISHAY MANSOUR

Fig. 1. Structure of the network.

processors’ IDs, or the value of a clock, can be thought of as encoded into the programs
of the processors.)

We discuss the uniform case, in the sense that all the processors at layer i have the
same protocol. The extension to the nonuniform case employs the techniques of the
previous section, and the proof is the same but the notation becomes cumbersome.
(In particular, in the nonuniform case, at each layer i we will choose not only ni but
also a random set of ni processors.) The main property of this construction is the
following. For all i and all runs of the protocol, all the processors in layer i have the
same view; every message received at one of these processors is received by all other
processors at the same time. Therefore, the broadcast progresses in a layer-by-layer
fashion. Moreover, this implies that all the processors in layer i choose schedules
according to the same distribution µ (the choice of µ depends on the history, but all
the processors of layer i share the same history), which allows us to use Lemma 1.

Finally, before going into the details, we make one more assumption that makes
our argument simpler. We give the processors of layer i, at the time they get the
first message from a processor in layer i− 1, all the other messages they will get from
layer i − 1 in the future, as well as the actual values of `1, . . . , `i−1. As this extra
information can only help the processors to make the broadcast faster, we are allowed
to make this assumption.

Let ti be the random variable indicating the number of rounds from the time the
processors of layer i get the message (and become active) until their success (the first
time that a single processor in layer i transmits). We need to show that for some
choice of `1, . . . , `D we get EΠ(

∑D
i=1 ti) = Ω(D log(N/D)), where the expectation is

taken over the random choices of the algorithm Π. Certainly, it is enough to show
that E`1,...,`D,Π(

∑D
i=1 ti) = Ω(D log(N/D)). By linearity of expectation, we get

E`1,...,`D,Π

(
D∑
i=1

ti

)
=

D∑
i=1

E`1,...,`D,Π(ti).

So all we have to bound now is E`1,...,`D,Π(ti). Clearly, the choice of `i+1, . . . , `D has

LOWER BOUND FOR BROADCAST IN RADIO NETWORKS 711

no influence on the expectation of ti; i.e.,

E`1,...,`D,Π(ti) = E`1,...,`i,Π(ti).

Also, by the discussion above, with every history (which depends on the random
choices made in the first i − 1 layers, including the choice of `1, . . . , `i−1) we can
associate a probability distribution µ used by the processors in layer i to choose their
schedules. (Note that since we assume that the processors of layer i get all the future
information with the first message, they can make all their random choices at this
time.) Therefore, we can write

E`1,...,`i,Π(ti) =
∑

b1,...,bi−1

E`i,Π(ti|`1 = b1, . . . , `i−1 = bi−1)·Pr[`1 = b1, . . . , `i−1 = bi−1].

(4)
It remains to bound the expression E`i,Π(ti|`1 = b1, . . . , `i−1 = bi−1). As men-

tioned, we allow the processors at layer i to have access to b1, . . . , bi−1 (the actual
values of `1, . . . , `i−1). Therefore, we need to evaluate E`i,Πi(ti), where Πi is the pro-
tocol at layer i, with the additional information about the lower layers. By Lemma 1,
for each such Πi,

E`i,Πi(ti) ≥ c log n

for some constant c. Therefore, for every b1, . . . , bi−1, we have

E`i,Π(ti|`1 = b1, . . . , `i−1 = bi−1) ≥ c log n,

which by (4), implies

E`1,...,`i,Π(ti) ≥ c log n.

This implies

E`1,...,`D,Π

(
D∑
i=1

ti

)
= Ω(D log n) = Ω(D log(N/D)),

which completes the proof of our main theorem.
Theorem 7. For any nonuniform broadcast protocol, for every number of pro-

cessors N and every diameter D, there exists a network in which the expected time to
complete a broadcast is Ω(D log(N/D)).

When D ≤ N1−ε, the above proof shows a lower bound of Ω(D logN). Combining
our result with the results of Alon et al. [ABLP91] and Bar-Yehuda, Goldreich, and
Itai [BGI92], we have the following tight result.

Corollary 8. For any nonuniform broadcast protocol, for every number of
processors N and every diameter D, there exists a network in which the time to
complete a broadcast is Ω(log2N + D log(N/D)). Furthermore, there is a (uniform)
protocol that requires only O(log2N +D logN) expected time (which is tight for D ≤
N1−ε).

Note that unlike [ABLP91] we show that for any protocol there exists a network
for which the lower bound holds, while they prove that there exists a network on
which any protocol requires the lower bound.

712 EYAL KUSHILEVITZ AND YISHAY MANSOUR

Acknowledgments. We wish to thank Oded Goldreich and the anonymous ref-
erees for their very useful comments.

REFERENCES

[ABLP91] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, A lower bound for radio broadcast,
J. Comput. System Sci., 43 (1991), pp. 290–298.

[ABLP92] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, Single round simulation on radio
networks, J. Algorithms, 13 (1992), pp. 188–210.

[BGI91] R. Bar-Yehuda, O. Goldreich, and A. Itai, Efficient emulation of single-hop ra-
dio network with collision detection on multi-hop radio network with no collision
detection, Distrib. Comput., 5 (1991), pp. 67–71.

[BGI92] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization, J. Comput. System Sci., 45 (1992), pp. 104–126.

[BII93] R. Bar-Yehuda, A. Israeli, and A. Itai, Multiple communication in multi-hop radio
networks, SIAM J. Comput., 22 (1993), pp. 875–887.

[CK85a] I. Chlamtac and S. Kutten, On broadcasting in radio networks—problem analysis
and protocol design, IEEE Trans. Comm., COM-33 (1985), pp. 1240–1246.

[CK85b] I. Chlamtac and S. Kutten, A spatial reuse TDMA/FDMA for mobile multi-hop
radio networks, in INFOCOM, 1985, pp. 389–394.

[CK87] I. Chlamtac and S. Kutten, Tree-based broadcasting in multihop radio networks,
IEEECOM, C-36 (1987), pp. 1209–1223.

[CW87] I. Chlamtac and O. Weinstein, The wave expansion approach to broadcasting in
multihop radio networks, in INFOCOM, pp. 874–881, 1987.

[Gal85] R. Gallager, A perspective on multiaccess channels, IEEE Trans. Inform. Theory, 31
(1985), pp. 124–142.

[GM95] I. Gaber and Y. Mansour, Broadcast in radio networks, in Proc. 6th ACM-SIAM
Symposium on Discrete Algorithms, SIAM, 1995, pp. 577–585.

[KM93] E. Kushilevitz and Y. Mansour, An Ω(D log(N/D)) lower bound for broadcast in
radio networks, in Proc. 12th ACM Symp. on Principles of Distributed Computing,
1993, pp. 65–74.

[Tan81] A. S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, NJ, 1981.
[Wil86] D. E. Willard, Log-logarithmic selection resolution protocols in a multiple access chan-

nel, SIAM J. Comput., 15 (1986), pp. 468–477.

OPTIMAL ON-LINE SEARCH AND SUBLINEAR TIME UPDATE IN
STRING MATCHING∗

PAOLO FERRAGINA† AND ROBERTO GROSSI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 713–736, June 1998 009

Abstract. This paper investigates the problem of searching on-line for the occurrences (occ) of
an arbitrary pattern of length p in a text of length n subjected to some updates after its preprocessing.
Each text update consists of inserting or deleting an arbitrary string of length y. We present the
first dynamic algorithm that achieves optimal query time, i.e., Θ(p+occ), sublinear time per update,
i.e., O(

√
n+ y), and optimal space, i.e., Θ(n), in the worst case. As a result, our algorithm obtains

the same query time and space usage of suffix trees [McCreight, J. Assoc. Comput. Mach., 23 (1976),
pp. 262–272] while improving their O(n+ y) update performance.

Key words. string matching, suffix tree, text indexing, dynamic data structures

AMS subject classifications. 68P05, 68P20, 68Q20, 68Q25

PII. S0097539795286119

1. Introduction. The problem of encoding all the substrings of a given string
for string-matching purposes is amply treated in current literature. Given a text
string T [1, n] made up of n characters taken from an ordered alphabet Σ, we want
to preprocess T in order to represent all of its substrings compactly (there could be
as many as Θ(n2)) and therefore answer the following two on-line search queries
efficiently for any pattern string P [1, p]:

(a) check to see if P is one of T ’s substrings;
(b) find all of T ’s substrings equal to P (let occ be their number).
There are three main groups of methods used for preprocessing T and solving

the above problem. Over the last twenty years, they have been “rediscovered” in
scientific literature disguised under different names and studied in various forms (e.g.,
see [3, 9]). The following is a brief list of them (we assume that Σ has constant size).

(1) The first group is made up of compacted tries that include, among other
things, the compacted prefix bi-tree [33] (or prefix tree [9]), the PAT tree [19], the
position tree [1, 23, 26], the repetition finder [30], the subword tree [3, 9], and the
suffix tree [28] (the latter is definitely the best known). The text suffixes are stored
in the compacted trie leaves so that every text substring is represented by a (unique)
path descending from the root. Two examples of suffix trees are given in Fig. 1.
Compacted tries require optimal O(n) space and construction time (e.g., see [28, 33]).
A query can be answered in optimal time, namely in O(p) time for query (a) and in
O(p+ occ) time for query (b). It is also possible to obtain some efficient statistics on
T ’s substrings (e.g., see [3, 33]). Furthermore, compacted tries have successfully been
generalized to matrices [4, 17, 18] and parameterized strings [5].

(2) The second group is made up of automata or word graphs, such as the com-
plete inverted file [7], the directed acyclic word graph (DAWG) [6], and the minimal
suffix and factor automata [10, 11]. They are either labeled directed acyclic graphs

∗Received by the editors May 17, 1995; accepted for publication (in revised form) April 5, 1996.
This research was supported by MURST of Italy. A preliminary version of this paper was presented
at the IEEE Symposium on Foundations of Computer Science, 1995.

http://www.siam.org/journals/sicomp/27-3/28611.html
†Dipartimento di Informatica, Università di Pisa, Corso Italia 40, 56125 Pisa, Italy (ferra-

gin@di.unipi.it).
‡Dipartimento di Sistemi e Informatica, Università di Firenze, via Lombroso 6/17, 50134 Firenze,

Italy (grossi@dsi2.dsi.unifi.it).

713

714 PAOLO FERRAGINA AND ROBERTO GROSSI

ba $n

ba $n

ba $n

ba $n

ba $n

(a) (b)

a$ $

a

a

a

$

$

$

$

a
$

$

$

$

$

a

aa

2n-1
n

$

Fig. 1. The suffix tree for (a) T = a2n and (b) T ′ = anban.

n
ba

nba
nba

nba

n
ba n

ba

(b)(a)

a

a

a

a

2n

a

a

a

a

n

Fig. 2. The compact DAWG for (a) T = a2n and (b) T ′ = anban.

or automata whose nodes correspond to the nodes of the compacted trie built on the
string T [7] or T ’s reversal [6, 10, 11]. Two examples of compact DAWGs are given
in Fig. 2. Their space usage, construction time, and query time are identical to the
ones required by compacted tries. Directed acyclic word graphs and minimal suffix
and factor automata allow us to perform queries (a), whereas complete inverted files
enable more queries than just (a) and (b).

(3) Finally, the third group is characterized by lexicographically ordered data
structures, such as the suffix array [27] and the dynamic suffix array [14], the PAT
array [19], and the SB-tree [15]. They all maintain T ’s suffixes in lexicographic order,
which can be equivalently obtained by traversing the compacted trie leaves. Two
examples of suffix arrays in their simplest form are given in Fig. 3. The space required
is still optimal, i.e., O(n), but the construction time is O(n log n) in the worst case
(which becomesO(n) on the average for suffix arrays [27]). Query (a) takesO(p+log n)
time and query (b) takes O(p+ log n+ occ) time (see [27] for further details).

In this paper, we only discuss query (b) because query (a) derives from it. As
previously mentioned, groups (1)–(3) are very efficient and, when dealing with a static
text, there is no better asymptotic bound possible than (1) and (2). However, in many
common situations—e.g., text editors and text retrieval systems [32, section 5.3]—the
preprocessed text T undergoes some changes. Some special cases can be handled by
the methods in (1)–(3), namely, strings can be appended to one end of T with suffix
trees [2, 21, 33] and compact DAWGs [7], or a subset of T ’s suffixes can be logically

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 715

Fig. 3. The suffix array for (a) T = a2n and (b) T ′ = anban.

deleted and undeleted [14]. However, the general problem of dynamically modifying
T in arbitrary positions by inserting or deleting strings after preprocessing, seems
a difficult task to solve efficiently. Evidence of this can be found in the following
illustrative example: let us assume that T = a2n becomes T ′ = anban after a single
character b is inserted into it, with a 6= b. Then Ω(n) locations must be updated in each
of the known data structures that implement (1)–(3) (see Figs. 1–3). Consequently,
updating the data structures basically costs the same as rebuilding them from scratch!
Furthermore, as pointed out in [20], a naive method for avoiding the rebuilding that
consists of keeping a “to-do-list” of changes is still very expensive.

Due to the trivial Ω(y) lower bound to the time needed for inserting or deleting
a string Y [1, y], we realized the importance of obtaining a sublinear time update,
i.e., o(n) + Θ(y) for all y, while maintaining optimal query time, i.e., O(p+ occ), and
optimal space usage, i.e., O(n). In this paper we illustrate how to solve this problem.

In current literature, an important step has been done with dynamic text indexing ,
introduced in [20] with the aim of attaining an efficient time trade-off between pattern
searching and single-character (text) updating. This trade-off was generalized in [13,
14] to text string insertions (or deletions) which are seen as atomic changes rather than
sequences of single-character changes. It is worth noting that all of these dynamic text
indexing results deal with nonoblivious queries: while the length of the “history” of
insertions and deletions increases, the query’s performance degenerates independently
of the current text and pattern length. It is therefore reasonable to design oblivious
dynamic text indexing algorithms whose query time does not explicitly depend on
the “history.” There are some well-known examples of oblivious dynamic algorithms:
dynamic graph algorithms, for example, have a time complexity that only depends on
the current graph size (e.g., see [12]).

We start out by proposing a simple technique for obtaining oblivious queries by
means of a text partitioning technique. We provide the first dynamic text indexing
algorithm that achieves an optimal query time, i.e., O(p + occ). Updating the text
under the insertion (or deletion) of a string Y [1, y] takes O((y+

√
n log n) log(n+ y))

time. The space required is O(n log n) (see Theorem 3.2).
However, our main contribution in this paper is presenting the first dynamic

algorithm that achieves in the worst case:
• optimal query time Θ(p+ pocc) (Theorem 4.3);
• sublinear time per update O(

√
n+ y) (Theorem 4.4);

• optimal space Θ(n).

716 PAOLO FERRAGINA AND ROBERTO GROSSI

As far as we know, this is the first dynamic algorithm that provides both a query
in optimal Θ(p + occ) time and an update in sublinear o(n) + Θ(y) time for every
y, in optimal space. Our result is significant for the following reasons: “start-over”
solutions requiring O(n + y) time per update can be obtained by running the static
algorithms from scratch. These start-over solutions show that the known dynamic text
indexing algorithms still obtain a trade-off because their fast updates are not always
o(n)+Θ(y) for every y (e.g., let us take y = Ω(n

logn) in Theorem 3.2). Moreover, their
space usage is O(n log n) (except for [20]). Therefore, if we consider the start-over
solutions from a theoretical point of view, to our surprise, we discover that they are
the best-known text updating methods for almost all input strings (see footnote1).
In our results, we do not simply reduce the update cost and the amount of space
required by a polylogarithmic factor (still maintaining an optimal query time), but
we also show that our oblivious algorithm is not a trade-off because it is always better
than the start-over solutions for every y. Since no better asymptotic bounds can exist
for y = Ω(

√
n), our algorithm is the best one possible in this case. Furthermore, our

solution is still optimal for a static text T . As a result, we obtain the same query
time and space usage of suffix trees, automata, etc., while improving their update
performance.

Our paper is organized as follows. We discuss some preliminary notions in sec-
tion 2. In section 3 we introduce the notion of “balanced” text partitioning, while we
outline our main result in section 4. In sections 5–7, we describe the implementation
details and new techniques.

2. Preliminaries. Our preliminary remarks regard string periodicity [24] and
suffix trees [28, 33]. (Readers familiar with them can skip this section.)

Let X[1,m] be a string of m characters taken from the ordered alphabet Σ, and
let X[1, i] be the ith prefix and X[j,m] be the jth suffix of X. A period of X is any
proper prefix π such that X is in the form of πrπ′, where r ≥ 1 and π′ is a (maybe
empty) prefix of π. Analogously, X[i] = X[i+ |π|] for every 1 ≤ i ≤ m− |π|+ 1. The
period π of X is its shortest period. The following lemma is well known.

Lemma 2.1 (see Knuth, Morris, and Pratt (KMP) [24]). If p and q are the
lengths of any two periods of X, such that p+ q ≤ m+ gcd(p, q), then gcd(p, q) is also
the length of a period of X.

The following simple fact regarding X’s periodicity will be useful later.
Fact 2.2. Any substring X[i, j] longer than |π| has a cyclic shift of π’s characters

as a period.
We wish to point out that a cyclic shift of π is not necessarily the period of X[i, j]

(which may be shorter).
For 1 ≤ i ≤ m, the decomposition of each prefix X[1, i] in the form of πri π

′
i, where

πi is the period of X[1, i], can be obtained in O(m) time with KMP’s algorithm [24].
The same computation can be performed for each of X’s suffixes by using X’s reversal,
denoted by XR. We will also use the notion of border. A border is a proper prefix
of X that is also its suffix. We can compute the longest border Shift(X[1, i]) of each
prefix X[1, i] in a total of O(m) time by using the algorithm in [24].

1For example, we want to delete a generic string Y [1, y] and let us assume it costs O(y logn)+o(n)
time. This bound is better than O(n + y) when y = O(n/ logn). This happens for Θ(|Σ|cn/ logn)
input strings Y , for some constant c > 0, whereas for other Θ(|Σ|n − |Σ|cn/ logn) input strings Y
the start-over solutions in (1)–(2) are faster. In this case, the former term is asymptotically smaller
than the latter.

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 717

The suffix tree STX [28, 33] for the string X is a compacted trie built on the
augmented string X[1,m + 1], where X[m + 1] = $ 6∈ Σ is an endmarker. It stores
the suffixes X[i,m + 1] in its leaves, for 1 ≤ i ≤ m, and can be built optimally in
O(m) time and space (e.g., see [28]). Each STX arc is labeled with a substring X[i, j]
represented by a triple (X, i, j), and sibling arcs are ordered according to the first
character of their label (see Fig. 1). We adopt the following terminology for suffix
trees. Given a node u ∈ STX , the concatenation of the labels encountered along the
downward path in STX from the root to u is denoted by W (u). This node u is called
the locus of W (u). The extended locus of a string Y in STX is the unique node v, if it
exists, such that Y is a prefix of W (v) and W (p(v)) is a proper prefix of Y , where p(v)
is v’s parent in STX . The following property of STX is used throughout the paper,
and ensures that, given a node u ∈ STX , all the leaves descending from u store the
suffixes having the same prefix W (u).

Property 2.3. Two suffixes have a common prefix, i.e. Y , if and only if they
share a path from the root to the extended locus of Y .

We can preprocess STX in O(m) time [22, 31] in order to answer constant-time
queries for finding the lowest common ancestor of any two nodes (hereafter called
LCA query). LCA queries can be used for finding the longest common prefix of any
two substrings of X, in O(1) time, by Property 2.3 (see [25]).

We call the suffix tree generalization to a set ∆ of strings [2, 21] a generalized
suffix tree (GST∆ for short). It is the compacted trie obtained by “superimposing”
suffix trees STX for all X ∈ ∆ incrementally, in O(|X|) time each. Two arcs are
superimposed whenever their labels have a common prefix. Multiple equal strings
are associated with the same leaf and kept in a doubly linked list. The fundamental
point is that, given ∆ = {X1, X2, . . . , Xk}, the compacted trie GST∆ is isomorphic to
STX1$X2$...Xk, where each instance of $ is assumed to be different from the others.
The out-degree of each node can be kept bounded by alphabet size |Σ| according to [2].
The insertion of a suffix determines a leaf insertion (and sometimes the insertion of
its parent). The symmetrical operation of deleting a string X from ∆ can also be
obtained in O(|X|) time. In this case, too, Property 2.3 holds. See [2, 21] for further
details about GST∆ building and updating by means of McCreight’s algorithm.

3. A simple technique for optimal query: “Balanced” partition. In this
section, we introduce a simple technique for maintaining a “balanced” partition of
text T ; that is, we decompose T into substrings of roughly the same size. We give an
example of its application to a known dynamic text indexing solution and obtain the
first oblivious algorithm having optimal query time. We use the following result.

Theorem 3.1 (see Ferragina and Grossi [14, section 6.4]). The dynamic text
indexing problem on T [1, n] can be solved with the following bounds: finding the oc-
currences of P [1, p] requires O(p+occ+ |L| log p+log n) time, where occ is the number
of occurrences; inserting or deleting a string Y [1, y] takes O(y log(y + n)) time. The
space required is O(n log n).

Our idea for using this result is based on maintaining T = I1 · · · Ik as a list
L = {I1, . . . , Ik} of its substrings (called intervals) whose length satisfies ` ≤ |Ii| < 2`,
where ` is a parameter specified later on. As a result, L’s size is k = Θ(n`) and this
is called a balanced partition. Let us maintain an O(n)-size generalized suffix tree
GST∆ built on the set ∆ = {I1I2, I2I3, . . . , Ik−1Ik} of pairs of consecutive intervals.
Any two consecutive strings in ∆ overlap for exactly one of L’s intervals.

We can now find P in two main cases according to its length p: (1) If p ≤ `, then
each occurrence is entirely contained in a pair of consecutive intervals. Therefore,

718 PAOLO FERRAGINA AND ROBERTO GROSSI

all the occurrences are easily found in O(p + occ) time by accessing the leaves that
descend from P ’s extended locus into GST∆ (by Property 2.3). Multiple occurrences
are listed twice at most. (2) If p > `, then listing all the occurrences takes O(p+occ+
n
` log p+ log n) time by Theorem 3.1 (since |L| = O(n`)). By fixing ` =

√
n log n, the

query time becomes optimal, i.e., O(p+ occ).
Text partitioning can be maintained consistently under string insertions and dele-

tions by means of some split and merge operations on intervals. Let us assume that we
must insert a string Y [1, y] into an interval Ii = I ′I ′′ to produce the string X = I ′Y I ′′.
We split X into h = b |X|` c intervals I ′1, . . . , I

′
h, such that |I ′1| = · · · = |I ′h−1| = ` and

` ≤ |Ih| < 2`. Text T must be updated by replacing Ii with the intervals created
because of X. We also update GST∆ consistently by deleting the strings Ii−1Ii and
IiIi+1 and inserting the strings Ii−1I

′
1, I
′
1I
′
2, . . . , I

′
hIi+1 of length O(`) each. Since

there are O(y/` + 1) of them, the update requires O(y + `) total time by the al-
gorithms in [2]. We then update the data structures in Theorem 3.1 by deleting
the whole Ii and inserting the sequence of O(y/` + 1) strings I ′1, . . . , I

′
h into L, in

O((y + `) log(n+ y + `)) total time. Since we fixed ` =
√
n log n, the bound becomes

O((y +
√
n log n) log(y + n)).

When deleting a string Y [1, y], we remove L’s shortest sublist that denotes T ’s
substring I ′Y I ′′ entirely containing Y . Then we insert string I ′I ′′ into T again, with
|I ′I ′′| < 4`. This requires making a deletion in O((y + `) log n) time and an insertion
of no more than two new intervals in O(` log(n + `)) time (by Theorem 3.1). Since
we fixed ` =

√
n log n, the bound becomes O((y +

√
n log n) log n). Our first result is

therefore proved.
Theorem 3.2. Searching for a pattern P [1, p] in the text T [1, n] requires optimal

O(p+occ) time, where occ is the total number of occurrences. Updating the text under
the insertion or deletion of a string Y [1, y] takes O((y +

√
n log n) log(y + n)) time.

The space required is O(n log n).

4. Optimal query, sublinear time update, and optimal space. We now
give a high-level overview of our main result for finding pattern occurrences optimally,
i.e., O(p+ occ) time, while also obtaining sublinear time update, i.e., O(

√
n+ y), and

optimal space, i.e.,O(n). We combine the basic idea of balanced partitioning described
in section 3 with some new techniques for updating and searching efficiently in the
intervals’ list L. In the following, we indicate the ideas we base our data structures
and algorithmic techniques on.

We recall that the text is maintained as a partition of intervals whose length
goes from ` to 2` and which are stored into a list L = {I1, I2, . . . , Ik} of size k =
Θ(n`). String insertions and deletions are implemented by performing split and merge
operations on L’s intervals (to maintain their length between ` and 2`). By setting
` = Θ(

√
n), we obtain a balanced partition in which an interval’s length is proportional

to the intervals’ number. Due to this partition the pattern can be searched for in two
different ways depending on its length. We call a pattern short if it is not longer than
c` (for a proper constant c, to be fixed below) and call it long otherwise.

Short patterns can be searched for by maintaining a generalized suffix tree GSTS
on a set S of text substrings obtained by concatenating a sequence of consecutive
intervals. For each interval Ii, we insert the smallest substring Ii . . . Ii+r whose length
is at least c` + 4` into GSTS (which contains O(n`) strings). This makes sure that
each short pattern occurrence is entirely contained in a string stored in GSTS because
no interval is longer than 2`.

Long patterns can be searched for in a more involved way. Since p = Ω(`) = Ω(n`),

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 719

Fig. 4. A pattern occurrence ending in interval Ii.

we have enough time for scanning L. Therefore, we process this list and, for each
interval Ii, we compute both the pattern’s longest prefix Pi that is a suffix of I1 . . . Ii−1
and the pattern’s longest suffix Si that is a prefix of Ii+1 . . . Ik. After that, we put
Pi’s and Si’s together to find the pattern occurrences. Our approach is different from
the ones in [13, 14, 20] because it exploits long-pattern periodicity. We now want to
state some constants that we will use later on in our algorithms and data structures.

Let us assume that there are some occurrences ending in Ii. Since the pattern is
long, we have the property that each such occurrence completely overlaps a sequence
of consecutive intervals preceding Ii. Let us choose the minimum integer j, such that
the sequence IjIj+1 . . . Ii−1 is maximal and contains all of the occurrences ending in
Ii. In the worst case, an occurrence ends in Ii’s last position and occupies |Ii| < 2`
positions to the right of Ii−1 and less than 2` positions to the left of Ij . We therefore
have (see Fig. 4):

|IjIj+1 . . . Ii−1| > p− 4`.(4.1)

It is worth noting that Pi and Sj−1 actually cover a text’s substring containing all the
occurrences ending in Ii, and IjIj+1 . . . Ii−1 is the overlapping part between Pi and
Sj−1. We use Pi and Sj−1 to determine these occurrences. Since we shall prove that
the sum of Pi’s and Sj−1’s period lengths is upper bounded by 6`, we want to have
p− 4` > 6` in (1). This makes sure that |IjIj+1 . . . Ii−1| > 6`, and thus both Pi’s and
Sj−1’s periods occur in IjIj+1 . . . Ii−1. We then apply Lemma 2.1 and find out that
these periods are equal; because of this, we are able to determine all the occurrences
in optimal time. Therefore, in order to guarantee that p − 4` > 6` in (1), we define
a long pattern to be of length p > 10` (and so we set c = 10). In brief, a pattern is
short if p ≤ 10`, and GSTS stores strings at least (c+ 4)` = 14` long. We work with
Pi’s and Sj−1’s periods whose total length is no more than 6`. We use these constants
to introduce our main data structures.

4.1. A data structure pool. We let L = {I1, . . . , Ik}, where k = Θ(n`) and
` ≤ |Ii| < 2`. There are also two dummy intervals I0 = Ik+1 of length 14`. Both I0
and Ik+1 are entirely made up of $’s, where $ does not occur in Σ. We define for each
interval Ii ∈ L:
• string(Ii) = Ii · · · Ii+r, where r is the smallest integer such that |Ii|+· · ·+|Ii+r| ≥

14` (we have r ≤ 14).
• Ci is a set of two strings, called Ii’s cover , which is made up of Ii’s prefix and

suffix of length `. Since ` ≤ |Ii| < 2`, the two strings are overlapping .

720 PAOLO FERRAGINA AND ROBERTO GROSSI

• Li is the suffix of I0I1 · · · Ii of length 6` and Ri is the prefix of Ii · · · IkIk+1 of
length 6`.

Our data structure pool is made up of four main data structures {GSTS , GSTC ,
GSTL, GSTR} and is maintained together with list L. Let P [1, p] be an arbitrary
pattern to be queried in the pool. We define:
• GSTS is a generalized suffix tree for set ∆S = {string(I1), . . . , string(Ik)}. We

perform the on-line search of short patterns in the strings of ∆S by finding the
pattern’s extended locus in GSTS .
• GSTC is a generalized suffix tree for set ∆C = ∪ki=1Ci (where each Ci is a set of

two strings of the same length `). We can perform on this set:
∗ Query-C(P): For all X ∈ ∆C , find a pattern substring (if it exists) equal to
X, denoted by SubEq(P,X).

• GSTR and GSTL are two augmented generalized suffix trees built on the strings
in the set ∆R = {R1, . . . , Rk} and on the reversal of the strings in the set
∆L = {L1, . . . , Lk}, respectively. We can perform on these sets:
∗ Query-R(P): For all X ∈ ∆R, find the pattern’s longest suffix that is a

prefix of X, denoted by SufPref(P,X).
∗ Query-L(P): For all X ∈ ∆L, find the pattern’s longest prefix that is a

suffix of X, denoted by PrefSuf(P,X).
Each data structure in the pool has O(n) size and O(`) depth, and the pool

requires a total of optimal O(n) space. It is not straightforward to implement the
above queries because of the changes that can be performed on the GST s in the pool
by means of the following operations:
∗ Given a set ∆ ∈ {∆S ,∆C ,∆L,∆R} and a string Z[1, z], with z = O(`), the

operation Add(Z,∆) (resp., Remove(Z,∆)) adds string Z to (resp., removes
it from) ∆ and updates GST∆.
In section 5, we give a detailed description of the data structure pool along with

a complexity analysis of their query and update operations.

4.2. Pattern searching. The algorithm listing all the occurrences (occ) of a
pattern P [1, p] in the current text T is outlined below, while a technical discussion of
it can be found in section 6.

Algorithm Find(P).
(1) If the pattern is short (p ≤ 10`), then we find its extended locus in GSTS

and list the distinct occurrences associated with the leaves descending from
the locus. Otherwise the pattern is long (p > 10`) and we go on to steps (2)
and (3).

(2) For all i = 1, . . . , k, we find the pattern’s longest prefix Pi that is a suffix of
I1 · · · Ii−1 and the pattern’s longest suffix Si that is a prefix of Ii+1 · · · Ik. We
proceed inductively by scanning list L from left to right for Pi and from right
to left for Si. We exploit the data structure pool and the fact that the length
of each Ii varies from ` to 2` (see section 6.1).

(3) For all i = 1, . . . , k, we find the occurrences ending in Ii. We take prefix Pi and
suffix Sj−1 for some suitable j < i, such that Pi and Sj−1 overlap for at least
p− 4` > 6` positions (see Fig. 4). More specifically:
(3.1) We compute ni =

∑i−1
r=1 |Ir| for all i (where n1 = 0). For each Ii, we

find its mate interval Ij , such that j is the minimum integer satisfying
ni − nj < p− |Ii| (and so ni − nj = |Ij · · · Ii−1| > p− 4`).

(3.2) We list all the occurrences in PiIi by deploying the large overlapping
between Pi and Sj−1. Namely, we find the occurrences ending in Ii

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 721

and contained in the text substring covered by Pi and Sj−1 when
|Pi|, |Sj−1| > ni − nj . We do this by executing a procedure CPS
which is described in section 6.2.

Algorithm Find’s correctness is illustrated in the following two cases.
If the pattern is short (p ≤ 10`), then every occurrence is a substring of a

string(Ii) ∈ ∆S , and so the pattern is found by using GSTS in step (1). Even
though some occurrences might be listed more than once, each of them can appear no
more than 14 times. Thus step (1) can be performed in O(p+ occ) time by using an
uninitialized boolean vector for discarding all the multiple occurrences. (We do not
discuss this case in the rest of the paper.)

If the pattern is long (p > 10`), then we use the other data structures (i.e.,
GSTC , GSTR, and GSTL). We scan L (see [20, 13, 14]) and deploy the bounded
length of L’s intervals. Let us now examine an occurrence ending in Ii. Its starting
position is to the left of Ij because ni − nj < p − |Ii| (see Fig. 4). We decompose
this occurrence in two overlapping substrings P̂ and Ŝ, such that P̂ is both a pattern
prefix and a suffix of I1 · · · Ii−1, and Ŝ is both a pattern suffix and a prefix of Ij · · · Ik.
By definition, P̂ must be a suffix of Pi and Ŝ must be a prefix of Sj−1. Therefore, the
occurrence lies entirely within the text substring covered by Pi and Sj−1 and hence
is subsequently listed in step (3.2).

Remark 4.1. Step (2) requires O(p + n) time when the KMP automaton [24]
is used. We could obtain better time, i.e., O(p + n

` log p), if the border tree data
structure [20] is used. In this paper, we drop the O(log p) factor by charging O(1)
time per character and L’s interval. That is, we achieve O(p + ` + n

`) = O(p + n
`)

time because p > 10` (see section 6.1). In this case, the solution is optimal.
Remark 4.2. We can implement step (3.2) in O(h + p) time by simply checking

all the candidate positions, where h is the total number of occurrences retrieved. We
can obtain an exponential speed-up, i.e., O(h+ log p) time (see [20]), by means of the
border tree data structure using the pair (Pi, Si−1). In this paper, we show how to
use the pair (Pi, Sj−1) in order to drop the O(log p) factor and yield Θ(h+ 1) optimal
time (see section 6.2).

In the rest of this paper, we show how to implement steps (2) and (3) optimally
in O(p+ n

`) and O(p+ n
` +occ) time in order to achieve our goal of answering Find(P)

in optimal O(p + occ) time. Indeed, by setting ` =
√
n, we obtain O(p +

√
n + occ)

query time for a long pattern. Since p > 10` = 10
√
n, we achieve the following result.

Theorem 4.3. Searching for a pattern P [1, p] in the text T [1, n] requires optimal
O(p+ occ) worst-case time, where occ is the total number of occurrences.

4.3. Text updating. In this section, we describe the insertion of a string Y [1, y]
into the current text, from a high-level point of view. Our aim is to achieve a sublinear
update time in the worst case (see section 7 for the technical discussion).

Algorithm Insert(Y).
(1) We scan L to find the interval Ii in which the string Y must be inserted to

produce X = I ′ Y I ′′, where Ii = I ′ I ′′.
(2) We replace Ii with the intervals created from X as follows. We split X

into h = b |X|` c = O(y/` + 1) intervals I ′1, . . . , I
′
h, such that |I ′1| = · · · =

I ′h−1| = ` and ` ≤ |Ih| < 2`. Then we update L to obtain the new list
L = I1, . . . , Ii−1, I

′
1, . . . , I

′
h, Ii+1, . . . , Ik.

(3) We update the pool {GSTS , GSTC , GSTL, GSTR} consistently. In particular,
for each set ∆ ∈ {∆S ,∆C ,∆L,∆R} we have to identify the strings to be deleted
and the ones to be inserted because Ii is replaced by I ′1, . . . , I

′
h. This process

722 PAOLO FERRAGINA AND ROBERTO GROSSI

deletes all the strings in ∆ overlapping Ii, and inserts (from scratch) the strings
in ∆ overlapping at least one of the h = O(y/` + 1) new intervals I ′1, . . . , I

′
h.

Since each interval has a length from ` to 2`, the number of strings in ∆
overlapping a given interval is a constant for all ∆ ∈ {∆S ,∆C ,∆L,∆R}: there
are no more than 14 for ∆S , 2 for ∆C , 6 for ∆L, and 6 for ∆R. This implies
that the total number of deleted strings is O(1), while the number of inserted
ones is O(y/`+ 1), where each string has O(`) length. The data structure pool
updating is done by Add and Remove operations (defined in section 4.1).
We wish to point out that, even if y < ` and ` ≤ |X| < 2`, we must insert the

whole new interval I ′1 = X from scratch by updating the data structure pool in O(`)
time.

Deleting a string Y by Algorithm Delete is similar to Algorithm Insert. We
scan L and remove its shortest sublist L′ that denotes a text substring I ′Y I ′′. We
then delete all the strings in ∆ overlapping at least one interval of L′, for each ∆ ∈
{∆S ,∆C ,∆L,∆R}. However, since we do not have to delete I ′ and I ′′, we insert
them into T again as the string I ′I ′′ (if not empty) by Algorithm Insert (note that
|I ′|+ |I ′′| < 4`). The deletion process therefore removes O(|L′|) = O(y/`+ 1) strings
and inserts O(1) strings of length O(`), for each set ∆ ∈ {∆S ,∆C ,∆R,∆L}.

In the rest of the paper, we provide insertion and deletion procedures that require
O(y+ `+ n

`) time in the worst case (see section 7). By setting ` =
√
n (as previously

done in the Find operation) we obtain the bound we claimed.
Theorem 4.4. Inserting a string Y [1, y] in (or deleting it from) T [1, n] requires

O(y +
√
n) worst-case time.

5. Details about the data structure pool. The pool is composed of four main
data structures {GSTS , GSTC , GSTL, GSTR}. In section 4.1, we saw that GSTS and
GSTC are generalized suffix trees built on the strings in set ∆S = {string(I1), . . . ,
string(Ik)} and set ∆C = ∪ki=1Ci, respectively (we remember that Ci is a set of two
strings, namely, Ii’s prefix and suffix of length `).

The two other data structures GSTR and GSTL are built on the strings in ∆R =
{R1, . . . , Rk} and on the reversal of the strings in ∆L = {L1, . . . , Lk}, respectively.
Since Li is the suffix of I1 · · · Ii having length 6`, and Ri is the prefix of Ii · · · Ik having
length 6`, the depth of GSTL and GSTR is at most 6` and the number of their nodes
is O(n). Although any two equal strings in ∆L (resp., ∆R) can share the same leaf in
GSTL (resp., GSTR), they cannot be each other’s prefix because they have the same
length 6`. In what follows, we explain only how to augment GSTR, bearing in mind
that the same holds for GSTL.

The leaves of GSTR that only store the strings in ∆R and not their proper suffixes
are marked . Two dummy marked leaves (whose parent is the root) are always the
leftmost and the rightmost ones in GSTR. A doubly linked list, DLL, maintains the
marked leaves in left-to-right order, and its size satisfies |DLL| ≤ |∆R| + 2 = O(n`).
Each leaf f in DLL has an initially empty push-list(f) and an initially zero pop-
counter(f) associated with it. Two pointers LM and RM are associated with all the
nodes in GSTR. For a node u, if the leftmost and rightmost marked leaves (i.e., in
DLL) descending from u exist, then they can be retrieved by LM(u) and RM(u),
respectively. (If those leaves do not exist, then LM(u) = RM(u) = nil.) Moreover,
the arc linking u to a child v is marked whenever v is an ancestor of a marked leaf.

We go on to describe the solution to the operations mentioned in section 4.1 (we
recall that the query for GSTS is the ordinary suffix tree search [33]). We also use in
our solutions the elegant matching statistics that have been presented by Chang and

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 723

Lawler [8] and Galil and Giancarlo [16]. They show that, for any given pattern P [1, p],
it is possible to build on-line two vectors, here called LONGEST and EXLOCUS,
such that LONGEST [i] contains the length of the longest prefix of P [i, p] whose
extended locus is in GST∆, and EXLOCUS[i] contains the pointer to this locus, for
1 ≤ i ≤ p. The on-line computation of these vectors requires a total of O(p) time and
space, provided that GST∆ is given.

5.1. Solution to Query-C. We now show how to find the pattern substring
SubEq(P,X) (if it exists) that is equal to X, for each X ∈ ∆C . We use vectors
LONGEST and EXLOCUS (described above) computed for the whole pattern and
GSTC in O(p) time. The leaves storing the strings in ∆C , all of length `, can be
easily distinguished from the leaves storing their proper suffixes because the latter
are always shorter than `. Moreover, no strings longer than ` are stored in GSTC .
Therefore, if LONGEST [i] = `, we know that leaf EXLOCUS[i] stores some strings
from ∆C that are equal to P [i, i+`−1]. Vice versa, if LONGEST [i] < `, then we can
discard EXLOCUS[i] because it points to the extended locus of a proper substring
of some strings in ∆C .

We proceed as follows to answer Query-C: for i = 1, . . . , p, if LONGEST [i] = `,
then we assign position i to leaf EXLOCUS[i] (unless an integer j < i has already
been assigned). Then, for each leaf f having an assigned integer, say i, we retrieve all
the strings X whose locus is f (we have X ∈ ∆C) and set SubEq(P,X) := P [i, i+`−1].
At the end, SubEq(P,X) is set equal to the empty string for all the remaining strings
X ∈ ∆C that are not involved in the computation above.

Lemma 5.1. Query-C(P) can be correctly answered in O(p+ n
`) time.

Proof. Let X be a string stored in a leaf, say, f . We know that X ∈ ∆C if and
only if |X| = `. If an integer i is assigned to f , then, by definition of EXLOCUS and
LONGEST , we have LONGEST [i] = `. Therefore, P [i, i + ` − 1] can be correctly
taken as SubEq(P,X). If an integer is not assigned to f , then either X 6∈ ∆C (because
|X| < `) or X ∈ ∆C and it does not occur in P . The computation of both vectors
requires O(p) time [8], and there are O(n`) strings in the leaves having an assigned
integer (we recall that |DLL| = O(n`)).

Query-C is particularly useful for performing constant-time comparisons between
an interval Ii and a pattern substring, say P [j, j+|Ii|−1]. If they are not identical, the
computation returns their longest common prefix (LCP) in O(1) time. Indeed, let Ci
be Ii’s cover, given by its prefix I ′ and its suffix I ′′ of length `. If either SubEq(P, I ′)
or SubEq(P, I ′′) is empty, then Ii 6= P [j, j+ |Ii|−1]. Otherwise, Ii = P [j, j+ |Ii|−1] if
and only if SubEq(P, I ′) = P [j, j+`−1] and SubEq(P, I ′′) = P [j+ |Ii|−`, j+ |Ii|−1].
These two checks can be performed in constant time through two LCA queries on the
suffix tree STP (see section 2). If we fail (i.e., Ii 6= P [j, j + |Ii| − 1]), then we obtain
the LCP’s length in O(1) time. From now on we refer to that computation as LCP
query .

5.2. Solution to Query-R and Query-L. We now show how to find the pattern’s
longest suffix SufPref(P,X) that is a prefix of X, for each X ∈ ∆R. We take the string
P [p−6`+1, p] and compute LONGEST [i] and EXLOCUS[i] for all i, such that p−
6`+1 ≤ i ≤ p, by Chang and Lawler’s algorithm [8] performed on GSTR. (Since |X| =
6` for each X ∈ ∆R, we only deal with pattern suffixes not longer than 6`.) We then
select the set EXN of distinct nodes from EXLOCUS[p− 6`+ 1, p], such that they
are extended loci of at least one suffix of P [p−6`+1, p]. This constraint can be easily
verified by checking whether or not LONGEST [i] = p−i+1. After that, we associate
the position pos(u) = min{i ∈ [p−6`+1, p] : u = EXLOCUS[i] and LONGEST [i] =

724 PAOLO FERRAGINA AND ROBERTO GROSSI

p− i+ 1} with each node u ∈ EXN . That is, pos(u) corresponds to the longest suffix
of P [p − 6` + 1, p] whose extended locus is u. Finally, the nodes u ∈ EXN are
sorted in increasing order according to their pos(u) values. The whole computation
is performed in O(`) time by scanning EXLOCUS[p− 6`+ 1, p] from left to right.

Lemma 5.2. Let f be the leaf of GSTR storing a string X ∈ ∆R. We have
SufPref(P,X) = P [i, p] if and only if i = pos(u) where u is the first of f ’s ancestors
encountered in a left-to-right scan of the sorted set EXN .

Proof. If P [i, p] is the longest suffix giving SufPref(P,X), then P [i, p]’s extended
locus is an ancestor of f , say v, which belongs to EXN . Since v is the deepest of f ’s
ancestors having this property, v must be the first node in EXN that is an ancestor
of f . We therefore have that v = u and pos(u) = i. Conversely, since i = pos(u) and
u is an ancestor of f , we infer that P [i, p] is definitely a prefix of X (by the suffix
tree’s properties). Since u is the first (i.e., deepest) of f ’s ancestors in EXN , no suffix
P [j, p], with j < i, can be a prefix of X. Otherwise, v = EXLOCUS[j] would be an
ancestor of f with pos(v) < i, and so v should occur before u in the sorted EXN ,
which contradicts our hypothesis. In conclusion, P [i, p] = SufPref(P,X).

As far as answering Query-R is concerned, we only have to apply Lemma 5.2 to
the leaves in GSTR that belong to DLL (they store the strings in ∆R). Since GSTR
contains O(n) nodes and has O(`) depth, we cannot compute the deepest ancestor in
EXN of each leaf in DLL by traversing the tree upwards because it would require
O(|DLL| · `) time. Instead, we simulate this traversal in optimal O(|DLL|) = O(n`)
time as follows.

We read the sorted set EXN from left to right. For each node u ∈ EXN , such
that LM(u), RM(u) ∈ DLL, we update the push-list in LM(u) and the pop-counter
in RM(u), as follows: we append pos(u) to the beginning of the push-list in LM(u)
and increment the pop-counter in RM(u). It is worth noting that for any two nodes
in EXN , one of which is the other’s ancestor, the deepest one is examined first (due
to EXN ’s ordering).

Next, we scan DLL from left to right by means of a stack S. When processing
a leaf f ∈ DLL, we push all the elements contained in push-list(f) into S (unless
push-list(f) is empty). We then set SufPref(P,X) = P [i, p] for all X ∈ ∆R stored in
f , where i is the integer currently at the top of S (unless S is empty). We execute a
pop operation on S for pop-counter(f) times, and then go on scanning DLL. At the
end, push-list(f) and pop-counter(f) are reset.

Query-L is symmetrical to Query-R because PrefSuf(P,X) = SufPref(PR, XR).
Therefore, we can manage this case by computing LONGEST and EXLOCUS for
string P [1, 6`]’s reversal.

Lemma 5.3. Query-L(P) and Query-R(P) can be correctly answered in O(`+ n
`)

time.
Proof. The time complexity readily derives from the preceding considerations. As

a matter of fact, we spend O(`) time to compute vectors EXLOCUS and LONGEST
for P [p − 6` + 1, p], and O(n`) time to scan list DLL and vector EXN . We prove
the correctness by means of Lemma 5.2 and EXN ’s ordering. The strategy adopted
for setting push-list(l) and pop-counter(l) (where l = LM(u) or l = RM(u) for u ∈
EXN) allows our simulation to yield the following implicit parenthesis representation
of EXN ’s nodes and DLL’s leaves.

We start out with a standard parenthesis representation for trees (e.g., the Euler
tour) and apply it to GST∆, where ∆ ∈ {∆R,∆L}. We cancel all parentheses not
corresponding to nodes in EXN or leaves in DLL. The resulting list is still well

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 725

balanced. The nearest pair of parentheses enclosing the pair associated with a leaf
f ∈ DLL corresponds to its deepest ancestor belonging to EXN . We cannot apply
this approach directly because its cost would be proportional to GST∆’s size, i.e.,
O(n). Consequently, we only deal with the leaves l ∈ DLL and obtain a construction
in O(n`) time. Let us assume that u, v ∈ EXN exist such that LM(u) = LM(v) = f ,
for some f ∈ DLL (the case of RM(u) = RM(v) = f is simpler). Therefore, u and
v must be each other’s ancestor, say u ancestor of v. Due to EXN ’s ordering, v is
visited before u in EXN and thus pos(v) is put into the push-list(f) before pos(u).
Therefore, the pos-values associated with each push-list maintain the correct nesting
of the corresponding parentheses in the Euler tour of GST∆. This means that, for
every f ∈ DLL, the pos-values in push-list(f) are in decreasing order (i.e., by their
increasing suffix length). Moreover, the counter pop-counter(f) is used for balancing
the left parentheses with their matching (right) ones.

Let us now assume that X ∈ ∆R is stored in leaf f ∈ DLL. If push-list(f)
is not empty, the last integer i in push-list(f) corresponds to the nearest pair of
parentheses enclosing f . As a result, this pair of parentheses corresponds, in turn, to
the longest suffix P [i, p] that is a prefix of X, as stated by Lemma 5.2. Indeed, integer
i is the pos-value associated with the first (i.e., deepest) of f ’s ancestors encountered
in EXN . We have that integer i is at the top of S when processing f (because it is
the last item in push-list(f)). If push-list(f) is empty, then none of f ’s ancestors are
in EXN . In brief, since the parentheses are balanced, we always correctly find the
integer i associated with the nearest pair of parentheses enclosing the ones for f at
the top of S (i.e., the deepest of f ’s ancestors in EXN).

5.3. Solution to Add and Remove. Given a set ∆ ∈ {∆S ,∆C ,∆L,∆R} and
a string Z[1, z], with z = O(`), we recall that the operation Add(Z,∆) (resp.,
Remove(Z,∆)) adds string Z to (resp., removes it from) ∆ and updates GST∆.

If ∆ = ∆S (with z ≤ 14`) or ∆ = ∆C (with z = `), we only have to use the
algorithms in [2], which require O(`) time. We now discuss only Add(Z,∆R) without
any loss in generality (with z = 6`). Let Z be a string of length 6` to be added to
∆R. We insert all of Z’s suffixes into GSTR in O(`) time by using the algorithm
in [2]. Each inserted suffix Z[i, 6`] is associated with its locus, namely leaf fi, for
i = 1, . . . , 6`. If fi already exists, then we only have to append Z[i, 6`] to the list
of (equal) strings associated with fi. Otherwise, we create fi and possibly its parent
p(fi). We then update DLL,LM,RM , and the marks in GSTR as follows.

The first suffix (i.e., Z itself) is handled differently from the others. Let Π be the
leaf-to-root path from f1 in GSTR, immediately after the insertion of Z[1, 6`] = Z.
We insert f1 into the doubly-linked list DLL (because Z ∈ ∆R) by finding f1’s
predecessor in DLL. We do this by applying a brute-force algorithm that exploits
the fact that GSTR cannot be deeper than 6`. Indeed, we go upwards in Π until we
reach the deepest node u having an outgoing marked arc to the left of Π. In this
case, we follow u’s rightmost outgoing marked arc that is to the left of Π and thus
we reach a child v. We then insert f1 into DLL right after RM(v) and update the
bi-directional links properly. The insertion of Z[1, 6`] into DLL leads to rearranging
the pointers LM and RM of some nodes in Π and setting the marks in all of Π’s arcs.
Finally, we create and initialize push-list(f1) and pop-counter(f1). The overall cost
is proportional to GSTR’s depth, i.e., O(`).

Any other proper suffix Z[i, 6`], with i > 1, is handled in a simpler way and takes
O(1) time each. The pointers LM and RM and the marks associated with the arcs
in GSTR do not need to be updated because Z[i, 6`] is not inserted into DLL. If

726 PAOLO FERRAGINA AND ROBERTO GROSSI

leaf fi is created, then we set LM(fi) = RM(fi) = nil. If p(fi) is also created (by
splitting a GSTR’s arc), then it can only have two children, namely fi and another
node, say v. The pointers LM and RM in p(fi) are set equal to v’s because fi 6∈ DLL.
If LM(v), RM(v) 6= nil, then the arc from p(fi) to v is marked. (In this case, the
arc connecting p(fi) to its parent has already been marked.) We can now state the
following result.

Lemma 5.4. Given ∆ ∈ {∆S ,∆C ,∆R,∆L} and a string Z of length O(`),
Add(Z,∆) and Remove(Z,∆) can be executed in O(`) time.

6. Find implementation. We only discuss steps (2) and (3) because step (1)
was already described in section 4.2.

6.1. Step (2) of the Find algorithm. We remember that we want to compute
the pattern’s longest prefix Pi that is a suffix of I1 · · · Ii−1 for every i = 1, . . . , k, with
k = Θ(n`). (Since finding Si is symmetrical, we do not discuss it here.) We present a
solution requiring O(p+ `+ n

`) time.
Preprocessing. We execute Query-L(P) in O(`+ n

`) time (Lemma 5.3) in order
to compute the pattern’s longest prefix PrefSuf(P,Li) that is a suffix of Li, for all
i = 1, . . . , k − 1 (see section 4.1 for the definition of Li). Since |Li| = 6`, we have
|PrefSuf(P,Li)| ≤ 6`. We also execute Query-C(P) in O(` + n

`) time (Lemma 5.1).
We then build the pattern’s suffix tree STP and preprocess it for handling LCA
queries [22, 31] in order to obtain constant-time LCP queries between an interval
Ii and a pattern substring (see section 5.1). Finally, we compute the periods of all
pattern prefixes in O(p) time by using the algorithm described in [24] (see section 2).

Assuming that Pi has already been found correctly (by induction on i = 1, . . . , k−
1, where P1 is the empty string), we find Pi+1 in the form of the pattern’s longest
prefix that is a suffix of PiIi. We know that Pi+1 cannot be longer than PiIi because
otherwise we would have determined a longer Pi. We begin by introducing a simple
solution called Algorithm Naive.

We check to see if PiIi is a pattern prefix by means of an LCP query on Ii and
P [|Pi| + 1, |Pi| + |Ii|]. If the answer is that the latter two strings are equal, then
we set Pi+1 := PiIi. Otherwise, we use the Shift function in order to examine Pi’s
borders according to their decreasing lengths (see section 2): we set P ′i := Pi and
repeat P ′i := Shift(P ′i) until either P ′i Ii is a pattern prefix and |P ′i | + |Ii| > 6` or we
find |P ′i | + |Ii| ≤ 6`. In the former case, we perform the check in constant time by
first making an LCP query that compares Ii to P [|P ′i | + 1, |P ′i | + |Ii|] and then by
setting Pi+1 := P ′i Ii (whenever the LCP query is successful); in the latter case, we
set Pi+1 := PrefSuf(P,Li).

As far as Algorithm Naive’s correctness is concerned, we let X denote string
concatenation P ′i Ii and assume that X is not a pattern prefix. We maintain the
invariant that Pi+1 is a suffix of X by considering two cases. (1) If |X| > 6`, then
Pi+1’s prefix (having length |Pi+1|−|Ii| ≥ 0, if it exists) must be a border of P ′i . Thus
we can safely take the longest border Shift(P ′i) to maintain the invariant and continue
the computation. (2) If |X| ≤ 6`, then we can correctly set Pi+1 := PrefSuf(P,Li)
because |Pi+1| ≤ 6` (by the invariant). Algorithm Naive’s complexity is O(p + n)
time because Shift is executed for O(n) times in the worst case.

Algorithm Naive is inefficient when |X| > 6` (and so |P ′i | ≥ 4`) because we can
call function Shift many times. We let m = |P ′i | − |Shift(P ′i)| be the number of
characters that are skipped in a Shift call. It is worth noting that m ≥ 2` can occur
a total of O(nm) = O(n`) times and so we can pay for its computational cost (this
figure appears in the time complexity that we want to obtain in this step). Therefore,

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 727

Fig. 5. The invariant on pattern prefixes P ′′i and P ′i .

m < 2` turns out to be Algorithm Naive’s most expensive case to deal with. Further
on in this paper we prove that, if |X| > 6` and m < 2`, then the period of P ′i is shorter
than 2` (i.e., the intervals’ maximum length). Hence, we obtain a faster algorithm by
exploiting these properties.

We let π denote the period of P ′i , such that |π| < 2`, and let P ′i be in the form
of πrπ′ for some integer r ≥ 1. Every border of P ′i has π as a period. By examining
the borders longer than, or equal to, 4` (by means of some Shift calls), we obtain the
stronger property that π is actually the period of these borders.

Lemma 6.1. Every border of P ′i longer than, or equal to, 4` is in the form of
πjπ′ for some j ≤ r (where P ′i = πrπ′ and |π| < 2`).

Proof. We take a border P [1, s] of P ′i , with s ≥ 4`, and let P [1, z] be the shortest
prefix of P ′i that is in the form πjπ′ (for some j ≤ r) and contains P [1, s] as prefix
(i.e., z ≥ s and z−|π| < s). Our aim is to prove that z = s. Let us assume that z > s
by way of contradiction. Since both P [1, z] and P [1, s] are borders of P ′i , we deduce
that P [1, s] is a suffix of P [1, z]. Therefore, P [1, z − s] is a period of P [1, z]. Since
z − s < |π|, we have |π| + (z − s) < 2|π| < 4` ≤ z and so we can apply Lemma 2.1
to periods π and P [1, z − s] in order to state that π̂ = P [1, gcd(|π|, z − s)] is also a
period of P [1, z], where |π̂| < |π|. However, |π̂| divides |π| and so π̂ is shorter than π,
and this contradicts the fact that π is the period of P ′i . Consequently, we must have
s = z and the lemma follows because π is thus the period of P [1, s].

Lemma 6.1 implies that the borders of P ′i longer than, or equal to, 4` are shifted
over P ′i by a multiple of |π| positions. This proves Corollary 6.2, which provides us
with a necessary condition for characterizing the candidates for being Pi+1 (we only
deal with the ones longer than 6`).

Corollary 6.2. Let us take a suffix of X = P ′i Ii longer than 6` that is also a
pattern prefix, say P [1, s+ |Ii|] with s ≥ 4`. We have: P [1, s] is a border of P ′i and its
period is π; therefore, P [1, s+ |Ii|] is shifted over X by a multiple of |π| positions.

By using Lemma 6.1 and Corollary 6.2, and since ` ≤ |Ii| < 2`, we are able to
simulate Algorithm Naive’s ith step more efficiently. We maintain two prefixes P ′′i , P

′
i

of Pi under the following invariant (see Fig. 5):
• P ′′i , P ′i are Pi’s borders, such that |P ′′i | ≥ |P ′i | and |P ′i |+ |Ii| ≥ |Pi+1| (i.e., Pi+1

is a suffix of X = P ′i Ii).
The invariant initially holds for P ′′1 = P ′1 = P1 = ε, where ε denotes the

empty string. We illustrate the ith inductive step in detail below and use the macro
“Output(Y)” for the following sequence of instructions: “if |Y | > 6` then Pi+1 := Y

728 PAOLO FERRAGINA AND ROBERTO GROSSI

else Pi+1 := PrefSuf(P,Li); P ′′i+1 := P ′i+1 := Pi+1; repeat the case analysis for
i := i+ 1.”

Step(i): Case Analysis.
(1) We let X = P ′i Ii. If X is a pattern prefix, then we execute Output(X).
(2) If X is not a pattern prefix, then we set P ′′i := P ′i and P ′i := Shift(P ′i) (and so
|P ′′i | > |P ′i |). We let X denote the new string concatenation P ′i Ii. Three cases
follow from this:
(2.1) Case |X| ≤ 6`. Since we have |Pi+1| ≤ 6` by the invariant, we execute

Output(ε).
(2.2) Case |X| > 6` and |P ′′i | − |P ′i | ≥ 2`. Since we have a shift of at least

2` positions (i.e., more than the intervals’ maximum length), we can
repeat the case analysis (1)–(2).

(2.3) Case |X| > 6` and |P ′′i | − |P ′i | < 2`. We let π be the period of P ′i (we
show that |π| < 2` in Lemma 6.3’s proof). We write X in the form of
πqα and P in the form of πtβ, where π is not a prefix of α and β and
so q and t are maximum.
(2.3.1) If X has period π (i.e., α is a prefix of π) and q < t, then we

execute Output(X).
(2.3.2) If X has period π and q ≥ t, then we check to see if α is a

prefix of β. If so, then we execute Output(πtα); otherwise,
we execute Output(πt−1α).

(2.3.3) If X does not have period π and q < t, then we execute
Output(ε) (we show that |Pi+1| ≤ 6` in Lemma 6.3’s proof).

(2.3.4) If X does not have period π and q ≥ t, then we check to see
if α is a prefix of β. If so, then we execute Output(πtα);
otherwise, we execute Output(ε) (we show that |Pi+1| ≤ 6`
in Lemma 6.3’s proof).

Lemma 6.3. The case analysis in Step(i) correctly finds Pi+1.
Proof. We prove that the preceding case analysis in Step(i) correctly simulates

Algorithm Naive’s ith step. We assume that we have already found Pi (the basis
trivially holds). By the invariant, Pi+1 is a suffix of P ′i Ii. In Case 1, we check to
see if Pi+1 = P ′i Ii. If the check fails, then we go to case (2) and examine P ′i and its
largest border Shift(P ′i) (as in Algorithm Naive). Cases (2.1) and (2.2) closely follow
Algorithm Naive when we test condition |P ′i | + |Ii| ≤ 6` and execute one loop step
(for |P ′′i | − |P ′i | ≥ 2`), respectively, and so we do not go into their details.

Vice versa, we deal with case (2.3) in detail because it occurs when less than 2`
characters are skipped by calling Shift(P ′i) (we recall that this was Algorithm Naive’s
most expensive case). This readily implies that the period of P ′i is shorter than 2`,
and hence the period of Shift(P ′i) is also shorter than 2`. Since we previously set
P ′′i := P ′i and P ′i := Shift(P ′i), we let π be the period of the new P ′i , with |π| < 2`,
and X be the new string concatenation P ′i Ii. We also have X = πqα and P = πtβ,
such that q and t are maximum (i.e., πq+1 is not a prefix of X and πt+1 is not a prefix
of P). It is worth noting that q, t ≥ 2 because P ′i is a prefix of both X and P and
|P ′i | ≥ 4`.

The rationale in case (2.3) is that either Pi+1 is in the form of πjα for an integer
j (when it is longer than 6`) or Pi+1 = PrefSuf(P,Li) (when it is not longer than
6`). We therefore show that determining Pi+1 amounts to executing Output(P̂) for
a string P̂ defined as follows: let j be the largest integer, such that πjα is both a
pattern prefix and one of X’s suffixes, with 0 ≤ j ≤ q. If such a j exists, then we

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 729

take P̂ = πjα; otherwise, we set P̂ = ε. We first prove that Pi+1 is the pattern prefix
returned by Output(P̂), and then we show how to compute P̂ . Two cases follow.
• If |Pi+1| > 6`, then Pi+1 must be shifted over X by a multiple of |π| positions

(Corollary 6.2). Since P̂ = πjα is also shifted over X by a multiple of |π| positions and
is the longest pattern prefix having this property, we deduce that Pi+1 = P̂ (which is
the string returned by Output(P̂) because it is longer than 6`).
• If |Pi+1| ≤ 6`, then P̂ is a (maybe empty) border of Pi+1, and so |P̂ | ≤ |Pi+1| ≤

6`. Consequently, Output(P̂) returns PrefSuf(P,Li), which is Pi+1 by Lemma 5.3.
The crucial point in the rest of this proof is to show that cases (2.3.1)–(2.3.4)

actually find P̂ . We distinguish two main cases: X has period π (cases (2.3.1)–(2.3.2))
or X does not have period π (cases (2.3.3)–(2.3.4)).

Let us examine X having period π. We deduce that α is a (maybe empty) prefix
of π. In case (2.3.1), the whole string X is a pattern prefix and so P̂ = X (and we
have j = q). In case (2.3.2), when α is β’s prefix, πtα is a pattern prefix. We choose
P̂ = πtα (and so j = t) because πt+1 cannot be a pattern prefix. When α is not β’s
prefix, we know that α is π’s prefix (since X is periodic) and thus πt−1α is a prefix
of πt (and so it is a pattern prefix). We choose P̂ = πt−1α (and so j = t− 1) because
πtα is not a pattern prefix.

Let us now examine X not having period π. We deduce that α and π cannot be
each other’s prefix. In case (2.3.3), Pi+1 is not longer than 6`. The proof is obtained
by contradiction. If Pi+1 were longer than 6`, then we could apply Corollary 6.2 to
it and find out that Pi+1 is shifted over X by a multiple of |π| positions and is in
the form of πhα for some h ≤ q < t. Since both Pi+1 = πhα and πh+1 would be
pattern prefixes (because h + 1 ≤ t), we would have the contradiction that either α
is a prefix of π or vice versa. Therefore, Pi+1 has length 6` at most and cannot be
in the form of πhα for any h. In our case analysis, we choose P̂ = ε; consequently,
Output(P̂) returns PrefSuf(P,Li), which is Pi+1. In case (2.3.4), when α is β’s prefix,
πtα is a pattern prefix and X’s suffix (because q ≥ t). Since πt+1 cannot be a pattern
prefix, we choose P̂ = πtα (and so j = t) and Output(P̂) returns Pi+1. When α is
not β’s prefix, we can prove |Pi+1| ≤ 6` by following the proof in case (2.3.3). By
contradiction, if Pi+1 were longer than 6`, then we could apply Corollary 6.2 to it and
find out that Pi+1 is shifted over X by a multiple of |π| positions and is in the form of
πhα for some integer h. We cannot have h = t because πtα would be a pattern prefix
and α would be β’s prefix. We cannot have h > t because πt+1 cannot be a pattern
prefix. Finally, we cannot have h < t because both πh+1 and πhα would be pattern
prefixes and this would imply that either α is a prefix of π or vice versa. As a result,
Pi+1 has length 6` at most and cannot be in the form of πhα for any h. In our case
analysis, we choose P̂ = ε; consequently, Output(P̂) returns PrefSuf(P,Li), which is
Pi+1.

Summarizing our results, we can say that Output(P̂) always computes Pi+1 in
the case analysis. Since the invariant is maintained for Step(i + 1), the correctness
proof follows.

The efficient implementation of Step(i) requires some further comments. In
case (1), we can verify that X = P ′i Ii is a pattern prefix in constant time by means of
an LCP query on Ii and P [|P ′i |+ 1, |P ′i |+ |Ii|] (see section 5). In cases (2.3.1)–(2.3.4),
we do the following. We know that P ′i is in the form of πrπ′ after pattern prepro-
cessing and r ≥ 2 because |π| < 2` and |P ′i | ≥ 4`. This allows us to find out if X has
period π in constant time: X has period π if and only if Ii occurs in P at position
|π′| + 1 (i.e., Ii extends the periodicity of P ′i and this can be checked by an LCP

730 PAOLO FERRAGINA AND ROBERTO GROSSI

Fig. 6. The constrained prefix-suffix problem.

query). We also need to compare q to t in constant time. By an LCP query, we can
compute integer q, such that X is in the form of πqα. We compute t by performing
an LCP query on P and P [|π|+ 1, p].

Lemma 6.4. For every i = 1, . . . , k, a total of O(p + ` + n
`) time is required for

finding the pattern’s longest prefix Pi that is a suffix of I1 · · · Ii−1, and the pattern’s
longest suffix Si that is a prefix of Ii+1 · · · Ik.

Proof. The correctness follows by applying Lemma 6.3 to all the inductive steps.
As far as the time complexity is concerned, the preprocessing phase consists of answer-
ing Query-C(P) inO(p+n

`) time (see Lemma 5.1). Moreover, we execute Query-L(P)
and Query-R(P) in O(`+ n

`) time (see Lemma 5.3). We take O(p) time to build and
preprocess STP for LCA queries [22, 31]. At a generic step (i), all cases cost O(1)
time. Only case (2.2) makes us repeat the case analysis; all other cases give an answer
and terminate the computation for the ith step. Therefore, either we perform a shift
of at least 2` text positions (case (2.2)) or we find Pi+1 and increment i in O(1) time
(all the other cases). Since |T | = n, we perform O(n`) shifts at most and increment
i for no more than k = O(n`) times to visit all of L’s intervals. Therefore, our case
analysis takes O(n`) time.

Remark 6.5. It is possible to modify the case analysis of Step(i) to solve the
prefix-substring problem [20] in O(log p) time without using the border tree. The
details are left to the reader.

6.2. Step (3) of the Find algorithm. As previously mentioned, we want to
determine all the occurrences ending at a position inside a given interval Ii. In step (3)
(where p > 10`; see section 4.2), we therefore examined the occurrences in the text
substring covered by Pi and Sj−1. This computation can be formalized as follows.
Given a pattern prefix P [1, i′] and a pattern suffix P [j′, p], where 1 ≤ j′ ≤ i′ ≤ p,
the prefix-suffix problem defined in [20] requires us to find all the occurrences in the
string concatenation P [1, i′]P [j′, p]. We introduce here a variant of this problem (see
Fig. 6) called constrained prefix-suffix problem and defined for:

1. two positions i′, j′, where 1 ≤ j′ ≤ i′ ≤ p;
2. an integer k′ > p− 4`, such that P [i′ − k′ + 1, i′] = P [j′, j′ + k′ − 1] (we have
k′ > 6` because p > 10`);

3. an interval length x, with ` ≤ x < 2`.
We provide an algorithm CPS(i′, j′, k′, x) to answer the following query: deter-

mine all the occurrences in the string P [1, i′]P [j′ + k′, j′ + k′ + x − 1] obtained by
concatenating P [1, i′] and one of P [j′, p]’s substrings of length x. Substep (3.2) in Al-
gorithm Find is performed by calling CPS(i′, j′, k′, x) with parameters i′ = |Pi|, j′ =
p− |Sj−1|+ 1, k′ = ni − nj , and x = |Ii|.

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 731

We now introduce the following notation regarding CPS(i′, j′, k′, x). We write
P [1, i′] in the form of πr1π

′
1 and P [j′, p] in the form of πq2π

′
2 (where π1 is the period

of P [1, i′] , π2 is the period of P [j′, p] , and π′1, π
′
2 are prefixes of π1, π2, respectively).

We indicate the pattern period by π. We go on to prove some properties that are
crucial for achieving optimality; they apply to a long string Z = P [1, i′]P [j′ + k′, p],
with |Z| > p.

Lemma 6.6. If P occurs in Z = P [1, i′]P [j′ + k′, p] starting at a position in
P [2, i′ − k′] and ending at a position in P [j′ + k′, j′ + k′ + x− 2], then |π1| = |π2| <
x < 2`.

Proof. We let P ′ = P [1, i′] and S′ = P [j′, p] and assume that there is at least
one such occurrence. Since this occurrence starts at P [2, i′ − k′] and ends in P [j′ +
k′, j′ + k′ + x− 2], we can consider it a string concatenation P [1, s]P [s+ 1, p] (where
s ≤ i′ and s + x > p). We deduce that P ′′ = P [1, s] is a proper suffix of P ′, and
S′′ = P [s − k′ + 1, p] is a proper prefix of S′ (see Fig. 7). Moreover, by letting
K = P [j′, j′ + k′ − 1] = P [i′ − k′ + 1, i′] (see point 2), we have K = P [s− k′ + 1, s].

We first prove |π1| < x < 2` and |π2| < 4`. By using point 3 and inequality
s + x > p, we have i′ − s ≤ p − s < x < 2`. Since P ′′ is a border of P ′, we
deduce that P [1, i′ − s] is a period of P ′. By definition, π1 is the shortest period
of P ′ and so |π1| ≤ i′ − s < x < 2`. Furthermore, K is a prefix of both S′ and
S′′. Consequently, the same argument used for π1 gives us |π2| < 4` because |π2| ≤
|S′| − |S′′| = s− j′ + 1− k′ ≤ p− k′ < 4` (by point 2).

We then prove |π1| = |π2|. By contradiction, let us assume that |π1| < |π2| (the
other case, |π1| > |π2|, is similar). K is a suffix of P ′ and a prefix of S′, where |K| > 6`
by point 2. Let π̂1 be K’s prefix having length |π1| (i.e., π̂1 = P [i′−k′+1, i′−k′+|π1|]
is a cyclic shift of π1’s characters). According to Fact 2.2, π̂1 and π2 are both K’s
periods. Moreover, |π̂1|+ |π2| < 6` < k′ = |K|. Therefore, by applying Lemma 2.1 to
periods π̂1 and π2, we conclude that K has a period of length G = gcd(|π̂1|, |π2|) =
gcd(|π1|, |π2|) < |π2|. Since G divides |π2|, we can infer that S′ has a period that is
shorter than the period π2. This contradicts our hypothesis.

Lemma 6.7. There is an occurrence in Z = P [1, i′]P [j′+k′, p] starting at P [2, i′−
k′] and ending in P [j′ + k′, j′ + k′ + x − 2] if and only if |π| = |π1| = |π2| < x < 2`
and i′ + x > p+ |π|, where π is the pattern period.

Proof. (⇒) Let us assume that such an occurrence exists. By Lemma 6.6, we
have |π1| = |π2| < x < 2`. We show |π| = |π1| = |π2| by proving that |π| = |π1|.
Since π2 is a period of P [j′, p] and |π1| = |π2|, then π2 is a cyclic shift of π1 (i.e.,
π2 = P [i′ − k′ + 1, i′ − k′ + |π1|]). Since P [i′ − k′ + 1, i′] = P [j′, j′ + k′ − 1] with
k′ > 6`, we can conclude that π1 is a period of the whole string Z (π2 extends π1’s
periodicity). Moreover, since P [1, i′] is a pattern prefix, we have |π1| ≤ |π|. We cannot
have |π1| < |π| because P occurs in Z and π1 is a period of Z, and this would imply
that π1 is a shorter period for P . Therefore, |π| = |π1|, and i′ + x > p+ |π| because
the occurrence in Z starts after the first position and ends before the last one (by our
hypothesis).

(⇐) Let us assume that |π| = |π1| = |π2| < x < 2` and i′ + x > p + |π|.
Since Z = P [1, i′]P [j′ + k′, p] and K = P [i′ − k′ + 1, i′] = P [j′, j′ + k′ − 1], with
k′ > 6`, we can infer that Z is periodic and its period has length |π| < x < 2`.
Therefore, there must be some occurrences that are neither a prefix nor a suffix of
P [1, i′]P [j′ + k′, j′ + k′ + x − 1] because i′ + x > p + |π|. In other words, they start
at P [2, i′ − k′] and end in P [j′ + k′, j′ + k′ + x− 2].

732 PAOLO FERRAGINA AND ROBERTO GROSSI

Fig. 7. A decomposition of a pattern occurrence into its prefix P ′′ and its suffix S′′. Note that
P ′′ (resp., S′′) is a border of P ′ (resp., S′).

Corollary 6.8. If some occurrences in P [1, i′]P [j′ + k′, p] start at P [2, i′ − k′]
and end in P [j′+ k′, j′+ k′+ x− 2] then they correspond exactly to positions 1 + t|π|
in Z, for t = 1, 2, . . ., such that t|π|+ p < i′ + x.

Proof. From Lemma 6.7, internal occurrences in Z can exist if Z’s and P ’s periods
are equal. Therefore, Z[1 + t|π|, p + t|π|] = P , for each t = 1, 2, Each of these
occurrences overlaps both P [1, i′] and P [j′ + k′, j′ + k′ + x − 2] so t|π| + p < i′ + x
makes sure that the occurrences end in P [j′ + k′, j′ + k′ + x− 2].

Lemma 6.7 and Corollary 6.8 employ the fact that there is a large overlapping
k′ > 6` between P [1, i′] and P [j′, p]. We now show how to use them.

Preprocessing. We build and preprocess the suffix tree STP in O(p) time in order
to answer constant-time LCA queries [22, 28, 31]. Consequently, any two pattern
substrings can be compared in constant time by an LCP query (see section 5.1). We
also assume that we have previously computed all the pattern prefixes’ and suffixes’
periods in O(p) time [24]. We let Pref(P, i′) (resp., Suf(P, j′)) denote the length of
P [1, i′]’s (resp., P [j′, p]’s) period.

Algorithm CPS.
Input: Integers i′, j′, k′, x, such that 1 ≤ j′ ≤ i′ ≤ p, with p > 10`; k′ ≥ p−4` satisfies
P [i′ − k′ + 1, i′] = P [j′, j′ + k′ − 1], and ` ≤ x < 2`.
Output: All occurrences in P [1, i′]P [j′ + k′, j′ + k′ + x− 1].
(1) If i′ + x < p, then we stop because this means that there cannot be any occur-

rences at all. If i′ + x ≥ p, then we need to find out if P is a prefix or a suffix
of P [1, i′]P [j′ + k′, j′ + k′ + x − 1] in constant time. We do it by checking to
see if either P [i′+ 1, p] is a prefix of P [j′+ k′, j′+ k′+x− 1] or P [1, j′+ k′− 1]
is a suffix of P [1, i′]; we use LCP queries for this purpose.

(2) We list the occurrences that are fully within P [1, i′]P [j′ + k′, j′ + k′ + x − 1],
i.e., that start at P [2, i′ − k′] and end in P [j′ + k′, j′ + k′ + x− 2]. Specifically,
we verify that |π| = Pref(P, i′) = Suf(P, j′) < x < 2` and i′ + x > p + |π|
in constant time (Lemma 6.7). If so, the occurrences fully within P [1, i′]P [j′+
k′, j′ + k′ + x− 1] are the ones identified by Corollary 6.8 (otherwise, they do
not exist).
Lemma 6.9. After preprocessing P in O(p) time, each execution of Algorithm

CPS correctly finds the h occurrences ending in interval Ii in optimal Θ(h+1) time.

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 733

Proof. The correctness readily derives from the preceding observations. As far as
the time analysis of CPS is concerned, preprocessing takes O(p) time (as previously
mentioned). Step (1) requires constant time through LCP queries; step (2) takes
Θ(h+ 1) time.

6.3. Analysis of Find: Proof of Theorem 4.3. We now prove Theorem 4.3
regarding Algorithm Find’s complexity by using the results described in sections 6.1
and 6.2, in which we have two possible cases. If the pattern is short (p ≤ 10`), then
GSTS ’s traversal in step (1) requires O(p+occ) time. If the pattern is long (p > 10`),
then we prove that searching P by means of steps (2) and (3) requires O(p+`+ n

` +occ)
time. In step (2), Query-C(P) requires O(p+ n

`) time (by Lemma 5.1); Query-R(P)
and Query-L(P) can be answered in O(`+ n

`) time (by Lemma 5.3). The case analysis
in section 6.1 takes a total of O(n`) time plus O(p) preprocessing time (Lemma 6.4). In
step (3), we scan L in O(n`) time and list all the occurrences in O(p+ n

` +occ) time by
making O(n`) calls to CPS after O(p) preprocessing time (Lemma 6.9). Consequently,
searching in steps (2)–(3) takes a total of O(p+ `+ n

` + occ) = O(p+ n
` + occ) time

because p > 10`. By setting ` =
√
n (see section 4.2), we prove Theorem 4.3 and the

following corollary.
Corollary 6.10. Let Σ be an unbounded ordered alphabet. Searching for a

pattern P [1, p] in the text T [1, n] takes O(p log |Σ| + occ) worst-case time, where occ
is the total number of occurrences.

Proof. We store the children list associated with each suffix tree node into a
balanced search tree of O(g) size, where g ≤ |Σ| is the list’s size. This implementation
introduces a logarithmic slowdown in the data structure pool’s traversal and suffix
tree construction. The total space required is still

∑
g O(g) = O(n).

7. Insert and Delete implementation. Given the interval list L, we want to
maintain it consistently under insertion and deletion of new strings. We only deal
with insertions here because the same criteria hold for deletions. We refer back to
Algorithm Insert in section 4.3 and analyze its computational cost. We assume that
a string Y [1, y] must be inserted into an interval Ii to produce X = I ′Y I ′′. In step (1),
we scan L and find the interval Ii in which Y has to be inserted in O(n`) time. In
step (2), we update L in O(y + `) time by replacing Ii with the intervals I ′1, . . . , I

′
h

created from X, where h = O(y/`+1). In step (3), L’s change affects sets ∆S ,∆C ,∆L,
and ∆R and their generalized suffix trees in the data structure pool (section 4.1). We
point out that O(1) strings of length O(`) are removed and O(y/` + 1) strings of
length O(`) are added to those sets by Remove and Add operations (see section 5.3).
The sets are then updated in a total of O(y + `) time (by Lemma 5.4). The cost of
Insert’s steps amounts to O(y + `+ n

`) time.
We wish to add some remarks on insertions and deletions to complete our analysis.

Text T can shrink or grow arbitrarily and violate the condition that ` =
√
n (we

assume that
√
n is a power of 2 without any loss in generality). Let Ti be the text T

after i updates (i.e., string insertions or deletions) and ni = |Ti|, where T0 is the initial
text. We recall that list L represents Ti’s partition into intervals, whose length goes
from ` to 2`. When ni = 4n0, parameter ` should be doubled and list L recomputed
because the intervals are now from 2` to 4` long (so we should set T0 := Ti, n0 := ni,
and ` := 2`). The same happens when ni = n0

4 (i.e., ` should be halved). At this point,
the reconstruction cost for the data structure pool from scratch could be charged on
previous updates’ cost but, in this way, the bounds stated in Theorem 4.4 would be
amortized . Instead, we propose a method based on the “global rebuilding” technique
described in [29] in order to obtain worst-case bounds.

734 PAOLO FERRAGINA AND ROBERTO GROSSI

Our basic idea consists of maintaining two “partial copies” of the pool and up-
dating them “incrementally.” One copy is tuned by parameter 2` and the other by
parameter `

2 . For brevity’s sake, we only describe how our idea works on L and GSTS
for the copy tuned by parameter 2`.

Given L = {I1, . . . , Ik}, let us assume that k/2 is an integer without any loss in
generality, and define I ′j = I2j−1I2j for j ∈ [1, k/2]. It is worth noting that I ′1 · · · I ′k/2
represents Ti’s partition into intervals of length 2`. We let string′(I ′j) be the prefix
of I ′j · · · I ′k/2 of length 6 · 2` = 12` (we recall that string(Ij) is the prefix of Ij · · · Ik
of length 6`). Given text Ti, we maintain the following data structures according to
a variable j ∈ [0, k/2]:
• a list L′ = {I ′1, . . . , I ′j} (empty for j = 0);
• an augmented generalized suffix treeGST ′S on ∆′S = {string′(I ′1), . . . , string′(I ′j)}

(the set is empty for j = 0);
• a garbage area GA containing O(|I ′j+1|+ · · ·+ |I ′k/2|) memory cells that we want

to dispose of.
At the beginning (for T0 and j = 0), list L′, generalized suffix tree GST ′S , and set

∆′S are all empty, and GA contains O(n0) memory cells. When ni = 4n0, we prove
that list L′ is Ti’s partition according to the parameter 2` because j = k/2. Moreover,
at that point, GA is empty and GST ′S stores the whole set ∆′S = {string′(I ′1), . . . ,
string′(I ′k/2)}. As a result, we do not need to reconstruct anything from scratch and
we can set L := L′, GSTS := GST ′S , ∆S := ∆′S , and GA to the area containing
the “old” pools (i.e., O(ni) space). We also have to set T0 := Ti, n0 := ni, ` := 2`,
j := 0, and to reset L′, GST ′S , and ∆′S to be empty. After that, |GA| = O(n0) and
the invariant is maintained. All this computation requires O(1) worst-case time.

We now show how to maintain the data structures incrementally. Given the in-
sertion or deletion of string Y [1, y], we update L, GSTS , etc., in O(y+ `+ n

`) time (as
shown above). This means adding and removing O(y/`+1) intervals in L. If the inter-
vals in L have been changed, we must update the corresponding O(y/`+ 1) intervals
in L′. As a consequence, O(y/` + 1) strings in ∆′S and GST ′S are added or removed
within the same time bounds. We now introduce the global rebuilding idea. Our
updating process also performs some operations that affect the “partial copies” while
executing the standard insertion and deletion operations (described above). We ap-
pend intervals I ′j+1, . . . , I

′
j+y/`+1 to L′ by adding string′(I ′j+1), . . . , string′(I ′j+y/`+1)

to ∆′S and by updating GST ′S in O(y + `) time by means of Algorithm Add (sec-
tion 5.3). Then we set j := j + y/` + 1. We also dispose O(y + `) memory cells in
GA (for some suitable constant factor). This process requires a total of O(y + `+ n

`)
time that is less than the data structure pool’s updating cost.

We now show that everything has been correctly set when ni = 4n0. Since
|L| ≤ 4n0

` and some strings (whose total length was 3n0) were inserted or deleted (so
producing text Ti), at least 2d 3n0

` e ≥ |L| distinct intervals in L were used to form list
L′ (two intervals in L form an interval in L′). This allows us to conclude that the
final list L′ is the correct partition of Ti according to the parameter 2` because, as
soon as ni = 4n0, we have that j = k/2, GA is empty (since we disposed of all the
O(n0) cells), and GST ′S stores ∆′S = {string′(I ′1), . . . , string′(I ′k/2)}.

Lemma 7.1. Inserting in or deleting a string Y [1, y] from T [1, n] requires O(y +
`+ n

`) worst-case time.
Proof. As observed above, we can update the pool and its two “partial copies”

and manage the shrinking and growing of the current text incrementally in a total of
O(y + `+ n

`) time.

OPTIMAL STRING SEARCH AND SUBLINEAR TIME UPDATE 735

By setting ` =
√
n (see section 4.3), we obtain Theorem 4.4’s proof and the

following corollary.
Corollary 7.2. Let Σ be an unbounded ordered alphabet. Inserting in or deleting

a string Y [1, y] from T [1, n] requires O((y +
√
n) log |Σ|) worst-case time.

8. Conclusions. We studied the problem of searching on-line for the occ occur-
rences of an arbitrary pattern P [1, p] in a text T [1, n] that can change after its pre-
processing. We introduced the first dynamic algorithm that achieves optimal query
time, i.e., Θ(p + occ), and sublinear time per update, i.e., O(

√
n + y) for every y, in

the worst case. The space required is optimal Θ(n). This implies that we can achieve
the same query time and space usage of suffix trees while improving their update
performance.

At present, we do not know if a better O(t(n)+y) update time can be obtained by
dynamic text indexing algorithms while maintaining optimal query time and optimal
space usage in the worst case. Our results show that t(n) = O(

√
n). The question is

if we can obtain t(n) = o(
√
n) or prove t(n) = Ω(

√
n) in the worst case. The latter

implies that our solution would also be optimal for updates.
Our techniques and data structures may turn out to be useful from a practical

point of view. Our search is optimal and we only have to handle some text part of
O(
√
n+y) size for each update operation (e.g., few kilobytes versus several megabytes

occupied by the whole text). Moreover, since performance depends on parameter `,
we think it might be more convenient in practice to tune ` properly by exploiting the
fact that p is usually small in real situations. This would allow us to keep optimal
query time and faster updating time. Although a long patterns’ search would no
longer be optimal, we can choose some proper ` values to make sure that this actually
occurs very rarely.

Acknowledgments. We thank Raffaele Giancarlo and Fabrizio Luccio for their
helpful comments and suggestions.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park, Dynamic dictionary matching,
J. Comput. System Sci., 49 (1994), pp. 208–222.

[3] A. Apostolico, The myriad virtues of subword trees, in Combinatorial Algorithms on Words,
A. Apostolico and Z. Galil, eds., Springer-Verlag, Berlin, 1985, pp. 85–95.

[4] R. A. Baeza-Yates, and G. H. Gonnet, Handbook of Algorithms and Data Structures,
Addison-Wesley, Reading, MA, 1991.

[5] B. S. Baker, Parameterized pattern matching: Algorithms and applications, J. Comput. Sys-
tem Sci., 52 (1996), pp. 28–42.

[6] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas, The
smallest automaton recognizing the subwords of a text, Theoret. Comput. Sci., 40 (1985),
pp. 31–55.

[7] A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht, Complete
inverted files for efficient text retrieval and analysis, J. Assoc. Comput. Mach., 34 (1987),
pp. 578–595.

[8] W. I. Chang and E. L. Lawler, Sublinear approximate string matching and biological appli-
cations, Algorithmica, 12 (1994), pp. 327–344.

[9] M. T. Chen and J. Seiferas, Efficient and elegant subword tree construction, in Combinatorial
Algorithms on Words, A. Apostolico and Z. Galil, eds., Springer-Verlag, Berlin, 1985,
pp. 97–107.

[10] M. Crochemore, Transducers and repetitions, Theoret. Comput. Sci., 45 (1986), pp. 63–86.

736 PAOLO FERRAGINA AND ROBERTO GROSSI

[11] M. Crochemore and W. Rytter, Parallel construction of minimal suffix and factor au-
tomata, Inform. Process. Lett., 35 (1990), pp. 121–128.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification - A technique
for speeding up dynamic graph algorithms, in Proc. IEEE Symposium on Foundations of
Computer Science, IEEE, Piscataway, NJ, 1992, pp. 60–69.

[13] P. Ferragina, Incremental text editing: A new data structure, in Proc. European Symposium
on Algorithms, Lecture Notes in Computer Science 855, 1994, pp. 495–507; also appeared
as Dynamic text indexing under string updates, J. Algorithms, 22 (1997), pp. 296–328.

[14] P. Ferragina and R. Grossi, Fast incremental text editing, in Proc. ACM-SIAM Symposium
on Discrete Algorithms, SIAM, Philadelphia, PA, 1995, pp. 531–540.

[15] P. Ferragina and R. Grossi, A fully-dynamic data structure for external substring search,
in Proc. ACM Symposium on Theory of Computing, ACM, New York, 1995, pp. 693–702.

[16] Z. Galil and R. Giancarlo, Data structures and algorithms for approximate string matching,
J. Complexity, 4 (1988), pp. 33–72.

[17] R. Giancarlo, A generalization of the suffix tree to square matrices, with applications, SIAM
J. Comput., 24 (1995), pp. 520–562.

[18] R. Giancarlo and R. Grossi, On the construction of classes of suffix trees for square matrices:
Algorithms and applications, in Proc. International Colloquium on Automata, Languages,
and Programming, Lecture Notes in Computer Science 944, 1995, pp. 111–122; also in
Inform. and Comput., 130 (1996), pp. 151–182.

[19] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider, New indices for text: PAT trees and
PAT arrays, in Information Retrieval: Data Structures and Algorithms, W. B. Frakes and
R. A. Baeza-Yates, eds., Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 66–82.

[20] M. Gu, M. Farach, and R. Beigel, An efficient algorithm for dynamic text indexing, in
Proc. ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1994,
pp. 697–704.

[21] D. Gusfield, G. M. Landau, and B. Schieber, An efficient algorithm for all pairs suffix-prefix
problem, Inform. Process. Lett., 41 (1992), pp. 181–185.

[22] H. T. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM
J. Comput., 13 (1984), pp. 338–355.

[23] M. Kempf, R. Bayer, and U. Güntzer, Time optimal left to right construction of position
trees, Acta Informatica, 24 (1987), pp. 461–474.

[24] D. E. Knuth, J. H. Morris, and V. R. Pratt, Fast pattern matching in strings, SIAM J.
Comput., 6 (1977), pp. 63–78.

[25] G. M. Landau and U. Vishkin, Fast parallel and serial approximate string matching, J.
Algorithms, 10 (1989), pp. 157–169.

[26] M. E. Majster and A. Reiser, Efficient on-line construction and correction of position trees,
SIAM J. Comput., 9 (1980), pp. 785–807.

[27] U. Manber and G. Myers, Suffix arrays: A new method for on-line string searches, SIAM J.
Comput., 22 (1993), pp. 935–948.

[28] E. M. McCreight, A space-economical suffix tree construction algorithm, J. Assoc. Comput.
Mach., 23 (1976), pp. 262–272.

[29] M. H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer Science
156, Springer-Verlag, Berlin, 1983.

[30] V. Pratt, Improvements and Applications for the Weiner Repetition Finder , manuscript,
1975.

[31] B. Schieber and U. Vishkin, On finding lowest common ancestor: Simplification and paral-
lelization, SIAM J. Comput., 17 (1988), pp. 1253-1262.

[32] F. N. Teskey, Principles of Text Processing, John Wiley, New York, 1983.
[33] P. Weiner, Linear pattern matching algorithm, in Proc. IEEE Symposium on Switching and

Automata Theory, IEEE, Piscataway, NJ, 1973, pp. 1–11.

Introduction to Special Section on Probabilistic Proof Systems

The study of probabilistically verifiable proofs originated in the mid 1980s with
the introduction of Interactive Proof Systems (IPs). The primary focus of research in
this area in the ’80s has been twofold:

• the role of zero-knowledge interactive proofs within cryptographic protocols,
and
• characterizing which languages are efficiently interactively provable.

In the 1990s, the focus of research on the topic shifted. Extensions of the interac-
tive proof model, such as Multiprover Interactive Proofs (MIPs) and Probabilistically
Checkable Proofs (PCPs), were considered with the intention of expanding our no-
tion of what should be considered efficiently verifiable. In addition, researchers have
taken a closer look at the exact resources (and tradeoffs amongst them) needed to
verify a proof using various proof systems. This culminated in the important discov-
ery that it is possible to verify NP statements (with a constant error probability) by
only examining a constant number of bits of a PCP and using logarithmic amount of
randomness.

Perhaps, however, the most dramatic development has been the connection which
was found between probabilistically verifiable proofs and proving hardness of approxi-
mation for optimization problems. It has been shown that a large variety of optimiza-
tion versions of NP-hard problems (e.g., the maximum size of a clique in a graph, the
minimum number of colors necessary to color a graph, and the maximum number of
clauses satisfiable in a CNF formula) are not only NP-hard to solve exactly but also
NP-hard to approximate in a very strong sense. The tools to establish hardness of
approximation came directly from results on MIPs and PCPs. Indeed, almost every
improvement in the efficiency of these proof systems translates directly into showing
larger factors within which these optimization problems are hard to approximate.

In 1994–1995 two exciting workshops were held at the Weizmann Institute in Israel
on the new developments in probabilistically verifiable proofs and their applications
to approximation problems, cryptography, program checking, and complexity theory
at large. Over 60 papers were presented in the workshop series, and we are proud to
include three of them in this special section.

“On the Power of Finite Automata with Both Nondeterministic and Probabilistic
States” by Anne Condon, Lisa Hellerstein, Samuel Pottle, and Avi Wigderson, con-
siders constant round interactive proof systems where the verifier is restricted to use
constant space and public coins. An equivalent characterization is finite automata
with both nondeterministic and random states (npfa’s), which accept their languages
with a small probability of error. The paper shows that npfa’s restricted to run
in polynomial expected time accept only the regular languages in the case of npfa
with 1-way input head, and that if L is a nonregular language, then either L or its
complement is not accepted by any npfa with a 2-way input head.

“A Parallel Repetition Theorem” by Ran Raz, addresses and resolves the Parallel
Repetition Conjecture which has eluded researchers for some time. The broader topic
is what happens to the error probability of proof systems when they are composed. It
has been known for awhile that sequential composition of proof systems (both single
and multiprover interactive proofs) reduces the error exponentially, but this increases
the number of rounds. For interactive proof systems, parallel repetition is known to
reduce the error exponentially, and the Parallel Repetition Conjecture asserts that
the same holds in a one-round two-prover proof system. Raz proves a constructive
bound on the probability of error which indeed reduces at an exponential rate. The

738 INTRODUCTION

constant in the exponent is logarithmic in the total number of possible answers of
the two provers, which means one can achieve two-prover one-round MIPs for NP
statements with arbitrarily small constant error probability. This, in turn, has played
a crucial role in further developments in the area and in particular in those reported
in the next paper.

“Free Bits, PCPs, and Nonapproximability—Towards Tight Results” by Mihir
Bellare, Oded Goldreich, and Madhu Sudan, continues the investigation of PCPs and
nonapproximability with emphasis on trying to get closer to tight results. The work
consists of three parts. The first part presents several PCP proof systems for NP,
based on a new error-correcting code called the Long Code. The second part shows
that the connection between PCPs and hardness of approximation is not accidental. In
particular, it shows that the transformation of a PCP for NP into hardness results for
MaxClique can be reversed. Finally, the third part initiates a systematic investigation
of the properties of PCPs as a function of the various parameters: randomness, query
complexity, free-bit complexity, amortized free-bit complexity, proof size, etc.

Two more papers submitted for this special section were not ready at this time
for publication. They will appear in future issues of the SIAM Journal on Computing.

Shafi Goldwasser

ON THE POWER OF FINITE AUTOMATA WITH BOTH
NONDETERMINISTIC AND PROBABILISTIC STATES∗

ANNE CONDON† , LISA HELLERSTEIN‡ , SAMUEL POTTLE§ , AND AVI WIGDERSON¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 739–762, June 1998 010

Abstract. We study finite automata with both nondeterministic and random states (npfa’s).
We restrict our attention to those npfa’s that accept their languages with a small probability of error
and run in polynomial expected time. Equivalently, we study Arthur–Merlin games where Arthur is
limited to polynomial time and constant space.

Dwork and Stockmeyer [SIAM J. Comput., 19 (1990), pp. 1011–1023] asked whether these npfa’s
accept only the regular languages (this was known if the automaton has only randomness or only
nondeterminism). We show that the answer is yes in the case of npfa’s with a 1-way input head. We
also show that if L is a nonregular language, then either L or L̄ is not accepted by any npfa with a
2-way input head.

Toward this end, we define a new measure of the complexity of a language L, called its 1-tiling
complexity. For each n, this is the number of tiles needed to cover the 1’s in the “characteristic
matrix” of L, namely, the binary matrix with a row and column for each string of length ≤ n, where
entry [x, y] = 1 if and only if the string xy ∈ L. We show that a language has constant 1-tiling
complexity if and only if it is regular, from which the result on 1-way input follows. Our main
result regarding the general 2-way input tape follows by contrasting two bounds: an upper bound of
polylog(n) on the 1-tiling complexity of every language computed by our model and a lower bound
stating that the 1-tiling complexity of a nonregular language or its complement exceeds a function
in 2Ω(

√
logn) infinitely often.

The last lower bound follows by proving that the characteristic matrix of every nonregular lan-
guage has rank n for infinitely many n. This is our main technical result, and its proof extends tech-
niques of Frobenius and Iohvidov developed for Hankel matrices [Sitzungsber. der Königl. Preuss.
Akad. der Wiss., 1894, pp. 407–431], [Hankel and Toeplitz Matrices and Forms: Algebraic Theory,
Birkhauser, Boston, 1982].

Key words. nondeterministic probabilistic finite automata, Arthur–Merlin games, interactive
proof systems, matrix tiling, Hankel matrices

AMS subject classifications. 68Q05, 68Q10, 68Q75

PII. S0097539794265578

1. Introduction. The classical subset construction of Rabin and Scott [25]
shows that finite state automata with just nondeterministic states (nfa’s) accept ex-
actly the regular languages. Results of Rabin [24], Dwork and Stockmeyer [7], and
Kaņeps and Freivalds [17] show that the same is true of probabilistic finite state au-
tomata which run in polynomial expected time. Here and throughout the paper, we
restrict attention to automata which accept languages with error probability that is
some constant ε less than 1/2.

∗Received by the editors March 30, 1994; accepted for publication (in revised form) June 21, 1995.
http://www.siam.org/journals/sicomp/27-3/26557.html
†Department of Computer Sciences, University of Wisconsin, 1210 West Dayton Street, Madison,

WI 53706 (condon@cs.wisc.edu). The research of this author was supported by NSF grant CCR-
9257241 and by a matching grant from AT&T Bell Labs.
‡Department of Computer and Information Sciences, Polytechnic University, 5 Metrotech Center,

Brooklyn, NY 11201 (hstein@pucs4.poly.edu). The research of this author was supported in part by
NSF grant CCR-9210957.
§Department of Computer Sciences, University of Wisconsin, 1210 West Dayton Sreet, Madison,

WI 53706 (pottle@cs.wisc.edu). The research of this author was supported by NSF grant CCR-
9257241.
¶Computer Science Department, Hebrew University, Jerusalem, 91904, Israel (avi@cs.huji.ac.il).

The research of this author was supported in part by BSF grant 92-00106/1 and a grant from the
Wolfson Research Awards.

739

740 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

However, there has been little previous work on finite state automata which have
both probabilistic and nondeterministic states. Such automata are equivalent to the
Arthur–Merlin games of Babai and Moran [3], restricted to constant space, with an
unbounded number of rounds of communication between Arthur and Merlin. In this
paper, we refer to them as npfa’s. In the computation of an npfa, each transition
from a probabilistic state is chosen randomly according to the transition probabilities
from that state, whereas from a nondeterministic state, it is chosen so as to maximize
the probability that an accepting state is eventually reached. We let 1NPFA and
2NPFA-polytime denote the classes of languages accepted by npfa’s which have a 1-
way or 2-way input head, respectively, and which run in polynomial expected time.
Dwork and Stockmeyer [8] asked whether 2NPFA-polytime is exactly the set of regular
languages, which we denote by Regular.

In this paper, we prove the following two results on npfa’s.
THEOREM 1.1. 1NPFA = Regular.
THEOREM 1.2. If L is nonregular, then either L or L̄ is not in 2NPFA-polytime.
Thus, we resolve the question of Dwork and Stockmeyer for npfa’s with 1-way

head, and in the case of the 2-way head model, we reduce the question to that of
deciding whether 2NPFA-polytime is closed under complement. Theorem 1.1 also
holds even if the automaton has universal as well as nondeterministic and proba-
bilistic states. Moreover, Theorem 1.2 holds even for Arthur–Merlin games that use
o(log log n) space.

In proving the two results, we introduce a new measure of the complexity of a
language L called its 1-tiling complexity. Tiling complexity arguments have been used
previously to prove lower bounds for communication complexity (see, e.g., Yao [29]).
With each language L ⊆ Σ∗, we associate an infinite binary matrix ML, whose rows
and columns are labeled by the strings of Σ∗. Entry ML[x, y] is 1 if the string xy ∈ L
and is 0 otherwise. Denote by ML(n) the finite submatrix of ML, indexed by strings
of length ≤ n. Then, the 1-tiling complexity of L (and of the matrix ML(n)) is the
minimum size of a set of 1-tiles of ML(n) such that every 1-valued entry of ML(n) is
in at least one 1-tile of the set. Here, a 1-tile is simply a submatrix (whose rows and
columns are not necessarily contiguous) in which all entries have value 1.

In section 3, we prove the following theorems, relating language acceptance of
npfa’s to tiling complexity. The proofs of these theorems build on previous work of
Dwork and Stockmeyer [8] and Rabin [24].

THEOREM 3.1. A language L is in 1NPFA only if the 1-tiling complexity of L is
O(1).

THEOREM 3.4. A language L is in 2NPFA-polytime only if the 1-tiling complexity
of L is bounded by a polynomial in log n.

What distinguishes our work on tiling is that we are interested in the problem
of tiling the matrices ML(n), which have distinctive structural properties. If L is a
unary language, then ML(n) is a matrix in which all entries along each diagonal from
the top right to the bottom left are equal. Such a matrix is known as a Hankel matrix.
An elegant theory on properties of such Hankel matrices has been developed [15], from
which we obtain strong bounds on the rank of ML(n) if L is unary. In the case that
L is not a unary language, the pattern of 0’s and 1’s in ML(n) is not as simple as
in the unary case, although the matrix still has much structure. Our main technical
contribution, presented in section 4, is to prove new lower bounds on the rank of
ML(n) when L is not unary. Our proof uses techniques of Frobenius and Iohvidov
developed for Hankel matrices [11], [15].

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 741

THEOREM 4.11. If L is nonregular, then the rank of ML(n) is at least n + 1
infinitely often.

By applying results from communication complexity relating the rank of a matrix
to its tiling complexity, we can obtain a lower bound on the 1-tiling complexity of
non-regular languages.

THEOREM 4.12. If L is nonregular, then the 1-tiling complexity of either L or L̄
exceeds a function in 2Ω(

√
logn) infinitely often.

However, there are nonregular languages, even over a unary alphabet, with 1-
tiling complexity O(log n) (see section 4). Thus the above lower bound on the 1-tiling
complexity of L or L̄ does not always hold for L itself. A simpler theorem holds for
regular languages.

THEOREM 4.2. The 1-tiling complexity of L is O(1) if and only if L is regular.
By combining these theorems on the 1-tiling complexity of regular and nonregular

languages with the theorems relating 1-tiling complexity to acceptance by npfa’s, our
two main results (Theorems 1.1 and 1.2) follow as immediate corollaries.

The rest of the paper is organized as follows. In Section 2, we define our model
of the npfa and the tiling complexity of a language. We conclude that section with a
discussion of related work on probabilistic finite automata and Arthur–Merlin games.
In section 3, we present Theorems 3.1 and 3.4, which relate membership of a language
L in the classes 1NPFA and 2NPFA-polytime to the 1-tiling complexity of L. A similar
theorem is presented for the class 2NPFA, in which the underlying automata are not
restricted to run in polynomial expected time. In section 4, we present our bounds
on the tiling complexity of both regular and nonregular languages. Theorems 1.1 and
1.2 are immediate corollaries of the main results of sections 3 and 4. Extensions of
these results to alternating automata and to Turing machines with small space are
presented in section 5. Conclusions and open problems are discussed in section 6.

2. Preliminaries. We first define our npfa model in section 2.1. This model
includes as special cases the standard models of nondeterministic and probabilistic
finite state automata. In section 2.2 we define our notion of the tiling complexity of a
language. Finally, in section 2.3, we discuss previous work on this and related models.

2.1. Computational models and language classes. A two-way nondeter-
ministic probabilistic finite automaton (2npfa) consists of a set of states Q, an input
alphabet Σ, and a transition function δ, with the following properties. The states Q
are partitioned into three subsets: the nondeterministic states N , the probabilistic (or
random) states R, and the halting states H. H consists of two states: the accepting
state qa and the rejecting state qr. There is a distinguished state q0, called the initial
state. There are two special symbols |c , $ /∈ Σ, which are used to mark the left and
right ends of the input string, respectively.

The transition function δ has the form

δ : Q× (Σ ∪ { |c , $})×Q× {−1, 0, 1} → {0, 1/2, 1}.

For each fixed q in R, the set of random states, and σ ∈ (Σ ∪ { |c , $}), the sum
of δ(q, σ, q′, d) over all q′ and d equals 1. The meaning of δ in this case is that
if the automaton is in state q reading symbol σ, then with probability δ(q, σ, q′, d)
the automaton enters state q′ and moves its input head one symbol in direction d
(left if d = −1, right if d = 1, stationary if d = 0). For each fixed q in N , the
set of nondeterministic states, and σ ∈ (Σ ∪ { |c , $}), δ(q, σ, q′, d) ∈ {0, 1} for all q′

742 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

and d. The meaning of δ in this case is that if the automaton is in state q reading
symbol σ, then the automaton nondeterministically chooses some q′ and d such that
δ(q, σ, q′, d) = 1, enters state q′ and moves its input head one symbol in direction d.
Once the automaton enters state qa (respectively, qr), the input head moves repeatedly
to the right until the right endmarker $ is read, at which point the automaton halts. In
other words, for q ∈ {qa, qr}, δ(q, σ, q, 1) = 1 for all σ ∈ Σ∪ { |c }, and δ(q, σ, q′, 1) = 0
for all σ ∈ Σ ∪ { |c } and q′ 6= q. On a given input, the automaton is started in the
initial configuration, that is, in the initial state with the head at the left end of the
input. If the automaton halts in state qa on the input, we say that it accepts the
input, and if it halts in state qr, we say that it rejects the input.

Fix some input string w = w0w1w2, . . . , wnwn+1, where w0 = |c and wn+1 = $.
A nondeterministic strategy (or just strategy) on w is a function

Sw : N × {0, . . . , n+ 1} → Q× {−1, 0, 1}

such that δ(q, σ, q′, d) = 1 whenever Sw(q, j) = (q′, d) and wj = σ. The meaning of
Sw is that if the automaton is in state q ∈ N reading wj , then if Sw(q, j) = (q′, d), the
automaton enters state q′ and moves its input head one symbol in direction d. The
strategy indicates which nondeterministic choice should be made in each configuration.

A language L ⊆ Σ∗ is accepted with bounded error probability if for some constant
ε < 1/2,

1. for all w ∈ L, there exists a strategy Sw on which the automaton accepts
with probability ≥ 1− ε, and

2. for all w /∈ L, on every strategy Sw, the automaton accepts with probability
≤ ε.

Language acceptance could be defined with respect to a more general type of
strategy, in which the nondeterministic choice made from the same configuration at
different times may be different. It is known (see [4, Theorem 2.6]) that if L is accepted
by an npfa with respect to this more general definition, then it is also accepted with
respect to the definition above. Hence, our results also hold for such generalized
strategies.

A one-way nondeterministic probabilistic finite automaton (1npfa) is a 2npfa
which can never move its input head to the left; that is, δ(q, σ, q′,−1) = 0 for all
q, q′, and σ. Also, a probabilistic finite automaton (pfa) and a nondeterministic finite
automaton (nfa) are special cases of an npfa in which there are no nondeterministic
and no probabilistic states, respectively.

We denote by 1NPFA and 2NPFA the classes of languages accepted with bounded
error probability by 1npfa’s and 2npfa’s, respectively. If, on all inputs w and all
nondeterministic strategies, the 2npfa halts in polynomial expected time, we say that
L is in the class 2NPFA-polytime. The classes 1PFA, 2PFA, and 2PFA-polytime are
defined similarly, with pfa replacing npfa. Finally, Regular denotes the class of regular
languages.

Our model of the 2npfa is equivalent to an Arthur–Merlin game in which Arthur
is a 2pfa, and our classes 2NPFA and 2NPFA-polytime are identical to the classes
AM(2pfa) and AM(ptime-2pfa), respectively, of Dwork and Stockmeyer [8].

2.2. The tiling complexity of a language. We adapt the notion of the tiling
complexity of a function, used in communication complexity theory, to obtain a new
measure of the complexity of a language. Given a finite, two-dimensional matrix M , a
tile is a submatrix of M in which all entries have the same value. A tile is specified by
a pair (R,C) where R is a nonempty set of rows and C is a nonempty set of columns.

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 743

The entries in the tile are said to be covered by the tile. A tile is a b-tile if all entries
of the submatrix are b. A set of b-tiles is a b-tiling of M if every b-valued entry of
M is covered by at least one tile in the set. If M is a binary matrix, the union of a
0-tiling and a 1-tiling of M is called a tiling of M . Let T (M) be the minimum size of
a tiling of M . Let T 1(M) be the minimum size of a 1-tiling of M , and let T 0(M) be
the minimum size of a 0-tiling of M . Then, T(M) = T 1(M) + T 0(M). Note that in
these definitions it is permitted for tiles of the same type to overlap.

We can now define the tiling complexity of a language. Associated with a language
L over alphabet Σ is an infinite binary matrix ML. The rows and columns of ML

are indexed (say, in lexicographic order) by the strings in Σ∗. Entry ML[x, y] = 1
if and only if xy ∈ L. Let Ln be the strings of L of length ≤ n. Let ML(n) be
the finite submatrix of ML whose rows and columns are indexed by the strings of
length ≤ n. The 1-tiling complexity of a language L is defined to be the function
T 1
L(n) = T 1(ML(n)). Similarly, the 0-tiling complexity of L is T 0

L(n) = T 0(ML(n))
and the tiling complexity of L is TL(n) = T(ML(n)).

A tiling of a matrix M is disjoint if every entry [x, y] of M is covered by exactly
one tile. The disjoint tiling complexity of a matrix M , T̃ (M), is the minimum size
of a disjoint tiling of M . Also, the disjoint tiling complexity of a language, T̃L(n), is
T̃ (ML(n)).

Tilings are often used in proving lower bounds in communication complexity
[29], [30]. Let f : X × Y → {0, 1}. The function f is represented by a matrix
Mf whose rows are indexed by elements of X and whose columns are indexed by
elements of Y , such that Mf [x, y] = f(x, y). Let Tf denote T(Mf). Suppose that two
cooperating parties, P1 and P2, get inputs x ∈ X and y ∈ Y , respectively, and want
to compute f(x, y). They can do so by exchanging information according to some
protocol (precise definitions of legal protocols can be found in [13]). If the protocol is
deterministic, then the worst case number of bits that need to be exchanged (that is,
the deterministic communication complexity) is bounded below by log T̃f [29]. If the
protocol is nondeterministic, then the lower bound is log Tf [1]. Finally, if the object
of the nondeterministic protocol is only to verify that f(x, y) = 1 (if that is indeed
the case), then the lower bound on the number of bits exchanged is log T 1

f .

2.3. Related work. Our work on npfa’s builds upon a rich literature on prob-
abilistic finite state automata. Rabin [24] was the first to consider probabilistic au-
tomata with bounded error probability. He showed that 1PFA = Regular. However,
with a 2-way input head, pfa’s can recognize nonregular languages. This was shown
by Freivalds [10], who constructed a 2pfa for the language {0n1n | n ≥ 0}. Green-
berg and Weiss [12] showed that exponential expected time is required by any 2pfa
accepting this language. Dwork and Stockmeyer [7] and, independently, Kaņeps and
Freivalds [17] showed that, in fact, any 2pfa which recognizes a nonregular language
must run in exponential expected time. It follows that 2PFA-polytime = Regular.

Roughly, Rabin’s proof shows that any language L accepted by a 1pfa has only
finitely many equivalence classes. Here, two strings x, x′ are equivalent if and only if
for all y, xy ∈ L⇔ x′y ∈ L. The Myhill-Nerode theorem [14] states that a language
has a finite number of equivalence classes if and only if it is regular. This, combined
with Rabin’s result, implies that 1PFA = Regular. Two decades later, this idea was
extended to 2pfa’s. A strengthened version of the Myhill-Nerode theorem is needed
for this extension. Given a language L, we say that two strings x, x′ are pairwise
n-inequivalent if for some y, xy ∈ L⇔ x′y 6∈ L, and furthermore, |xy|, |x′y| ≤ n. Let
NL(n) (the nonregularity of L) be the size of the largest set of pairwise n-inequivalent

744 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

strings. Kaņeps and Freivalds [16] showed that NL(n) ≥ b(n + 3)/2c for infinitely
many n. (It is interesting to note that, to prove their bound, Kaņeps and Freivalds
first showed that NL(n) equals the number of states of the minimal deterministic
1-way finite automaton that accepts all words of length ≤ n that are in L and rejects
all words of length ≤ n that are not in L. Following Karp [19], we denote the latter
measure by φL(n). Karp [19] previously proved that φL(n) > n/2 + 1 for infinitely
many n. Combining this with the fact that NL(n) and φL(n) are equal, it follows
immediately that NL(n) > n/2 + 1 for infinitely many n. This is stronger (by 1) for
even n than the lower bound of Kaņeps and Freivalds. We also note that Dwork and
Stockmeyer [7] obtained a weaker bound on NL(n) without using φL(n). Using tools
from Markov chain theory, Dwork and Stockmeyer [7] and Kaņeps and Freivalds [17]
showed that if a language is accepted by a 2pfa in polynomial expected time, then
the language has “low” nonregularity. In fact, NL(n) is bounded by some polynomial
in logn. This, combined with the result of Kaņeps and Freivalds, implies that 2PFA-
polytime = Regular.

Models of computation with both nondeterministic and probabilistic states have
been studied intensively since the work of Papadimitriou [23] on games against nature.
Babai and Moran [3] defined Arthur–Merlin games to be Turing machines with both
nondeterministic and probabilistic states, which accept their languages with bounded
error probability. Their work on polynomial time bounded Arthur–Merlin games
laid the framework for the remarkable progress on interactive proof systems and their
applications (see, for example, [2] and the references therein). Space bounded Arthur–
Merlin games were first considered by Condon and Ladner [6]. Condon [4] showed
that AM(log-space), that is, the class of languages accepted by Arthur–Merlin games
with logarithmic space, is equal to the class P. However, it is not known whether the
class AM(log-space, polytime)—the subclass of AM(log-space) where the verifier is
also restricted to run in polynomial time—is equal to P, or whether it is closed under
complement. Fortnow and Lund [9] showed that NC is contained in AM(log-space,
polytime).

Dwork and Stockmeyer [8] were the first to consider npfa’s, which are Arthur–
Merlin games restricted to constant space. They described conditions under which a
language is not in either of the classes 2NPFA or 2NPFA-polytime. The statements of
our Theorems 3.2 and 3.4 generalize and simplify the statements of their theorems, and
our proofs build on theirs. In communication complexity theory terms, their proofs
roughly show that languages accepted by npfa’s have low “fooling set complexity.”
This measure is defined in a manner similar to the tiling complexity of a language,
based on the following definition. Define a 1-fooling set of a binary matrix A to be a
set of entries {[x1, y1], [x2, y2], . . . , [xm, ym]} such that A[xi, yj] = 1 if and only if i = j.
The size of a 1-fooling set of a binary matrix is always at most the 1-tiling complexity
of the matrix, because no two distinct entries in the 1-fooling set, [xi, yi] and [xj , yj],
can be in the same tile. However, the 1-tiling complexity may be significantly larger
than the 1-fooling set complexity; in fact, for a random n × n binary matrix, the
expected size of the largest 1-fooling set is O(log n), whereas the expected number of
tiles needed to tile the 1-entries is Ω(n/ log n) [1].

3. NPFA’s and tiling. Three results are presented in this section. For each of
the classes 1NPFA, 2NPFA, and 2NPFA-polytime, we describe upper bounds on the
tiling complexity of the languages in these classes. The proof for 1NPFA’s is a natural
generalization of Rabin’s proof that 1PFA = Regular [24]. The other two proofs build
on previous results of Dwork and Stockmeyer [8] on 2npfa’s.

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 745

3.1. 1NPFA and tiling.
THEOREM 3.1. A language L is in 1NPFA only if the 1-tiling complexity of L is

O(1).
Proof. Suppose L is accepted by some 1npfa M with error probability ε < 1/2.

Let the states of M be {1, . . . , c}.
Consider the matrix ML. For each 1-entry [x, y] of ML, fix a nondeterministic

strategy that causes the string xy to be accepted with probability at least 1 − ε.
With respect to this strategy, define two vectors of dimension c. Let pxy be the state
probability vector at the step when the input head moves off the right end of x. That
is, the ith entry of the vector is the probability of being in state i at that moment,
assuming that the automaton is started at the left end of the input |c xy$ in the initial
state. Let rxy be the column vector whose ith entry is the probability of accepting
the string xy, assuming that the automaton is in state i at the moment that the head
moves off the right end of x. Then the probability of accepting the string xy is the
inner product pxy · rxy.

Let µ = (1/2−ε)/c. Partition the space [0, 1]c into cells of size µ×µ×· · ·×µ (the
final entry in the cross product should actually be less than µ if 1 is not a multiple of
µ). Associate each 1-entry [x, y] with the cell containing the vector pxy; we say that
[x, y] belongs to this cell.

With each cell C, associate the rectangle RC defined as

{x| there exists y such that [x, y] belongs to C}
×

{y| there exists x such that [x, y] belongs to C}.

This is the minimal submatrix that covers all of the entries associated with cell C.
We claim that RC is a valid 1-tile; that is, RC covers only 1-entries. To see this,

suppose [x, y] ∈ RC . If [x, y] belongs to C, then it must be a 1-entry. Otherwise,
there exist x′ and y′ such that [x, y′] and [x′, y] belong to C; that is, xy′, x′y ∈ L, and
pxy′ and px′y are in the same cell.

We claim that xy is accepted with probability at least 1/2 on some strategy,
namely, the strategy that, while reading x, uses the strategy for xy′, and while reading
y, uses the strategy for x′y. To see this, note that

(px′y − pxy′) · rx′y =
c∑
i=1

[px′y − pxy′]i[rx′y]i

≤ µ
c∑
i=1

[rx′y]i

≤ µc
= 1/2− ε, by our choice of µ.

Hence, the probability that xy is accepted on the strategy described above is

pxy′rx′y ≥ px′yrx′y − (1/2− ε)
≥ (1− ε)− (1/2− ε)
= 1/2 > ε.

Because xy is accepted with probability greater than ε on this strategy, it cannot be
that xy 6∈ L. Hence, for all [x, y] ∈ RC , xy must be in L. Therefore RC is a 1-tile in
ML.

746 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

Every 1-entry [x, y] is associated with some cell C and is covered by the 1-tile RC
that is associated with C. Thus, every 1-entry of ML is covered by some RC .

Hence, L can be 1-tiled using one tile per cell, which is a total of d1/µec = O(1)
tiles.

3.2. 2NPFA and tiling. We next show that if L ∈ 2NPFA, then T 1
L(n) is

bounded by a polynomial.
THEOREM 3.2. A language L is in 2NPFA only if the 1-tiling complexity of L is

bounded by a polynomial in n.
Proof. Suppose L is accepted by some 2npfa M with error probability ε < 1/2.

Let c be the number of states of M . As in Theorem 3.1, for each 1-entry [x, y] of
ML(n), fix a nondeterministic strategy that causes M to accept the string xy with
probability at least 1− ε.

We construct a stationary Markov chain Hxy that models the computation of M
on xy using this strategy.

This Markov chain has d = 2c+ 4 states. 2c of the states are labeled (q, l), where
q is a state of M and l ∈ {0, 1}. The other states are labeled Initial, Accept, Reject,
and Loop. The state (q, 0) of Hxy corresponds to M being in state q while reading
the rightmost symbol of |c x. The state (q, 1) of Hxy corresponds to M being in state
q while reading the leftmost symbol of y$. The state Initial corresponds to the initial
configuration of M . The states Accept, Reject, and Loop are sink states of Hxy.

A single step of the Markov chain Hxy corresponds to running M on input xy
(using the fixed nondeterministic strategy) from the appropriate configuration for one
or more steps until M enters a configuration corresponding to one of the chain states
(q, l). If M halts in the accepting (respectively, rejecting) state before entering one of
these configurations, Hxy enters the Accept (respectively, Reject) state. If M does not
halt and never again reads the rightmost symbol of |c x or the leftmost symbol of y$,
then Hxy enters the Loop state. The transition probabilities are defined accordingly.

Consider the transition matrix of Hxy. Collect the rows corresponding to the
chain states Initial and (q, 0) (for all q) and call this submatrix Pxy. Collect the
rows corresponding to the chain states (q, 1) and call this submatrix Rxy. Then the
transition matrix looks like this:

Pxy

Rxy

0 I3

Initial

(q, 0)

(q, 1)

Accept
Reject
Loop

Hxy =
,

where I3 denotes the identity matrix of size 3. (We shall engage in a slight abuse of
notation by using Hxy to refer to both the transition matrix and the Markov chain
itself.) Note that the entries of Pxy depend only on x and the nondeterministic strat-
egy used; these transition probabilities do not depend on y. This assertion appears to
be contradicted by the fact that our choice of nondeterministic strategy may depend
on y; however, the idea here is that if we replace y with y′ while maintaining the same
nondeterministic strategy we used for xy, then Pxy′ will be identical to Pxy, because

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 747

the transitions involved simulate computation of M on the left part of its input only.
Similarly, Rxy depends only on y and the strategy, and not on x.

We now show that if |x| ≤ n and if p is a nonzero element of Pxy, then p ≥ 2−cn−1.
Form a second Markov chain K(|c x) with states of the form (q, l), where q is a state of
M and 1 ≤ l ≤ | |c x|+ 1. The chain state (q, l) with l ≤ | |c x| corresponds to M being
in state q scanning the lth symbol of |c x. Transition probabilities from these states
are obtained from the transition probabilities of M in the obvious way. Chain states
of the form (q, | |c x| + 1) are sink states of K(|c x) and correspond to the head of M
falling off the right end of |c x with M in state q. Now consider a transition probability
p in Pxy. Suppose that, in the Markov chain Hxy, p is the transition probability from
(q, 0) to (q′, 1). Then p ∈ {0, 1/2, 1}, since if Hxy makes this transition, it must be
simulating a single computation step of M . Suppose p is the transition probability
from (q, 0) to (q′, 0). If p > 0, then there must be some path of nonzero probability
in K(|c x) from state (q, | |c x|) to (q′, | |c x|) that visits no state (q′′, | |c x|), and since
K(|c x) has at most cn states that can be on this path, there must be such a path
of length at most cn + 1. Since 1/2 is the smallest nonzero transition probability of
M , it follows that p ≥ 2−cn−1. The cases where p is a transition probability from the
Initial state are similar.

Similarly, if |y| ≤ n and if r is a nonzero element of Rxy, then r ≥ 2−cn−1.
Next we present a lemma that bounds the effect of small changes in the transition

probabilities of a Markov chain. This lemma is a slight restatement of a lemma of
Greenberg and Weiss [12]. This version is due to Dwork and Stockmeyer [8].

If k is a sink state of a Markov chain R, let a(k,R) denote the probability that
R is (eventually) trapped in state k when started in state 1. Let β ≥ 1. Say that
two numbers r and r′ are β-close if either: (i) r = r′ = 0, or (ii) r > 0, r′ > 0, and
β−1 ≤ r/r′ ≤ β. Two Markov chains R = {rij}si,j=1 and R′ = {r′ij}si,j=1 are β-close
if rij and r′ij are β-close for all pairs i, j.

LEMMA 3.3. Let R and R′ be two s-state Markov chains which are β-close, and
let k be a sink state of both R and R′. Then a(k,R) and a(k,R′) are β2s-close.

The proof of this lemma is based on the Markov chain tree theorem of Leighton
and Rivest [20] and can be found in [8].

Our approach is to partition the 1-entries of ML(n) into equivalence classes, as
in the proof of Theorem 3.1, but this time we will make entries [x, y] and [x′, y′]
equivalent only if the corresponding Markov chains Hxy and Hx′y′ are β-close, where
β will be chosen small enough that we can use Lemma 3.3 to show that xy′ and x′y
are accepted with high probability by combining the strategies for xy and x′y′.

If [x, y] is a 1-entry such that |x| ≤ n and |y| ≤ n, then for any nonzero p of Pxy (or
r of Rxy), p ∈ [2−cn−1, 1], so log2p ∈ [−cn− 1, 0] (and similarly log2r ∈ [−cn− 1, 0]).

By partitioning each coordinate interval [−cn − 1, 0] into subintervals of length
µ, we divide the space [−cn− 1, 0]d

2
into at most d(cn+ 1)/µed

2

cells, each of size at
most µ× µ× · · ·µ.

Partition the 1-entries in ML(n) into equivalence classes by making xy and x′y′

equivalent if Hxy and Hx′y′ have the property that for each state transition, if p and
p′ are the respective transition probabilities, either p = p′ = 0, or log p and log p′ are
in the same (size µ) subinterval of [−cn− 1, 0].

Note that the number of equivalence classes is at most (d(cn+ 1)/µe+ 1)d
2
.

We claim that if µ is chosen small enough, these equivalence classes induce a
1-tiling of ML(n) of size at most the number of equivalence classes. As in Theorem

748 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

3.1, we associate with each equivalence class C the rectangle RC defined by

{x|there exists y such that [x, y] ∈ C} × {y|there exists x such that [x, y] ∈ C}.

We claim that for each [x, y] in RC , xy ∈ L. That is, all entries in the rectangle are
1, so the rectangle forms a 1-tile. Let [x, y] be in RC . There must be some y′ such
that [x, y′] ∈ C and some x′ such that [x′, y] ∈ C. Consider the associated Markov
chains Hxy′ and Hx′y, and in particular, consider the transition submatrices Pxy′ and
Rx′y. The first is associated with a particular nondeterministic strategy on x, namely,
one which assumes the input is xy′ and tries to cause xy′ to be accepted with high
probability. The second is associated with a particular nondeterministic strategy on
y, namely, one which assumes the input is x′y and tries to cause x′y to be accepted
with high probability. The two matrices Pxy′ and Rx′y taken together correspond to
a hybrid strategy on xy: while reading x, use the strategy for xy′, and while reading
y, use the strategy for x′y. We will argue that this hybrid strategy causes xy to be
accepted with probability ≥ 1/2.

We construct a hybrid Markov chain Hxy using Pxy′ and Rx′y. This chain models
the computation of M on xy using the hybrid strategy.

Since the 1-entries [x, y′] and [x′, y] are in the same equivalence class C, it follows
that if p and p′ are corresponding transition probabilities in the Markov chains Hxy′

and Hx′y, then either p = p′ = 0 or | log p − log p′| ≤ µ. Therefore, Hxy′ and Hx′y

are 2µ-close, and it immediately follows that Hxy is 2µ-close to Hxy′ (and to Hx′y).
Let axy′ be the probability that M accepts input xy′ on the strategy for xy′, and let
axy be the probability that M accepts input xy using the hybrid strategy. Then axy′
(respectively, axy) is exactly the probability that the Markov chain Hxy′ (respectively,
Hxy) is eventually trapped in the Accept state when started in the Initial state. Now
xy′ ∈ L implies axy′ ≥ 1 − ε. Since Hxy and Hxy′ are 2µ-close, Lemma 3.3 implies
that

axy
axy′

≥ 2−2dµ,

which implies

axy ≥ (1− ε)2−2dµ.

Since ε and d are constants, and since ε < 1/2, we can choose µ to be a constant
so small that axy ≥ 1/2. Therefore xy must be in L.

Since each 1-entry [x, y] is in some equivalence class, the matrix ML(n) can be
1-tiled using at most (d(cn+ 1)/µe+ 1)d

2
tiles. Therefore,

T 1
L(n) ≤ (d(cn+ 1)/µe+ 1)d

2
.

Since c, d, and µ are constants independent of n, this shows that T 1
L(n) is bounded

by a polynomial in n.

3.3. 2NPFA-polytime and tiling. We now show that if L ∈ 2NPFA-polytime,
then T 1

L(n) is bounded by a polylog function.
THEOREM 3.4. A language L is in 2NPFA-polytime only if the 1-tiling complexity

of L is bounded by a polynomial in log n.
Proof. Suppose L is accepted by some 2npfa M with error probability ε < 1/2 in

expected time at most t(n). Let c be the number of states of M . For each 1-entry
[x, y] of ML(n), fix a nondeterministic strategy that causes M to accept the string xy
with probability at least 1− ε.

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 749

We construct the Markov chain Hxy just as in Theorem 3.2.
Say that a probability p is small if p < t(n)−2; otherwise, p is large. Note that if p

is a large transition probability, then p ∈ [t(n)−2, 1], so log2p ∈ [−2 log2 t(n), 0]. When
dividing the 1-entries of ML(n) into equivalence classes, make xy and x′y′ equivalent
if Hxy and Hx′y′ have the property that for each state transition, if p and p′ are the
respective transition probabilities, either p and p′ are both small, or log p and log p′

are in the same (size µ) subinterval of [−2 log2 t(n), 0].
This time the number of equivalence classes is at most (d2 log2 t(n)/µe+ 1)d

2
.

Model the computation of M on inputs x′y, xy′, and xy by Markov chains Hx′y,
Hxy′ , and Hxy, respectively, as before.

If p and p′ are corresponding transition probabilities in any two of these Markov
chains, then either p and p′ are 2µ-close or p and p′ are both small. Let Ex′y be the
event that, when Hx′y is started in state Initial, it is trapped in state Accept or Reject
before any transition labeled with a small probability is taken; define Exy′ and Exy
similarly. Since M halts in expected time at most t(n) on the inputs x′y, xy′, and
xy, the probabilities of these events go to 1 as n increases. Therefore, by changing all
small probabilities to zero, we do not significantly change the probabilities that Hx′y,
Hxy′ , and Hxy enter the Accept state, provided that n is sufficiently large. A formal
justification of this argument can be found in Dwork and Stockmeyer [8].

After these changes, we can argue that

axy ≥ (1− ε)2−2dµ

and choose µ so that axy ≥ 1/2, as before. It then follows that

T 1
L(n) ≤ (d2 log2 t(n)/µe+ 1)d

2
(1)

for all sufficiently large n, establishing the result.

4. Bounds on the tiling complexity of languages. In this section, we obtain
several bounds on the tiling complexity of regular and nonregular languages. In section
4.1, we prove several elementary results. First, all regular languages have constant
tiling complexity. Second, the 1-tiling complexity of all nonregular languages is at
least log n − O(1) infinitely often. We also present an example of a (unary) non-
regular language which has 1-tiling complexity O(log n). In section 4.2, we use a rank
argument to show that for all nonregular languages L, either L or its complement has
“high” 1-tiling complexity infinitely often.

4.1. Simple bounds on the tiling complexity of languages. The following
lemma is useful in proving some of the theorems in this section. Its proof is implicit
in work of Melhorn and Schmidt [21]; we include it for completeness.

LEMMA 4.1. Any binary matrix A that can be 1-tiled with m tiles has at most 2m

distinct rows.
Proof. Let A be a binary matrix that can be 1-tiled by m tiles {T1, . . . , Tm}, where

Tj = (Rj , Cj). For each row r of A, let I(r) = {Tj | j ∈ {1, . . . ,m} such that r ∈ Rj}.
Suppose r1 and r2 are rows such that I(r1) = I(r2). We show that in this case, rows
r1 and r2 are identical. To see this, consider any column c of A. Suppose that entry
[r1, c] has value 1 and is covered by some tile Tj ∈ I(r1). Therefore, c ∈ Cj . Since
I(r1) = I(r2), Tj ∈ I(r2) and therefore, r2 ∈ Rj and [r2, c] is covered by tile Tj .
Hence, entry [r2, c] must have value 1, since Tj is a 1-tile. Hence, if [r1, c] has value
1, so does [r2, c]. Similarly, if [r2, c] has value 1, then so does entry [r1, c]. Therefore
r1 and r2 are identical rows. Since there are only 2m possible values for I(r), A can
have at most 2m distinct rows.

750 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

THEOREM 4.2. The 1-tiling complexity of L is O(1) if and only if L is regular.
Proof. By the Myhill-Nerode theorem [14, Theorem 3.6], L is regular if and only

if ML has a finite number of distinct rows.
Suppose L is regular. Then by the above fact there exists a constant k such that

ML has at most k distinct rows. Consider any (possibly infinite) set R of identical
rows in ML. Let Cb be the set of columns which have bit b in the rows of R, for
b = 0, 1. Then the subset specified by (R,Cb) is a b-tile and covers all the b-valued
entries in the rows of R. It follows that the 1-valued entries of R can be covered by
a single tile, and hence there is a 1-tiling of ML(n) of size k. (Similarly, there is a
0-tiling of ML(n) of size k.)

Suppose L is not regular. Since L is not regular, ML has an infinite number of
distinct rows. It follows immediately from Lemma 4.1 that M cannot be tiled with
any constant number of tiles.

The above theorem uses the simple fact that the 1-tiling complexity T 1
L(n) of a

language L is a lower bound on the number of distinct rows of ML(n). In fact, the
number of distinct rows of ML(n), for a language L, is closely related to a measure
that has been previously studied by many researchers. Dwork and Stockmeyer called
this measure nonregularity, and denoted the nonregularity of L by NL(n) [7]. NL(n)
is the maximum size of a set of n-dissimilar strings of L. Two strings, w and w′,
are considered n-dissimilar if |w| ≤ n and |w′| ≤ n, and there exists a string v such
that |wv| ≤ n, |w′v| ≤ n, and wv ∈ L if and only if w′v 6∈ L. It is easy to show
that the number of distinct rows of ML(n) is between NL(n) and NL(2n). Previously,
Kaņeps and Freivalds [16] showed that NL(n) is equal to the number of states of the
minimal 1-way deterministic finite state automaton which accepts a language L′ for
which L′n = Ln, where Ln is the set of strings of L of length ≤ n.

Shallit [28] introduced a similar measure: the nondeterministic nonregularity of
L, denoted by NNL(n), is the minimal number of states of a 1-way nondeterministic
finite automaton which accepts a language L′ for which L′n = Ln. In fact, it is not
hard to show that

T 1
L(n) ≤ NNL(2n).

To see this, suppose that M is an automaton with NNL(2n) states, which accepts a
language L′ for which L′2n = L2n. We construct a 1-tiling of ML(n) with one tile Tq
per state q of M , where entry [x, y] is covered by Tq if and only if there is an accepting
path of M on xy which enters state q as the head falls off the rightmost symbol of
x. It is straightforward to verify that the set of tiles defined in this way is indeed a
valid 1-tiling of ML(n). A similar argument was used by Schmidt [27] to prove lower
bounds on the number of states in an unambiguous nfa.

We next turn to simple lower bounds on the 1-tiling complexity of nonregular
languages. From Theorem 4.2, it is clear that if L is nonregular, then T 1

L(n) is
unbounded. We now use a known lower bound on the nonregularity of nonregular
languages to prove a lower bound for T 1

L(n).
THEOREM 4.3. If L is not regular, then T 1

L(n) ≥ log2 n − 1 for infinitely many
n.

Proof. Kaņeps and Freivalds [16] proved that if L is not regular, then NL(n) ≥
b(n+3)/2c for infinitely many n. By the definition of NL(n), the matrix ML(n) must
have at least NL(n) distinct rows. Therefore, by Lemma 4.1, T 1

L(n) ≥ log2NL(n).
The lemma follows immediately.

We next present an example of a unary nonregular language, with 1-tiling com-
plexityO(log n). Thus, the lower bound of Theorem 4.3 is optimal to within a constant
factor.

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 751

THEOREM 4.4. Let L be the complement of the language {a2k−1 | k > 0}. Then,
L has 1-tiling complexity O(log n).

Proof. We show that the 1-valued entries of ML(n) can be covered with O(log n)
1-tiles. Let lg n denote blog2 nc+ 1, and let lg 0 = 0. Let x and y be binary numbers
of length at most lgn. Number the bits of these numbers from right to left, starting
with 1, so that, for example, y = ylgn . . . y2y1. For any binary number q, lg q is the
maximum index i such that qi = 1 (lg q = 0 if q = 0).

Clearly, if q is equal to 2k − 1 for some integer k > 0, then for all indices i, 1 ≤
i ≤ lg q, qi = 1. The next fact follows easily.

FACT. x+ y = 2k − 1 for some integer k > 0 if and only if for all j such that j ≤
max{lg x, lg y}, xj 6= yj.

Roughly, we construct a 1-tiling of ML(n), corresponding to the following non-
deterministic communication protocol. The party P1 guesses an index j and sends j
and xj to P2. Also, P1 sends P2 one bit indicating whether or not j ≤ lg x. If j ≤ lg x,
then P2 checks that yj = xj . If j > lg x, P2 checks that j ≤ lg y and that yj = xj , or
equivalently, that yj = 0. In either case, P2 can conclude that yj = xj , and so entry
[ax, ay] of ML(n) is 1. The number of bits sent from P1 to P2 is lg lg n+ 2.

We now describe the 1-tiling corresponding to this protocol. It is the union of
two sets of tiles. The first set has one tile Tj,b for each j, b such that lgn ≥ j ≥ 0 and
b ∈ {0, 1}, where

Tj,b = {ax | 0 ≤ x ≤ n, lg x ≥ j, xj = b} × {ay | 0 ≤ y ≤ n, yj = b}.

The second set of tiles has one tile Sj,0, for all j such that dlog ne ≥ j ≥ 1.

Sj,0 = {ax | 0 ≤ x ≤ n, lg x < j, xj = 0} × {ay | 0 ≤ y ≤ n, lg y ≥ j, yj = 0}.

To see that all the 1’s in the matrix are covered by one of these tiles, note that if
entry [ax, ay] of the matrix is 1, then by the above fact, there exists an index j such
that j ≤ max{lg x, lg y}, and either xj = yj = 1, or xj = yj = 0. So, for example, if
lg x ≥ lg y, and j is such that j ≤ lg x and xj = yj = 0, then entry [ax, ay] is covered
by tile Tj,0.

The nondeterministic communication protocol in the above proof is a slight vari-
ation of a simple (and previously known) protocol for the complement of the set
distinctness problem. In the set distinctness problem, each of the two parties holds
a subset of {1, . . . ,m} and must determine whether the subsets are distinct. In our
application, the problem is to determine, for m = max{lg x, lg y}, whether the subset
of {1, . . . ,m}, whose corresponding values in x are 0, is distinct from the subset of
{1, . . . ,m} whose corresponding values in y are 1.

4.2. Lower bounds on the tiling complexity of nonregular languages. In
this section we prove that if a language L is nonregular, then the 1-tiling complexity of
either L or L̄ is “high” infinitely often. To prove this, we first prove lower bounds on
the rank of ML when L is nonregular. We then apply theorems from communication
complexity relating rank to tiling complexity.

The proofs of the lower bounds on the rank of ML are heavily dependent on dis-
tinctive structural properties of ML. Consider first the case where L is a unary lan-
guage over the alphabet Σ = {a}. In this case, for all i, j where j > 1, aiaj = ai+1aj−1,
and therefore ML[ai, aj] = ML[ai+1, aj−1]. It follows that for every n, ML(n) is such
that its auxiliary diagonal (the diagonal from the top right to the bottom left) consists
of equal elements, as do all diagonals parallel to that diagonal. An example is shown
in Figure 1. Such matrices are classically known as Hankel matrices and have been
extensively studied [15]. In fact, a direct application of known results on the rank of

752 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

ε a1 a2 a3 a4 a5 a6

ε 1 0 0 1 0 0 1
a1 0 0 1 0 0 1 0
a2 0 1 0 0 1 0 0
a3 1 0 0 1 0 0 1
a4 0 0 1 0 0 1 0
a5 0 1 0 0 1 0 0
a6 1 0 0 1 0 0 1

FIG. 1. The Hankel matrix ML(6) for L = {ai|i ≡ 0 mod 3}.

ε 0 1 00 01 10 11 000 001 010 011 100 101 110 111
ε 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0
1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1

00 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0
01 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
10 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0
11 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1

000 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
001 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
010 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
011 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
100 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
101 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
111 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

FIG. 2. The matrix M(3) for L = {w ∈ {0, 1}∗|w is a palindrome}. The bold entries in row
110 are determined by the bold entries in row 11. The bold entries in row 110 comprise split(0)(11)
for M(2, 3).

Hankel matrices shows that if L is nonregular, then rank(ML(n)) ≥ n + 1 infinitely
often. This was first proved by Iohvidov (see [15, Theorem 11.3]), based on previous
work of Frobenius [11].

If L is a nonunary language, then ML does not have the simple diagonal structure
of a Hankel matrix. Nevertheless, ML still has structural properties that we are able
to exploit. In fact, the term Hankel matrix has been extended from its classical
meaning to refer to matrices ML of nonunary languages (see [26]). In what follows,
we generalize the results on the rank of classical Hankel matrices and prove that for
any nonregular language L, over an arbitrary alphabet, rank(ML(n)) ≥ n+1 infinitely
often.

4.2.1. Notation and basic facts. Let L be a language over an arbitrary al-
phabet, and let M = ML.

Consider a row of M indexed by a string w. This row corresponds to strings that
have the prefix w. For any string s, row ws corresponds to strings with the prefix
ws. Thus the entries in row ws can be determined by looking at those entries in row
w whose columns are indexed by strings beginning with s (see Figure 2). In what
follows, we consider this relationship between the rows of M more formally.

Let M(n,m) denote the set of vectors (finite rows) of M which are indexed by
strings x of length ≤ n and whose columns are indexed by strings of length ≤ m. Let
M̂(n,m) denote the subset of vectors of M(n,m) which are indexed by strings x of

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 753

length exactly n. If v′ is row x of M(n,m+ i), where i > 0 and v is row x of M(n,m),
then v′ is called an extension of v.

Suppose v ∈ M(n,m). Let s be a string over Σ of length ≤ m (possibly the
empty string, ε). Define split(s)(v) to be the subvector formed from v by selecting
exactly those columns whose labels have s as a prefix. Also, relabel the columns of
split(s)(v) by removing the prefix s. Note that split(ε)(v) = v. Note also that if Σ

is unary, say {σ}, then split(σ)(v) is v with the first column removed. Let |v| denote
the dimension (number of entries) of vector v. If Σ is binary and σ ∈ Σ, then

| split(σ)(v)| = (|v| − 1)/2.

More generally, if |Σ| = c > 1 and σ ∈ Σ, then

|v| = cm+1 − 1
c− 1

, and

| split(σ)(v)| = |v| − 1
c

=
cm − 1
c− 1

.

Also, the vector v consists of the first entry (indexed by the empty string, ε), plus
an “interleaving” of the entries of split(σ)(v), for each σ ∈ Σ. More precisely, we have
the following fact.

FACT 4.1. Let j′, s, j ∈ Σ∗, where j′ = sj. Then, v[j′] = split(s)(v)[j].
We generalize the definition of the split function to sets of vectors. If V is a set

of vectors in M(n,m), and |s| ≤ m, let split(s)(V) = { split(s)(v) | v ∈ V }. Then we
have the following.

FACT 4.2. ∪|s|=isplit(s)(M̂(n,m)) = M̂(n+ i,m− i). Thus,
(a) M̂(n+ i,m− i) ⊆ ∪|s|=isplit(s)(M(n,m)), and
(b) ∪|s|=isplit(s)(M(n,m)) = M(n+ i,m− i).
In what follows, the vectors we consider are assumed to be elements of vector

spaces over an arbitrary field F (e.g., our proofs will hold if F is taken to be the field
of rationals F). All references to rank, span, and linear independence apply to vector
spaces over F.

LEMMA 4.5. Suppose that b1, . . . , bp ∈M(n,m) and that

v = α1b1 + · · ·+ αpbp,

where the αi are in the field F. Suppose that for 1 ≤ k ≤ p, b′k is an extension in
M(n,m+ 1) of bk and that v′ is an extension of v to the same length as the b′k.

Suppose also that for some i, 0 ≤ i ≤ m + 1, it is the case that for all s of
length i,

split(s)(v′) = α1split(s)(b′1) + · · ·+ αpsplit(s)(b′p).

Then v′ = α1b
′
1 + · · ·+ αpb

′
p.

Proof. Clearly, v′[j] = α1b
′
1[j] + · · · + αpb

′
p[j], if j is a string of length ≤ m.

Consider a string j′ of length m+ 1. Let j′ = sj, where |s| = i. By Fact 4.1,

v′[j′] = split(s)(v′)[j].

Also,

b′k[j′] = split(s)(b′k)[j], for 1 ≤ k ≤ p.

754 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

By the hypothesis of the lemma,

split(s)(v′)[j] = α1 split(s)(b′1)[j] + · · ·+ αp split(s)(b′p)[j].

Putting the last three equalities together, v′[j′] = α1b
′
1[j′] + · · · + αpb

′
p[j
′], as

required.
Let rank(M(n,m)) be the rank of the set of vectorsM(n,m) and let span(M(n,m))

be the vector space generated by the vectors in M(n,m). The next lemma follows
immediately from the definitions.

LEMMA 4.6. If v′ ∈ span(M(n,m)),m > 0 and v = split(σ)(v′), where σ ∈ Σ,
then

v ∈ span(split(σ)(M(n,m))).

4.2.2. A lower bound on the rank of M(n) when L is nonregular. A
trivial lower bound on the rank of M(n) is given by the following fact.

FACT 4.3. L is nonregular if and only if there is an infinite sequence of integers
pr satisfying rank(M(pr)) ≥ r + 1 for all integers r.

This is easily shown using the Myhill-Nerode theorem. Clearly, such a sequence
exists if and only if the rank of M(n) (as n increases) is unbounded. Moreover,
the rank of M(n) is unbounded if and only if the number of distinct rows in M(n) is
unbounded. The Myhill-Nerode theorem states that the number of equivalence classes
of L (equivalently, the number of distinct rows of M) is finite if and only if L is regular.
It follows that L is nonregular if and only if the rank of M(n) is unbounded. This
conclusion has already been noted (see sections II.3 and II.5 of [26], which describes
results from the literature on rational power series and regular languages).

The above lower bound is very weak. In what follows, we significantly improve
it by using the special structure of M(n). Namely, we show that there is an infinite
sequence of values of n such that rank(M(n)) ≥ n+ 1. We define the first value of n
in our sequence to be the length of the shortest word in L (clearly rank(M(n)) ≥ n+1
in this case). To construct the remainder of the sequence, we show (in Lemma 4.9)
that because L is nonregular, for any value of n, there is some m ≥ n such that
rank(M(n+ 1,m+ 1)) > rank(M(n,m+ 1)). We then prove (in Lemma 4.10 and the
proof of Theorem 4.11) that if n is such that rank(M(n)) ≥ n+ 1, and we choose the
smallest m ≥ n such that rank(M(n + 1,m + 1)) > rank(M(n,m + 1)), then in fact
rank(M(m+ 1)) ≥ m+ 2.

We begin with the following useful lemma.
LEMMA 4.7. Let n ≥ 0,m ≥ 1. Suppose that M(n + 1,m) ⊆ span(M(n,m)).

Then, for all i, 1 ≤ i ≤ m, M(n+ i,m− i+ 1) ⊆ span(M(n,m− i+ 1)).
Proof. The proof is by induction on i. The result is true by hypothesis of the

lemma in the case i = 1. Suppose 1 < i ≤ m and that the lemma is true for i− 1.
It follows from the induction hypothesis that if v ∈ M(n + i − 1,m − i + 2),

then also v ∈ span(M(n,m − i + 2)). Hence, it must also be the case that if v ∈
M(n+i−1,m−i+1), then v ∈ span(M(n,m−i+1)). It remains to consider the vectors
in M̂(n+ i,m− i+ 1). By Fact 4.2(a), each such vector v is of the form split(σ)(v′),
where v′ ∈M(n+ i− 1,m− i+ 2), for some σ, |σ| = 1. By the inductive hypothesis,
v′ ∈ span(M(n,m−i+2)). Hence, by Lemma 4.6, v ∈ span(split(σ)(M(n,m−i+2))).

Then, by Fact 4.2(b), all of the vectors in split(σ)(M(n,m− i+ 2)) are in M(n+
1,m − i + 1). Hence, v ∈ span(M(n + 1,m − i + 1)). Finally, by the hypothesis
of the lemma, span(M(n + 1,m − i + 1)) = span(M(n,m − i + 1)). Hence, v ∈
span(M(n,m− i+ 1)), as required.

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 755

COROLLARY 4.8. For any n ≥ 0, if rank(M(n + 1, 2p)) = rank(M(n, 2p)) ≤ r,
then rank(M(p)) ≤ r.

Proof. If n ≥ p, then M(p) is a submatrix of M(n, 2p) so the result follows
trivially. Otherwise, choose i so that n + i = p. Then M(p) is a submatrix of
M(n + i, 2p − i + 1), and hence by Lemma 4.7, the rows of M(p) are contained in
span(M(n, p)). Thus again, rank(M(p)) ≤ r.

The following lemma shows the existence of an m ≥ n such that rank(M(n +
1,m+ 1)) > rank(M(n,m+ 1)).

LEMMA 4.9. Let L be a nonregular language. Then for any n, there exists an
m ≥ n such that rank(M(n+ 1,m+ 1)) > rank(M(n,m+ 1)).

Proof. Let r be the number of strings of length ≤ n. Clearly, rank(M(n,m)) ≤ r
for all m, since there are r rows in M(n,m). Let p = pr as in Fact 4.3, that is,
rank(M(p)) ≥ r + 1. Hence, by Corollary 4.8, it must be the case that rank(M(n +
1, 2p)) > rank(M(n, 2p)). Thus, 2p is one possible value of m that satisfies the
lemma.

It remains to show that if n is such that rank(M(n)) ≥ n + 1, and m is the
smallest number such that m ≥ n and rank(M(n+ 1,m+ 1)) > rank(M(n,m+ 1)),
then rank(M(m + 1)) ≥ m + 2. This is clearly true if for all i ∈ [0, . . . ,m − n],
rank(M(n,m− i)) < rank(M(n,m− i+1)), because in this case rank(M(n,m+1)) ≥
m+2. The difficult case is when there exist values of i such that rank(M(n,m− i)) =
rank(M(n,m− i+ 1)). To help deal with this case, we prove the following lemma.

LEMMA 4.10. Suppose that the following properties hold:
1. M(n+ 1, n+ 1) ⊆ span(M(n, n+ 1)).
2. m is the smallest number > n such that M(n+1,m+1) 6⊆ span(M(n,m+1)).
3. i is a number in the range [0, . . . ,m− n] such that

rank(M(n,m− i)) = rank(M(n,m− i+ 1)).

Then, there is some vector in M(n+ i+ 1,m− i+ 1) which is not in span(M(n,m−
i+ 1)).

Proof. Let v′ ∈ M(n+ 1,m+ 1)− span(M(n,m+ 1)), where v′ is the extension
of some v ∈M(n+ 1,m).

Then, we claim that for some s, |s| = i, split(s)(v′) 6∈ span(M(n,m − i + 1)).
Since split(s)(v′) ∈M(n+ i+ 1,m− i+ 1) by Fact 4.2(b), this is sufficient to prove
the lemma.

Suppose to the contrary that for all s of length i, split(s)(v′) ∈ span(M(n,m −
i+ 1)).

Let {b1, . . . , bp} be a basis of M(n,m). Let {b′1, . . . , b′p} be an extension of this
basis in M(n,m + 1). By properties 1 and 2 of the lemma, v is in span(M(n,m)).
Let v = α1b1 + · · ·+ αpbp. Then, applying Fact 4.1, we see that for all s, |s| = i,

split(s)(v) = α1 split(s)(b1) + · · ·+ αp split(s)(bp).(2)

We want to show that for all s of length i,

split(s)(v′) = α1 split(s)(b′1) + · · ·+ αp split(s)(b′p).

It follows from this and Lemma 4.5 that

v′ = α1b
′
1 + · · ·+ αpb

′
p,

contradicting the fact that v′ 6∈ span(M(n,m+ 1)).

756 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

Consider the vectors split(s)(b′k). These are in M(n + i,m − i + 1), by Fact 4.2
(b). If i = 0, this is clearly in span(M(n,m + 1)). If 0 < i ≤ m − n, by Lemma 4.7
and by property 2 of this lemma, these vectors are in span(M(n,m − i + 1)). Let
c1, . . . , cl be a basis for span(M(n,m− i)), and for 1 ≤ k ≤ l, let c′k be an extension in
M(n,m−i+1) of ck. Clearly the set {c′1, . . . , c′l} is also linearly independent, and since
rank(M(n,m−i)) = rank(M(n,m−i+1)), this set is a basis for span(M(n,m−i+1)).
Let

split(s)(b′k) = γ
(s)
k,1c
′
1 + · · ·+ γ

(s)
k,l c
′
l.(3)

Then, also

split(s)(bk) = γ
(s)
k,1c1 + · · ·+ γ

(s)
k,l cl.(4)

Also, since v ∈ M(n + 1,m), from Fact 4.2(b) it must be that the vectors
split(s)(v) are in M(n + i + 1,m − i). Hence, again by property 2 of this lemma,

and by Lemma 4.7, these vectors are in span(M(n,m− i)).
Since c1, . . . , cl is a basis for span(M(n,m − i)), it follows that there exists a

unique sequence of coefficients τ1, . . . , τl such that

split(s)(v) = τ1c1 + τ2c2 + · · ·+ τlcl.

Also, by combining equation (2) with equation (4), we see that

split(s)(v) = α1[γ(s)
1,1c1 + · · ·+ γ

(s)
1,l cl]

+ α2[γ(s)
2,1c1 + · · ·+ γ

(s)
2,l cl]

+ · · ·
+ αp[γ

(s)
p,1c1 + · · ·+ γ

(s)
p,l cl].

Thus τk = α1γ
(s)
1,k + · · ·+ αpγ

(s)
p,k for all k ∈ [1, . . . , l].

We claim

split(s)(v′) = α1[γ(s)
1,1c
′
1 + · · ·+ γ

(s)
1,l c
′
l]

+ α2[γ(s)
2,1c
′
1 + · · ·+ γ

(s)
2,l c
′
l]

+ · · ·
+ αp[γ

(s)
p,1c
′
1 + · · ·+ γ

(s)
p,l c
′
l].

We now justify the claim. By our initial assumption, split(s)(v′) is in span(M(n,m−
i+ 1)). Thus for some unique coefficients τ ′1, . . . , τ

′
l ,

split(s)(v′) = τ ′1c
′
1 + τ ′2c

′
2 + · · ·+ τ ′l c

′
l.

Each c′k is an extension of ck, and there is a unique linear combination of c1, c2, . . . cl
that is equal to split(s)(v). It follows that each τ ′k = τk. This proves the claim.

Combining the claim with equation (3) yields

split(s)(v′) = α1 split(s)(b′1) + · · ·+ αp split(s)(b′p),

as desired.
We now prove the lower bound.
THEOREM 4.11. If L is nonregular, then rank(M(n)) ≥ n+ 1 infinitely often.
Proof. The base case is n such that the shortest word in the language is of

length n.

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 757

Suppose that rank(M(n)) ≥ n+1 for some fixed n. Let m be the smallest number
≥ n such that rank(M(n + 1,m + 1)) > rank(M(n,m + 1)). By Lemma 4.9 there is
such an m. We claim that rank(M(m+ 1)) ≥ m+ 2.

If m = n, then the claim is clearly true. Suppose m > n.
Let Bk be a basis for M(n, k), n ≤ k ≤ m+ 1, where the extensions of all vectors

in Bk are in Bk+1. Let B′k−1 denote the subset of Bk which are extensions of vectors
in Bk−1.

We construct a set of m+ 2 linearly independent vectors in M(m+ 1) as follows.
For k from n to m+1, we define a linearly independent set Ck of vectors in M(m+1, k),
of size at least k + 1. Then, Cm+1 is the desired set.

Let Cn = Bn. This is by definition a linearly independent set, and it has size
≥ n + 1 because (by our initial assumption) rank(M(n)) ≥ n + 1. Suppose that
n ≤ k < m + 1 and that Ck is already constructed and is linearly independent.
Construct Ck+1 as follows.

(i) Let C ′k be the set of extensions in M(m+ 1, k + 1) of the vectors in Ck. Add
C ′k to Ck+1.

(ii) Add Bk+1 to Ck+1. (Thus, Ck+1 is expanded to contain those vectors in Bk+1
which are not in B′k.)

(iii) Finally, suppose nothing is added to Ck+1 in step (ii); that is, rank(M(n, k)) =
rank(M(n, k+1)). If i is such that k = m−i, then this is equivalent to rank(M(n,m−
i)) = rank(M(n,m − i + 1)). Thus, we can apply Lemma 4.10 to obtain a vec-
tor v′ ∈ M(n + i + 1,m − i + 1) which is not in span(M(n,m − i + 1)). (Thus,
v′ ∈M(n+m+ 1− k, k + 1) but is not in span(B′k).) Add v′ to Ck+1.

We claim that the vectors in Ck+1 are linearly independent. Clearly the set C ′k
is linearly independent. Consider each vector u′ added to Ck+1, which is not in C ′k.
By the construction, u′ is not in span(B′k). Let u′ be the extension of vector u in
M(m+ 1, k). We claim that the vector u must be linearly dependent on the set Bk.
This is true if u′ is added in step (ii), since in this case u is in M(n, k) and Bk is a
basis for M(n, k). It is also true in the case that u′ = v′, the vector added in step
(iii), since then by Lemma 4.7, u = v ∈ span(Bk).

Hence, u ∈ span(Ck), since Bk ⊆ Ck. Moreover, u can be expressed as a unique
linear combination of the vectors of Ck, with nonzero coefficients only on those vectors
in Bk.

If u′ were in span(C ′k), then since it is an extension of u, it would also be express-
ible as a unique linear combination of the vectors of C ′k, with nonzero coefficients only
on those vectors in B′k. But that contradicts the fact that u′ 6∈ span(B′k).

4.2.3. The tiling complexity lower bound.
THEOREM 4.12. If L is nonregular, then the 1-tiling complexity of either L or L̄

is at least 2
√

logn−2 − 1 infinitely often.
Proof. Melhorn and Schmidt, and, independently, Orlin, showed that for any

binary matrix A, rank(A) ≤ T̃ (A) [21, 22]. Their result holds for A over any field.
Halstenberg and Reischuk [13], refining a proof of Aho, Ullman, and Yannakakis
[1], showed that dlog T̃ (A)e ≤ dlog T 1(A)e(dlog(T 0(A) + 1)e + 2) + 1. Let T ∗(A) =
max(T 1(A), T 0(A)). Then dlog rank(A)e ≤ (dlog(T ∗(A) + 1)e+ 1)2.

By Theorem 4.11, if L is nonregular, then the rank of M(n) is at least n+ 1 in-
finitely often. It follows that for infinitely many n, T ∗(M(n)) = max(T 1

L(n), T 0
L(n)) ≥

2
√

logn−2 − 1.

5. Variations on the model. In this section, we discuss extensions of our main
results to other related models.

758 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

We first show that Theorem 1.1 also holds for the following “alternating prob-
abilistic” finite state automaton model. In this model, which we call a 2apfa, the
nondeterministic states N are partitioned into two subsets NE and NU of existential
and universal states, respectively. Accordingly, for a fixed input, there are two types
of strategy, defined as follows for a fixed input string w = w0w1w2 . . . wnwn+1. An
existential (universal) strategy on w is a function

Ew : NE × {0, . . . , n+ 1} → Q× {−1, 0, 1},

(Uw : NU × {0, . . . , n+ 1} → Q× {−1, 0, 1}),

such that δ(q, σ, q′, d) = 1 whenever Ew(q, j) = (q′, d) (Uw(q, j) = (q′, d)) and wj = σ.
A language L ⊆ Σ∗ is accepted with bounded error probability if for some constant

ε < 1/2,
1. for all w ∈ L, there exists an existential strategy Ew on which the automaton

accepts with probability ≥ 1− ε on all universal strategies Uw, and
2. for all w /∈ L, on every existential strategy Ew, the automaton accepts with

probability ≤ ε on some universal strategy Uw.
The complexity classes 1APFA, 1APFA-polytime, and so on, are defined in the

natural way, following our conventions for the npfa model.
THEOREM 5.1. 1APFA = Regular.
Proof. As in Theorems 1.1 and 3.1, we show that if L is a language accepted by

a 1APFA, then the tiling complexity of L is bounded. We first extend the notation
of Theorem 3.1.

If E is an existential strategy on xy and U is a universal strategy on xy, let
pxy(E,U) be the state probability (row) vector at the step when the input head
moves off the right end of x, on the strategies E,U . Let rxy(E,U) be the column
vector whose ith entry is the probability of accepting the string xy, assuming that
the automaton is in state i at the moment that the head moves off the right end of
x, on the strategies E,U . For each 1-entry [x, y] of ML, fix an existential strategy
Exy, that causes xy to be accepted with probability at least 1 − ε, for all universal
strategies.

Partition the space [0, 1]c into cells of size µ× µ× · · · × µ, as before. Let C be a
nonempty subset of the cells. We say that entry [x, y] of ML belongs to C if xy ∈ L,
and C is the smallest set of cells which contain all the vectors pxy(Exy, U), for all
universal strategies U .

With each nonempty subset C of the cells, associate a rectangle RC defined as
follows.

{x | there exists y such that [x, y] belongs to C}
×

{y | there exists x such that [x, y] belongs to C}.

Then, RC is a valid 1-tile. To see this, suppose that [x, y] ∈ RC . If [x, y] belongs
to C, then it must be a 1-entry. Otherwise, there exist x′ and y′ such that [x, y′] and
[x′, y] belong to C.

Consider the strategy E that, while reading x, uses the strategy Exy′ , and while
reading y, uses the strategy Ex′y. We claim that xy is accepted with probability at
least 1/2 on existential strategy E and any universal strategy U on xy. The probability
that xy is accepted on strategies E,U is

pxy(E,U)rxy(E,U) = pxy′(Exy′ , U)rx′y(Ex′y, U).

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 759

Since [x, y′] and [x′, y] belong to the same set of cells C, pxy′(Exy′ , U) and px′y(Ex′y, U ′)
are in the same cell, for some universal strategy U ′. Moreover,

px′y(Ex′y, U ′)rx′y(Ex′y, U) ≥ 1− ε.

This is because this quantity is the probability that x′y is accepted on existential
strategy Ex′y and a universal strategy which is a hybrid of U and U ′; also, by definition
of Ex′y, the probability that x′y is accepted with respect to Ex′y and any universal
strategy is ≥ 1− ε. Hence,

(px′y(Ex′y, U ′)− pxy′(Exy′ , U)) rx′y(Ex′y, U)

=
∑c
i=1[px′y(Ex′y, U ′)− pxy′(Exy′ , U)]i[rx′y(Ex′y, U)]i

≤ µ
∑c
i=1[rx′y(Ex′y, U)]i

≤ µc
= 1/2− ε, by our choice of µ.

Hence, the probability that xy is accepted on the strategies E,U is

pxy′(Exy′ , U)rx′y(Ex′y, U) ≥ px′y(Ex′y, U ′)rx′y(Ex′y, U)− (1/2− ε)
≥ (1− ε)− (1/2− ε)
= 1/2 > ε.

Since U is arbitrary, it follows that there is an existential strategy E such that on
all strategies U , the probability that xy is accepted on the strategies E,U is greater
than ε, and so it cannot be that xy 6∈ L. Hence, for all [x, y] ∈ RC , xy must be in L.
Therefore RC is a 1-tile in ML.

The proof is completed as in Theorem 3.1.
In the same way, Theorem 3.4 can also be extended to obtain the following.
THEOREM 5.2. A language L is in 2APFA-polytime only if the 1-tiling complexity

of L is bounded by 2polylog(n).
Thus, for example, the language Pal, consisting of all strings over {0, 1}∗ which

read the same forwards as backwards, is not in the class 2APFA-polytime. To see
this, consider the submatrix of ML(n), consisting of all rows and columns labeled by
strings of length exactly n. This matrix contains a fooling set of size 2n; hence a
1-tiling of ML(n) requires at least 2n tiles.

We next extend Theorem 1.2 to automata with o(log log n) space. We refer to
these as Arthur–Merlin games, since this is the usual notation for such automata
which are not restricted to a finite number of states [7]. The definition of an Arthur–
Merlin game is similar to that of an npfa, except that the machine has a fixed number
of read/write worktapes. The Arthur–Merlin game runs within space s(n) if on any
input w with |w| ≤ n, at most s(n) tape cells are used on any worktape. Thus, the
number of different configurations of the Arthur–Merlin game is 2O(s(n)).

THEOREM 5.3. Let M and M̄ be Arthur–Merlin games which recognize a nonreg-
ular language L and its complement L̄, respectively, within space o(log log n). Suppose
that the expected running time of both M and M̄ is bounded by t(n). Then, for all
b < 1/2, log log t(n) ≥ (log n)b. In particular, t(n) is not bounded by any polynomial
in n.

Proof. The proof of Theorem 1.2 can be extended to space bounded Arthur–
Merlin games to yield the following generalization of equation (1). Let c(n) be an
upper bound on the number of different configurations of M on inputs of length n,

760 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

and let d(n) = 2c(n) + 4. Then, for sufficiently large n, the number of 1-tiles needed
to cover ML(n) is at most

T 1
L(n) ≤ (d2 log2 t(n)/µe+ 1)d

2(n) = 2Θ(d2(n) log log t(n)).

Since M uses o(log log n) space, for any constant c > 0, d(n) ≤ (log n)c, for sufficiently
large n.

Now, suppose to the contrary that for some b < 1/2, log log t(n) < (log n)b for
sufficiently large n. Then,

d2(n) log log t(n) = o(
√

log n).

Hence, the number of tiles needed to cover the 1-valued entries of ML(n) is 2o(
√

logn).
The same argument for M̄ shows that also, for sufficiently large n, the number of tiles
needed to cover the 1-valued entries of ML̄(n) is 2o(

√
logn).

Hence, by Theorem 4.12 L must be regular, which is a contradiction.
Finally, we consider a restriction of the 2npfa model, which, given polynomial

time, can only recognize regular languages. A restricted 2npfa is a 2npfa for which
there is some ε < 1/2 such that on all inputs w and strategies Sw, the probability
that the automaton accepts is either ≥ 1− ε or < ε.

THEOREM 5.4. Any language accepted by a restricted 2npfa with bounded error
probability in polynomial time is regular.

Proof. Let L be accepted by a 2npfa M with bounded error probability in
polynomial expected time. Let Σ be the alphabet, δ the transition function, Q =
{q1, q2, . . . , q|Q|} the set of states, and N ⊂ Q the set of nondeterministic states of M .
Without loss of generality, let N = {q1, . . . , q|N |}.

We first define a representation of strategies as strings over a finite alphabet. Let
Σ′ = (N ×Q× {−1, 0, 1})|N |. Without loss of generality, assume that Σ ∩ Σ′ = 0. A
string S0S1 . . . Sn+1 corresponds to a strategy on |cw$, where |cw$ = σ0σ1 . . . σn+1,
if for 0 ≤ j ≤ n+ 1, Sj is of the form

Sj = ((q1, q
′
1, d1), (q2, q

′
2, d2), . . . , (q|N |, q′|N |d|N |)),

and δ(qi, σj , q′i, di) = 1.
Define L′ to be the set of strings of the form σ0S0σ1S1 . . . σn+1Sn+1, where each σi

is in the alphabet Σ, each Si is in the alphabet Σ′, and furthermore, S = S0S1 . . . Sn+1
corresponds to a strategy of M on input w = σ0σ1 . . . σn+1, which causes w to be
accepted.

Then, L′ is accepted by a 2pfa with bounded error probability in polynomial time.
Thus, L′ is regular [7]. Moreover, note that a string of the form w = σ0σ1 . . . σn+1 is
in L if and only if for some choice of S0, S1 . . . Sn+1, σ0S0σ1S1 . . . σn+1Sn+1 is in L′.
Let M ′ be a one-way deterministic finite state automaton for L′ and assume, without
loss of generality, that the set of states in which M ′ can be when the head is at an
even position is disjoint from the set of states in which M ′ can be when the head
is at an odd position. Then, from M ′ we can construct a one-way nondeterministic
finite state automaton for L by replacing the even position states by nondeterministic
states. Hence, L is regular.

6. Conclusions. We have introduced a new measure of the complexity of a
language, namely its tiling complexity, and have proved a gap between the tiling com-
plexity of regular and nonregular languages. We have applied these results to prove
limits on the power of finite state automata with both probabilistic and nondetermin-
istic states. These results first appeared in [5].

NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 761

An intriguing question left open by this work is whether the class 2NPFA-polytime
is closed under complement. If it is, we can conclude that 2NPFA-polytime = Regu-
lar. Recall that the class 2NPFA does contain nonregular languages, since it contains
the class 2PFA, and Freivalds [10] showed that {0n1n | n ≥ 0} is in this class. How-
ever, Kaņeps [18] showed that the class 2PFA does not contain any nonregular unary
language. Another open question is whether the class 2NPFA contains any nonregular
unary language. It is also open whether there is a nonregular language in 2APFA-
polytime.

There are several other interesting open problems. Can one obtain a better lower
bound on the tiling complexity of nonregular languages than that given by Theorem
4.12, perhaps by an argument that is not based on rank? We know of no nonregular
language with tiling complexity less than Ω(n) infinitely often, so the current gap is
wide.

REFERENCES

[1] A. V. AHO, J. D. ULLMAN, AND M. YANNAKAKIS, On notions of information transfer in
VLSI circuits, in Proc. 15th Annual ACM Symposium on Theory of Computing, ACM,
New York, 1983, pp. 133–139.

[2] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and
hardness of approximation problems, in Proc. 33rd IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 14–23.

[3] L. BABAI AND S. MORAN, Arthur-Merlin games: A randomized proof system and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[4] A. CONDON, Computational Models of Games, MIT Press, Cambridge, MA, 1989.
[5] A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON, On the power of finite au-

tomata with both nondeterministic and probabilistic states, in Proc. 26th Annual ACM
Symposium on Theory of Computing, ACM, New York, 1994, pp. 676–685.

[6] A. CONDON AND R. LADNER, Probabilistic game automata, J. Comput. System Sci., 36 (1988),
pp. 452–489.

[7] C. DWORK AND L. STOCKMEYER, A time-complexity gap for two-way probabilistic finite state
automata, SIAM J. Comput., 19 (1990), pp. 1011–1023.

[8] C. DWORK AND L. STOCKMEYER, Finite state verifiers I: The power of interaction, J. As-
soc. Comput. Mach., 39 (1992), pp. 800–828.

[9] L. FORTNOW AND C. LUND, Interactive proof systems and alternating time-space complexity,
in Theoret. Comput. Sci., 113 (1993), pp. 55–73.

[10] R. FREIVALDS, Probabilistic two-way machines, in Proc. International Symposium on Mathe-
matical Foundations of Computer Science, Lecture Notes in Comput. Sci. 188, Springer-
Verlag, New York, 1981, pp. 33–45.

[11] G. FROBENIUS, Über das Trägheitsgesetz der quadratischen Formen, Sitzungsber. der Königl.
Preuss. Akad. der Wiss., 1894, pp. 407–431.

[12] A. G. GREENBERG AND A. WEISS, A lower bound for probabilistic algorithms for finite state
machines, J. Comput. System Sci., 33 (1986), pp. 88–105.

[13] B. HALSTENBERG AND R. REISCHUK, On different modes of communication, in Proc. 20th
Annual ACM Symposium on the Theory of Computing, ACM, New York, 1988, pp. 162–
172.

[14] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and
Computation, Addison–Wesley, Reading, MA, 1979.

[15] I. S. IOHVIDOV, Hankel and Toeplitz Matrices and Forms: Algebraic Theory, I. Gohberg, ed.,
G. Philip, and A. Thijsse, translators, Birkhäuser, Boston, 1982.

[16] J. KAŅEPS AND R. FREIVALDS, Minimal nontrivial space complexity of probabilistic one-way
Turing machines, in Proc. Conference on Mathematical Foundations of Computer Science,
Lecture Notes in Comput. Sci. 452, Springer-Verlag, New York, 1990, pp. 355–361.

[17] J. KAŅEPS AND R. FREIVALDS, Running time to recognize nonregular languages by 2-way
probabilistic automata, in Proc. 18th International Colloquium on Automata, Languages,
and Programming, Springer-Verlag, New York, 1991, pp. 174-185.

[18] J. KAŅEPS, Regularity of one-letter languages acceptable by 2-way finite probabilistic au-
tomata, in Proc. Fundamentals of Computation Theory, Lecture Notes in Comput. Sci.
529, Springer-Verlag, New York, 1991, pp. 287–296.

762 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

[19] R. M. KARP, Some bounds on the storage requirements of sequential machines and Turing
machines, J. Assoc. Comput. Mach., 14 (1967), pp. 478–489.

[20] F. T. LEIGHTON AND R. L. RIVEST, The Markov Chain Tree Theorem, Tech. Report
MIT/LCS/TM-249, Laboratory for Computer Science, MIT, Cambridge, MA, 1983; also
in IEEE Trans. Inform. Theory, IT-37 (1986), pp. 733–742.

[21] K. MELHORN AND E. M. SCHMIDT, Las Vegas is better than determinism in VLSI and dis-
tributed computing, in Proc. 14th Annual ACM Symposium on Theory of Computing,
ACM, New York, 1982, pp. 330–337.

[22] J. ORLIN, Contentment in graph theory: Covering graphs with cliques, in Proc. Koniklijke
Nederlandse Akademie van Wetenschappen, Amsterdam Series A, 80 (1977), pp. 406–424.

[23] C. PAPADIMITRIOU, Games against nature, J. Comput. System Sci., 31 (1985), pp. 288–301.
[24] M. O. RABIN, Probabilistic automata, Inform. Control, 6 (1963), pp. 230–245.
[25] M. O. RABIN AND D. SCOTT, Finite automata and their decision problems, IBM J. Research,

3 (1959), pp. 115–125.
[26] A. SALOMAA AND M. SOITTOLA, Automata-Theoretic Aspects of Formal Power Series, Texts

and Monographs in Computer Science, Springer-Verlag, New York, 1978.
[27] E. M. SCHMIDT, Succinctness of Description of Context Free, Regular and Unambiguous Lan-

guages, Ph.D. thesis, Cornell University, Ithaca, NY, 1978.
[28] J. SHALLIT, Automaticity: I. Properties of a measure of descriptional complexity, J. Comput.

System Sci., 53 (1996), pp. 10–25.
[29] A. C. YAO, Some complexity questions related to distributed computing, in Proc. 11th Annual

ACM Symposium on Theory of Computing, ACM, New York, 1979, pp. 209–213.
[30] A. C. YAO, Lower bounds by probabilistic arguments, in Proc. 24th IEEE Symposium on Foun-

dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1983,
pp. 420–428.

A PARALLEL REPETITION THEOREM∗

RAN RAZ†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 763–803, June 1998 011

Abstract. We show that a parallel repetition of any two-prover one-round proof system
(MIP(2, 1)) decreases the probability of error at an exponential rate. No constructive bound was
previously known. The constant in the exponent (in our analysis) depends only on the original
probability of error and on the total number of possible answers of the two provers. The dependency
on the total number of possible answers is logarithmic, which was recently proved to be almost the
best possible [U. Feige and O. Verbitsky, Proc. 11th Annual IEEE Conference on Computational
Complexity, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 70–76].

Key words. interactive proofs, parallel repetition, direct product

AMS subject classifications. 68Q25, 68R99

PII. S0097539795280895

1. Introduction and basic notations.

1.1. History and motivation. We consider two-prover one-round proof sys-
tems (MIP(2, 1)), as introduced in [12]. In an MIP(2, 1) proof system, two computa-
tionally unbounded provers (that are not allowed to communicate with each other)
try to convince a probabilistic polynomial time verifier that a common input I belongs
to a prespecified language L. The proof proceeds in one round: The verifier generates
a pair of questions (x, y), based on I and on a random string r, and sends x to the
first prover and y to the second prover. The first prover responds by sending u, and
the second prover responds by sending v. Based on I, r, x, y, u, v, the verifier decides
whether to accept or reject the conjecture: I ∈ L. In what follows, the strategy of
the verifier (the way to generate the questions and to decide whether I ∈ L) is called
“a proof system,” and the pair of strategies of the provers is called “a protocol.” A
language L is in MIP(2, 1) with probability of error ε if there exists a proof system (of
this type), such that: (1) For I ∈ L, there exists a protocol that causes the verifier
to always accept; (2) For I 6∈ L, for any possible protocol, the verifier accepts with
probability smaller than ε. For the exact definitions of MIP(2, 1) proof systems and
the family of languages MIP(2, 1), see [12, 23].

The class of languages MIP(2, 1) turned out to be very powerful. In particular,
it follows from [7, 37, 25] that NEXPTIME = MIP(2, 1) with exponentially small
probability of error. MIP(2, 1) proof systems have cryptographic applications (see
[12, 13, 36, 18]), and have also been used as a starting point to prove that certain op-
timization problems are hard to approximate (see [22, 4, 5, 25, 6, 10, 38, 8]). For more
discussion about the class MIP(2, 1) and its applications, see [23] and the references
there.

Sequential repetition of MIP(2, 1) proof systems decreases the probability of error
exponentially, but requires multiple rounds. Parallel repetition preserves the number
of rounds. At what rate is the probability of error decreased by parallel repetition? At
first, it was believed that, as in the sequential case, repeating a proof system k times

∗Received by the editors January 17, 1995; accepted for publication (in revised form) July 29, 1996.
A preliminary version of the paper appeared in Proceeding of the 27th Annual ACM Symposium on
the Theory of Computing, ACM, New York, 1995, pp. 447–556.

http://www.siam.org/journals/sicomp/27-3/28089.html
†Department of Applied Mathematics, Weizmann Institute, Rehovot 76100, Israel (ranraz@

wisdom.weizmann.ac.il).

763

764 RAN RAZ

in parallel decreases the probability of error to εk (see [26, 28]). A counter example
for this conjecture was given in [21] (see also [36, 19, 25, 27]). For years it was not
even known whether parallel repetition can make the probability of error arbitrarily
small. This was recently proved in [44]. No constructive bound, however, was given
there for the number of repetitions required to decrease the probability of error below
a given bound.

In the simpler special case, where the provers’ questions, x and y, are chosen
independently, it has been known that repeating a proof system k times in parallel
decreases the probability of error exponentially. The proof was first given in [15],
and the bound was further improved in [36, 39, 19, 1]. Another special case, a tree-
like-measure case, was recently settled in [45]. The constant in the exponent in all
those proofs, however, is (at least) polynomial in the number of possible questions
(x, y). We remark that in most interesting cases, the questions x, y are not chosen
independently and the measure is not tree-like.

Researchers were interested in analyzing the probability of error of a parallel
repetition, not only as a mathematical problem, but also because an efficient technique
to decrease the probability of error was needed. In the literature there are many
results that use different techniques to decrease the probability of error [19, 33, 37,
25, 8, 23, 43]. For certain applications, however, these techniques are insufficient.
Parallel repetition was suggested as a technique to decrease the probability of error,
because it was believed to be very efficient, and because it preserves many canonical
properties of the proof system (e.g., zero knowledge).

Since the appearance of a preliminary version of this paper in STOC95 [40], our
results were used by [9, 32] to improve many of the hardness results for approximation
of optimization problems (see also [2, 3, 24, 11, 30, 31]). In particular, [32] uses our
results to prove very impressive optimal inapproximability results for some of the most
basic optimization problems (e.g., for Max-3-SAT). Our result was also used by [42]
to prove a new direct sum theorem for probabilistic communication complexity.

The reader can find more about the problem of parallel repetition in [19, 25, 23,
20].

1.2. Main result. We will concentrate on the deterministic case, where the
verifier decides whether to accept or reject the conjecture: I ∈ L, based on I, x, y, u, v
only (and not on the random string r). The probabilistic case, where this decision
depends also on r, is shortly discussed in section 7.

Following [15, 19, 25], we model the problem as a problem on games:
A game G consists of four finite sets X,Y, U, V , with a probability measure µ : X ×
Y → R+, and a predicate Q : X × Y × U × V → {0, 1}. We think of Q also as a set.
A protocol for G consists of a function u : X → U , and a function v : Y → V . The
value of the protocol is defined as∑

X×Y
µ(x, y)Q(x, y, u(x), v(y)),

i.e., the µ-probability that Q(x, y, u(x), v(y)) = 1. The value of the game, w(G), is
defined to be the maximal value of all protocols for G. The answer size of the game,
s(G), is defined by s(G) = |U ||V |.

We think of G as a game for two players (provers): Player I receives x ∈ X, and
player II receives y ∈ Y , according to the pair distribution µ(x, y). We think of x, y
as the inputs for the game. Each player doesn’t know the other player’s input. Player
I has to give an “answer” u′ ∈ U , and player II has to give an “answer” v′ ∈ V .

A PARALLEL REPETITION THEOREM 765

The goal of the players is to maximize the µ-probability that Q is satisfied (i.e., the
probability that Q(x, y, u′, v′) = 1). We remark that this probability corresponds to
the probability of error.

The game G ⊗ G consists of the sets X × X, Y × Y , U × U , V × V , with the
measure

µ⊗ µ((x1, x2), (y1, y2)) = µ(x1, y1)µ(x2, y2)

and the predicate

Q⊗Q((x1, x2), (y1, y2), (u1, u2), (v1, v2)) = Q(x1, y1, u1, v1)Q(x2, y2, u2, v2).

In the same way, the game G⊗k consists of the sets Xk, Y k, Uk, V k, with the measure

µ⊗k(x, y) =
k∏
i=1

µ(xi, yi)

and the predicate

Q⊗k(x, y, u, v) =
k∏
i=1

Q(xi, yi, ui, vi),

where x ∈ Xk, y ∈ Y k, u ∈ Uk, v ∈ V k. Here and throughout, zi stands for
the ith coordinate of a vector z. We denote G⊗k, Q⊗k, Xk, Y k, Uk, V k, µ⊗k also by
Ḡ, Q̄, X̄, Ȳ , Ū , V̄ , µ̄.

Assume w.l.o.g. that s(G) ≥ 2. In this paper we prove the following parallel
repetition theorem.

THEOREM 1.1. There exists a global function W : [0, 1] → [0, 1], with z < 1 ⇒
W (z) < 1, such that given a game G, with value w(G), and answer size s(G) ≥ 2:

w(G⊗k) ≤W (w(G))k/ log2(s(G)).

The exact behavior of the function W (z) is not the focus of this paper. We will
make, however, a few comments about the function W (z) implicit in the paper:

1. When z tends to 0, the function W (z) (implicit in this paper) tends to a
constant const1 > 0. In fact, for every 0 < z ≤ 1, W (z) > const1. It is
still not clear whether a tendency of W (z) to 0, when z tends to 0, can be
achieved.

2. Obviously, if w(G) is a global constant (e.g., w(G) = 1/2) then W (w(G)) is
just a different global constant. For example, there exists a constant const2 <
1, s.t. for every 0.01 ≤ z ≤ 0.99, const1 < W (z) < const2.

3. Obviously, when z tends to 1, W (z) also tends to 1. It will be simpler to
denote t = 1− z, and to analyze the behavior of [1−W (1− t)] when t tends
to 0. It is implicit in this paper that there exists a (small) constant const3 ,
(1/34 seems to be enough), s.t. when t tends to 0, [1 −W (1 − t)] can be
bounded by O(tconst3). For example, there exists a constant const4, s.t. for
every t ≤ 0.01, [1−W (1− t)] ≤ const4 · tconst3 , i.e.,

W (1− t) ≥ 1− const4 · (1− z)const3 .

766 RAN RAZ

It was recently shown in [27] that in certain examples the number of repetitions,
k, required to decrease the probability of error from w(G) = 1/2 to w(G⊗k) ≤ 1/8
is

Ω
(

log2(s(G))
log2 log2(s(G))

)
.

This shows that the factor log2(s(G)) in Theorem 1.1 is almost the best possible.
It was observed by [42] that in Theorem 1.1, the term log2(s(G)) can be replaced

with the (possibly smaller) CC(G), or with the (possibly smaller) ρ(G), defined in
the following way.

For every (x, y) ∈ X × Y , define Qx,y : U × V → {0, 1}, by Qx,y(u, v) =
Q(x, y, u, v). Define CCx,y to be the deterministic communication complexity of the
function Qx,y, and define ρx,y to be the exact cover number of the same function (for
the definitions see [42, 34]). Then define CC(G) to be the maximum, taken over x, y,
of CCx,y, and define ρ(G) to be the maximum, taken over x, y, of ρx,y. It is well
known (and very easy to prove) that

ρ(G) ≤ CC(G) ≤ log2(s(G)).

Throughout the paper (sections 2, 3, 4, 5, 6), X,Y, U, V,Q, µ refer to the game
G, from Theorem 1.1. Similarly, k, Ḡ, X̄, Ȳ , Ū , V̄ , Q̄, µ̄ refer to Theorem 1.1 as well.
Denote, for the rest of the paper s = s(G) = |U ||V |.

1.3. Main technical theorem. In what follows, we will sometimes denote the
game G by Gµ, and denote its value by w(µ). We will sometimes say that the protocol
is a protocol for µ (as X,Y, U, V,Q will be fixed). We will look at the values w(γ), for
different probability measures γ : X × Y → R+.

For a measure α : Ω→ R+, and a set C ⊂ Ω, we use the usual notation

α(C) =
∑
z∈C

α(z).

For a probability measure α : Ω→ R+, and a set C ⊂ Ω, denote by αC : Ω→ R+

the probability measure

αC(z) =

{
0 for z 6∈ C,
α(z)
α(C) for z ∈ C.

We will think of αC also as αC : C → R+. This definition makes sense only if
α(C) > 0. For C, with α(C) = 0, define αC(z) to be identically 0.

More generally, the term 0
0 can appear in some places in this paper. Unless said

otherwise, 0
0 is defined to be 0. The term 0z is defined to be 0, even if z =∞, or z is

undefined. This can occur when we take the expectancy (or a weighted average) of a
variable z, which is undefined with probability 0 (or with a weight of 0).

For a set C ⊂ X̄ × Ȳ , define the game G⊗kC = ḠC to consist of X̄, Ȳ , Ū , V̄ , with
the measure µ̄C and the predicate Q̄. We think of ḠC as the restriction of Ḡ to the
set C.

In the proof we will always work with a product set A = AX × AY , where
AX ⊂ X̄, AY ⊂ Ȳ . Since in most parts of the paper we work with one specific
A = AX × AY , it will be convenient to denote (throughout the paper) the measure

A PARALLEL REPETITION THEOREM 767

µ̄A by π̄. The game ḠA will also be denoted by Ḡπ̄, and its value will also be denoted
by w̄(π̄).

Define the predicate Q̄i : X̄ × Ȳ × U × V → {0, 1} by

∀x ∈ X̄, y ∈ Ȳ , u′ ∈ U, v′ ∈ V : Q̄i(x, y, u′, v′) = Q(xi, yi, u′, v′).

Define the game ḠiA to consist of X̄, Ȳ , U, V with the measure π̄, and the predicate Q̄i.
We also denote ḠiA by Ḡiπ̄, and its value by wi(π̄). We think of Ḡiπ̄ as the restriction
of Ḡπ̄ to one coordinate. Notice that for an input (x, y) ∈ X̄ × Ȳ , the game Ḡπ̄ just
means playing simultaneously all the games Ḡiπ̄ (on the same input).

The following is our main technical theorem. The theorem claims that if A =
AX ×AY is large, then wi(π̄) is small for at least one coordinate i.

THEOREM 1.2. There exists a global function W2 : [0, 1] → [0, 1], with z < 1 ⇒
W2(z) < 1, and a global constant c0, such that for all games G: for any k, and any
product set A = AX × AY ⊂ X̄ × Ȳ (where AX ⊂ X̄, AY ⊂ Ȳ), and any 0 ≤ ∆ ≤ 1,
if − log2 µ̄(A) ≤ ∆k (i.e., µ̄(A) ≥ 2−∆k) then there exists i with

wi(π̄) ≤W2(w(G)) + c0∆1/16.

Again, achieving the best function W2 and the best constant c0, and improving
the constant 1/16, are not the focus of this paper.

1.4. More notations and basic facts. For a measure or function α : Ωk → R
define αi to be the projection of α on the ith coordinate. Thus, for a ∈ Ω

αi(a) =
∑

{z∈Ωk | zi=a}

α(z).

In particular for α : X̄ × Ȳ → R, define Ω = X × Y , and think of α as a measure
(or function) α : Ωk → R. The projection αi is now a measure (or function) αi :
X × Y → R.

In particular we will be interested in the projections π̄i.
For a probability measure γ : X × Y → R+, we will be interested, from time to

time, in the γ-probability of an element x ∈ X. We denote this probability by γ(x);
thus

γ(x) =
∑
y∈Y

γ(x, y).

For simplicity we use the same notation γ(y) for the γ-probability of an element y ∈ Y .
The difference will be that we use the letters x, xi, a, ai, for elements of X, and the
letters y, yi, b, bi, for elements of Y . It will always be clear if the element is an element
of X or an element of Y .

When X,Y, U, V,Q are fixed, we will be interested in the value of the game,
w(γ), as a function of the measure γ : X × Y → R+. First notice that w is a
continuous function. Also, if for γ1, γ2, the L1 distance satisfies ‖ γ1 − γ2 ‖1≤ ε then
|w(γ1)− w(γ2)| ≤ ε. This is true since every protocol for one of the measures can be
viewed as a protocol for the other one, with value different by at most ε. Thus w has
a Lipschitz constant of 1.

If γ = pγ1 + (1− p)γ2, for 0 ≤ p ≤ 1, then

w(γ) ≤ pw(γ1) + (1− p)w(γ2).

768 RAN RAZ

This is true because every protocol for γ can be viewed as a protocol for γ1 and γ2.
Thus, the function w is concave. If γ =

∑m
i=1 piγi, where ∀i : 0 ≤ pi ≤ 1, and∑m

i=1 pi = 1, then

w(γ) ≤
m∑
i=1

piw(γi).

For a game G, it is sometimes convenient to consider also probabilistic protocols.
In a probabilistic protocol, the “answers” of the players can depend also on a random
string. Thus the “answers” are u(x, h), v(y, h) (rather than u(x), v(y)), where h is
a random string. The value of the protocol will be the probability, over the inputs
(x, y), and over the random strings that Q(x, y, u(x, h), v(y, h)) = 1.

However, since a probabilistic protocol can be viewed as a convex combination
of deterministic ones, the value of any probabilistic protocol can be achieved by a
deterministic one.

Remark. In this paper the logarithm function log is always taken base 2. The
natural logarithm is denoted by ln.

1.5. Organization of the paper. The paper is organized as follows: In sec-
tion 2, we show how Theorem 1.2 leads to the proof of Theorem 1.1. In section 3,
we review the definition, and the basic properties of the informational divergence, a
basic tool of information theory. This tool is needed for the proof of Theorem 1.2.
Theorem 1.2 is proved in section 4. The proof of the main lemma is deferred to sec-
tion 5, and the proof of another lemma is deferred to section 6. In section 7 several
generalizations of Theorem 1.1 are shortly discussed.

We remark that two “shortcuts” can be done in the paper. First, in the special
case where the measure µ is a product measure (i.e., µ = µX×µY), the entire argument
is much simpler, and the proof follows simply from section 2 and the beginning of
section 4 (plus simpler versions of several lemmas in section 3, using entropy instead
of informational divergence). Also, section 6 is not really needed for the proof of
the parallel repetition conjecture, but it is needed to improve the constant in the
exponent to log(s(G)). A simpler proof which does not use section 6 can be given,
but the constant in the exponent in that proof is much worse.

2. Proof of the parallel repetition theorem. In this section, we show how
Theorem 1.2 leads to the proof of Theorem 1.1.

Theorem 1.1 claims an upper bound for the value w(Ḡ). We will prove even
more: we will upper bound the value w(ḠA), of the game ḠA, for any large product
set A = AX ×AY ⊂ X̄ × Ȳ .

We will first give some intuition: The proof uses a simple induction on the dimen-
sion k. The idea is to assume by Theorem 1.2 w.l.o.g. an upper bound for w(Ḡ1

A).
Given a protocol for ḠA, we partition A into product subsets, according to the be-
havior of the protocol on the first coordinate. The size of this partition is not too big,
and therefore, the average size of a subset in the partition is not too small. In many
of these subsets the protocol fails to satisfy Q̄, because it fails to satisfy Q̄1. We can
disregard these subsets. In every other subset, the predicate Q̄ can be thought of as a
k− 1 dimensional predicate, and we can use induction to upper bound the size of the
set of points, which satisfy this predicate. By this argument, we will get a recursive
bound for w(G⊗kA), as a function of the dimension k, and the size µ̄(A).

For the game G, define CG(k, r) to be the maximum, taken over A, of the value
w(G⊗kA), of a game G⊗kA = ḠA = Ḡπ̄, where A = AX × AY is a product set (with

A PARALLEL REPETITION THEOREM 769

AX ⊂ X̄, AY ⊂ Ȳ), with

− log µ̄(A) ≤ r

(i.e., µ̄(A) ≥ 2−r). Here, k is the dimension and r ≥ 0 is real. For k = 0, it will be
convenient to define CG(0, r) = 1. We will prove an upper bound for CG(k, r) as a
function of w(G). The theorem will follow by taking r = 0.

Recall that X,Y, U, V,Q, µ refer to the game G from Theorem 1.1 and that s =
s(G). Assume for simplicity that 0 < w(G) < 1 (otherwise the game is trivial). Take
0 < ∆ < 1, (∆ will be determined later on). For r ≤ ∆k, take A = AX×AY ⊂ X̄×Ȳ ,
with − log µ̄(A) ≤ r, which achieves CG(k, r). Thus,

w(Ḡπ̄) = CG(k, r).

By Theorem 1.2, there exists i with

w(Ḡiπ̄) = wi(π̄) ≤W2(w(G)) + c0∆1/16

where W2, c0 are taken from Theorem 1.2. Without loss of generality assume that
i = 1. Denote

ŵ = W2(w(G)) + c0∆1/16.

We will later on assume that ∆ is such that

0 < ŵ < 1

and

2−
1
2 < ŵ

1
2(log(s)+∆) < 1

(at this point, the reader can ignore these two assumptions).
Let u : X̄ → Ū , v : Ȳ → V̄ be a protocol for Ḡπ̄, achieving the value w(Ḡπ̄).

The pair (x1, u1(x)) is a function of x ∈ X̄. Partition AX according to (x1, u1(x)).
Formally, ∀x′ ∈ X,u′ ∈ U define

AX(x′, u′) = {x ∈ AX | x1 = x′, u1(x) = u′ } .

Then the family {AX(x′, u′)} is a partition of AX . In the same way, define

AY (y′, v′) = {y ∈ AY | y1 = y′, v1(y) = v′ } .

Then the family {AY (y′, v′)} is a partition of AY . For simplicity, denote in all the
following Z = X×Y ×U×V and z = (x′, y′, u′, v′) ∈ Z. For all z = (x′, y′, u′, v′) ∈ Z
denote

A(z) = AX(x′, u′)×AY (y′, v′).

Then the family {A(z)} is a partition of A, and we have

A =
⋃
z∈Z

A(z).

For all z ∈ Z, define

B(z) =
{

(x, y) ∈ A(z)
∣∣ Q̄(x, y, u(x), v(y)) = 1

}
,

770 RAN RAZ

i.e., B(z) is just the set of elements of A(z) satisfying Q̄. Notice that for z 6∈ Q (i.e.,
z such that Q(z) = 0) we have (x, y) ∈ A(z) ⇒ Q(x1, y1, u1(x), v1(y)) = Q(z) = 0.
Therefore, z 6∈ Q implies B(z) = ∅. On the other hand, for z ∈ Q we have that
(x, y) ∈ A(z) ⇒ Q(x1, y1, u1(x), v1(y)) = Q(z) = 1. Therefore, for z ∈ Q and
(x, y) ∈ A(z),

Q̄(x, y, u(x), v(y)) =
k∏
i=2

Q(xi, yi, ui(x), vi(y)).

Thus in this case, B(z) is a set of elements satisfying a k − 1-dimensional predicate.
This fact enables us to use induction.

For all z define

α(z) = π̄(A(z)), β(z) =
π̄(B(z))
π̄(A(z))

.

Then we have the following.
CLAIM 2.1. ∑

z∈Q
α(z) ≤ ŵ.

Proof. u1 : X̄ → U, v1 : Ȳ → V can be viewed as a protocol for Ḡ1
π̄. The value

of this protocol is clearly ∑
z∈Q

π̄(A(z)) =
∑
z∈Q

α(z),

but this value is at most w(Ḡ1
π̄) ≤ ŵ.

CLAIM 2.2. For all z = (x′, y′, u′, v′) ∈ Q, with α(z) > 0,

β(z) ≤ CG(k − 1, r − log[α(z)/µ(x′, y′)]).

Proof. First notice that if α(z) > 0 then also µ(x′, y′) > 0, thus the logarithm is
well defined.

For k = 1, the claim is immediate. Assume that k > 1. Ignoring the first
coordinate, which is fixed, A(z) can be viewed as a set of dimension k − 1. Formally,
define A′(z) ⊂ Xk−1 × Y k−1 by

A′(z) =
{

(x̃, ỹ) ∈ Xk−1 × Y k−1
∣∣ ((x′, x̃), (y′, ỹ)) ∈ A(z)

}
where (x′, x̃) denotes x ∈ Xk, with x1 = x′, and (x2, . . . , xk) = x̃ (and, similarly,
(y′, ỹ)).

Since for (x, y) ∈ A(z): x1 = x′, and y1 = y′, we have by definition

µ⊗k(A(z)) = µ(x′, y′)µ⊗k−1(A′(z)).

In the same way, define

B′(z) =
{

(x̃, ỹ) ∈ Xk−1 × Y k−1
∣∣ ((x′, x̃), (y′, ỹ)) ∈ B(z)

}
.

Then we have

µ⊗k(B(z)) = µ(x′, y′)µ⊗k−1(B′(z)).

A PARALLEL REPETITION THEOREM 771

The last k − 1 coordinates of u: X̄ → Ū , v: Ȳ → V̄ can be viewed as a protocol for
the game G⊗k−1

A′(z) . Since z ∈ Q, this protocol satisfies Q⊗k−1 at the set of elements
B′(z). Therefore, the value of this protocol is

µ⊗k−1(B′(z))
µ⊗k−1(A′(z))

=
µ̄(B(z))
µ̄(A(z))

=
µ̄(B(z))/µ̄(A)
µ̄(A(z))/µ̄(A)

=
π̄(B(z))
π̄(A(z))

= β(z),

so by the definition of CG we have

β(z) ≤ CG(k − 1,− logµ⊗k−1(A′(z)) = CG(k − 1,− log[µ̄(A(z)/µ(x′, y′)])

= CG(k − 1,− log[µ̄(A)α(z)/µ(x′, y′)]) ≤ CG(k − 1, r − logα(z) + logµ(x′, y′))

(recall that by definition CG(k′, r′) is monotone in r′). Notice that since µ⊗k−1(A′(z)) ≤
1, r − logα(z) + logµ(x′, y′) ≥ 0, thus CG is defined.

CLAIM 2.3.

CG(k, r) =
∑
z∈Q

α(z)β(z).

Proof. The protocol u, v satisfies Q̄ at the set of elements
⋃
z∈Z B(z). Therefore,

CG(k, r) = w(Ḡπ̄) = π̄

(⋃
z∈Z

B(z)

)
=
∑
z∈Z

π̄(B(z)) =
∑
z∈Z

π̄(A(z))
π̄(B(z))
π̄(A(z))

=
∑
z∈Z

α(z)β(z)

but z 6∈ Q implies β(z) = 0. Thus,

CG(k, r) =
∑
z∈Q

α(z)β(z).

Denote

T = {z ∈ Q | α(z) > 0}.

From Claims 2.2 and 2.3 we have the recursive inequality

CG(k, r) ≤
∑
z∈T

α(z)CG(k − 1, r − log[α(z)/µ(x′, y′)])(1)

where, by Claim 2.1, ∑
z∈T

α(z) ≤ ŵ.

We will now assume that ∆ is such that

0 < ŵ < 1

and

2−1/2 < ŵ1/(2(log(s)+∆)) < 1.

We will prove by induction on k the following inequality.

772 RAN RAZ

CLAIM 2.4.

CG(k, r) ≤
(
ŵ1/(2(log(s)+∆))

)∆k−r
.

Proof. For k = 0, the claim is trivial, (since 0 < ŵ < 1, and r ≥ 0).
For k ≥ 1 assume the inequality for k − 1, and substitute in inequality (1) to get

CG(k, r) ≤
∑
z∈T

α(z)
(
ŵ1/(2(log(s)+∆))

)∆(k−1)−r+log[α(z)/µ(x′,y′)]

=
(
ŵ1/(2(log(s)+∆))

)∆k−r∑
z∈T

α(z)
(
ŵ1/(2(log(s)+∆))

)−∆+log[α(z)/µ(x′,y′)]
.

Hence, it will be enough to prove∑
z∈T

α(z)
(
ŵ1/(2(log(s)+∆))

)−∆−log(s)+log[sα(z)/µ(x′,y′)]
≤ 1.

Define

t(z) =

0 for z 6∈ T,

sα(z)
µ(x′, y′)

for z ∈ T.

Then the inequality is equivalent to∑
z∈T

(
µ(x′, y′)

s

)
t(z)

(
ŵ1/(2(log(s)+∆))

)log t(z)
≤ ŵ1/2.

Define p(z) = µ(x′, y′)/s, and f : R+ − {0} → R by

f(t) = tclog t = t1+log c

where

c = ŵ1/(2(log(s)+∆)).

In these notations, we have to prove∑
z∈T

p(z)f(t(z)) ≤ ŵ1/2.

We assumed 2−1/2 < c < 1 . Therefore, −1
2 < log c < 0, thus f(t) = tclog t = t1+log c

is convex. Notice that∑
z∈Z

p(z) =
∑
U×V

∑
X×Y

µ(x′, y′)
s

=
1
s

∑
U×V

∑
X×Y

µ(x′, y′) =
1
s

∑
U×V

1 =
1
s
s = 1.

Therefore, we can use Jensen’s inequality to conclude

∑
z∈T

p(z)f(t(z)) =
∑
z∈T

p(z)t(z)1+log c =
∑
z∈Z

p(z)t(z)1+log c ≤
(∑
z∈Z

p(z)t(z)

)1+log c

,

A PARALLEL REPETITION THEOREM 773

but ∑
z∈Z

p(z)t(z) =
∑
z∈T

p(z)t(z) =
∑
z∈T

µ(x′, y′)
s

sα(z)
µ(x′, y′)

=
∑
z∈T

α(z) ≤ ŵ

and since the function t1+log c is monotone in t, we have

∑
z∈T

p(z)f(t(z)) ≤
(∑
z∈Z

p(z)t(z)

)1+log c

≤ ŵ1+log c ≤ ŵ1−1/2 = ŵ1/2

(where the third inequality uses the assumption log c > −1/2).
By Claim 2.4 and by ∆ < 2 log2(s) (which follows from the assumptions: ∆ < 1,

and s ≥ 2), we can now conclude

w(G⊗k) = CG(k, 0) ≤
(
ŵ1/(2(log(s)+∆))

)∆k
≤
(
ŵ1/(4 log(s))

)∆k
=
(
ŵ(1/4)∆

)k/ log(s)

where ŵ = W2(w(G)) + c0∆1/16, and 0 < ∆ < 1 satisfies 0 < ŵ < 1, and

2−1/2 < ŵ1/(2(log(s)+∆)) < 1.

Since 0 < W2(w(G)) < 1, and since ŵ is monotone in ∆, the conditions are satisfiable.
Just start from ∆ = 0 and increase ∆ until the conditions hold.

Thus Theorem 1.1 follows. We will take in Theorem 1.1

W (w(G)) = inf
(
ŵ(1/4)∆

)
where the infimum is taken over all 0 < ∆ < 1, which satisfy the conditions.

3. Informational divergence. In this section, we define the informational di-
vergence, a basic tool of information theory, and review some of its basic properties
that will be used in the paper. The reader can find excellent treatments of the subject
in [29, 17].

Given a finite probability space Ω, with two probability measures ϑ, ψ, the diver-
gence of ϑ with respect to ψ is defined by

D (ϑ ‖ ψ) =
∑
z∈Ω

ϑ(z) log
ϑ(z)
ψ(z)

.

In this definition, 0 log 0
0 is defined to be 0, and for z > 0, z log z

0 is defined to be ∞.
Thus D (ϑ ‖ ψ) <∞ if and only if ϑ is absolutely continuous with respect to ψ (i.e.,
ψ(z) = 0 implies ϑ(z) = 0).

In the special case where ψ is the uniform distribution, we have

D (ϑ ‖ ψ) = log2 |Ω| −H(ϑ),

where H(ϑ) is the standard entropy of ϑ. More generally, the divergence D (ϑ ‖ ψ)
can be thought of as the entropy of the measure ϑ, relative to the measure ψ, as
opposed to the standard entropy of ϑ, which is taken relative to the uniform distri-
bution.

D (ϑ ‖ ψ) has many names and notations throughout the literature. In [29] it is
also called “relative entropy,” and denoted by Hϑ‖ψ(Q), where Q is the partition of Ω

774 RAN RAZ

into single points. This is a special case of the following definition: For a measurement
f on Ω, with a finite alphabet A, let Q be the induced partition {f−1(a)}a∈A. Let
ϑf , ψf be the corresponding probability mass functions, i.e., for a ∈ A

ϑf (a) = ϑ({z ∈ Ω | f(z) = a}), ψf (a) = ψ({z ∈ Ω | f(z) = a}).

The relative entropy of f , with measure ϑ, with respect to the measure ψ, is defined
by

Hϑ‖ψ(f) = Hϑ‖ψ(Q) =
∑
a∈A

ϑf (a) log
ϑf (a)
ψf (a)

.

In this paper, we prefer to use the notation D (ϑ ‖ ψ).
The following lemma, known as the divergence inequality, is probably the most

basic property of the informational divergence.
LEMMA 3.1. For all ϑ, ψ, we have

D (ϑ ‖ ψ) ≥ 0.

Proof. See [29, Chapter 2, Theorem 2.3.1].
For measures ϑ̄, ψ̄ on ⊗ki=1Ωi, recall that ϑ̄i, ψ̄i are the projections of ϑ̄, ψ̄ on the

ith coordinate.
LEMMA 3.2. For measures ϑ̄, ψ̄ on Ω1 × Ω2, such that ψ̄ = ψ̄1 × ψ̄2,

D
(
ϑ̄
∥∥ ψ̄) ≥ D

(
ϑ̄1
∥∥ ψ̄1)+ D

(
ϑ̄2
∥∥ ψ̄2) .

Proof. See [29, Chapter 2, Lemma 2.5.3]. The lemma is stated there as: MXY =
MX ×MY implies

HP‖M (X,Y) ≥ HP‖M (X) + HP‖M (Y).

The next lemma can be viewed as a generalization of the well-known entropy
inequality

H(z1, . . . , zk) ≤ H(z1) + · · ·+ H(zk)

(for any random variable z), and as a generalization of the previous lemma.
LEMMA 3.3. For measures ϑ̄, ψ̄ on Ωk, such that ψ̄ = ⊗ki=1ψ̄

i

D
(
ϑ̄
∥∥ ψ̄) ≥ k∑

i=1

D
(
ϑ̄i
∥∥ ψ̄i) .

Proof. The proof is immediate from Lemma 3.2.
For a function α : Ω→ R, denote by ‖ α ‖1 the standard L1 norm of α, i.e.,

‖ α ‖1=‖ α(z) ‖1=
∑
z∈Ω

|α(z)|.

If α is a probability measure then ‖ α ‖1= 1. In this paper we use ‖ ϑ − ψ ‖1 as a
distance function between measures (or functions). It is not true that the divergence
D (ϑ ‖ ψ) is a distance function. However, it is true that if D (ϑ ‖ ψ) is small then
the L1 distance between ϑ and ψ is also small.

A PARALLEL REPETITION THEOREM 775

LEMMA 3.4. For all ϑ, ψ, we have

(2 ln 2)D (ϑ ‖ ψ) ≥ (‖ ϑ− ψ ‖1)2.

Proof. See [17, Chapter 3, Exercise 17] and the references therein.
The next lemma computes the value of D (ϑ ‖ ψ), in the special case ϑ = ψA,

where A ⊂ Ω.
LEMMA 3.5. For a measure ψ, and a set A ⊂ Ω, we have

D (ψA ‖ ψ) = − logψ(A).

Proof.

D (ψA ‖ ψ) =
∑
z∈Ω

ψA(z) log
ψA(z)
ψ(z)

=
∑
z∈A

ψA(z) log
ψA(z)
ψ(z)

=
∑
z∈A

ψA(z) log
ψ(z)/ψ(A)

ψ(z)
=
∑
z∈A

ψA(z)(− logψ(A)) = − logψ(A).

For a probability measure α : Ω→ R+, where Ω = X×Y , define α(a, ·) : Y → R+

to be the probability measure on Y , derived from α by fixing x = a. Thus, α(a, ·) is
the following probability measure: for all y ∈ Y ,

α(a, ·)(y) =
α(a, y)
α(a)

where α(a) =
∑
y∈Y α(a, y). This definition makes sense only if α(a) > 0. Otherwise,

define α(a, ·) to be identically 0.
In the same way, define the measure α(·, y) : X → R+.
For the measures ϑ, ψ : X × Y → R+, we will be interested in the values of

D (ϑ(x, ·) ‖ ψ(x, ·)), and D (ϑ(·, y) ‖ ψ(·, y)). Define

VX (ϑ ‖ ψ) =
∑
x∈X

ϑ(x)D (ϑ(x, ·) ‖ ψ(x, ·)) ,

and

VY (ϑ ‖ ψ) =
∑
y∈Y

ϑ(y)D (ϑ(·, y) ‖ ψ(·, y)) .

These are denoted in [29] by Hϑ‖ψ(Y |X), and Hϑ‖ψ(X|Y). In addition, define

V (ϑ ‖ ψ) =
1
2

[VX (ϑ ‖ ψ) + VY (ϑ ‖ ψ)].

The notion V (ϑ ‖ ψ) is central in the rest of the paper. In particular, we will be
interested in cases were V (ϑ ‖ ψ) is small. We saw before that if D (ϑ ‖ ψ) is small
then ‖ ϑ−ψ ‖1 is also small. Is the same true for V (ϑ ‖ ψ) ? Taking X = Y = {0, 1}
and

ψ =

(
1
2 0

0 1
2

)
, ϑ =

(
1 0
0 0

)
we have V (ϑ ‖ ψ) = 0, but still ‖ ϑ− ψ ‖1= 1

2 . Hence, in general it is not the case.

776 RAN RAZ

A measure ψ : X × Y → R+ is called irreducible, if there are no nontrivial
partitions X = X1 ∪ X2 , Y = Y1 ∪ Y2 such that ψ(X1 × Y2) = ψ(X2 × Y1) = 0.
Every measure ψ : X × Y → R+ decomposes into its irreducible components. In
general, it is true that if V (ϑ ‖ ψ) = 0 then ϑ has the same components as ψ and
behaves like ψ on each one of them, but the ϑ-probability of each component can be
different from the ψ-probability.

For irreducible ψ it can be shown that if V (ϑ ‖ ψ) = 0 then ϑ = ψ, and that if
ψ is fixed V (ϑ ‖ ψ)→ 0 implies ϑ→ ψ. However, this convergence is not uniform.
For example, we can take X = Y = {0, 1}, and

ψ =

(
1
2 ε

0 1
2 − ε

)
, ϑ =

(
1 0
0 0

)
.

In this case ψ is irreducible, and V (ϑ ‖ ψ) = O(ε), but still ‖ ϑ− ψ ‖1= 1
2 .

Therefore, in this paper we will use a different characterization of measures ϑ,
with small V (ϑ ‖ ψ). This characterization, proved in Lemma 6.6, will intuitively
say that in this case there are measures ϑ′, ψ′, such that ϑ′ is very close to ϑ, and
ψ′ is very close to ψ, and such that ϑ′, ψ′ have the same irreducible components, and
behave the same on each one of them (but not necessarily give the same mass to each
component).

We remark that this characterization is not necessary to prove the parallel repe-
tition conjecture. It is done here only to improve the constants.

4. Proof of the main theorem. In this section we give the proof of Theo-
rem 1.2. The proofs of two important lemmas are deferred to sections 5 and 6. Given
X,Y, U, V,Q, k, define for any probability measure ᾱ : X̄ × Ȳ → R+, the following
games:

1. The game Gᾱi , consisting of X,Y, U, V,Q, with the measure ᾱi.
Denote the value of this game by w(ᾱi).

2. The game Ḡᾱ, consisting of X̄, Ȳ , Ū , V̄ , Q̄, with the measure ᾱ.
Denote the value of this game by w̄(ᾱ).

3. The game Ḡiᾱ, consisting of X̄, Ȳ , U, V , with the predicate Q̄i, defined by

∀(x, y, u, v) ∈ X̄ × Ȳ × U × V : Q̄i(x, y, u, v) = Q(xi, yi, u, v)

and with the measure ᾱ. Denote the value of this game by wi(ᾱ).
Recall that for any probability measure γ : X × Y → R+, we denote by w(γ) the

value of the game Gγ , consisting of X,Y, U, V,Q, γ.
Theorem 1.2 claims that if A = AX ×AY is large then wi(π̄) cannot be too large

for all coordinates i. If A is large it is easy to show that for many coordinates i, π̄i is
very close to µ, and, therefore, w(π̄i) is very close to w(µ) and is not too large. Hence,
it could be enough to show that for some coordinates i, wi(π̄) is upper bounded by
some “well behaved” function of w(π̄i).

For any ᾱ : X̄ × Ȳ → R+, any protocol for Gᾱi defines also a corresponding
protocol, with the same value, for Ḡiᾱ. This is true because if the distribution of
(x, y) is ᾱ then the distribution of (xi, yi) is ᾱi. Thus, given an input (x, y), for the
game Ḡiᾱ , (xi, yi) can be used as an input for the protocol for Gᾱi . The output of
this protocol, can be viewed as an output for the game Ḡiᾱ. Therefore, we always have

w(ᾱi) ≤ wi(ᾱ).

The other direction is false, as the the other coordinates can give a lot of information
on (xi, yi). There is an important special case, however, in which w(ᾱi) = wi(ᾱ).

A PARALLEL REPETITION THEOREM 777

LEMMA 4.1. If there exist α1 : X × Y → R, α2 : X̄ → R, α3 : Ȳ → R such that
for all (x, y) ∈ X̄ × Ȳ

ᾱ(x, y) = α1(xi, yi)α2(x)α3(y),

then

w(ᾱi) = wi(ᾱ).

Proof. We will show that in this case a protocol for Ḡiᾱ defines a corresponding
protocol, with the same value for Gᾱi . This will be true because in this special case a
pair (x, y), with distribution ᾱ, can simply be created by the two players from a pair
(ai, bi), with distribution ᾱi.

First notice that α1, α2, α3 are not unique, as we can multiply α1 and divide
α2, by the same function f(xi), as long as for all a ∈ X : f(a) 6= 0. In the same
way, we can multiply α1 and divide α3, by the same function g(yi), as long as for all
b ∈ Y : g(b) 6= 0 . Therefore, we can assume w.l.o.g. that for all ai, bi:∑

{x∈X̄ | xi=ai}

α2(x), and
∑

{y∈Ȳ | yi=bi}

α3(y)

are always 0 or 1. Also, we can assume w.l.o.g. that if one of them is 0 then α1(ai, bi)
is also 0. Therefore, in this case

ᾱi(ai, bi) =
∑

{(x,y)∈X̄×Ȳ | (xi,yi)=(ai,bi)}

α1(ai, bi)α2(x)α3(y)

= α1(ai, bi)

 ∑
{x∈X̄ | xi=ai}

α2(x)

 ∑
{y∈Ȳ | yi=bi}

α3(y)

 = α1(ai, bi).

Notice that now, given ai ∈ X, with ᾱi(ai) 6= 0, we have
∑
{x∈X̄ | xi=ai} α2(x) =

1. Therefore, for all ai ∈ X, with ᾱi(ai) 6= 0, we can define a probability distribution
on X̄ by

Prai(x) =

{
0 if xi 6= ai,

α2(x) if xi = ai.

Note that Prai(x) is exactly the α-probability for x, given that xi = ai. In the same
way define for bi ∈ Y , with ᾱi(bi) 6= 0,

Prbi(y) =

{
0 if yi 6= bi,

α3(y) if yi = bi.

Given (ai, bi), with ᾱi(ai, bi) 6= 0, choose randomly x ∈ X̄ according to Prai(x)
and y ∈ Ȳ according to Prbi(y). If (ai, bi) are chosen with probability ᾱi(ai, bi) then
(x, y) are chosen with probability

ᾱi(xi, yi)Prxi(x)Pryi(y) = α1(xi, yi)α2(x)α3(y) = ᾱ(x, y).

Thus, if (ai, bi) is a random variable, with distribution ᾱi, then (x, y) is a random
variable with distribution ᾱ.

778 RAN RAZ

Players I, II can use a protocol for Ḡiᾱ to define a probabilistic protocol for Gᾱi
in the following way: Given an input pair (ai, bi) ∈ X × Y for the game Gᾱi , player I
chooses randomly x ∈ X̄, according to Prai(x), and player II chooses randomly y ∈ Ȳ ,
according to Prbi(y). Since (ai, bi) is a random variable with distribution ᾱi, (x, y) is
a random variable with distribution ᾱ and can be used as an input for Ḡiᾱ.

Players I, II can now use the protocol for Ḡiᾱ on the input (x, y), as a protocol
for Gᾱi on the input (ai, bi). Formally, if u : X̄ → U , v : Ȳ → V is the protocol
for Ḡiᾱ, and h is the random string used by the players, the protocol for Gᾱi will be
u′(ai, h) = u(x), v′(bi, h) = v(y), (where x, y are created from ai, bi, h by the previous
procedure). Since

Q̄i(x, y, u(x), v(y)) = Q(xi, yi, u(x), v(y)) = Q(ai, bi, u′(ai, h), v′(ai, h)),

the probability that Q(ai, bi, u′(ai, h), v′(ai, h)) = 1 equals exactly the probability
that Q̄i(x, y, u(x), v(y)) = 1. Since (x, y) is a random variable with distribution ᾱ,
this probability is the value of the original protocol for Ḡiᾱ.

Thus we proved that a protocol for Ḡiᾱ defines a probabilistic protocol with the
same value for Gᾱi . It is well known that since a probabilistic protocol can be viewed
as a convex combination of deterministic ones, there must exist a deterministic pro-
tocol with the same value.

Since the conditions of Lemma 4.1 do not hold usually, we cannot expect them
to hold for the measure π̄. The idea will be to represent π̄ as a convex combination
of measures that satisfy the conditions of Lemma 4.1 and then to deduce bounds for
the values wi(π̄).

We remark that in the simpler case, in which the original measure µ is a product
measure, the measure π̄ does satisfy the conditions of Lemma 4.1. Had we considered
only this simpler case, the entire proof would have ended here!

Recall that in all the following π̄ = µ̄A, where the set A is taken from Theorem 1.2
and satisfies,

− log µ̄(A) ≤ ∆k.

The following definition is probably the most important notion in this paper. This
definition enables the representation of π̄ as a convex combination of measures with
nice properties. A similar idea was used before in [35, 41].

A scheme M of type Ml consists of:
1. A partition of the set of coordinates [k]− {l} into I ∪ J .
2. Values ai ∈ X, for all i ∈ I, and bj ∈ Y , for all j ∈ J .

(Formally, M should be denoted by M l
I,J,ai1 ,...,ai|I| ,bj1 ,...,bj|J|

; however, for simplicity

we will just use the notation M .) We also denote by M the set

M =
{

(x, y) ∈ X̄ × Ȳ
∣∣ ∀i ∈ I : xi = ai , ∀j ∈ J : yj = bj

}
.

We also denote by Ml the family of all sets M of type Ml (i.e., for all possible
I, J, ai1 , . . . , ai|I| , bj1 , . . . , bj|J|). Notice that each Ml is a cover of X̄ × Ȳ . Each
element (x, y) ∈ X̄ × Ȳ is covered 2k−1 times by each Ml.

For all l, define the following two probability measures, νl, ρl :Ml → R+ by

νl(M) =
µ̄(M)
2k−1 , ρl(M) =

π̄(M)
2k−1 =

µ̄A(M)
2k−1 =

µ̄(A ∩M)
µ̄(A)2k−1

(νl, ρl are obviously probability measures, by the above observation that each element
(x, y) is covered exactly 2k−1 times by Ml).

A PARALLEL REPETITION THEOREM 779

Recall that for the set M , we have the measures µ̄M : X̄ × Ȳ → R+, π̄M :
X̄ × Ȳ → R+. For M with µ̄(M) > 0 (respectively, π̄(M) > 0), these measures
are probability measures (recall that otherwise they are defined to be identically 0).
Recall that µ̄iM , π̄

i
M : X × Y → R+ are the projections of these measures on the ith

coordinate. For M ∈ Ml , we will be mainly interested in the projections µ̄lM , π̄
l
M .

Note that since µ̄ = µ⊗k, the projection µ̄lM is just µ.
The important fact for M is the following.
CLAIM 4.1. For M ∈Ml (with ρl(M) > 0),

wl(π̄M) = w(π̄lM).

Proof. This is a simple application of Lemma 4.1. For (x, y) ∈M , we have

µ̄M (x, y) = µ̄(M)−1µ̄(x, y) = µ̄(M)−1
k∏
i=1

µ(xi, yi)

= µ̄(M)−1µ(xl, yl)
∏
i∈I

µ(xi, yi)
∏
j∈J

µ(xj , yj)

= µ̄(M)−1µ(xl, yl)
∏
i∈I

µ(ai, yi)
∏
j∈J

µ(xj , bj).

Define µ1 : X × Y → R, µ2 : X̄ → R, µ3 : Ȳ → R by

µ1(xl, yl) = µ̄(M)−1µ(xl, yl), µ2(x) =
∏
j∈J

µ(xj , bj), µ3(y) =
∏
i∈I

µ(ai, yi).

Then for (x, y) ∈M , we have

µ̄M (x, y) = µ1(xl, yl)µ2(x)µ3(y).

The event (x, y) ∈M ∩A can be written as

(x ∈ AX ∩ ∀i ∈ I : xi = ai)
⋂

(y ∈ AY ∩ ∀j ∈ J : yj = bj).

Therefore, defining χ2 : X̄ → R, χ3 : Ȳ → R by

χ2(x) =

{
1 if x ∈ AX ∩ ∀i ∈ I : xi = ai,

0 otherwise,

χ3(y) =
{

1 if y ∈ AY ∩ ∀j ∈ J : yj = bj ,
0 otherwise,

we have ∀(x, y) ∈ X̄ × Ȳ
π̄M (x, y) = µ̄A∩M (x, y) = (µ̄M)A(x, y) = µ̄M (A)−1χ2(x)χ3(y)µ̄M (x, y),

and since (x, y) 6∈M implies χ2(x)χ3(y) = 0, we have

π̄M (x, y) = µ̄M (A)−1χ2(x)χ3(y)µ1(xl, yl)µ2(x)µ3(y).

Define

π1(xl, yl) = µ̄M (A)−1µ1(xl, yl),

π2(x) = χ2(x)µ2(x),

π3(y) = χ3(y)µ3(y).

Then π̄M (x, y) = π1(xl, yl)π2(x)π3(y) and the claim follows from Lemma 4.1.

780 RAN RAZ

Recall the definitions of the probability measures νl, ρl. Since every (x, y) is
covered the same number of times by Ml, for any l, the measure π̄ can be written as
the convex combination

π̄ =
∑

M∈Ml

ρl(M)π̄M .(2)

We will use the equality (2) in two ways. First note that a protocol for Ḡlπ̄ is also a
protocol for each Ḡlπ̄M . Therefore,

wl(π̄) ≤
∑

M∈Ml

ρl(M)wl(π̄M) = Eρl (wl(π̄M)) ,

(which reflects the concavity of the function wl–see in the Introduction), and by
Claim 4.1 we have

wl(π̄) ≤ Eρl

(
w
(
π̄lM
))
.(3)

Thus, if we can only upper bound the values w
(
π̄lM
)
, of the one-dimensional

measures π̄lM , we will have an upper bound for wl(π̄).
In order to deduce an upper bound for Eρl

(
w
(
π̄lM
))

, we need some more prop-
erties of the family

{
π̄lM
}
M∈Ml : First take the projection of equality (2) to get

π̄l =
∑

M∈Ml

ρl(M)π̄lM .

We also need the following lemma.
LEMMA 4.2 (main). There exists l0 such that

Eρl0

(
V
(
π̄l0M

∥∥∥ µ)) ≤ 2
k

(− log µ̄(A))

and

D
(
π̄l0
∥∥ µ) ≤ 2

k
(− log µ̄(A)).

The proof is given in the next section.
In order to understand the intuition behind Lemma 4.2, one should think of the

right-hand side, 2
k (− log µ̄(A)), as a very small ε. The lemma just says that there exists

l0 s.t. π̄l0 is very close to µ (by Lemma 3.4), and s.t. for an average M , V(π̄l0M‖µ) is
very small.

Thus fixing l0 from the last lemma, and fixing ε = 2/k(− log µ̄(A)), the family of
measures {π̄l0M}M∈Ml0 satisfies∑

M∈Ml0

ρl0(M)V
(
π̄l0M

∥∥∥ µ) ≤ ε

and

D

 ∑
M∈Ml0

ρl0(M)π̄l0M

∥∥∥∥∥∥ µ
 = D

(
π̄l0
∥∥ µ) ≤ ε.

A PARALLEL REPETITION THEOREM 781

In these conditions, the following lemma proves an upper bound for∑
M∈Ml0

ρl0(M)w
(
π̄l0M

)
= Eρl0

(
w
(
π̄l0M

))
,

i.e., an upper bound for the value w
(
π̄l0M

)
, for an average M .

LEMMA 4.3. There exists a global function W2 : [0, 1] → [0, 1], with z < 1
implying W2(z) < 1, and a global constant c1 such that: if {γd}d∈D is a family of
probability measures on X×Y , and {pd}d∈D are weights satisfying ∀d : pd ≥ 0 , and∑
d∈D pd = 1. Assume that for some 0 ≤ ε ≤ 1∑

D

pdV (γd ‖ µ) ≤ ε

and

D

(∑
D

pdγd

∥∥∥∥∥ µ
)
≤ ε.

Then, ∑
D

pdw(γd) ≤ W2(w(µ)) + c1ε
1/16.

The proof is given in section 6.
Using Lemma 4.3, and inequality (3), and the fact that

ε
def=

2
k

(− log µ̄(A)) ≤ 2
k

∆k ≤ 2∆,

we can now conclude

wl0(π̄) ≤ Eρl0

(
w
(
π̄l0M

))
≤ W2(w(µ)) + c1(2∆)1/16,

which proves Theorem 1.2.
Lemma 4.2, which is the most important lemma in the paper, is proved in the

next section. Lemma 4.3 is proved in section 6.
We remark that Lemma 4.3 is not really necessary: for small enough ε, and

irreducible µ, the fact that V (γd ‖ µ) ≤ ε implies that ‖ γd − µ ‖1 is very small.
Therefore, it can be proved easily that

Eρl0

(
w
(
π̄l0M

))
≈ w(µ),

which implies the parallel repetitions conjecture for irreducible measures. It turns out
that the general case follows easily from the irreducible one.

However, as we mentioned in section 3, only for a very small ε it is the case that
V (γd ‖ µ) ≤ ε implies that ‖ γd − µ ‖1 is small. In fact, such an ε needs to be much
smaller than the ε used here. In particular, since the measure µ is arbitrary, such
an ε depends on the size of the input set, |X × Y |, as opposed to the ε used here,
which depends only on w(µ) and is independent of other parameters of the game.
Thus using Lemma 4.3 improves the constants in the exponent (in our analysis) in
the parallel repetition theorem.

782 RAN RAZ

5. The main lemma. In this section we give the proof of Lemma 4.2. Our
proof uses tools, and intuition from [41].

The main idea of the proof is to introduce a new type of scheme. A scheme M of
type M consists of

1. a partition of the set of coordinates [k] into I ∪ J ;
2. values ai ∈ X, for all i ∈ I, and bj ∈ Y , for all j ∈ J ;

Note that this is the same as before, except that here I ∪J = [k] rather than [k]−{l}.
As before, we also denote by M the set

M =
{

(x, y) ∈ X̄ × Ȳ
∣∣ ∀i ∈ I : xi = ai , ∀j ∈ J : yj = bj

}
and by M the family of all the sets M of type M. Notice that each element (x, y) ∈
X̄×Ȳ is covered 2k times, by the coverM. As before, define two probability measures
ν, ρ :M→ R+ by

ν(M) =
µ̄(M)

2k
, ρ(M) =

π̄(M)
2k

=
µ̄A(M)

2k
=
µ̄(A ∩M)
µ̄(A)2k

.

As before, we have for the set M the measures µ̄M : X̄ × Ȳ → R+, and π̄M =
µ̄M∩A : X̄ × Ȳ → R+. Recall that µ̄iM , π̄

i
M are the projections of these measures on

the ith coordinate.
For i ∈ I, xi = ai is fixed. In this case µ̄iM , π̄

i
M are concentrated on {ai}× Y and

can also be thought of as measures on Y . In the same way, if j ∈ J then µ̄jM , π̄
j
M can

be thought of as measures on X.
Notice also that since µ̄ = µ⊗k, we have

µ̄M = ⊗ki=1µ̄
i
M .

CLAIM 5.1.
k∑
i=1

Eρ

(
D
(
π̄iM

∥∥ µ̄iM)) ≤ − log µ̄(A).

Proof. The proof follows from the basic properties of informational divergence:
For any scheme M ∈M with ρ(M) > 0, we have by Lemma 3.5,

D (π̄M ‖ µ̄M) = D (µ̄M∩A ‖ µ̄M) = D ((µ̄M)A ‖ µ̄M)

= − log µ̄M (A) = − log
µ̄(M ∩A)
µ̄(M)

= − log
ρ(M)µ̄(A)
ν(M)

.

Therefore,

Eρ (D (π̄M ‖ µ̄M)) = −
∑
M∈M

ρ(M) log
ρ(M)µ̄(A)
ν(M)

= −
∑
M∈M

ρ(M)
[
log

ρ(M)
ν(M)

+ log µ̄(A)
]

= −D (ρ ‖ ν)− log µ̄(A) ≤ − log µ̄(A)

(by Lemma 3.1). But by Lemma 3.3, for all M, with ρ(M) > 0,

D (π̄M ‖ µ̄M) ≥
k∑
i=1

D
(
π̄iM

∥∥ µ̄iM)

A PARALLEL REPETITION THEOREM 783

and we can conclude that
k∑
i=1

Eρ

(
D
(
π̄iM

∥∥ µ̄iM)) = Eρ

(
k∑
i=1

D
(
π̄iM

∥∥ µ̄iM)
)

≤ Eρ (D (π̄M ‖ µ̄M)) ≤ − log µ̄(A).

Fix l. In what follows we denote by M a scheme of type M, and by M ′ a scheme of
type Ml. Denote by I, J the partition of coordinates, corresponding to the scheme
M , and by I ′, J ′ the one corresponding to M ′. A scheme M agrees with a scheme M ′

if and only if I ′ = I∩ ([k]−{l}), J ′ = J ∩ ([k]−{l}), and M,M ′ agree on the values of
ai, bj , for all i ∈ I ′, j ∈ J ′. For a scheme M ′ of typeMl, denote the set of all schemes
M of typeM, agreeing with M ′, by N(M ′). Then the family of sets {M}M∈N(M ′) is
a cover of the set M ′, where each element (x, y) ∈M ′ is covered exactly twice (as we
have to choose l ∈ I or l ∈ J and then fix the value of al or bl). Therefore, we have

π̄(M ′) =
1
2

∑
M∈N(M ′)

π̄(M),

and hence,

ρl(M ′) =
∑

M∈N(M ′)

ρ(M).

Assume in all of the following that ρl(M ′) > 0. Then ρ(M)/ρl(M ′) is a probability
measure on N(M ′). A scheme M can be randomly chosen, according to the distri-
bution ρ, by first choosing M ′ according to ρl and then choosing M ∈ N(M ′) with
probability ρ(M)/ρl(M ′).

CLAIM 5.2. For every l,

V
(
π̄lM ′

∥∥ µ̄lM ′) =
∑

M∈N(M ′)

ρ(M)
ρl(M ′)

D
(
π̄lM

∥∥ µ̄lM) .
Proof. The proof follows by looking carefully into the definitions. For M ∈ N(M ′)

ρ(M)
ρl(M ′)

=
π̄(M)/2k

π̄(M ′)/2k−1 =
1
2
π̄(M)
π̄(M ′)

=
1
2
π̄M ′(M).

If for the scheme M , l ∈ I, then π̄M ′(M) is just the probability to have xl = al in the
set M ′. By definition this probability is π̄lM ′(al). Therefore, in this case,

ρ(M)
ρl(M ′)

=
1
2
π̄lM ′(al).

Also in this case, π̄M is derived from π̄M ′ by fixing xl to be al. Hence, π̄lM = π̄lM ′(al, ·).
In the same way, we have µ̄lM = µ̄lM ′(al, ·). Therefore, for l ∈ I

ρ(M)
ρl(M ′)

D
(
π̄lM

∥∥ µ̄lM) =
1
2
π̄lM ′(al)D

(
π̄lM ′(al, ·)

∥∥ µ̄lM ′(al, ·)) .
In the same way, for l ∈ J

ρ(M)
ρl(M ′)

D
(
π̄lM

∥∥ µ̄lM) =
1
2
π̄lM ′(bl)D

(
π̄lM ′(·, bl)

∥∥ µ̄lM ′(·, bl)) .

784 RAN RAZ

Partitioning M ∈ N(M ′) into schemes with l ∈ I, and schemes with l ∈ J , we have∑
M∈N(M ′)

ρ(M)
ρl(M ′)

D
(
π̄lM

∥∥ µ̄lM)
=

∑
a∈X

1
2
π̄lM ′(a)D

(
π̄lM ′(a, ·)

∥∥ µ̄lM ′(a, ·))+
∑
b∈Y

1
2
π̄lM ′(b)D

(
π̄lM ′(·, b)

∥∥ µ̄lM ′(·, b))
=

1
2
VX

(
π̄lM ′

∥∥ µ̄lM ′)+
1
2
VY

(
π̄lM ′

∥∥ µ̄lM ′) = V
(
π̄lM ′

∥∥ µ̄lM ′) .
CLAIM 5.3.

k∑
l=1

Eρl

(
V
(
π̄lM ′

∥∥ µ̄lM ′)) ≤ − log µ̄(A).

Proof. By Claim 5.2 we have

Eρ

(
D
(
π̄lM

∥∥ µ̄lM)) =
∑
M∈M

ρ(M)D
(
π̄lM

∥∥ µ̄lM)
=

∑
M ′∈Ml

ρl(M ′)
∑

M∈N(M ′)

ρ(M)
ρl(M ′)

D
(
π̄lM

∥∥ µ̄lM)
=

∑
M ′∈Ml

ρl(M ′)V
(
π̄lM ′

∥∥ µ̄lM ′) = Eρl

(
V
(
π̄lM ′

∥∥ µ̄lM ′)) .
Since this is true for all l, we can sum up and conclude by Claim 5.1 that

k∑
l=1

Eρl

(
V
(
π̄lM ′

∥∥ µ̄lM ′)) =
k∑
l=1

Eρ

(
D
(
π̄lM

∥∥ µ̄lM)) ≤ − log µ̄(A).

Since V (ϑ ‖ ψ) is always non-negative (see section 3), we can conclude from the last
claim that less than k

2 coordinates l satisfy

Eρl

(
V
(
π̄lM ′

∥∥ µ̄lM ′)) > −2
k

log µ̄(A).

Therefore, more than 1
2k coordinates l satisfy

Eρl

(
V
(
π̄lM ′

∥∥ µ̄lM ′)) ≤ −2
k

log µ̄(A).

By Lemmas 3.3 and 3.5, we also have

k∑
l=1

D
(
π̄l
∥∥ µ̄l) ≤ D (π̄ ‖ µ̄) = D (µ̄A ‖ µ̄) = − log µ̄(A)

and as before, more than 1
2k coordinates l satisfy

D
(
π̄l
∥∥ µ̄l) ≤ −2

k
log µ̄(A).

A PARALLEL REPETITION THEOREM 785

Therefore, there exists l with

Eρl

(
V
(
π̄lM ′

∥∥ µ̄lM ′)) ≤ −2
k

log µ̄(A)

and

D
(
π̄l
∥∥ µ̄l) ≤ −2

k
log µ̄(A).

Since µ̄ = µ⊗k, we have µ̄lM ′ = µ and µ̄l = µ. Thus Lemma 4.2 follows.

6. Families of local protocols. Given X,Y, U, V,Q, every probability measure,
γ : X × Y → R+, defines a game Gγ . In this section, as before, we denote the value
of this game by w(γ). The original measure µ is one measure of this type (with value
w(µ)). For some finite set D, let {γd}d∈D be a family of measures of this type. Thus,
for all d ∈ D, γd : X × Y → R+ is a probability measure, and has a value w(γd). Let
pd ≥ 0 be an arbitrary weight (∀d ∈ D). We will not always require

∑
d∈D pd = 1.

However, in the cases that we consider
∑
d∈D pd will be very close to 1. Thus pd will

be “almost” a probability measure on D.
Define

wd = w(γd), w =
∑
d∈D

pdwd

(note that w may be larger than 1, because we didn’t require
∑
d∈D pd = 1), and the

measure γ : X × Y → R+ by

γ =
∑
d∈D

pdγd.

In this section we assume that γ is close to µ. We would like to deduce, under
some conditions on the measures {γd}d∈D, a lower bound for w(µ) as a function of
w, or conversely, an upper bound for w as a function of w(µ). The conditions on
{γd}d∈D will intuitively say that each measure γd “locally” describes the behavior of
the original measure µ. The goal of the section is to prove Lemma 4.3, which is stated
in section 4.

6.1. The basic lemma. First assume that for all d ∈ D, we have sets Xd ⊂ X
and Yd ⊂ Y , such that

γd = µXd×Yd .

For all d ∈ D, define

ad = µ(Xd × Yd)

and

rd =
µ [(Xd × (Y − Yd)) ∪ ((X −Xd)× Yd)]

µ(Xd × Yd)
.

Define

r =
∑
d∈D

pdrd.

786 RAN RAZ

The next lemma gives our basic lower bound for w(µ) as a function of w.
LEMMA 6.1. Assume that for some constants 0 ≤ ε0 ≤ 1, 0 ≤ ε1 ≤ 1, we have

‖ γ − µ ‖1≤ ε0, and r ≤ ε1, and assume (for simplicity) that w ≤ 1. Let f : R → R
be any increasing monotone function such that f(z) ≤ 0, for z ≤ 0, and such that for
all 0 ≤ z ≤ 1, 0 < δ ≤ 1, we have the inequality

(1− δ)z + δf

[
1
δ

(z − (1− δ))
]
≥ f(z).

Then

w(µ) ≥ f(w − 2
√
ε1 − ε0).

We remark that ε0, ε1 should be thought of as small constants. Some examples for
functions f , as above, are given in Corollaries 6.2, 6.3, 6.4. It is always true that for
0 ≤ z ≤ 1, f(z) ≤ z, (to see this, substitute δ = 1/2 to get f(z) ≤ z/2 + f(2z − 1)/2,
and by the fact that f is monotone, and z ≤ 1, we get f(z) ≤ z/2 + f(z)/2).

Proof. We will first give some intuition. Every measure µ decomposes into its
irreducible components. In the simplest case, where ε0 = ε1 = 0, for all d : rd = 0.
Therefore, in this case, Xd × Yd is a component of the measure µ (not necessarily
irreducible). Since we can further decompose each one of these components, we can
assume w.l.o.g. that Xd × Yd is irreducible, and therefore that the family {γd}d∈D
describes the decomposition of the measure µ into irreducible components. Every
protocol for µ defines a protocol for each one of its components. Also, given a protocol
for each one of the irreducible components, we can define a protocol for µ (we define the
protocol for µ on each irreducible component separately). The value of the protocol for
µ is the weighted average of the values of the protocols for the components. Therefore
in the special case ε0 = ε1 = 0, we can simply conclude that w(µ) = w, and the claim
follows. In the general case the intuition is basically the same: We will find d0 such
that Xd0×Yd0 is “almost” a component of µ (i.e., d0 with small rd0) and such that wd0

is very close to w. We will concentrate on the set (X−Xd0)×(Y −Yd0) and continue by
induction. Intuitively, we will get a subfamily of {γd}d∈D that will “almost” describe
a decomposition of the measure µ into “almost” irreducible components.

First note that

‖ γ ‖1 =

∥∥∥∥∥ ∑
d∈D

pdγd

∥∥∥∥∥
1

=
∑
d∈D

pd ‖ γd ‖1 =
∑
d∈D

pd.

Therefore, since ‖ γ−µ ‖1≤ ε0 and since ‖ µ ‖1= 1, we have by the triangle inequality

1− ε0 ≤
∑
d∈D

pd ≤ 1 + ε0.

CLAIM 6.1. There exists d0 ∈ D with

rd0 ≤
√
ε1

and

wd0 ≥ w −
√
ε1 − ε0.

Proof. Denote

Z = {d ∈ D | rd ≥
√
ε1}.

A PARALLEL REPETITION THEOREM 787

Then,

ε1 ≥ r =
∑
d∈D

pdrd ≥
∑
d∈Z

pdrd ≥
√
ε1
∑
d∈Z

pd.

Hence, ∑
d∈Z

pd ≤
√
ε1;

thus,

w =
∑
Z

pdwd +
∑
D−Z

pdwd ≤
∑
Z

pd1 +
∑
D−Z

pdwd ≤
√
ε1 +

∑
D−Z

pdwd

and therefore, ∑
D−Z

pdwd ≥ w −
√
ε1.

Let d0 ∈ D − Z be the element with the maximal wd0 . Then,

wd0

∑
D−Z

pd ≥
∑
D−Z

pdwd ≥ w −
√
ε1,

and by
∑
D−Z pd ≤

∑
d∈D pd ≤ 1 + ε0, we have

wd0 ≥ (w −√ε1)/(1 + ε0) ≥ (w −√ε1)(1− ε0) ≥ w −√ε1 − ε0

(since w ≤ 1).
This completes the proof of Claim 6.1.
Fix d0 from the last claim. Define

X ′ = X −Xd0 , Y ′ = Y − Yd0 , δ = µ(X ′ × Y ′).

Assume that δ > 0. For all d ∈ D define

X ′d = Xd ∩X ′, Y ′d = Yd ∩ Y ′, γ′d = µX′d×Y ′d , w′d = w(γ′d), a′d = µ(X ′d × Y ′d),

r′d =
µ [(X ′d × (Y ′ − Y ′d)) ∪ ((X ′ −X ′d)× Y ′d)]

µ(X ′d × Y ′d)
, p′d = pd

1
δ

a′d
ad

(recall that 0
0 is defined to be 0). Notice that r′d can be ∞, but then p′d = 0. Define

r′ =
∑
D

p′dr
′
d, w′ =

∑
D

p′dw
′
d, γ′ =

∑
D

p′dγ
′
d.

Clearly,

γ′d(x, y) =

ad
a′d
γd(x, y) for (x, y) ∈ X ′ × Y ′,

0 for (x, y) 6∈ X ′ × Y ′.

Therefore, by the definitions,

γ′(x, y) =

1
δ
γ(x, y) for (x, y) ∈ X ′ × Y ′,

0 for (x, y) 6∈ X ′ × Y ′.

788 RAN RAZ

So

γ′ =
(

1
δ
γ(X ′ × Y ′)

)
γX′×Y ′ .

Therefore, we also have ∑
D

p′d = ‖ γ′ ‖1 = γ(X ′ × Y ′)/δ.

We would like to use induction (of the lemma), with the family {γ′d}d∈D, to
deduce a lower bound for w(µX′×Y ′). In order to use the lemma, we need bounds for
r′, ‖ γ′ − µX′×Y ′ ‖1, and for w′.
First note that

r′da
′
d = µ [(X ′d × (Y ′ − Y ′d)) ∪ ((X ′ −X ′d)× Y ′d)]

≤ µ [(Xd × (Y − Yd)) ∪ ((X −Xd)× Yd)] = rdad.

Therefore, defining

ε′1 =
ε1
δ

we have

r′ =
∑
D

p′dr
′
d =

1
δ

∑
D

pd
a′d
ad
r′d ≤

1
δ

∑
D

pdrd =
r

δ
≤ ε1

δ
= ε′1.

Also, define

ε′0 =‖ γ′ − µX′×Y ′ ‖1;

then clearly,

δε′0 = ‖ δγ′ − δµX′×Y ′ ‖1 = ‖ γ(X ′ × Y ′)γX′×Y ′ − µ(X ′ × Y ′)µX′×Y ′ ‖1

=
∑

X′×Y ′
|γ(x, y)− µ(x, y)| ≤

∑
X×Y

|γ(x, y)− µ(x, y)| = ‖ γ − µ ‖1 = ε0.

Thus we have bounds for r′,‖ γ′ − µX′×Y ′ ‖1. The bound for w′ will follow from the
following two claims.

CLAIM 6.2.

‖ γ ‖1 −δ ‖ γ′ ‖1 ≤ ε0 − δε′0 + (1− δ).

Proof. Define Z = (X × Y)− (X ′ × Y ′), and Z ′ = X ′ × Y ′. Then γ = γ(Z)γZ +
γ(Z ′)γZ′ , and µ = µ(Z)µZ + µ(Z ′)µZ′ . Therefore,

‖ γ ‖1 = ‖ γ(Z)γZ ‖1 + ‖ γ(Z ′)γZ′ ‖1 = ‖ γ(Z)γZ ‖1 + δ ‖ γ′ ‖1 .(4)

In addition,

ε0 ≥ ‖ γ − µ ‖1 = ‖ γ(Z)γZ − µ(Z)µZ ‖1 + ‖ γ(Z ′)γZ′ − µ(Z ′)µZ′ ‖1
= ‖ γ(Z)γZ − µ(Z)µZ ‖1 + ‖ δγ′ − δµZ′ ‖1 = ‖ γ(Z)γZ − µ(Z)µZ ‖1 +δε′0.

A PARALLEL REPETITION THEOREM 789

Thus, by the triangle inequality,

ε0−δε′0 ≥ ‖ γ(Z)γZ−µ(Z)µZ ‖1 ≥ ‖ γ(Z)γZ ‖1 − ‖ µ(Z)µZ ‖1 = ‖ γ(Z)γZ ‖1 −(1−δ),

so,

‖ γ(Z)γZ ‖1≤ ε0 − δε′0 + (1− δ).

The proof follows by substituting this in (4).
CLAIM 6.3.

w′ ≥ (w − (1− δ)− ε0 + δε′0)/δ.

Proof. Any protocol for the game with the measure µXd×Yd defines a corre-
sponding protocol for the game with the measure µX′d×Y ′d . Take the best protocol for
µXd×Yd . This protocol for µXd×Yd satisfies Q on a set of points of µ-measure wdad. At
most µ-measure of ad− a′d = µ(Xd×Yd)−µ(X ′d×Y ′d) is outside X ′d×Y ′d . Therefore,
at least µ-measure of wdad− (ad− a′d) is inside. Thus, the corresponding protocol for
µX′d×Y ′d satisfies Q on a set of points of µ-measure wdad − (ad − a′d) (at least). But
this cannot be more than w′da

′
d; thus,

w′da
′
d ≥ wdad − ad + a′d.

Therefore,

p′dw
′
d = pd

1
δ

a′d
ad
w′d ≥ pd

1
δ

1
ad

[wdad − ad + a′d] =
1
δ
pdwd −

1
δ
pd + p′d,

and we have

w′ =
∑
D

p′dw
′
d ≥

1
δ

∑
D

pdwd −
1
δ

∑
D

pd +
∑
D

p′d

=
1
δ
w − 1

δ
‖ γ ‖1 + ‖ γ′ ‖1 =

1
δ

[w − (‖ γ ‖1 −δ ‖ γ′ ‖1)],

and by Claim 6.2

w′ ≥ (w − (1− δ)− ε0 + δε′0)/δ.

By Claim 6.3, we can conclude

w′ − 2
√
ε′1 − ε′0 ≥

1
δ

(w − (1− δ)− ε0 + δε′0)− 2
√
ε1
δ
− ε′0

=
1
δ

(w − (1− δ)− 2
√
δ
√
ε1 − ε0) ≥ 1

δ
(w − (1− δ)− 2

√
ε1 − ε0).

Now, we can use induction and apply the lemma for µX′×Y ′ , with the family
{γ′d}d∈D to get a lower bound

w(µX′×Y ′) ≥ f
[
w′ − 2

√
ε′1 − ε′0

]
≥ f

[
1
δ

(w − 2
√
ε1 − ε0 − (1− δ))

]
(since f is monotone). Define z = w − 2

√
ε1 − ε0 to get

w(µX′×Y ′) ≥ f
[

1
δ

(z − (1− δ))
]
.

790 RAN RAZ

Recall that wd0 ≥ w−
√
ε1 − ε0. Since ad0 + rd0ad0 + δ = µ(X × Y) = 1, we have

ad0 = (1− δ)/(1 + rd0). But rd0 ≤
√
ε1, and therefore

ad0 ≥ (1− δ)/(1 +
√
ε1) ≥ (1− δ)(1−√ε1)

and we have

ad0wd0 ≥ (1− δ)(1−√ε1)(w −√ε1 − ε0) ≥ (1− δ)(w − 2
√
ε1 − ε0) = (1− δ)z.

Recall that Xd0 ∩X ′ = ∅, and Yd0 ∩Y ′ = ∅. Given the best protocol for µXd0×Yd0

and the best protocol for µX′×Y ′ , define a protocol for µ that behaves like the first
one on Xd0 ×Yd0 and like the other one on X ′×Y ′. This protocol satisfies Q on a set
of points of µ-measure µ(Xd0 × Yd0)w(µXd0×Yd0

) + µ(X ′ × Y ′)w(µX′×Y ′) (at least),
and therefore proves that

w(µ) ≥ ad0wd0 + δw(µX′×Y ′)

≥ (1− δ)z + δf

[
1
δ

(z − (1− δ))
]
≥ f(z) = f(w − 2

√
ε1 − ε0),

which proves the lemma. The assumption z ≤ 0 ⇒ f(z) ≤ 0 is needed for the base
case of the induction. We remark that if δ = 0 the lemma is proved simply from
Claim 6.1 or by a continuity argument.

COROLLARY 6.2. Under the assumptions of Lemma 6.1,

w(µ) ≥ f(w − 2
√
ε1 − ε0),

where f is defined by

f(z) =

1
2
z2 for 0 ≤ z ≤ 1,

0 for z ≤ 0.

Proof. We just have to prove the inequality (as in Lemma 6.1) for f .
Case a. z ≥ 1− δ.

In this case

(1− δ)z + δf

[
1
δ

(z − (1− δ))
]
− f(z) = (1− δ)z +

1
2δ

(z − (1− δ))2 − 1
2
z2

=
1
2δ
[
2δ(1− δ)z + z2 − 2(1− δ)z + (1− δ)2 − δz2]

=
1
2δ
[
z2(1− δ)− 2z(1− δ)2 + (1− δ)2]

≥ 1− δ
2δ

[
z2 − 2z(1− δ) + (1− δ)2]

=
1− δ

2δ
[z − (1− δ)]2 ≥ 0.

Case b. z ≤ 1− δ.
In this case

(1− δ)z + δf

[
1
δ

(z − (1− δ))
]
− f(z) = (1− δ)z + 0− 1

2
z2

≥ z2 − 1
2
z2 =

1
2
z2 ≥ 0.

A PARALLEL REPETITION THEOREM 791

It is sometimes convenient to denote v(µ) = 1 − w(µ), v = 1 − w, and g(t) =
1− f(1− t). In these notations the inequality

(1− δ)z + δf

[
1
δ

(z − (1− δ))
]
− f(z) ≥ 0

(for 0 ≤ z ≤ 1, 0 < δ ≤ 1), is equivalent (by setting t = 1− z) to

(1− δ)t+ δg(t/δ) ≤ g(t)

(for 0 ≤ t ≤ 1, 0 < δ ≤ 1).
COROLLARY 6.3. Under the assumptions of Lemma 6.1, if g : R → R is an

increasing monotone function such that g(t) ≥ 1, for t ≥ 1, and such that for all
0 ≤ t ≤ 1, 0 < δ ≤ 1, we have

(1− δ)t+ δg(t/δ)− g(t) ≤ 0;

then,

v(µ) ≤ g(v + 2
√
ε1 + ε0).

COROLLARY 6.4. Under the assumptions of Lemma 6.1,

v(µ) ≤ 2
√
v + 2

√
ε1 + ε0.

Proof. Take g(t) = 2
√
t, then for 0 ≤ t ≤ 1, 0 < δ ≤ 1,

(1− δ)t+ δg(t/δ)− g(t) = (1− δ)t+ 2
√
δ
√
t− 2

√
t

= (1 +
√
δ)(1−

√
δ)
√
t
√
t− 2(1−

√
δ)
√
t

= (1−
√
δ)
√
t[(1 +

√
δ)
√
t− 2] ≤ 0

(because (1 +
√
δ)
√
t− 2 ≤ 2− 2 = 0).

It will be convenient to define the function W1 : R→ R in the following way:

W1(z) = sup
f
f(z)

where the supremum is taken over all the strictly increasing monotone functions,
satisfying the conditions as in Lemma 6.1. Conversely, define W2 : R→ R by

W2(z) = inf
f
f−1(z)

where the infimum is taken over the same family of functions.
Take, for convenience, ε0 = ε1 = ε, and assume for convenience that w ≤ 1.

Lemma 6.1 can now be restated in the following way.
COROLLARY 6.5. If for a family {γd}d∈D we have ‖ γ − µ ‖1≤ ε and r ≤ ε, then

w(µ) ≥W1(w −O(
√
ε))

or, conversely,

w ≤W2(w(µ)) +O(
√
ε).

By Corollaries 6.2 and 6.4 we have

0 < z ⇒ 0 < W1(z), lim
z→1

W1(z) = 1, lim
z→0

W2(z) = 0, z < 1⇒W2(z) < 1

(where the last fact is the important one for us). Also, since f was monotone,
W1(z),W2(z) are both monotone. Thus, W1,W2 are “well behaved.” In this manuscript
we will not investigate their exact behavior.

792 RAN RAZ

6.2. Characterization of measures ϑ, with small V (ϑ ‖ µ). Lemma 4.3
talks about measures γd, with small VX (γd ‖ µ) and small VY (γd ‖ µ). We would
like to prove this lemma by a reduction to Lemma 6.1. In order to do that, we need
one more lemma that gives a characterization of measures ϑ, with small VX (ϑ ‖ µ)
and small VY (ϑ ‖ µ). Again, µ : X ×Y → R+ and ϑ : X ×Y → R+ are probability
measures.

LEMMA 6.6. If VX (ϑ ‖ µ) ,VY (ϑ ‖ µ) ≤ ε then, for some m, there exist par-
titions X =

⋃m
i=1Xi , Y =

⋃m
i=1 Yi, and positive weights {qi}mi=1 (i.e., for all

i : qi ≥ 0), such that the function h : X × Y → R, defined by

h(x, y) =
m∑
i=1

qiµXi×Yi(x, y)

satisfies

‖ ϑ− h ‖1≤ O(ε1/8)

and such that
m∑
i=1

qiri ≤ O(ε1/8),

where

ri =
µ [(Xi × (Y − Yi)) ∪ ((X −Xi)× Yi)]

µ(Xi × Yi)
.

Proof. Assume that ϑ(x), ϑ(y), µ(x), µ(y) take only strictly positive values (oth-
erwise, just add small constants and normalize). This is done only to simplify the
notations. Assume that ε is small enough (ε < 2−10 is enough), (for ε ≥ 2−10,
O(ε1/8) = O(1), thus h = µ does the job).

The first claim describes the basic structure of the measure ϑ.
CLAIM 6.4. ∥∥∥∥ ϑ(x, y)− ϑ(x)

µ(x)
µ(x, y)

∥∥∥∥
1
≤
√

2 ln 2
√
ε,

∥∥∥∥ ϑ(x, y)− ϑ(y)
µ(y)

µ(x, y)
∥∥∥∥

1
≤
√

2 ln 2
√
ε.

Proof. We will prove the first inequality. The second can be proved in a similar
manner.

By Lemma 3.4 we have∑
x∈X

ϑ(x) (‖ ϑ(x, ·)− µ(x, ·) ‖1)2 ≤ (2 ln 2)
∑
x∈X

ϑ(x)D (ϑ(x, ·) ‖ µ(x, ·))

= (2 ln 2)VX (ϑ ‖ µ) ≤ (2 ln 2)ε.

Since for any random variable z: (E(z))2 ≤ E(z2), we have∑
x∈X

ϑ(x) (‖ ϑ(x, ·)− µ(x, ·) ‖1) ≤
√

2 ln 2
√
ε,

A PARALLEL REPETITION THEOREM 793

but ∑
x∈X

ϑ(x) (‖ ϑ(x, ·)− µ(x, ·) ‖1) =
∑
x∈X

ϑ(x)
∑
y∈Y

∣∣∣∣ϑ(x, y)
ϑ(x)

− µ(x, y)
µ(x)

∣∣∣∣
=

∑
X×Y

∣∣∣∣ϑ(x, y)− ϑ(x)
µ(x)

µ(x, y)
∣∣∣∣ =

∥∥∥∥ ϑ(x, y)− ϑ(x)
µ(x)

µ(x, y)
∥∥∥∥

1

and the claim follows.
Define

RX(x) =
ϑ(x)
µ(x)

, RY (y) =
ϑ(y)
µ(y)

, R(x, y) =
RY (y)
RX(x)

(note that R(x, y) is asymmetric). By our assumption, these values are always well
defined and strictly positive. Define

h1(x, y) = RX(x)µ(x, y), h2(x, y) = RY (y)µ(x, y).

We proved

‖ ϑ− h1 ‖1 ≤
√

2 ln 2
√
ε, ‖ ϑ− h2 ‖1 ≤

√
2 ln 2

√
ε.

Therefore, by the triangle inequality we also have

‖ h1 ‖1 ≤ ‖ ϑ ‖1 + ‖ ϑ− h1 ‖1 ≤ 1 +
√

2 ln 2
√
ε.

Similarly,

‖ h2 ‖1 ≤ 1 +
√

2 ln 2
√
ε

and

‖ h1 − h2 ‖1 ≤ ‖ ϑ− h1 ‖1 + ‖ ϑ− h2 ‖1 ≤ 2
√

2 ln 2
√
ε.

The last inequality shows that most of the measure µ is concentrated on pairs (x, y),
with RX(x) very close to RY (y). In the simplest case, where ε = 0, the entire measure
µ is concentrated on pairs, with RX(x) = RY (y). In this case we can partition X
according to RX(x), and Y according to RY (y), and define the weight of a subset
as RX(x) (or RY (y)). The lemma follows then from Claim 6.4 and from the last
inequality. In the general case the intuition will be the same, but we will have to
partition X and Y into subsets, according to the value of RX(x) and RY (y), where
each subset allows small deviations in the value.

Denote

ε1 = 2
√

2 ln 2
√
ε

and define

Z = {(x, y) ∈ X × Y | |1−R(x, y)| ≥ √ε1} .

CLAIM 6.5. ∑
Z

h1(x, y) ≤ √ε1,
∑
Z

h2(x, y) ≤ √ε1.

794 RAN RAZ

Proof. By the definitions

‖ h1(x, y) (1−R(x, y)) ‖1 = ‖ h1 − h2 ‖1 ≤ 2
√

2 ln 2
√
ε = ε1.

Therefore,∑
Z

h1(x, y)
√
ε1 ≤

∑
Z

h1(x, y) |1−R(x, y)| ≤
∑
X,Y

h1(x, y) |1−R(x, y)| ≤ ε1.

Thus, ∑
Z

h1(x, y) ≤ √ε1.

The second inequality is proved in the same way.
Denote

ε2 =
√
− ln(1−√ε1).

Then since ε < 2−10,

ε2 ≤
√

ln(1 + 2
√
ε1) ≤

√
2
√
ε1 ≤ 2ε1/8.

For (x, y) 6∈ Z, we have

1−√ε1 ≤ R(x, y) ≤ 1 +
√
ε1.

Hence,

ln (1−√ε1) ≤ lnR(x, y) ≤ ln(1 +
√
ε1) ≤ − ln(1−√ε1).

Thus, (x, y) 6∈ Z implies

−ε22 ≤ lnR(x, y) ≤ ε22.

Let r be a random variable uniformly distributed in the interval [0, 1]. For every
integer i define

Xi(r) = {x ∈ X | (i− 1 + r)ε2 ≤ lnRX(x) < (i+ r)ε2} ,
Yi(r) = {y ∈ Y | (i− 1 + r)ε2 ≤ lnRY (y) < (i+ r)ε2} .

Then, for all r, {Xi(r)}∞i=−∞ is a partition of X, and {Yi(r)}∞i=−∞ is a partition of
Y . Define

Ẑ(r) =

{
(x, y) ∈ X × Y

∣∣∣∣∣ (x, y) 6∈
∞⋃

i=−∞
Xi × Yi

}
.

We will prove that for some r these partitions satisfy the lemma.
CLAIM 6.6.

(x, y) 6∈ Z ⇒ Prr
[
(x, y) ∈ Ẑ(r)

]
≤ ε2.

A PARALLEL REPETITION THEOREM 795

Proof. (x, y) 6∈ Z implies

| lnRX(x)− lnRY (y)| = | lnR(x, y)| ≤ ε22.

Assume w.l.o.g. that lnRX(x) ≥ lnRY (y). For a fixed r, (x, y) ∈ Xi(r) × Yi(r) for
some i, unless there exists in the interval [lnRY (y), lnRX(x)], a number of the form
(j + r)ε2 (for some integer j). The probability for that (over r) is

lnRX(x)− lnRY (y)
ε2

≤ ε22
ε2

= ε2.

CLAIM 6.7.

Er

∑
Ẑ(r)

h1(x, y)

 ≤ 3ε2, Er

∑
Ẑ(r)

h2(x, y)

 ≤ 3ε2.

Proof. By changing the order of the summations,

Er

∑
Ẑ(r)

h1(x, y)

 =
∑
X×Y

h1(x, y)Prr
[
(x, y) ∈ Ẑ(r)

]
=

∑
X×Y−Z

h1(x, y)Prr
[
(x, y) ∈ Ẑ(r)

]
+
∑
Z

h1(x, y)Prr
[
(x, y) ∈ Ẑ(r)

]
≤

∑
X×Y−Z

h1(x, y)ε2 +
∑
Z

h1(x, y)1 ≤ ε2
∑
X×Y

h1(x, y) +
∑
Z

h1(x, y)

≤ ε2 ‖ h1 ‖1 +
√
ε1 ≤ ε2(1 +

√
2 ln 2

√
ε) +

√
ε1 ≤ 3ε2.

The second inequality is proved in the same way.
Since h1(x, y), h2(x, y) are always positive, we can conclude from the last claim

the existence of r0 with∑
Ẑ(r)

h1(x, y) ≤ 6ε2,
∑
Ẑ(r)

h2(x, y) ≤ 6ε2.

Fix this r0. Define

Xi = Xi(r0), Yi = Yi(r0), Ẑ = Ẑ(r0).

We will prove that these partitions satisfy the lemma. Define h3 : X × Y → R by

h3(x, y) =
{
h1(x, y) for (x, y) 6∈ Ẑ,
0 for (x, y) ∈ Ẑ.

Then clearly,

‖ h1 − h3 ‖1=
∑
X,Y

|h1(x, y)− h3(x, y)| =
∑
Ẑ

h1(x, y) ≤ 6ε2.

By the definitions,

h3(x, y) =
∞∑

i=−∞
RX(x)µ(Xi × Yi)µXi×Yi(x, y).

796 RAN RAZ

Define

qi = e(i−1+r0)ε2µ(Xi × Yi)

and

h(x, y) =
∞∑

i=−∞
qiµXi×Yi(x, y).

CLAIM 6.8.

‖ h3 − h ‖1≤ 2ε2.

Proof. For x ∈ Xi,

e(i−1+r0)ε2 ≤ RX(x) < e(i+r0)ε2 ;

thus, by the definition of qi,

RX(x)µ(Xi × Yi) ≥ qi > RX(x)µ(Xi × Yi)e−ε2 ≥ RX(x)µ(Xi × Yi)(1− ε2).

Therefore, for x ∈ Xi

0 ≤ RX(x)µ(Xi × Yi)− qi ≤ RX(x)µ(Xi × Yi)ε2.

Since µXi×Yi(x, y) > 0⇒ x ∈ Xi, we have for all x, y,

|RX(x)µ(Xi × Yi)− qi|µXi×Yi(x, y) ≤ ε2RX(x)µ(Xi × Yi)µXi×Yi(x, y)

and therefore,

‖ h3 − h ‖1 =

∥∥∥∥∥
∞∑

i=−∞
RX(x)µ(Xi × Yi)µXi×Yi(x, y)−

∞∑
i=−∞

qiµXi×Yi(x, y)

∥∥∥∥∥
1

≤
∥∥∥∥∥
∞∑

i=−∞
|RX(x)µ(Xi × Yi)− qi|µXi×Yi(x, y)

∥∥∥∥∥
1

≤
∥∥∥∥∥
∞∑

i=−∞
ε2RX(x)µ(Xi × Yi)µXi×Yi(x, y)

∥∥∥∥∥
1

= ε2 ‖ h3 ‖1 ≤ ε2 ‖ h1 ‖1 ≤ 2ε2.

By the triangle inequality, we can now conclude that

‖ h− ϑ ‖1 ≤ ‖ ϑ− h1 ‖1 + ‖ h1 − h3 ‖1 + ‖ h3 − h ‖1

≤
√

2 ln 2
√
ε+ 3ε2 + 2ε2 = O(ε1/8).

Notice that in the definition of h, the sum is actually finite, because X,Y are finite
(µ(Xi × Yi) can take a nonzero value only a finite number of times).

CLAIM 6.9.
∞∑

i=−∞
qi
µ[Xi × (Y − Yi)]
µ(Xi × Yi)

≤ O(ε1/8),

∞∑
i=−∞

qi
µ[(X −Xi)× Yi]

µ(Xi × Yi)
≤ O(ε1/8).

A PARALLEL REPETITION THEOREM 797

Proof. Notice that µ(Xi × Yi) can be 0, only if qi is also 0. As in the previous
claim for x ∈ Xi, qi ≤ RX(x)µ(Xi × Yi). Thus,

qi
µ[Xi × (Y − Yi)]
µ(Xi × Yi)

=
∑

(x,y)∈Xi×(Y−Yi)

qi
µ(Xi × Yi)

µ(x, y) ≤
∑

(x,y)∈Xi×(Y−Yi)
RX(x)µ(x, y),

and therefore,

∞∑
i=−∞

qi
µ[Xi × (Y − Yi)]
µ(Xi × Yi)

≤
∞∑

i=−∞

 ∑
(x,y)∈Xi×(Y−Yi)

RX(x)µ(x, y)

=

∑
(x,y)∈Ẑ

RX(x)µ(x, y) =
∑
Ẑ

h1(x, y) ≤ 6ε2 = O(ε1/8).

The second inequality is proved in the same way.
Claim 6.9 and the inequality before give the proof of Lemma 6.6.

6.3. Proof of Lemma 4.3. Lemma 4.3 will follow as a simple application of
Lemmas 6.1 and 6.6. Given ϑ, with

VX (ϑ ‖ µ) ,VY (ϑ ‖ µ) ≤ ε

take m, {qi}mi=1, {Xi}mi=1, {Yi}mi=1 from Lemma 6.6. Define

γi = µXi×Yi , wi = w(γi)

and

ri =
µ[(Xi × (Y − Yi)) ∪ ((X −Xi)× Yi)]

µ(Xi × Yi)
as in Lemma 6.1. By Lemma 6.6 we have

m∑
i=1

qiri ≤ O(ε1/8)

and ∥∥∥∥∥ ϑ−
m∑
i=1

qiγi

∥∥∥∥∥
1

≤ O(ε1/8).

Every protocol for ϑ defines also a protocol for each one of the γi-s. Therefore, the
last inequality also gives

w(ϑ) ≤
m∑
i=1

qiwi +O(ε1/8),

which reflects the fact that the function w(γ) is concave and has a Lipschitz constant
of 1 (see the Introduction).

Lemma 4.3 can be proved now in the following way. Given a family {γd}d∈D of
probability measures on X × Y and weights {pd}d∈D, such that

∑
d∈D pd = 1, and

such that for all d : pd ≥ 0, define

wd = w(γd), w =
∑
d∈D

pdwd, Vd = V (γd ‖ µ) .

798 RAN RAZ

Lemma 4.3 assumes ∑
d∈D

pdVd ≤ ε

and

D

(∑
d∈D

pdγd

∥∥∥∥∥ µ
)
≤ ε,

and therefore, by Lemma 3.4∥∥∥∥∥ µ−∑
d∈D

pdγd

∥∥∥∥∥
1

≤ O(ε1/2).

For each measure γd, we have by the previous discussion, {γd,i}mdi=1, and {qd,i}mdi=1,
such that

md∑
i=1

qd,ird,i ≤ O(V 1/8
d)

and ∥∥∥∥∥ γd −
md∑
i=1

qd,iγd,i

∥∥∥∥∥
1

≤ O(V 1/8
d);

and as before, we also have

wd ≤
md∑
i=1

qd,iwd,i +O(V 1/8
d)

(where rd,i, wd,i are defined as before). Define the set D̂ by

D̂ = {(d, i) | d ∈ D , 1 ≤ i ≤ md}.

For each d̂ = (d, i) ∈ D̂, define the weight

p̂(d,i) = pdqd,i

and the measure

γ̂(d,i) = γd,i.

Look at the family of measures {γ̂(d,i)}(d,i)∈D̂ . For this family, define as before

ŵ(d,i) = w(γ̂(d,i)), ŵ =
∑
d̂∈D̂

p̂d̂ŵd̂, r̂(d,i) = rd,i.

Then, by the convexity of the function f(z) = z1/8, we have

∑
d̂∈D̂

p̂d̂r̂d̂ =
∑
d∈D

pd

md∑
i=1

qd,ird,i ≤
∑
d∈D

pdO(V 1/8
d) ≤ O

(∑
d∈D

pdVd

)1/8

≤ O(ε1/8)

A PARALLEL REPETITION THEOREM 799

and∥∥∥∥∥∥ µ−
∑
d̂∈D̂

p̂d̂γ̂d̂

∥∥∥∥∥∥
1

≤
∥∥∥∥∥ µ−∑

d∈D
pdγd

∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑
d∈D

pdγd −
∑
d̂∈D̂

p̂d̂γ̂d̂

∥∥∥∥∥∥
1

≤ O(ε1/2) +
∑
d∈D

pd

∥∥∥∥∥ γd −
md∑
i=1

qd,iγd,i

∥∥∥∥∥
1

≤ O(ε1/2) +
∑
d∈D

pdO(V 1/8
d) ≤ O(ε1/2) +O

(∑
d∈D

pdVd

)1/8

≤ O(ε1/8),

and also as before,

ŵ =
∑
d̂∈D̂

p̂d̂ŵd̂ =
∑
d∈D

pd

md∑
i=1

qd,iwd,i ≥
∑
d∈D

pd

(
wd −O(V 1/8

d)
)

= w −
∑
d∈D

pdO(V 1/8
d)

≥ w −O(ε1/8).

Now we can apply Corollary 6.5 for the family {γ̂d̂}d̂∈D̂ to get

ŵ ≤ W2(w(µ)) +O(ε1/16)

and we can conclude

w ≤ ŵ +O(ε1/8) ≤ W2(w(µ)) +O(ε1/16).

7. Conclusions. Theorem 1.1 can be generalized using methods introduced
herein in many ways. Let us briefly describe two generalizations that seem to fol-
low. The proofs were not verified as carefully as the rest of the paper and should be
trusted accordingly. Several other generalizations are described in [42].

7.1. Product of games. Given a game G and a game G′, the product game
G⊗G′ is defined in the same manner as G⊗G, i.e., if G consists of X,Y, U, V, µ,Q,
and G′ consists of X ′, Y ′, U ′, V ′, µ′, Q′, then the game G ⊗ G′ consists of the sets
X ×X ′ , Y × Y ′ , U × U ′ , V × V ′ with the measure

µ⊗ µ′((x, x′), (y, y′)) = µ(x, y)µ′(x′, y′)

and the predicate

Q⊗Q′((x, x′), (y, y′), (u, u′), (v, v′)) = Q(x, y, u, v)Q′(x′, y′, u′, v′).

In the same way, given k games G1, . . . , Gk, the product G1 ⊗ · · · ⊗Gk is defined.
Since in the entire proof of Theorem 1.1 we didn’t use the fact that the same

game, G, is repeated, and since the function W from Theorem 1.1 is global (and in
particular doesn’t depend on the game G), the following generalization of Theorem 1.1
follows.

800 RAN RAZ

THEOREM 7.1. Let W : [0, 1]→ [0, 1] be the function from Theorem 1.1. Given k
games G1, . . . , Gk, define

w = MAX[w(G1), . . . , w(Gk)],

and

s = MAX[s(G1), . . . , s(Gk), 2].

Then

w(G1 ⊗ · · · ⊗Gk) ≤W (w)k/ log2(s).

As before, w = MAX[s(G1), . . . , s(Gk), 2] can be replaced with

w = MAX[CC(G1), . . . , CC(Gk), 2]

or with

w = MAX[ρ(G1), . . . , ρ(Gk), 2].

7.2. Probabilistic predicates. Our second generalization deals with the prob-
abilistic case, where the predicate Q, of a game G, depends also on the random string
r (i.e., Q is probabilistic). Without loss of generality we can assume that there exists
a second random string, r̃, such that r̃ is independent of r (and, therefore, also of
(x, y, u, v)), and such that the predicate Q depends on x, y, u, v, r̃ (and not on the
random string r).

As before, the value of a protocol for the game G is defined to be the probability
that Q(x, y, u(x), v(y), r̃) = 1, where (x, y) is chosen according to µ. As before, the
value of the game, w(G), is defined to be the maximal value of all protocols for G.

THEOREM 7.2. Let W : [0, 1]→ [0, 1] be the function from Theorem 1.1. Given a
probabilistic game G (as above), with value w(G), and answer-size s(G) ≥ 2:

w(G⊗k) ≤W (w(G))k/ log2(s(G)).

As before, log2(s(G)) can be replaced with CC(G), or with ρ(G), defined in the
following way: Define Gr̃ to be the deterministic game obtained by fixing the second
random string to r̃. Then define CC(G) to be the maximum, taken over r̃, of CC(Gr̃),
and define ρ(G) to be the maximum, taken over r̃, of ρ(Gr̃).

Sketch of proof. First we claim that the proof of Theorem 1.2 holds (with minor
changes) for probabilistic games as well. In section 4, the fact that the function wl
is concave is used to prove inequality (3) (and the inequality before). The concavity
of the value function of a game is proved in the introduction for deterministic games.
The same argument, however, holds for probabilistic games. Using this fact, one can
verify that the entire argument of section 4 holds for probabilistic games as well. Now,
section 4 uses Lemmas 4.2 and 4.3. Lemma 4.2 does not depend on the game G at all.
The proof of Lemma 4.3 (in section 6) is based on Lemmas 6.1 and 6.6. Lemma 6.6
does not depend on the game G as well. Therefore, we just have to verify that the
proof of Lemma 6.1 holds for probabilistic games. In the proof of Lemma 6.1 we use
the fact that the game is deterministic only in the proof of Claim 6.3. It is not hard
to see, however, that a probabilistic version of that proof can be given.

Theorem 7.2 is now proved using Theorem 1.2 in the same manner as before
(see section 2). The difference is that now, given z = (x′, y′, u′, v′) ∈ Z, Q̄1 is still

A PARALLEL REPETITION THEOREM 801

not determined on the set A(z), because Q̄1 depends also on the second random
string corresponding to the first coordinate (denote this random string by r̃1). In the
deterministic case, we disregarded sets A(z) for every z s.t. Q is not satisfied on z.
In order to be able to do the same in the probabilistic case, we will have to have a
copy of A(z) for every possible r̃1 (for r̃1 = r′ denote this copy by Ar′(z)). We then
disregard every copy Ar′(z) for every z, r′ s.t. Q is not satisfied on z, r′.

A different way to see how Theorem 7.2 is proved using Theorem 1.2 is to define
q(z) to be the probability that Q(z, r̃) = 1. (For a deterministic game, q(z) is always 0
or 1). It is not too hard to see that the entire argument of section 2 can be generalized
to the case where 0 ≤ q(z) ≤ 1.

Alternatively, we can present the proof of Theorem 7.2 in the following way.
We can view a probabilistic game G in the following equivalent way. Player I

receives (as an input) the pair (x, r̃) and Player II receives the pair (y, r̃). The
protocols of the players are restricted as to depend only on the first input, i.e., x for
the first player, and, respectively, y for the second player, (and not on the second
input r̃). We call such a protocol a restricted protocol.

The game G is now deterministic because we can think of the predicate as being
depended only on the inputs and the answers of the two players. The class of allowed
protocols, however, is now a subclass of all possible protocols. We claim that the
entire proof of Theorem 1.1 (including the proof of Theorem 1.2) is correct even if we
allow only restricted protocols.

In some parts of the proof (e.g., section 4), we start from a protocol, P , for a
game, and obtain from this protocol many protocols for many other games. These
protocols are obtained either by projection (on one coordinate) or by restriction to a
product subset. In other parts (e.g., section 6) a protocol P for a game is composed
from other protocols for different games. In order to see that the proof of Theorem 1.1
holds even if we allow only restricted protocols, one should verify that if the original
protocols are restricted then every protocol obtained by one of these three methods is
also restricted. If the new protocol is obtained by projection of a restricted protocol
or by composition of restricted protocols (i.e., by the first or third method), then it
is very easy to see that the new protocol is also restricted. If the new protocol is
obtained by a restriction of a restricted protocol to a subset, then the new protocol
is not necessarily restricted. If that subset does not depend on r̃, however, then the
new protocol is restricted. It is not hard to verify that the subsets used (in the proof)
never depend on r̃.

Theorem 1.1 is thus correct even if we allow only restricted protocols. Theorem 7.2
follows.

Acknowledgments. I would like to thank Uri Feige and Moni Naor for present-
ing the problem to me, and Uri Feige, Peter Hajnal, Joe Kilian, Dieter Van Melkebeek,
Mario Szegedy, Endre Szemeredi, Gabor Tardos, Oleg Verbitsky, and Avi Wigderson
for helpful and encouraging discussions on the subject and on the content of this pa-
per. I would like to thank the two referees for many helpful comments. This research
was carried out while the author was a postdoc at Princeton University and DIMACS.

REFERENCES

[1] N. ALON, Probabilistic methods in extremal finite set theory, in Proc. Conference on Extremal
Problems for Finite Sets, Bolyai Soc. Math. Stud. 3, János Bolyai Society, Budapest,
Hungary, 1994, pp. 39–57.

[2] S. ARORA, Proof Verification and Hardness of Approximation Problems, Ph.D. dissertation,
University of California, Berkeley, CA, http://www.cs.princeton.edu/∼arora, 1994.

802 RAN RAZ

[3] S. ARORA AND C. LUND, Hardness of approximations, in Approximation Algorithms for NP-
Hard Problems, D. Hochbaum, ed., PWS Publishing, Boston, MA, 1996; also available
online from http://www.cs.princeton.edu/∼arora.

[4] S. ARORA AND S. SAFRA, Probabilistic checking of proofs: A new characterization of NP, in
Proc. FOCS 1992, IEEE Computer Society Press, Los Alamitos, CA, pp. 2–13.

[5] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and
intractability of approximation problems, in Proc. FOCS 1992, IEEE Computer Society
Press, Los Alamitos, CA, pp. 14–23.

[6] M. BELLARE, Interactive proofs and approximation, in Proc. Israel Symposium on Theory of
Computing and Systems, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 266–
274.

[7] L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential time has two-prover
interactive protocols, in Proc. FOCS 1990, IEEE Computer Society Press, Los Alamitos,
CA, pp. 16–25.

[8] M. BELLARE, S. GOLDWASSER, C. LUND, AND A. RUSSELL, Efficient probabilistic checkable
proofs and applications to approximation, in Proc. STOC 1993, ACM, New York, pp. 294–
304.

[9] M. BELLARE, O. GOLDREICH, AND M. SUDAN, Free bits, PCPs, and nonapproximability—
towards tight results, SIAM J. Comput., 27 (1998), pp. 804–915.

[10] M. BELLARE AND P. ROGAWAY, The complexity of approximating a nonlinear program, Math.
Programming, 69 (1995), pp. 429–441.

[11] M. BELLARE AND M. SUDAN, Improved non-approximability results, in Proc. STOC 1994,
ACM, New York, pp. 184–193.

[12] M. BEN-OR, S. GOLDWASSER, J. KILIAN, AND A. WIGDERSON, Multi prover interactive proofs:
How to remove intractability, in Proc. STOC 1988, ACM, New York, pp. 113–131.

[13] M. BEN-OR, S. GOLDWASSER, J. KILIAN, AND A. WIGDERSON, Efficient identification schemes
using two prover interactive proofs, in Proc. Crypto 1989, Springer-Verlag, New York, 1990,
pp. 498–506.

[14] J. CAI, A. CONDON, AND R. LIPTON, On bounded round multi-prover interactive proof sys-
tems, in Proc. Structure in Complexity Theory, 1990, IEEE Computer Society Press, Los
Alamitos, CA, pp. 45–54.

[15] J. CAI, A. CONDON, AND R. LIPTON, Playing games of incomplete information, Theoret.
Comput. Sci., 103 (1992), pp. 25–38.

[16] J. CAI, A. CONDON, AND R. LIPTON, PSPACE is provable by two provers in one round, J.
Comput. System Sci., 48 (1994), pp. 183–193.

[17] I. CSISZAR AND J. KORNER, Information Theory: Coding Theorems for Discrete Memoryless
Systems, Academic Press, New York, London, 1981.

[18] C. DWORK, U. FEIGE, J. KILIAN, M. NAOR, AND S. SAFRA, Low communication, 2-prover
zero-knowledge proofs for NP, in Proc. Crypto 1992, Springer-Verlag, Berlin, pp. 217–229.

[19] U. FEIGE, On the success probability of the two provers in one round proof systems, in
Proc. Structures 1991, pp. 116–123.

[20] U. FEIGE, Error Reduction by Parallel Repetition: The State of the Art, Technical report
CS95-32, Weizmann Institute of Science, Rehovot, Israel.

[21] L. FORTNOW, Complexity-Theoretic Aspects of Interactive Proof Systems, Ph.D. thesis, Report
MIT/LCS/TR-447, MIT, Cambridge, MA, 1989.

[22] U. FEIGE, S. GOLDWASSER, L. LOVASZ, M. SAFRA, AND M. SZEGEDY, Approximating clique
is almost NP-complete, in Proc. FOCS 1991, IEEE Computer Society Press, Los Alamitos,
CA, pp. 2–12.

[23] U. FEIGE AND J. KILIAN, Two prover protocols: Low error at affordable rates, in Proc. STOC
1994, ACM, New York, pp. 172–183.

[24] U. FEIGE AND J. KILIAN, Impossibility results for recycling random bits in two prover proof
systems, in Proc. STOC 1995, ACM, New York, pp. 457–468.

[25] U. FEIGE AND L. LOVASZ, Two-prover one-round proof systems, their power and their prob-
lems, in Proc. STOC 1992, ACM, New York, pp. 733–744.

[26] L. FORTNOW, J. ROMPEL, AND M. SIPSER, On the power of multi-prover interactive protocols,
in Proc. Structures 1988, pp. 156–161.

[27] U. FEIGE AND O. VERBITSKY, Error reduction by parallel repetition: A negative result, in
Proc. 11th Annual IEEE Conference on Computational Complexity, 1996, IEEE Computer
Society Press, Los Alamitos, CA, pp. 70–76.

[28] L. FORTNOW, J. ROMPEL, AND M. SIPSER, Errata for “On the power of multi-prover inter-
active protocols,” in Proc. Structure in Complexity Theory 1990, IEEE Computer Society
Press, Los Alamitos, CA, pp. 318–319.

A PARALLEL REPETITION THEOREM 803

[29] R. M. GRAY, Entropy and Information Theory, Springer-Verlag, New York, 1990.
[30] J. HÅSTAD, Testing of the long code and hardness for clique, in Proc. STOC 1996, ACM, New

York, pp. 11–19.
[31] J. HÅSTAD, Clique is Hard to Approximate Within n1−ε , in Proc. FOCS 1996, IEEE Computer

Society Press, Los Alamitos, CA, pp. 627–636.
[32] J. HÅSTAD, Some optimal inapproximability results, in Proc. STOC 1997, ACM, New York,

pp. 1–10.
[33] J. KILIAN, Strong Separation Models of Multi Prover Interactive Proofs, DIMACS Workshop

on Cryptography, October 1990.
[34] E. KUSHILEVITZ AND N. NISAN, Communication Complexity, Cambridge University Press,

London, Cambridge, 1997.
[35] B. KALYANASUNDARAM AND G. SCHNITGER, The probabilistic communication complexity of

set intersection, in Proc. Structure in Complexity Theory 1987, IEEE Computer Society
Press, Los Alamitos, CA, pp. 41–49.

[36] D. LAPIDOT AND A. SHAMIR, A one-round, two-rover, zero-knowledge protocol for NP, in
Combinatorica, 15 (1995), pp. 203–214.

[37] D. LAPIDOT AND A. SHAMIR, Fully parallelized multi prover protocols for NEXP-time, in
Proc. FOCS 1991, IEEE Computer Society Press, Los Alamitos, CA, pp. 13–18.

[38] C. LUND AND M. YANNAKAKIS, On the hardness of approximating minimization problems, in
Proc. STOC 1993, ACM, New York, pp. 286–293.

[39] D. PELEG, On the maximum density of 0-1 Matrices with no forbidden rectangles, Discrete
Math., 140 (1995), pp. 269–274.

[40] R. RAZ, A parallel repetition theorem, in Proc. STOC 1995, ACM, New York, pp. 447–556.
[41] A. A. RAZBOROV, On the distributional complexity of disjointness, Theoret. Comput. Sci., 106

(1992), pp. 385–390.
[42] I. PARNAFES, R. RAZ, AND A. WIGDERSON, Direct product results and the GCD problem in

old and new communication models, in Proc. STOC 1997, ACM, New York, pp. 363–372.
[43] G. TARDOS, Multi-prover encoding schemes, and three-prover proof systems, J. Comput. Sys-

tem Sci., 53 (1996), pp. 251–260.
[44] O. VERBITSKY, Towards the parallel repetition conjecture, Theoret. Comput. Sci., 157 (1996),

pp. 277–282.
[45] O. VERBITSKY, The Parallel Repetition Conjecture for Trees is True, manuscript, 1994.

FREE BITS, PCPS, AND NONAPPROXIMABILITY—TOWARDS
TIGHT RESULTS∗

MIHIR BELLARE† , ODED GOLDREICH‡ , AND MADHU SUDAN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 3, pp. 804–915, June 1998 012

In honor of Shimon Even’s 60th birthday
Abstract. This paper continues the investigation of the connection between probabilistically

checkable proofs (PCPs) and the approximability of NP-optimization problems. The emphasis is on
proving tight nonapproximability results via consideration of measures such as the “free-bit complex-
ity” and the “amortized free-bit complexity” of proof systems.

The first part of the paper presents a collection of new proof systems based on a new error-
correcting code called the long code. We provide a proof system that has amortized free-bit com-
plexity of 2 + ε, implying that approximating MaxClique within N

1
3−ε, and approximating the

Chromatic Number within N
1
5−ε, are hard, assuming NP 6= coRP, for any ε > 0. We also derive the

first explicit and reasonable constant hardness factors for Min Vertex Cover, Max2SAT, and Max
Cut, and we improve the hardness factor for Max3SAT. We note that our nonapproximability factors
for MaxSNP problems are appreciably close to the values known to be achievable by polynomial-
time algorithms. Finally, we note a general approach to the derivation of strong nonapproximability
results under which the problem reduces to the construction of certain “gadgets.”

The increasing strength of nonapproximability results obtained via the PCP connection motivates
us to ask how far this can go and whether PCPs are inherent in any way. The second part of
the paper addresses this. The main result is a “reversal” of the connection due to Feige et al.
(FGLSS connection) [J. ACM, 43 (1996), pp. 268–292]: where the latter had shown how to translate
proof systems for NP into NP-hardness of approximation results for MaxClique, we show how any
NP-hardness of approximation result for MaxClique yields a proof system for NP. Roughly, our
result says that for any constant f , if MaxClique is NP-hard to approximate within N1/(1+f),
then NP ⊆ FPCP[log, f], the latter being the class of languages possessing proofs of logarithmic
randomness and amortized free-bit complexity f . This suggests that PCPs are inherent to obtaining
nonapproximability results. Furthermore, the tight relation suggests that reducing the amortized
free-bit complexity is necessary for improving the nonapproximability results for MaxClique.

The third part of our paper initiates a systematic investigation of the properties of PCP and
FPCP (free PCP) as a function of the following various parameters: randomness, query complexity,
free-bit complexity, amortized free-bit complexity, proof size, etc. We are particularly interested in
“triviality” results, which indicate which classes are not powerful enough to capture NP. We also
distill the role of randomized reductions in this area and provide a variety of useful transformations
between proof checking complexity classes.

Key words. intractability, approximation, NP-hardness, probabilistic proof systems

AMS subject classification. 68Q15

PII. S0097539796302531

∗Received by the editors April 24, 1996; accepted for publication (in revised form) August 5,
1997. An extended abstract of this paper appeared in the Proceedings of the 36th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1995, pp. 422–431. It was backed up by the first versions of this large paper [20], which were posted
on the Electronic Colloquium on Computational Complexity (ECCC) (www.ecc.uni-trier.de/eccc/).
The paper went through several revisions due to improvements and corrections in the results. These
were regularly posted on ECCC as revisions to [20]. The present paper is the fifth version of the
work.

http://www.siam.org/journals/sicomp/27-3/30253.html
†Department of Computer Science and Engineering, University of California at San Diego, La

Jolla, CA 92093 (mihir@cs.ucsd.edu). The research of this author was supported in part by NSF
CAREER Award CCR-9624439 and by a 1996 Packard Foundation Fellowship in Science and Engi-
neering. Some of this work was done while the author was at IBM.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Sciences,

Rehovot, 76100 Israel (oded@wisdom.weizmann.ac.il). The research of this author was supported in
part by grant 92-00226 from the US–Israel Binational Science Foundation (BSF), Jerusalem, Israel.
§Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

(madhu@theory.lcs.mit.edu). Some of this work was done while the author was at IBM.

804

PCP—TOWARDS TIGHT RESULTS 805

1. Introduction. In the MaxClique problem, we are given a graph G and must
find the value of MaxClique(G) = max{ |S| : S is a clique in G }. This is an example
of an NP-optimization problem, of which others are to find the chromatic number
of a graph; the size of the smallest vertex cover, etc. These problems arise in many
settings and efficient solutions are much desired. Unfortunately, many important NP-
optimization problems (those mentioned above in particular) are NP-hard to solve.
So algorithm designers seek efficient (polynomial time) approximation algorithms.

An approximation algorithm delivers a number that is supposed to be close to
optimal. The quality of the algorithm is measured in terms of how close this number
is to optimal. For example, if µ(N) ≥ 1 is a function of the number N of vertices in a
graph G, then we say an algorithm A approximates MaxClique within µ, or is a factor
µ approximation algorithm, if MaxClique(G)/µ(N) ≤ A(G) ≤ MaxClique(G) for
every graph G. (For a minimization problem such as Chromatic Number, we require
instead that ChromNum(G) ≤ A(G) ≤ µ(N) ·ChromNum(G), where ChromNum(G)
is the chromatic number of G.)

The search for efficient approximation algorithms achieving good factors has met
with varied success. For some problems, good approximation algorithms were found.
For some important problems, including MaxClique and Chromatic Number, the best
approximation algorithms found achieved factors only marginally better than the triv-
ial factor of N . For others, like Minimum Vertex Cover, simple algorithms achieving
reasonable factors were discovered quite quickly, but it was unclear whether one could
do better. Algorithm designers want to know whether this is due to some inherent
intractability or only to the lack of cleverness in algorithm design.

Some early nonapproximability results were able to indicate (at least for some
problems) that very good approximation (i.e., achieving factors very close to optimal)
can be NP-hard. But the real breakthrough came more recently when a strong hard-
ness of approximation result for MaxClique was shown by establishing a connection
between MaxClique and the existence of probabilistically checkable proof (PCP) sys-
tems for NP. Since then, similar connections have been found to other optimization
problems. Meanwhile, with the construction of more efficient proof systems, the fac-
tors within which approximation is shown hard continue to increase. Indeed, in some
cases, even tight results seem in sight.

This paper continues the development of the connection between PCPs and hard-
ness of approximation with the goal of getting tight results. On the one hand, we
continue past work by building new proof systems and obtaining improved nonapprox-
imability results; on the other hand we open some new directions with an exploration
of the limits of the PCP connection.

In what follows we provide a little background and then a high level overview of
our results. The rich history of the ideas in this area is overviewed in section 1.3, and
more detailed histories are provided in the body of the paper.

1.1. Some background and definitions. We will be informal and as brief as
possible; formal definitions can be found in section 2.

Proof systems and parameters. A probabilistic proof system is described
by a probabilistic, polynomial time verifier V . It takes an input x of length n and
tosses coins R. It has oracle access to a poly(n) length string σ describing the proof;
to access a bit it writes an O(log n) bit address and the corresponding bit of the
proof is returned. Following its computation, it will either accept or reject its input
x. The accepting probability, denoted ACC [V (x)], is the maximum, over all σ, of
the probability (over R) that V accepts x on coins R and proof string σ. While the
task is typically language recognition (namely, to recognize whether x is in some fixed

806 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

language L) we will, more generally, consider promise problems (A,B) consisting of
a set A of “positive” instances and a set B of “negative” instances [36]. A language
L is identified with the promise problem (L,L).

Of interest in our applications are various parameters of the system. The com-
pleteness probability c = c(n) and the soundness probability s = s(n) are defined in
the usual ways. In case c = 1, we say that the system has perfect completeness. The
gap is g = c/s. The query complexity is the maximum (over all coin tosses and proof
strings) of the number of bits of the proof that are examined by the verifier. The
free-bit complexity, roughly speaking, is the logarithm of number of possible accept-
ing configurations of V on coins R and input x. (For example, a verifier which makes
three queries and accepts, iff the parity of the answers is odd, has four accepting
configuration and thus free-bit complexity 2.)

Either the query or the free-bit complexity may be considered in amortized form,
for example, the amortized free-bit complexity is the free-bit complexity (of a proof
system with perfect completeness) divided by the logarithm of the gap (i.e., the num-
ber of free bits needed per factor of 2 increases in the gap). Also, either the query
or free-bit complexity may be considered on the average, the average being over the
random string of the verifier.

Denote by PCPc,s[r, q] the class of promise problems recognized by verifiers tossing
r coins, having query complexity q, and achieving completeness probability c and
soundness probability s. The class FPCPc,s[r, f] is defined analogously with f being
the free-bit complexity, PCP[r, q] is defined analogously with q being the amortized
query complexity, and FPCP[r, f] is defined analogously with f being the amortized
free-bit complexity.

MaxClique approximation. Although we look at many optimization problems
there is a particular focus on MaxClique. Recall that the best known polynomial-
time approximation algorithm for MaxClique achieves a factor of only N1−o(1) [28],
scarcely better than the trivial factor of N . (Throughout the paper, when discussing
the MaxClique problem or any other problem about graphs, N denotes the number of
vertices in the graph.) Does there exist an N1−ε factor approximation algorithm for
MaxClique for some ε > 0? An additional motivation for searching for such “weak”
approximation algorithms was suggested by Blum [26]. He showed that a polynomial-
time N1−ε-factor approximation algorithm for MaxClique implies a polynomial-time
algorithm to color a three colorable graph with O(logN) colors [26], which is much
better than what is currently known [63]. But perhaps N1−o(1) is the best possible.
Resolving the approximation complexity of this basic problem seems, in any case, to
be worth some effort.

Gaps in clique size. Hardness of approximation (say of MaxClique) is typically
shown via a reduction to a promise problem with gaps in MaxClique size. Specif-
ically, let Gap-MaxCliquec,s be the promise problem (A,B) defined as follows: A
is the set of all graphs G with MaxClique(G)/N ≥ c(N), and B is the set of all
graphs G with MaxClique(G)/N < s(N). The gap is defined as c/s. Now, a hard-
ness result will typically specify a value of the gap g(N) = c(N)/s(N) for which
Gap-MaxCliquec,s is NP-hard under a (randomized) Karp reduction. This means
that there is no polynomial-time algorithm to approximate the MaxClique size of an
N node graph within g(N), unless NP has randomized polynomial-time algorithms.1

1Throughout this paper, the latter assumption is formulated by writing NP 6= coRP. We comment
that this form is equivalent to NP 6= ZPP, where ZPP denotes the intersection of the classes RP
and coRP. Note that if NP is contained in coRP, then coNP ⊆ RP and NP ⊆ coRP ⊆ coNP ⊆ RP
follows.

PCP—TOWARDS TIGHT RESULTS 807

Focus Error Queries Free Bits Previous Related Result
3 queries 0.85 3 2 error 72

73 via MaxSAT [23]

2 free bits 0.794 O(1) 2
error 1/2 1

2 11 7 32 queries (24 on average) [41]

amortized free bits O(2−m) 23m 2m 3m free bits [23]

FIG. 1. New PCP systems for NP, all with logarithmic randomness.

Gap problems can be similarly defined for all the other optimization problems we
consider. From now on, we discuss approximation in terms of these gap problems.

The connection: Making gaps from proofs. The FGLSS reduction [40] is a
reduction of a promise problem (A,B) to Gap-MaxCliquec,s for some appropriate c, s
defined by the reduction. It works by using a verifier V of a pcp system for (A,B) to
map any instance x ∈ A∪B to a graph Gx so that MaxClique(Gx) reflects ACC [V (x)].
For the best results, one typically uses a randomized form of this reduction due to
[25, 86] and it is this form that we will assume henceforth.

An NP-hard gap problem is obtained roughly as follows. First, one exhibits
an appropriate proof system for NP. Then one applies the FGLSS reduction. The
factor indicated hard depends on the proof system parameters. A key element in
getting better results has been the distilling of appropriate pcp-parameters. The
sequence of works [40, 9, 8, 21, 41, 23] leads us through the following sequence of
parameters: query complexity, free-bit complexity and, finally, for the best known
results, amortized free-bit complexity. The connection, in terms of amortized free
bits, can be stated as follows: if NP reduces to FPCP[log, f], then NP also reduces
to Gap-MaxCliquec,s, with gap c(N)/s(N) = N1/(1+f). (In both cases, the reduction
is via randomized Karp reductions, and terms of ε > 0 which can be arbitrarily small
are ignored.) In particular if NP ⊆ FPCP[log, f], then approximating the MaxClique
size of an N vertex graph within N1/(1+f) in polynomial time is not possible unless
NP has efficient randomized polynomial-time algorithms.

1.2. Overview of our results.

1.2.1. New proof systems and nonapproximability results. This section
describes the new proof systems that we construct and the nonapproximability results
that we derive from them.

New proof systems. Summarized below and also presented in Figure 1 are
several new ways of capturing NP via probabilistic proof systems:

(1) For every ε > 0 it is the case that NP ⊆ FPCP[log, 2 + ε].
(2) NP ⊆ PCP1,1/2[log, 11].
(3) NP ⊆ FPCP1,s[log, 2] for s = 0.794.
(4) NP ⊆ PCP1,s[log, 3] for any s > 0.85.

As explained below, some of these results are motivated by applications; others are
purely interesting items in complexity theory.

The search for proof systems of low amortized free-bit complexity is motivated,
of course, by the FGLSS reduction. Bellare and Sudan [23] have shown that NP ⊆
FPCP[log, 3+ε] for every ε > 0. The first result above improves upon this, presenting
a new proof system with amortized free-bit complexity 2 + ε.

The question of how low one can get the (worst-case and average) query com-
plexity required to attain soundness error 1/2 was investigated in earlier works due to
their applicability to obtaining MaxClique hardness results. We now know that one
can do better with amortized free-bit complexity. Nevertheless, the original question

808 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Problem Approx Non-Approx
Factor Due to Our Factor Previous Factor Assumption

Max3SAT 1.258 [85, 51, 84] 1.038 1 + 1
72 [23] P 6= NP

MaxE3SAT 1 + 1
7 folklore 1 + 1

26 unspecified [8] P 6= NP

Max2SAT 1.075 [51, 39] 1.013 1 + 1
504 P 6= NP

(implied by
[23])

Max⊕SAT 2 folklore 1 + 1
7 P 6= NP

MaxCUT 1.139 [51] 1.014 unspecified [8] P 6= NP
MinVC 2− o(1) [14, 74] 1 + 1

15 unspecified [8] P 6= NP

MaxClique N1−o(1) [28] N
1
4 [23] NP 6⊆ coRP̃

N
1
3 N

1
5 coRP 6= NP

N
1
4 N

1
6 [23] P 6= NP

Chromatic N1−o(1) [28] N
1
10 [23] NP 6⊆ coRP̃

Number N
1
5 N

1
7 [45] coRP 6= NP

N
1
7 N

1
14 [23] P 6= NP

FIG. 2. Approximation factors attainable by polynomial-time algorithms (denoted Approx) ver-
sus factors we show are hard to achieve (denoted Non-Approx). MaxE3SAT (resp., Max⊕SAT)
denotes the maximization problem for conjunctive normal form (CNF) formulae having exactly
three different literals in each clause (resp., a conjunction of parity clauses).

is still one to which we are curious to know the answer. Our second result above refers
to this question.

Minimizing the soundness error obtainable using only two (nonamortized!) free
bits is important for a more pragmatic reason. It enables us to get the first explicit
and reasonably strong constant nonapproximability result for the Min Vertex Cover
problem. This application is discussed below.

Finally, the soundness achievable using only three query bits is natural to consider
given the results on the Max3SAT gap problem. Indeed, if there is an NP-hard
Max3SAT gap problem with certain gap, then one can easily get a three query proof
system with the same gap. However, one can do better as indicated above.

New nonapproximability results. Our results are summarized in Figure 2.
(In the last items, we ignore terms of N ε where ε > 0 is an arbitrarily small positive
constant.) Refer to section 2.4.2 for the definitions of the problems.

The conclusion for MaxClique follows, of course, from the FGLSS reduction and
the first proof system listed above. The conclusion for the Chromatic Number follows
from a recent reduction of Fürer [45], which in turn builds on reductions in [71, 66, 23].
(Fürer’s work and ours are contemporaneous and thus we view the N

1
5 hardness result

as jointly due to both papers.)
The improvements for the MaxSNP problems are perhaps more significant than

the improvements for the MaxClique problem; we see hardness results for MaxSNP
problems that are comparable to the factors achieved by known polynomial-time ap-
proximation algorithms.

We obtain the first explicit and reasonable nonapproximability factors for
Max2SAT, MaxCUT, and minimum Vertex Cover. Recall that the latter is approx-
imable within 2-o(1) [14, 74]. Our results for MaxCUT and Max2SAT show that it
is infeasible to find a solution with value which is only a factor of 1.01 from optimal.
This may be contrasted with the recent results of [51, 39] which show that solutions
which are within 1.14 and 1.075, respectively, of the optimum are obtainable in poly-
nomial time. Thus, even though we do not know if the “pcp approach” allows us to

PCP—TOWARDS TIGHT RESULTS 809

get the best possible nonapproximability results for these problems, we feel that the
current results are not ridiculously far from the known upper bounds.

General framework. We emphasize a general framework for the derivation
of strong nonapproximability results for MaxSNP problems which results from our
tests and proof systems. We use direct reductions from verifiers to the problems of
interest. (This follows and extends [21], prior to which results had used “generic”
reductions, which did not take advantage of the nature of the tests performed by the
verifier.) In particular, in our case it turns out that the verifier performs only two
kinds of tests: (1) verify that a+ b+ c = σ (mod 2); and (2) verify that a+ bc = σc,
where a, b, b0, b1, c are answer bits obtained from the oracle and the σ’s are fixed bits.
By constructing local gadgets (i.e., one gadget per random coin toss sequence) to
verify each of the verifier’s tests, we achieve better nonapproximability results than
by using more general reductions. In particular, our work seems to suggest that
optimizing for gadgets which “check” the two conditions listed above will lead to
reasonably good lower bounds for many MaxSNP problems. In this way, obtaining a
nonapproximability result for a particular problem is reduced to the construction of
appropriate “gadgets” for “representing” two simple functions.

Techniques. Our main technical contribution is a new error-correcting code
which we have called the “long code.” This code encodes an n-bit string as a 22n bit
string which consists of the value of every Boolean function on the n-bit string. It is
easy to see that such codes have large Hamming distance. We show that this code is
also easily “testable” and “correctable” and derive the new proof systems based on
this.

As in all recent constructions of efficient pcp’s, our construction also relies on the
use of recursive construction of verifiers introduced by Arora and Safra [9]. We have
the advantage of being able to use, at the outer level, the recent verifier of Raz [79],
which was not available to previous authors. The inner level verifier relies on the use
of a “good” encoding scheme. Beginning with [8], constructions of this verifier have
used the Hadamard code; in this paper we use instead the long code.

1.2.2. Proofs and approximation: Potential and limits. As the above in-
dicates, nonapproximability results are getting steadily stronger, especially for Max-
Clique. How far can they go? And, in minimizing amortized free bits, are we on the
right track? Are there other ways? The next set of results provides answers to these
kinds of questions.

Reversing the connection: Making proofs from gaps. The FGLSS re-
duction lemma indicates that one route to good nonapproximability results for Max-
Clique is to show NP ⊆ FPCP[log, f] for values of f which are as small as possible.
We present a “reverse connection” which says that, in a sense, this is the only way to
proceed. Namely, we “invert” the above FGLSS reduction. Roughly, we show that,
for any constant f , the following statements are equivalent:

(1) NP reduces to Gap-MaxCliquec,s with gap c(N)/s(N) = N1/(1+f).
(2) NP reduces to FPCP[log, f].

The (2)⇒(1) direction is the FGLSS reduction; the (1)⇒(2) direction is our reversed
connection. (The statement ignores terms of ε > 0 which can be arbitrarily small. The
proof and a more precise statement are in section 8.) In both cases the reduction is
randomized. Furthermore, the statement holds for both Karp and Cook reductions.
Also, if (1) holds with a deterministic Karp reduction, then NP ⊆ FPCP

′
[log, f],

where FPCP′ is defined as being the amortized free-bit complexity of proof systems
with almost-perfect completeness (i.e., c = 1− o(1)).

810 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

In other words, any method of proving NP-hardness of MaxClique approximat-
ion to a factor of N1/(1+f) implies that NP has proof systems of amortized free-bit
complexity f .

We stress both the “qualitative” and “quantitative” aspects of this result. Qual-
itatively, it provides an answer to the following kind of question: “What do proofs
have to do with approximating clique size, and can we not prove non-approximability
results without using proof checking?” The result indicates that proofs are inherent,
and explains, perhaps, why hardness results avoiding the proof connection have not
appeared.

However, at this stage it is the quantitative aspect that interests us more. It
says that to get tighter results on MaxClique hardness, we must construct proof
systems to minimize the amortized free-bit complexity. So our current efforts (recall
that we have the amortized free-bit complexity down to 2, yielding a N

1
3 hardness

for MaxClique) are in the right direction. To prove that, say, MaxClique is hard to
approximate within

√
N , our reverse connection says we must construct proof systems

with amortized free-bit complexity 1.
Yet the reverse connection does more than guide our choice of parameters. It is

also a useful conceptual tool since it allows us to go from graphs to proof systems
and vice versa, in the process perhaps gaining some property. As an example we
show how all known hardness results for chromatic number can be viewed (with
almost no loss in efficiency) as reductions from MaxClique, even though these were
essentially hardness results based on proof checking. Other examples demonstrating
the usefulness of the equivalence may be found in section 8.4. We believe that further
exploring and exploiting this duality is a fruitful avenue to pursue.

A lower bound on amortized free bits. Having shown that the minimiza-
tion of amortized free bits is unavoidable, we asked ourselves how low we can take
them. Our approach here was to look at current techniques and assess their limita-
tions. We stress that this approach makes various assumptions about methods and is
intended to show that significantly novel techniques are required to go further. But
it does not suggest an inherent limitation.

We show that, under the framework used within this and previous papers on
this subject, amortized free-bit complexity of 2 seems to be a natural barrier: any
proof system in this framework must use 2 − ε amortized free bits, where ε > 0 as
usual can be arbitrarily small. The result, including a definition of what we mean by
the “framework,” is in section 9. Loosely speaking, it considers proof systems which,
among other things, probe two oracles in order to check that one oracle is “close” to
a codeword (i.e., a codeword test) and the second oracle encodes a projection of the
information encoded in the first oracle (i.e., a projection test).

In retrospect, our lower bounds justify H̊astad’s two deviations from the current
framework; specifically, his relaxation of the codeword test [55] and his relaxation of
the projection test [56]. Specifically, H̊astad [55, 56] constructed a pcp system (for
NP) of amortized free-bit complexity ε, ∀ε > 0. This was done in two stages/papers.
In his first paper [55], H̊astad builds on the framework presented in the current work
but introduces a relaxed codeword test which is conducted within amortized free-bit
complexity ε. In his second paper [56], he further modifies the current framework
and utilizes a relaxed projection test which is conducted within amortized free-bit
complexity ε. Our lower bounds justify H̊astad’s deviations from the intuitive but
more stringent forms of the codeword and projection tests.

PCP—TOWARDS TIGHT RESULTS 811

1.2.3. Properties and transforms of PCP and FPCP. Probabilistic proofs
involve a vast arena of complexity parameters: query complexity, free-bit complexity,
amortized free-bit complexity, randomness, and proof sizes, to name a few. Some
might, at first glance, seem less “natural” than others, yet all are important in appli-
cations. A better understanding of the basic properties and relations between these
parameters would help move us forward.

We initiate, therefore, a systematic investigation of the properties of pcp com-
plexity classes as a function of the parameter values. Besides providing new results,
we take the opportunity to state and prove a few folklore results.

A contribution of this work is to distill and formalize the role of randomized
reductions. These transforms provide an elegant and concise way to state connections
between PCPs and approximability, or just between different kinds of proof systems,
and make it easier to manipulate the many connections that exist to derive new
results.

We begin with “triviality results,” namely, results which say that certain param-
eter combinations yield classes that are probably not capable of capturing NP. For
simplicity we restrict our attention in this part to classes of languages, not classes of
promise problems.

Triviality results. Perhaps the first thing to ask is whether, instead of amor-
tized free-bit complexity, we could work with any of the simpler measures. After all,
FPCP[log, f] contains each of the following classes:

PCP1,1/2[log, f] ; PCP[log, f] ; FPCP1,1/2[log, f] .

Thus it would suffice to minimize the query complexity to get error 1/2; or the amor-
tized query complexity; or the free-bit complexity to get error 1/2. However, it turns
out that these complexities will not enable us to reach our target (of reducing the
complexity to almost zero and thus proving that clique is hard to approximate to
within a N1−ε factor, for every ε > 0). This is because the following classes are all
contained in P:

(1) PCP1,1/2[log, 2],
(2) PCP[log, 1],
(3) FPCP1,1/2[log, 1].

Thus, we cannot expect to construct pcp systems for NP with either query complexity
2 (this is actually folklore predating our work), or amortized query complexity 1,
or free-bit complexity 1. However, it is a feature of amortized free-bit complexity
that so far it seems entirely possible that NP reduces to FPCP[log, f], with f an
arbitrarily small constant. Indeed, if we believe (conjecture) that MaxClique is hard
to approximate with N1−ε for any ε > 0, then such proof systems must exist, by
virtue of the equivalence stated above. In fact, it turns out that the amortized query
bit parameter is too weak to capture the hardness of the clique function: if MaxClique
is hard to approximate to within Nα, then the best hardness result obtainable from
the amortized query bit parameter would be of the form N

α
2−α . This is shown by

invoking Corollary 10.11 which shows that the amortized query complexity parameter
is always one unit larger than the amortized free-bit parameter (and we know that
the amortized free-bit parameter captures the hardness of MaxClique tightly).

Other results. We have already mentioned above that strict limitations on
various query parameters make PCP very weak. Actually, for every s < 1, the classes
PCP1,s[log, 2] and FPCP1,s[log, 1] collapse to P. This means that pcp systems with

812 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

perfect completeness are very weak when restricted to either two queries or to free-
bit complexity 1. However, pcp systems with completeness error and the very same
query (resp., free-bit) bounds are not so weak. In particular, it is well known that
NP = PCPc,s[log, 2] for some 0 < s < c < 1 (e.g., by using the NP-hardness of
approximating Max2SAT). We show that NP = FPCPc,s[log, 1] for some 0 < s < c <
1 (specifically, c = 1/2 and s = 0.8 · c). Furthermore, for some smaller 0 < s < c < 1,
the following holds:

NP = FPCPc,s[log, 0](1)

(specifically, with c = 1
4 and s = 1

5). We find the last assertion quite intriguing.
It seems to indicate that one needs to be very careful when making conjectures
regarding free-bit complexity. Furthermore, one has to be very careful also when
making conjectures regarding amortized free-bit complexity; for example, the result
P = PCP[log, 1] holds also when one allows nonperfect completeness (in the defini-
tion of PCP[·, ·]) as long as the gap is greater than 2q per q queries, but an analogous
result cannot hold for two-sided error amortized free-bit complexity (i.e., FPCP[·, ·]).

Trying to understand the power of pcp systems with low free-bit complexity,
we have waived the bound on the randomness complexity. Recall that in this case
pcp systems are able to recognize nondeterministic exponential time (i.e., NEXPT =
PCP1,1/2[poly,poly]) [11]. Thus, it may be of interest to indicate that for every
s < 1,

FPCP1,s[poly, 0] ⊆ coNP,(2)

FPCP1,s[poly, 1] ⊆ PSPACE.(3)

It seems that FPCP1,1/2[poly, 0] is not contained in BPP, since quadratic non-
residuosity and graph nonisomorphism belong to the former class. (Specifically, the
interactive proofs of [53] and [52] can be viewed as a pcp system with polynomial
randomness, query complexity 1, and free-bit complexity 0.) Thus, it seems that the
obvious observation PCP1,s[poly, 1] ⊆ AM (for every s < 1, where AM stands for one
round Arthur–Merlin games) would also be hard to improve upon.

Transformations between proof systems. We provide various useful trans-
formations of pcp systems. These transformations are analogous to transformations
that can be applied to graphs with respect to the MaxClique problem. In view of the
relation (mentioned above), between FPCP and the gap-clique promise problem, this
analogy is hardly surprising.

One type of transformation amplifies the gap (i.e., the ratio between completeness
and soundness bounds) of the proof system while preserving its amortized free-bit com-
plexity and incurring a relatively small additional cost in the randomness complexity.
Specifically, using a randomized reduction we can transform FPCP1,1/2[log, f] into
FPCP1,2−k [log +k, k · f] (ignoring multiplicative factors of 1 + ε for arbitrarily small
ε > 0). This transformation is analogous to the well-known transformation of Berman
and Schnitger [25]. Alternatively, using a known deterministic amplification method
based on [2, 70], one can transform FPCP1,1/2[log, f] into FPCP1,2−k [log +2k, k · f].
Both alternatives are important ingredients in transforming pcp results into clique
inapproximability results via the FGLSS method.

A second type of transformation moves the location of the gap (or, equivalently,
the completeness parameter). The gap itself is preserved by the transformation but
moving it is related to changing the free-bit complexity (and thus the amortized
free-bit complexity is not preserved). Moving the gap “up” requires increasing the

PCP—TOWARDS TIGHT RESULTS 813

free-bit complexity, whereas moving the gap “down” allows us to decrease the free-bit
complexity. For example, we randomly reduce FPCPc,s[log, f] to FPCP1,s·log[log, f +
log(1/c) + log log]. On the other hand, for every k ≤ f , we (deterministically) reduce
FPCPc,s[log, f] into FPCP c

2k
, s
2k

[log, f − k], provided that the original system has at
least 2k accepting configurations per each possible sequence of coin tosses. (This
condition is satisfied in many natural pcp systems, even for k = f .)

1.3. History. Early work in nonapproximability includes that of Garey and
Johnson [47] showing that it is NP-hard to approximate the chromatic factor within
a factor less than 2. The indication of higher factors, and results for other problems,
had to wait for the PCP connection.

Interactive proofs were introduced by Goldwasser, Micali, and Rackoff [53] and
Babai [10]. Ben-Or et al. [24] extended these ideas to define a notion of multiprover
interactive proofs. Fortnow, Rompel, and Sipser [44] showed that the class MIP of
languages possessing multiprover interactive proofs equals the class of languages which
have (using today’s terms) probabilistically checkable proofs (of unrestricted, and thus
polynomial, randomness, and query complexity).

The first indication of the power of interactive proof systems was given in [52],
where it was shown that interactive proofs exist for graph nonisomorphism (whereas
this language is not known to be in NP). However, the real breakthrough came with
the result of Lund et al. [72] who used algebraic methods to show that all coNP
languages (and actually, all languages in P#P) have interactive proof systems. These
techniques were used by Shamir [81] to show that IP = PSPACE.

A central result that enabled the connection to hardness of approximation is
that of Babai, Fortnow, and Lund [11]. They showed that the class MIP equals the
class NEXP (i.e., languages recognizable in nondeterministic exponential time). The
latter result has been “scaled down” to the NP-level by two independent groups of
researchers. Babai et al. [12] showed that if the input is encoded using a special
error-correcting code (for which encoding and decoding can be performed in poly-
nomial time), then NP has transparent proof systems (i.e., it is possible to verify
the correctness of the proof in polylogarithmic time). Feige et al. [40] showed that
NP has probabilistically checkable proofs of polylogarithmic randomness and query
complexity; namely, NP ⊆ PCP1,1/2[r, q], where r(n) = q(n) = O(log n · log log n).

A hardness of approximation result based on interactive proofs was first proved
by Condon [31]. The breakthrough PCP connection (to approximation) was made by
Feige et al. [40]. They showed that NP ⊆ PCP1,s[r, q] implies that approximating the
maximum clique in a 2r(n)+q(n)-vertices graph to within a 1/s(n) factor is infeasible
(i.e., not doable in polynomial-time), provided that NP is not in Dtime(2O(r+q)).
(Here n is the length of the input x to the pcp verifier.) Combined with the above-
mentioned results, they obtained the first in a sequence of strong nonapproximability
results for MaxClique: a nonapproximability factor of 2log1−εN , ∀ε > 0, assuming NP
does not have quasi-polynomial time algorithms.

After the work of [40] the field took off in two major directions. One was to extend
the interactive proof approach to prove the nonapproximability of other optimization
problems. Direct reductions from proofs were used to show the hardness of quadratic
programming [22, 43], Max3SAT [8], set cover [71], and other problems [16]. The
earlier work of Papadimitriou and Yannakakis, introducing the class MaxSNP [76],
now came into play; by reduction from Max3SAT it implied hardness of approximation
for any MaxSNP-hard problem. Also, reductions from MaxClique lead to hardness
results for the Chromatic Number [71] and other problems [86].

814 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

The other direction was to increase factors, and reduce assumptions, for exist-
ing hardness of approximation results. This involves improving the efficiency of the
underlying proof systems and/or the efficiency of the reductions.

The first stage of this enterprise started with the work of Arora and Safra [9]. They
showed that NP ⊆ PCP1,1/2[log, o(log)]. This provided the first strong NP-hardness
result for MaxClique (specifically, a hardness factor of 2

√
logN). This work introduced

the idea of recursive proof checking, which turned out to play a fundamental role in
all subsequent developments. Interestingly, the idea of encoding inputs in an error-
correcting form (as suggested in [12]) is essential to make “recursion” work. Arora
et al. [8] reduced the query complexity of pcp systems for NP to a constant while
preserving the logarithmic randomness complexity; namely, they showed that NP =
PCP1,1/2[log, O(1)]. This immediately implied the NP-hardness of approximating
MaxClique within N ε, for some ε > 0. Furthermore, it also implied that Max3SAT is
NP-hard to approximate to within some constant factor [8] and so is any MaxSNP-
hard problem [76].

The second stage of this enterprise started with the work of Bellare et al. [21].
The goal was to improve (increase) the constant ε in the exponent of the hardness
of approximation factor for MaxClique and also to improve the constant values of
the hardness factors in the MaxSNP hardness results. They presented new proof
systems minimizing query complexity and exploited a slightly improved version of the
FGLSS reduction due to [25, 86] to get a N1/30 hardness of approximation factor for
MaxClique. Feige and Kilian [41], however, observed that one should work with free
bits, and noted that the free-bit complexity of the system of [21] was 14, yielding a
N1/15 hardness factor. Bellare and Sudan then suggested the notion of amortized free
bits [23]. They constructed proof systems achieving amortized free-bit complexity 3
and thus obtained a N

1
4 hardness for MaxClique assuming NP 6⊆ coRP̃.

Detailed histories for specific topics are given in sections 2.2.3 and 2.4.3.

1.4. Related work. Following the presentation of our results, Arora has also
investigated the limitations of proof checking techniques in proving nonapproximabil-
ity results [6]. As in our free-bit lower bound result, he tries to assess the limita-
tions of current techniques by making some assumptions about these techniques and
then showing a lower bound. His focus is on the reductions, which he assumes are
“code like.” In this setting he can show that one should not expect to prove non-
approximability of MaxClique within N1/2. (The assumptions made by us and by
Arora do not seem to be comparable; neither implies the other. In retrospect, both
sets of assumptions could be bypassed as done by H̊astad [55, 56].)

1.5. Subsequent work. Our prophecy that the PCP approach is leading to
tight nonapproximability results is in the process of materializing (see Figure 3).
By now, tight results are known for central problems such as Min Set Cover (cf.
[71, 21, 38]), MaxClique (cf. [55, 56]), Min Coloring [42], and Max3SAT (cf. [57]).
The latter results were obtained subsequent to, and while building on the current
work.

Amortized free bits and MaxClique. The most intriguing problem left open
by our work has been resolved by H̊astad [55, 56]. He proved our conjecture (cf. [20])
by which, for every ε > 0, it is the case that NP ⊆ FPCP[log, ε]. The long code,
introduced in this work, plays a pivotal role in H̊astad’s work. He also uses the idea
of folding (introduced here). Applying the FGLSS reduction to the new proof system,
H̊astad obtains a tight result for MaxClique by showing that for every ε > 0, assuming

PCP—TOWARDS TIGHT RESULTS 815

Problem EASY to HARD to Approx. Factor Tight?
Approx. Factor

Factor Due to Ours Subsequent Assumption

Max3SAT 1 + 1
7 + ε [64] 1 + 1

26 1+ 1
7−ε [57] P 6= NP Yes

MaxE3SAT 1 + 1
7 folklore 1 + 1

26 1+ 1
7−ε [57] P 6= NP Yes

Max2SAT 1.075 [51, 39] 1.013 1.047 [57] P 6= NP No
Max⊕SAT 2 folklore 1 + 1

7 − ε 2− ε [57] P 6= NP Yes

MaxCUT 1.139 [51] 1.014 1.062 [57] P 6= NP No
MinVC 2− o(1) [14, 74] 1 + 1

15 1+ 1
6−ε [57] P 6= NP No

MaxClique N1−o(1) [28] N
1
3−ε N1−ε [56] coRP 6= NP Yes

N
1
4−ε N

1
2−ε [56] P 6= NP No

Chrom. No. N1−o(1) [28] N
1
5−ε N1−ε [42] coRP 6= NP Yes

FIG. 3. State of the art regarding easy and hard approximation factors (updated July 1997).
Here ε > 0 is an arbitrarily small constant.

NP 6= coRP, there is no polynomial-time algorithm to approximate MaxClique within
a factor of N1−ε.

Improved 3-query proofs and MaxSNP. Another challenge, one we even
did not dare state, was achieved as well. H̊astad [57] has recently obtained optimal
nonapproximability results to MaxSNP problems such as Max3SAT. Furthermore,
he has improved over all our nonapproximability results for MaxSNP problems, ob-
taining nonapproximability factors of 22/21 and 17/16 for Max2SAT and MaxCUT,
respectively. Underlying these results is a new proof system for NP which yields
NP ⊆ PCP1−ε,0.5[log, 3], for any ε > 0. In addition, H̊astad [57] shows that NP is
contained in PCP1,0.75+ε[log, 3] (and it follows that NP ⊆ PCP1,0.5[log, 9]). The long
code plays a pivotal role in all of these proof systems.

Improved 2-free-bits proofs and MinVC. The above-mentioned proof sys-
tem of H̊astad [57] uses two (nonamortized) free bits, and so NP ⊆ FPCP1−ε,0.5[log, 2],
for every ε > 0. This sets the nonapproximability bound for Min Vertex Cover at 7

6−ε.
Chromatic Number. Feige and Kilian [42] have introduced a new approach

to showing hardness of approximability of ChromNum, based on a new measure of
proof checking complexity called the covering complexity. By modifying our proof
systems so as to preserve the amortized free-bit complexity and achieve low covering
complexity, they proved that approximating ChromNum within N

1
3 is hard unless

NP = coRP. They were able to similarly modify H̊astad’s proof systems [55, 56] and
thereby improve the hard factor to N1−ε, for any ε > 0.

Gadgets. Another research direction, suggested in early versions of this work [20],
was taken on by Trevisan et. al. [84] who initiated a systematic study of the construc-
tion of gadgets. In particular, they showed that the gadgets we have used in our
reductions to the MaxSAT problems were optimal, and constructed better (and actu-
ally optimal) gadgets for reduction to MaxCUT.

Weights. An important issue neglected in our treatment of MaxSNP problems
is that of weights. For example, in our MaxSAT problems we have allowed the same
clause to appear many times in the formula, which can be considered as allowing
“small” weights. Certainly, one may want nonapproximability results for the un-
weighted case (where one does not allow multiple occurrences of the same clause).
This issue is treated in a subsequent paper by Crescenzi, Silvestri, and Trevisan [34].
Essentially, they show that the unweighted cases of all problems considered in our
paper are as hard as the weighted cases.

816 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

1.6. Directions for further research. Although the most intriguing open
problems suggested in previous versions of this work [20] have been resolved, some
very interesting problems remain. We mention a few.

2-free-bits proofs and MinVC. As we show, NP ⊆ FPCPc,s[log, f] implies
that approximating Min Vertex Cover up to a 2f−s

2f−c factor is NP-hard. This motivates
us to ask whether the following, increasingly stronger, conjectures hold.

(1) NP ⊆ FPCP1−ε,ε[log, 2] (or even NP ⊆ FPCP1,ε[log, 2]) for every ε > 0. This
would imply a hardness factor of 4

3 − ε for MinVC.

(2) For f def= log2 3, NP ⊆ FPCP1−ε,ε[log, f] (or even NP ⊆ FPCP1,ε[log, f]) for
every ε > 0. This would imply a hardness factor of 3

2 − ε.
(3) NP ⊆ FPCP1−ε,ε[log, 1] for every ε > 0. This would imply a hardness factor

of 2− ε.
Recall that FPCP1,s[log, 1] ⊆ P, for every s < 1, whereas NP ⊆ FPCP1−ε,0.5[log, 2]
[57]. It will be even interesting (though of no application for MinVC) to know whether
NP ⊆ FPCP1,0.5+ε[log, 2], for every ε > 0.

Perfect versus imperfect completeness. H̊astad’s work [57] is indeed the
trigger for the last question and similarly, we wonder whether NP ⊆ PCP1,0.5+ε[log, 3].
Nonperfect completeness seems to be useful in [57], but it is to be seen if this usage
is inherent. Similar issues arise with respect to some results in the current work (e.g.,
see our transformations for increasing acceptance probability of proof systems).

Derandomization. We know that FPCP[log, f] is randomly reducible to

FPCP1,2−k [log +(1 + ε)k, (1 + ε)k · f] .

On the other hand, the former class is contained in (i.e., is deterministically reduced
to) the class FPCP1,2−k [log +(2 + ε)k, (1 + ε)k · f], for arbitrarily small ε > 0. Can
one obtain the best of both worlds, namely, a deterministic reduction of FPCP[log, f]
to, say, FPCP1,2−k [log +(1 + ε)k, (1 + ε)k · f], for arbitrarily small ε > 0? An affirma-
tive answer will allow us to infer from NP ⊆ FPCP[log, f] that approximating Max
Clique to within an N

1
1+f+ε factor is NP-hard (rather than NP-hard under randomized

reductions).
One ingredient of our method for reversing the FGLSS reduction is the random-

ized reduction of the class FPCPc,s[log, f] to the class FPCP1, log
c ·s

[log, f + log(1/c) +
log log]. (This statement is proved using the ideas in section 11. An alternative ex-
position, making use of a randomized graph-layering process, is given in section 8.)
Anyhow, randomness plays an essential role in obtaining a pcp system with perfect
completeness.2 The question is whether the class FPCPc,s[log, f] is contained in the
class FPCP1, log

c ·s
[log, f + log(1/c) + log log] (rather than being randomly reducible to

it).

1.7. Organization. This introduction is followed by a section that contains
definitions as well as detailed histories. The main content of the paper is divided into
three parts:

Part I—New proof systems and nonapproximability results—consisting of sec-
tions 3 to 7, contains the material discussed in section 1.2.1. See overview in
section 3.1.

2This makes our results more elegant, but actually, as indicated in section 8, we could have
settled for “almost perfect” completeness which suffices for presenting an inverse of the “FGLSS
reduction.”

PCP—TOWARDS TIGHT RESULTS 817

Part II—Proofs and approximation: Potential and limitations—consisting of sec-
tions 8—9, contains the material discussed in section 1.2.2. Specifically, section 8
contain the “reverse reduction” of clique hardness to PCP, and section 9 contains
lower bounds on the free-bit complexity of certain tasks.
Part III—PCP: Properties and transformations—consisting of sections 10 and 11,
contains the material discussed in section 1.2.3. Specifically, section 10 studies
the expressive power of PCP systems with certain parameters, and section 11
contains transformations among PCP classes.

2. Definitions and histories.

2.1. General notation and definitions. For a set S, we denote by e R← S the
operation of selecting e uniformly in S. For integer n let [n] = {1, . . . , n}. A graph
always means an undirected graph with no self-loops, unless otherwise indicated. We
let ‖G‖ denote the number of vertices in graph G = (V,E).

A probabilistic machine K has one or more inputs, denoted x1, x2, It tosses
coins to create a random string R, usually of some length r(·) which is a function of
the (lengths of the) inputs. We let K(x1, x2, . . . ;R) denote the output of K when
it uses the random string, denoted R. Typically we are interested in the probability
space associated with a random choice of R.

A function is admissible if it is polynomially bounded and polynomial-time com-
putable. We will ask that all functions measuring complexity (e.g., the query com-
plexity q = q(n)) be admissible.

In defining complexity classes we will consider promise problems rather than
languages. (This convention is adopted since approximation problems are easily cast
as promise problems.) Following Even, Selman, and Yacobi [36], a promise problem
is a pair of disjoint sets (A,B), the first being the set of “positive” instances and the
second the set of “negative” instances. A language L is identified with the promise
problem (L,L).

2.2. Proof systems.

2.2.1. Basic setting. A verifier is a probabilistic machine V taking one or more
inputs, and it is also allowed access to one or more oracles. Let x denote the sequence
of all inputs to V and let n denote its length. During the course of its computation
on coins R and input x, the verifier makes queries of its oracles. Its final decision
to accept or reject is a function DECV (x, a;R) of x,R and the sequence a of all the
bits obtained from the oracle in the computation. Contrary to standard terminology,
acceptance in this paper will correspond to outputting 0 and rejection to outputting
1. This is done since, in most technical discussions, our focus is on the reject event.

Oracles are formally functions, with the context specifying for each the domain
and range. Sometimes, however, an algorithm will be given a string s as an oracle.
(Giving a verifier s as an oracle models a “written proof” model in which someone has
“written” s somewhere and the verifier wants to check it.) This is to be interpreted
in the natural way; namely, the oracle takes an index i and returns the ith bit of s.
Let π denote the sequence (tuple) of all proof oracles supplied to the verifier V . Now
for verifier V , examining the proofs π and having input x, we let

ACC [V π(x)] = PrR [V π(x;R) = 0]

denote the probability that V accepts when its random string is R. We then let

ACC [V (x)] = max
π

ACC [V π(x)] .

818 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

This is the maximum accepting probability over all possible choices of proof sequences
π. (The domain from which the proofs are chosen depends, as mentioned above, on
the context.)

Let patternV (x;R) be the set of all sequences a such that DECV (x, a;R) = 0.
(That is, all sequences of oracle answers leading to acceptance). A generator for V
is a poly(n)-time computable function G such that G(x,R) = patternV (x;R) for all
x,R. (That is, it can efficiently generate the set of accepted patterns.)

2.2.2. Parameters. We are interested in a host of parameters that capture
various complexity measures of the proof checking process. They are all functions
of the length n of the input x given to the verifier V . In the following, σ denotes
the concatenation of all the proof strings given to the verifier. Also recall that we are
interested in proof systems for promise problems (A,B) rather than just for languages.

coins = Number of coins tossed by verifier. Typically denoted r.
pflen = Length of the proof provided to the verifier. Typically denoted l.

c = Completeness probability. Namely,

min{ ACC [V (x)] : x ∈ A and |x| = n } .

s = Soundness probability. Namely,

max{ ACC [V (x)] : x ∈ B and |x| = n } .

g = Gap. Namely c/s.
Now we move to various measures of the “information” conveyed by the oracle to the
verifier. For simplicity we consider here only oracles that return a single bit on each
query; that is, they correspond to strings, or “written proofs.”

query = The query complexity on input x is the maximum, over all possible
random strings R of V , of the number of bits of σ accessed by V on
input x. The query complexity of the system q = q(n) is the maximum
of this over all inputs x ∈ A ∪B of length n.

queryav = The average query bit complexity on input x is the average, over R, of
the number of bits of the proof σ accessed by V on input x and coins
R. The average query complexity of the system is the maximum of
this over all x ∈ A ∪B of length n. Typically denoted qav.

query = V is said to have amortized query bit complexity q̄ if q/ lg(g) ≤ q̄, where
q is the query bit complexity and g is the gap, and, furthermore, q is
at most logarithmic in n.

free = The free-bit complexity of V is f if there is a generator G such that
|G(x,R)| ≤ 2f for all R and all x ∈ A ∪B of length n.

freeav = The average free-bit complexity of V is fav if there is a generator G
such that ER [|G(x,R)|] ≤ 2fav for all x ∈ A ∪B of length n.

free = V is said to have amortized free-bit complexity f̄ if f/ lg(g) ≤ f̄ , where
f is the free-bit complexity and g is the gap.

Notice that amortized query complexity is restricted to be at most logarithmic. We
don’t need to explicitly make this restriction for the amortized free-bit complexity
since it is a consequence of the efficient generation condition.

In case the completeness parameter equals 1 (i.e., c = 1), we say that the system is
of perfect completeness. In case the completeness parameter, c, satisfies c(n) = 1−o(1),
we say that the system is of almost-perfect completeness.

PCP—TOWARDS TIGHT RESULTS 819

The consideration of combinations of all these parameters gives rise to a poten-
tially vast number of different complexity classes. We will use a generic notation in
which the parameter values are specified by name, except that, optionally, the com-
pleteness and soundness can, if they appear, do so as subscripts. Thus for example
we have:

PCPc,s[coins = r ; query = q ; pflen = 2r ; free = f . . .] .

However most often we’ll work with the following abbreviations:

PCPc,s[r, q]
def= PCPc,s[coins = r ; query = q],

PCPc[r, q] def= PCPc,·[coins = r ; query = q],

FPCPc,s[r, f] def= PCPc,s[coins = r ; free = f],

FPCPc,s[r, f, l]
def= PCPc,s[coins = r ; free = f ; pflen = l],

FPCPc[r, f] def= PCPc,·[coins = r ; free = f] .

We stress that in the definitions of the amortized classes, PCPc[r, q] and FPCPc[r, f],
we refer to the completeness parameter c (but not to the soundness parameter). In
case c = 1, we may omit this parameter and shorthand the amortized classes of perfect
completeness by PCP[r, q] and FPCP[r, f], respectively. Namely,

PCP[r, q] def= PCP1[r, q],

FPCP[r, f] def= FPCP1[r, f].

2.2.3. History of proof systems.
MODELS AND PARAMETERS. The model underlying what are now known as

“probabilistically checkable proofs” is the “oracle model” of Fortnow, Rompel, and
Sipser [44], introduced as an equivalent version (with respect to language recognition
power) of the multiprover model of Ben-Or et al. [24]. Interestingly, as shown by
[12, 40], this framework can be applied in a meaningful manner also to languages in
NP. These works provide the verifier V with a “written” proof, modeled as an oracle
to which V provides the “address” of a bit position in the proof string and is returned
the corresponding bit of the proof. Babai et al. [12] suggested a model in which the
inputs are also given as oracles encoded in a special (polynomial-time computable and
decodable) error-correcting code and the verifier works in polylogarithmic time. Here
we follow the model of Feige et al. [40], where the verifier is probabilistic polynomial
time (as usual) and one considers finer complexity measures such as the query and
randomness complexity. The FGLSS reduction (cf. [40]), stated in terms of the query
complexity (number of binary queries), randomness complexity, and error probability
of the proof system, has focused attention on the above model and these parameters.
The class PCP1,1/2[r, q] was made explicit by [9].

The parameterization was expanded by [21] to explicitly consider the answer
size (the oracle was allowed to return more than one bit at a time) and query size.
Their notation included five parameters: randomness, number of queries, size of each
query, size of each answer, and error probability. They also similarly parameterized
(single round) multiprover proofs, drawing attention to the analogue with pcp. This
served to focus attention on the roles of various parameters, both in reductions and in

820 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Due to q qav

[8] some constant some constant
[21] 36 29
[41] 32 24

This paper 11 10.9

FIG. 4. Worst case (q) and average (qav) number of queries needed to get soundness error 1/2
with logarithmic randomness and perfect completeness; that is, results of the form of Eq. (4).

constructions. Also, they introduced the consideration of average query complexity,
the first in a sequence of parameter changes toward doing better for clique.

Free bits are implicit in [41] and formalized in [23]. Amortized free bits are
introduced in [23] but formalized a little better here.

Proof sizes were considered in [12, 78]. We consider them here for a different
reason—they play an important role in that the randomized FGLSS reduction [25, 86]
depends, actually, on this parameter (rather than on the randomness complexity).

The discussion of previous proof systems is coupled with the discussion of Max-
Clique in section 2.4.3. We conclude the current section by discussing two somewhat
related topics: query minimization and constant-prover proof systems.

Query complexity minimization. One seeks results of the form

NP = PCP1,1/2[coins = log ; query = q ; queryav = qav] .(4)

This was originally done for deriving NP-hardness results for the approximation of
MaxClique, but subsequent work has indicated that other parameters actually govern
this application. Still, the query complexity of a proof system remains a most natural
measure, and it is an intriguing question as to how many bits of a proof you need
to look at to detect an error with a given probability. Specifically, we consider the
question of determining the smallest values of q, qav for which Eq. (4) holds.

The fundamental result of [8] states that q, qav may be constants (independent
of the input length). Reductions in the values of these constants were obtained since
then and are depicted in Figure 4. See section 6 for our results.

Role of constant-prover proofs in pcp: perspective. Constant-prover
proofs have been instrumental in the derivation of nonapproximability results in sev-
eral ways. One of these is that they are a good starting point for reductions—examples
of such are reductions of two-prover proofs to quadratic programming [22, 43] and set
cover [71]. However, it is a different aspect of constant-prover proofs that is of direct
concern to us. This aspect is the use of constant-prover proof systems as the penul-
timate step of the recursion, and begins with [8]. It is instrumental in getting PCP
systems with only a constant number of queries. Their construction requires that
these proof systems have low complexity: error which is any constant and randomness
and answer sizes that are preferably logarithmic. The number of provers and the
randomness and query complexity determine the quality of many nonapproximability
results (e.g., polylogarithmic rather than logarithmic complexities translate into non-
approximability results using assumptions about quasi-polynomial time classes rather
than polynomial-time classes). The available constant-prover proof systems appear
in Figure 5 and are discussed below. Throughout this discussion we consider proof
systems obtaining an arbitrary small constant error probability, denoted ε.

The two-prover proofs of Lapidot and Shamir [67] and Feige and Lovász [43] have
polylogarithmic randomness and answer sizes. Arora et al. [8] used a modification of

PCP—TOWARDS TIGHT RESULTS 821

Due to Provers Coins Answer size Canonical? Can be made
canonical?

[67, 43] 2 polylog polylog No Yes [23]
[8] poly(ε−1) log polylog No ?
[21] 4 log polyloglog No ?
[82] 3 log O(1) No ?
[41] 2 log O(1) No With 3 provers [23]
[79] 2 log O(1) Yes (NA)

FIG. 5. Constant-prover proof systems achieving error which is a fixed, but arbitrarily small,
constant ε.

these proofs, so to reduce randomness complexity, in the process increasing the number
of provers to a constant much larger than 2. Later constructions of few-prover proofs
of [21, 82, 41] lead to better nonapproximability results.

Bellare and Sudan [23] identified some extra features of constant-prover proofs
whose presence they showed could be exploited to further increase the nonapproxim-
ability factors. These features are captured in their definition of canonical verifiers
(cf. section 3.4). But the proof systems of [41] that had worked above no longer
sufficed—they are not canonical. So instead, [23] used (a slight modification of) the
proofs of [67, 43], thereby incurring polylogarithmic randomness and answer sizes,
and so that the assumptions in their nonapproximability results pertain to quasi-
polynomial-time classes. (Alternatively they modify the system of [41] to a canonical
three-prover system, but then incur a decrease in the nonapproximability factors due
to having more provers).

A breakthrough result in this area is Raz’s parallel repetition theorem which
implies the existence of a two-provers proof system with logarithmic randomness and
constant answer size [79]. Furthermore, this proof system is canonical.

2.3. Reductions between problems and classes. We will consider reduc-
tions between promise problems. A deterministic Karp reduction from (A1, B1) to
(A2, B2) is a polynomial-time function T which for all x satisfies the following: if
x ∈ A1, then T (x) ∈ A2, and if x ∈ B1, then T (x) ∈ B2. A randomized Karp re-
duction from (A1, B1) to (A2, B2) is a probabilistic, polynomial-time process T which
takes two arguments, an input x and a security parameter k; the latter written in
unary. The transformation is required to have the property that

x ∈ A1 =⇒ p1(x, k) def= Pr
[
T (x, 1k) ∈ A2

]
≥ 1− 2−k,

x ∈ B1 =⇒ p2(x, k) def= Pr
[
T (x, 1k) ∈ B2

]
≥ 1− 2−k .

The probability is over the coin tosses of T . We say the reduction has perfect com-
pleteness if p1 = 1 and perfect soundness if p2 = 1. Notice a deterministic re-
duction corresponds to a randomized reduction in which p1 = p2 = 1. We write
(A1, B1) ≤KR (A2, B2) if there is a randomized Karp reduction from (A1, B1) to
(A2, B2). If the reduction is deterministic we omit the subscript of “R” or, sometimes
for emphasis, replace it by a subscript of “D.”

An example is the randomized FGLSS transformation [40, 25, 86]. Here (A1, B1)
is typically an NP-complete language L, and (A2, B2) is Gap-MaxCliquec,s for some
c, s which are determined by the transformation. (See section 2.4 for a definition of
the latter.) This transformation has perfect soundness, while, on the other hand, it
is possible to get p1 = 1− 2− poly(k).

822 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Similarly, one can define (randomized) Cook reductions. The notation for these
reductions is ≤CR .

Let C be a complexity class (e.g., NP). We say that C reduces to (A2, B2) if for
every (A1, B1) in C it is the case that (A1, B1) reduces to (A2, B2). An example is
to say that NP reduces to Gap-MaxCliquec,s. We say that C1 reduces to C2, where
C1 and C2 are complexity classes, if for every (A1, B1) in C1 there is an (A2, B2) in
C2 such that (A1, B1) reduces to (A2, B2). An example is to say that NP reduces to
FPCP[log, f]. The notation of ≤KR or ≤CR extends to these cases as well.

Notice that our definition of reducibility ensures that this relation is transitive.
For simplicity we sometimes view a randomized reduction T as a function only of

x, and write T (x). In such a case it is to be understood that the security parameter
has been set to some convenient value, such as k = 2.

Historical note. We’ve followed the common tradition regarding the names
of polynomial-time reductions: many-to-one reductions are called Karp reductions
whereas (polynomial-time) Turing reductions are called Cook reductions. This ter-
minology is somewhat unfair toward Levin whose work on NP-completeness [69] was
independent of those of Cook [32] and Karp [65]. Actually, the reductions considered
by Levin are more restricted as they also efficiently transform the corresponding NP-
witnesses (this is an artifact of Levin’s desire to treat search problems rather than
decision problems). In fact, such reductions (not surprisingly termed Levin reduc-
tions) are essential for results such as Corollary 8.15. (Yet this is the only example in
the current paper.)

2.4. Approximation problems and quality. We discuss optimization prob-
lems, approximation algorithms for them, and how hardness is shown via the “pro-
duction of hard gaps.” We then list all the problems considered in this paper. A
continuously updated compendium of NP-optimization problems is available in [33].

2.4.1. Optimization problems, approximation, and gaps. An optimiza-
tion problem Φ = (S, g, ‖ · ‖, ‖ · ‖∗, opt) is specified by
• a function S associating to any instance w a solution set S(w) 6= ∅.
• an objective function g associating to any instance w and solution y ∈ S(w) a

nonnegative real number g(w, y). This number is sometimes called the value of
solution y.

• two norm functions ‖ · ‖, ‖ · ‖∗, the first admissible, the second polynomial-time
computable, each associating to any instance w a nonnegative real number; their
roles will be explained later.

• an indication opt ∈ {min,max} of the type of optimization, whether maximiza-
tion or minimization.

The task, given w, is to either maximize (this if opt = max) or minimize (this if
opt = min), the value g(w, y), over all y ∈ S(w).

DEFINITION 2.1. Let Φ = (S, g, ‖ · ‖, ‖ · ‖∗, opt) be an optimization problem. The
optimum value for instance w is denoted Φ(w) and defined by

Φ(w) =

{
maxy∈S(w) g(w, y) if Φ is a maximization problem,
miny∈S(w) g(w, y) if Φ is a minimization problem.

The normalized optimum is defined by Φ(w) = Φ(w)/‖w‖∗.
The above definition illustrates the role of the second norm, which is to normalize

the optimum. Thus ‖ · ‖∗ will usually be chosen to make 0 ≤ Φ(w) ≤ 1.

PCP—TOWARDS TIGHT RESULTS 823

Approximation. An approximation algorithm for Φ = (S, g, ‖·‖, ‖·‖∗, opt) is an
algorithm A which on input w tries to output a number as close as possible to Φ(w).
Unless otherwise indicated, an approximation algorithm runs in time polynomial in
the length of w.

While the complexity of the algorithm is measured as a function of the length of
the input, the approximation quality is often measured as a function of some other
measure associated with the input. This is the first norm of w, denoted ‖w‖. For
example, for graph problems the first norm is typically the number of vertices in the
graph.

The notion of an approximation algorithm achieving a certain approximation fac-
tor is different depending on whether it is a maximization problem or a minimization
problem.

DEFINITION 2.2. An approximation algorithm A for optimization problem Φ =
(S, g, ‖ · ‖, ‖ · ‖∗, opt) is said to achieve a factor µ(·) ≥ 1 if for all instances w its
output A(w) satisfies

• Φ(w)
µ(‖w‖) ≤ A(w) ≤ Φ(w) if Φ is a maximization problem, or

• Φ(w) ≤ A(w) ≤ µ(‖w‖) · Φ(w) if Φ is a minimization problem.
Note that as per this definition, our convention is that an approximation factor

is always a number at least 1. In some other sources, the approximation factor, at
least in the case of minimization problems, is a number less than 1: they set it to the
reciprocal of what we set it.

Gap problems. We are interested in instances of an optimization problem for
which the optimum is promised to be either “very high” or “very low.” We capture
this by associating to any optimization problem a promise problem, depending on a
pair of “thresholds” c, s, both admissible functions of the first norm and satisfying
0 < s(·) < c(·). It is convenient to make the definition in terms of the normalized
optimum rather than the optimum. In these cases, c ≤ 1 typically holds. We consider
maximization and minimization problems separately.

DEFINITION 2.3. Let Φ = (S, g, ‖ · ‖, ‖ · ‖∗,max) be a maximization problem, and
let 0 < s(·) < c(·) be admissible functions of the first norm. Define

Y = { w : Φ(w) ≥ c(‖w‖) },
N = { w : Φ(w) < s(‖w‖) },

Gap-Φc,s = (Y,N) .

The gap of the promise problem is defined to be c/s.
It is important that the inequality in the definitions of Y,N is strict in one case

and not strict in the other. The same is true below, where we chose to maintain s < c
and so reversed the roles of s and c.

DEFINITION 2.4. Let Φ = (S, g, ‖ · ‖, ‖ · ‖∗,min) be a minimization problem, and
let 0 < s(·) < c(·) be admissible functions of the first norm. Define

Y = { w : Φ(w) ≤ s(‖w‖) },
N = { w : Φ(w) > c(‖w‖) },

Gap-Φc,s = (Y,N) .

The gap of the promise problem is defined to be c/s.
Each of the optimization problems we consider will give rise to a gap problem.

824 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Showing nonapproximability via gaps. Hardness of approximation of some
optimization problem is shown by reducing NP to Gap-Φc,s via a (possibly random-
ized) Karp reduction. (This is called “producing hard gaps.”) The following proposi-
tion says that we can show that Φ is hard to approximate within a factor g by showing
NP ≤K Gap-Φc,s, for some s and c = g · s, and the assumption under which the non-
approximability result holds depends on the type of reduction. It is this proposition
that motivates the consideration of gap problems.

PROPOSITION 2.5. Optimization problem Φ has no factor c/s approximation al-
gorithm.

Under the assumption: If it holds that:
P 6= NP, NP ≤KD Gap-Φc,s,
NP 6= coRP, NP ≤KR Gap-Φc,s via a reduction with

perfect completeness,
NP 6⊆ BPP, NP ≤KR Gap-Φc,s.

Proof. Let us illustrate by proving the first of the three claims, for the case
that the problem is one of maximization. We proceed by contradiction. Given a
(polynomial-time) algorithm A that achieves an approximation factor of µ = c/s for
Φ, we present a polynomial-time algorithm B to decide L, where L is any language
in NP. Let T be a (deterministic, Karp) reduction of L to Gap-Φc,s. On input x our
algorithm B computes w = T (x). Next it computes α = s(‖w‖) · ‖w‖∗. Finally, B
invokes A on w, outputs 1 (indicating x ∈ L) if A(w) ≥ α, and 0 otherwise (indicating
x 6∈ L).

Since A runs in polynomial-time and the functions T , s, ‖·‖, ‖·‖∗ are polynomial-
time computable (by hypothesis), the algorithm B runs in polynomial time. We claim
that B is always right. To see this, let Y,N be the two parts of the promise problem
Gap-Φc,s as per Definition 2.3. Consider two cases.

First suppose x ∈ L. Then w = T (x) ∈ Y because T is a correct reduction of L to
Gap-Φc,s. So Φ(w) ≥ c(‖w‖) by Definition 2.3. However, starting from Definition 2.2
and simplifying, we have

A(w) ≥ Φ(w)
c(‖w‖)/s(‖w‖) =

Φ(w) · ‖w‖∗
c(‖w‖)/s(‖w‖)

≥ c(‖w‖) · ‖w‖∗
c(‖w‖)/s(‖w‖) = s(‖w‖) · ‖w‖∗ = α .

Thus B will output 1 as desired.
Now suppose x 6∈ L. Then w = T (x) ∈ N . So Φ(w) < s(‖w‖) by Definition 2.3.

Starting from Definition 2.2 and simplifying, we have

A(w) ≤ Φ(w) = Φ(w) · ‖w‖∗ < s(‖w‖) · ‖w‖∗ = α .

Thus B will output 0 as desired.
The proofs for the other cases are similar (and thus omitted).

2.4.2. Some optimization problems we consider. A formula is a set (ac-
tually a multiset) of clauses (i.e., or-clauses) over some set of literals. We consider
various classes of formulae. In particular, 3-SAT formulae (at most three literals in
each clause), E3-SAT formulae (exactly three different literals in each clause) and
2-SAT formulae (at most two literals in each clause). We use the generic notation
X-SAT to stand for some specified class of formulae; thus the above correspond to
X ∈ {3,E3, 2}. To each value of X we associate the following optimization problem.

PCP—TOWARDS TIGHT RESULTS 825

Problem: MaxXSAT.
Instance: X-SAT formula ϕ.
Solutions: An assignment v which associates with any variable x of ϕ a Boolean value
v(x) ∈ {0, 1}. (Not necessarily a satisfying assignment!)
Objective Function: The value of an assignment v is the number of clauses in ϕ that
v makes true.
Norms: The norm ‖ϕ‖ of formula ϕ is the number of clauses in it, and ‖ϕ‖∗ is the
same.
Type: Maximization.

In particular we have optimization problems Max2SAT, Max3SAT, MaxE3SAT,
and their corresponding gap problems. A related optimization problem refers to sets
of xor-clauses, or put differently, to a set of linear equations over GF(2).

Problem: MaxLinEq.
Instance: A sequence of linear equations over GF(2).
Solutions: An assignment v which associates with any variable x in the sequence a
value v(x) ∈ GF(2).
Objective Function: The value of an assignment v is the number of equations that v
satisfies.
Norms: Both norms are set to the number of equations in the instance.
Type: Maximization.

Problem: MaxCUT.
Instance: G,w, where G = (V,E) is a graph and w: E → R+ is a weight function.
Solutions: A cut S, S in G, meaning a partition V = S ∪ S of V into disjoint sets.
Objective Function: The value of a cut is its weight w(S, S), the sum of the weights of
the edges with one endpoint in S and the other in S.
Norms: ‖G,w‖ = |V | and ‖G,w‖∗ =

∑
e∈E w(e).

Type: Maximization.

We note that our inapproximability result (see section 4.3) holds also when w is
an admissible integral function; that is, w(e) ∈ {1, . . . , poly(|E|)}, for every e ∈ E.

Problem: MinVC.
Instance: Graph G = (V,E).
Solutions: A vertex cover in G, meaning a set V ′ ⊆ V such that V ′ ∩ {u, v} 6= ∅ for
every {u, v} ∈ E.
Objective Function: The value of a vertex cover V ′ is its size, meaning the number of
vertices in it.
Norms: ‖G‖ = ‖G‖∗ = |V | is the number of vertices in the graph.
Type: Minimization.

Problem: MaxClique.
Instance: Graph G = (V,E).
Solutions: A clique in G, meaning a set C ⊆ V such that {u, v} ∈ E for every pair
u, v of distinct vertices in C.
Objective Function: The value of a clique C is its size, meaning the number of vertices
in it.
Norms: ‖G‖ = ‖G‖∗ = |V | is the number of vertices in the graph.
Type: Maximization.

826 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Problem: ChromNum.
Instance: Graph G = (V,E).
Solutions: A coloring of G, meaning a map c: V → {1, . . . , k}, for some k, such that
c(u) 6= c(v) for any {u, v} ∈ E.
Objective Function: The value of a coloring, c, is the number k of colors it uses.
Norms: ‖G‖ = ‖G‖∗ = |V | is the number of vertices in the graph.
Type: Minimization.

As per our general notation, Φ(w) is the optimum for instance w of optimization
problem Φ. Given the above, this means, for example, that MaxClique(G) is the
maximum clique size in graph G; ChromNum(G) is the chromatic number of G; Min-
VC(G) is the minimum vertex cover size of G, etc. The corresponding normalized
versions get bars overhead. We will use these notations in what follows.

By the above, MaxXSAT(ϕ) is the maximum number of simultaneously satisfi-
able clauses in ϕ. We abuse notation slightly by dropping the “X” and writing just
MaxSAT(ϕ)—similarly for the normalized version.

2.4.3. History of approximability results for these problems.
Satisfiability problems. Max3SAT is the canonical MaxSNP complete prob-

lem [76]. A polynomial-time algorithm due to Yannakakis [85] approximates it to
within a factor of 4/3 < 1.334 (see [50] for an alternative algorithm). The best known
polynomial-time algorithm for Max3SAT achieves a factor of 8/7 (and is due to Karloff
and Zwick [64], improving upon [51, 84]. For MaxE3SAT, which is also MaxSNP com-
plete, a very simple algorithm achieves an approximation of 8/7 ≤ 1.143 (where 7/8
is the expected fraction of clauses satisfied by a uniformly chosen assignment).

Max2SAT is also MaxSNP complete [49, 76]. This problem is particularly interest-
ing because it has been the focus of recent improvements in the approximation factor
attainable in polynomial time. Specifically, Goemans and Williamson [51] exhibited
a polynomial-time algorithm achieving an approximation factor of 1

0.878 ≈ 1.139, and
subsequently Feige and Goemans [39] exhibited an algorithm achieving 1

0.931 ≈ 1.074.
Nonapproximability results for MaxSNP problems begin with Arora et al. [8] who

proved that there exists a constant ε > 0 such that Gap-3SAT1,1−ε is NP-hard. They
did this by providing a reduction from a given NP language L to the promise prob-
lem in question, constructed by encoding as a 3-SAT instance the computation of
a PCP1,1/2[log, O(1)] verifier for an NP-complete language, the variables in the in-
stance corresponding to bits in the proof string. The basic paradigm of their reduction
has been maintained in later improvements.

Figure 6 depicts the progress. Improvements (in the constant value of the non-
approximability factor) begin with Bellare et al. [21]. They used Hadamard code
based inner verifiers following [8]. They also introduced a framework for better anal-
ysis and improved some previous analyses; we exploit in particular their better anal-
yses of linearity testing (cf. section 3.5) and of Freivalds’s matrix multiplication test
(cf. Lemma 3.16). The improvement of Feige and Kilian [41] was obtained via new
proof systems; that of [23] by use of the canonicity property of constant-prover proofs
and some optimizations. (See section 2.2.3 for a discussion of the role of constant-
prover proofs in this context.)

Garey, Johnson, and Stockmeyer [49] had provided, as early as 1976, a reduction
of Max3SAT to Max2SAT which showed that if the former is nonapproximable within
(k + 1)/k, then the latter is nonapproximable within (7k + 1)/(7k). With the best

PCP—TOWARDS TIGHT RESULTS 827

Due to Assuming Factor Technique

[8] P 6= NP some constant NP ⊆ PCP1,1/2[log, O(1)]; reduction
of this to Max3SAT.

[21] P̃ 6= NP̃ 94/93 Framework; better analyses; uses proof
systems of [67, 43].

[21] P 6= NP 113/112 New four-prover proof systems.
[41] P 6= NP 94/93 New two-prover proof systems.

[23] P̃ 6= NP̃ 66/65 Canonicity and some optimizations.
[23] P 6= NP 73/72 Canonicity and some optimizations.

This paper P 6= NP 27/26 Long code and new proof systems.

FIG. 6. Nonapproximability results for Max3SAT indicating the factor shown hard and the
assumption under which they were achieved.

previous nonapproximability factor for Max3SAT (namely 66/65) we would only get
a 456/455 factor nonapproximability for Max2SAT. In fact, even using our new
Max3SAT result we would get a hardness factor of only 185/184. See section 4.2 for
our results.

Linear equations. The MaxLinEq problem is known to be MaxSNP complete
(see [29] or [77]).

We remark that the problem of maximizing the number of satisfiable equations
should not be confused with the “complementary” problem of minimizing the number
of violated constraints, investigated by Arora et al. [7]. Also, the case of maximum
satisfiable linear constraints over larger fields (of size q) has been considered by Amaldi
and Kann [5], who show that this problem is hard to approximate to within a factor
of qε for some universal ε > 0. See section 4.2.2 for our results.

Max Cut. In 1976, Sahni and Gonzales [80] gave a simple 2-approximation algo-
rithm for this problem. Recently, in a breakthrough result, Goemans and Williamson
[51] gave a new algorithm which achieves a ratio of 1

0.878 = 1.139 for this problem.
On the other hand, [76] give an approximation preserving reduction from Max3SAT
to MaxCUT. Combined with [8] this shows that there exists a constant α > 1 such
that approximating MaxCUT within a factor of α is NP-hard. No explicit bounds
were given since and even using the best known hardness results for MAX3SAT, one
suspects that the bound for MaxCUT would not be very large, since the reduction
uses constructions of constant degree expanders, etc. See section 4.3 for our results.

Vertex cover. There is a simple polynomial-time algorithm to approximate
MinVC in unweighted graphs within a factor of 2. The algorithm, due to F. Gavril
(cf. [48]) consists of taking all vertices which appear in a maximal matching of the
graph. For weighted graphs, Bar-Yehuda and Even [13] and Hochbaum [58] gave
algorithms achieving the same approximation factor. The best known algorithm today
achieves a factor only slightly better, namely, 2− (log log |V |)/(2 log |V |) [14, 74].

Evidence to the hardness of approximating MinVC was given by Bar-Yehuda
and Moran who showed that, for every k ≥ 2 and ε > 0, a 1 + 1

k − ε approximator
for (finding) a minimum vertex cover would yield an algorithm for coloring (k + 1)-
colorable graphs using only logarithmically many colors [15]. The version of MinVC
in which one restricts attention to graphs of bounded degree, is MaxSNP complete
[76]. In particular they provide a reduction from Max3SAT. Combined with [8] this
implies the existence of a constant δ > 0 such that approximating MinVC within
a factor of 1 + δ is hard unless P = NP. No explicit value of δ has been stated

828 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

until now. Indeed, the value that could be derived, even using the best existing
nonapproximability results for Max3SAT, will be very small because of the cost of the
reduction of [76], which first reduces Max3SAT to its bounded version using expanders,
and then reduces this to the bounded-degree version of MinVC. See section 5.2 for
our results.

MaxClique. The best known polynomial-time approximation algorithm for
MaxClique achieves a factor of only N1−o(1) [28], scarcely better than the trivial
factor of N . There is not even a heuristic algorithm that is conjectured to do better.
(The Lovász theta function had been conjectured to approximate the MaxClique size
within

√
N , but this conjecture was disproved by Feige [37].)

Prior to 1991, no nonapproximability results on MaxClique were known. In 1991
the connection to proofs was made by Feige et al. [40]. The FGLSS reduction says
that PCP1,e[coins = r ; query = q] Karp reduces to Gap-MaxCliquec,s via a reduction
running in time poly(2r+q), and with the gap c/s being a function of (r, q, and)
the error e. In applying the reduction one works with PCP classes containing NP.
One obtains a result stating that MaxClique has no polynomial-time approximation
algorithm achieving a certain factor, under an assumption about the deterministic
time complexity of NP (the time complexity depends on r, q, and the factor on these,
but, most importantly, on the error e). In particular, these authors were able to
“scale down” the proof system of [11] to indicate strong nonapproximability factors
of 2log1−εN for all ε > 0, assuming NP is not in quasi-polynomial deterministic time.
They also initiated work on improving the factors and assumptions via better proof
systems. The best result in their paper is indicated in Figure 7.

Arora and Safra [9] reduced the randomness complexity of a PCP verifier for NP
to logarithmic; they showed NP = PCP1,1/2[coins = log ; query =

√
logN]. On the

other hand, it is easy to see that random bits can be recycled for error reduction via
the standard techniques of [2, 30, 59]. The consequence was the first NP-hardness
result for MaxClique approximation. The corresponding factor was 2

√
logN .

Arora et al. [8] showed that NP = PCP1,1/2[coins = log ; query = O(1)], which
implied that there exists an ε > 0 for which approximating MaxClique within N ε was
NP-complete. The number of queries was unspecified but was estimated to be ≈ 104,
and so ε ≈ 10−4. Later work has focused on increasing the constant value of ε in the
exponent.

In later work a slightly tighter form of the FGLSS reduction due to [25, 86] has
been used. It says that PCP1,1/2[coins = r ; queryav = qav] reduces, via a randomized
Karp reduction, to Gap-MaxCliquec,s for some c, s satisfying c(N)/s(N) = N1/(1+qav),
and with the running time of the reduction being poly(2r). (We assume qav = O(1)
for simplicity, and omit factors of N ε′ where ε′ > 0 can be arbitrarily small, here
and in the following.) Thus the hardness factor was tied to the (average) number
of queries required to get soundness error 1/2. Meanwhile the assumption involved
the probabilistic rather than deterministic time complexity of NP—it would be NP 6⊆
coRP̃ if r = polylog(n) and NP 6= coRP if r = log(n).

The improved proof systems of [21] obtain significantly smaller query complexity;
they showed NP ⊆ PCP1,1/2[coins = polylog; query = 24] and NP ⊆ PCP1,1/2[coins =
log ; query = 29]. This leads to their hardness results shown in Figure 7. However,
significantly reducing the (average) number of bits queried seemed hard.

As observed by Feige and Kilian, the performance of the FGLSS reduction actually
depends on the free-bit complexity, which may be significantly smaller than the query

PCP—TOWARDS TIGHT RESULTS 829

Due to Factor Assumption

[40] 2log1−ε N for any ε > 0 NP 6⊆ P̃

[9] 2
√

logN P 6= NP
[8] Nε for some ε > 0 P 6= NP
[21] N1/30 NP 6= coRP

[21] N1/25 NP 6⊆ coRP̃
[41] N1/15 NP 6= coRP
[23] N1/6 P 6= NP

[23] N1/4 NP 6⊆ coRP̃

This paper N1/4 P 6= NP

This paper N
1
3 NP 6= coRP

FIG. 7. Progress in the project of increasing the nonapproximability factors for MaxClique.

complexity [41]. Namely, the factor in the above mentioned reduction is N1/(1+f)

where f is the free-bit complexity. They observed that the proof system of [21] has
free-bit complexity 14, yielding a N1/15 hardness of approximation factor.

The notion of amortized free bits was introduced by Bellare and Sudan [23]. They
observed that the performance of the reduction depended, in fact, on this quantity and
that the factor was N1/(1+f̄), where f̄ is the amortized free-bit complexity. They then
showed that NP ⊆ FPCP[polylog, 3]. This lead to a N1/4 hardness factor assuming
NP 6= coRP̃. See section 7 for our results.

Chromatic Number. The first hardness result for the chromatic number is due
to Garey and Johnson [47]. They showed that if P 6= NP, then there is no polynomial-
time algorithm that can achieve a factor less than 2. This remained the best result
until the connection to proof systems, and the above mentioned results, emerged.

Hardness results for the chromatic number were obtained via reduction from
MaxClique. An N ε factor hardness for MaxClique translates into a Nδ factor hardness
for the Chromatic number3, with δ = δ(ε) a function of ε. In all reductions δ(ε) =
min{h(ε), h(0.5)}, for some function h. The bigger h, the better the reduction.

The first reduction, namely that of Lund and Yannakakis [71], obtained h(ε) =
ε/(5−4ε). Via the MaxClique hardness results of [9, 8], this implies that the chromatic
number is hard to approximate within N δ for some δ > 0. But, again, δ is very small.
Improvements to δ were derived by both improvements to ε and improvements to the
function h used by the reduction.

A subsequent reduction of Khanna, Linial, and Safra [66] is simpler, but in fact
slightly less efficient, having h(ε) = ε/(5 + ε). A more efficient reduction is given by
[23]—they present a reduction obtaining h(ε) = ε/(3 − 2ε). Our N

1
3 hardness for

Clique would yield, via this, a N1/7 hardness for the chromatic number. But more
recently an even more efficient reduction has become available, namely that of Fürer
[45]. This reduction achieves h(ε) = ε/(2− ε), and thereby we get our N

1
5 hardness.

Following the appearance of our results, Feige and Kilian [42] have introduced a
new approach to showing hardness of approximability of ChromNum. See discussion
in section 1.5.

3Actually, all the reductions presented here make assumptions regarding the structure of the
graph and hence do not directly yield the hardness results stated here. However, as a consequence
of some results from this paper, we are able to remove the assumptions made by the earlier papers
and hence present those results in a simpler form. See section 8.4 for details.

830 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Randomized and derandomized error reduction. As mentioned above,
randomized and derandomized error reduction techniques play an important role in
obtaining the best clique hardness results via the FGLSS method. Typically, one first
reduces the error so that its logarithm relates to the query (or free-bit) complexity
and so that the initial randomness cost can be ignored (as long as it was logarithmic).
(Otherwise, one would have needed to construct proof systems which also minimize
this parameter, i.e., the constant factor in the logarithmic randomness complexity.)

The randomized error reduction method originates in the work of Berman and
Schnitger [25], where it is applied to the Clique-Gap promise problem. An alternative
description is given by Zuckerman [86]. Another alternative description, carried out
in the proof system, is presented in section 11.

The derandomized error-reduction method consists of applying general, deran-
domized, error-reduction techniques to the proof system setting.4 The best method,
known as the “expander walk” technique, is due to Ajtai, Komlos, and Szemeredi [2]
(see also [30, 59]). It is easy to see that it is applicable to the pcp context. (The usage
of these methods in the pcp context begins with [9].) It turns out that the (constant)
parameters of the expander, specifically the ratio ρ def= log2 d

log2 λ
, where d is the degree of

the expander and λ is the second eigenvalue (of its adjacency matrix), play an impor-
tant role here. In particular, ρ− 1 determines how much we lose with respect to the
randomized error reduction (e.g., NP ∈ FPCP[log, f] translates to a hardness factor
of N

1
1+f under NP 6⊆ BPP and to a hardness factor of N

1
ρ+f under NP 6= P). Thus

the Ramanujan expander of Lubotzky, Phillips, and Sarnak [70] plays an important
role yielding ρ ≈ 2 (cf. Proposition 11.4), which is the best possible (when using the
expander walk technique).

Part I: New proof systems and nonapproximability results.

3. The long code and its machinery.

3.1. New PCPs and hardness results: Overview and guidemap. The
starting point for all of our proof systems is a two-prover proof system achieving
arbitrarily small but fixed constant error with logarithmic randomness and constant
answer size, as provided by Raz [79]. This proof system has the property that the
answer of the second prover is supposed to be a predetermined function of the answer
of the first prover. Thus, verification in it amounts to checking that the first answer
satisfies some predicate and that the second answer equals the value obtained from
the first answer. Following the “proof composition” paradigm of Arora and Safra
[9], the proof string provided to the PCP verifier will consist of “encodings” of the
answers of the two provers under a suitable code. The PCP verifier will then check
these encodings. As usual, we will check both that these encodings are valid and
that they correspond to answers which would have been accepted by the original
verifier.

Our main technical contribution is a new code, called the long code, and the
means to check it. The long code of an n-bit information word a is the sequence of
22n bits consisting of the values of all possible Boolean functions at a. The long code
is certainly a disaster in terms of coding efficiency, but it has big advantages in the
context of proof verification because it carries enormous amounts of data about a.

4An alternative approach, applicable to the Gap-Clique problem and presented in [3], is to
“derandomize” the graph product construction of [25].

PCP—TOWARDS TIGHT RESULTS 831

The difficulty will be to check that a prover claiming to write the long code of some
string a is really doing so.

The long code is described in section 3.3. In section 3.5 we provide what we call
the “atomic” tests for this code. These tests and their analyses are instrumental to
all that follows. Section 3.4 is also instrumental to all that follows. This section sets
up the framework for recursive proof checking which is used in all the later proof
systems.

The atomic tests are exploited in section 4.1 to construct a verifier that queries
the proof at three locations and performs one of two simple checks on the answers
obtained. These simple checks are implemented by gadgets of the MaxSNP problem at
hand, yielding the nonapproximability results. Section 4.2 presents gadgets which are
CNF formulae of the corresponding type and section 4.3 presents MaxCUT gadgets.
The nonapproximability results for Max3SAT, MaxE3SAT, Max2SAT, and MaxCUT
follow. The verifier of section 4.1 benefits from another novel idea which is referred to
as folding (see section 3.3). Folding contributes to the improved results for Max3SAT,
MaxE3SAT, Max2SAT, and MaxCUT, but not to the results regarding MaxClique
(and Chromatic Number).

A reasonable nonapproximability result for MinVC (Minimum Vertex Cover) can
be obtained by the above methodology, but a better result is obtained by constructing
a different verifier, for NP languages, that uses exactly two free bits. This verifier is
then used to create a reduction of NP to MinVC via the FGLSS and standard Karp
reductions. This approach is presented in section 5, where we try to minimize the
soundness error attainable using exactly two free bits.

In section 6 we minimize the number of bits queried in a PCP to attain soundness
error 1/2—the result is not of direct applicability, but it is intriguing to know how
low this number can go.

We then turn to MaxClique (and Chromatic Number). In section 7.1 we provide
the “iterated” tests. (Here the atomic tests are invoked (sequentially) many times,
but these invocations are not independent of each other.) This leads to a proof system
in which the number of amortized free bits used is two. We then draw the implications
for MaxClique (and Chromatic Number). A reader interested only in the (amortized)
free-bit and MaxClique results can proceed directly from section 3.5 to section 7.

The improvement in the complexities of the proof systems is the main source of
our improved nonapproximability results. In addition we also use (for the MaxSAT,
MaxCUT, and MinVC problems) a recent improvement in the analysis of linearity
testing [17], and introduce (problem specific) gadgets which represent the various
tests of the resulting PCP system.

3.2. Preliminaries to the long code. Here Σ = {0, 1} will be identified with
the finite field of two elements, the field operations being addition and multiplication
modulo two. If X and Y are sets, then Map(X,Y) denotes the set of all maps of X
to Y . For any integer m we regard Σm as a vector space over Σ so that strings and
vectors are identified. If a ∈ Σm, then a(i) denotes its ith bit. Similarly, if f is any
function with range Σm, then f (i) denotes the ith bit of its output.

Linearity. Let G,H be groups. A map f : G → H is linear if f(x + y) =
f(x) + f(y) for all x, y ∈ G. Let LIN(G,H) denote the set of all linear maps of G to
H. When G = Σn and H = Σ, a function f : G → H is linear if and only if there
exists a ∈ Σn such that f(x) =

∑n
i=1 a

(i)x(i) for all x ∈ Σn.
Distance. The distance between functions f1, f2 defined over a common finite

domain D is

Dist(f1, f2) = Pr
x
R←D [f1(x) 6= f2(x)] .

832 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Functions f1, f2 are ε-close if Dist(f1, f2) < ε. If f maps a group G to a group H
we denote by Dist(f, LIN) the minimum, over all g ∈ LIN(G,H), of Dist(f, g). (Note
that the notation does not specify G,H, which will be evident from the context.) We
are mostly concerned with the case where G is a vector space V over Σ and H is Σ.
Notice that in this case we have Dist(f, LIN) ≤ 1/2 for all f : V → Σ.

Boolean functions. Let l be an integer. We let Fl
def= Map(Σl,Σ) be the set

of all maps of Σl to Σ. We regard Fl as a vector space (of dimension 2l) over Σ.
Addition and multiplication of functions are defined pointwise.

We let Lm ⊆ Fm be the set LIN(Σm,Σ) of linear functions of Σm to Σ and let
L∗m = Lm − {0} be the nonzero linear functions.

Let g ∈ Fm and ~f = (f1, . . . , fm) ∈ Fml . Then g ◦ ~f denotes the function in Fl
that assigns the value g(f1(x), . . . , fm(x)) to x ∈ Σl.

The monomial basis. For each S ⊆ [l] we let χS ∈ Fl be the monomial
corresponding to S, defined for x ∈ Σl by

χS(x) =
∏

i∈S x
(i) .

The empty monomial, namely χ∅, is defined to be the constant-one function (i.e.,
χ∅(x) = 1̄, for all x ∈ Σl). The functions {χS}S⊆[l] form a basis for the vector space
Fl which we call the monomial basis. This means that, for each f ∈ Fl, there exists
a unique vector C(f) = (Cf (S))S⊆[l] ∈ Σ2l such that

f =
∑

S⊆[l] Cf (S) · χS .(5)

The expression on the right-hand side above is called the monomial series for f , and
the members of C(f) are called the coefficients of f with respect to the monomial
basis. We note that C: Fl → Σ2l is a bijection. (The monomial basis is reminiscent
of the Fourier basis, but the two are actually different.)

3.3. Evaluation operators, the long code, and folding.
Evaluation operators. Let a ∈ Σl. We define the map Ea: Fl → Σ by

Ea(f) = f(a) for all f ∈ Fl. We say that a map A: Fl → Σ is an evaluation operator
if there exists some a ∈ Σl such that A = Ea. We now provide a useful characterization
of evaluation operators. First we need a definition.

DEFINITION 3.1 (respecting the monomial basis). A map A: Fl → Σ is said to
respect the monomial basis if

(1) A(χ∅) = 1 and
(2) ∀ S, T ⊆ [l] : A(χS) ·A(χT) = A(χS∪T) .
PROPOSITION 3.2 (characterization of the evaluation operator). A map Ã: Fl →

Σ is an evaluation operator if and only if it is linear and respects the monomial basis.
Proof. Let a ∈ Σl. It is easy to see that Ea is linear: Ea(f + g) = (f + g)(a) =

f(a) + g(a) = Ea(f) + Ea(g). It is also easy to see that Ea respects the monomial
basis. Firstly, we have Ea(χ∅) = χ∅(a) = 1. Next, for every S, T ⊆ [l],

Ea(χS) · Ea(χT) = χS(a) · χT (a) =
∏

i∈S a
(i) ·

∏
i∈T a

(i) .

However, x2 = x for any x ∈ Σ, so∏
i∈S a

(i) ·
∏

i∈T a
(i) =

∏
i∈S∪T

a(i) = χ
S∪T (a) = Ea(χS∪T).

PCP—TOWARDS TIGHT RESULTS 833

Now we turn to the converse. Let Ã: Fl → Σ be linear and respect the monomial
basis. For i = 1, . . . , l, let ai

def= Ã(χ{i}), and let a def= a1, . . . , al. We claim that
Ã = Ea. The proof is as follows. We first claim that

∀ S ⊆ [l] : Ã(χS) = χS(a) .(6)

Since Ã respects the monomial basis we have Ã(χ∅) = 1 which in turn equals χ∅(a),
proving Eq. (6) for S = ∅. To establish Eq. (6) for S = {i1, . . . , it} 6= ∅, we write

Ã(χS) = Ã
(
χ{i1}∪···∪{it}

)
=
∏ t

j=1 Ã(χ{ij}) =
∏ t

j=1 aij = χS(a) ,

where the second equality is due to the fact that Ã respects the monomial basis. This
establishes Eq. (6). Now for any f ∈ Fl we can use the linearity of Ã to see that

Ã(f) = Ã (
∑

S Cf (S) · χS) =
∑

S Cf (S) · Ã(χS)

=
∑

S Cf (S) · χS(a) = f(a) = Ea(f) .

Thus Ã = Ea.
The long code. Intuitively, the encoding of a ∈ {0, 1}l (via the long code) is

the 22l bit string which in position f ∈ Fl stores the bit f(a). The long code is thus
an extremely “redundant” code, encoding an l-bit string by the values, at a, of all
functions in Fl.

DEFINITION 3.3 (long code). The long code E: Σl → Map(Fl,Σ) is defined for
any a ∈ Σl by E(a) = Ea.

In some natural sense E is the longest possible code: E is the longest code which
is not repetitive (i.e., does not have two positions which are identical in all codewords).

We let Dist(A,EVAL) = mina∈Σl Dist(A,Ea) be the distance from A to a closest
codeword of E. It is convenient to define E−1(A) ∈ Σl as the lexicographically least
a ∈ Σl such that Dist(A,Ea) = Dist(A,EVAL). Notice that if Dist(A,EVAL) < 1/4,
then there is exactly one a ∈ Σl such that Dist(A,Ea) = Dist(A,EVAL), and so E−1(A)
is this a.

The long code is certainly a disaster in terms of coding efficiency, but it has a big
advantage in the context of proof verification. Consider, for example, the so-called
“circuit test” (i.e., testing that the answer of the first prover satisfies some prede-
termined predicate/circuit). In this context one needs to check that the codeword
encodes a string which satisfies a predetermined predicate (i.e., the codeword encodes
some w ∈ {0, 1}n, which satisfies h(w) = 0, for some predetermined predicate h). The
point is that the value of this predicate appears explicitly in the codeword itself, and
furthermore it can be easily “self-corrected” by probing the codeword for the values
of the functions f and f +h, for a uniformly selected function f : {0, 1}n → {0, 1} (as
all these values appear explicitly in the codeword). Actually, the process of verifying,
via self-correction, that the value under h is zero can be incorporated into the task
of checking the validity of the codeword; this is done by the notion of “(h, 0)-folding”
(see below). The fact that we can avoid testing whether the codeword encodes a
string which satisfies a given function (or that this testing does not cost us anything)
is the key to the complexity improvements in our proof systems (over previous proof
systems in which a “circuit test” was taking place and had a considerable cost).

Folding. The intuition behind the notion we will now define is like this. When
A is the long code of some string x for which it is known that h(x) = b, for some
function h and bit b, then half of the bits of A become redundant because they can

834 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

be computed from the other half via A(f) = A(f + h)− b. This phenomenon enables
us to reduce the proof checking complexity. To capture it we now define the notion
of folding.

Fix ≺ to be some canonical, polynomial-time computable total order (reflexive,
antisymmetric, transitive) on the set Fl. Given functions A: Fl → Σ and h ∈ Fl \ {0̄}
(i.e., h is not the constant function 0̄) and bit b ∈ Σ, the (h, b)-folding of A is the
function A(h,b): Fl → Σ given by

A(h,b)(f) =

{
A(f) if f ≺ h+ f

A(f + h)− b otherwise.

(Notice that the above is well defined for any h 6= 0̄.) For sake of technical simplicity
(see Definition 3.9), we define the (0̄, 0)-folding of A to be A itself; namely, A(0̄,0)(f) =
A(f), for every f ∈ Fl. As shown below, the (h, b)-folding of a function A is forced
to satisfy A(h,b)(f + h) = A(h,b)(f) + b, for every f ∈ Fl (whereas A itself may not
necessarily satisfy these equalities). Before proving this, let us generalize the notion
of folding to folding over several, specifically two, functions h1, h2 ∈ Fl (and bits
b1, b2 ∈ Σ).

DEFINITION 3.4 (folding). Let f, h1, h2 ∈ Fl. The (h1, h2)-span of f , denoted
SPANh1,h2(f), is defined as the set {f+σ1h1 +σ2h2 : σ1, σ2 ∈ Σ}. Let MINCOEFh1,h2(f)
be the pair (σ1, σ2) of elements of Σ for which f+σ1h1 +σ2h2 is the smallest function
(according to ≺) in SPANh1,h2(f). Let A: Fl → Σ. Assume that h1, h2 are distinct
and nonzero, and let b1, b2 ∈ Σ. The folding of A over (h1, b1) and (h2, b2), denoted
A(h1,b1),(h2,b2), is defined for every f ∈ Fl by

A(h1,b1),(h2,b2)(f) = A(f + σ1h1 + σ2h2)− σ1b1 − σ2b2 ,

where (σ1, σ2) = MINCOEFh1,h2(f).
The definition extends naturally to the following two cases. In case (h1, b1) =

(h2, b2), folding over the two (identical) pairs is defined as folding over one pair. In
case h1 ≡ 0̄ and b1 = 0, folding over both (h1, b1) and (h2, b2) is defined as folding
over (h2, b2). Note that folding over two pairs is invariant under the order between
the pairs; namely, A(h1,b1),(h2,b2) ≡ A(h2,b2),(h1,b1). Finally, observe that a function
A: Fl → Σ that is folded over two functions (i.e., over both (h1, b1) and (h2, b2)) is
folded over each of them (i.e., over each (hi, bi)).

PROPOSITION 3.5 (folding forces equalities). Let A: Fl → Σ, h1, h2 ∈ Fl, and
b1, b2 ∈ Σ (with bi = 0 in case hi ≡ 0̄). Then, for every f ∈ Fl,

A(h1,b1),(h2,b2)(f + h1) = A(h1,b1),(h2,b2)(f) + b1.

Proof. By definition, A(h1,b1),(h2,b2)(f) = A(f + σ1h1 + σ2h2) − σ1b1 − σ2b2,
where the function f + σ1h1 + σ2h2 is the smallest function in SPANh1,h2(f). Since
SPANh1,h2(f + h1) ≡ SPANh1,h2(f), we have A(h1,b1),(h2,b2)(f + h1) = A(f + σ1h1 +
σ2h2)− (σ1 − 1)b1 − σ2b2. The claim follows.

As a corollary to the above (combined with the self-correcting paradigm [27]), we
get the following proposition.

PROPOSITION 3.6 (folding and the evaluation operator). Let A: Fl → Σ, h ∈ Fl,
b ∈ Σ, and a ∈ Σl. Suppose that for any f ∈ Fl it is the case that A(f+h) = A(f)+b.
Then Dist(A,Ea) < 1/2 implies h(a) = b. Consequently, if Dist(A(h,b),(h′,b′), Ea) <
1/2, then h(a) = b, provided b = 0 if h ≡ 0̄.

PCP—TOWARDS TIGHT RESULTS 835

Proof. By the hypothesis, we have A(h+f) = A(f)+b, for every f ∈ Fl. Suppose
that Dist(A,Ea) < 1/2. Then, noting that Ea is linear and applying a self-correction
process (cf. Corollary 3.14 below), we get Ea(h) = b. Using the definition of the evalu-
ator operator (i.e., Ea(h) = h(a)), we have h(a) = b. The consequence for A(h,b),(h′,b′)
follows since by Proposition 3.5 we have A(h,b),(h′,b′)(f + h) = A(h,b),(h′,b′)(f) + b for
any f ∈ Fl.

The verifiers constructed below make virtual access to “folded” functions rather
than to the functions themselves. Virtual access to a folding of A is implemented by
actual accessing A itself according to the definition of folding (e.g., say one wants to
access A(h,0) at f ; then one determines whether or not f ≺ h+ f and accesses either
A(f) or A(f + h), accordingly). One benefit of folding in our context is illustrated
by Proposition 3.6; in case a (h, b)-folded function is close to a codeword (in the long
code), we infer that the codeword encodes a string a satisfying h(a) = b. We will see
that folding (the long code) over (h, 0) allows us to get rid of a standard ingredient
in proof verification—the so-called “circuit test.”

In the following, we will use folding over the pairs (h, 0) and (1̄, 1), where h ∈ Fl
is an arbitrary function (typically not identically zero) and 1̄ is the constant-one
function. Folding over (1̄, 1) allows us to simplify the “codeword” test (w.r.t. the long
code).

3.4. Recursive verification of proofs. This section specifies the basic struc-
ture of proof construction and in particular provides the definitions of the notions of
inner and outer verifiers which will be used throughout. It is useful to understand
these things before proceeding to the tests.

Overview. The constructions of efficient proofs that follow will exploit the
notion of recursive verifier construction due to Arora and Safra [9]. We will use just
one level of recursion. We first define a notion of a canonical outer verifier whose
intent is to capture two-prover, one-round proof systems [24] having certain special
properties; these verifiers will be our starting point. We then define a canonical inner
verifier. Recursion is captured by an appropriate definition of a composed verifier
whose attributes we relate to those of the original verifiers in Theorem 3.12.

The specific outer verifier we will use is one obtained by a recent work of Raz
[79]. We will construct various inner verifiers based on the long code and the tests in
sections 3.5 and 7.1. Theorem 3.12 will be used ubiquitously to combine the two.

Comparison with previous work. For a history and a better understanding
of the role of constant-prover proof systems in this context, see section 2.4.3. In com-
parison, our definition of outer verifiers (below) asks for almost the same canonicity
properties as in [23]. (The only difference is that they have required σ to be a pro-
jection function, whereas we can deal with an arbitrary function. But we don’t take
advantage of this fact.) In addition we need answer sizes of log logn as opposed to
the O(log n) of previous methods, for reasons explained below. This means that even
the (modified) [67, 43] type proofs won’t suffice for us. We could use the three-prover
modification of [41] but the cost would wipe out our gain. Luckily this discussion is
moot since we can use the recent result of Raz [79] to provide us with a canonical
two-prover proof having logarithmic randomness, constant answer size, and any con-
stant error. This makes an ideal starting point. To simplify the definitions below we
insisted on constant answer size and two provers from the start.

The inner verifiers used in all previous works are based on the use of the Hadamard
code constructions of [8]. (The improvements mentioned above are obtained by check-
ing this same code in more efficient ways.) We instead use a new code, namely, the

836 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

long code, as the basis of our inner verifiers. Note that the codewords (in the long
code) have length double exponential in the message, explaining our need for log logn
answer sizes in the outer verifier. We also incorporate into the definitions the new
idea of folding which we will see means that we don’t need a circuit test (a hint toward
this fact is already present in the definition of a good inner verifier).

3.4.1. Outer verifiers. As mentioned above, outer verifiers will model special
kinds of two-prover, one-round proof systems. We think of the verifier as being pro-
vided with a pair of (nonboolean) proof oracles π, π1, and allowed one query to each.
The desired properties concern the complexity of the system and a certain behavior
in the checking of the proof, as we now describe.

Let r1, s, s1: Z+ → Z+ and let l and l1 be positive integers. An (l, l1)-canonical
outer verifier Vouter takes as input x ∈ Σn and has oracle access to a pair of proofs
π̄: [s(n)]→ Σl and π̄1: [s1(n)]→ Σl1 . It does the following.

(1) Picks a random string R1 of length r1(n).
(2) Computes, as a function of x and R1, queries q ∈ [s(n)] and q1 ∈ [s1(n)],

and a (circuit computing a) function σ: Σl → Σl1 (which is determined by x
and R1); determines, based on x and q, a function h: Σl → Σ (and computes
an appropriate representation of it).
(We stress that h does not depend on R1 but only on q and x).

(3) Lets a = π̄(q) and a1 = π̄1(q1).
(4) If h(a) 6= 0 then rejects.
(5) If σ(a) 6= a1 then rejects.
(6) Otherwise accepts.

We call s, s1 the proof sizes for Vouter and r1 the randomness of Vouter. Both s and
s1 are bounded above by 2r1 .

Recall that by the conventions in section 2, ACC [V π̄,π̄1
outer(x)] denotes the prob-

ability, over the choice of R1, that Vouter accepts, and ACC [Vouter(x)] denotes the
maximum of ACC [V π̄,π̄1

outer(x)] over all possible proofs π̄, π̄1.
DEFINITION 3.7 (goodness of outer verifier). Outer verifier Vouter is ε-good for

language L if for all x it is the case that
(1) x ∈ L implies ACC [Vouter(x)] = 1.
(2) x 6∈ L implies ACC [Vouter(x)] ≤ ε.

Employing the FRS method [44] to any PCP(log,O(1)) system for NP (e.g., [8])
one gets a canonical verifier which is δ-good for some δ < 1. (Roughly, the method is
to take the given pcp system, send all queries to one oracle, and, as a check, send a
random query to the other oracle.) Using the parallel repetition theorem of Raz [79],
we obtain our starting point.

LEMMA 3.8 (construction of outer verifiers). Let L ∈ NP. Then for every ε > 0
there exist positive integers l, l1 and c such that there exists an (l, l1)-canonical outer
verifier which is ε-good for L and uses randomness r(n) = c log2 n.

Actually, Raz’s theorem [79] enables one to assert that l, l1 and c are O(log ε−1);
but we will not need this fact. Also, the function σ determined by this verifier is
always a projection, but we don’t use this fact either.

3.4.2. Inner verifiers. Inner verifiers are designed to efficiently verify that the
encoding of answers, which a (canonical) outer verifier expects to see, indeed satisfies
the checks which this outer verifier performs. Typically, the inner verifier performs a
combination of a codeword test (i.e., tests that each oracle is indeed a proper encoding
relative to a fixed code—in our case the long code), a projection test (i.e., that the
decoding of the second answer corresponds to the value of σ applied to the decoding

PCP—TOWARDS TIGHT RESULTS 837

of the first), and a “circuit test” (i.e., that the decoding of the first answer evaluates
to 0 under the function h).

Let r2, l, l1 ∈ Z+. An (l, l1)-canonical inner verifier Vinner takes as inputs func-
tions σ: Σl → Σl1 and h ∈ Fl. (It may also take additional inputs, depending on the
context.) It has oracle access to a pair of functions A: Fl → Σ and A1: Fl1 → Σ and
uses r2 random bits. The parameters δ1, δ2 > 0 in the following should be thought of
as extremely small: in our constructions, they are essentially 0 (see comment below).

DEFINITION 3.9 (goodness of inner verifier). An inner verifier Vinner is (ρ, δ1, δ2)-
good if, for all σ, h as above, the following hold.

(1) Suppose a ∈ Σl is such that h(a) = 0. Let a1 = σ(a) ∈ Σl1 . Then

ACC [V Ea,Ea1
inner (σ, h)] = 1 .

(2) Suppose A,A1 are such that ACC [V A,A1
inner (σ, h)] ≥ ρ. Then there exists a ∈ Σl

such that
(2.1) Dist(A(h,0),(1̄,1), Ea) < 1/2− δ1.
(2.2) Dist(A1, Eσ(a)) < 1/2− δ2.
We stress that, although the inner verifier has access to the oracle A (and the

hypothesis in condition (2) of Definition 3.9 refers to its computations with oracle A),
the conclusion in condition (2.1) refers to A folded over both (h, 0) and (1̄, 1), where
1̄ is the constant-one function. (Typically, but not necessarily, the verifier satisfying
Definition 3.9 accesses the virtual oracle A(h,0),(1̄,1) by actual access to A according
to the definition of folding.) Furthermore, by Proposition 3.6, condition (2.1) implies
that h(a) = 0. (Thus, there is no need to explicitly require that h(a) = 0 in order to
make Theorem 3.12 work.) We comment that the upper bounds in conditions (2.1)
and (2.2) are chosen to be the largest ones which still allow us to prove Theorem 3.12
(below). Clearly, the complexity of the inner verifier decreases as these bounds in-
crease. This is the reason for setting δ1 and δ2 to be extremely small. We stress that
this optimization is important for the MaxSNP results but not for the MaxClique
result. In the latter case, we can use δi’s greater than 1

4 which simplifies a little the
analysis of the composition of verifiers (below).

Remark 3.10 (a tedious one). The above definition allows h to be identically zero
(although this case never occurs in our constructions nor in any other reasonable
application). This is the reason that we had to define folding over (0,0) as well. An
alternative approach would have been to require h 6≡ 0 and assert that this is the case
with respect to the outer verifier of Lemma 3.8.

3.4.3. Composition of verifiers. We now describe the canonical composition
of a (canonical) outer verifier with a corresponding (canonical) inner verifier. Let
Vouter be an (l, l1)-canonical outer verifier with randomness r1 and proof sizes s, s1. Let
Vinner be an (l, l1)-canonical inner verifier with randomness r2. Their composed verifier
〈Vouter, Vinner〉 takes as input x ∈ Σn and has oracle access to proofs π: [s(n)]×Fl → Σ
and π1: [s1(n)]×Fl1 → Σ. It behaves as follows:

—Picks random strings for both Vouter and Vinner; namely, picks a random string
R1 of length r1(n) and a random string R2 of length r2(n).

—Computes queries q and q1 and functions σ and h as Vouter would compute
them given x,R1.

—Outputs V A,A1
inner (σ, h;R2), where A(·) = π(q, ·) and A1(·) = π1(q1, ·).

The randomness complexity of the composed verifier is r1 + r2 whereas its query and
free-bit complexities equal those of Vinner.

838 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

We show how the composed verifier 〈Vouter, Vinner〉 inherits the goodness of the
Vouter and Vinner. To do so we need the following lemma. It is the counterpart of a
claim in [21, Lemma 3.5] and will be used in the same way. The lemma is derived
from a coding theory bound which is a slight extension of the bounds in [73, Chap. 7]
(see Appendix).

LEMMA 3.11. Suppose 0 < δ ≤ 1/2 and A: Fl → Σ. Then there are at most
1/(4δ2) codewords that have distance less than 1/2− δ from A. That is,∣∣{ a ∈ Σl : Dist(A,Ea) ≤ 1/2− δ }

∣∣ ≤ 1
4δ2 .

Furthermore, for δ > 1/4 the above set contains at most one string.
Proof. We know that Ea is linear for any a (cf. Proposition 3.2). So it suffices to

upper bound the size of the set

A = {X ∈ Lin(Fl,Σ) : Dist(A,X) ≤ 1/2− δ } .

This set has the same size as

B = {X −A : X ∈ Lin(Fl,Σ) and Dist(A,X) ≤ 1/2− δ } .

Let n = 22l and identify Map(Fl,Σ) with Σn in the natural way. Let w(·) denote the
Hamming weight. Now note that Z = X − A ∈ B implies w(Z)/n = Dist(X,A) ≤
1/2− δ. Furthermore, if Z1 = X1−A and Z2 = X2−A are in B, then Dist(Z1, Z2) =
Dist(X1, X2) and the latter is 1/2 if X1 6= X2, since X1, X2 are linear. Thus, B is
a set of binary vectors of length n, each of weight at most (0.5 − δ)n, and any two
of distance at least 0.5n apart. Invoking Lemma A.1 (with α = δ and β = 0), we
upper bound the size of B as desired. Finally, when δ > 1/4, the triangle inequality
implies that we cannot have a1 6= a2 so that Dist(A,Eai) ≤ 1/2 − δ < 1/4 for both
i = 1, 2.

In some applications of the following theorem, δ1, δ2 > 0 will first be chosen to be
so small that they may effectively be thought of as 0. (This is done in order to lower
the complexities of the inner verifiers.) Once the δi’s are fixed, ε will be chosen to be
so much smaller (than the δi’s) that ε/(16δ2

1δ
2
2) may be thought of as effectively 0.

The latter explains why we are interested in outer verifiers which achieve a constant,
but arbitrarily small, error ε. For completeness we provide a proof following the ideas
of [9, 8, 21].

THEOREM 3.12 (the composition theorem). Let Vouter be an (l, l1)-canonical outer
verifier. Suppose it is ε-good for L. Let Vinner be an (l, l1)-canonical inner verifier that
is (ρ, δ1, δ2)-good. Let V = 〈Vouter, Vinner〉 be the composed verifier, and let x ∈ Σ∗.
Then

(1) if x ∈ L, then ACC [V (x)] = 1.
(2) if x 6∈ L, then ACC [V (x)] ≤ ρ+ ε/16δ2

1δ
2
2 .

For δ1, δ2 > 1/4 the upper bound in (2) can be improved to ρ+ ε.
The latter case (i.e., δ1, δ2 > 1/4) suffices for the MaxClique results.
Proof. Let n = |x|, and let s, s1 denote the proof sizes of Vouter.
Suppose x ∈ L. By Definition 3.7 there exist proofs π̄: [s(n)] → Σl and π̄1:

[s1(n)] → Σl1 such that ACC [V π̄,π̄1
outer(x)] = 1. Let π: [s(n)] × Fl → Σ be defined by

π(q, f) = Eπ̄(q)(f). (In other words, replace the l bit string π̄(q) with its 22l bit
encoding under the long code, and let the new proof provide access to the bits in this
encoding). Similarly let π1: [s1(n)]× Fl1 → Σ be defined by π1(q1, f1) = Eπ̄1(q1)(f1).

PCP—TOWARDS TIGHT RESULTS 839

The reader may easily verify that the item (1) properties in Definitions 3.7 and 3.9
(of the outer and inner verifiers, respectively) imply that ACC [V π,π1(x)] = 1.

Now suppose x 6∈ L. Let π: [s(n)] × Fl → Σ and let π1: [s1(n)] × Fl1 → Σ be
proof strings for V . We will show that ACC [V π,π1(x)] ≤ ρ + ε/(16δ2

1δ
2
2). Since π, π1

are arbitrary, this will complete the proof.
We set N1 = b1/(4δ2

1)c and N2 = b1/(4δ2
2)c (with N1 = 1 if δ1 > 1/4 and N2 = 1

if δ2 > 1/4). The idea to show ACC [V π,π1(x)] ≤ ρ+N1N2 ·ε is as follows. We will first
define a collection of N1 proofs π̄1, . . . , π̄N1 and a collection of N2 proofs π̄1

1 , . . . , π̄
N2
1

so that each pair (π̄i, π̄j1) is a pair of oracles for the outer verifier. Next we will
partition the random strings R1 of the outer verifier into two categories, depending
on the performance of the inner verifier on the inputs (i.e., the functions σ, h and the
oracles A,A1) induced by R1. On the “bad” random strings of the outer verifier, the
inner verifier will accept with probability at most ρ; on the “good” ones, we will use
the soundness of the inner verifier to infer that the outer verifier accepts under some
oracle pair (π̄i, π̄j1), for i ∈ [N1] and j ∈ [N2]. The soundness of the outer verifier will
be used to bound the probability of such acceptances.

We now turn to the actual analysis. We define N1 proofs π̄1, . . . , π̄N1 : [s(n)]→ Σl

as follows. Fix q ∈ [s(n)] and letA = π(q, ·). LetBq = {a ∈ Σl : Dist(A(h,0),(1̄,1), Ea) ≤
1/2−δ1 }. (Notice that for this set to be well defined we use the fact that h is well de-
fined given q.) Note that |Bq| ≤ N1 by Lemma 3.11. Order the elements of Bq in some
canonical way, adding dummy elements to bring the number to exactly N1, so that
they can be written as a1(q), . . . , aN1(q). Now set π̄i(q) = ai(q) for i = 1, . . . , N1. In
a similar fashion we define π̄j1(q1) = aj1(q1) for j = 1, . . . , N2, where each aj1 = aj1(q1)
satisfies Dist(π1(q1, ·), Eaj1) ≤ 1/2− δ2.

Let R1 be a random string of Vouter. We say that R1 is good if

ACC [V π(q,·),π1(q1,·)
inner (σ, h)] ≥ ρ ,

where q, q1, σ, h are the queries and functions specified by R1. If R1 is not good we
say it is bad . The claim that follows says that if R1 is good then there is some choice
of the above defined proofs which leads the outer verifier to accept on coins R1.

CLAIM. Suppose R1 is good. Then there is an i ∈ [N1] and a j ∈ [N2] such that

V
π̄i,π̄j1
outer (x;R1) = 0.

Proof. Let q, q1, σ, h be the queries and functions specified by R1. Let A = π(q, ·)
and A1 = π1(q1, ·) (be the oracles accessed by the inner verifier). Since R1 is good we
have ACC [V A,A1

inner (σ, h)] ≥ ρ. So by item 2 of Definition 3.9 there exists a ∈ Σl such
that Dist(A(h,0),(1̄,1), Ea) < 1/2 − δ1 and Dist(A1, Eσ(a)) < 1/2 − δ2. Let a1 = σ(a).
Since Dist(A(h,0),(1̄,1), Ea) ≤ 1/2−δ1 it must be the case that a ∈ Bq, and hence there
exists i ∈ [N1] such that a = π̄i(q). Similarly Dist(A1, Eσ(a)) < 1/2 − δ implies that
there is some j ∈ [N] such that a1 = π̄j1(q1). By Proposition 3.6 we have h(a) = 0,
and we have σ(a) = a1 by (the above) definition. Now, by definition of the (execution

of the) canonical outer verifier, V π̄
i,π̄j1

outer (x;R1) = 0 holds.
By conditioning we have ACC [V π,π1(x)] ≤ α+ β, where

α = PrR1 [R1 is good],

β = PrR1,R2 [V π,π1(x;R1R2) = 0 | R1 is bad] .

The definition of badness of R1 implies β ≤ ρ. On the other hand, we can use the

840 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

claim to see that

α ≤ PrR1

[
∃i ∈ [N1] , j ∈ [N2] : V π̄

i,π̄j1
outer (x;R1) = 0

]
≤
∑N1
i=1
∑N2
j=1 PrR1

[
V
π̄i,π̄j1
outer (x;R1) = 0

]
≤ N1N2 · ε ,

where the last inequality holds by the soundness of Vouter (i.e., item 2 of Definition 3.7).
Using the bound on N1 and N2, the proof is concluded.

3.5. The atomic tests.
Motivation. Our constructions of proofs systems will use the outer verifier of

Lemma 3.8, composed via Theorem 3.12 with inner verifiers to be constructed. The
brunt of our constructions is the construction of appropriate inner verifiers. The inner
verifier will have oracle access to a function A: Fl → Σ and a function A1: Fl1 → Σ.
In all of our applications, A is supposed to be a folding of an encoding of the answer
a of the first prover (in a two-prover proof system) and A1 is supposed to be the
encoding of the answer a1 of the second prover. The verifier will perform various tests
to determine whether these claims are true. The design of these tests is the subject
of this subsection.

The atomic tests we provide here will be used directly in the proof systems for
showing nonapproximability of Max3SAT, Max2SAT, and MaxCUT. Furthermore,
they are also the basis of iterated tests which will lead to proof systems of amortized
free-bit complexity ≈ 2, which in turn are used for the MaxClique and Chromatic
Number results. We remark that for the applications to the above-mentioned MaxSNP
problems (but not for the application to MaxClique) it is important to have the best
possible analysis of our atomic tests, and what follows strives to this end. We stress
that the exposition and analysis of these tests, in this subsection, are independent of
the usage of the codes in our proof systems.

Testing for a codeword. The first task that concerns us is to design a test
which, with high probability, passes if and only if A is close to an evaluation operator
(i.e., a valid codeword). The idea is to exploit the characterization of Proposition 3.2.
Thus we will perform (on A) a linearity test and then a “respect of monomial basis”
(RMB) test. Linearity testing is well understood, and we will use the test of [27] with
the analyses of [27, 21, 17]. The main novelty is the respect of monomial basis test.

Circuit and projection. Having established that A is close to some evaluation
operator Ea, we now want to test two things. The first is that h(a) = 0 for some
predetermined function h. This test which would normally be implemented by “self-
correction” (i.e., evaluating h(a) by uniformly selecting f ∈ Fl and computing A(f +
h) − A(f)) is not needed here since in our applications we will use an (h, 0)-folding
of A instead of A. Thus, it is left to test that the two oracles are consistent in the
sense that A1 is not too far from an evaluation operator which corresponds to σ(a)
for some predetermined function σ.

Self-correction. The following self-correction lemma is due to [27] and will
be used throughout.

LEMMA 3.13 (self-correction lemma [27]). Let A, Ã: Fl → Σ with Ã linear, and
let x = Dist(A, Ã). Then for every g ∈ Fl,

Pr
f
R←Fl

[
A(f + g)−A(f) = Ã(g)

]
≥ 1− 2x .

PCP—TOWARDS TIGHT RESULTS 841

The atomic tests. Here A: Fl → Σ and A1: Fl1 → Σ are the objects
being tested. The tests also take additional inputs or parameters: below
f, f1, f2, f3 ∈ Fl; g ∈ Fml1 ; and σ: Σl → Σl1 .

LinTest(A; f1, f2) (Linearity Test).
If A(f1) +A(f2) = A(f1 + f2), then output 0 else output 1.

MBTest(A; f1, f2, f3) (Respecting-Monomial-Basis Test).
If A(f1) = 0, then check if A(f1 · f2 + f3) = A(f3).
Otherwise (i.e., A(f1) = 1) then check if A(f1 · f2 + f2 + f3) = A(f3).
Output 0 if the relevant check succeeded, else output 1.

ProjTestσ(A,A1; f, g) (Projection Test).
If A1(g) = A(g ◦ σ + f)−A(f), then output 0, else output 1.

The passing probabilities. These are the probabilities we are interested
in:

LINPASS(A) = Pr
f1,f2

R←Fl
[LinTest(A; f1, f2) = 0],

MBPASS(A) = Pr
f1,f2,f3

R←Fl
[MBTest(A; f1, f2, f3) = 0],

PROJPASSσ(A,A1) = Pr
f
R←Fl ; g R←Fl1

[ProjTestσ(A,A1; f, g) = 0].

FIG. 8. The atomic tests and their passing probabilities.

Proof.

Pr
f
R←Fl

[
A(f + g)−A(f) = Ã(g)

]
≥ Pr

f
R←Fl

[
A(f + g) = Ã(f + g) and A(f) = Ã(f)

]
≥ 1−

(
Pr

f
R←Fl

[
A(f + g) 6= Ã(f + g)

]
+ Pr

f
R←Fl

[
A(f) 6= Ã(f)

])
.

However, each of the probabilities in the last expression equals x.
COROLLARY 3.14. Let A, Ã: Fl → Σ with Ã linear, and suppose x def= Dist(A, Ã) <

1/2. Suppose also that A(f + h) = A(f) + b, for some fixed h ∈ Fl, b ∈ Σ, and every
f ∈ Fl. Then Ã(h) = b.

Proof. By the hypothesis, we have A(f +h)−A(f) = b for all functions f . Thus,
we can write

Pr
f
R←Fl

[
A(f + h)−A(f) = Ã(h)

]
= Pr

f
R←Fl

[
b = Ã(h)

]
,

but the right-hand side (and hence the left) is either 0 or 1 (as both h and b are fixed).
However, by Lemma 3.13 the left-hand side is bounded below by 1 − 2x > 0 and so
the corollary follows.

Convention. All our tests output a bit with 0 standing for accept and 1 for
reject.

3.5.1. Atomic linearity test. The atomic linearity test shown in Figure 8 is
the one of Blum, Luby, and Rubinfeld [27]. We want to lower bound the probability
1 − LINPASS(A) that the test rejects, when its inputs f1, f2 are chosen at random, as

842 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

a function of x = Dist(A, LIN). The following lemma, due to Bellare et. al. [17], gives
the best known lower bound.

LEMMA 3.15 (see [17]). Let A: Fl → Σ and let x = Dist(A, LIN). Then 1 −
LINPASS(A) ≥ Γlin(x), where the function Γlin: [0, 1/2]→ [0, 1] is defined as follows:

Γlin(x) def=

3x− 6x2 0 ≤ x ≤ 5/16,

45/128 5/16 ≤ x ≤ 45/128,

x 45/128 ≤ x ≤ 1/2.

The above lower bound is composed of three different bounds with “phase transitions”
at x = 5

16 and x = 45
128 . It was shown in [17] (see below) that this combined lower

bound is close to the best one possible.
Perspective. The general problem of linearity testing as introduced and studied

by Blum, Luby, and Rubinfeld [27] is stated as follows. Given a function A: G→ H,
where G,H are groups, obtain a lower bound on rA as a function of xA, where

rA = Pr
a,b

R←G [A(a) +A(b) 6= A(a+ b)]

xA = Dist(A, LIN) .

Blum, Luby, and Rubinfeld showed that rA ≥ 2
9xA, for every A. Their analysis was

used in the proof system and Max3SAT nonapproximability result of [8]. Interest
in the tightness of the analysis began with Bellare et al. [21], with the motivation
of improving the Max3SAT nonapproximability results. They showed that rA ≥
3xA − 6x2

A, for every A. This establishes the first segment of the lower bound quoted
above (i.e., of the function Γlin). Also, it is possible to use [27] to show that rA ≥ 2

9
when xA ≥ 1

4 . Putting these together implies a two-segment lower bound with phase
transition at the largest root of the equation 3x − 6x2 = 2

9 (i.e., at 1
4 +

√
33

36). This
lower bound was used in the Max3SAT analyses of [21] and [23].

However, for our applications (i.e., linearity testing over Fl as in Lemma 3.15),
the case of interest is when the underlying groups are G = GF(2)n and H = GF(2)
(since Fl may be identified with GF(2)n for n = 2l). The work of Bellare et al. [17]
focused on this case and improved the bound on rA for the case xA ≥ 1

4 , where
A: GF(2)n → GF(2). Specifically, they showed that rA ≥ 45/128 for xA ≥ 1

4 which
establishes the second segment of Γlin. They also showed that rA ≥ xA, for every
A: GF(2)n → GF(2). Combining the three lower bounds, they have derived the
three-segment lower bound stated in Lemma 3.15.

The optimality of the above analysis has been demonstrated as well in [17].
Essentially,5 for every x ≤ 5

16 there are functions A: GF(2)n → GF(2) witnessing
rA = Γlin(xA) with xA = x. For the interval (5

16 , 1/2], no tight results are known.
Instead, Bellare et al. [17] reports of computer constructed examples of functions
A: GF(2)n → GF(2) with xA in every interval [k

100 ,
k+1
100], for k = 32, 33, . . . , 49, and

rA < Γlin(xA) + 1
20 . Furthermore, they showed that there exist such functions with

both xA and rA arbitrarily close to 1/2.

3.5.2. Monomial basis test. Having determined that A is close to linear, the
atomic respect of monomial basis test makes sure that the linear function close to A
respects the monomial basis. Let us denote the latter function (i.e., the linear function
closest to A) by Ã. Recalling Definition 3.1 we need to establish two things, namely,
that Ã(χ∅) = 1 and that Ã(χS) · Ã(χT) = Ã(χS∪T), for every S, T ⊆ [l]. Recall that
we do not have access to Ã but rather to A; still, the self-correction lemma provides

5Actually, the statement holds only for x’s which are integral multiples of 2−n.

PCP—TOWARDS TIGHT RESULTS 843

an obvious avenue to bypass the difficulty provided Dist(A, Ã) < 1
4 . This would have

yielded a solution, but quite a wasteful one (though sufficient for the MaxClique and
Chromatic Number results). Instead, we adopt the following more efficient procedure.

Firstly, by considering only oracles folded over (1̄, 1), we need not check that
Ã(χ∅) = 1. (This follows by combining Corollary 3.14 and the fact that the (1̄, 1)-
folded oracle A satisfies A(f + 1̄) = A(f) + 1, for all f ∈ Fl.) Secondly, we test that
Ã(χS) · Ã(χT) = Ã(χS∪T), for every S, T ⊆ [l], by taking random linear combinations
of the S’s and T ’s to be tested. Such linear combinations are nothing but uniformly
selected functions in Fl. Namely, we wish to test Ã(f) · Ã(g) = Ã(f · g), where f
and g are uniformly selected in Fl. Since A is close to Ã, we can inspect A(f) (resp.,
A(g)) rather than Ã(f) (resp., Ã(g)) with little harm. However, f · g is not uniformly
distributed (when f and g are uniformly selected in Fl) and thus self-correction will
be applied here. The resulting test is

A(f1) ·A(f2) = A(f1 · f2 + f3)−A(f3).(7)

This test was analyzed in a previous version of this work [20]; specifically, this test
was shown to reject a folded oracle A, with Ã (the linear function closest to A) which
does not respect the monomial basis, with probability at least (1−2x) · (3

8 −x+ x2

2) =
3
8 −

7
4x + 5

2x
2 − x3, where x = Dist(A, Ã). Here we present an adaptive version of

the above test, which performs even better. We observe that if A(f1) = 0, then
there is no need to fetch A(f2) (since the left-hand side of Eq. (7) is zero regardless
of A(f2)). Thus, we merely test whether A(f1 · f2 + f3) − A(f3) = 0. But what
should be done if A(f1) = 1? In this case we may replace f1 by f1 + 1̄ (yielding
A(f1 + 1̄) = A(f1) + 1 = 0) and test whether A((f1 + 1̄) · f2 + f3)−A(f3) = 0. The
resulting test is depicted in Figure 8.

A technical lemma. First we recall the following lemma of [21] which provides
an improved analysis of Freivalds’ matrix multiplication test in the special case when
the matrices are symmetric with common diagonal.

LEMMA 3.16 (symmetric matrix multiplication test [21]). Let M1,M2 be N -by-N
symmetric matrices over Σ which agree on their diagonals. Suppose that M1 6= M2.
Then

Pr
x,y

R←ΣN
[xM1y 6= xM2y] ≥ 3

8
.

Furthermore, Pr
x
R←ΣN

[xM1 6= xM2] ≥ 3/4 .

Proof. Let M def= M1−M2. The probability that a uniformly selected combination
of the rows of M yields an all-zero vector is 2−r, where r is the rank of M . Since M
is symmetric, not identically zero and has a zero diagonal, it must have rank at least
2. Thus, Pr

x
R←ΣN

[
xM 6= 0N

]
≥ 3/4 and the lemma follows.

RMB detectors. Suppose that A is actually linear. In that case, the following
lemma provides a condition under which A respects the monomial basis. We start
with a definition.

DEFINITION 3.17 (RMB detector). Let A: Fl → Σ and f ∈ Fl. We say that f is
a detector for A if

Pr
g
R←Fl

[A(f ′ · g) 6= 0] ≥ 1/2 ,

where f ′ = f if A(f) = 0 and f ′ = f + 1̄ otherwise.
The number of detectors is clearly related to the rejection probability of the RMB

test. Suppose that A (or rather Ã) is linear. Clearly, if A respects the monomial basis,
then it has no detectors. On the other hand, the following lemma asserts that if A
does not respect the monomial basis, then it has many detectors.

844 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

LEMMA 3.18 (RMB test for linear functions). Suppose Ã: Fl → Σ is linear,
Ã(χ∅) = 1, and Ã does not respect the monomial basis. Then at least a 3/4 fraction
of the functions in Fl are detectors for Ã.

Proof. Let N = 2l. We define a pair of N -by-N matrices whose rows and columns
are indexed by the subsets of [l]. Specifically, for S, T ⊆ [l], we set

M1[S, T] = Ã(χS) · Ã(χT),

M2[S, T] = Ã(χS∪T) .

Clearly, both M1 and M2 are symmetric, and they agree on the diagonal. Using
Ã(χ∅) = 1 we have, for every T ⊆ [l],

M1[∅, T] = Ã(χ∅) · Ã(χT) = 1 · Ã(χT) = M2[∅, T].(8)

By the hypothesis that Ã does not respects the monomial basis, it follows that M1 6=
M2. Our aim is to relate the inequality of the above matrices to the existence of
detectors for Ã. We first express the condition Ã(fg) = Ã(f) · Ã(g) in terms of these
matrices.

Recall that C:Fl → Σ2l is the transformation which to any f ∈ Fl associates
the vector (Cf (S))S⊆[l] whose entries are the coefficients of f in its monomial series.
Using the linearity of Ã we note that

Ã(f) · Ã(g) = Ã (
∑

S Cf (S) · χS) · Ã (
∑

T Cg(T) · χT)

=
[∑

S Cf (S) · Ã(χS)
]
·
[∑

T Cg(T) · Ã(χT)
]

=
∑

S,T Cf (S) · Ã(χS) · Ã(χT) · Cg(T)

= C(f)M1C(g) .

For the next step we first need the following.
Fact. Let f, g ∈ Fl and U ⊆ [l]. Then Cfg(U) =

∑
S∪T=U Cf (S) · Cg(T).

Using this fact (and the linearity of Ã) we have

Ã(fg) = Ã (
∑

U Cfg(U) · χU)

=
∑

U Cfg(U) · Ã(χU)

=
∑

U

∑
S∪T=U Cf (S) · Cg(T) · Ã(χU)

=
∑

S,T Cf (S) · Cg(T) · Ã(χS∪T)

= C(f)M2C(g) .

Since Ã is linear and Ã(1̄) = 1 (as 1̄ = χ∅), we can rephrase the condition
A(f ′ · g) 6= 0, where f ′ = f if Ã(f) = 0 and f ′ = f + 1̄ otherwise, as A(f ′ · g) 6=
A(f ′) ·A(g). Thus, for every f (setting f ′ as above), we conclude that

A(f ′ · g) 6= A(f ′) ·A(g) if and only if C(f ′)M2C(g) 6= C(f ′)M1C(g) .

A key observation is that C(f) and C(f ′) are identical in all entries except, possibly,
for the entry corresponding to ∅ (i.e., Cf (S) = Cf ′(S) for all S 6= ∅). On the other
hand, by Eq. (8), we have M1[∅, ·] = M2[∅, ·]. Thus,

A(f ′ · g) 6= A(f ′) ·A(g) if and only if C(f)M2C(g) 6= C(f)M1C(g) .

Now we note that C is a bijection, so that if h is uniformly distributed in Fl then
C(h) is uniformly distributed in Σ2l . Fixing any f ∈ Fl and setting f ′ as above, we

PCP—TOWARDS TIGHT RESULTS 845

have, for x = C(f),

Pr
g
R←Fl

[
Ã(f ′) · Ã(g) = Ã(f ′g)

]
= Pr

g
R←Fl

[C(f)M1C(g) = C(f)M2C(g)]

= Pr
y
R←Σ2l [xM1y = xM2y] .

The latter probability is 1/2 if xM1 6= xM2 and zero otherwise. Invoking Lemma 3.16
we conclude that the first case, which coincides with f being a detector for Ã, holds
for at least a 3/4 fraction of the f ∈ Fl. The lemma follows.

Lemma 3.18 suggests that if we knew A was linear we could test that it respects
the monomial basis by picking f, g at random and testing whether A(f ′g) = 0, where
f ′ = f if A(f) = 0 and f ′ = f + 1̄ otherwise. The lemma asserts that in case A is
linear and does not respect the monomial basis, we will have

Pr
f,g

R←Fl
[A(f ′g) 6= 0] ≥ 3

4
· 1

2
,

where 3/4 is a lower bound on the probability that f is a detector for A and

Pr
g
R←Fl

[A(f ′g) 6= 0] ≥ 1
2

for any detector f (by definition). However, we only know that A is close to linear.
Still, we can perform an approximation of the above test via self-correction of the
value A(f ′g). This, indeed, is our test as indicated in Figure 8.

The RMB test. We are interested in lower bounding the probability 1 −
MBPASS(A) that the test rejects, when f1, f2, f3 are chosen at random, as a func-
tion of the distance of A to a linear function Ã, given that Ã does not respect the
monomial basis. We assume that A satisfies A(f + 1̄) = A(f) + 1 (for all f ∈ Fl), as
is the case in all our applications (since we use verifiers which access a (1̄, 1)-folded
function). The first item of the following lemma is in the spirit of previous analyses
of analogous tests. The second item is somewhat unusual and will be used only in our
construction of verifiers of free-bit complexity 2 (cf. section 5).

LEMMA 3.19 (RMB test—final analysis). Let A, Ã: Fl → Σ be functions such that
Ã linear but does not respect the monomial basis. Let x = Dist(A, Ã). Suppose that
the function A satisfies A(f + 1̄) = A(f) + 1, for all f ∈ Fl. Then

(1) 1−MBPASS(A) ≥ ΓRMB(x) def= 3
8 · (1− 2x).

(2) Pr
f1,f3

R←Fl
[∃f2 ∈ Fl s.t. MBTest(A; f1, f2, f3) = 1] ≥ 2 · ΓRMB(x).

In particular, the lemma holds for A(h,0),(1̄,1), where A: Fl → Σ is arbitrary
and h ∈ Fl. We will consider the linear function closest to A(h,0),(1̄,1), denoted
Ã, and the case in which Ã does not respect the monomial basis. (In this case
Dist(A(h,0),(1̄,1), Ã)) = Dist(A(h,0),(1̄,1), LIN) ≤ 1/2.)

Proof. As a preparation for using Lemma 3.18, we first show that Ã(1̄) = 1. For
x < 1/2 this is justified by Corollary 3.14 (using the hypothesis A(f + 1̄) = A(f) + 1,
∀f ∈ Fl). Otherwise (i.e., in case x ≥ 1/2) the claimed lower bound (i.e., 3

8 ·(1−2x) ≤
0) holds vacuously.

Using Lemmas 3.18 and 3.13 we lower bound the rejection probability of the test,
1−MBPASS(A), as follows:

Pr
f1
R←Fl

[
f1 is a detector for Ã

]
· min
f is a Ã-detector

{
Pr

f2,f3
R←Fl

[MBTest(A; f, f2, f3) = 1]
}

846 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

≥ 3
4
· min
f is a Ã-detector

{
Pr

f2,f3
R←Fl

[A(f ′f2 + f3) 6= A(f3)]
}

≥ 3
4
· min
f is a Ã-detector

{
Pr

f2,f3
R←Fl

[
0 6= Ã(f ′f2) = A(f ′f2 + f3)−A(f3)

]}

≥ 3
4
· 1

2
· min
f ′, g s.t. Ã(f ′g) 6= 0

{
Pr

f3
R←Fl

[
Ã(f ′ · g) = A(f ′ · g + f3)−A(f3)

]}
≥ 3

8
· (1− 2x),

where the first inequality uses Lemma 3.18, the third inequality follows by the defini-
tion of a detector for Ã (by which Pr

g
R←Fl

[
Ã(f ′g) 6= 0

]
≥ 1/2), and the last inequality

follows by Lemma 3.13. This concludes the proof of part 1. Part 2 is proven analo-
gously with the exception that we don’t lose a factor of two in the third inequality
(since here f2 is not selected at random but rather set existentially).

Remark 3.20. An RMB test for arbitrary A’s (rather than ones satisfying A(f +
1̄) = A(f) + 1, ∀f ∈ Fl) can be derived by augmenting the above test with a test of
A(f +1̄) = A(f)+1 for uniformly chosen f ∈ Fl. The analysis of the augmented part
is as in the circuit test (below).

3.5.3. Atomic projection test. The final test checks that the second function
A1 is not too far from the evaluation operator Ea1 , where a1 = σ(a) is a function of
the string a whose evaluation operator is close to A. Here, unlike previous works (for
instance, [23]), σ may be an arbitrary mapping from Σl to Σl1 rather than being a
projection (i.e., satisfying σ(x) = x(i1), . . . , x(il1) for some sequence 1 ≤ i1 < · · · <
il1 ≤ l and all x ∈ Σl). Thus, the term “projection test” is adopted for merely
historical reasons.

LEMMA 3.21. Let A: Fl → Σ and let σ: Σl → Σl1 be a function. Let a ∈ Σl

and let x = Dist(A,Ea). Let a1 = σ(a) ∈ Σl1 . Then 1 − PROJPASSσ(A,A1) ≥
Dist(A1, Ea1) · (1− 2x).

Proof. We lower bound the rejection probability as follows:

Pr
f
R←Fl ; g R←Fl1

[A1(g) 6= A(g ◦ σ + f)−A(f)]

≥ Pr
f
R←Fl ; g R←Fl1

[A1(g) 6= Ea(g ◦ σ) and A(g ◦ σ + f)−A(f) = Ea(g ◦ σ)]

≥ Pr
g
R←Fl1

[A1(g) 6= Ea(g ◦ σ)] · (1− 2x) .

Here we used Lemma 3.13 in the last step. Now we note that Ea(g ◦σ) = (g ◦σ)(a) =
g(σ(a)) = Ea1(g). Hence the first term in the above product is just

Pr
g
R←Fl1

[A1(g) 6= Ea1(g)] = Dist(A1, Ea1) .

This concludes the proof.

3.5.4. Atomic circuit test. For sake of elegance, we also present an atomic
circuit test, denoted CircTesth(A; f). The test consists of checking whether A(h +
f) = A(f), and it outputs 0 if equality holds and 1 otherwise. Assuming that A is
close to some evaluation operator Ea, the atomic circuit test uses self-correction [27]
to test that a given function h has value 0 at a. As explained above, this test is not
needed since all of our proof systems will use a (h, 0)-folding (of A) and thus will

PCP—TOWARDS TIGHT RESULTS 847

The MaxSNP inner verifier. Given functions h ∈ Fl and σ: Σl → Σl1 ,
the verifier has access to oracles for A: Fl → Σ and A1: Fl1 → Σ. In addition
it takes three [0, 1] valued parameters p1, p2, and p3 such that p1+p2+p3 = 1.

Pick p R← [0, 1].

Case: p ≤ p1 :
Pick f1, f2

R← Fl.
LinTest(A(h,0),(1̄,1); f1, f2).

Case: p1 < p ≤ p1 + p2 :
Pick f1, f2, f3

R← Fl.
MBTest(A(h,0),(1̄,1); f1, f2, f3).

Case: p1 + p2 < p :
Pick f R← Fl and g

R← Fl1 .
ProjTestσ(A(h,0),(1̄,1), A1; f, g).

Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f),
A(f + h), A(f + 1̄), or A(f + h+ 1̄).

FIG. 9. The MaxSNP inner verifier VSNPinner.

impose h(a) = 0. The analysis lower bounds the rejection probability, as a function
of the distance of A from linear, given that h(a) = 1.

LEMMA 3.22. Let A: Fl → Σ and let a ∈ Σl. Let h ∈ Fl and x = Dist(A,Ea). If
h(a) = 1, then 1− CIRCPASSh(A) ≥ 1− 2x, where

CIRCPASSh(A) def= Pr
f
R←Fl

[CircTesth(A; f) = 0].

4. A new 3-query PCP and improved MaxSNP hardness results.

4.1. The MAXSNP verifier. In this section we present a simple verifier which
performs one of two simple checks, each depending on only three queries. This verifier
will be the basis for the nonapproximability results for several MaxSNP problems, in
particular Max3SAT, Max2SAT, and MaxCUT, whence its name.

4.1.1. The inner verifier. Figure 9 describes an inner verifier. Our verifier
is adaptive, that is, some of its queries are determined as a function of answers to
previous queries. (The adaptivity is not obvious from Figure 9; it is rather “hidden”
in the RMB test; see section 3.5.2.) Adaptivity is used to improve the performance of
our verifier and to strengthen the nonapproximability results which follow (cf. previous
versions of this paper [20]).

The inner verifier, VSNPinner, takes the usual length parameters l, l1 as well as
additional (probability) parameters p1, p2, and p3 such that p1 + p2 + p3 = 1. It
performs just one test: with probability p1 the linearity test; with probability p2 the
respect of monomial basis test; and with probability p3 the projection test. Formally,
this is achieved by picking p at random and making cases based on its value.6 To

6For simplicity, p is depicted as being chosen as a random real number between 0 and 1. Of
course we cannot quite do this, but we will see later that the values of p1, p2, p3 in our final verifiers
are appropriate constants. So in fact an appropriate choice of p can be made using O(1) randomness,
which is what we will implicitly assume.

848 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

improve the results, we perform the tests on a folding of A over both (h, 0) and
(1̄, 1) (i.e., on A(h,0),(1̄,1)). We stress that A(h,0),(1̄,1) is a virtual oracle which is
implemented by the verifier which accesses the actual oracle A (on points determined
by the definition of folding). We now examine the goodness of VSNPinner. Recall the
definitions of Γlin(x) (specifically, note that Γlin(x) ≥ x) and of ΓRMB(x) = 3

8 (1−2x),
for all x.

Informally, the following lemma considers all the possible strategies of a “dis-
honest” prover and indicates the probability (denoted 1 − ρ) with which the verifier
detects an error (when run against such strategies). The three cases correspond to
the events that

(1) the function A(h,0),(1̄,1) may be very far from being linear;
(2) the function A(h,0),(1̄,1) is x-close to linear, for some x < 1/2− δ1, but is not

x-close to a valid codeword (i.e., to a linear function which respects the mono-
mial basis); and

(3) the function A(h,0),(1̄,1) is x-close to a codeword, but the encoding of

σ(E−1(A(h,0),(1̄,1)))

is very far from the function A1.
LEMMA 4.1 (soundness of VSNPinner). Suppose δ1, δ2 > 0, and l, l1 ∈ Z+. Suppose

p1, p2, p3 ∈ [0, 1] satisfy p1 + p2 + p3 = 1. Then the (l, l1)-canonical inner verifier
VSNPinner is (ρ, δ1, δ2)-good, where 1− ρ = min(T1, T2, T3) and

(1) T1
def= p1 · (1/2− δ1),

(2) T2
def= minx≤1/2−δ1 [p1 · Γlin(x) + p2 · ΓRMB(x)],

(3) T3
def= minx≤1/2−δ1 [p1 · Γlin(x) + p3 · (1/2− δ2)(1− 2x)].

Proof. We consider an arbitrary pair of oracles, (A,A1), and the behavior of
VSNPinner when given access to this pair of oracles. Our analysis is broken up into cases
depending on (A,A1); specifically, the first case-partition depends on the distance of
A(h,0),(1̄,1) (i.e., the folding of A) from linear functions. We show that, in each case,
either the verifier rejects with probability bounded below by one of the three quantities
(above), or the oracle pair is such that rejection is not required.

Let x = Dist(A(h,0),(1̄,1), LIN).
Case 1. x ≥ 1/2 − δ1. Lemma 3.15 implies that 1 − LINPASS(A(h,0),(1̄,1)) ≥

Γlin(x) ≥ x ≥ 1/2− δ1. (The second inequality follows from the fact that Γlin(x) ≥ x
for all x.) Since VSNPinner performs the atomic linearity test with probability p1, we
have

1− ACC [V A,A1
SNPinner(σ, h)] ≥ p1 ·

(
1
2
− δ1

)
≥ 1− ρ.(9)

Case 2. x ≤ 1/2−δ1. Lemma 3.15 implies that 1−LINPASS(A(h,0),(1̄,1)) ≥ Γlin(x),
and so the probability that VSNPinner performs the linearity test and rejects is at least
p1 · Γlin(x). Now let Ã be a linear function such that Dist(A(h,0),(1̄,1), Ã) = x. We
consider the following subcases.

Case 2.1. Ã does not respect the monomial basis. In this case, part 1 of
Lemma 3.19 implies that 1 − MBPASS(A(h,0),(1̄,1)) ≥ ΓRMB(x). So the probability
that VSNPinner performs the atomic respect of monomial basis test and rejects is at
least p2 · ΓRMB(x). Since the event that the verifier performs a linearity test and the
event that it performs a respect of monomial basis test are mutually exclusive, we can
add the probabilities of rejection and thus get

1− ACC [V A,A1
SNPinner(σ, h)] ≥ p1 · Γlin(x) + p2 · ΓRMB(x) ≥ 1− ρ.(10)

PCP—TOWARDS TIGHT RESULTS 849

Case 2.2. Ã respects the monomial basis. By Proposition 3.2, Ã is an evaluation
operator. So there exists a ∈ Σl such that Ã = Ea. So Dist(A(h,0),(1̄,1), Ea) = x. Let
a1 = σ(a). The proof splits into two further subcases.

Case 2.2.1. d def= Dist(A1, Ea1) ≥ 1/2− δ2. By Lemma 3.21 we have

1− PROJPASSσ(A(h,0),(1̄,1), A1) ≥ d · (1− 2x) ≥
(

1
2
− δ2

)
· (1− 2x) .

So the probability that VSNPinner performs the projection test and rejects is at least
p3 · (1/2− δ2)(1− 2x). Thus, adding probabilities, as in Case 2.1, we get

1− ACC [V A,A1
SNPinner(σ, h)] ≥ p1 · Γlin(x) + p3 · (1/2− δ2)(1− 2x) ≥ 1− ρ.(11)

Case 2.2.2. Else, we have x = Dist(A(h,0),(1̄,1), Ea) ≤ 1/2−δ1 and Dist(A1, Ea1) <
1/2 − δ2. Thus the functions A(h,0),(1̄,1) and A1 satisfy conditions (2.1) and (2.2) in
Definition 3.9.

Observe that the only case which does not yield 1 − ACC [V A,A1
PCPinner(σ, h)] ≥

1 − ρ is Case (2.2.2). However, Case (2.2.2) satisfies conditions (2.1) and (2.2)
of Definition 3.9. Thus, VPCPinner satisfies condition (2) of Definition 3.9. Clearly,
VPCPinner also satisfies condition (1) of Definition 3.9, and thus the lemma
follows.
The upper bound on the soundness error of VSNPinner, provided by Lemma 4.1, is some-
what complicated to grasp. Fortunately, using ΓRMB(x) = 3

8 (1− 2x) and Γlin(x) ≥ x,
for all x ≤ 1/2, we can simplify the expression as follows.

CLAIM 4.2. Let T1, T2, and T3 be as in Lemma 4.1, δ = max(δ1, δ2) > 0,
and p1, p2, p3 ∈ [0, 1] satisfy p1 + p2 + p3 = 1. Then, T2 ≥ min{ 1

2p1,
3
8p2}, T3 ≥

min{ 1
2p1,

1
2p3} − δ, and

min{T1, T2, T3} ≥ min
{

1
2
p1,

3
8
p2,

1
2
p3

}
− δ .

Interestingly, this lower bound is tight.
Proof. Clearly, T1 = (1

2 −δ1)p1 ≥ 1
2p1−δ. To analyze T2, let h(x) def= p1 ·Γlin(x)+

p2 · ΓRMB(x).
Fact 1. minx≤1/2{h(x)} = min{ 3

8p2,
1
2p1} = min{h(0), h(1/2)}.

Proof. By considering two cases and using Γlin(x) ≥ x and ΓRMB(x) = 3
8 −

3
4x.

Case 1. p1 ≥ 3
4p2;

h(x) ≥ p1x+
3
8
p2 −

3
4
p2x =

3
8
p2 +

(
p1 −

3
4
p2

)
· x ≥ 3

8
p2.

Case 2. p1 ≤ 3
4p2;

h(x) ≥ p1x+
3
8
p2 −

3
4
p2x =

1
2
p1 +

(
3
4
p2 − p1

)
·
(

1
2
− x
)
≥ 1

2
p1.

The fact follows by observing that h(0) = 3
8p2 and h(1/2) = 1

2p1.
Thus, we have T2 = minx≤1/2−δ1 [h(x)] ≥ min{ 1

2p1,
3
8p2}. The term T3 is ana-

lyzed similarly, by defining g(x) def= p1 ·Γlin(x)+p3 ·(1−2x)/2, and using the following
fact.

Fact 2. minx≤1/2{g(x)} = min{ 1
2p3,

1
2p1} = min{g(0), g(1/2)}.

Proof. The proof is by considering two cases and using Γlin(x) ≥ x.

850 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Case 1. p1 ≥ p3;

g(x) ≥ p1x+
1
2
p3 − p3x =

1
2
p3 + (p1 − p3) · x ≥ 1

2
p3.

Case 2. p1 ≤ p3;

g(x) ≥ p1x+
1
2
p3 − p3x =

1
2
p1 + (p3 − p1) ·

(
1
2
− x
)
≥ 1

2
p1.

The fact follows by observing that g(0) = 1
2p3 and g(1/2) = 1

2p1.
Thus, we have T3 ≥ min x≤1/2−δ2 [g(x)] − δ ≥ min{ 1

2p1,
1
2p3} − δ. The claim

follows.

4.1.2. Main application: The MaxSNP verifier. We are now ready to state
the main result of this section. It is a simple verifier for NP which achieves soundness
error approaching 85% while performing one of two very simple tests.

PROPOSITION 4.3 (the MaxSNP verifier). For any γ > 0 and for any language
L ∈ NP, there exists a verifier VSNP for L such that

• VSNP uses logarithmic randomness and has perfect completeness;
• VSNP has soundness error 17

20 + γ; and
• on access to an oracle π (and according to the outcome of the verifier’s coin

tosses), the verifier VSNP performs one of the following actions:
(1) Parity check. VSNP determines a bit b, makes three queries q1, q2, and

q3, and rejects if π(q1)⊕ π(q2)⊕ π(q3) 6= b.
(2) RMB check. VSNP determines two bits b0, b1, makes three out of four

predetermined queries q1, q2, q3, and q4, and rejects if either (π(q1) =
0) ∧ (π(q2)⊕ π(q4) 6= b0) or (π(q1) = 1) ∧ (π(q3)⊕ π(q4) 6= b1).
That is, the verifier inspects π(q1) and consequently checks either π(q2)⊕
π(q4) ?= b0 or π(q3)⊕ π(q4) ?= b1.

Furthermore, the probability (over its coin tosses) that VSNP performs a parity
check is 3

5 (and the probability that VSNP performs an RMB check is 2
5).

Proof. Set δ1 = δ2 = γ/2 and ε = γ
2 · (16δ2

1δ
2
2) = γ5

2 > 0. Now, let l and l1
be integers such that the outer verifier, Vouter, guaranteed by Lemma 3.8 is (l, l1)-
canonical and ε-good for L. Consider the (l, l1)-canonical inner verifier VSNPinner,
working with the parameters p1, p2, and p3 set to minimize its error. Obviously this
calls for setting 1/2p1 = 3

8p2 = 1/2p3, which yields

p1 =
3
10

; p2 =
4
10

; p3 =
3
10
.(12)

Let VSNP be the verifier obtained by composing Vouter with VSNPinner.
We start by analyzing the soundness error of VSNP. By Lemma 4.1 and Claim 4.2,

we know that the inner verifier VSNPinner, with pi’s as in Eq. (12), is (ρ, δ1, δ2)-good,
for

ρ ≤ 1− 1
2
· p3 + δ1 = 1− 3

20
+

1
2
· γ .

Invoking Theorem 3.12, we upper bound the soundness error of VSNP by 1− 3
20 + γ

2 +
ε

16δ2
1δ

2
2

which by the setting of ε yields the claimed soundness bound (of 0.85 + γ).
Clearly, VSNP uses logarithmic randomness, has perfect completeness, and its

computation on the answers of the oracles are determined by VSNPinner. It is left to

PCP—TOWARDS TIGHT RESULTS 851

observe that each of the three tests (i.e., linearity, monomial basis, and projection),
performed by VSNPinner, is either a parity check or an RMB check and that the latter
occurs with probability 0.4. First observe that with probability p1, VSNPinner performs
LinTest(A(h,0),(1̄,1); f1, f2), where f1, f2 ∈ Fl. Recall that query f to A(h,0),(1̄,1)
translates to a query in the set {f, f +h, f + 1̄, f +h+ 1̄} answered by A and that the
answer is possibly complemented (by adding 1 mod 2). Thus, the above linearity test
translates to checking the exclusive-or of three predetermined locations of A against
a predetermined bit b (i.e., this bit is determined by the number of times which have
shifted a potential query by 1̄). Similarly, MBTest(A(h,0),(1̄,1); f1, f2, f3) translates
to an RMB check with b0, b1, and the four possible queries being determined by the
folding over 1̄. Finally, we observe that the projection test, performed by VSNPinner,
also amounts to a parity check, this time on answers taken from two different oracles
(which can actually be viewed as one oracle).

Remark 4.4 (a tedious one). The probability that verifier VSNP, of the above
proposition, makes two identical queries is negligible. Specifically, it can be made
smaller than γ (mentioned in the proposition). Thus, we can ignore this case7 in the
next two sections and assume, without loss of generality, that all queries are distinct.

Implementing the MaxSNP verifier via gadgets. In the following sections
we use the verifier of Proposition 4.3 to obtain hardness results for various variants
of MaxSAT as well as for MaxCUT. The hardness results are obtained by construct-
ing an instance of the problem at hand so that the instance represent the verifier’s
computation on input x. The primary aspect of the reduction is the construction
of gadgets which reflect the result of the verifier’s computation (i.e., accept/reject)
after performing one of the two types of checks, i.e., parity check or RMB check. We
define a performance measure of a gadget and relate the hardness result achieved to
the performance measure obtained by the gadgets in use.8

Sources of our improvements. The explicit statement of a generic verifier
for deriving MaxSNP hardness results is a novelty of our paper. Thus, a quantitative
comparison to previous works is not readily available. Certainly, we improve over
these works thanks to the use of the new long code-based inner verifier, the atomic
tests and their analysis in section 3.5, the new idea of folding, and the improved
analysis of linearity testing due to [17].

4.1.3. Another application: Minimizing soundness error in 3-query
pcp. As a direct corollary to Proposition 4.3, we obtain the following.

THEOREM 4.5. For any s > 0.85, NP ⊆ PCP1,s[coins = log; query = 3; free = 2].

4.2. Satisfiability problems. In this section we mainly deal with CNF for-
mulae. However, the last subsection deals with formulae consisting of a conjunc-
tion of PARITY (rather than OR) clauses. Refer to section 2.4 for definitions, in
particular for the problem MaxXSAT and the promise problem Gap-XSAT. Recall
that MaxSAT(ϕ) is the maximum number of simultaneously satisfiable clauses in

7Formally, suppose that, when it occurs, the verifier performs some standard check on fixed
different queries. This modification increases the soundness error by at most γ which tends to zero
anyhow.

8Given that the performance of the various gadgets might be different for the different checks,
one might suspect that it might have been a better idea to first construct the gadgets and then to
optimize the soundness of VSNP, keeping in mind the relative performance measures of the two kinds
of gadgets being employed. Surprisingly enough it turns out (cf. [20]) that the optimization is not a
function of the performance of the gadgets and indeed the choice of parameters p1, p2, and p3, as in
Eq. (12), is optimal for the following reductions.

852 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

formula ϕ, and MaxSAT(ϕ) = MaxSAT(ϕ)/‖ϕ‖ is the normalized version, where ‖ϕ‖
is the number of clauses in formula ϕ. See section 2.4.3 for a description of previous
work.

A consequence of the following theorem (obtained by applying Proposition 2.5)
is that, assuming P 6= NP, there is no polynomial-time algorithm to approximate the
following: (1) Max3SAT within a factor of 1.038; (2) MaxE3SAT within a factor of
1.038; (3) Max2SAT within a factor of 1.013.

THEOREM 4.6 (MaxSAT nonapproximability results). The following problems are
NP-hard:

(1) Gap-3SATc,s with c = 1 and s = 26/27.
(2) Gap-E3SATc,s with c = 1 and s = 26/27.
(3) Gap-2SATc,s for some 0 < s < c < 1 satisfying c > 0.9 and c/s = 74/73.
Actually, items 1 and 2 hold for any s > 1 − 3

80 whereas item 3 holds as long as
c
s < 1 + 3

217 . Item 1 is implied by item 2 so we will prove only the latter.

4.2.1. The hardness of MaxE3SAT and Max2SAT.
Gadgets. In the context of MaxSAT problems, we may easily replace a con-

dition of the form a + b + c = 1 by ā + b + c = 0, where ā is the negation of the
variable a. Thus, the task of designing gadgets is simplified, and we need to imple-
ment two (simplified) types of checks: the parity check (checking that a + b = c for
a, b, and c obtained from the oracle) and the RMB check for a, b0, b1, and c obtained
from the oracle). Accordingly a parity check (PC) gadget, PC(a, b, c, x1, x2, . . . , xn),
is a set of clauses over three distinguished variables a, b, c and n auxiliary variables
x1, . . . , xn. It is an (α, β)-PC gadget if the following is true: if a + b = c, then
MaxSAT(PC(a, b, c, x1, x2, . . . , xn)) = α; else it is at most α− β. Similarly a respect-
monomial-basis check (RMBC) gadget, RMBC(a, b0, b1, c, x1, . . . , xn), is a set of
clauses over four distinguished variables a, b0, b1, c and n auxiliary variables x1, . . . , xn.
It is an (α, β)-RMBC gadget if the following is true: if ba = c, then
MaxSAT(RMBC(a, b0, b1, c, x1, x2, . . . , xn)) = α; else it is at most α − β. We stress
that in both cases the maximum number of clauses which are simultaneously satisfied
is at most α. A gadget is said to be an X-SAT gadget if, as a formula, it is an X-SAT
formula.

The following lemma describes how gadgets of the above form can be used to
obtain the hardness of MaxSAT.

LEMMA 4.7 (MaxSAT implementation of a verifier). Let V be a verifier for L
of logarithmic randomness, with perfect completeness and soundness s, such that V
performs either a single parity check (with probability q) or a single RMB check (with
probability 1− q). Furthermore, suppose that in either case, the verifier never makes
two identical queries. If there exists an (α1, β)-parity-check X-SAT gadget contain-
ing m1 clauses and an (α2, β)-RMBC X-SAT gadget containing m2 clauses, then L
reduces to Gap-XSATc′,s′ for

c′ =
α1q + α2(1− q)
m1q +m2(1− q) ,

s′ =
α1q + α2(1− q)− (1− s)β

m1q +m2(1− q) .

In particular c′

s′ ≥ 1 + (1−s)β
α1q+α2(1−q)−(1−s)β .

PCP—TOWARDS TIGHT RESULTS 853

Remark 4.8. In the above lemma, we have assumed that both the PC and RMBC
gadgets have the same second parameter β. This assumption is not really a restriction
since we can transform a pair of (α1, β1)-PC and (α2, β2)-RMBC gadgets into a pair
of (α1β2, β1β2)-PC and (α2β1, β1β2)-RMBC gadgets, thereby achieving this feature.
(Actually, what really matters are the fractions αi/β.)

Proof. Let PC(a, b, c, x1, . . . , xn1) be the parity check gadget and let RMBC(a, b,
c, d, x1, . . . , xn2) be the RMBC gadget. We encode V ’s computation on input x by
a CNF formula ϕx. Corresponding to every bit π[q] of the proof (oracle) accessed
by the verifier V , we create a variable y[q]. In addition we create some auxiliary
variables yAux[R, i] for each random string R used by the verifier V and i going from
1 to max(n1, n2). For each such R we will construct a formula ϕR which encodes the
computation of the verifier when its coins are R. The union of all these formulae will
be our ϕx.

On random string R, if the verifier performs a parity check on bits π[q1], π[q2], and
π[q3], then ϕR consists of the clauses PC(y[q1], y[q2], y[q3], yAux[R, 1], . . . , yAux[R,n1]).
On the other hand if the verifier performs an RMB check on bits π[q1], π[q2], π[q3],
π[q4], then ϕR consists of the clauses RMBC(y[q1], y[q2], y[q3], y[q4], yAux[R, 1], . . . ,
yAux[R,n2]).

Let N denote the number of possible random strings used by V . Observe that
the number of clauses in ϕx equals m1 · qN +m2 · (1− q)N . We now analyze the value
of MaxSAT(ϕx).

If x ∈ L, then there exists an oracle π such that V π(x) always accepts. Consider
the assignment y[q] = π[q] (i.e., y[q] is true iff π[q] = 1). Then for every R, there exists
an assignment to the variables yAux[R, i] such that the number of clauses of ϕR that
are satisfied by this assignment is α1 if R corresponds to a parity check and α2 if R
corresponds to an RMB check. Since qN of the gadgets are PC gadgets and (1− q)N
of the gadgets are RMBC gadgets, we have MaxSAT(ϕx) ≥ qNα1 + (1− q)Nα2, and
the expression for c′ follows.

Now consider the case when x 6∈ L. We prove below that if there exists an
assignment which satisfies qNα1 + (1− q)Nα2 − (1− s)Nβ clauses of ϕx, then there
exists an oracle π such that V π(x) accepts with probability at least s. Since we know
this cannot happen, we conclude that MaxSAT(ϕx) < qNα1+(1−q)Nα2−(1−s)Nβ =
s′|ϕx|.

To prove the above claim, we convert any assignment to the variables y into an
oracle π in the natural way, i.e., π[q] = 1 iff y[q] is true. Now, by the property of
the gadgets, if a PC gadget PC(y[q1], y[q2], y[q3], yAux[R, 1], . . .) has more than α1−β
clauses satisfied, then π[q1] ⊕ π[q2] = π[q3]. In turn this implies that the verifier V
accepts π on random string R. A similar argument can be made about the random
strings R which correspond to RMB checks. We also use the property that a PC
(resp., RMB) gadget cannot have more than α1 (resp., α2) satisfied clauses, even if
the claim it checks does hold. Thus, if an assignment satisfies qN · (α1 − β) + (1 −
q)N · (α2 − β) + sNβ clauses, then there must exist sN random strings R on which
V accepts. This proves the claim and the lemma follows.

Figure 10 describes gadgets which will be used for our MaxE3SAT construc-
tion; notice that they are exact-3-SAT gadgets. We have a (4, 1)-PC gadget, PC3,
and a (4, 1)-RMB gadget, RMBC3, each consisting of four clauses in which all the
clauses have exactly three variables. Both gadgets have no auxiliary variables. The
PC3(a, b, c) gadget is merely the canonical 3CNF of the expression a + b + c = 0.
The first two clauses in the RMBC3(a, b, b′, c) gadget are the canonical 3CNF of the

854 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

The MaxE3SAT gadgets.

PC3(a, b, c) = {(a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b ∨ c)}

RMBC3(a, b, b′, c) = {(a ∨ b ∨ c), (a ∨ b ∨ c), (a ∨ b′ ∨ c), (a ∨ b′ ∨ c), }

FIG. 10. The MaxE3SAT gadgets.

The MAX2SAT gadgets.

PC2(a, b, c, x00, x01, x10, x11) =
{(x00 ∨ a), (x00 ∨ b), (x00 ∨ c),

(x01 ∨ a), (x01 ∨ b), (x01 ∨ c),
(x10 ∨ a), (x10 ∨ b), (x10 ∨ c),
(x11 ∨ a), (x11 ∨ b), (x11 ∨ c)}.

RMBC2(a, b, b′, c, x00, x11, y00, y11) =
{(x00 ∨ b), (x00 ∨ c), (a ∨ x00),

(x11 ∨ b), (x11 ∨ c), (a ∨ x11),
(y00 ∨ b′), (y00 ∨ c), (a ∨ y00),
(y11 ∨ b′), (y11 ∨ c), (a ∨ y11)}.

FIG. 11. The Max2SAT gadgets.

expression (a = 0)⇒ (b = c), whereas the latter two clauses are the canonical 3CNF
of the expression (a = 1)⇒ (b′ = c). Figure 11 similarly describes 2-SAT gadgets for
our Max2SAT construction. We have a (11, 1)-PC gadget, PC2, and a (11, 1)-RMB
gadget, RMBC2, each consisting of 12 clauses. Each gadget has four auxiliary vari-
ables. The auxiliary variable xτσ in the PC2 gadget is supposed to be the indicator
of the event ((a = σ)∧ (b = τ)). Thus, a+ b = c allows us to satisfy 11 clauses by ap-
propriately setting the indicator variables (e.g., if a = b = c = 0, then setting x00 = 1
and the other xτσ’s to 0 satisfies all clauses except the last one). The RMBC2 gadget
is composed of two parts; the first six clauses handle the expression (a = 0)⇒ (b = c),
whereas the latter six clauses are for the expression (a = 1)⇒ (b′ = c).

LEMMA 4.9 (SAT gadgets). The following gadgets exist.
(1) E3-SAT gadgets: a (4, 1)-PC gadget of four clauses and a (4, 1)-RMB gadget

of four clauses.
(2) 2-SAT gadgets: a (11, 1)-PC gadget of 12 clauses and a (11, 1)-RMB gadget

of 12 clauses.
Remark 4.10. In previous versions of this work [20], it was observed that a ratio

of 4 between the number of clauses and the second parameter (i.e., β) is minimal
for both E 3-SAT gadgets. Several questions regarding the α/β ratios achievable by
3-SAT and 2-SAT gadgets were posed. Answers were subsequently provided in [84],
which undertakes a general study of the construction of optimal gadgets.

PCP—TOWARDS TIGHT RESULTS 855

Proof of Lemma 4.9. We use the gadgets presented in Figures 10 and 11. The
claim regarding E3-SAT follows from the motivating discussion above (i.e., by which
these gadgets are merely the canonical 3CNF expressions for the corresponding con-
ditions). The analysis of the 2-SAT gadgets in Figure 11 is straightforward but te-
dious; it is omitted from this version and can be found in previous versions of this
work [20].

Proof of Theorem 4.6. The theorem follows by applying Lemma 4.7 to the verifier
of Proposition 4.3 and the gadgets of Lemma 4.9. Details follow.

Recall that by Remark 4.4, we may assume that the verifier does not make two
identical queries. Applying Lemma 4.7 to the verifier of Proposition 4.3 we obtain a
reduction of any language in NP to Gap-XSATc′,s′ for values of c′ and s′ determined as
a function of the gadget parameters, the probability parameter q, and the soundness
s of the verifier of Proposition 4.3. Specifically, we observe that for E3-SAT we have
c′ = 1 (since αi = mi = 4 for i = 1, 2), whereas for 2-SAT we have 0.9 < c′ < 1 (since
αi
mi

= 11
12 = 4 for i = 1, 2). In both cases, β = 1 and the expression for c′/s′ is given by

1 +
1− s

qα1 + (1− q)α2 − (1− s) ,(13)

where s and q are determined by Proposition 4.3; that is, (for every γ > 0),

s = 1− 3
20

+ γ,(14)

q =
3
5
,(15)

Substituting Eqs. (14) and (15) into Eq. (13), and letting γ → 0, we get

c′

s′
→ 1 +

3
12α1 + 8α2 − 3

.

The bounds for E3-SAT and 2-SAT now follow by using the αi’s values of Lemma 4.9.
In particular, for E3-SAT we get s′ → 77/80 and for 2-SAT we get c′

s′ → 1 +
3

217 .
We conclude this subsection by presenting a variant of Lemma 4.7. This variant

refers only to 3-SAT formulae, but makes no restrictions on the verifier in the PCP
system.

LEMMA 4.11 (Max3SAT implementation of a generic verifier). Let L be in
PCP1,1−δ[log, 3], for some 0 < δ < 1. Then, L reduces to Gap-3SAT1,1− δ4

.
Proof. Let V be a verifier as guaranteed by the hypothesis. Building on Lemma 4.7,

it suffices to show that the computation of V on any possible random tape can be
captured by a 3CNF formula with at most four clauses. We consider the depth-3
branching program which describes the acceptance of V on a specific random tape.
(The variables in this program correspond to queries that the verifier may make on
this fixed random tape. Since the verifier may be adaptive, different variables may
appear on different paths.) In case this tree has at most four rejecting leaves (i.e.,
marked false), writing corresponding 3CNF clauses (which state that these paths
are not followed), we are done. Otherwise, we consider the four depth-1 subtrees. For
each such subtree we do the following. In case both leaves are marked false, we write
a 2CNF clause (which states that this subtree is not reached at all). In case a single
leaf is marked false, we write one 3CNF clause (as above), and if no leaf is marked
false, we write nothing.

856 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Remark 4.12. The above argument can be easily extended to show that, for any
0 ≤ ε, δ < 1,

PCP1−ε,1−δ[log, 3] ≤KD Gap-3SAT1−ε,1− δ4
.

4.2.2. Maximum satisfiable linear constraints (parity clauses). Analo-
gously to the MaxSAT problems considered above, we consider parity clauses rather
than disjunctive clauses. In other words, we are given a system of linear equations
over GF(2), and need to determine the maximum number of equations which may
be simultaneously satisfied. The problem in question is MaxLinEq (cf. section 2.4.2).
Here we provide an explicit hardness factor via a direct reduction from the MaxSNP
verifier.

THEOREM 4.13. Gap-MaxLinEqc,s is NP-hard for c = 6/7 and any c
s < 8/7.

Proof. The theorem follows by constructing appropriate gadgets. A (1, 1)-PC
gadget is straightforward here. We present a (3, 2)-RMB gadget consisting of four
equations. Specifically, for RMB(a, b0, b1, c) we present the equations b0 + c = 0,
a + b0 + c = 0, b1 + c = 0, and a + b1 + c = 1. Observe that we can think of the
RMB gadget as a (1.5, 1) gadget with two clauses (or, equivalently, think of the parity
gadget as a (2, 2) gadget with two clauses).

We obtain a hardness for Gap-MaxLinEqc′,s′ by proceeding as in the proof of
Theorem 4.6, where

c′

s′
→ 1 +

3
12α1 + 8α2 − 3

= 1 +
3

12 + 12− 3
=

8
7
,

and c′ = 3α1+2α2
3m1+2m2

= 6
7 .

4.3. MaxCUT. Refer to section 2.4 for the definition of the MaxCUT problem
and the associated gap problem Gap-MaxCUTc,s. See section 2.4.3 for discussion of
status and previous work. The following theorem (combined with Proposition 2.5)
shows that MaxCUT is NP-hard to approximate to within a factor of 1.014. We note
that the result of the following theorem holds also when the weights of the graph
are presented in unary (or, equivalently, when considering unweighted graphs with
parallel edges).

THEOREM 4.14 (MaxCUT nonapproximability result). Gap-MaxCUTc,s is NP-
hard for some c, s satisfying c > 0.6 and c/s > 1.014 (anything below 72/71).

A weaker result can be obtained for simple graphs without weights or parallel
edges. In particular, one may reduce the MaxCUT problem for graphs with parallel
edges to MaxCUT for simple graphs by replacing every edge by a path of three edges.
This causes a loss of a factor of 3 in the hardness factor, that is, we would get a
hardness factor of 214/213 for the MaxCUT problem restricted to simple graphs.
A better reduction which preserves the nonapproximation ratio has been recently
suggested by Crescenzi, Silvestri, and Trevisan [34].

Gadgets. Unlike with the MaxSAT problem, here we cannot negate variables
at zero cost. Still, we first define simplified gadgets for parity and RMB checking and
make the necessary adaptations inside Lemma 4.15.

Gadgets will be used to express the verifier’s computation in terms of cuts in
graphs. A parity check gadget PC-CUT(a, b, c, T ;x1, . . . , xn) is a weighted graph on
n+4 vertices. Of these three vertices, a, b, c correspond to oracle queries made by the
verifier. The vertex T will be a special vertex mapping cuts to truth values so that a
vertex corresponding to an oracle query is considered set to 1 if it resides in the T -side
of the cut (i.e., a is considered set to 1 by a cut (S, S) iff either a, T ∈ S or a, T ∈ S).

PCP—TOWARDS TIGHT RESULTS 857

The gadget is an (α, β)-PC gadget if MaxCUT(PC-CUT(a, b, c, T ;x1, . . . , xn)) is ex-
actly α when restricted to cuts which induce a+b = c (i.e., either 0 or 2 of the vertices
{a, b, c} lie on the same side of the cut as T), and is at most α− β when restricted to
cuts for which a+b 6= c. A cut gadget to check if a+b 6= c can be defined similarly. Sim-
ilarly, a weighted graph RMBC-CUT(a, b0, b1, c, T ;x1, . . . , xn) is an (α, β)-RMBC gad-
get if it satisfies the property that MaxCUT(RMBC-CUT(a, b0, b1, c, T ;x1, . . . , xn))
is exactly α when restricted to cuts satisfying ba = c and is at most α− β otherwise.
Cut gadgets for the other generalized RMB checks (checking if ba 6= c, ba = c+ a, or
ba 6= c+a) can be defined similarly. The following lemma (similar to Lemma 4.7) shows
how to use the above forms of gadgets to derive a reduction from NP to Gap-MaxCUT.

LEMMA 4.15 (MaxCUT implementation of a verifier). Let V be a verifier for L
of logarithmic randomness, with perfect completeness and soundness s, such that V
performs either a single parity check (with probability q) or a single RMB check (with
probability 1 − q). Here, we refer to the generalized checks as defined in Proposi-
tion 4.3. Furthermore suppose that, in either case, the verifier never makes two iden-
tical queries. If there exists an (α1−β, β)-PC gadget consisting of edges of total weight
w1−β and an (α2−β, β)-RMBC gadget consisting of edges of total weight w2−β, then
L reduces to Gap-MaxCUTc′,s′ for c′ = α1q+α2(1−q)

w1q+w2(1−q) and s′ = α1q+α2(1−q)−(1−s)β
w1q+w2(1−q) . In

particular, c′/s′ ≥ 1 + (1−s)β
α1q+α2(1−q)−(1−s)β .

Remark 4.16. Actually, the conclusion of the lemma holds provided all the gener-
alized parity check (resp., RMB check) functions have (α1, β) gadgets (resp., (α2, β)
gadgets).

Proof. Let PC-CUT(a, b, c, T, x1, . . . , xn1) denote the parity check gadget and
RMBC-CUT(a, b0, b1, c, T, x1, . . . , xn2) denote the RMBC gadget. These are simpli-
fied gadgets as defined above. Increasing the α value by β, we can easily obtain the
general gadgets as defined in Proposition 4.3. For example, to check that a+b+c = 1,
we introduce a gadget which, in addition to the variables a, b, c, T, x1, . . . , xn1 , has an
auxiliary vertex denoted ā. The new gadget consists of the edge (a, ā) having weight β
together with the weighted graph PC-CUT(ā, b, c, T, x1, . . . , xn1). Clearly, the result
is an (α1, β) gadget of weight w1 for a+b+c = 1. Likewise we can check the condition
ba+c = τa, where τ0, τ1 are any fixed bits as follows. In case τ0 = τ1 = 1, we introduce
an auxiliary vertex c̄, connect it to c by an edge of weight β, and use the graph RMBC-
CUT (a, b0, b1, c̄, T, x1, . . . , xn2). In case τ0 = 0 and τ1 = 1, we introduce an auxiliary
vertex b̄1, connect it to b1 by an edge of weight β, and use the graph RMBC-CUT(a, b0,
b̄1, c, T, x1, . . . , xn2). The case τ0 = 1 and τ1 = 0 is analogous, whereas τ0 = τ1 = 0 is
obtained by the simplified gadget itself. Thus, we have (α2, β) gadgets for all cases of
the RMB check. Throughout the rest of the proof, PC-CUT and RMBC-CUT denote
the generalized gadgets.

We create a graph Gx and weight function wx which encodes the actions of the
verifier V on input x. The vertices of Gx are as follows:

(1) For every bit π[q] of the proof queried by the verifier V , the graph Gx has a
vertex vπ[q].

(2) For every random string R tossed by the verifier V , we create vertices vR,i,
for i going from 1 to max{n1, n2}.

(3) There will be one special vertex T .
The edges of Gx are defined by the various gadgets. We stress that the same edge
may appear in different gadgets (and its weight in these gadgets may be different).
The graph Gx is defined by taking all these edges and thus it is a graph (or multi-
graph) with parallel edges and weights. The natural conversion of Gx into a graph
with no parallel edges replaces the parallel edges between two vertices with a single

858 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

edge whose weight is the sum of the weights of the original edges. Alternatively, since
the weights are constants which do not depend on x, we can transform Gx into a
unweighted graph with parallel edges.

Suppose that on random string R the verifier V queries the oracle for bits π[q1],
π[q2], and π[q3] and then does a parity check on these three bits. Then, corresponding
to this random string, we add the weighted edges of the graph GR to the graph
Gx where GR = PC-CUT(vπ[q1], vπ[q2], vπ[q3], T ; vR,1, . . . , vR,n1). Alternatively, if the
verifier V performs a respect of monomial basis test on the bits π[q1], π[q2], π[q3], and
π[q4], then we add the weighted edges of the graph GR = RMBC-CUT(vπ[q1], vπ[q2],
vπ[q3], vπ[q4], T ; vR,1, . . . , vR,n2).

Let N denote the number of possible random strings used by V . Observe that
the total weight of the edges of Gx is w1qN +w2(1− q)N . We now analyze the value
of MaxCUT(Gx).

If x ∈ L, then there exists an oracle π such that V π(x) always accepts. We define
a cut (S, S̄) in Gx in the following way: we place T ∈ S and for every query q we
place vπ[q] ∈ S iff π[q] = 1. Then for each R, there exists a placement of the vertices
vR,i so that the size of the cut induced in GR is α1 if R corresponds to V performing
a parity check and α2 if R corresponds to V performing an RMB check. The weight
of the so obtained cut is α1qN + α2(1− q)N .

Now consider x 6∈ L. We claim that if there exists a cut (S, S̄) such that the
weight of the cut is greater than qNα1 + (1− q)Nα2 − (1 − s)Nβ, then there exists
an oracle π, such that V π(x) accepts with probability at least s. Since we know this
cannot happen, we conclude that MaxCUT(Gx) < qNα1 + (1− q)Nα2 − (1− s)Nβ.
To prove the claim, we convert any cut in Gx into an oracle π where π[q] = 1 iff
T and vπ[q] lie on the same side of the cut. Now, by the property of the gadgets,
if a graph GR = PC-CUT(y[q1], y[q2], y[q3], T ;x1, . . . , xn1) contributes more than a
weight of α1 − β to the cut, then V accepts π on random string R. (Similarly, if the
graph GR is an RMBC gadget and contributes more than α2 − β to the cut, then
V accepts π on random string R.) Recall that no gadget can contribute more than
the corresponding α to any cut. Thus if the total weight of the cut is more than
(α1 − β)qN + (α2 − β)(1 − q)N + sN · β, then V accepts on at least sN random
strings. This proves the claim and the lemma follows.

We now turn to the construction of cut gadgets. Our first gadget, denoted

PC-CUT(a, b, c, T ; AUX) ,

is a complete graph defined on five vertices {a, b, c, T,AUX}. The weight function,
w, assigns to the edge {u, v} weight wu · wv, where wa = wb = wc = wT = 1 and
wAUX = 2. The following claim shows how PC-CUT(a, b, c, T ; AUX) functions as a
parity check gadget.

CLAIM 4.17 (MaxCUT PC gadget). PC-CUT(a, b, c, T ; AUX) is a (9, 1)-parity
check gadget consisting of edges of total weight 14.

The straightforward (but tedious) proof is omitted (and can be found in [20]).
The second gadget, denoted RMBC-CUT(a, b0, b1, c, T ; AUX1,AUX2,AUX3, a

′), is
composed of two graphs denoted G1 and G2, respectively. To motivate the con-
struction we first observe that the condition ba = c (i.e., (a = 0) ⇒ (b0 = c)
and (a = 1) ⇒ (b1 = c)) is equivalent to the conjunction of (b0 = b1) ⇒ (b0 =
c) and (b0 6= b1) ⇒ (a + b0 + c = 0). The graph G1(b0, b1, c; AUX1) will take
care of the first implication. It consists of the vertex set {b0, b1, c,AUX1}, the unit-
weight edges {b0,AUX1} and {b1,AUX1}, and a weight 2 edge {c,AUX1}. The graph

PCP—TOWARDS TIGHT RESULTS 859

G2(a, b0, b1, c, T ; AUX2,AUX3, a
′), taking care of the second implication, consists of two

subgraphs PC-CUT(a, b0, c, T ; AUX2) and PC-CUT(a, b1, c, T ; AUX3, a
′), where the lat-

ter is supposed to “check” a + b1 + c = 1. Specifically, PC-CUT(a, b, c, T ; AUX, a′)
consists of the graph PC-CUT(a′, b, c, T ; AUX) and a unit-weight edge {a, a′}. The
following claim shows exactly how good this gadget is in “verifying” that ba = c.

CLAIM 4.18 (MaxCUT RMB gadget). RMBC-CUT(a, b0, b1, c, T ; AUX1,AUX2,AUX3,
a′) is a (22, 2)-RMBC gadget consisting of edges of total weight 33.

Again, the straightforward proof is omitted (and can be found in [20]).
Proof of Theorem 4.14. The theorem follows by combining Proposition 4.3, Lem-

ma 4.15, and Claims 4.17 and 4.18 (when regarding the RMB gadget as a (11, 1)
gadget rather than a (22, 2) gadget). Details follows.

As in the proof of Theorem 4.6, when applying Lemma 4.15 to the verifier in
Proposition 4.3, we obtain the same expression for the gap, c′/s′, for which NP ≤KD
Gap-MaxCUTc′,s′ ; namely,

c′

s′
→ 1 +

(1− s)β
q · α1 + (1− q) · α2 − (1− s)β

= 1 +
3

12α1 + 8α2 − 3
.

Recall that here α1 − 1 = 9 and α2 − 1 = 11 (rather than α1 = 9 and α2 = 11; see
Lemma 4.15). The above simplifies to 1 + 3

213 = 72/71 and the bound on c′

s′ follows.
As for c′, it equals 3α1+2α2

3w1+2w2
> 0.6 (as w1 − 1 = 14 and w2 − 1 = 16.5).

5. Free bits and vertex cover. It is known that approximating the minimum
vertex cover of a graph to within a 1+ε factor is hard, for some ε > 0 [76, 8]. However,
we do not know of any previous attempt to provide a lower bound for ε. An initial
attempt may use VC gadgets that implement the various tests in VSNPinner analogously
to the way it was done in the previous sections for the MaxSAT versions and MaxCUT.
This yields a lower bound of ε > 1

43 > 0.023 (see details in previous versions of
this work [20]). However, a stronger result is obtained via free-bit complexity:9 We
apply the FGLSS reduction to a proof system (for NP) of low free-bit complexity,
specifically to a proof system which uses two free bits and has soundness error below
0.8. Consequently, the clique size, in case the original input is in the language, is at
least one-fourth (1/4) of the size of the graph, which means that translating clique-
approximation factors to VC-approximation factors yields only a loss of a factor of
3. Since the FGLSS transformation translates the completeness/soundness ratio to
the gap factor for approximating clique, our first goal is to construct for NP a proof
system which uses two free bits and has soundness error as low as possible. We remark
that the proof system of section 6 uses seven free bits and achieves soundness error
less than 1/2. The reader may observe that, following the above approach, it is not
worthwhile to use the proof system of section 6 or any proof systems which achieves a
soundness error of 1/2 at the cost of five free bits or more. On the other hand, in light
of the results of section 10, we cannot hope for a proof system of free-bit complexity
1 (and perfect completeness) for NP.

5.1. Minimizing the error achievable with two free bits. The pcp system
of Proposition 4.3 had free-bit complexity 2 (and query complexity 3). However, a

9Furthermore, there seems to be little hope that the former approach can ever yield an improve-
ment over the better bounds subsequently obtained by H̊astad [57].

860 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

The enhanced RMB test. Again, A: Fl → Σ is the object being tested,
and the test take additional inputs or parameters f1, f2 ∈ Fl.

EMBTest(A; f1, f2) (enhanced monomial-basis test).
For every f ∈ Fl, invoke MBTest(A; f1, f, f2).
Output 0 if all invocations answered with 0, else output 1.

The passing probability:

EMBPASS(A) = Pr
f1,f2

R←Fl
[EMBTest(A; f1, f2) = 0].

FIG. 12. The enhanced RMB test and its passing probability.

The two free-bit inner verifier. Given functions h ∈ Fl and σ: Σl → Σl1 ,
the verifier has access to oracles for A: Fl → Σ and A1: Fl1 → Σ. In addition
it takes a parameter p ∈ [0, 1].

Pick q R← [0, 1].

Case: q ≤ p :
Pick f1, f2

R← Fl.
LinTest(A(h,0),(1̄,1); f1, f2).
EMBTest(A(h,0),(1̄,1); f1, f2).

Case: q > p :
Pick f R← Fl and g

R← Fl1 .
ProjTestσ(A(h,0),(1̄,1), A1; f, g).

Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f) or
A(f + h) or A(f + 1̄) or A(f + h+ 1̄).

FIG. 13. The two free-bit inner verifier V2inner.

smaller soundness error can be achieved if we make more queries. Our starting point is
part 2 of Lemma 3.19 which suggests an RMB test with a detection probability that is
twice as big, still using 2 free bits (alas, 2l+ 2 rather than three queries). Specifically,
we consider an enhanced RMB test which, on input f1, f2 ∈ Fl, goes over all f ∈ Fl
invoking the atomic RMB test with input functions f1, f, f2. The enhanced RMB
Test, denoted EMBTest, is depicted in Figure 12. Further improvement is obtained
by “packing” together the linearity test and the enhanced RMB test (in contrast to
VSNPinner in which these tests were performed exclusively). Both tests make three
queries of which two are common, and the answers to these queries determine the
answer to the third query (which is different in the two tests). The resulting inner
verifier, denoted V2inner, is depicted in Figure 13. As VSNPinner, the verifier V2inner
works with functions/oracles A that are folded twice—once across (h, 0) and once
across (1̄, 1).
The following corollary is immediate from part 2 of Lemma 3.19.

COROLLARY 5.1 (analysis of the enhanced monomial-basis test). Let A, Ã: Fl →
Σ with A satisfying A(f + 1̄) = A(f) + 1 for all f and Ã linear but not respecting the

PCP—TOWARDS TIGHT RESULTS 861

monomial basis. Let x = Dist(A, Ã). Then

1− EMBPASS(A) ≥ 3
4
· (1− 2x).

The following lemma is analogous to Lemma 4.1. Loosely speaking, it considers
three possible strategies of a “dishonest” prover and indicates the probability with
which the verifier detects an error.

LEMMA 5.2 (soundness of V2inner). Let δ1, δ2 > 0, 0 ≤ p ≤ 1, and l, l1 ∈ Z+.
Then the (l, l1)-canonical inner verifier V2inner (with parameter p) is (ρ, δ1, δ2)-good,
where 1− ρ = min(T1, T2, T3) and

(1) T1
def= (1/2− δ1) · p,

(2) T2
def= p ·min x≤1/2−δ1 [max(Γlin(x) , 3/4 · (1− 2x))],

(3) T3
def= minx≤1/2−δ1 [p · Γlin(x) + (1− p) · (1/2− δ2)(1− 2x)].

Proof. The analysis is broken up into several cases as in the proof of Lemma 4.1.
Let x = Dist(A(h,0),(1̄,1), LIN).

Case 1. x ≥ 1/2−δ1. Lemma 3.15 implies that 1−LINPASS(A(h,0),(1̄,1)) ≥ Γlin(x) ≥
x ≥ 1/2 − δ1. Since V2inner performs the atomic linearity test with probability p, we
have in this case

1− ACC [V A,A1
2inner(σ, h)] ≥ p · (1/2− δ1).

Case 2. x < 1/2− δ1. Again, Lemma 3.15 implies that 1− LINPASS(A(h,0),(1̄,1)) ≥
Γlin(x), and

1− ACC [V A,A1
2inner(σ, h)] ≥ p · Γlin(x)

follows. Now let Ã be a linear function such that Dist(A(h,0),(1̄,1), Ã) = x. We consider
the following subcases.

Case 2.1. Ã does not respect the monomial basis. In this case Corollary 5.1 implies
that 1− EMBPASS(A(h,0),(1̄,1)) ≥ 3

4 · (1− 2x). So the probability that V2inner rejects is
at least p · 3

4 · (1 − 2x). Combining the two lower bounds on 1 − ACC [V A,A1
2inner(σ, h)],

we get

1− ACC [V A,A1
2inner(σ, h)] ≥ p ·max

(
Γlin(x),

3
4

(1− 2x)
)
.

Case 2.2. Ã respects the monomial basis. By Proposition 3.2, Ã is an evaluation
operator. So there exists a ∈ Σl such that Ã = Ea. So Dist(A(h,0),(1̄,1), Ea) = x. Let
a1 = σ(a). The proof splits into two further subcases.

Case 2.2.1. d
def= Dist(A1, Ea1) ≥ 1/2 − δ2. By Lemma 3.21 we have 1 −

PROJPASSσ(A(h,0),(1̄,1), A1) ≥ d ·(1−2x) ≥ (1/2−δ2) ·(1−2x). So the probability that
V2inner performs the projection test and rejects is at least (1− p) · (1/2− δ2)(1− 2x).
To this we add the probability of the exclusively disjoint event in which the verifier
performs the linearity test and rejects, obtaining

1− ACC [V A,A1
2inner(σ, h)] ≥ p · Γlin(x) + (1− p) · (1/2− δ2)(1− 2x).

Case 2.2.2. In this case, we have x = Dist(A(h,0),(1̄,1), Ea) < 1/2 − δ1 and
Dist(A1, Ea1) < 1/2−δ2. Thus the functions A(h,0),(1̄,1) and A1 satisfy conditions (2.1)
and (2.2) in Definition 3.9.

862 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Similarly to the proof of Lemma 4.1, we infer that the lower bound on 1− ρ is as
claimed and the lemma follows.

We now simplify the soundness bound of the lemma. The proof of the first item
uses the fact that Γlin(x) ≥ 45/128 for all x ≥ 1

4 . The second item uses the fact that
Γlin(x) ≥ x for all x ≤ 1/2.

CLAIM 5.3.
(1) min x≤1/2−δ1 [max(Γlin(x) , 3

4 (1− 2x))] ≥ 45/128.
(2) min x≤1/2−δ1 [p · Γlin(x) + (1− p) · (1/2− x)] ≥ 1

2 ·min(p , 1− p).
(3) Let T1, T2 and T3 be as in Lemma 5.2. Then

min(T1, T2, T3) ≥ min
{

45
128
· p , 1

2
· (1− p)

}
−max(δ1, δ2).

Interestingly, the lower bound provided by item 3 is tight. Optimization calls
for setting 45

128 · p = 1
2 · (1 − p), which yields p = 64

109 and a soundness bound of
1− 45

128p+ max(δ1, δ2) = 1− 45
218 + max(δ1, δ2).

Proof. Toward proving part 1 we consider two cases.
Case 1.1. x ≥ 1/4. In this case, by definition of Γlin, we have

max(Γlin(x) ,
3
4

(1− 2x)) ≥ Γlin(x) ≥ 45
128

.

Case 1.2. x ≤ 1/4. In this case we have

max
(

Γlin(x) ,
3
4

(1− 2x)
)
≥ 3

4
(1− 2x) ≥ 3

8
>

45
128

.

This establishes part 1. Towards proving part 2 we consider two different cases.
Case 2.1. p ≤ (1− p). In this case,

p · Γlin(x) + (1− p) ·
(

1
2
− x
)
≥ p · x+ p ·

(
1
2
− x
)

=
p

2
.

Case 2.2. p ≥ (1− p). In this case,

p · Γlin(x) + (1− p) ·
(

1
2
− x
)
≥ (1− p) · x+ (1− p) ·

(
1
2
− x
)

=
1− p

2
.

This establishes part 2. To prove part 3 use parts 1 and 2 to lower bound T2 and T3,
respectively, and get

min(T1, T2, T3) ≥ min
{(

1
2
− δ1

)
· p , 45

128
· p , 1

2
·min(p , 1− p)− δ2

}
≥ min

{
45
128
· p , 1

2
· (1− p)

}
−max(δ1, δ2).

The claim follows.
Composing the above inner verifier with an adequate outer verifier, we get the

following.

PCP—TOWARDS TIGHT RESULTS 863

THEOREM 5.4. For any s > 173
218 ≈ 0.79357798, NP ⊆ FPCP1,s[log, 2], and fur-

thermore, there is a constant q such that NP ⊆ PCP1,s[coins = log ; free = 2 ; query =
q].

Proof. Let δ = s− 173
218 , δ1 = δ2 = δ/3, and ε = δ/3 ·16δ2

1δ
2
2 = 16δ5

243 . Now, let l and
l1 be integers such that the outer verifier, Vouter, guaranteed by Lemma 3.8, is (l, l1)-
canonical and ε-good for L ∈ NP. Consider the (l, l1)-canonical inner verifier V2inner
working with parameter p = 64

109 . Using Lemma 5.2 and Claim 5.3, we conclude that
V2inner is (ρ, δ, δ)-good for ρ = 1− 45/218 + max(δ1, δ2).

Composing Vouter and V2inner we obtain a verifier, V2free, which by Theorem 3.12
has soundness error bounded above by 173

218 + max(δ1, δ2) + ε
16δ2

1δ
2
2

= s, as required.
Furthermore, V2free uses logarithmically many coins. We claim that V2free has query
complexity 22l + 2 and free-bit complexity 2. The claim is obvious in case V2inner per-
forms the projection test. Otherwise, V2inner performs a linearity test with parameters
f1 and f2 and an enhanced RMB test with the same parameters. Clearly, the answers
on f1 and f2 determine the acceptable (by linearity test) answer on f1 + f2. The key
observation is that the former two answers also determine all 22l acceptable answers
in the enhanced RMB test (i.e., for every f ∈ Fl, the answer on f ′1 · f + f2 should
equal the answer on f2, where f ′1 = f1 if the answer on f1 is zero and f ′1 = f1 + 1̄
otherwise).

By repeating the above proof system three times, we obtain the following.
COROLLARY 5.5. NP ⊆ FPCP1,1/2[log, 6]. Furthermore, there is a constant q

such that

NP ⊆ PCP1,1/2[coins = log ; free = 6 ; query = q] .

Proof. There exists ε > 0 such that
(173

218 + ε
)3 ≤ 1/2.

5.2. Hardness of vertex cover. Refer to section 2.4 for the definition of the
MinVC problem and the associated gap problem Gap-MinVCc,s, and to section 2.4.3
for status and previous work.

Going from free bits to VC. Instead of reducing from Max3SAT, we first
use Theorem 5.4 to get gaps in clique size and then apply the standard reduction.

PROPOSITION 5.6. FPCPc,s[log, f] ≤KD Gap-MinVCc′,s′ for s′ = 1 − 2−fc and
c′

s′ = 1 + c−s
2f−c .

Proof. The FGLSS reduction says that FPCPc,s[log, f] ≤KD Gap-MaxCliquec′′,s′′ ,
where c′′ = 2−f · c and s′′ = 2−f ·s. (See section 2.4 for definition of Gap-MaxClique.)
Now we apply the standard Karp reduction (of MaxClique to MinVC) which maps
a graph G to its complement G, noting that MinVC(G) = 1 −MaxClique(G). Thus
Gap-MaxCliquec′′,s′′ ≤KD Gap-MinVC1−s′′,1−c′′ . Now set c′ = 1− s′′ and s′ = 1− c′′,
and note

c′

s′
=

1− s′′
1− c′′ =

1− s2−f
1− c2−f = 1 +

c− s
2f − c .

This completes the proof.
Our results. We obtain the first explicit and reasonable constant factor non-

approximability result for MinVC. A consequence of the following theorem is that,
assuming P 6= NP, there is no polynomial-time algorithm to approximate MinVC
within a factor of 1.0688.

THEOREM 5.7. Gap-MinVCc,s is NP-complete for some c, s satisfying c/s ≥
1.0688 > 16/15. Moreover, s = 3/4.

864 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Proof. The proof follows immediately from Proposition 5.6 and Theorem 5.4.
Namely, for any s′ > 173

218 , NP ⊆ FPCP1,s′ [log, 2] ≤KD Gap-MinVCc,s for s = 1−2−2 =
3/4 and c

s = 1 + 1−s′
22−1 = 1 + 1−s′

3 . Thus, c
s = 1 + 15

218 −
ε
3 > 1.068807 − ε

3 , where

ε
def= s′ − 173

218 .
We remark that a special case of Proposition 5.6, in which the statement is re-

stricted to f = 0, would have sufficed for proving the above theorem, the reason being
that we could have applied Proposition 11.8 to Theorem 5.4 and obtained NP ⊆
FPCP1/4,s/4[log, 0], for s = 0.7936, which by the special case of Proposition 5.6 is re-
ducible to Gap-MinVCc′,s′ with s′ = 1− 1/4 = 3/4 and c′

s′ = 1 + (1/4)−(s/4)
1−(1/4) = 1 + 1−s

3
(as above). Interestingly, the special case of Proposition 5.6 can be “reversed,” namely,
Gap-MinVCc′,s′ is reducible to FPCPc,s[log, 0] with s = 1−c′, c = 1−s′, and c

s = 1−s′
1−c′

(which reverses c′

s′ = 1−s
1−c = 1+ c−s

1−c). The key fact in proving this “reverse reduction”
is Corollary 8.5 which asserts that Gap-MaxCliquec,s ≤KD FPCPc,s[log, 0]. However,
we do not know if it is possible to “reverse” the other step in the alternative proof,
namely, whether FPCPc,s[log, 0] is reducible to FPCP4c,4s[log, 2] (our reverse trans-
formation is weaker; see Proposition 11.6).

6. Minimizing the number of queries for soundness 0.5. The problem we
consider here is to minimize the values of q (and qav) for which we can construct
PCPs for NP using q queries in the worst case (and qav on the average) to achieve a
soundness error of 1/2. We allow only logarithmic randomness. See section 2.2.3 for
description of past records.

Sources of our improvements. The principal part of our improvement comes
from the use of the new long code based inner verifier, the atomic tests and their
analysis in section 3.5, and the new idea of folding. By repeating the proof system
of Theorem 4.5 five times, we obtain that Eq. (4) holds for q = 15. (Note that
5 = min{i ∈ N : 0.85i < 0.5}.) A straightforward implementation of the recycling
technique of [21] yields that Eq. (4) holds for q = 12 and qav = 11.74. Using a
more careful implementation of this technique, we reduce the query complexity by an
additional bit.

6.1. The PCP inner verifier. Our result is based on the construction of the
(l, l1)-canonical inner verifier VPCPinner depicted in Figure 14. In addition to its stan-
dard inputs h, σ, it takes parameters p1, p2, p3 ≥ 0 so that p1 +p2 +p3 = 1. The inner
verifier VPCPinner combines the atomic tests in three different ways.

(1) Some tests are performed independently (i.e., the main steps in Figure 14);
(2) Some tests are performed while reusing some queries (i.e., the tests in Step 2

reuse f3);
(3) Some tests are performed in a mutually exclusive manner (i.e., the tests in

Step 3).
As in previous sections, the tests are executed on the function A(h,0),(1̄,1) to which
the verifier has an effective oracle access given its access to A. By inspection it is
clear that the total number of accesses to the oracles for A and A1 is 3 + 5 + 3 = 11
(whereas the free-bit complexity is 2 + 3 + 2 = 7). We now examine the goodness
of VPCPinner. Recall the definitions of the functions Γlin(x) (from Lemma 3.15) and
ΓRMB(x) = 3

8 (1− 2x) (from Lemma 3.19).
LEMMA 6.1 (soundness of VPCPinner). For any 0 < δ1, δ2 < 0.1 and any l, l1,

p1, p2, and p3, satisfying p1 + p2 + p3 = 1 and 5p1 = 2p2, the (l, l1)-canonical inner

PCP—TOWARDS TIGHT RESULTS 865

The PCP inner verifier. This (l, l1)-canonical inner verifier is given func-
tions h ∈ Fl and σ: Σl → Σl1 , and has access to oracles for A: Fl → Σ and
A1: Fl1 → Σ. In addition it takes three nonnegative parameters p1, p2, and
p3 which sum up to 1.

Pick functions f1, . . . , f8
R← Fl and g1, g2

R← Fl1 .

Step 1: Linearity test.
LinTest(A(h,0),(1̄,1); f1, f2).

Step 2: Combined RMB and projection test.
MBTest(A(h,0),(1̄,1); f3, f4, f5).
ProjTestσ(A(h,0),(1̄,1), A1; f3, g1).

Step 3: Invoking VSNPinner with parameters p1, p2, p3.
Pick p R← [0, 1].
Case p ≤ p1 : LinTest(A(h,0),(1̄,1); f6, f7).
Case p1 < p ≤ p1 + p2 : MBTest(A(h,0),(1̄,1); f6, f7, f8).
Case p1 + p2 < p : ProjTestσ(A(h,0),(1̄,1), A1; f6, g2).

Accept iff all the above tests accept.
Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f),
A(f + h), A(f + 1̄), or A(f + h+ 1̄).

FIG. 14. The PCP inner verifier VPCPinner.

verifier VPCPinner is (ρ, δ1, δ2)-good, where 1−ρ is the minimum of the following three
quantities:

(1) 1/2 + p1
10 − δ1;

(2) 1− (11/14)3 − p3
1−p3

> 0.51494168− p3
1−p3

;
(3) min{1/2 + p3

20 − δ2 , 1− (0.55218507 + δ2) · (1− 45/128p1)}.
Furthermore, if p1 > 10δ1, p3 > 20δ2 and p3 ≤ 0.01, then 1− ρ > 1/2.

Proof. We split the analysis into several cases based on the value of

x = Dist(A(h,0),(1̄,1), LIN) .

Case 1. x ≥ 1/2−δ1. Lemma 3.15 implies that LINPASS(A(h,0),(1̄,1)) ≤ 1−Γlin(x) ≤
1− x ≤ 1/2 + δ1. Thus, in this case

ACC [V A,A1
PCPinner(σ, h)] ≤ ρ1

def= (1− p1) ·
(

1
2

+ δ1

)
+ p1 ·

(
1
2

+ δ1

)2

<
1
2

+ δ1−
p1

10
.

(The last inequality is due to δ1 < 0.1.) Using p1 > 10δ1 we get ρ1 < 1/2.
Case 2. x < 1/2−δ1. Let Ã: Fl → Σ be a linear function such that Dist(A(h,0),(1̄,1), Ã) =

x. The proof splits into two subcases.
Case 2.1. Ã does not respect the monomial basis. In this case, by Lemmas 3.15

and 3.19 we have, using Γlin(x), ΓRMB(x) < 1, in the second inequality,

866 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

ACC [V A,A1
PCPinner(σ, h)] ≤ (1− Γlin(x)) · (1− ΓRMB(x)) · (1− p1Γlin(x)− p2ΓRMB(x))

< (1− Γlin(x)) · (1− ΓRMB(x))

·
(

1− p1

p1 + p2
· Γlin(x)− p2

p1 + p2
· ΓRMB(x) +

p3

1− p3

)
< α · β · [qα+ (1− q)β] +

p3

1− p3
,

where q def= p1
p1+p2

, α = 1− Γlin(x), and β = 1− ΓRMB(x). Using p · x+ (1− p) · y ≥
xp · y1−p, we show that α · β · [qα+ (1− q)β] ≤ [1+q

3 α+ 2−q
3 β]3. Specifically,[

1 + q

3
α+

2− q
3

β

]3

=
[

2
3
·
(

1
2
α+

1
2
β

)
+

1
3
· (qα+ (1− q)β)

]3

≥
(

1
2
α+

1
2
β

) 2
3 ·3
· (qα+ (1− q)β)

1
3 ·3

=
[

1
2
· α+

1
2
· β
]2

· (qα+ (1− q)β)

≥ α · β · (qα+ (1− q)β).

Combining the above with Claim 4.2 (i.e., the lower bound on T2), we obtain (for
every x < 1/2)

ACC [V A,A1
PCPinner(σ, h)] <

[
1− 1 + q

3
· Γlin(x)− 2− q

3
· ΓRMB(x)

]3

+
p3

1− p3

≤
[
1−min

(
1 + q

6
,

2− q
8

)]3

+
p3

1− p3
.

Observe that min(1+q
6 , 2−q

8) is maximized at q = 2/7 where its value is 3/14. Indeed
this value of q is consistent with p1 = 2

7 · (p1 + p2) and so, in this case, we get

ACC [V A,A1
PCPinner(σ, h)] ≤ ρ2

def=
[

11
14

]3

+
p3

1− p3
< 0.48505832 +

p3

1− p3
.

Using p3 ≤ 0.01 we get ρ2 < 1/2.
Case 2.2. Ã respects the monomial basis. By Proposition 3.2, Ã is an evaluation

operator. So there exists a ∈ Σl such that Ã = Ea. So Dist(A(h,0),(1̄,1), Ea) = x. Let
a1 = σ(a). The proof splits into two further subcases.

Case 2.2.1. d def= Dist(A1, Ea1) ≥ 1/2− δ2. By Lemma 3.21 we have

PROJPASSσ(A(h,0),(1̄,1), A1) ≤ 1− d · (1− 2x) <
1
2

+ x+ δ2 .

Letting ΓPRJ(x) def= 1/2− x− δ2, we get in this case

ACC [V A,A1
PCPinner(σ, h)] ≤ ρ3

def= (1−Γlin(x))·(1−ΓPRJ(x))·(1−p1Γlin(x)−p3ΓPRJ(x)).

We upper bound ρ3 by considering three subcases (corresponding to the segments of
Γlin).

PCP—TOWARDS TIGHT RESULTS 867

Case 2.2.1.1. x ≤ 1/4. In this case we use Γlin(x) ≥ 3x(1− 2x) and obtain

ρ3 < (1− Γlin(x)) · (1− ΓPRJ(x)) · (1− p3ΓPRJ(x))

< (1− 3x(1− 2x)) ·
(

1
2

+ x+ δ2

)
·
(

1− p3

10

)
<

1
2
·
[
1− x+ 12x3] · [1− p3

10

]
+ δ2

≤ 1
2
·
[
1− p3

10

]
+ δ2,

where the last inequality uses the fact that the function x − 12x3 is nonnegative in
the interval [0, 1/4]. Using p3 > 20δ2 we obtain ρ3 < 1/2.

Case 2.2.1.2. x ≥ 1/4 and x ≤ 45/125. In this case we use Γlin(x) ≥ 45/128 =
Γlin(45/128) and ΓPRJ(x) ≥ ΓPRJ(45/128) and obtain

ρ3 < (1− Γlin(x)) · (1− ΓPRJ(x)) · (1− p1Γlin(x))

≤
(

1− Γlin

(
45
128

))
·
(

1− ΓPRJ

(
45
128

))
·
(

1− p1Γlin

(
45
128

))
<

83
128
·
(

109
128

+ δ2

)
·
(

1− p1
45
128

)
< (0.55218507 + δ2) ·

(
1− p1

45
128

)
.

Using δ2 < p3
10 ≤ 0.001 and p1 ≥ 2

7 ·0.99 > 0.28, we obtain ρ3 < 0.5532 ·0.902 < 0.499.
Case 2.2.1.3. x ≥ 45/128. In this case we use Γlin(x) ≥ x ≥ 45/128 and obtain

ρ3 < (1− Γlin(x)) · (1− ΓPRJ(x)) · (1− p1Γlin(x))

< (1− x) ·
(

1
2

+ x+ δ2

)
·
(

1− p1
45
128

)
.

The latter expression decreases in the interval [45/128 , 1/2] and is hence maximized
at x = 45/128. Thus we obtain the same expression as in Case 2.2.1.2, and the bound
on ρ3 follows identically.

We conclude that in Case 2.2.1 we have

ρ3 < max
[

1
2
− p3

20
+ δ2 , (0.55218507 + δ2) ·

(
1− p1

45
128

)]
,

and under the hypothesis regarding p1, p3, and δ2, we always have ρ3 < 0.5.
Case 2.2.2. Else, we have x = Dist(A(h,0),(1̄,1), Ea) ≤ 1/2−δ1 and Dist(A1, Ea1) <

1/2 − δ2. Thus the functions A(h,0),(1̄,1) and A1 satisfy the properties required in
conditions (2.1) and (2.2) of Definition 3.9.

Let ρ def= max{ρ1, ρ2, ρ3}. We conclude that the only case which allows

ACC [V A,A1
PCPinner(σ, h)] > ρ

is Case 2.2.2, which also satisfies conditions (2.1) and (2.2) of Definition 3.9. Thus,
VPCPinner satisfies condition (2) of Definition 3.9. Clearly, VPCPinner also satisfies
condition (1) of Definition 3.9, and thus the lemma follows.

868 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

6.2. The new proof system. Combining the above inner verifier with an ade-
quate outer verifier, we obtain a pcp system for NP with query complexity 11.

THEOREM 6.2. NP = PCP1,1/2[coins = log ; query = 11 ; queryav = 10.89 ;
free = 7].

Proof. We consider a canonical (l, l1)-inner verifier VPCPinner with parameters
p3 = 0.001, p1 = 2/7 ·0.999 and p2 = 5

7 ·0.999. By Lemma 6.1, VPCPinner is (ρ, δ1, δ2)-
good for δ1 = δ2 = 0.00001 and ρ = 0.49999. We now choose an appropriate outer
verifier. Let ε = 16 · (0.5 − ρ)δ2

1δ
2
2 . Lemma 3.8 provides us with l and l1 such that

an ε-good (l, l1)-canonical outer verifier Vouter with randomness O(log n) exists. Let
V = 〈Vouter, VPCPinner〉 be the composition of Vouter and VPCPinner according to the
definitions in section 3.4. This verifier has randomness O(log n). Apply Theorem 3.12
to see that V has completeness parameter 1 and soundness parameter ρ+ε/(16δ2

1δ
2
2) =

1/2. The query (and free-bit) complexity of V is the same as that of VPCPinner above
(i.e., 11 and 7, respectively).

To obtain the bound on the average query complexity, we observe that we can
afford not to perform the RMB test with some small probability. Specifically, Case 2.1
in the proof of Lemma 6.1, which is the only case where the RMB test is used, yields
error of 0.48505832 + p3

1−p3
. Thus, if we modify VPCPinner so that, whenever the RMB

test is invoked it is performed only with probability 0.973, we get that Case 2.1 detects
violation with probability at least (1 − 0.48505832 − 0.0010011) · 0.973 > 0.50006.
Consequently, the modified inner verifier errs with probability bounded away from
1/2 and so does the composed verifier. The modification decreases the average query
complexity by (1 − 0.973) · (2 + p2 · 3) > 0.027 · 4.12 > 0.11. (The reduction is both
from step 2 and the second case in step 3.) The theorem follows.

7. Amortized free bits and MaxClique hardness.

7.1. The iterated tests. The “iterated tests” will be used in the next section to
derive a proof system for NP having amortized free-bit complexity ≈ 2. Intuitively,
we will be running each of the atomic tests many times, but, to keep the free-bit
count low, these will not be independent repetitions. Rather, following [23], we will
run about 2O(m) copies of each test in a way which is pairwise, or “almost” pairwise
independent, to lower the error probability to O(2−m). This will be done using 2m
free bits. Specifically, we will select uniformly m functions in Fl (and m functions
in Fl1) and invoke the atomic tests with functions resulting from all possible linear
combinations of the selected functions.

7.1.1. Linearity and randomness. We begin with some observations relating
stochastic and linear independence. Note that Lm is a subvector space of Fm, and
in particular a vector space over Σ in its own right. So we can discuss the linear
independence of functions in Lm. We say that ~L = (L1, . . . , Lk) ∈ Lkm is linearly
independent if L1, . . . , Lk are linearly independent. Furthermore, we say that ~L1 =
(L1,1, . . . , L1,k) and ~L2 = (L2,1, . . . , L2,k) are mutually linearly independent if the 2k
functions L1,1, L2,1, . . . , L1,k, L2,k are linearly independent.

LEMMA 7.1. For ~L = (L1, . . . , Lk) ∈ Lkm let J~L: Fml → Fkl be defined by
J~L(~f) = (L1 ◦ ~f, . . . , Lk ◦ ~f), for ~f = (f1, . . . , fm). Fix ~L and consider the proba-
bility space defined by having f1, . . . , fm be uniformly and independently distributed
over Fl. Regard the J~L’s as random variables over the above probability space. Then

(1) if ~L is linearly independent, then J~L is uniformly distributed in Fkl .
(2) if ~L1, ~L2 are mutually linearly independent, then J~L1

and J~L2
are indepen-

dently distributed.

PCP—TOWARDS TIGHT RESULTS 869

The iterated tests. Here A: Fl → Σ and A1: Fl1 → Σ are the objects being
tested. The tests also take additional inputs or parameters: below ~f ∈ Fml ;
~g ∈ Fml1 ; L,L1, L2, L3 ∈ Lm; and σ: Σl → Σl1 . The tests are specified in
terms of the atomic tests of Figure 8.

LinTestm(A; ~f, L1, L2) = LinTest(A;L1 ◦ ~f, L2 ◦ ~f).

MBTestm(A; ~f, L1, L2, L3) = MBTest(A;L1 ◦ ~f, L2 ◦ ~f, L3 ◦ ~f).

ProjTestmσ (A,A1; ~f,~g, L) = ProjTestσ(A,A1;L ◦ ~f, L ◦ ~g).

The passing probabilities. These are the probabilities we are interested
in:

LINPASS
m(A)

= Pr~f R←Fml

[
∀ L1, L2 ∈ Lm : LinTestm(A; ~f, L1, L2) = 0

]
.

MBPASS
m(A)

= Pr~f R←Fml

[
∀ L1, L2, L3 ∈ Lm : MBTestm(A; ~f, L1, L2, L3) = 0

]
.

PROJPASS
m
σ (A,A1)

= Pr~f R←Fml ; ~g R←Fml1

[
∀ L ∈ Lm : ProjTestmσ (A,A1; ~f,~g, L) = 0

]
.

FIG. 15. The iterated tests and their passing probabilities.

The proof of this lemma is quite standard and thus omitted; it amounts to saying
that linearly independent combinations of stochastically independent random vari-
ables result in stochastically independent random variables.

The analysis of the iterated projection test (see Figure 15) can be done in a
relatively straightforward way, given the above, because the invoked projection test
uses a single linear combination of each sequence of random functions, rather than
several such combinations (as in the other iterated tests). Thus we begin with the
iterated projection tests. The analysis of the other iterated tests, where the atomic
tests are invoked on two/three linear combinations of the same sequence of random
function, require slightly more care. The corresponding lemmas could have been
proven using the notion of “weak pairwise independence” introduced in [23]. However,
we present here an alternative approach.

7.1.2. Iterated projection test. The iterated projection test described in Fig-
ure 15 takes as input vectors ~f,~g ∈ Fml , and also a linear function L ∈ Lm. Note
that f = L ◦ ~f is in Fl, and g = L ◦ ~g is in Fl1 . Thus, the test is just the atomic
projection test on f and g. The following lemma says that if the passing probability
PROJPASSmσ (A), representing 2m invocations of the atomic projection test, is even
slightly significant, and if A is close to Ea, then A1 is close to the encoding of the
projection of a.

LEMMA 7.2. There is a constant c3 such that the following is true. Let σ: Σl → Σl1
be a function. Let a ∈ Σl be such that Dist(Ea, A) ≤ 1/4, and let a1 = σ(a) ∈ Σl1 . If
PROJPASSmσ (A,A1) ≥ c3 · 2−m, then Dist(Ea1 , A1) ≤ 0.1.

870 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Proof. The proof is similar to that of [23, Lemma 3.5]. Let ε1 = Dist(A1, Ea1) and
assume it is at least 0.1. We show that there is a constant c3 such that PROJPASSmh (A) <
c3 · 2−m.

Let N = |L∗m| = 2m − 1. For L ∈ L∗m let XL: Fml ×Fml1 → Σ be defined by

XL(~f,~g) def= ProjTestmσ (A,A1; ~f,~g, L) = ProjTestσ(A,A1;L ◦ ~f, L ◦ ~g) .

Regard it as a random variable over the uniform distribution on Fml × Fml1 . Let
X =

∑
L∈L∗m XL. It suffices to show that Pr [X = 0] ≤ O(1/N).

Lemma 7.1 (with k = 1) implies that {XL}L∈L∗m are pairwise independent, iden-
tically distributed random variables. Let L ∈ L∗m and let p = E[XL]. Again using
Lemma 7.1 we have

p = Pr~f R←Fml ; ~g R←Fml1

[
ProjTestσ(A,A1;L ◦ ~f, L ◦ ~g) = 1

]
= Pr

f
R←Fl ; g R←Fl1

[ProjTestσ(A,A1; f, g) = 1] ,

but by Lemma 3.21 p is at least ε1(1− 2ε) ≥ 0.05, since ε def= Dist(Ea, A) ≤ 1/4. We
can conclude by applying Chebyshev’s inequality. Namely,

Pr [X = 0] ≤ Pr [|X −Np| ≥ Np] ≤ Np

(Np)2 ≤
20
N

,

as desired.

7.1.3. Technical claim. For analyzing the other two tests we will use the fol-
lowing simple claim.

CLAIM 7.3. Let k ≥ 1 and N = 2m. Then Lkm contains a subset S of cardinality
N

22k such that every ~L1 6= ~L2 ∈ S are mutually linearly independent.
Proof. Let ~L ∈ Lkm be linearly independent. Then, the probability that L chosen

uniformly in Lm is linearly independent of ~L is 1− 2k
N . Thus, the probability that a

uniformly chosen ~L′ ∈ Lkm is mutually linearly independent of ~L is greater than 1 −∑k
i=1

2k+i−1

N > 1− 22k

N . Now, consider a graph with vertex set Lkm and edges connecting
pairs of mutually linearly independent sequences (i.e., ~L1 and ~L2 are connected if and
only if they are mutually linearly independent). This graph has Nk vertices and every
vertex which is linearly independent has degree greater than (1− 22k

N)·Nk. Clearly this
graph has a clique of size N

22k (e.g., consider a greedy algorithm which picks a vertex
of maximal degree among all vertices connected to the previously selected vertices).
Noting that a clique corresponds to a set of mutually linear independent sequences,
we are done.

7.1.4. Iterated linearity test. The iterated linearity test described in Figure 15
takes as input a vector ~f ∈ Fml and also linear functions L1, L2 ∈ Lm. Note that
f1 = L1 ◦ ~f and f2 = L2 ◦ ~f are in Fl. The test is just the atomic linearity test on
these inputs. The following lemma says that if the passing probability is even slightly
significant, then A is almost linear.

LEMMA 7.4. There is a constant c1 such that if LINPASSm(A) ≥ c1 · 2−m, then
Dist(A, LIN) ≤ 0.1.

Proof. Assume that ε def= Dist(A, LIN) ≥ 0.1. We show that there is a constant
c1 such that LINPASSm(A) < c1 · 2−m. For ~L = (L1, L2) ∈ L2

m let X~L: Fml → Σ be

PCP—TOWARDS TIGHT RESULTS 871

defined by

X~L(~f) def= LinTestm(A; ~f, L1, L2) = LinTest(A;L1 ◦ ~f, L2 ◦ ~f) .

Regard it as a random variable over the uniform distribution on Fml . Let S ⊂ L2
m

be a set as guaranteed by Claim 7.3 and X =
∑

~L∈S X~L. It suffices to show that
Pr [X = 0] ≤ O(2−m). (Thus our analysis of LINPASSm(A) is based only on a small
fraction of all possible invocations of the iterated linear test; yet, this small fraction
corresponds to a sufficiently large number of invocations.)

Using Lemma 7.1 (with k = 2), it follows that the random variables {X~L}~L∈S are
pairwise independent and that for every ~L ∈ S,

p
def= Pr~f R←Fml

[
X~L(~f) = 1

]
= Pr

f1,f2
R←Fl

[LinTest(A; f1, f2) = 1] .

By Lemma 3.15, p ≥ Γlin(ε), and so p ≥ 3ε−6ε2 if ε ≤ 1/4 and p ≥ 45/128 otherwise.
In either case, for ε ≥ 0.1, we get p > 0.2. Now by Chebyshev’s inequality we have

Pr [X = 0] ≤ Pr [|X −N ′p| ≥ N ′p] ≤ 1
N ′p

<
5
N ′

,

where N ′ def= |S| = 2m/22·2 = 2m/16. The lemma follows.

7.1.5. Iterated RMB test. The iterated respect of monomial basis test in
Figure 15 takes an input ~f and also takes three linear functions L1, L2, L3 ∈ Lm.
For simplicity of exposition, we assume that A is folded over (1̄, 1). (This assump-
tion is justified by our usage of the test; see next subsection.) If the probability
MBPASSm(A) is significant, we can conclude that the linear function close to A re-
spects the monomial basis.

LEMMA 7.5. There is a constant c2 such that the following is true. Let A: Fl → Σ
so that A(f + 1̄) = A(f) + 1, for every f ∈ Fl. Let ε ≤ 0.1 so that A is ε-close to
a linear function Ã and suppose that MBPASSm(A) ≥ c2 · 2−m. Then Ã respects the
monomial basis.

Proof. Assume that Ã is linear but does not respect the monomial basis. We will
show that there is a constant c2 such that MBPASSm(A) < c2 · 2−m.

For ~L = (L1, L2, L3) ∈ L3
m let X~L: Fml → Σ be defined by

X~L(~f) def= MBTestm(A; ~f, L1, L2, L3) = MBTest(A;L1 ◦ ~f, L2 ◦ ~f, L3 ◦ ~f) .

Regard it as a random variable over the uniform distribution on Fml . Again, let
S ⊂ L3

m be a set as guaranteed by Claim 7.3 (in this case |S| = 2m/22·3) and X =∑
~L∈S X~L. It suffices to show that Pr [X = 0] ≤ O(2−m).

Using Lemma 7.1 (with k = 3), it follows that the random variables {X~L}~L∈S are
pairwise independent and that for every ~L ∈ S

p
def= Pr~f R←Fml

[
X~L(~f) = 1

]
= Pr

f1,f2,f3
R←Fl

[MBTest(A; f1, f2, f3) = 1] .

By Lemma 3.19, p ≥ 3
8 − 7ε/4 + 5ε2/2 − ε3. Using ε ≤ 0.1, it follows that p > 0.2.

Using Chebyshev’s inequality, as in the previous proof, we are done.
Remark 7.6. For general A’s (which are not folded over (1̄, 1)), a similar result

can be proven by augmenting the iterated RMB test so that on input A, ~f , and
~L = (L1, L2, L3) it also checks if A((L1 ◦ ~f) + 1̄) = A(L1 ◦ ~f) + 1.

872 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

7.1.6. Putting some things together. The last two lemmas above allow us to
conclude that if A(h,0),(1̄,1) passes the first two tests with any significant probability,
then A(h,0),(1̄,1) is close to some evaluation operator Ea so that h(a) = 0. Thus, again,
there is no need for a “circuit test.”

COROLLARY 7.7. There is a constant c such that the following is true. Let
A: Fl → Σ, and suppose LINPASSm(A(h,0),(1̄,1))≥ c · 2−m and MBPASSm(A(h,0),(1̄,1))≥
c · 2−m. Then there is a string a ∈ Σl such that Dist(Ea, A(h,0),(1̄,1)) ≤ 0.1 and
h(a) = 0.

Proof. Let c be the larger of the constants from Lemmas 7.4 and 7.5. By the first
lemma there is a linear Ã such that Dist(A(h,0),(1̄,1), Ã) < 0.1. Now the second lemma
implies that Ã respects the monomial basis (using the fact that A(h,0),(1̄,1)(f + 1̄) =
A(h,0),(1̄,1)(f)+1 for all f ’s). So Proposition 3.2 says that Ã is an evaluation function.
Finally, by Proposition 3.6, we have h(a) = 0.

7.2. NP in amortized free-bit complexity 2.
Sources of our improvements. We adopt the basic framework of the con-

struction of proof systems with low free-bit complexity as presented in [23]. Our
improvement comes from the use of the new long code, instead of the Hadamard
code, as a basis for the construction of inner verifiers. This allows us to save one bit
in the amortized free-bit complexity, the reason being that the long code contains
explicitly all functions of the encoded string, whereas the Hadamard code contains
only linear combinations of the bits of the string. Typically, we need to check that
the verifier accepts a string and this condition is unlikely to be expressed by a linear
combination of the bits of the string. Thus, one needs to keep also the linear combina-
tions of all two-bit products and, using these extra combinations (via self-correcting),
increases the amortized free bit by one. Instead, as seen above, the long code allows
us to directly handle any function. The fact that we take linear combinations of these
functions should not confuse the reader; these are linear combinations of random
functions rather than linear combinations of random linear functions (as in [23]).

Our construction of a proof system with amortized free-bit complexity of two bits
is obtained by composing the (l, l1)-canonical outer verifier of Lemma 3.8 with a (l, l1)-
canonical inner verifier, denoted Vfree-in, which is depicted in Figure 16. The inner
verifier Vfree-in consists of invoking the three iterated tests of Figure 15. In addition,
Vfree-in also applies the linearity test to the oracle A1. This is not done to improve
the rejection probability of Vfree-in (in case the oracles A and A1 are far from being
fine), but rather to decrease the number of accepting configurations (and consequently
the free-bit complexity). We also remark that Vfree-in invokes the iterated tests while
providing them with access to a double folding of A (i.e., A(h,0),(1̄,1)) rather than to A
itself. This eliminates the need for checking that A encodes a string which evaluates
to zero under h and simplifies the iterated RMB test (see Remark 7.6 at the end of
subsection 7.1.5). However, unlike in previous subsections, these simplifications do
not buy us anything significant (here), since the additional testing could have been
done without any additional cost in free bits.

LEMMA 7.8. There exists a constant c such that the following is true. Let l, l1,m
be integers. Then the (l, l1)-canonical inner verifier Vfree-in with parameter m is
(ρ, δ1, δ2)-good, where ρ = c · 2−m and δi = 0.4, for i = 1, 2.

Proof. Here the analysis can be less careful than in analogous statements such as
in Lemmas 4.1 and 5.2. Using Corollary 7.7, with respect to the oracle A(h,0),(1̄,1),
we conclude that if A(h,0),(1̄,1) passed both the iterated linearity and RMB tests with

PCP—TOWARDS TIGHT RESULTS 873

The free inner verifier. Given functions h ∈ Fl and σ: Σl → Σl1 , the
verifier has access to oracles for A: Fl → Σ and A1: Fl1 → Σ. It also takes
an integer parameter m.

Random choices: ~f
R← Fml ; ~g R← Fml1

∀ L1, L2 ∈ Lm : LinTestm(A(h,0),(1̄,1); ~f, L1, L2)

∀ L1, L2, L3 ∈ Lm : MBTestm(A(h,0),(1̄,1); ~f, L1, L2, L3)

∀L ∈ Lm : ProjTestmσ (A(h,0),(1̄,1), A1; ~f,~g, L)

∀ L1, L2 ∈ Lm : LinTestm(A1;~g, L1, L2)

Remark: access to A(h,0),(1̄,1)(f) is implemented by accessing either A(f),
A(f + h), A(f + 1̄), or A(f + h+ 1̄).

FIG. 16. The free inner verifier Vfree-in.

probability at least c · 2−m, then there exists a string a ∈ Σl such that

Dist(Ea, A(h,0),(1̄,1)) ≤ 0.1 =
1
2
− δ1 <

1
4

and h(a) = 0. Using Lemma 7.2, we conclude that if (A(h,0),(1̄,1), A1) passed the
iterated projection test, with probability at least c3 · 2−m, then

Dist(Eσ(a), A1) < 0.1 =
1
2
− δ2 .

Setting ρ = c′ · 2−m, where c′ = max{c, c3}, we conclude that Vfree-in satisfies condi-
tion (2) of Definition 3.9. Clearly, Vfree-in also satisfies condition (1), and the lemma
follows.

PROPOSITION 7.9. Let l, l1,m be integers. Then the (l, l1)-canonical inner verifier
Vfree-in with parameter m uses 2m free bits.

Proof. We consider only accepting computations of Vfree-in. We start by ob-
serving that all oracle values obtained from A, during the iterated linearity test (on
A(h,0),(1̄,1)), are determined by the values of A in locations f ′1, f

′
2, . . . , f

′
m, where each

f ′i is one of the four functions fi, fi+h, fi+1̄, and fi+h+1̄. Likewise, all oracle values
obtained from A, during the iterated RMB test, are determined by the values of A in
these locations f ′1, f

′
2, . . . , f

′
m. Finally, all oracle values obtained from A, during the

iterated projection test, are determined by the values of A1 in locations L ◦ ~g (for all
L’s) and the values of A in the locations f ′1, f

′
2, . . . , f

′
m.

Now we use the fact that Vfree-in applies an iterated linearity test to the oracle
A1. It follows that all oracle values obtained from A1, in accepting computations of
Vfree-in, are determined by the values of A1 in locations g1, g2, . . . , gm.

We conclude that, in accepting computations of Vfree-in, all values obtained from
the oracles are determined by 2m bits (i.e., A(f ′1), . . . , A(f ′m) and A1(g1), . . . ,
A1(gm)).

874 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Composing the canonical outer verifier of Lemma 3.8 and the canonical inner
verifier Vfree-in, we get the following.

THEOREM 7.10. For any ε > 0 it is the case that NP ⊆ FPCP[log, 2 + ε].
Proof. Given an NP language L and an integer m (see below), we use Lemma 3.8

to construct a 2−m-good outer verifier, denoted Vouter, for L. Recall that this outer
verifier uses logarithmic randomness (actually the randomness also depends linearly
on m which is a constant). Next, compose Vouter with the (c · 2−m, 0.4, 0.4)-good
inner verifier, Vfree-in, guaranteed by Lemma 7.8, where Vfree-in uses m as its integer
parameter. The composed verifier has free-bit complexity 2m (as inherited from
Vfree-in by Proposition 7.9). By Theorem 3.12 the soundness error of the composed
verifier is at most c · 2−m + 2−m. Selecting m to be sufficiently large (i.e., m ≥
2+ε
ε · log2(c+ 1)), the theorem follows.

7.3. Hardness of MaxClique. See section 2.4 for definitions of the MaxClique
and ChromNum problems and their associated gap problems, and section 2.4.3 for a
description of previous work. Using the FGLSS transformation, we get the following.

THEOREM 7.11. For any ε > 0,
(1) NP ≤KR Gap-MaxCliquec,s for s(N) = N ε/N and c(N) = N

1
3 /N .

(2) NP ≤KD Gap-MaxCliquec,s for s(N) = N ε/N and c(N) = N1/4/N .
Proof. For part (1) we use Corollary 11.3 (below), with r = O(log n) and k = r

ε .
We get that NP is randomly reducible to a pcp system with randomness r + k +
O(1), free-bit complexity (2 + ε)k, and error probability 2−k. The FGLSS graph
corresponding to the resulting pcp system has size N = 2(r+k+O(1))+(2+ε)k and a gap
in clique size of factor 2k, which can be rewritten as N1/(1+2+2ε). The clique size, in
case the input is not in the language, is 2r which can be rewritten as N ε. Substituting
ε for ε/2, the claim of part 1 follows. For part 2 we use Corollary 11.5 and get a pcp
system for NP with randomness r + (2 + ε)k, free-bit complexity (2 + ε)k, and error
probability 2−k. Using the FGLSS construction on this system, the claim of part (2)
follows.

Combining the above with a recent reduction of Fürer [45], we get the following.
THEOREM 7.12. For any ε > 0,
(1) NP ≤KR Gap-ChromNumc,s for c(N)/s(N) = N

1
5−ε.

(2) NP ≤KD Gap-ChromNumc,s for c(N)/s(N) = N
1
7−ε.

Part II: Proofs and approximation: Potential and
limitations.

8. The reverse connection and its consequences. Feige et al. [40] describe
a procedure which takes a verifier V and an input x and constructs a graph, which we
denote GV (x), whose vertices correspond to possible accepting transcripts in V ’s com-
putation and edges corresponding to consistent/nonconflicting computations. They
then show the following connection between the maximum (over all possible oracles)
acceptance probability of the verifier and the clique size in the graph. Recall that
ACC [V (x)] = maxπ PrR [V π(x;R) = 0] is the maximum accepting probability. Also
recall that MaxClique(G) is the maximum clique size.

THEOREM 8.1 ((the FGLSS reduction) [40]). If, on input x, a verifier V tosses r
coins, then the following relationship holds:

ACC [V (x)] =
MaxClique(GV (x))

2r
.

PCP—TOWARDS TIGHT RESULTS 875

In this section we essentially show an inverse of their construction.

8.1. The Clique-Gap verifier. We stress that by the term graph we mean an
undirected simple graph (i.e., no self-loops or parallel edges).

THEOREM 8.2 (clique verifier of ordinary graphs). There exists a verifier, denoted
W, of logarithmic randomness complexity, logarithmic query length, and zero free-bit
complexity, that, on input an N -node graph G, satisfies

ACC [W (G)] =
MaxClique(G)

N
.

Furthermore, GW (G) is isomorphic to G, where the isomorphism is easily computable.
Lastly, given a proof/oracle π we can construct in polynomial-time a clique of size pN
in G, where p is the probability that W accepts G with oracle access to π.

Proof. On input a graph G on N nodes, the verifier W works with proofs of
length

(
N
2

)
− |E(G)|. The proof π is indexed by the edges in G (i.e., nonedges in G).

For clarity we assume that the binary value π({u, v}) is either u or v. This is merely a
matter of encoding (i.e., consider a 1-1 mapping of the standard set of binary values,
{0, 1}, to the set {u, v}). On input G and access to oracle π, the verifier W acts as
follows:

—picks uniformly a vertex u in the vertex set of G.
—for every {u, v} ∈ E(G), the verifier W queries the oracle at {u, v} and rejects

if π({u, v}) 6= u.
—if the verifier did not reject by now (i.e., all queries were answered by u), then

it accepts.
Properties of W . Clearly, W tosses log2N coins. Also, once W picks a vertex u,

the only pattern it may accepts is (u, u, . . . , u). Thus the free-bit complexity of W is
0. To analyze the probability that W accepts the input G, when given the best oracle
access, we first prove the following.

CLAIM. The graphs GW (G) and G are isomorphic.
Proof. The proof is straightforward. One needs first to choose an encoding of

accepting transcripts of the computation of W on input G. We choose to use the “full
transcript” in which the random coins as well as the entire sequence of queries and
answers is specified. Thus, a generic accepting transcript has the form

Tu
def= (u, ({u, v1}, u), . . . , ({u, vd}, u)),

where u is the random vertex selected by the verifier and {v1, . . . , vd} is the set of non-
neighbors of u. We stress that Tu is the only accepting transcript in which the verifier
has selected the vertex u. Also, for each vertex u, the transcript Tu is accepting.
Thus, we may consider the 1-1 mapping, φ, that maps Tu to u. We claim that φ is
an isomorphism between GW (G) and G.

Suppose that Tu and Tv are adjacent in GW (G). Then, by definition of the
FGLSS graph, these transcripts are consistent. It follows that the same query cannot
appear in both (accepting) transcripts (otherwise it would have been given conflicting
answers). By definition of W , we conclude that (u, v) is not a nonedge, namely,
(φ(Tu), φ(Tv)) = (u, v) ∈ E(G). Suppose, on the other hand, that (u, v) ∈ E(G). It
follows that the query {u, v} does not appear in either Tu or Tv. Since no other query
may appear in both transcripts, we conclude that the transcripts are consistent and
thus Tu and Tv are adjacent in GG(W).

876 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

By Theorem 8.1 it now follows that the probability that W accepts on input G,
given the best oracle, is MaxClique(GW (G))/N which by the above equals

MaxClique(G)/N .

Furthermore, given a proof π which makes W accept G with probability p, the accept-
ing random strings of W constitute a clique of size pN in GW (G). These accepting
random strings can be found in polynomial time and they encode vertices of G (which
form a clique in G).

We now generalize the above construction to get verifiers which indicate the ex-
istence of large cliques in layered graphs. An (L,M,N)-layered graph is an N -vertex
graph in which the vertices are arranged in L layers so that there are no edges between
vertices in the same layer, and there are at most M vertices in each layer. We use a
convention by which, whenever a layered graph is given to some algorithm, a partition
into layers is given along with it (i.e., is implicit in the encoding of the graph).

THEOREM 8.3 (clique verifier for layered graphs). There exists a verifier, de-
noted W , of logarithmic randomness complexity and logarithmic query length that, on
input an (L,M,N)-layered graph G, has free-bit complexity log2M , average free-bit
complexity log2(N/L), and satisfies

ACC [W (G)] = MaxClique(G)/L .

Furthermore, GW (G) is isomorphic to G, where the isomorphism is easily computable.
Lastly, given a proof/oracle π, we can construct in polynomial time a clique of size
pL in G, where p is the probability that W accepts G with oracle access to π.

Proof. On input an (L,M,N)-layered graph G, the verifier W works with proofs
consisting of two parts. The first part assigns every layer (i.e., every integer i ∈ [L])
a vertex in the layer (i.e., again we use a redundant encoding by which the answers
are vertex names rather then an index between 1 and the number of vertices in the
layer). The second part assigns to pairs of nonadjacent (in G) vertices a binary value,
which again is represented as one of the two vertices. On input G and access to oracle
π, the verifier W acts as follows:

—Picks uniformly a layer i in {1, . . . , L}.
—Queries π at i and obtains as answer a vertex u. If u is not in the ith layer of
G, then the verifier rejects. (Otherwise, it continues as follows.)

—For every {u, v} ∈ E(G), the verifier W queries the oracle at {u, v} and rejects
if π({u, v}) 6= u. (Actually, it is not necessary to query the oracle on pairs of
vertices belonging to the same layer.)

—If the verifier did not reject by now (i.e., all queries were answered by u), then
it accepts.

Properties of W . Here W tosses log2 L coins. Once the first query of W is
answered, specifying a vertex u, the only pattern it may accept in the remaining
queries is (u, u, . . . , u). Thus, the free-bit complexity of W is log2M , accounting for
the first query which may be answered arbitrarily in {1, . . . ,m}, where m ≤M is the
number of vertices in the chosen layer. The average free-bit complexity is log2(N/L)
(as N/L is the average number of vertices in a layer of the graph G). Again, we can
prove that GW (G) = G and the theorem follows.

Proof. Here, the accepting transcripts of W , on input G, correspond to a choice
of a layer i and a vertex in the ith layer (since, once a vertex is specified by the first

PCP—TOWARDS TIGHT RESULTS 877

answer, there is only one accepting way to answer the other queries). Thus, a generic
accepting transcript has the form

Tu
def= (i, (i, u), ({u, v1}, u), . . . , ({u, vd}, u)),

where i is the layer selected by the verifier, u is a vertex in the ith layer of G, and
{v1, . . . , vd} is the set of nonneighbors of u. Again, Tu is the only accepting transcript
in which the verifier’s first query is answered with vertex u, and for each vertex u,
the transcript Tu is accepting. Again, we consider the 1-1 mapping φ that maps Tu
to u and show that it is an isomorphism between GW (G) and G.

Suppose that Tu and Tv are adjacent in GG(W). Then, by definition of the FGLSS
graph, these transcripts are consistent. We first note that u and v cannot appear in
the same layer of G (otherwise the first query in the transcript would yield conflicting
answers). Again, the same two-vertex query cannot appear in both (accepting) tran-
scripts, and we conclude that (φ(Tu), φ(Tv)) = (u, v) ∈ E(G). Suppose, on the other
hand, that (u, v) ∈ E(G). Clearly, u and v belong to different layers and, as before,
the query (u, v) does not appear in either Tu or Tv. Since no other two-vertex query
may appear in both transcripts, we conclude that the transcripts are consistent and
thus Tu and Tv are adjacent in GG(W).

The theorem follows as before.
Remark 8.4. The clique verifier W , presented in the proof of Theorem 8.3, is

adaptive: the answer to its first query determines (all) of the other queries. We
wonder if it is possible to construct a non-adaptive clique verifier with properties as
claimed in Theorem 8.3.

8.2. Reversing the FGLSS reduction. We are interested in problems ex-
hibiting a gap in Max-Clique size between positive and negative instances. Recall
that MaxClique(G) = MaxClique(G)/N is the fraction of nodes in a maximum clique
of N -node graph G. Also recall from section 2.4 that the Gap-MaxCliquec,s promise
problem is (A,B), where A is the set of all graphs G with MaxClique(G) ≥ c(N), and
B is the set of all graphs G with MaxClique(G) < s(N). The gap of this problem is
defined to be c/s. As a direct consequence of Theorem 8.2, we get the following.

COROLLARY 8.5. For all functions c, s: Z+ → [0, 1] we have Gap-MaxCliquec,s ∈
FPCPc,s[log, 0,poly].

The above corollary transforms the gap in the promise problem into a gap in
a pcp system. However, the accepting probabilities in this pcp system are very low
(also on yes instances). Below, we use Theorem 8.3 to obtain pcp systems with perfect
(resp., almost-perfect) completeness for this promise problem. We start by presenting
two randomized reductions of the promise problem to a layer version. Alternative
methods are presented in section 11 (cf. Proposition 11.6).

PROPOSITION 8.6 (layering the clique promise problem).
(1) (obtaining a perfect layering). There exists a polynomial-time randomized

transformation, T , of graphs into layered graphs so that, on input a graph G, and
integers C and L, the transformation outputs a subgraph H = T (G,C,L) of G in L
layers such that if MaxClique(G) ≥ C, then

Pr [MaxClique(H) < L] < L · 2− C
2L .

Furthermore, with probability 1−L · 2−N/3L, no layer of H contains more than 2 · NL
nodes.

878 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

(2) (using logarithmic randomness). There exists a polynomial-time randomized
transformation, T , of graphs into layered graphs so that, on input a graph G, and
integers C and L, the transformation outputs a subgraph H = T (G,C,L) of G in L
layers such that if MaxClique(G) ≥ C, then

Pr [MaxClique(H) ≤ (1− ε) · L] <
L

εC

for every ε ∈ [0, 1]. Furthermore, the transformation uses logarithmically many coins.
Also, with probability 1− L

εN , at most εL layers of H contain more than 2 · NL nodes.
Proof. The first transformation consists of assigning to each vertex of G a ran-

domly chosen layer of H. Namely, we construct the graph H, which is a subgraph of
G, by uniformly selecting for each vertex v a layer l(v) ∈ [L] and copying only the
edges of G which connect vertices placed in different layers (of H). The construction
can be carried out in random polynomial time and we show that if the original graph
has a clique of size C, then with high probability the resulting graph has a clique of
size L, provided C � 2L log2 L.

CLAIM 1. Suppose that G has a clique of size C, denoted S. Then, the probability
that all vertices in S were placed in less than L layers is at most L · 2− C

2L .
Proof. We start by bounding, for each i, the probability that no vertex of S is

placed in the ith layer. For each v ∈ S, we introduce the 0-1 random variable ζv so
that ζv = 1 if v is placed in the ith layer (i.e., l(v) = i) and ζv = 0 otherwise. Let
t

def= C/L. Then, E[
∑
v∈S ζv] = t. Using a multiplicative Chernoff bound [75], we get

Pr [∀v ∈ S : l(v) 6= i] = Pr

[∑
v∈S

ζv = 0

]
< 2−

t
2 .

Call the ith layer bad if no vertex of S is placed in it. By the above, the probability
that there exists a bad layer is smaller than L · 2− t2 , and the claim follows.

It is left to bound the probability that a particular layer contains more than twice
the expected number of vertices. Using again a multiplicative Chernoff bound, this
probability is at most 2−N/3L and the first part of the proposition follows.

The second transformation consists of selecting randomly a universal2 hashing
function (a.k.a., pairwise independent hash function) mapping the vertices of the
graph G into the layer-set [L]. Namely, suppose that the function h was chosen; then
we construct the graph H, which is a subgraph of G, by placing a vertex v (of G)
in layer h(v) of H, and copying only the edges of G which connect vertices placed
in different layers (of H). The construction can be carried out in polynomial time
using only logarithmic randomness (for the selection of the hashing function). We
show that if the original graph has a clique of size C, then with high probability the
resulting graph has a clique of size almost L, provided L� C.

CLAIM 2. Suppose that G has a clique of size C, denoted S. Then, the probability
that all vertices in S were placed in less than (1− ε) · L layers is at most L

εC .
Proof. Again, we bound, for each i, the probability that no vertex of S is placed

in the ith layer. For each v ∈ S, we introduce the 0-1 random variable ζv so that
ζv = 1 if h(v) = i and ζv = 0 otherwise. Let t def= C/L and ζ

def=
∑
v∈S ζv. Then,

E[ζ] = t (which is greater than 1; otherwise the claim holds vacuously). Using the

PCP—TOWARDS TIGHT RESULTS 879

pairwise independence of h and Chebyshev’s inequality, we get

Pr [∀v ∈ S : h(v) 6= i] = Pr [ζ = 0]

≤
Var[

∑
v∈S ζv]
t2

<
C/L

t2
=

1
t
.

Call the ith layer bad if no vertex of S is placed in it. By the above, the expected
number of bad layers is smaller than L · 1

t , so by Markov inequality the probability
that more than εL layers are bad is at most 1/εt. The claim follows.

Again, it is left to bound the probability that a particular layer contains more
than M

def= 2N/L. Using Chebyshev’s inequality again, this probability is at most
L/N . Thus, the expected number of layers having more than M vertices is at most
L2/N , and it follows that the probability that εL layers contain more than M vertices
each is at most L2/N

εL = L
εN . The second part of the proposition follows.

Combining Theorem 8.3 and Proposition 8.6, we obtain the following. (Refer to
section 2.3 for what it means for a promise problem to reduce to a complexity class.)

PROPOSITION 8.7 (reversing the FGLSS reduction, general form). For any
polynomial-time computable, positive functions c, s, ε: Z+ → [0, 1] we have

(1) (randomized reduction to a pcp with perfect completeness):

Gap-MaxCliquec,s ≤KR FPCP1,s′ [log, f ′],

where f ′(N) def= log2(1/c(N)) + log2 log2N + 2 and s′(N) def= 2 log2N ·
s(N)
c(N) .

(2) (a pcp with almost-perfect completeness):

Gap-MaxCliquec,s ∈ FPCP1−4ε,s′ [log, f ′],

where f ′(N) def= 1 + log2(1/c(N)) + 2 log2(1/ε(N)) and s′(N) def= 1
ε(N)2 · s(N)

c(N) .
Proof. For the second part, we construct a verifier for the promise problem as fol-

lows. On input an N -vertex graph G, the verifier computes C def= N · c(N), ε def= ε(N),
and L

def= ε2C. It invokes the second transformation of Proposition 8.6, obtaining
an (L,N,N)-layered graph H = T (G,C,L). (We stress that this transformation re-
quires only logarithmically many coin tosses.) Next, the verifier modifies H into H ′

by omitting (the minimum number of) vertices so that no layer of H ′ has more than
2N/L vertices. Finally, the verifier invokes the clique-verifier W of Theorem 8.3 on
input H ′.

The free-bit complexity of the verifier constructed above is log2(2N/L) = 1 +
log2(1/c(N)) + 2 log2(1/ε(N)). Suppose that G is a no-instance of the promise prob-
lem. Using MaxClique(H ′) ≤ MaxClique(G) and Theorem 8.3, it follows that the

constructed verifier accepts G with probability at most MaxClique(H′)
L ≤ s(N)

ε2(N)·c(N) .
Suppose, on the other hand, that G is a yes-instance of the promise problem. Then,
with probability at least 1− L

εC = 1− ε we have MaxClique(H) ≥ (1− ε) ·L, and with
probability at least 1 − L

εN > 1 − ε we have MaxClique(H ′) ≥ MaxClique(H) − εL.
Thus, with probability at least 1− 2ε, we have MaxClique(H ′) ≥ (1− 2ε) · L. It fol-
lows that the constructed verifier, when given oracle access to an appropriate proof,
accepts G with probability at least 1− 4ε.

880 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

For the first part, we define a promise problem which refers to gaps in cliques of
layered graphs. Specifically, we have the following.

DEFINITION. For any function ` : Z+ → Z+ and s : Z+ → [0, 1], we define the
promise problem Gap−CLG`,s as the pair (A,B), where:

(1) A is the set of all (`(N), 2N/`(N) , N)-layered graphs G with MaxClique(G) =
`(N), and

(2) B is the set of all (`(N), 2N/`(N) , N)-layered graphs G with MaxClique(G) <
s(N) · `(N).

The gap of this problem is defined to be 1/s.
Using the first transformation of Proposition 8.6, we obtain Gap-MaxCliquec,s ≤KR

Gap−CLG`,s′ , where `(N) = c(N)·N
2 log2 N

and s′(N) = s(N)·N
`(N) = 2 log2N ·

s(N)
c(n) . On

the other hand, Theorem 8.3 asserts that Gap−CLG`,s′ ∈ FPCP1,s′ [log, f ′], where

f ′(N) def= log2(2N/`(N)). Observing that f ′(N) = 1 + log2
2 log2 N
c(N) (which equals

log2(1/c(N)) + log2 log2N + 2), the proposition follows.
Each of the two parts of Proposition 8.7 shows that the well-known method of

obtaining clique-approximation results from efficient pcp systems (cf. [40, 25, 86, 41,
23]) is “complete” in the sense that, if clique approximation can be shown NP-hard,
then this can be done via this method. The precise statement is given in Theorems 8.10
and 8.11 (below). As a preparatory step, we first provide an easier-to-use form of
the above proposition. The restriction that f be a constant is only for notational
simplicity (as otherwise, given f as a function of N = ‖G‖, one needs to repharse it
as a function of n = |x|).

PROPOSITION 8.8 (reversing the FGLSS reduction, easy to use form). Let f > 0
be a constant and let c, s: Z+ → [0, 1] be polynomial-time computable so that

c(N)
s(N)

≥ N 1
1+f .

Then, for every ε > 0, we have
(1) (randomized reduction to a pcp with perfect completeness):

Gap-MaxCliquec,s ≤KR FPCP[log, f + ε];

(2) (a pcp with almost-perfect completeness):

Gap-MaxCliquec,s ∈ FPCP1−o(1)[log, f + ε].

Proof. We merely invoke Proposition 8.7 and calculate the amortized free-bit
complexity of the resulting verifier. We may assume that s(N) ≥ 1/N . Thus (using
c(N)/s(N) ≥ N 1

1+f), we have c(N) ≥ N 1
1+f /N = N

−f
1+f and 1/c(N) ≤ N

f
1+f .

For part 1, we let α(N) def= 2 log2N and set f ′(N) def= log2(1/c(N)) + log2 α(N)
and s′(N) def= α(N) · s(N)

c(N) . By invoking Proposition 8.7 (part 1) we find that

Gap-MaxCliquec,s ≤KR FPCP1,s′ [log, f ′] ,

and

Gap-MaxCliquec,s ≤KR FPCP[log, f ′]

for f ′ = f ′

log(1/s′) follows. It now remains to argue that for any ε > 0, f ′ ≤ f + ε.

PCP—TOWARDS TIGHT RESULTS 881

Using the lower bounds on c(N) and c(N)/s(N), we obtain f ′(N) ≤ f
1+f log2N+

log2 α(N) and log(1/s′(N)) ≥ 1
1+f · log2N − log2 α(N). Selecting a sufficiently small

δ > 0 and using log2 α(N) < δ · log2N , we get

f ′ ≤
f

1+f log2N + log2 α(N)
1

1+f log2N − log2 α(N)

<

f
1+f + δ

1
1+f − δ

,

and so part 1 follows. For part 2, we let α be a slowly decreasing function s.t. α(N) =
o(1) but log2(1/α(N)) = o(logN). We set f ′(N) def= log2(1/c(N)) + 2 log2(1/α(N))
and s′(N) def= 1

α(N)2 · s(N)
c(N) . By invoking Proposition 8.7 (part 2) we get Gap-MaxCliquec,s ∈

FPCP1−α,s′ [log, f ′]. Since α(N) = o(1), we conclude that

Gap-MaxCliquec,s ∈ FPCP1−o(1)[log, f ′]

for f ′ = f ′

log2(1/s′) . Again, it remains to argue that for any ε > 0, f ′ ≤ f+ε. Using the

lower bound on c(N) and c(N)/s(N), we obtain f ′(N) ≤ f
1+f log2N − 2 log2 α(N)

and log2(1/s′(N)) = 2 log2 α(N) + 1
1+f log2N . Selecting a sufficiently small δ > 0

and using log2(1/α(N)) < δ · log2N , we get

f ′ ≤
f

1+f log2N + 2 log2(1/α(N))
1

1+f log2N − 2 log2(1/α(N))

<

f
1+f + δ

1
1+f − δ

,

and part 2 follows.

8.3. Main consequences. Let us first state the FGLSS reduction.
THEOREM 8.9 (the FGLSS reduction, revisited). Let f > 0 be a constant and

c, s: Z+ → [0, 1]. Then, for every ε > 0,

FPCP1−o(1)[log, f] ≤KR Gap-MaxCliquec,s,

where c(N)/s(N) ≥ N1/(1+f+ε). Furthermore, in case the proof system is of perfect
completeness, we have c(N) = N−f/(1+f+ε) and s(N) = N−(1+f)/(1+f+ε).

Proof. We first amplify the gap of the pcp verifier (cf. Corollary 11.3) and then
apply the bare FGLSS reduction (see Theorem 8.1 and [40]) to the amplified verifier.
Specifically, for any problem Π in FPCP[log, f], we first obtain Π ≤KR FPCP1,2−t [(1+
ε) · t, f · t], where t(n) = γ log2 n (with the constant γ determined by the constant
ε > 0). The FGLSS reduction now yields a graph of size N def= 2(1+ε+f)·t(n) with gap
2t(n) (which can be written as N

1
1+ε+f). Specifically, the clique size for a yes-instance

(resp., no-instance) is at least 2(1+ε)·t(n) = N
1+ε

1+ε+f (resp., at most 2ε·t(n) = N
ε

1+ε+f).
A similar procedure may be applied for any Π in FPCP1−o(1)[log, f]. Specifically,

by definition, for some function m, Π ∈ FPCPc,2−m·c[log,m · f], for c(n) = 1 −
o(1) (but we are not going to use the bound on c). Using Proposition 11.1 and
Proposition 11.2 (part 2), we first obtain Π ≤KR FPCPc′,2−t·c′ [(1 + ε) · t, f · t], where

882 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

c′(n) = c(n)t(n)/m(n) and t(n) = γ log2 n (with the constant γ determined by the
constant ε > 0). The FGLSS reduction now yields a graph of size N def= 2(1+ε+f)·t(n)

with gap 2t(n) as above.
Interestingly, the gap (for MaxClique) created by the FGLSS reduction is inde-

pendent of the location of the gap in the pcp system. The main result of this section
follows.

THEOREM 8.10. Let f be a constant. Then the following statements are equiva-
lent:

(1) For all ε > 0, it is the case that NP reduces to Gap-MaxCliquec,s with gap
c(N)/s(N) = N1/(1+f+ε).

(2) For all ε > 0, it is the case that NP reduces to FPCP[log, f + ε].
In both items the reduction is randomized. Furthermore, the equivalence holds for both
Karp and Cook reductions.

Proof. The direction (2) ⇒ (1) follows again by Theorem 8.9. The reverse direc-
tion follows by part 1 of Proposition 8.8.

An alternative statement is provided by the following theorem. Here the second
item (existence of pcp systems with certain parameters) is weaker than in the previous
theorem, but this allows the (1) ⇒ (2) direction to be proven via a deterministic
reduction (instead of the randomized reduction used in the analogous proof above).
Recall that FPCP1−o(1)[·, f] is the class of problems having a proof system with
almost-perfect completeness (i.e., c = 1− o(1)) and amortized free-bit complexity f .

THEOREM 8.11. Let f be a constant. Then the following statements are equiva-
lent:

(1) For all ε > 0, it is the case that NP reduces to Gap-MaxCliquec,s with gap
c(N)/s(N) = N1/(1+f+ε).

(2) For all ε > 0, it is the case that NP reduces to FPCP1−o(1)[log, f + ε].
In both items the reduction is randomized and the equivalence holds for both Karp
and Cook reductions. Furthermore, if item 1 holds, with respect to deterministic
reductions, so does item 2. Thus, if item 1 holds with a deterministic Karp reduction,
then NP ⊆ FPCP1−o(1)[log, f + ε].

Proof. The direction (2) ⇒ (1) follows by applying Theorem 8.9. The reverse
direction follows by part 2 of Proposition 8.8.

8.4. More consequences. The equivalence between clique and FPCP described
above turns out to be a useful tool in the study of the hardness of the Clique and Chro-
matic Number problems. Here we describe some applications. The first application
is merely a rephrasing of the known reductions from the MaxClique problem to the
Chromatic Number problem in a simpler and more convenient way. The remaining
applications use the fact that the equivalence between FPCP and MaxClique allows
us to easily shift gaps, in the MaxClique problem, from one place to another. Loosely
speaking, these applications use the fact that the complexity of the promise problem
Gap-MaxCliquec,s remains unchanged when changing the parameters c and s so that
the log2 c(N)

log2 s(N) remains invariant. We stress that the ratio c(N)/s(N) does not remain
invariant.

Rephrasing reductions from MaxClique to Chromatic Number. Start-
ing with the work of Lund and Yannakakis [71], there have been several works on
showing the hardness of approximating the Chromatic Number, which reduce the
MaxClique problem to the Chromatic Number problem; see section 2.4.3 for a de-
scription. Yet none of these results could be stated cleanly in terms of a reduction

PCP—TOWARDS TIGHT RESULTS 883

from MaxClique to Chromatic Number without loss of efficiency, i.e., the theorems
could not be stated as saying “if approximating MaxClique to within a factor of Nα

is NP-hard, then approximating Chromatic Number to within a factor of Nh(α) is
NP-hard.” The reason for the lack of such a statement is that these reductions use
the structure of the graph produced by applying an FGLSS reduction to an FPCP
result and are hence really reductions from FPCP to Chromatic Number rather than
reductions from MaxClique to Chromatic Number. However, now that we know that
FPCP and MaxClique are equivalent, we can go back and rephrase the old statements.
Thus results of [71, 66, 23, 45] can be summarized as follows.

For every α, ε, γ > 0,

Gap-MaxCliqueNα−1,Nε−1 ≤KR Gap-ChromNumN−(ε+γ),N−h(α) ,

where
(1) h(α) = min{ 1

6 ,
α

5−4α} [71].

(2) h(α) = min{ 1
11 ,

α
5+α} [66].

(3) h(α) = min{ 1
4 ,

α
3−2α} [23].

(4) h(α) = min{ 1
3 ,

α
2−α} [45].

We note that it is an open problem whether one can get a reduction in which h(α)→ 1
as α → 1. We also note that Fürer’s reduction [45] is randomized while the rest are
deterministic.

Reductions among MaxClique problems. Next we present an invariance
of the Gap-Clique problem with respect to shifting of the gaps. The following result
has also been independently observed by Feige in [37], where he uses a randomized
graph product to show the result. Our description uses the properties of fpcp and its
equivalence to clique approximation.

THEOREM 8.12. Let k, ε1, ε2 be real numbers such that k ≥ 1 and 0 ≤ ε1 < ε2 ≤ 1.
Then the following hold:

(1) Gap-MaxCliqueN−ε2 ,N−kε2 ≤KD Gap-MaxCliqueN−ε1 ,N−kε1 . (Deterministic.)
(2) Gap-MaxCliqueN−ε1 ,N−kε1 ≤KR Gap-MaxClique1/2·N−ε2 ,2·N−kε2 .
Proof. Part (1) is proved via a well-known graph theoretic trick. Let G be an

instance of Gap-MaxCliqueN−ε2 ,N−kε2 with N nodes. We take the graph product of
G with a complete graph on m nodes to get a graph H on M = mN nodes. (By a
graph product of two graphs G1(V1, E1) and G2(V2, E2) we mean a graph with vertex
set V1 × V2 where vertices (u1, u2) and (v1, v2) are connected iff (ui, vi) ∈ Ei for both
i = 1, 2.) We choose m so that if G has a clique of size N1−ε2 , then H has a clique of

size M1−ε1 . Specifically, setting m = N
ε2−ε1
ε1 , the requirement is satisfied (as a clique

of size N1−ε2 in G yields a clique of size m ·N1−ε2 = N
ε2−ε1
ε1

+1−ε2 = M
ε1
ε2
· ε2(1−ε1)

ε1 in
H.) Under this choice of m we will show that if G has no cliques of size N1−kε2 , then
H has no cliques of size M1−kε1 . This will complete the proof of part 1.

Suppose H has a clique of size M1−ε1 . Then, by construction, G must have a
clique of size

M1−ε1

m
=

N1−ε1

mε1
= N1−ε1− ε2−ε1ε1

·ε1 ,

and the claim follows.
For part (2) we use the equivalence between FPCP and gaps in MaxClique and

apply amplification properties of FPCP. Let c(N) = N−ε1 and s(N) = N−kε1 . Then,

884 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

using Corollary 8.5 (for line 1 below), Proposition 11.1 (for line 2), and part (2) of
Proposition 11.2 (for line 3), we get

Gap-MaxCliqueN−ε1 ,N−kε1

∈ FPCPc,s[log2N, 0, N
2]

⊆ FPCPct,st [t · log2N, 0, N
2] (for any integer constant t ≥ 1)

≤KR FPCP 1
2 ·ct,2·st [log2(N2/st), 0, N2].

The choice of the integer t will be determined later.
Now, we go back to the Clique-Gap promised problem. Applying the FGLSS

reduction to the pcp class FPCP 1
2 ·ct,2·st [log2(N2/st), 0, N2], we obtain an instance of

Gap-MaxClique 1
2N
−ε1t,2N−kε1t on an M -vertex graph, where M = N2

st = N2+kε1t.
To clarify the last assertion and the rest of the proof, we introduce the notation

Gap-MaxCliqueα(N),β(N)(N) which makes explicit the size parameter to which the

promise problem refers. Thus, letting γ def= t
2+tkε1

, we have obtained

Gap-MaxCliqueN−ε1 ,N−kε1 (N) ≤KR Gap-MaxClique 1
2M
−γε1 ,2M−k·γε1 (M),

(with M polynomial in N). Now, part 2 follows by setting t so that γ = t
2+tkε1

≥ ε2
ε1

and t = d 2ε2
(1−kε2)ε1

e will do. (Actually, we get Gap-MaxCliqueN−ε1 ,N−kε1 (N) ≤KR
Gap-MaxClique 1

2M
−ε′2 ,2M−kε

′
2
(M), for ε′2 ≥ ε2, but this can be corrected by invoking

item 1.)
The following theorem was first shown by Blum [26] using the technique of ran-

domized graph products. Instead, we use the gap-shifting idea to show that a seem-
ingly very weak approximator to the clique (say, N1−ε-approximation algorithm for
some ε > 0) can be used to obtain a very good approximator to the clique number in
graphs which are guaranteed to have very large cliques. In particular, using such an
algorithm, if a graph has a clique of size N

k , then a clique of size N
k1/ε can be found in

such a graph in polynomial time. As observed by Blum, this can be translated into
significantly better algorithms for approximate coloring of a 3-colorable graph than
known currently (see item 1 in Corollary 8.15 below). Here we derive the theorem
using FPCP and the gap-shifting techniques. The parameters are generalized so as
to be able to conclude, say, that even if we have a N

2
√

log2 N
-approximation (for Max-

Clique), then we can obtain nontrivially good algorithms for 3-coloring (see item 2 in
Corollary 8.15).

THEOREM 8.13. Let α ∈ [0, 1], β ∈ [0, 1/2), and k > 1. Define ε : Z+ → R+,
c ∈ R+, and g : Z+ → R+ so that

ε(N) =
α

logβ2 N
,

c =
2

log2 k
,

and log2 g(N) =
(
cβ log2 k

α

)1/(1−β)

logβ/(1−β)
2 N.

Then there is a randomized poly(N2+c log2 g(N))-time reduction of (N-vertex) instances
of

Gap-MaxClique1/k,1/g

PCP—TOWARDS TIGHT RESULTS 885

to M -vertex instances of

Gap-MaxClique 1
2M
−ε(M),2M−1+ε(M) .

Remark 8.14. Observe that g(N) = No(1). Also, for β = 0 we have ε(N) = α and
g(N) = k

1
α . Thus, the theorem states that given a 1

4M
1−2α approximator for clique,

one can solve Gap-MaxClique1/k,1/k′ in polynomial time, where k′ = k
1
α .

Proof. As usual we first reduce Gap-MaxClique to FPCP and then amplify.

Gap-MaxClique1/k,1/g

∈ FPCP1/k,1/g[log2N, 0, N
2]

⊆ FPCP(1/k)t,(1/g)t [t log2N, 0, N
2] (for any function t : Z+ → Z+.)

≤KR FPCP 1
2 (1/k)t,2(1/g)t [log2N

2gt, 0, N2].

We now show that by setting t = c log2N and using the FGLSS reduction, the
above reduces in poly(M)-time to Gap-MaxClique 1

2M
−ε,2M−ε+1 in an M vertex graph,

where M = N2g(N)t.
In case the graph is a no-instance, the size of the clique is most 2(1/g(N))t ·M =

2N2. In case the graph is a yes-instance, the clique size is at least 1
2 (1/k)t ·M . Thus

it suffices to show that 2N2 ≤ 2M ε(M) and 2kt ≤ 2M ε(M), respectively. Taking logs
in both cases it suffices to show that

2 log2N ≤ ε(M) log2M,(16)

t log2 k ≤ ε(M) log2M.(17)

We first lower bound the right-hand side of both equations.

ε(M) log2M = α log1−β
2 M

≥ α log1−β
2 (g(N)t)

≥ αt1−β log1−β
2 g(N)

= α · (c log2N)1−β ·
(
cβ

log2 k

α
logβ2 N

)
= c log2N log2 k.

Inequality (16) now follows from the fact that c log2 k = 2. Inequality (17) follows
from the fact that t = c log2N .

The following result was derived as a corollary by Blum [26] and shows the ap-
plication of the above theorem to coloring graphs with low-chromatic number with
relatively small number of colors. We warn the reader that the corollary does not fol-
low directly from the above theorem; this is because it uses a Levin reduction10 from
the search version of Chromatic Number to the search version of the clique problem.
However, it is possible to define search versions of all the gap problems above appro-
priately and verify that all the reductions work for the search problems as well (i.e.,
they are in fact Levin reductions). Thus the following can be derived as a corollary
to the above.

10A Levin reduction is a polynomial-time many-to-one reduction which is augmented by corre-
sponding polynomial-time witness transformations.

886 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

COROLLARY 8.15. Let k be an integer.
(1) For ε > 0, given an N1−ε approximator to the clique, one can color any

k-colorable graph on M nodes with O(k1/ε logM) colors in polynomial time.
(2) For ε(N) = ω((logN)−1/2), given an N1−ε(N) approximator to the clique, one

can color any k-colorable graph on M nodes with Mo(1) colors in time MO(logM).

9. On the limitations of some common approaches. In this section we
provide lower bounds on the free-bit complexity of two tasks which are central to all
existing (“low-complexity”) probabilistically checkable proofs. Specifically, we con-
sider the task of checking that a string (given by oracle access) is “close” to a valid
codeword and the task of checking that one oracle is an encoding of a projection of
a string encoded by a second oracle. Here a string is considered close to the code if
its distance from some codeword is less than half the distance of the code. Loosely
speaking, we show that each of these tasks has amortized free-bit complexity of at
least one (and this is tight by the codes and tests presented in section 7). Fur-
thermore, we show that the amortized free-bit complexity of performing both tasks
(with respect to the same given oracles) is at least two (and this also is tight by
section 7).

Our original motivation in proving these lower bounds was to indicate that a
paradigm shift is required in order to improve over our PCP systems of amortized
free-bit complexity 2 (for NP). In retrospect, the paradigm shifts have amounted to
the relaxation of the codeword test in [55] and to the relaxation of the projection
test in [56]. Thus, our lower bounds may be considered as a justification for these
(somewhat unnatural) relaxations.

In particular, the lower bound on the complexity of the codeword test relies on
the particular interpretation of “closeness” used above (i.e., being at distance less
than half the distance of the code). This requirement is not essential as can be
seen in section 3.4, where we show that relaxed codeword tests, in which closeness
means slightly less than the distance of the code, also suffice. H̊astad’s relaxation
of the codeword test is different, yet it also suffices for the purpose of constructing
PCP systems of amortized free-bit complexity 1 (for NP) [55]. The lower bound on
the complexity of the projection test seems more robust. Yet, as shown by H̊astad
in [56], the projection requirements can be by-passed as well, yielding pcp systems of
amortized free-bit complexity tending to 0.

9.1. The tasks. Our definitions of the various tasks/tests are quite minimal
and do not necessarily suffice for PCP applications. However, as we are proving lower
bounds this only makes our results stronger.

Loosely speaking, the first task consists of testing that an oracle encodes a valid
codeword, or is “close” to a valid codeword, with respect to an error-correcting code
of nontrivial distance (i.e., distance greater than 1). The condition regarding the
distance of the code is essential since the task is easy with respect to the identity map
(which is a code of distance 1). We remark that testing “closeness” to codewords
with respect to codes of large distance is essential in all known pcp constructions
[12, 40, 9, 8, 21, 41, 23].

The absolute distance between two words w, u ∈ {0, 1}n, denoted ∆(w, u), is the
number of bits on which w and u disagree. We say that the code E : {0, 1}∗ 7→ {0, 1}∗
has absolute distance d if, for every m and every x 6= y ∈ {0, 1}m, the absolute
distance between E(x) and E(y) is at least d(m). The absolute distance between a
word w and a code E, denoted ∆E(w), is defined as the minimum absolute distance
between w and a codeword of E.

PCP—TOWARDS TIGHT RESULTS 887

DEFINITION 9.1 (codeword test). Let E : {0, 1}m → {0, 1}n be a code of absolute
distance d > 1. A codeword test (with respect to E) is an oracle machine, T , such that
TE(a)(R) accepts for all a,R. The error probability of T is defined as the maximum
accepting probability of T over oracles A of absolute distance at least bd/2c from the
code E, namely,

max
A∈{0,1}n s.t. ∆E(A)≥bd/2c

{
PrR

[
TA(R) accepts

]}
.

(Nothing is required with respect to noncodewords which are “close” to the code.)
The second task is defined with respect to a “projection function” π and a pair

of codes E1 and E2. Loosely speaking, the task consists of checking if the string
E1-encoded by the first oracle is mapped by π to the string that is E2-encoded by the
second oracle.

DEFINITION 9.2 (projection test). Let E1: {0, 1}m → {0, 1}n and E2: {0, 1}k →
{0, 1}n′ be two codes and let π : {0, 1}m → {0, 1}k be a function. A projection test
(with respect to the above) is a two-oracle machine, T , such that TE1(a),E2(π(a))(R)
accepts for all a,R. The error probability of T is defined as the maximum accepting
probability of T over oracle pairs (E1(a), E2(b)) where b 6= π(a), namely,

max
a,b s.t. π(a) 6=b

{
PrR

[
TE1(a),E2(b)(R) accepts

]}
.

(Nothing is required with respect to noncodewords.)
Finally, we consider a test T which combines the two tests above, namely, T takes

two oracles A and B and performs a codeword test on A and a projection test on the
pair (A,B).

DEFINITION 9.3 (combined test). Let E1: {0, 1}m → {0, 1}n be a code of absolute
distance d > 1, let E2: {0, 1}k → {0, 1}n′ be two codes, and let π : {0, 1}m → {0, 1}k
be a function. A combined test for (E1, E2, π) is a two-oracle machine T such that
TE1(a),E2(π(a))(R) accepts on all a,R. The error probability of T is defined as the
maximum accepting probability of T over oracle pairs (A,B), where either ∆E1(A) ≥
bd/2c or A = E1(a), B = E2(b) but π(a) 6= b, namely,

max
(A,B)∈S

{
PrR

[
TA,B(R) accepts

]}
,

where S def=

{(A,B) : (∆E1(A) ≥ bd/2c) or (∃a, b s.t. A = E1(a) and B = E2(b) and π(a) 6= b)} .

(Nothing is required with respect to noncodeword pairs, (A,B), which are “close” to
some pair (E1(a), E2(b)) with π(a) 6= b.)

Conventions and notations. The pattern of test T on access to oracle A (resp.,
oracles A and B) when using coin-sequence R consists of (R and) the sequence of
queries and answers made by T . Namely, this pattern, denoted patternT (A;R) (resp.,
patternT (A,B;R)), is defined as the sequence (R, q1, a1, . . . , qt, at), where qi is the ith
query made by T on coin-sequence R and after receiving the answers a1, . . . , ai−1.
We include the queries in the pattern for sake of clarity (but they can be easily
reconstructed from the coin sequence and the answers). In case T uses two oracles,

888 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

we may assume that the queries specify to which oracle they are addressed. For
simplicity, we assume in the rest of this subsection that the test has access to one
oracle, denoted A.

The set AccT (R) is defined to be the set of accepting patterns of T on coin-
sequence R. Clearly,

AccT (R) = {patternT (A;R) : TA(R) accepts}.

Recall that T is said to have free-bit complexity f if for each possible coin-sequence
R it holds that |AccT (R)| ≤ 2f . We say that T has average free-bit complexity fav if
ER [|AccT (R)|] ≤ 2fav , when the expectation is taken uniformly over all possible coin
sequences. The amortized free-bit complexity of a test is defined as fav

log2(1/ε) , where
fav is the average free-bit complexity of the test and ε is its error probability.

9.2. Lower bound for the codeword test.
PROPOSITION 9.4. For any code of absolute distance greater than 1, the Codeword

Test has amortized free-bit complexity of at least 1− o(1).
The amortization in the above proposition is to be understood as taking place

on a fixed number of free bits whereas the length of the oracle grows. Actually,
we can allow both the oracle length and the free-bit count to grow, provided that
the logarithm of the number of codewords grows faster than the free-bit complexity.
Alternatively, we can consider a fixed oracle length and a fix bound on the number
of free bits. Actually, this is done in the following technical lemma from which the
above proposition follows.

LEMMA 9.5. Let E : {0, 1}m 7→ {0, 1}n be a code of absolute distance d > 1,
and let T be a codeword test with respect to E having average free-bit complexity fav.
Then, T has error probability at least max(2 − 2fav , 1

F −
1
M), where F = 2fav and

M = 2m.
In particular, if fav = 0, then the error is 1, and for fav ≥ 1 the error is at least

1
F −

1
M .

Proof. Fix an arbitrary coin-sequence R, and let FR denote the cardinality of the
set AccT (R).

Let a1, a2 be selected independently and uniformly in {0, 1}m, and consider the
codewords E(a1) and E(a2). With probability 1

M we have a1 = a2 and otherwise
∆(E(a1), E(a2)) ≥ d. From a1 and a2, we construct an oracle A(a1, a2) as follows:
if a1 = a2, then A = E(a1). Otherwise, we construct A(a1, a2) so that it agrees
with the value of the bits of both E(ai)’s, whenever they are the same, and so that
it is at distance dd/2e from E(a1). This can be done as follows: let S be the set of
positions on which E(a1) and E2(a2) disagree and let S′ be a subset of S of cardinality
dd/2e. Then A(a1, a2) equals E(a1) on all positions not in S′ (and equals E(a2) on
the positions in S′).

We claim that, when a1 6= a2, the oracle A def= A(a1, a2) is at distance at least
bd/2c from the code (i.e., ∆E(A) ≥ bd/2c). This can be proved as follows: consider
any a ∈ {0, 1}m and observe that, by the triangle inequality,

∆(A,E(a)) ≥ ∆(E(a1), E(a))−∆(E(a1), A) ≥ d− dd/2e = bd/2c.

We now claim that

Pra1,a2

[
TA(a1,a2)(R) accepts

]
≥ 1
FR

,

PCP—TOWARDS TIGHT RESULTS 889

where the probability is taken uniformly over all possible choices of a1, a2 ∈ {0, 1}m.
The key observation is that if patternT (E(a1);R) equals patternT (E(a2);R), then
patternT (A(a1, a2);R) will be equal to patternT (E(a1);R) (since no query of T (R)
falls in the set S, defined above). Thus, since TE(a1)(R) accepts, TA(a1,a2)(R) must
accept, too. This suggests to lower bound the probability that TA(a1,a2)(R) accepts
by the probability that patternT (E(a1);R) = patternT (E(a2);R). Consider an enu-
meration, α1, . . . , αFR , of the patterns in AccT (R) and denote by pi the probability
that patternT (E(a);R) equals the ith pattern in this enumeration, when a is uniformly
selected in {0, 1}m (i.e., pi

def= Pra [patternT (E(a);R) = αi]). Thus, when a1 and a2
are picked at random, the probability that patternT (E(a1);R) = patternT (E(a2);R) is∑FR
i=1 p

2
i . Subject to the condition

∑
i pi = 1, the quantity

∑FR
i=1 p

2
i is lower bounded

by 1
FR

(with an equality occurring when the pi’s are equal).
The following observations now bound the error of T :

Pra1,a2

[
TA(a1,a2)(R) accepts and a1 6= a2

]
≥ Pra1,a2

[
TA(a1,a2)(R) accepts

]
− Pra1,a2 [a1 = a2]

≥ 1
FR
− 1
M
.

All of the above holds for any coin-sequence R. Now, we let R be uniformly chosen
and get

PrR,a1,a2

[
TA(a1,a2)(R) accepts and a1 6= a2

]
≥ ER

[
1
FR

]
− 1
M

≥ 1
F
− 1
M
.

(The last inequality follows by Jensen’s inequality.) Thus, there must exist oracles a1
and a2 with a1 6= a2 such that

PrR
[
TA(a1,a2)(R) accepts

]
≥ 1
F
− 1
M
,

but the oracle A(a1, a2) above satisfies ∆E(A(a1, a2)) ≥ bd/2c, implying that the
error of T is at least 1

F −
1
M .

To prove that the error is at least 2 − 2fav , we observe that if FR = 1 for some
coin-sequence R, then patternT (E(a1);R) = patternT (E(a2);R), for every two a1, a2 ∈
{0, 1}m. It follows that for every a1 6= a2, given access to the oracle A(a1, a2) and
using coin-sequence R, the test T accepts (and is wrong in doing so). Thus, for every
a1 6= a2,

PrR
[
TA(a1,a2)(R) accepts

]
≥ PrR [FR = 1] = 1− PrR [FR > 1],

and the error bound follows by using PrR [FR − 1 > 0] ≤ ER [FR − 1] = F − 1.
Proof of Proposition 9.4. Let T be a test for the code E : {0, 1}∗ → {0, 1}∗ so

that E maps m-bit strings into n(m)-bit strings. Suppose that T has average free-bit
complexity f(m) and error ε(m), as a function of m (the length of strings encoded
by the oracle). We first assume that f(m) ≥ 1. Using Lemma 9.5 (and letting

890 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

ρ(m) def= 2f(m)−m), we lower bound the amortized free-bit complexity of T as follows:

f(m)
log2(1/ε(m))

≥ f(m)
− log2(1/2f(m) − 1/2m)

=
f(m)

f(m)− log2(1− ρ(m))

>
f(m)

f(m) + ρ(m)

> 1− ρ(m).

(For the last inequality, we have assumed f(m) ≥ 1.) Thus, for this case, the propo-
sition follows by our convention that the number of codewords (denoted 2m) grows
faster than exponential in the free-bit complexity f(m) (i.e., ρ(m) = 2f(m)

2m → 0 with
n → ∞). Finally, we need to address the case in which f(m) ≥ 1 does not hold.
We consider two subcases. In the first subcase, we assume that f(m) → 0 for some
infinite subsequence of the m’s. For these m’s, we use the assertion of Lemma 9.4
that ε(m) ≥ 2 − 2f(m). Setting g(m) def= 2f(m) − 1, we lower bound the amortized
free-bit complexity by

f(m)
log2(1/ε(m))

≥ log2(1 + g(m))
− log2(1− g(m))

→ g(m)
g(m)

.

For the other subcase, we have f(m) ≥ t, for some constant t > 0. Applying T for t
times we get a test T ′ with average free-bit complexity t · f(m) ≥ 1 and error ε′(m) =
ε(m)t, which maintains the amortized free-bit complexity of T (since f(m)

− log2 ε(m) =
t·f(m)

− log2 ε
′(m)). Applying the above analysis to T ′, the proposition follows.

9.3. Lower bound for the projection test. A projection function is a function
π : {0, 1}∗ 7→ {0, 1}∗ having the property that for every m there exists a k so that π
maps {0, 1}m onto {0, 1}k.

PROPOSITION 9.6. For any pair of codes used in the two oracles and any projection
function, the Projection Test has amortized free-bit complexity of at least 1− o(1).

Again, the proposition is proved by a technical lemma. Actually, the lemma refers
to any function π : {0, 1}m 7→ {0, 1}k, and its conclusion depends on the cardinality
of the range of π (which in case of a projection function equals 2k). Abusing notations
we let π(S) def= {π(a) : a∈S}.

LEMMA 9.7. Let E1 : {0, 1}m 7→ {0, 1}n, E2 : {0, 1}k 7→ {0, 1}n′ and π :
{0, 1}m 7→ {0, 1}k be as in Definition 9.2, and let T be a projection test with re-
spect to them having average free-bit complexity fav. Then, T has error probability at
least 1

F −
1
K , where K = |π({0, 1}m)| and F = 2fav . Furthermore, if K > 1, then T

has error probability at least 2− 2fav .
Proof. Fixing an arbitrary coin-sequence R, let FR

def= |{AccT (R)}|. We consider
the behavior of the test T when given oracle access to a pair of randomly and inde-
pendently selected codewords. Specifically, let S ⊂ {0, 1}m be a set of K strings such
that for every b ∈ π({0, 1}m) there exists an a ∈ S satisfying π(a) = b. We consider
the behavior of T when given access to the oracles E1(a) and E2(π(a′)), where a
and a′ are independently and uniformly selected in S. With probability 1

K , we have

PCP—TOWARDS TIGHT RESULTS 891

π(a) = π(a′). On the other hand we claim that, given access to such pair of random
oracles, T accepts with probability at least 1

FR
. Once the claim is proven, the lemma

follows (as in the proof of the previous lemma).
Consider the set of all FR possible accepting patterns of T on access to oracles,

E1(a) and E2(π(a)), where a ∈ S. Each such pattern consists of a pair (α, β), where α
(resp., β) denotes the transcript of the test’s interaction with E1(a) (resp., E2(π(a))).
Enumerating all possible FR patterns, we denote by pi the probability that the ith
pattern occurs, when T is given access to the oracle-pair (E1(a), E2(π(a))), where a
is uniformly selected in S. Namely,

pi
def= Pra∈S [patternT (E1(a), E2(π(a));R) = (αi, βi)],

where (αi, βi) is the ith accepting pattern for T (R). Clearly,

(18)

Pra,a′∈S [patternT (E1(a), E2(π(a));R) = patternT (E1(a′), E2(π(a′));R) = (αi, βi)] = p2
i .

We now claim that the probability that a pair of independently chosen random oracles
(i.e., (E1(a), E2(b)) selected by uniformly selecting a, a′ ∈ S and setting b = π(a′))
leads to the ith pattern is at least p2

i , namely,

Pra,a′∈S [patternT (E1(a), E2(π(a′));R) = (αi, βi)] ≥ p2
i .(19)

Equation (19) is proven by a cut-and-paste argument. Suppose

p def= patternT (E1(a), E2(π(a));R) = p′ def= patternT (E1(a′), E2(π(a′));R)

and consider a computation of TE1(a),E2(π(a′))(R). Proceeding by induction, and
assuming that the first t queries are answered as in p, we show that the t + 1st
query (in our “hybrid” computation) is identical to the t + 1st query in p = p′. If
this query is directed to the first oracle, then it is answered by E1(a) (as in p) and
otherwise it is answered by E2(π(a′)) (as in p′). In both cases the answer matches
the t+ 1st answer in p = p′. We conclude that whenever p = p′, the computation of
TE1(a),E2(π(a′))(R) encounters the same pattern (p). Thus, the probability that the
computation of TE1(a),E2(π(a′))(R) encounters the ith pattern is lower bounded by the
expression in Eq. (18), and Eq. (19) follows. (We remark that for nonadaptive tests,
the probability that the ith pattern is encountered equals

∑FR
i=1 p

′
ip
′′
i , where p′i (resp.,

p′′i) is the sum of all pj ’s satisfying αj = αi (resp., βj = βi). Actually, the same holds
for any test which selects its queries for each oracle independently of answers obtained
from the other oracle.)

Using Eq. (19), we get

Pra,a′∈S [patternT (E1(a), E2(π(a′));R) ∈ AccT (R)] ≥
FR∑
i=1

p2
i

≥ 1
FR

,

and the main part of the lemma follows. Again, the “furthermore” part follows by ob-
serving that for FR = 1, patternT (E1(a), E2(π(a));R) = patternT (E1(a′), E2(π(a′));R),
for every two a, a′ ∈ {0, 1}m. Again this implies that, for every a1 6= a2, given access
to the oracle-pair (E1(a), E2(π(a′))) and using coin-sequence R, the test T (wrongly)
accepts.

892 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

9.4. Lower bound for the combined test.
PROPOSITION 9.8. For any pair of codes used in the two oracles, so that the

first code has absolute distance greater than 1, and for any projection function, the
Combined Test has amortized free-bit complexity of at least 2− o(1).

Again, the proposition is proved by a technical lemma. Loosely speaking, the
lemma asserts that a combined test of free-bit complexity 2f must have error proba-
bility at least 1

8 ·2−f . The lower bound extends to the case where 2f is a bound on the
average free-bit complexity; the error probability in this case can be lower bounded
by 3

64 ·2−f ; see details below. It follows that the amortized free-bit complexity of such
a test must be at least 2f

f+5 ≈ 2 (for large f ’s). The restriction to large f ’s does not
really weaken the result. Suppose on the contrary that there exists a test with amor-
tized free-bit complexity fam. Then, for any sufficiently large t, we can obtain a test
with free-bit complexity 2f def= t · fam and error 2−t. By the above, t·fam

t ≥ 2f
f+5 ≈ 2

(as f is now large).
LEMMA 9.9. Let E1 : {0, 1}m 7→ {0, 1}n be a code of absolute distance greater

than 1, E2 : {0, 1}k 7→ {0, 1}n′ , and let π : {0, 1}m 7→ {0, 1}k be a projection function.
Suppose that T is a combined codeword and projection test with respect to the above
having free-bit complexity 2f . Then, T has error probability at least 1

8F −
1

2K −
1

4M , where K = 2k, F = 2f , and M is the minimum, over all b ∈ {0, 1}k, of the

number of a ∈ {0, 1}m projected by π to b (i.e., M def= minb∈{0,1}k{|{a : π(a) = b}|}).
Furthermore, if 2f < 1 and max{M,K} > 1, then T has error probability 1.

Proof. The “furthermore” part follows immediately by any of the furthermore
parts of Lemma 9.5 or 9.7 (as 22f must be an integer and so 2f < 1 implies f = 0).
The proof of the main part of the lemma uses both strategies employed in the proofs of
Lemmas 9.5 and 9.7. We consider two cases. The first case is that for some E2(b), half
of the possible (coin-sequence) R’s have at most F accepting patterns with respect to
the coin-sequence R and second oracle B = E2(b). In this case we employ the strategy
used in the proof of Lemma 9.5, restricted to oracles constructed by combining two
uniformly selected codewords E1(ai)’s satisfying π(ai) = b. The second case is that for
every b ∈ {0, 1}k, for half of the possible (coin-sequence) R’s, the number of accepting
patterns with respect to the coin-sequence R and second oracle B = E2(b) is at least F .
In this case we show that many possible B’s must fit into fewer than F 2

F accepting pat-
terns and we may employ the strategy used in the proof of Lemma 9.7. Details follow.

In the following, δ ∈ [0, 1] is a constant to be determined later. (In the above
motivating discussion we have used δ = 1/2, but a better bound follows by letting δ
be larger.)

Case 1. There exists b ∈ {0, 1}k so that for at least (1−δ) fraction of the possible
(coin-sequence) R’s, hereafter called good, the number of accepting patterns with
respect to the coin-sequence R and second oracle (fixed to) B = E2(b) is at most F .

Fixing this b, we consider M possible a’s satisfying π(a) = b. Employing the
argument of Lemma 9.5, we get that for each of these good R’s, a random oracle
A (constructed using two uniformly chosen a’s as above) is wrongly accepted with
probability at least 1

F −
1
M . By an averaging argument, it follows that there exists a

pair of oracles (A,B) on which T errs with probability at least

(1− δ) ·
(

1
F
− 1
M

)
.(20)

Case 2. For every b ∈ {0, 1}k, for at least a δ fraction of the possible (coin-
sequence) R’s, the number of accepting patterns with respect to the coin-sequence R
and second oracle B = E2(b) is at least F .

PCP—TOWARDS TIGHT RESULTS 893

Let γ < δ be a parameter to be determined later. By a counting argument,
for at least a δ−γ

1−γ fraction of the possible R’s, hereafter called good, there exists a
set, denoted ΠR, of at least γ · 2k possible b ∈ {0, 1}k so that there are at least F
accepting patterns which are consistent with coin-sequence R and second oracle fixed
to B = E2(b). (Namely, let g denote the fraction of good R’s. Then g+ (1− g) ·γ ≥ δ
and g ≥ δ−γ

1−γ follows.)
Let S ⊂ {0, 1}m be a set of 2k strings, defined as in the proof of Lemma 9.7, so

that π maps S onto {0, 1}k. Fixing a good coin-sequence R, we adapt the strategy
used in the proof of Lemma 9.7 as follows. We consider a set SR ⊆ S of |ΠR| strings
so that π maps SR onto ΠR, and enumerate the accepting patterns which occur when
the test, using coins R, is given access to an oracle-pair (E1(a), E2(π(a))), where a
is uniformly chosen in SR. We first claim that there are at most F such patterns.
Namely, we have the following.

CLAIM. For any good R, |{patternT (E1(a), E2(π(a));R) : a ∈ SR}| ≤ F .
Proof. By definition of ΠR, for each b ∈ ΠR, there are at least F accepting

patterns consistent with the coin-sequence R and the second-oracle E2(b) (and out
of them only one fits the first oracle E1(a), where a ∈ SR and π(a) = b). By a
cut-and-paste argument, if (R,α, β) and (R,α′, β) are accepting patterns for second-
oracle E2(b), and if (R,α, β) is an accepting pattern for second-oracle E2(b′), then
(R,α′, β) is also an accepting pattern for second-oracle E2(b′). It follows that the
accepting patterns of two E2(b)’s either collide or do not intersect. Thus, the number
of accepting patterns for the various (E1(a), E2(π(a)))’s, where a ∈ SR, is at most
F 2

F = F and the claim follows.
Now we consider what happens if one selects independently and uniformly a, a′ ∈

S. Following the proof of Lemma 9.7, with probability 1
K , we have π(a) = π(a′) (and

otherwise π(a) 6= π(a′)). On the other hand, given access to such a pair of random
oracles, the test accepts with probability at least γ2 · 1

F . (The γ2 factor is due to the
probability that a, a′ ∈ SR, whereas the 1

F factor corresponds to the analysis which
supposes that a and a′ are uniformly selected in SR.)

The above analysis holds for any good coin-sequence R. Using the lower bound on
the fraction of good R’s, it follows that for a δ−γ

1−γ fraction of the R’s, the probability
that the test errs, on coin-sequence R when given access to a random pair of oracles
(selected as above), is at least γ2

F −
1
K . By an averaging argument, there exists a pair

of oracles for which the test errs with probability

δ − γ
1− γ ·

(
γ2

F
− 1
K

)
.(21)

Setting δ = 3
4 and γ = 1/2 we lower bound the expressions in Eqs. (20) and (21) by

1
4F −

1
4M and 1

8F −
1

2K , respectively, and the lemma follows.
To prove a bound for the case of average free-bit complexity 2f , we first apply

Markov’s inequality and conclude that all but an ε fraction of the coin sequences have
at most G2 def= F 2

ε accepting patterns (in which this fixed coin-sequence appears). (We
can use any 0< ε < 1.) We then consider only those coin sequences (and apply the
same argument as above to each of them). The averaging argument at the end of the
above proof then yields that there exists an oracle pair on which T errs on at least a
1

8G −
1

2K −
1

4M fraction of these coin sequences. It follows that this oracle makes T err
with probability at least (1−ε)·(1

8G−
1

2K−
1

4M) (which equals (1−ε)·(
√
ε

8F −
1

2K−
1

4M)).
Using ε = 1

4 , we get a lower bound of 3
64F −

3
8K −

3
16M .

894 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Part III: PCP: Properties and transformations.

10. The complexity of PCP and FPCP. In this section we present several
results regarding the complexity of languages acceptable by probabilistically checkable
proofs having, respectively, small query complexity, small amortized query complex-
ity, and small free-bit complexity. Thus, in the current section, notations such as
PCPc,s[r, q] stand for classes of languages. The results can be extended to classes of
promise problems having such probabilistically checkable proofs.

In this section, MIPc,s[r, p] denotes the class of languages accepted by a (one-
round) p-prover interactive proof system in which r is the randomness complexity,
c is a lower bound on the probability of accepting yes-instances, and s is an upper
bound on the probability of accepting no-instances. The corresponding class for prob-
abilistically checkable proofs is PCPc,s[r, q], where q denotes the number of queries.
In both classes only binary queries are allowed (indeed this is less standard for MIP).

10.1. MIP versus PCP. The first part of the following lemma is folklore and
is stated here for sake of completeness.

LEMMA 10.1. For all admissible functions c, s, r, p,
(1) MIPc,s[r, p] ⊆ PCPc,s[r, p].
(2) MIPc,s[r, p] ⊆ MIPc,2s[r, p− 1].
Proof. Part (1) follows from the definition of PCP and MIP. Part (2) is shown as

follows. Let V be an (r, p)-restricted MIP verifier. We define V ′, an (r, p−1)-restricted
verifier who on input x behaves as follows:
• V ′ tosses coins c for V .
• V ′ refers the first p−1 queries of V to the corresponding p−1 provers obtaining

answers (bits) a1, . . . , ap−1, respectively.
• V ′ accepts if and only if there exists ap ∈ {0, 1} such that V would accept

answers a1, . . . , ap on input x and random string c.
Suppose that provers P1, . . . , Pp convince V to accept x with probability δ. Then,
the provers P1, . . . , Pp−1 convince V ′ to accept x with probability at least δ (because
if V (x) accepts the transcript (c, a1, . . . , ap) then V ′(x) will accept the transcript
(c, a1, . . . , ap−1)). This justifies the bound on the completeness probability of V ′.
Suppose, on the other hand, that provers P1, . . . , Pp−1 cause V ′ to accept x with
probability δ. Consider a uniformly selected strategy for another prover, denoted
Pp (i.e., choose a random response for every question). Then, the probability that
provers P1, . . . , Pp cause V to accept input x is at least 1

2 · δ (because if V ′(x) accepts
the transcript (c, a1, . . . , ap−1), then there exists a value ap ∈ {0, 1} so that V (x) will
accept the transcript (c, a1, . . . , ap), and with probability one-half Pp’s answer equals
this ap). This justifies the bound on the soundness probability of V ′.

Containments of PCP systems in MIP systems are more problematic. The reader
is referred to a paper by Ta-Shma [83]. That paper also contains a proof of the
following result due to Bellare, Goldreich, and Safra:

PCPc,s(log, q) ⊆ MIPc,qq·s(log, q).

Here we only consider the nonadaptive case and obtain a different bound on the
soundness parameter.

PROPOSITION 10.2. Suppose L ∈ PCPc,s(r, q) with a nonadaptive verifier. Then
L ∈ MIPc′,s′(r + O(log q), q), where c′ = c + p · (1 − c), s′ = s + p · (1 − s) for any
p ≥ bq/2c/(1 + bq/2c).

For q = 3, we may set p = 0.5 and obtain c′ = (c+ 1)/2 and s′ = (s+ 1)/2.

PCP—TOWARDS TIGHT RESULTS 895

Proof. We start with a nonadaptive PCP verifier of q queries and construct a
q-prover system as follows. First we uniformly select coin tosses for the PCP verifier,
which defines q queries (here is where we use nonadaptivity). Next,
• with probability p we select a query uniformly among these q queries and forward

it to all q provers. We accept iff all provers answer in the same manner.
• with probability 1 − p we simulate the PCP system as follows. We uniformly

select i ∈ [q] and refer the jth query of the verifier to the (i+ j)th prover. We
accept iff the PCP verifier would have accepted.

Clearly, by setting all MIP provers to equal the good oracle (of the PCP system),
inputs in the language are accepted with probability at least p · 1 + (1 − p) · c =
c+ p · (1− c).

We now bound the acceptance probability of the MIP system for an input not in
the language. Fix an arbitrary sequence of MIP provers. Let δ denote the probability,
taken over the queries selected by the PCP verifier as above, that the q MIP provers
differ on a random query. Define an oracle so that on each query it equals the majority
of the prover’s answers (ties, in case of even q, are broken arbitrarily). Then, the
probability that the MIP system accepts is bounded above by

p · (1− δ) + (1− p) · (s+ bq/2c · δ) .(22)

To justify the second term consider the simulation of the PCP system (which takes
place with probability 1− p). In case the answers given by all MIP provers equal the
corresponding answers of the PCP oracle (defined above), we bound the acceptance
probability by soundness of the PCP system. Otherwise, there must be a query on
which the relevant MIP prover differs from the PCP oracle. For each query this
happens with probability at most bq/2cq (as, by definition, only a minority of provers
differ from the oracle). Using the union bound, Eq. (22) follows. Using the definition
of p, we have

p · (1− δ) + (1− p) · (s+ bq/2c · δ) = p+ (1− p) · s− δ · (p− (1− p) · bq/2c)

≤ s+ p · (1− s),

and the proposition follows.

10.2. Query complexity and amortized query complexity. The following
proposition explores the limitations of probabilistically checkable proof systems which
use logarithmic randomness and up to three queries. Some of the qualitative assertions
are well known; for example, when considering perfect completeness, three queries are
the minimum needed (and sufficient [8]) to get above P.

PROPOSITION 10.3 (PCP systems with logarithmic randomness and at most three
queries).

(1) (PCP with one query is weak). For all admissible functions s, c : Z+ → [0, 1],
so that s is strictly smaller than c, PCPc,s[log, 1] = P.

(2) (one-sided error pcp with two queries is weak). For all admissible functions
s : Z+ → [0, 1] strictly less than 1, PCP1,s[log, 2] = P.

(3) (two-sided error pcp with two queries is not weak). There exists 0 < s < c < 1
so that PCPc,s[log, 2] = NP. Furthermore, this holds for some c > 0.9 and
s < 73

74c.
(4) (one-sided error pcp with three queries is not weak). PCP1,0.85+ε[log, 3] =

NP, ∀ε > 0.

896 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

(5) (one-sided error pcp with three queries is not very strong). For every s < 0.18,
PCP1,s[log, 3] = P. Furthermore, ∀s ≤ 0.299, naPCP1,s[log, 3] = P, where
naPCP is a restriction of PCP in which the verifier is required to be non-
adaptive.

We remark that PCP1,0.8999[log, 3] = NP with a nonadaptive verifier was pre-
sented in an earlier version of this paper [20]. Using Proposition 10.2, we have
MIP1,0.95[log, 3] = NP.

Proof of Proposition 10.3, part 1. An oracle π maximizing the acceptance proba-
bility can be constructed by scanning all possible random pads (random strings) and
setting π(q) so that it “satisfies” the majority of random pads for which the verifier
makes query q.

Proof of Proposition 10.3, part 2. The folklore proof commonly deals only with the
nonadaptive case. In general, the verifier V , demonstrating that L ∈ PCP1,s[log, 2],
may be adaptive. We assume, without loss of generality, that V always makes at
least one query. Thus, after making the first query, V decides whether to accept,
reject, or make an additional query and accept only a specific answer for it. Thus,
the computation of V on input x, random pad c, and access to a generic oracle can
be captured by two Horn clauses, each corresponding to a different answer value for
the first query. Specifically, suppose that V queries the oracle at location i and upon
receiving value σ accepts iff location j has value τ . Then we write the Horn clause
πσi → πτj , where πτi is a boolean variable representing the event that ith oracle location
has value τ . (In case V always accepts (resp., rejects) after obtaining value σ from
oracle location i, we write the clause πσi → T (resp., πσi → F).) In addition, for every
i, we write the Horn clauses π0

i → (¬π1
i) and (¬π0

i) → π1
i . Thus, the computation

of V on input x and access to a generic oracle can be captured by a Horn formula,
denoted φx, in which Horn clauses correspond to the various (polynomially many)
possible (random pad, first-answer) pairs. Furthermore, φx can be constructed in
polynomial time given x (and V). Using a (polynomial-time) decision procedure for
satisfiability of Horn formulae, we are done. (Alternatively, we can use the linear-time
decision procedure for 2-SAT due to Even, Itai, and Shamir [35].)

Proof of Proposition 10.3, part 4. To see that PCP1,s[log,poly] ⊆ NP, for every
s < 1, consider a nondeterministic machine which tries to guess an oracle which makes
the verifier (of the above system) always accept. The other direction (of part 4) is
shown in Theorem 4.5.

Proof of Proposition 10.3, part 3. To see that PCPc,s[log,poly] ⊆ NP, for ev-
ery s < c, consider a nondeterministic machine which tries to guess an oracle which
makes the verifier accept with probability at least c. The NP ⊆ PCPc,s[log, 2] re-
sult follows from the hardness of approximating Max2SAT. Specifically, suppose that
L ≤KD Gap-2SATc,s. Then we can present a PCPc,s[log, 2] system for L as follows.
On input x, the verifier in this system performs the reduction (of L to the promise
problem) obtaining a 2CNF formula φx. Next it uniformly selects a clause of φx and
queries the oracle for the values of the variables in this clause (accepting accordingly).
Using Theorem 4.6 (part 3), NP ≤KD Gap-2SATc,s for some c > 0.9 and s < 73

74 · c,
and NP ⊆ PCPc,s[log, 2] follows.

Remark 10.4. The ratio c/s has been subsequently increased to (10/9) − ε, for
any ε > 0 (cf., [84, 57]).

Proof of Proposition 10.3, part 5. The result for general verifiers follows from
Lemma 4.11 and the fact that MaxSAT can be approximated to within a 0.795 =
0.75+ 0.18

4 factor in polynomial time (cf. [84]). The (tedious) proof of the nonadaptive

PCP—TOWARDS TIGHT RESULTS 897

case can be found in earlier versions of this paper [20]. The paper of Trevisan et al. [84]
contains a stronger result which holds for all verifiers; that is, PCP1,0.367[log, 3]
= P.

The latter result (i.e., PCP1,0.367[log, 3] = P) is weaker than what can be proven
for MIP proof systems (see next corollary). This contrast may provide a testing
ground to separate PCP from MIP, a question raised by [21].

COROLLARY 10.5. For s < 1/2, MIP1,s[coins = log, provers = 3] = P.
Proof. Combining (the two parts of) Lemma 10.1 and (part 2 of) Proposition 10.3,

we have MIP1,s[log, 3] ⊆ MIP1,2s[log, 2] ⊆ PCP1,2s[log, 2] ⊆ P.
A general result that relates the query complexity of a probabilistically checkable

proof system and the ratio between the acceptance probabilities of yes-instances and
no-instances follows.

LEMMA 10.6. For all admissible functions c, s, q, r, l such that c/s > 2q,

PCPc,s[r, q] ⊆ RTIME
(

poly
(

n

c− 2qs

))
.

Furthermore, PCPc,s[r, q] ⊆ PSPACE, and if r and q are both logarithmically bounded,
then PCPc,s[r, q] = P.

Proof. Let L ∈ PCPc,s[r, q] and let V be a verifier demonstrating this fact.
Observe that for x ∈ L, the probability that V accepts x, given access to a random
oracle, is at least c

2q . On the other hand, for x 6∈ L, the probability that V accepts
x, given access to any oracle, is at most s < c

2q . Thus, we can decide if x is in L
by simulating the execution of V with access to a random oracle and estimating the
acceptance probability over V ’s random choices and all possible oracles. In particular,
we can estimate this probability up to an ε

def= 1
2 · (s −

c
2q) additive term, with very

high probability, by taking poly(1/ε) samples. Alternatively, we can compute this
probability in polynomial space. Finally, in case r and q are both logarithmically
bounded, we can (exactly) compute the probability that V accepts x, given access to
a random oracle. To this end we loop through all possible random pads for V and,
for each pad, consider all possibilities of setting the oracle bits examined by V . Thus,
for s < c

2q , we get a deterministic polynomial-time decision procedure.
The last assertion in the above lemma (i.e., PCPc,s[log, q] = P for c/s > 2q) can-

not be strengthen by omitting the (logarithmic) bound on q since NP = PCP1,0[0,poly].
On the other hand, recalling the definition of PCP we immediately get the following.

COROLLARY 10.7. Let ε : Z+ → [0, 1] be an admissible function strictly greater
than 0. Then, for every admissible function c : Z+ → [0, 1],

PCPc[log, 1− ε] = P.

In particular, this holds for c = 1.
Proof. L ∈ PCPc[log, 1− ε] implies that for some logarithmically bounded func-

tion m, we have L ∈ PCPc,2−m·c[log, (1− ε) ·m] and the corollary follows.
PCP with super-logarithmic randomness. The above results are focused

on pcp systems with logarithmic randomness. Proof systems with unrestricted ran-
domness (as considered in the next proposition) may also provide some indication to
the effect of very low query complexity. The results we obtain are somewhat analogous
to those of Proposition 10.3. Recall that PCP1,1/2[poly,poly] equals NEXPT (nonde-
terministic exponential time) [11]. Thus, the power of pcp systems with polynomial
randomness has to be compared against NEXPT.

898 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

PROPOSITION 10.8 (general PCP systems with at most three queries).
(1) (PCP with one query is relatively very weak). For all admissible functions

s, c : Z+ → [0, 1], so that c(n)− s(n) is nonnegligible,11

PCPc,s[poly, 1] ⊆ AM,

where AM is the class of languages having one-round Arthur–Merlin proof
systems (cf. [10]).

(2) (one-sided error pcp with two queries is relatively weak). For all admissible
functions s : Z+ → [0, 1] strictly less than 1, PCP1,s[poly, 2] ⊆ PSPACE.

(3) (two-sided error pcp with two queries is not weak). On the other hand, there
exists 0 < s < c < 1 so that PCPc,s[poly, 2] = NEXPT.

(4) (one-sided error pcp with three queries is not weak). PCP1,0.85+ε[poly, 3] =
NEXPT, ∀ε > 0.

(5) (one-sided error pcp with three queries is not very strong). ∀s < 1
8 ,

PCP1,s[poly, 3] = PSPACE.
The first part of the proposition may be hard to improve since, as indicated in

Proposition 10.9, part 6, graph nonisomorphism is in PCP1,1/2[poly, 1].
Proof of Proposition 10.8, part 1. We first observe that a 1-query pcp system

is actually a one-round interactive proof system (cf. [53]). (The completeness and
soundness bounds are as in the pcp system.) Using well-known transformations we
obtain the claimed result. Specifically, we first reduce the error of the interactive
proof by parallel repetition, next transform it into an Arthur–Merlin interactive proof
[54], and finally transform it into an Arthur–Merlin interactive proof of perfect com-
pleteness [46]. We stress that all the transformations maintain the number of rounds
up to a constant and that the constant-round Arthur–Merlin hierarchy collapses to
one round [10].

Proof of Proposition 10.8, parts (3) and (4). For these parts we observe that
the proof systems used in the corresponding parts of the proof of Proposition 10.3
do “scale up.” Specifically, it is easy to see that the outer verifier used for all proof
systems in this paper does scale up, yielding a canonical outer verifier of randomness
complexity O(log(T (n)) for any language in Ntime(T (n)), provided n < T (n) <
2poly(n). Furthermore, all inner verifiers used in the paper operate on constant sized
oracles and so the composed verifier maintains the time and randomness complexities
of the outer verifier. In particular, the verifier used for establishing Theorem 4.5 can
be scaled up to yield part 4. The same holds for the verifier used for establishing
part (3) of Proposition 10.3. (Note that although the exposition of the proof in
Proposition 10.3 is in terms of reducing NP to Max2SAT, what actually happens is
that the verifier used to establish the NP-hardness of Max2SAT (cf. section 4.2) is
implemented by a verifier which makes only two queries (out of a constant number of
possibilities).)

Proof of Proposition 10.8, part 2. Following the strategy of the proof of the
analogous part in Proposition 10.3, we obtain a polynomial-space reduction of L ∈
PCP1,s[poly, 2] to the set of satisfiable 2-Horn formulae (i.e., Horn formulae in which
each clause has at most two literals). Namely, on input x, the reduction uses space

11A function f : Z+ → Z+ is called nonnegligible if there exists a positive polynomial p so that
∀n : f(n) > 1

p(n) .

PCP—TOWARDS TIGHT RESULTS 899

poly(|x|) and produces a Horn formula φx (of size exponential in |x|) so that x ∈ L
iff φx is satisfiable. Using a polylogarithmic decision procedure for satisfiability of
2-Horn formulae12, we can decide if φx is satisfiable using poly(|x|) space.

Proof of Proposition 10.8, part 5. The result follows by the furthermore part of
Lemma 10.6 (i.e., PCPc,s[poly, q] = PSPACE for c/s > 2q).

10.3. Free-bit complexity. The class FPCPc,s[r, f] is defined analogously to
the class PCPc,s[r, q] except that we consider the free-bit complexity (denoted f)
instead of the query complexity (denoted q). The following proposition demonstrates
the limitations of probabilistically checkable proof systems with free-bit complexity
bounded by 1. We do not believe that similar limitations hold for amortized free-bit
complexity.13

The first three items refer to proof systems with logarithmic randomness. The sec-
ond item shows that such systems with perfect completeness and free-bit complexity 1
only exists for P (and are hence weak). In contrast, the first item shows the crucial
role of perfect completeness in the former negative result: specifically, proof systems
with two-sided error (nonperfect completeness) having free-bit complexity zero suf-
fice for NP. The third item asserts that the second item cannot be strengthened
with respect to increasing the free-bit complexity. Proof systems with unrestricted
randomness (as considered in the last three items) may also provide some indication
to the effect of very low free-bit complexity. The last item can be viewed as (weak)
evidence that the result in the fourth item cannot be “drastically improved” (e.g., to
yield FPCP1,s[poly, 0] ⊆ BPP).

We make essential use of the ability to efficiently generate accepting computations,
and the results may not hold otherwise.14

PROPOSITION 10.9 (PCP systems with low free-bit complexity). Let s : Z+ →
[0, 1] be an admissible function strictly smaller than 1. Then we have the following.

(1) (PCP with logarithmic randomness and 0 free bit).
(1.1) There exists s < 0.794 so that

NP ⊆ FPCP 1
4 ,
s
4
[log, 0] .

Thus, NP = FPCP 1
4
[log, 0].

12For example, consider the following procedure. Given a 2-Horn formula, we construct a directed
graph in which the vertices are the literals of the formula and there is a directed edge from literal
x to literal y if the formula contains the clause x → y. One can easily verify that the formula is
not satisfied iff there exists a variable for which every truth assignment yields a contradiction (i.e.,
“forcing paths” to contradicting values; cf. [35]). Thus, a nondeterministic logspace machine can
guess this variable and check that both possible truth assignments (to it) yield contradictions. The
latter checking reduces to guessing the variable for which a conflicting assignment is implied and
verifying the conflict via s-t directed connectivity. Since the latter task is in NL, we are done.
(Actually, 2SAT is complete for coNL; see [60].)

13The conjecture was stated for systems with perfect completeness and has been subsequently
proven by H̊astad [56] (who proved that NP = FPCP1[log, ε] for every ε > 0). For systems with
two-sided error probability, we knew that they can recognize NP languages using zero free bits; see
below.

14We note, however, that the more relaxed notion of free bits may be less relevant to proving
hardness of approximation results.

900 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

(1.2) For every ε > 0, NP ⊆ FPCP1−ε,1− 16
15 ·ε[log, 0].

(1.3) For every ε > 0, FPCP1−ε,1−2·ε[log, 0] ⊆ P.
(2) (limitations of PCP with logarithmic randomness and 1 free bit).

FPCP1,s[log, 1] = P. Also, FPCP1,1−(1/ poly)[coins = poly ; free = 1 ; pflen =
poly] ⊆ BPP.

(3) (“tightness” of item 2). There exists s < 0.794 so that
(3.1) NP ⊆ FPCP1,s[log, 2];
(3.2) NP ⊆ FPCP1, 1+s

2
[log, f] where f = log2 3 (i.e., 2f = 3);

(3.3) NP ⊆ FPCP 1
2 ,
s
2
[log, 1].

(4) (general pcp with 0 free bit). FPCP1,s[poly, 0] ⊆ coNP.
(5) (general pcp with 1 free bit). FPCP1,s[poly, 1] ⊆ PSPACE.
(6) (examples for pcp with 0 free bit). Graph nonisomorphism, GNI, has a PCP

system with perfect completeness and soundness bound 1/2, in which the ver-
ifier makes a single query and this query is free, namely,

GNI ∈ FPCP1,1/2[coins = poly ; free = 0 ; query = 1].

The same holds for QNR (“quadratic nonresiduosity” (cf. [53])) the set of
integer pairs (x,N) so that x is a quadratic nonresidue modulo N .

Proof of Proposition 10.9, part 3. The first claim of part 3 is justified by Theo-
rem 5.4. Applying Proposition 11.9 to this verifier (which indeed satisfies the condition
of this proposition) yields the second claim of part 3. Applying Proposition 11.8 to
the same verifier (with k = 1 < f = 2), the third claim of part 3 follows.

Proof of Proposition 10.9, part 1. Applying Proposition 11.8 (with k = f =
2) to the the verifier of Theorem 5.4, the first claim of part 1 follows. To prove
the second claim, we apply Proposition 11.10 to the first claim and obtain NP ⊆
FPCP1−δ·(1−0.25),1−δ·(1−0.2)[log, 0] (which holds for any δ). Substituting δ = (4

3)ε,
the second claim follows.

The last claim follows by the relationship between the Minimum Vertex Cover
problem and the class FPCPc,s[log, 0]; see the proof of Proposition 5.6. Specifi-
cally, consider the FGLSS reduction/graph of a proof system witnessing L ∈
FPCP1−ε,1−2ε[log, 0] (actually consider the complement graph where one asks about
the size of the independent set). Then, for each x ∈ L this graph has a vertex cover
of density at most ε, whereas for x 6∈ L this graph has no vertex cover of density 2ε.
Using Gavril’s approximation algorithm (cf. [48]), these two cases are distinguishable
in polynomial time and so the third claim follows.

Proof of Proposition 10.9, part 4. Let L ∈ PCP1,s[poly, 0] and V be a verifier
demonstrating this fact. By definition, for every possible sequence of coin tosses for V ,
there exists at most one accepting configuration (of oracle answers to the queries made
by V). Furthermore, by definition this accepting configuration (if it exists) can be
generated in polynomial time from the coin sequence. Following is a nondeterministic
procedure that accepts L. It starts by guessing two sequences of coin tosses for V ,
generating the corresponding accepting configurations and checking whether they are
consistent. (The input is accepted by this nondeterministic procedure iff the two
coin sequences guessed yield conflicting configurations.) Clearly, if x ∈ L, then, for
all possible pairs of coin sequences, accepting configurations exist and are consistent
(since an oracle which always makes V accept x does exist). Thus, x ∈ L is never
accepted by the nondeterministic procedure. On the other hand, if all pairs of coin
sequences yield accepting and mutually consistent configurations, then an oracle which

PCP—TOWARDS TIGHT RESULTS 901

always makes V accept x emerges. Thus, for every x 6∈ L there exists a guess which
makes the nondeterministic procedure accept x.

Proof of Proposition 10.9, parts 2 and 5. Here we consider proofs with free-bit
complexity 1. Thus, for each possible sequence of coin tosses, there exist at most two
accepting configurations (which again can be efficiently found given the coin sequence).
We refer to these two possible accepting configurations as the 1-configuration and the
2-configuration of the coin sequence. In case a specific coin sequence has less than two
accepting configurations, we introduce dummy configurations so that now each coin
sequence has two associated configurations. Given an input x to such a pcp system,
we consider the following 2CNF formula representing all possible computations of the
verifier with a generic oracle. For each possible sequence of coin tosses, c, we intro-
duce a pair of boolean variables, π1

c and π2
c , representing which of the two associated

configurations is encountered (e.g., π1
c = T means that the 1-configuration is encoun-

tered). To enforce that a single accepting configuration is encountered we introduce
the clauses (π1

c ∨ π2
c) and ((¬π1

c) ∨ (¬π2
c)). In addition, in case the σ-configuration of

c is not accepting (but rather a dummy configuration) we introduce the clause (¬πσc)
thus “disallowing” a computation in which it is encountered. Finally, for each pair
of coin sequences we introduce clauses disallowing inconsistencies. Namely, suppose
that the σ-configuration of c is inconsistent with the τ -configuration of c′, then we
introduce the clause ((¬πσc) ∨ (¬πτc′)), which is logically equivalent to ¬(πσc ∧ πτc′).
The resulting 2CNF formula, φx, is satisfiable if and only if there exists an oracle
which causes V to accept x with probability 1. Thus, given x, we need to test if φx
is satisfiable. We consider two cases.

(1) In case V uses logarithmically many coins, the 2CNF formula φx can be
generated from x in polynomial time. Using a polynomial-time decision procedure for
satisfiability of 2CNF formulae, we conclude that FPCP1,s[log, 1] = P. Furthermore,
using Proposition 11.2, we can randomly reduce

FPCP1,1−(1/ poly)[poly, free = 1, pflen = poly]

to

FPCP1,1−(1/ poly)[log, free = 1] ,

and

FPCP1,1−(1/ poly)[poly, free = 1, pflen = poly] ⊆ BPP

follows. This establishes part 2.
(2) In general (V may make polynomially many coin tosses), the 2CNF formula

φx may have exponential (in |x|) length. Yet it can be generated from x in poly-
nomial space. Using a polylogarithmic-space decision procedure for satisfiability of
2CNF formulae,15 we can decide if φx is satisfiable using poly(|x|) space. Part 5 (i.e.,
FPCP1,s[poly, 1] ⊆ PSPACE) follows.

Proof of Proposition 10.9, part 6. We merely note that the interactive proof
presented in [52] for graph nonisomorphism16 constitutes a 1-query pcp system with

15For example, note that 2CNF formulae can be written in Horn form and use the procedure
described in the proof of Proposition 10.8, part 2.

16On input a pair of graphs, G0 and G1, the verifier uniformly selects i ∈ {0, 1} and generates a
random isomorphic copy of Gi, denoted H. This graph H is the single query made by the verifier,
which accepts if and only if the answer equals i.

902 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

perfect completeness and soundness bound 1/2. Furthermore, the query made by
the verifier has a unique, acceptable answer and thus the free-bit complexity of this
system is zero. The same holds for the interactive proof presented in [53] for quadratic
nonresiduosity QNR, which is actually the inspiration for the proof in [52].

10.4. Query complexity versus free-bit complexity. The following propo-
sition quantifies the intuition that not all queries are “undetermined” (i.e., that the
free-bit complexity is lower than the query complexity). Furthermore, as a corollary
we obtain that the amortized (average) free-bit complexity is at least one unit less
than the amortized query complexity.

PROPOSITION 10.10. For admissible functions c, s, r, q such that r(n), q(n) =
O(log n),

PCPc,s[r, q] ⊆ PCPc,s[coins = r ; freeav = q − log2(1/s)].(23)

Furthermore, for every admissible function t, PCPc,s[r, q] ⊆ FPCPc,(2t+1)·s[r, q − t].
Proof. Let L ∈ PCPc,s[r, q] and let V be the verifier demonstrating this. Fix an

input x ∈ Σn, and let r = r(n), q = q(n), s = s(n). For a random string R ∈ {0, 1}r,
let F xR denote the number of accepting patterns of V , i.e., F xR = |patternV (x;R)|. We
first claim that if ER [F xR] > 2q · s, then x ∈ L. This is true since a random oracle
π is accepted with probability at least ER [F xR · 2−q], and so if the claim were not to
hold we would have reached contradiction to the soundness condition (i.e., x 6∈ L is
accepted with probability strictly larger than s).

We now construct a verifier, denoted V ′, witnessing L ∈ FPCPav
c,s[r, q− log2(1/s)].

On input x, the verifier first computes ER [F xR] (by scanning all possible R’s and
generating all accepting patterns for each of them). If ER [F xR]) > 2q · s, then V ′

accepts x (without querying the oracle). Otherwise (i.e., if ER [F xR]) ≤ 2q · s), then V ′

simulates V and accepts if V accepts. It follows that the average free-bit complexity of
V ′ on input x equals the corresponding quantify for V , provided the latter is at most
q − log2(1/s), and equals zero otherwise. The first part of the proposition follows.

To establish the second part, for some t = t(n), we construct a verifier V ′′ which,
on input x, proceeds as follows. First, V ′′ computes q def= ER [F xR] and accepts if
q > s2q (just as V ′). In case q ≤ s2q, the new verifier proceeds differently: it
randomly selects R as V does and computes F xR. If F xR > 2q−t, then V ′′ accepts
and otherwise it invokes V on input x and coins R. Clearly, this guarantees that the
free-bit complexity of V ′′ is at most q− t. To analyze the soundness of V ′′, note that
when ER [F xR] ≤ s2q, it follows that PrR [F xR > 2q−t] ≤ 2t · s (Markov inequality).
Thus, the soundness error of V ′′ is at most s+ 2ts and the second part follows.

By computing the amortized average free-bit complexity of the class of languages
in the right-hand side of Eq. (23) above, we obtain the following consequence.

COROLLARY 10.11. For admissible functions c, r, q with r(n), q(n) = O(log n),

PCPc[r, q] ⊆ FPCP
av
c [r, q − 1],

where FPCP
av
· [·, f] denotes a class analogous to FPCP·[·, f] in which average free-

bit complexity is measured instead of (worst-case) free-bit complexity.
Proof. For some function m, we have

PCPc[r, q] ⊆ PCPc,c·2−m [r, qm] ⊆ FPCPav
c,c·2−m [r, qm−m] ⊆ FPCP

av
c [r, q − 1],

where the second inclusion is due to Eq. (23).

PCP—TOWARDS TIGHT RESULTS 903

The above corollary clinches the argument that the amortized query complexity
is incapable of capturing the approximability of the clique function. Suppose that, for
some g (e.g., g = 3

2), MaxClique is NP-hard to approximate to within an N1/(1+g) fac-
tor, but it can be approximated to within an N1/(1+g−δ) factor in polynomial time, for
every δ > 0 (actually, it suffices to postulate that MaxClique can be approximated to
within an N1/g factor in polynomial time). Furthermore, supposed that the hardness
result is demonstrated by showing that NP ⊆ PCP[log, g− ε], for every ε > 0. Then,
using the above corollary, we get NP ⊆ FPCP

av
[log, g−1−ε], for every ε > 0, and an

NP-hardness result of clique approximation17 up to an N1/(1+(g−1−ε)+ε) = N1/g fol-
lows, in contradiction to our hypothesis that such approximations could be achieved in
polynomial time. To summarize, attempts to establish the factor N1/(g+1), for which
it is NP-hard to approximate MaxClique via amortized query complexity, will always
fall at least one unit away from the truth, whereas amortized free-bit complexity will
yield the right answer.

11. Transformations of FPCP systems. We present several useful transfor-
mations which can be applied to pcp systems. These fall into two main categories:

(1) Transformations which amplify the (completeness versus soundness) gap of
the proof system, while preserving (or almost preserving) its amortized free-
bit complexity.

(2) Transformations which move the gap location (or, equivalently, the complete-
ness parameter). The gap itself is almost preserved but moving it changes
the free-bit complexity (and thus the amortized free-bit complexity is not
preserved). Specifically, moving the gap “up” requires increasing the free-
bit complexity, whereas moving the gap “down” allows us to decrease the
free-bit complexity.

Most of these transformations are analogous to transformations which can be
applied to graphs with respect to the MaxClique approximation problem. In view of
the relation between FPCP and the clique promise problem (shown in section 8), this
analogy is hardly surprising.

In this section, we use a more extensive FPCP notation which refers to promise
problems (rather than to languages) and introduce an additional parameter—the proof
length. Specifically, FPCPc,s[r, f, l] refers to randomness complexity r, free-bit com-
plexity f , and proof-length l.

11.1. Gap amplifications maintaining amortized free-bit complexity.
We start by stating the simple fact that the ratio between the completeness and
soundness bounds (also referred to as gap) is amplified (i.e., raised to the power k)
when one repeats the pcp system (k times). Note, however, that if the original system
is not perfectly complete, then the completeness bound in the resulting system gets
decreased.

PROPOSITION 11.1 (simple gap amplification). For all c, s : Z+ → [0, 1] and
k : Z+ → Z+,

FPCPc,s[r, f, l] ⊆ FPCPck,sk [kr, kf, l].

Proof. Let (Y,N) ∈ FPCPc,s[r, f, l] and let V be a verifier witnessing this with
query complexity q : Z+ → Z+. Given k : Z+ → Z+, we define a verifier V (k) as

17Here we use the observation that the FGLSS reduction works also for amortized average free-bit
complexity.

904 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

follows: on input x ∈ {0, 1}n, let r = r(n), k = k(n), f = f(n), l = l(n), and q = q(n).
• V (k) picks k random strings c(1), . . . , c(k) uniformly and independently in {0, 1}r.
• For i = 1 to k, verifier V (k) simulates the actions of V on input x and random

string c(i). Verifier V (k) accepts if V accepts on each of these k instances.
Clearly, V (k) tosses kr coins and examines the l-bit long oracle in at most kq bits,
where at most kf of these are free. For every x, if the probability that V accepts x,
given access to oracle π, is p, then the probability that V (k) accepts x, given access to
π, is exactly pk. Thus, (Y,N) ∈ FPCPck,sk [kr, kf, l], and oracles can be transformed
(by identity) from one pcp system to the other.

Next, we show that in some sense the randomness complexity of a proof system
need not be higher than logarithmic in the length of the proofs/oracles employed.
Specifically, we show how to randomly reduce languages proven by the first kind of
systems into languages proven by the second kind. Thus, whenever one is interested in
the computational complexity of languages proven via pcp systems, one may assume
that the system is of the second type. Recall that ≤KR denotes a randomized Karp
reduction.

PROPOSITION 11.2 (reducing randomness). There exists a constant γ > 0 so that
(1) (for perfect completeness): for every two admissible functions s, ε : Z+ →

[0, 1],

FPCP1,s[r, f, l] ≤KR FPCP1,s′ [r′, f, l],

where s′ = (1 + ε) · s and r′ = γ + log2(l/ε2s).
(2) (for two-sided error): for every four admissible functions c, s, ε1, ε2 : Z+ →

[0, 1],

FPCPc,s[r, f, l] ≤KR FPCPc′,s′ [r′, f, l],

where c′ = 1 − (1 + ε1) · (1 − c) ≥ c − ε1, s′ = (1 + ε2) · s and r′ = γ +
max{− log2(ε21(1− c)) , log2(l)− log2(ε22s)}.

Proof. The proof is reminiscent of Adleman’s proof that RP ⊆ P/poly [1].
Suppose we are given a pcp system for which we want to reduce the randomness
complexity. The idea is that it suffices to choose the random pad for the verifier out of
a relatively small set of possibilities (instead of from all 2r possibilities). Furthermore,
most small sets (i.e., sets of size linear in l) are good for this purpose. This suggest
randomly mapping an input x for the original pcp system into an input (x,R) for
the new system, where R is a random set of m = O(l) possible random pads for
the original system. The new verifier will select a random pad uniformly in R, thus
using only log2 |R| random coins, and run the original verifier using this random pad.
Details follow.

We start with the simpler case stated in part 1. Let (Y,N) ∈ FPCP1,s[r, f, l] and
let V be a verifier demonstrating this fact. The random reduction maps x ∈ {0, 1}n to
(x,R), where R is a uniformly chosen m multisubset of {0, 1}r for l def= l(n), r def= r(n),
s

def= s(n), ε def= ε(n), and m
def= γl

ε2s . (The constant γ is chosen to make the Chernoff
bound, used below, hold.) On input (x,R), the new verifier V ′ uniformly selects c ∈ R
and invokes V with input x and random pad c. Clearly, the complexities of V ′ are
as claimed above. Also, assuming that V always accepts x, when given access to an
oracle π, then, for every possible pair (x,R) to which x is mapped, V ′ always accepts

PCP—TOWARDS TIGHT RESULTS 905

(x,R) when given access to the oracle π. It remains to upper bound, for each x 6∈ L
and most R’s, the probability that V ′ accepts (x,R) when given access to an arbitrary
oracle.

Fixing any x 6∈ L and any oracle π, we bound the probability that V ′, give access
to π, accepts (x,R) for most R’s. A set R is called bad for x with respect to π if for
more than an s′ fraction of the c ∈ R the verifier V accepts x when given access to
π and random pad c. Let R = (r(1), . . . , r(m)) be a uniformly selected multiset. For
every i ∈ [m] (a possible random choice of V ′), we define a 0-1 random variable ζi
so that it is 1 iff V on random pad r(i) and access to oracle π accepts the input x.
Clearly, the ζi’s are mutually independent and each equals 1 with probability δ ≤ s.
Using a multiplicative Chernoff bound (cf. [75, Theorem 4.3]), the probability that a
random R is bad (for x w.r.t. π) is bounded by

Pr

[
m∑
i=1

ζi ≥ (1 + ε) ·ms
]
< 2−Ω(ε2·ms).

Thus, by the choice of m, the probability that a random R is bad for x, with respect
to any fixed oracle, is smaller than 1

4 · 2−l. Since there are only 2l relevant oracles,
the first part of the proposition follows.

For the second part of the proposition, we repeat the same argument, except that
now we need to take care of the completeness bound in the resulting pcp system. This
is done similarly to the way we deal with the soundness bound, except that we do
not need to consider all possible oracles; it suffices to consider the best oracle for each
x ∈ Y . When applying the multiplicative Chernoff bound it is important to note that,
since we are interested in the rejection event, the relevant expectation is m · (1 − c)
(and not m · c). Thus, as long as m ≥ 2γ

ε21(1−c) , at least 3/4 of the possible sets R cause
V ′ to accept x ∈ Y with probability at least 1− (1 + ε1) · (1− c) = c− (1− c)ε1. The
second part of the proposition follows.

Combining Propositions 11.1 and 11.2, we obtain a randomized reduction of pcp
systems which yields the effect of Proposition 11.1 at much lower (and in fact mini-
mal) cost in the randomness complexity of the resulting pcp system. This reduction is
analogous to the well-known transformation of Berman and Schnitger [25]. The red-
uction (in either forms) plays a central role in deriving clique approximation results
via the FGLSS method: applying the FGLSS reduction to proof systems obtained via
the second item (below), one derives graphs of size N def= 2(1+ε+f)·t with clique gap
2t (which can be rewritten as N1/(1+f+ε)). For sake of simplicity, we only state the
case of perfect completeness.

COROLLARY 11.3 (probabilistic gap amplification at minimal randomness cost).
(1) (Combining the two propositions.) For every admissible k : Z+ → Z+,

PCP1,1/2[coins = r ; query = q ; free = f ; pflen = l]

≤KR FPCP1,2−k+1 [r + log2 q +O(1) + k, kf, l] .

(2) (Using amortized free-bit complexity.) For every ε > 0, there exists a constant
c so that

FPCP[log, f, l] ≤KR FPCP1,2−t [(1 + ε) · t, f · t, l],

where t(n) = c log2 n.

906 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

Proof. Suppose that (Y,N) ∈ FPCP1,1/2[r, f, l]. Clearly, l ≤ 2r · q, where q(n) =
poly(n) is the query complexity of the verifier. Then, applying Proposition 11.1, we
get (Y,N) ∈ FPCP1,1/2k [kr, kf, 2r ·q]. Applying part 1 of Proposition 11.2, we obtain
(Y,N) ≤KR FPCP1, 1

2k−1
[r′, kf], where r′ = O(1) + log2(2rq/2−k) = O(1) + r + k +

log2 q. The first part of the corollary follows.
Suppose now that a language L has a proof system as in the hypothesis of the

second part. Then, there exists a logarithmically bounded function m so that L ∈
FPCP1,1/2m [r,mf, l], where r(n) ≤ α · log2 n and l(n) ≤ nβ for some constants α and
β. Invoking a similar argument (to the above), we get L ≤KR FPCP1, 1

2km−1
[r′, k ·mf],

where r′(n) = O(1) + km+ (α+ β) · log2 n. Now, setting k(n) so that k(n) ·m(n) ≥
α+β
ε · log2 n, the corollary follows.

An alternative gap amplification procedure which does not employ randomized
reductions is presented below. This transformation increases the randomness com-
plexity of the pcp system more than the randomized reduction presented above (i.e.,
r′ ≈ O(r)+2k rather than r′ ≈ r+k as in item 1 of Corollary 11.3). The transforma-
tion is used to obtain in-approximability results under the assumption P 6= NP (rather
than under NP 6⊆ BPP). Again, we only state the case of perfect completeness.

PROPOSITION 11.4 (deterministic gap amplification at low randomness cost). For
every ε, s > 0 and every admissible function k :Z+→Z+,

FPCP1,s[r, f, l] ⊆ FPCP1,sk [O(r) + (2 + ε) · k · log(1/s), (1 + ε) · kf, l].

Actually, the constant in the O notation is min{1, 2+(4/ε)
log2(1/s)}.

We use random walks on expander graphs for error reduction (cf. [2, 30]). The
value of the constant multiplier of k log(1/s) in the randomness complexity of the
resulting pcp system depends on the expander graph used. Specifically, using a degree
d expander graph with second eigenvalue λ yields a factor of log2 d

1+log2 λ
. Thus, it is

essential to use Ramanujan graphs [70] in order to obtain the claimed constant of
2 + ε.

Proof of Proposition 11.4. For simplicity assume s = 1/2. The idea is to use
a “pseudorandom” sequence generated by a random walk on an expander graph in
order to get error reduction at moderate randomness cost. Specifically, we will use
a Ramanujan expander graph of constant degree d and second eigenvalue λ ≈ 2

√
d

(cf. [70]). The constant d will be determined so that d > 24+ 8
ε (and d < 26+ 8

ε). It is
well known that a random walk of length t in an expander avoids a set of density ρ
with probability at most (ρ+ λ

d)t (cf. [2, 61]). Thus, as a preparation step we reduce
the error probability of the pcp system to

p
def=

λ

d
=

2√
d
.(24)

This is done using the trivial reduction of Proposition 11.1. We derive a proof system
with error probability p, randomness complexity

r′
def= r · log2(1/p) = r · log2(

√
d/2) = O(r),(25)

and free-bit complexity

f ′
def= f · log2(1/p) = f · log2(

√
d/2).(26)

PCP—TOWARDS TIGHT RESULTS 907

(In case we start with soundness error s, where s > p, the multiplier will be log1/s(1/p)
instead of log2(1/p).) Now we are ready to apply the expander walk technique. Using
an expander walk of length t, we transform the proof system into one in which the
randomness complexity is r′ + (t − 1) · log2 d, the free-bit complexity is tf ′ = tf ·
log2(

√
d/2), and the error probability is at most (2p)t = (4/

√
d)t = 2−k, where

k
def= t · log2(

√
d/4). Using log2 d >

8
ε + 4, we can bound the randomness complexity

by

r′ + t log2 d = r′ +
log2 d

1
2 · (log2 d)− 2

· k

< r′ + (2 + ε) · k.

and the free-bit complexity by

tf · log2(
√
d/2) =

1
2 · (log2 d)− 1
1
2 · (log2 d)− 2

· kf

< (1 + ε) · kf.

The proposition follows.
Using Proposition 11.4, we obtain the following corollary which is used in deriv-

ing clique in-approximability results under the P 6= NP assumption, via the FGLSS
method: applying the FGLSS reduction to proof systems obtained via this corollary,
one derives graphs of size N def= 2(2+ε+f)·t with clique gap 2t (which can be rewritten
as N1/(2+f+ε)).

COROLLARY 11.5. For every ε > 0, there exists a constant c so that

FPCP[log, f, l] ⊆ FPCP1,2−t [(2 + ε) · t, (1 + ε) · f · t, l],

where t(n) = c log2 n.

11.2. Trading off gap location and free-bit complexity. The following
transformation is analogous to the randomized layering procedure for the clique
promise problem (i.e., Proposition 8.6). The transformation increases the acceptance
probability bounds at the expense of increasing the free-bit complexity.

PROPOSITION 11.6 (increasing acceptance probabilities and free-bit complexity).

(1) (Using a randomized reduction which preserves the randomness of the proof
system.) For all admissible functions c, s : Z+ → [0, 1], and r, f,m : Z+ →
Z+,

FPCPc,s[r, f] ≤KR FPCPc′,s′ [r, f + log2m],

where c′ = 1− 4(1− c)m and s′ = m · s. In case c′ > 1 − 2−r, we then have
c′ = 1.

(2) (Inclusion which moderately increases the randomness of the proof system.)
For all admissible functions c, s : Z+ → [0, 1], and r, f,m : Z+ → Z+,

FPCPc,s[r, f] ⊆ FPCPc′,s′ [r′, f + log2m],

908 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

• where if m ≤ 1/c, then r′ = 2 ·max{r, logm}, c′ = m
2 · c and s′ = m · s;

• and otherwise (i.e., for m > 1/c), r′ = O(max{r, logm} + mc), c′ = 1 −
2−Θ(mc) and s′ = m · s.

Proof. Suppose we are given a pcp system for which we want to increase the
acceptance probability bound in the completeness condition. The idea is to allow the
new verifier to select m random pads for the original verifier and query the oracle
as to which pad to use. A straightforward implementation of this idea will increase
the randomness complexity of the verifier by a factor of m. Instead, we use two
alternative implementations which yield the two parts of the proposition. In both
implementations the free-bit complexity increases by log2m and the soundness bound
increases by a factor of m.

The first implementation employs a technique introduced by Lautemann (in the
context of BPP) [68]. Using a randomized reduction, we supply the new verifier with
a sequence of m possible “shifts” that it may effect. The new verifier selects one
random pad for the original verifier and generates m shifts of this pad. Now, the new
verifier queries the oracle as to which of these shifts it should use as a random pad
for the original verifier. Details follow.

We first present a random reduction mapping x ∈ {0, 1}n to (x, S), where S is a
uniformly chosen m multisubset of {0, 1}r, for r def= r(n). On input (x, S), the new
verifier V ′ uniformly selects c ∈ {0, 1}r and queries the oracle on (x, c) receiving an
answer i ∈ [m]. Intuitively, V ′ asks which shift of the random pad to use. Finally, V ′

invokes V with input x and random pad c⊕si, where si is the ith string in S. Clearly,
the complexities of V ′ are as claimed above. Also, assuming that V accepts x with
probability δ, we get that, for every S, verifier V ′ accepts (x, S) with probability at
most m · δ. On the other hand suppose that, when given access to oracle π, verifier V
accepts x with probability δ. It follows that there exists a set R of δ2r random pads
for V so that if V uses any c ∈ R (and queries oracle π), then it accepts x. Fixing any
c ∈ {0, 1}r, we ask what is the probability, for a uniformly chosen S = {si : i≤m},
that there exists an i ∈ [m] so that c ⊕ si ∈ R. Clearly, the answer is 1 − (1 − δ)m.
Thus, for uniformly chosen S ∈ ({0, 1}r)m and c ∈ {0, 1}r,

Pr [∃i ∈ [m] s.t. c⊕ si ∈ R] = 1− (1− δ)m.

By Markov inequality, with probability at least 3/4, a uniformly chosen S = {si} has
the property that for at least 1 − 4 · (1 − δ)m of the c’s (in {0, 1}r) there exists an
i ∈ [m] so that c⊕ si ∈ R. Part 1 of the proposition follows.

To prove part 2 of the proposition, we use an alternative implementation of the
above idea, which consists of letting the new verifier V ′ generate a “pseudorandom”
sequence of possible random pads by itself. V ′ will then query the oracle as to which
random pad to use, in the simulation of V , and complete its computation by invoking
V with the specified random pad. To generate the “pseudorandom” sequence we
use the sampling procedure of [18]. Specifically, for m ≤ 1/c we merely generate a
pairwise independent sequence of uniformly distributed strings in {0, 1}r, which can
be done using randomness max{2r, 2 log2m}. Otherwise (i.e., for m > 1/c), we use
the construction of [18] to generate Θ(cm) such related sequences, where the sequences
are related via a random walk on a constant degree expander. Part 2 follows.

The following corollary exemplifies the usage of the above proposition. In case
c(n) = n−α and r(n) = O(log n), we obtain perfect completeness while preserv-
ing the gap (up to a logarithmic factor) and increasing the free-bit complexity by

PCP—TOWARDS TIGHT RESULTS 909

a log2 1/c additive term. Thus, the corollary provides an alternative way of deriv-
ing the reverse-FGLSS transformation (say, Proposition 8.7) from the simple clique
verifier of Theorem 8.2. Specifically, one may apply the following corollary to the
simple clique verifier of Theorem 8.2, instead of combining the layered-graph verifier
(of Theorem 8.3) and the graph-layering process of Proposition 8.6.

COROLLARY 11.7. For all admissible r, f : Z+ → Z+, so that ∀n : r(n) ≥ 2,

FPCPc,s[r, f] ≤KR FPCP1,r· sc [r, f + log2 r + log2(1/c)].

(Compare to item 1 of Proposition 8.7.)
We conclude this subsection with another transformation which is reminiscent of

an assertion made in section 8. The following transformation has an opposite effect
than the previous one, reducing the free-bit complexity at the expense of lowering the
bounds on acceptance probability.

PROPOSITION 11.8 (decreasing acceptance probabilities and free-bit complexity).
For all admissible functions c, s : Z+ → [0, 1], and r, f, k : Z+ → Z+ so that k ≤ f ,
if L ∈ FPCPc,s[r, f], then L ∈ FPCP c

2k
, s
2k

[r + k, f − k]. Furthermore, in case each
random pad in the original pcp system has at least 2k accepting configurations, the
average free-bit complexity of the resulting system is fav − k, where fav is the average
free-bit complexity of the original system.

Proof. Let V be a verifier satisfying the condition of the proposition. We construct
a new verifier V ′ that on input x ∈ {0, 1}n, setting r = r(n), k = k(n), and f = f(n),
acts as follows. Verifier V ′ uniformly selects a random-pad c ∈ {0, 1}r for V and
generates all possible accepting configurations with respect to V (x) and random-pad
c. In case there are less than 2k accepting configurations we add dummy configurations
to reach the 2k count. We now partition the set of resulting configurations (which
are accepting and possibly also dummy) into 2k parts of about the same size (i.e.,
some parts may have one configuration more than others). Actually, if we only care
about average free-bit complexity, then any partition of the accepting configurations
into 2k nonempty parts will do. The new verifier, V ′, uniformly selects i ∈ [2k], thus
specifying one of these parts, denoted Ai. Next, V ′ invokes V with random-pad c
and accepts if and only if the oracle’s answers form an accepting configuration which
is in Ai (i.e., resides in the selected portion of the accepting configurations). (We
stress that in case c has less than 2k accepting configurations and the selected Ai does
not contain any accepting configuration, then V ′ rejects on coins (i, c).) Clearly, the
randomness complexity of the new verifier is r + k.

To analyze the other parameters of V ′, we fix any x ∈ {0, 1}n. For sake of
simplicity, we first assume that the number of accepting configurations of V for any
random pad is a power of 2. Then the number of accepting configurations of V ′

for any random-pad (c, i) ∈ {0, 1}r × [2k] is 2m−k, where 2m is the number of ac-
cepting configurations of V on random-pad c. Thus, the free-bit complexity of V ′

is f − k. Finally, we relate the acceptance probability of V ′ to that of V . This is
done by reformulating the execution of V ′ with oracle π as consisting of two steps.
First V ′ invokes V with access to π. If V reaches a rejecting configuration, then
V ′ rejects as well; otherwise (i.e., when V reaches an accepting configuration), V
accepts with probability 2−k (corresponding to uniformly selecting i ∈ [2k]). It fol-
lows that on input x and access to oracle π, the verifier V ′ accepts with probability
δ
2k , where δ denotes the probability that V accepts input x when given access to
oracle π.

910 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

In general, our simplifying assumption that the number of accepting configura-
tions of V is a power of 2 may not hold and the analysis becomes slightly more
cumbersome. Firstly, the number of accepting configurations of V ′ for a random-pad
(c, i) is either dM/2ke or bM/2kc, where M is the number of accepting configurations
of V on random-pad c. Thus, in the worst case the number of accepting configurations
for V ′ (on random-pad (c, i)) is dM/2ke, and it follows that the free-bit complexity
of V ′ is log2d2f/2ke = f − k. Furthermore, the expected number of accepting con-
figurations (for a fixed c and uniformly chosen i ∈ [2k]) is exactly M/2k (even if
M < 2k). Thus, if the extra condition holds, then the free-bit complexity of V ′ equals
fav − k. Finally, observe that the argument regarding the acceptance probabilities
remains unchanged (and actually it does not depend on the partition of the accepting
configurations into 2k nonempty parts). The proposition follows.

11.3. Other effects on acceptance probabilities and free-bit complex-
ity. Following is an alternative transformation which reduces the free-bit complexity.
However, unlike Proposition 11.8, the following does not decrease the acceptance pa-
rameters. Furthermore, the transformation increases the soundness parameter and so
does not preserve the gap (between the completeness and soundness parameters).

PROPOSITION 11.9 (decreasing free-bit complexity without decreasing acceptance
probabilities). Let c, s : Z+ → [0, 1] be admissible functions and r, f, k : Z+ → Z+.
Suppose L ∈ FPCPc,s[r, f] with a verifier for which the first k oracle-answers for each
random pad allow at most 2f−k accepting configurations. Then L ∈ FPCPc′,s′ [r +
k, f ′], where c′ = 1− 1−c

2k , s′ = 1− 1−s
2k , and f ′ = log2(2f−k + 2k − 1).

The above can be further generalized, yet the current paper only utilizes the
special case in which c = 1 (specifically, in the proof of part 3 of Proposition 10.9, we
use f = 2 and k = 1 obtaining f ′ = log2 3, c′ = 1, and s′ = 1+s

2).
Proof. The proof is similar to the proof of Proposition 11.8. Again, we consider

a verifier V , as guaranteed by the hypothesis, and a random-pad c, and let Ai be
the set of (at most 2f−k) accepting configurations which are consistent with the ith
possibility of k oracle-answers to the first k queries. Denote the ith possibility by αi
(i.e., all configurations in Ai start with αi). We construct a new verifier, V ′, which
uniformly selects a random-pad c for V and i ∈ [2k] (specifying a part Ai as above).
The verifier V ′ makes the first k queries of V and, if the answers differ from αi, then
V ′ halts and accepts.18 Otherwise, V ′ continues the emulation of V and accepts iff
V accepts.

Clearly, V ′ uses r+ k coin tosses. The accepting configurations of V ′ on random-
pad (c, i) are those in Ai, as well as the “truncated V configurations” αj , for j 6= i.
Thus, there are at most 2f−k+2k−1 accepting configurations. Suppose V π(x) accepts
with probability p; then V ′ accepts input x with oracle access to π with probability
(1− 2−k) + 2−k · p = 1− 1−p

2k . The proposition follows.
Finally, we present a simplified version of the above transformation. Here the ac-
ceptance probabilities are increased without affecting the free-bit complexity (either
way).

PROPOSITION 11.10 (increasing acceptance probabilities while preserving free-bit
complexity). Let c, s, δ : Z+ → [0, 1] be admissible functions and r, f : Z+ → Z+.
Then

FPCPc,s[r, f] ⊆ FPCPc′,s′ [r + log(1/δ), f],

where c′ = 1− δ · (1− c) and s′ = 1− δ · (1− s).

18In contrast, the verifier constructed in the proof of Proposition 11.8 rejects in case of such a
mismatch.

PCP—TOWARDS TIGHT RESULTS 911

Proof. Let V be a verifier for L ∈ FPCPc,s[r, f]. We construct a new verifier,
V ′, which with probability δ invokes V and otherwise accepts regardless of the input.
The proposition follows.

Appendix. The coding theory bound. We provide here the coding theory
bound used in the proof of Lemma 3.11. It is a slight extension of bounds in [73,
Ch. 17] which consider only vectors of weight exactly w rather than at most w. For
sake of completeness, we include a proof of this bound. In discussing binary vectors,
the weight is the number of ones in the vector and the distance between two vectors
is the number of places in which they disagree.

LEMMA A.1. Let B = B(n, d, w) be the maximum number of binary vectors of
length n, each with weight at most w, and any two being distance at least d apart.
Then B ≤ (1 − 2β)/(4α2 − 2β), provided α2 > β/2, where α = (1/2) − (w/n) and
β = (1/2)− (d/n).

Proof. Consider an arbitrary sequence v1, . . . , vM of n-vectors which are at mutual
distance at least n/2. Let us denote by vi,j the jth entry in the ith vector, by wi the
weight of the ith vector, and by w the average value of the wi’s. Define

S
def=

M∑
i=1

M∑
j=1

n∑
k=1

vi,kvj,k.

Then, on one hand,

S =
M∑
i=1

n∑
k=1

v2
i,k +

∑
1≤i 6=j≤M

n∑
k=1

vi,kvj,k

≤
∑
i

wi +
∑

1≤i 6=j≤M

wi + wj − d
2

= Mw +M(M − 1) · (w − (d/2)),

where the inequality follows from observing that, for i 6= j,

wi + wj = 2|{k : vi,k=vj,k=1}|+ |{k : vi,k 6= vj,k}|

≥ 2
n∑
k=1

vi,kvj,k + d.

On the other hand, S =
∑n
k=1 |{i : vi,k = 1}|2. This allows to lower bound S by the

minimum of
∑
k x

2
k subject to

∑
k xk = Mw. The minimum is obtained when all xk’s

are equal and yields

S ≥ n ·
(
Mw

n

)2

.

Confronting the two bounds, we get

M · w2

n
≤M · w − (M − 1) ·

(
d

2

)
which yields (w

2

n − w + d
2)M ≤ d

2 . Letting α = (1/2)− (w/n) and using

α2 ≥ α2 > β/2 ,

912 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

we get

M ≤ 1− 2β
4α2 − 2β

,

and the lemma follows by observing that the bound maximizes when α = α.

Acknowledgments. We thank Uri Feige, Johan H̊astad, Viggo Kann, Marcos
Kiwi, and Luca Trevisan for carefully reading previous versions of our work, point-
ing out several flaws, and suggesting improvements. We also thank two anonymous
referees for their careful reading and many useful comments.

REFERENCES

[1] L. ADLEMAN, Two theorems on random polynomial time, in Proceedings of the 19th Sympo-
sium on Foundations in Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1978, pp. 75–83.

[2] M. AJTAI, J. KOMLOS, AND E. SZEMEREDI, Deterministic simulation in logspace, in Proceed-
ings of the 19th Annual Symposium on the Theory of Computing, ACM, New York, 1987,
pp. 132–140.

[3] N. ALON, U. FEIGE, A. WIGDERSON, D. ZUCKERMAN, Derandomized graph products, Com-
putat. Complexity, 5 (1995), pp. 60–75.

[4] N. ALON, J. SPENCER, AND P. ËRDOS, The Probabilistic Method, John Wiley and Sons, New
York, 1992.

[5] E. AMALDI AND V. KANN, The complexity and approximability of finding maximum feasible
subsystems of linear relations, Theoret. Comput. Sci., 147 (1995), pp. 181–210.

[6] S. ARORA, Reductions, codes, PCPs, and inapproximability, in Proceedings of the 36th Sympo-
sium on Foundations in Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1995, pp. 404–413.

[7] S. ARORA, L. BABAI, J. STERN, AND Z. SWEEDYK, The hardness of approximate optima in
lattices, codes and systems of linear equations, J. Comput. System Sci., 54 (1997), pp. 317–
331.

[8] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and
intractability of approximation problems, in Proceedings of the 33rd Symposium on Foun-
dations in Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992,
pp. 14–23.

[9] S. ARORA AND S. SAFRA, Probabilistic checking of proofs: A new characterization of NP, in
Proceedings of the 33rd Symposium on Foundations in Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1992, pp. 2–13.

[10] L. BABAI, Trading group theory for randomness, in Proceedings of the 17th Annual Symposium
on the Theory of Computing, ACM, New York, 1985, pp. 421–429.

[11] L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential time has two-prover
interactive protocols, Computat. Complexity, 1 (1991), pp. 3–40. (See also addendum in 2
(1992), p. 374.)

[12] L. BABAI, L. FORTNOW, L. LEVIN, AND M. SZEGEDY, Checking computations in poly-
logarithmic time, in Proceedings of the 23rd Annual Symposium on the Theory of Com-
puting, ACM, New York, 1991, pp. 21–31.

[13] R. BAR-YEHUDA AND S. EVEN, A linear time approximation algorithm for the weighted vertex
cover problem, J. Algorithms, 2 (1981), pp. 198–201.

[14] R. BAR-YEHUDA AND S. EVEN, A local ratio theorem for approximating the weighted vertex
cover problem, in Analysis and Design of Algorithms for Combinatorial Problems, North-
Holland Math. Stud. 109, North-Holland, Amsterdam, 1985, pp. 27–45.

[15] R. BAR-YEHUDA AND S. MORAN, On approximation problems related to the independent set
and vertex cover problems, Discrete Appl. Math., 9 (1984), pp. 1–10.

[16] M. BELLARE, Interactive proofs and approximation: Reductions from two provers in one round,
in Proceedings of the Second Israel Symposium on Theory and Computing Science, IEEE
Computer Society Press, Los Alamitos, CA, 1993, pp. 266–274.

[17] M. BELLARE, D. COPPERSMITH, J. HÅSTAD, M. KIWI, AND M. SUDAN, Linearity testing in
characteristic two, IEEE Trans. Inform. Theory, 42 (1996), pp. 1781–1795.

[18] M. BELLARE, O. GOLDREICH, AND S. GOLDWASSER, Randomness in interactive proofs, Com-
putat. Complexity, 3 (1993), pp. 319–354.

PCP—TOWARDS TIGHT RESULTS 913

[19] M. BELLARE, O. GOLDREICH, AND M. SUDAN, Free bits, PCPs, and non-approximability—
towards tight results, extended abstract of this paper in Proceedings of the 36th Symposium
on Foundations in Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1995, pp. 422–431.

[20] M. BELLARE, O. GOLDREICH, AND M. SUDAN, Free bits, PCPs, and non-approximability—
towards tight results, preliminary versions of this paper, Report TR95-024, Elec. Colloq.
Comput. Complexity, May 1995 (revised Sept. 1995, Jan. 1996, Dec. 1996, and Aug. 1997),
http://www.eccc.uni-trier.de/eccc/

[21] M. BELLARE, S. GOLDWASSER, C. LUND, AND A. RUSSELL, Efficient probabilistically checkable
proofs and applications to approximation, in Proceedings of the 25th Annual Symposium
on the Theory of Computing, ACM, New York, 1993, pp. 294–304. (See also Errata sheet
in Proceedings of the 26th Annual Symposium on the Theory of Computing, ACM, New
York, 1994, pp. 820–820).

[22] M. BELLARE AND P. ROGAWAY, The complexity of approximating a nonlinear program, J.
Math. Programming Ser. A, 69 (1995), pp. 429–441. Also in Complexity of Numerical
Optimization, P. M. Pardalos, ed., World Scientific, River Edge, NJ, 1993, pp. 16–32.

[23] M. BELLARE AND M. SUDAN, Improved non-approximability results, in Proceedings of the 26th
Annual Symposium on the Theory of Computing, ACM, New York, 1994, pp. 184–193.

[24] M. BEN-OR, S. GOLDWASSER, J. KILIAN, AND A. WIGDERSON, Multi-prover interactive proofs:
How to remove intractability assumptions, in Proceedings of the 20th Annual Symposium
on the Theory of Computing, ACM, New York, 1988, pp. 113–131.

[25] P. BERMAN AND G. SCHNITGER, On the complexity of approximating the independent set
problem, Inform. and Comput., 96 (1992), pp. 77–94.

[26] A. BLUM, Algorithms for Approximate Graph Coloring, Ph.D. thesis, Department of Computer
Science, MIT, Cambridge, MA, 1991.

[27] M. BLUM, M. LUBY, AND R. RUBINFELD, Self-testing/correcting with applications to numerical
problems, J. Comput. System Sci., 47 (1993), pp. 549–595.

[28] R. BOPPANA AND M. HALLDÓRSSON, Approximating maximum independent sets by excluding
subgraphs, BIT, 32 (1992), pp. 180–196.

[29] J. BRUCK AND M. NAOR, The hardness of decoding with preprocessing, IEEE Trans. Inform.
Theory, 36 (1990), pp. 381–385.

[30] A. COHEN AND A. WIGDERSON, Dispersers, deterministic amplification, and weak random
sources, in Proceedings of the 30th Symposium on Foundations in Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1989, pp. 14–19.

[31] A. CONDON, The complexity of the max word problem and the power of one-way interactive
proof systems, Comput. Complexity, 3 (1993), pp. 292–305.

[32] S. COOK, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual
Symposium on the Theory of Computing, ACM, New York, 1971, pp. 151–158.

[33] P. CRESCENZI AND V. KANN, A Compendium of NP Optimization Problems, Technical Report,
Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza,” SI/RR-
95/02, 1995. The list is updated continuously. The latest version is available via http:
//www.nada.kth.se/˜viggo/problemlist/compendium.html

[34] P. CRESCENZI, R. SILVESTRI, AND L. TREVISAN, To weight or not to weight: Where is the
question?, in Proceedings of the Fourth Israel Symposium on Theory of Computing and
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 68–77.

[35] S. EVEN, A. ITAI, AND A. SHAMIR, On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput., 5 (1976), pp. 691–703.

[36] S. EVEN, A. SELMAN, AND Y. YACOBI, The complexity of promise problems with applications
to public-key cryptography, Inform. Control, 2 (1984), pp. 159–173.

[37] U. FEIGE, Randomized graph products, chromatic numbers, and the Lovásztheta function, in
Proceedings of the 27th Annual Symposium on the Theory of Computing, ACM, New
York, 1995, pp. 635–640.

[38] U. FEIGE, Set cover. A threshold of ln n for approximating set cover, in Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 314–318.

[39] U. FEIGE AND M. GOEMANS, Approximating the value of two prover proof systems, with
application to Max-2SAT and Max-DICUT, in Proceedings of the Third Israel Symposium
on Theory and Computing Science, IEEE Computer Society Press, Los Alamitos, CA,
1995, pp. 182–189.

[40] U. FEIGE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA, AND M. SZEGEDY, Interactive proofs and
the hardness of approximating cliques, J. ACM, 43 (1996), pp. 268–292.

[41] U. FEIGE AND J. KILIAN, Two prover protocols – low error at affordable rates, in Proceedings
of the 26th Annual Symposium on the Theory of Computing, ACM, New York, 1994,
pp. 172–183.

914 MIHIR BELLARE, ODED GOLDREICH, AND MADHU SUDAN

[42] U. FEIGE AND J. KILIAN, Zero-knowledge and the chromatic number, in Proceedings of the
11th Annual Conference on Computational Complexity, IEEE Computer Society Press,
Los Alamitos, CA, 1996.

[43] U. FEIGE AND L. LOVÁSZ, Two-prover one round proof systems: Their power and their prob-
lems, in Proceedings of the 24th Annual Symposium on the Theory of Computing, ACM,
New York, 1992, pp. 733–744.

[44] L. FORTNOW, J. ROMPEL, AND M. SIPSER, On the power of multiprover interactive protocols,
Theoret. Comput. Sci., 134 (1994), pp. 545–557.

[45] M. FÜRER, Improved hardness results for approximating the chromatic number, in Proceedings
of the 36th Symposium on Foundations in Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1995, pp. 414–421.

[46] M. FÜRER, O. GOLDREICH, Y. MANSOUR, M. SIPSER, AND S. ZACHOS, On completeness and
soundness in interactive proof systems, in Advances in Computing Research: A Research
Annual, Randomness and Computation, S. Micali, ed., Vol. 5, JAI Press, Greenwich, CT,
pp. 429–442.

[47] M. GAREY AND D. JOHNSON, The complexity of near optimal graph coloring, J. ACM, 23
(1976), pp. 43–49.

[48] M. GAREY AND D. JOHNSON, Computers and Intractability: A guide to the Theory of NP-
completeness, W. H. Freeman and Company, San Francisco, CA, 1979.

[49] M. GAREY, D. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph problems,
Theoret. Comput. Sci., 1 (1976), pp. 237–267.

[50] M. GOEMANS AND D. WILLIAMSON, New 3/4-approximation algorithms for the maximum
satisfiablity problem, SIAM J. Discrete Math., 7 (1994), pp. 656–666.

[51] M. GOEMANS AND D. WILLIAMSON, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming, J. ACM, 42 (1995), pp. 1115–
1145.

[52] O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their validity,
or all languages in NP have zero-knowledge proof systems, J. ACM, 38 (1991), pp. 691–729.

[53] S. GOLDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity of interactive proofs,
SIAM J. Comput., 18 (1989), pp. 186–208.

[54] S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof systems,
in Proceedings of the 18th Annual Symposium on the Theory of Computing, ACM, New
York, 1986, pp. 59–68.

[55] J. HÅSTAD, Testing of the long code and hardness for clique, in Proceedings of the 28th Annual
Symposium on the Theory of Computing, ACM, New York, 1996, pp. 11–19.

[56] J. HÅSTAD, Clique is hard to approximate within n1−ε, in Proceedings of the 37th Symposium
on Foundations in Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1996, pp. 627–636.

[57] J. HÅSTAD, Getting optimal in-approximability results, in Proceedings of the 29th Annual
Symposium on the Theory of Computing, ACM, New York, 1997, pp. 1–10.

[58] D. HOCHBAUM, Efficient algorithms for the stable set, vertex cover and set packing problems,
Discrete Appl. Math., 6 (1983), pp. 243–254.

[59] R. IMPAGLIAZZO AND D. ZUCKERMAN, How to recycle random bits, in Proceedings of the
30th Symposium on Foundations in Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1989, pp. 248–253.

[60] N. JONES, Y. LIEN, AND W. LAASER, New problems complete for non-deterministic log space,
Math. Systems Theory, 10 (1976), pp. 1–17.

[61] N. KAHALE, Eigenvalues and expansion of regular graphs, J. ACM, 42 (1995), pp. 1091–1106.
[62] V. KANN, S. KHANNA, J. LAGERGREN, AND A. PANCONESI, On the Hardness of Approximating

MAX k-CUT and Its Dual, Technical Report TRITA-NA-P9505, Department of Numerical
Analysis and Computing Science, Royal Institute of Technology, Stockholm, 1995.

[63] D. KARGER, R. MOTWANI, AND M. SUDAN, Approximate graph coloring by semidefinite pro-
gramming, in Proceedings of the 35th Symposium on Foundations in Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 2–13.

[64] H. KARLOFF AND U. ZWICK, A 7/8-eps approximation algorithm for MAX 3SAT?, in Pro-
ceedings of the 38th Symposium on Foundations in Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1997, pp. 406–415.

[65] R. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, Miller and Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[66] S. KHANNA, N. LINIAL, AND S. SAFRA, On the hardness of approximating the chromatic
number, in Proceedings of the Second Israel Symposium on Theory and Computing Science,
IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 250–260.

PCP—TOWARDS TIGHT RESULTS 915

[67] D. LAPIDOT AND A. SHAMIR, Fully parallelized multi-prover protocols for NEXP-time, in
Proceedings of the 32nd Symposium on Foundations in Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1991, pp. 13–18.

[68] C. LAUTEMANN, BPP and the polynomial hierarchy, Inform. Process Lett., 17 (1983), pp. 215–
217.

[69] L. LEVIN, Universal’ny̆ıe pereborny̆ıe zadachi (universal search problems), Problemy Peredachi
Informatsii, 9 (1973), pp. 265–266, (in Russian).

[70] A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK, Explicit expanders and the Ramanujan conjec-
tures, in Proceedings of the 18th Annual Symposium on the Theory of Computing, ACM,
New York, 1986, pp. 240–246.

[71] C. LUND AND M. YANNAKAKIS, On the hardness of approximating minimization problems, J.
ACM, 41 (1994), pp. 960–981.

[72] C. LUND, L. FORTNOW, H. KARLOFF, AND N. NISAN, Algebraic methods for interactive proof
systems, J. ACM, 39 (1992), pp. 859–868.

[73] F. MACWILLIAMS AND N. SLOANE, The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1981.

[74] B. MONIEN AND E. SPECKENMEYER, Ramsey numbers and an approximation algorithm for
the vertex cover problem, Acta Inform., 22 (1985), pp. 115–123.

[75] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithms, Cambridge University Press, Cam-
bridge, 1995.

[76] C. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation, and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[77] E. PETRANK, The Hardness of Approximations: Gap Location, Technical Report TR–754,
Department of Computer Science, Technion – Israel Institute of Technology, 1992.

[78] A. POLISHCHUK AND D. SPIELMAN, Nearly-linear size holographic proofs, in Proceedings of the
26th Annual Symposium on the Theory of Computing, ACM, New York, 1994, pp. 194–203.

[79] R. RAZ, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.
[80] S. SAHNI AND T. GONZALES, P-complete approximation problems, J. ACM, 23 (1976), pp. 555–

565.
[81] A. SHAMIR, IP=PSPACE, J. ACM, 39 (1992), pp. 869–877.
[82] G. TARDOS, Multi-prover encoding schemes and three prover proof systems, J. Comput. System

Sci., 53 (1996), pp. 251–260.
[83] A. TA-SHMA, A Note on PCP vs. MIP, Inform. Process. Lett., 58 (1996), pp. 135–140.
[84] L. TREVISAN, G. SORKIN, M. SUDAN, AND D. WILLIAMSON, Gadgets, approximation and

linear programming, in Proceedings of the 37th Symposium on Foundations in Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 617–626.

[85] M. YANNAKAKIS, On the approximation of maximum satisfiability, J. Algorithms, 17 (1994),
pp. 475–502.

[86] D. ZUCKERMAN, On unapproximable versions of NP-complete problems, SIAM J. Comput., 25
(1996), pp. 1293–1304.

FAST GOSSIPING BY SHORT MESSAGES∗

JEAN-CLAUDE BERMOND† , LUISA GARGANO‡ , ADELE A. RESCIGNO‡ , AND

UGO VACCARO‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 917–941, August 1998 001

Abstract. Gossiping is the process of information diffusion in which each node of a network
holds a packet that must be communicated to all other nodes in the network. We consider the
problem of gossiping in communication networks under the restriction that communicating nodes
can exchange up to a fixed number p of packets at each round. In the first part of the paper we study
the extremal case p = 1 and we exactly determine the optimal number of communication rounds
to perform gossiping for several classes of graphs, including Hamiltonian graphs and complete k-ary
trees. For arbitrary graphs we give asymptotically matching upper and lower bounds. We also study
the case of arbitrary p and we exactly determine the optimal number of communication rounds to
perform gossiping under this hypothesis for complete graphs, hypercubes, rings, and paths. Finally,
we investigate the problem of determining sparse networks in which gossiping can be performed in
the minimum possible number of rounds.

Key words. gossiping, graphs, networks

AMS subject classifications. 94C15, 68M10

PII. S0097539795283619

1. Introduction. Gossiping (also called total exchange or all-to-all communi-
cation) in distribution systems is the process of distributing information known to
each processor to every other processor of the system. This process of information
dissemination is carried out by means of a sequence of message transmissions between
adjacent nodes in the network.

The gossiping problem was originally introduced by the community of discrete
mathematicians, to which it owes most of its terminology, as a combinatorial problem
in graphs. Nonetheless, it was soon realized that, once cast in more realistic models
of communication, gossiping is a fundamental primitive in distributed memory multi-
processor systems. There are a number of situations in multiprocessor computation,
such as global processor synchronization, where gossiping occurs. Moreover, the gos-
siping problem is implicit in a large class of parallel computation problems, such as
linear system solving, the discrete Fourier transform, and sorting, where both input
and output data are required to be distributed across the network [6, 9, 18]. Due to
the interesting theoretical questions it poses and its numerous practical applications,
gossiping has been widely studied under various communication models. Hedetniemi,
Hedetniemi, and Liestman [15] provide a survey of the area. Two more recent survey
papers collecting the latest results are [10, 17]. Readers could also profit from seeing
the book [24].

∗ Received by the editors March 24, 1995; accepted for publication (in revised form) April 9, 1996;
published electronically May 18, 1998. An extended abstract of this work was presented at ICALP
’95, Szeged, Hungary.

http://www.siam.org/journals/sicomp/27-4/28361.html
† I3S, CNRS, Université de Nice, Sophia Antipolis, Bat ESSI, 650 Route de Colles, BP 145, 06903

Sophia Antipolis Cedex, France (bermond@alto.unice.fr). This research was partially supported
by the French GDR/PRC Project PRS and by the French–Italian Bilateral Project Galileo. This
research was partially performed while the author was visiting the Dipartimento di Informatica ed
Applicazioni of the Università di Salerno.

‡ Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84081 Baronissi (SA),
Italy (lg@dia.unisa.it, rescigno@udsab.dia.unisa.it, uv@dia.unisa.it). This research was partially sup-
ported by the Italian Ministry of University and Scientific Research, Project: Algoritmi, Modelli di
Calcolo e Strutture Informative and by the French–Italian Bilateral Project Galileo.

917

918 BERMOND, GARGANO, RESCIGNO, AND VACCARO

The great majority of the previous work on gossiping has considered the case in
which the packets known to a processor at any given time during the execution of
the gossiping protocol can be freely concatenated and the resulting (longer) message
can be transmitted in a constant amount of time; that is, it has been assumed that
the time required to transmit a message is independent of its length. While this as-
sumption is reasonable for short messages, it is clearly unrealistic when the size of the
messages becomes large. Notice that most of the gossiping protocols proposed in the
literature require the transmission, in the last rounds of the execution of the protocol,
of messages of size Θ(n), where n is the number of nodes in the network. Therefore, it
would be interesting to have gossiping protocols that require only the transmission of
bounded length messages between processors. In this paper we consider the problem
of gossiping in communication networks under the restriction that communicating
nodes can exchange up to a fixed number p of packets in each round.

1.1. The model. Consider a communication network modeled by a graph G =
(V,E) where the node set V represents the set of processors of the network and E
represents the set of communication lines between processors.

Initially each node holds a packet that must be transmitted to any other node
in the network by a sequence of calls between adjacent processors. During each call,
communicating nodes can exchange up to p packets, where p is an a priori fixed
integer. We assume that each processor can participate in at most one call at a
time. Therefore, we can see the gossiping process as a sequence of rounds: during
each round a disjoint set of edges (matching) is selected and the nodes that are end
vertices of these edges make a call. This communication model is usually referred
to as telephone model [15] or full-duplex 1-port (F1) [20]. We denote by gF1

(p,G)
the minimum possible number of rounds to complete the gossiping process in the
network G subject to the above conditions. Another popular communication model
is the mail model [15] or half-duplex 1-port (H1) [20], in which in each round any
node can either send a message to one of its neighbors or receive a message from it,
but not simultaneously. The problem of estimating gH1

(p,G) has been considered in
[4]. Analogous problems in bus networks have been considered in [11, 16]. Optimal
bounds on gH1(1, G) when the edges of G are subject to random failures are given in
[7]. Packet routing in interconnection networks in the F1 model has been considered
in [1].

1.2. Results. We first study the extremal case in which gossiping is to be per-
formed under the restriction that communicating nodes can exchange exactly one
packet in each round. We provide several lower bounds on the gossiping time gF1(1, G)
and we provide matching upper bounds for Hamiltonian graphs, complete trees, and
complete bipartite graphs. For general graphs we provide asymptotically tight upper
and lower bounds.

Subsequently, we study the case of arbitrary p and we compute gF1(p,G) exactly
for complete graphs, hypercubes, rings, and paths. Our result for hypercubes allows
us to improve the corresponding result in the H1 model given in [4].

Finally, we investigate the problem of finding the sparsest networks in which
gossiping can be performed in the minimum possible number of rounds.

All logarithms in this paper are to the base 2.

2. Gossiping by exchanging one packet at a time. In this section we study
gF1(1, G), that is, the minimum possible number of rounds to complete gossip in a
graph G under the condition that at each round communicating nodes can exchange

FAST GOSSIPING BY SHORT MESSAGES 919

exactly one packet.
In order to avoid overburdening the notation, we will simply write g(G) to denote

gF1
(1, G).

2.1. Lower bounds on g(G). In this section we give some lower bounds on the
time needed to complete the gossiping process.

Lemma 2.1. For any graph G = (V,E), with |V | = n, let µ(G) be the size of a
maximum matching in G; then

g(G) ≥
⌈
n(n− 1)

2µ(G)

⌉
.(1)

Proof. For any node v ∈ V the packet initially resident in v must reach each of the
remaining n−1 nodes. Therefore, during the gossiping process, at least n(n−1) packet
transmissions must be executed over the edges of G. Since in each communication
round at most µ(G) calls are performed and each call allows the transmission of two
packets (one in each direction), the bound follows.

Lemma 2.2. Let X ⊂ V be a vertex cutset of the graph G = (V,E) whose removal
disconnects G into the connected components V1, . . . , Vd; then

g(G) ≥
⌈

d∑
i=1

max{|Vi|, n− |Vi|}
|MX |

⌉
,(2)

where |MX | is the size of a maximum matching MX in G such that any edge in it has
one endpoint in X and the other in V −X.

Proof. Consider a component Vi, for some 1 ≤ i ≤ d. Nodes in Vi can receive
the packets of nodes in V − Vi only by means of calls between a node in X and one
in Vi; moreover, at least n − |Vi| calls are needed between nodes in X and nodes in
Vi to bring all packets in V − Vi to nodes in Vi. Analogously, packets of nodes in Vi
can reach nodes in V − Vi only by means of calls between a node in X and one in
Vi, and at least |Vi| such calls are needed. Therefore, for each i = 1, . . . , d, at least
max{|Vi|, n − |Vi|} calls must take place between nodes in X and nodes in Vi. We

then get that at least
∑d

i=1 max{|Vi|, n − |Vi|} calls are needed between nodes in X
and nodes in V −X = ∪di=1Vi. Since at most |MX | such calls can take place during
each round, we get the desired lower bound of⌈∑d

i=1 max{|Vi|, n− |Vi|}
|MX |

⌉

on the time necessary to gossip in G.
Remark 2.1. The bound in Lemma 2.2 can sometimes be improved by observing

that after the last call has been done between a node in some Vi and a node in X,
the last exchanged message has still to reach all the other nodes of Vi (or of V − Vi).
Therefore, we can add to the lower bound (2) the minimum of the eccentricities of
the subgraphs induced by the Vi’s and the V − Vi’s.

Corollary 2.1. Let α(G) be the independence number of G; then

g(G) ≥
⌈
α(G)(n− 1)

n− α(G)

⌉
.(3)

920 BERMOND, GARGANO, RESCIGNO, AND VACCARO

Proof. Let Y denote an independent set of G. Applying Lemma 2.2 with cutset
X = V −Y and connected components V1, . . . , V|Y |, each consisting of just one element
of Y , we get

g(G) ≥

|Y |∑
i=1

n− |Vi|
|MX |

 ≥

|Y |∑
i=1

n− |Vi|
|X|

 =

|Y |∑
i=1

n− 1

n− |Y |

 =

⌈ |Y |(n− 1)

n− |Y |
⌉
.

Choosing an independent set of maximum size |Y | = α(G) we get (3).
Let T be a tree and v one of its nodes; we indicate the connected components into

which the node set of T is split by the removal of v by V1(v), . . . , Vdeg(v)(v), ordered
so that |V1(v)| ≥ · · · ≥ |Vdeg(v)(v)|.

Corollary 2.2. Let T be a tree on n nodes of maximum degree ∆ = maxv∈V deg(v);
then

g(T) ≥ max
v : deg(v)=∆

L(v),

where

L(v) =

(deg(v)− 1)n+ 1 if |V1(v)| ≤ n/2,

(deg(v)− 2)n+ 1 + 2|V1(v)| if |V1(v)| > n/2.

Proof. Given a node v, Lemma 2.2 with X = {v} gives

g(T) ≥
deg(v)∑
i=1

max{|Vi(v)|, n− |Vi(v)|}

=

deg(v)∑
i=2

n− |Vi(v)|+

|V1(v)| if |V1(v)| > n/2,

n− |V1(v)| if |V1(v)| ≤ n/2,

= L(v).

Direct computation shows that if deg(v) > deg(w) then L(v) > L(w), thus proving
that the maximum is always attained at a node of maximum degree.

2.2. Upper bounds. In this section we will determine g(G) exactly for several
classes of graphs, including Hamiltonian graphs and complete k-ary trees. We will
also provide good upper bounds for general graphs.

2.2.1. Hamiltonian graphs. We first note that in any graph G = (V,E) the
size of a maximum matching µ(G) is at most b|V |/2c. Therefore, from Lemma 2.1 we
get that the gossiping time g(G) of any graph with n nodes is always lower-bounded
by

g(G) ≥
{

n− 1 if n is even,
n if n is odd.

(4)

We will show that this lower bound is attained by Hamiltonian graphs.
Let Cn = (V,E) denote the ring of length n; we assume that the vertex set is

V = {0, . . . , n− 1} and the edge set is E = {(v, w) : 1 = |v − w|(mod n)}.1

1 Here and in the rest of the paper with x = a (mod b) we denote the unique integer 0 ≤ x < b
such that x = qb+ a.

FAST GOSSIPING BY SHORT MESSAGES 921

Gossiping-even(Cn)
Round t = 1: Each node v sends its own packet to the node w such that
(v, w) ∈M1.
Round t = 2: Each node v sends its own packet to the node w such that
(v, w) ∈M2.
Round t, 3 ≤ t ≤ n−1: For each node v let w be the node such that (v, w) ∈Mt;
node v sends a new packet to w; namely, v sends the packet it first received from
among those v has neither received from w nor sent to w in any previous round.

Fig. 1. Gossiping algorithm in Cn, n even.

Gossiping-odd(Cn)
Round t, 1 ≤ t ≤ n: For each node v 6= t − 1 let w be the neighbor of v in
Mt; node v sends to w the packet that v first received from among those that it
neither got from w nor sent to w in a previous round (v’s own packet is considered
to be received before any other packet).

Fig. 2. Gossiping algorithm in Cn, n odd.

Lemma 2.3. g(Cn) ≤
{
n− 1 if n is even,
n if n is odd.

Proof. We distinguish two cases according to the parity of the number n of nodes.
Case n even. We shall give a gossiping protocol on the ring Cn that requires n−1

rounds. First, for each integer t, define the perfect matching in Cn given by

Mt =

{ {(v, w) : v is even and w = v + 1} if t is even,
{(v, w) : v is odd and w = v + 1(mod n)} if t is odd;

(5)

notice that Mt and Mt+1 are disjoint for each t. The gossiping algorithm is shown in
Figure 1.

It is immediate to see that each node receives a new packet at each round (this
can be formally proved by induction on t). Therefore, at the end of round n − 1 of
algorithm Gossiping-even(Cn) each node has received all the packets of the other
n− 1 nodes.

Case n odd. Define the following maximum matchings Mt in Cn for each t =
1, . . . , n:

(6)

Mt = {(v, w) : v − t+ 1 (mod n) is odd, w = v + 1(mod n), and v 6= t− 1 6= w}.
We give in Figure 2 a gossiping protocol on Cn that requires n rounds. It is easy

to see that at each round t = 1, . . . , n each node different from t − 1 receives a new
packet. Therefore, at the end of round n of algorithm Gossiping-odd(Cn), each
node has received all the packets of the other n− 1 nodes.

Example 2.1. For n = 6 we have M1 = M3 = M5 = {(1, 2), (3, 4), (50)} and
M2 = M4 = {(0, 1), (2, 3), (4, 5)}. Each column of Table 1 shows the set of nodes
whose packets are known by v at the end of round t, for each 0 ≤ v ≤ 5 and 1 ≤ t ≤ 5.

922 BERMOND, GARGANO, RESCIGNO, AND VACCARO

Table 1

t\v 0 1 2
1 {5, 0} {1, 2} {1, 2}
2 {5, 0, 1} {0, 1, 2} {1, 2, 3}
3 {4, 5, 0, 1} {0, 1, 2, 3} {0, 1, 2, 3}
4 {4, 5, 0, 1, 2} {5, 0, 1, 2, 3} {0, 1, 2, 3, 4}
5 {3, 4, 5, 0, 1, 2} {5, 0, 1, 2, 3, 4} {5, 0, 1, 2, 3, 4}

t\v 3 4 5
1 {3, 4} {3, 4} {5, 0}
2 {2, 3, 4} {3, 4, 5} {4, 5, 0}
3 {2, 3, 4, 5} {2, 3, 4, 5} {4, 5, 0, 1}
4 {1, 2, 3, 4, 5} {2, 3, 4, 5, 0} {3, 4, 5, 0, 1}
5 {1, 2, 3, 4, 5, 0} {1, 2, 3, 4, 5, 0} {3, 4, 5, 0, 1, 2}

Table 2

t\v 0 1 2 3 4
1 {0} {1, 2} {1, 2} {3, 4} {3, 4}
2 {4, 0} {1, 2} {1, 2, 3} {2, 3, 4} {3, 4, 0}
3 {4, 0, 1} {0, 1, 2} {1, 2, 3} {2, 3, 4, 0} {2, 3, 4, 0}
4 {3, 4, 0, 1} {0, 1, 2, 3} {0, 1, 2, 3} {2, 3, 4, 0} {2, 3, 4, 0, 1}
5 {3, 4, 0, 1, 2} {0, 1, 2, 3, 4} {0, 1, 2, 3, 4} {1, 2, 3, 4, 0} {2, 3, 4, 0, 1}

For n = 5 we have M1 = {(1, 2), (3, 4)}, M2 = {(2, 3), (4, 0)}, M3 = {(3, 4), (0, 1)}
M4 = {(4, 0), (1, 2)}, and M5 = {(0, 1), (2, 3)}. Each column of Table 2 shows the set
of nodes whose packets are known by v at the end of round t, for each 0 ≤ v ≤ 4 and
1 ≤ t ≤ 5.

Theorem 2.1. For any Hamiltonian graph G on n vertices,

g(G) =

{
n− 1 if n is even,
n if n is odd.

Proof. If G is Hamiltonian, from Lemma 2.3 we get that gossiping along the
edges of the Hamiltonian cycle requires time matching the lower bound (4), and the
theorem holds.

2.3. Trees. In this section we investigate the gossiping time in trees. We first
give an upper bound on the gossiping time in any tree and afterwards compute the
exact gossiping time of rooted k-ary trees.

Consider a tree T = (V,E). We recall that for each node v the set V1(v) denotes
the largest of the connected components into which T splits after the removal of v.
Let

ϑ = max |V1(v)|,
where the maximum is taken over all the internal nodes v having exactly deg(v)− 1
leaves as neighbors; notice that any internal node u with less than d(u)− 1 leaves as
neighbors has |V1(u)| ≤ ϑ− 1.

Let pre-leaf denote a node v such that |V1(v)| = ϑ and denote by π the maximum
degree of a node in the subgraph consisting only of the edges (u, f) where f is either
a leaf or a pre-leaf of T . Finally, let λ be the maximum number of leaves connected
to a common node and ∆ = maxv∈V deg(v).

FAST GOSSIPING BY SHORT MESSAGES 923

Gossiping-tree(T)
Phase 1

[Color each edge (u, v) of T with color c(u, v) = c(v, u) ∈ {0, . . . ,∆− 1}.]
Round t, for t = 1, . . . ,∆(ϑ− 1): For each node u, if there is an edge (u, v)
such that c(u, v) = t − 1(mod ∆), then u sends a new packet to v; namely, u
sends to v a packet from among those that u has neither sent to v nor received
from v in a previous round, if such a packet exists; otherwise u sends nothing.

Phase 2
[Give to each edge (u, f), where f is a leaf or a pre-leaf, a color c′(u, f) ∈
{0, . . . , π − 1}.]
Round ∆(ϑ − 1) + t, for t = 1, . . . , π: For each leaf or pre-leaf f , if there is
an edge (u, f) with c′(u, f) = t − 1, then u sends to f a packet from among
those that u has neither sent to f nor received from f in a previous round, if
any.

Phase 3
[Give to each edge (u, f), where f is a leaf of T , a color c′′(u, f) ∈ {0, . . . , λ−
1}.]
Round ∆(ϑ− 1) + π + t, for t = 1, . . . , (n− ϑ− 1)λ: For each leaf f , if the
edge (u, f) on f has c′′(u, f) = t− 1(mod λ), then u sends to f any packet f
does not know.

Fig. 3. Gossiping algorithm in a tree T .

Theorem 2.2. For any tree T = (V,E) on n nodes, g(T) ≤ (ϑ− 1)∆ + π+ (n−
ϑ− 1)λ.

Proof. Consider the gossiping algorithm Gossiping-tree(T) given in Figure 3.
For any e ∈ E, the edge coloring c(e) and the partial edge colorings c′(e) and c′′(e)
used in Gossiping-tree(T) are each intended so that no two edges sharing a vertex
are assigned the same color.

We now prove the correctness of algorithm Gossiping-tree(T). Let us say that
the edge (u, v) of T is saturated from u to v at time t of Gossiping-tree(T) if no
packet is sent from u to v at any time t′ ≥ t, that is, if by time t − 1 node v has
received the packet of each node w connected to v through u. We need the following
property of Gossiping-tree(T).

Property 2.1. In any round t of Phase 1 of the algorithm Gossiping-tree(T),
if the edge (u, v) has color c(u, v) = t− 1(mod ∆) and it is not saturated from u to v
at time t, then u sends a new packet to v at round t.

Proof. The proof is by induction on the time unit t. Let t ≤ ∆: at time unit t,
for each edge (u, v) of color c(u, v) = t− 1 ∈ {0, . . . ,∆− 1}, nodes u and v exchange
a call for the first time and have at least their own packet to send each other.

Now let t > ∆ and suppose that the hypothesis holds for each t′ < t.

Consider an edge (u, v) such that c(u, v) = t− 1(mod ∆). Suppose by contradic-
tion that at time t the edge (u, v) is not saturated from u to v, but u has no packets
to send to v among those u has not received through v. That is, all packets known
to u and not received through v have already been sent from u to v.

In particular, node u has already sent to v all the packets it has received from
its other neighbors, call them w1, . . . , wk. Notice that the last call from u to v has
taken place at time t − ∆. For each wi, let τi be the only integer such that both

924 BERMOND, GARGANO, RESCIGNO, AND VACCARO

t−∆ < τi < t and c(u,wi) = τi−1(mod ∆) hold. If the edge (u,wi) is not saturated
at time τi, we know by the inductive hypothesis that u has received a packet from
wi at time τi. We can have two cases: the first case is that all the edges (u,wi) are
saturated at time τi < t. This immediately implies that (u, v) is saturated at time
t, contradicting our assumption that (u, v) was not saturated from u to v at time t.
The second case is that at least one edge (u,wi) is not saturated at time τi; in such a
situation we know by the inductive hypothesis that u has received a new packet from
wi at time τi that can now be forwarded to v, again getting a contradiction.

We can now complete the proof of the theorem by showing that at the end of
Gossiping-tree(T) each node knows all the other n− 1 packets. Property 2.1 shows
that a new packet is sent from u to v at each round t of Phase 1 such that c(u, v) =
t− 1 (mod ∆), until the edge (u, v) is saturated and no more packets need to be sent
from u to v. Therefore, for any internal node u and for any ∆ consecutive rounds, u
receives a new packet from each neighbor v such that (v, u) is not saturated from v to
u. We recall that ϑ is the maximum number of packets that any internal node needs
to get from one neighbor and that this maximum is attained with equality only if u is
a pre-leaf. Therefore, by round ∆(ϑ− 1), any node u which is not a pre-leaf gets all
the necessary n − 1 packets, while a pre-leaf gets n − 2 packets during the ∆(ϑ − 1)
rounds of Phase 1, and the remaining packet during some round of Phase 2.

Analogously, during Phase 1 any leaf f gets ϑ − 1 packets. It is obvious that f
receives a new packet during Phase 2; moreover, during Phase 3 the leaf f receives a
new packet for any λ consecutive rounds, thus getting the remaining n−ϑ−1 packets
that it needs to complete the gossip.

Let δ denote the minimum degree of an internal node in T . It is easy to see that
we can upper-bound ϑ by n− δ. Therefore, from Theorem 2.2 we have the following
upper bound on g(T) that is expressed only in terms of degree properties of the nodes
in T .

Corollary 2.3. For any tree T = (V,E) on n nodes, g(T) ≤ (n−δ)∆+(δ−1)λ.

Given a connected graph G = (V,E), denote by T the set of all spanning trees
of G, and for any vertex v ∈ V , denote by degT (v) the degree of v in T ∈ T . Define
d(G) = minT∈T maxv∈V degT (v). The following corollary is immediate.

Corollary 2.4. For any connected graph G = (V,E) with n vertices,

g(G) ≤ (n− 1)d(G).(7)

We point out that, although the problem of computing d(G) is NP-hard, there
exists an efficient algorithm to compute a spanning tree of maximum degree at most
d(G) + 1 (see [12]). From Corollaries 2.2 and 2.4 we have that for any tree with n
nodes and maximum degree ∆ it holds that n∆−n+1 ≤ g(T) ≤ n∆−∆. Let us now
consider the tree Sn,∆ of Figure 4. If ∆ = n− 1, then Sn,n−1 is the star on n nodes,
and from Corollary 2.2 and Theorem 2.2 we have g(Sn,n−1) = (n − 1)2. If ∆ > 2 is
constant with respect to n > 2∆ then from Corollary 2.2 and Theorem 2.2 we get
∆(n− 1)− (∆− 1) ≤ g(Sn,∆) ≤ ∆(n− 1)− 2. It is not difficult to obtain a specific
gossiping algorithm attaining the lower bound, hence the bound (7) is asymptotically
tight.

In [7] it was conjectured that for any G, gH1(1, G) = Ω(n d(G)) holds; Ravi [22]
has proved the following theorem.

Theorem 2.3 (see [22]). For any graph G, g(G) = Θ(n d(G)).

FAST GOSSIPING BY SHORT MESSAGES 925

¡
¡

¡
¡
•1

• 2

@
@

@
@
• 3

... ¡
¡

¡
¡•

∆− 3 •
∆− 2

@
@

@
@•
∆− 1

•0 •
∆

•
∆ + 1

· · · •
n− 3

•
n− 2

•
n− 1

Fig. 4. Tree Sn,∆.

Proof. Given a vertex cutset X of G = (V,E), from Lemma 2.2 we know that

g(G) ≥

c(X)∑
i=1

max{|Vi|, n− |Vi|}
|MX |

 ,

where V1, . . . , Vc(X) are the connected components induced in G by V −X and MX

is a maximum matching between X and V −X in G. Noticing that |MX | ≤ |X| and
max{|Vi|, n− |Vi|} ≥ n/2 for each i,

g(G) ≥ n

2

c(X)

|X| .(8)

It was proved by Fürer and Raghavachari (see [12, Section 5]) that there exists a
vertex cutset Y ⊂ V such that

d(G) ≤ c(Y)

|Y | + 1.

Using the above inequality and the lower bound (8), we have

g(G) ≥ n

2
(d(G)− 1) .

The above inequality, together with Corollary 2.4, implies that g(G) = Θ(n d(G)).

We remark that the same reasoning as in Theorem 2.3 allows us to prove that for
any p

gF1(p,G) = Ω(n d(G)/p).

We shall now compute the exact gossiping time of k-ary trees, that is, rooted
trees in which each internal node has exactly k sons. Let Tk,n denote any k-ary tree
with n nodes.

Let us first notice that for n = k + 1 the tree Tk,n is the star Sk+1,k. Consider
then a tree Tk,n with n ≥ 2k + 1 nodes. Let u be a node of Tk,n whose sons are all
leaves. By Corollary 2.2 we get

g(Tk,n) ≥ max
v

L(v) ≥ L(u) =

{
kn+ 1 if n = 2k + 1,
(k + 1)(n− 1)− k if n ≥ 3k + 1.

(9)

926 BERMOND, GARGANO, RESCIGNO, AND VACCARO

•"
"

"
"

"
"

"
"•

J
J

J
J

J
J

J
J

J
J

J
JJ

Tk,n−k

• · · ·

b
b

b
b

b
b

b
b•︸ ︷︷ ︸

k − 1

Fig. 5.

We show now that (9) holds with equality. Applying Theorem 2.2 to Tk,n we get that

g(Tk,n) ≤ (ϑ− 1)∆ + π + (n− ϑ− 1)λ = (ϑ− 1)(k + 1) + π + (n− ϑ− 1)k.(10)

Unless exactly k − 1 sons of the root are leaves (cf. the tree in Figure 5), Tk,n has
ϑ = n− k − 1 and π ≤ ∆ = k + 1; that, by (10) and (9), gives

g(Tk,n) = (n− k − 2)(k + 1) + k + 1 + k2 = (k + 1)(n− 1)− k.

Consider the remaining case when Tk,n is the tree of Figure 5. The only pre-leaf is
the root, and ϑ = n− k. If n ≥ 3k + 1 we have π = k, and from (10) we get

g(Tk,n) ≤ (n− k − 1)(k + 1) + k + (k − 1)k = (n− 1)(k + 1)− k;

if n = 2k + 1 we have π = ∆ = k + 1 and g(Tk,2k+1) ≤ kn+ 1.
Therefore, we have proved the following result.
Theorem 2.4. For any k-ary tree on n nodes Tk,n,

g(Tk,n) =

k2 if n = k + 1,
2k2 + k + 1 if n = 2k + 1,
(k + 1)(n− 1)− k if n ≥ 3k + 1.

The particular case k = 1 of the above result deserves to be explicitly stated.
Corollary 2.5. Let Pn be the path on n nodes. We have

g(Pn) =

{
1 if n = 2,
4 if n = 3,
2n− 3 if n ≥ 4.

2.4. Complete bipartite graphs. Let Kr,s = (V (Kr,s), E(Kr,s)) be the com-
plete bipartite graph on the node set V (Kr,s) = {a0, . . . , ar−1} ∪ {b0, . . . , bs−1}, with
r ≥ s, {a1, . . . , ar−1} ∩ {b0, . . . , bs−1} = ∅, and edge set E(Kr,s) = {a0, . . . , ar−1} ×
{b0, . . . , bs−1}. In the next theorem we determine the gossiping time of Kr,s.

FAST GOSSIPING BY SHORT MESSAGES 927

Theorem 2.5. For each r and s with r ≥ s ≥ 1, it holds that g(Kr,s) =
d(r + s− 1)r/se .

Proof. The lower bound g(Kr,s) ≥ d(r + s− 1)r/se is an immediate consequence
of Corollary 2.1 since the complete bipartite graph has α(Kr,s) = r.

In order to give a gossiping algorithm in Kr,s requiring d(r + s− 1)r/se commu-
nication rounds, we define the matchings

Mj = {(bi, ai+j (mod r)) : 0 ≤ i ≤ s− 1}

for j = 0, . . . , r − 1. The algorithm is shown in Figure 6.
According to the protocol, at the end of Phase 1 of Gossiping-bipartite(Kr,s)

each node ai (resp., bi) knows the message of each bi (resp., ai). Consider now Phase
2. It is immediate to see that during the first s − 1 rounds of Phase 2 each of the
bi’s receives the packet of each bj for j 6= i, thus completing its knowledge. Moreover,
after the dr(r+ s−1)/se− r = dr(r−1)/se rounds of Phase 2 each node ai has been
involved in a call at least r − 1 times and has then received the packet of each of the
aj , for j 6= i, thus completing its knowledge.

Gossiping-bipartite(Kr,s)
Phase 1

round t, for t = 1, . . . , r: For each edge (bi, ai+t−1 (mod r)) ∈ Mt−1

nodes bi and ai+t−1 (mod r) exchange their own packets.
Phase 2

round t, for t = r + 1, . . . , dr(r + s− 1)/se:
For each edge (bi, aj) ∈M(t−1−r)s (mod r) node bi sends to aj any packet
that aj has not received in a previous round;
if t ≤ r + s− 1 then bi receives from aj the packet of bi+t−r(mod s).

Fig. 6. Gossiping algorithm in Kr,s.

2.5. Generalized Petersen graphs. In section 2.2.1 we have seen that Hamil-
tonian graphs have the minimum possible gossiping time among all graphs with n
nodes. It is natural to wonder whether there are non-Hamiltonian graphs on n ver-
tices with gossiping time equal to n if n is odd and n− 1 if n is even. A quick check
shows that this is not the case for rectangular grids Gt,s with both t and s odd.2 In
fact, we know that α(Gt,s) = d s·t2 e, and from Corollary 2.1, we get g(Gt,s) ≥ s · t+ 1.
Moreover, it is also easy to check that the gossiping time of the Petersen graph on 10
vertices is at least 10. Therefore, one could be tempted to conjecture that the gossip-
ing time g(G) of a graph G is equal to the minimum possible only if G is Hamiltonian.
This conjecture, although nice sounding, would be wrong, as the following classes of
graphs, including the generalized Petersen graphs (GPGs), show.

Let Pk,π be the graph consisting of two cycles of size k connected by a perfect
matching in the following way: given a permutation π of {0, . . . , k − 1} the graph
Pk,π = (V (Pk,π), E(Pk,π)) has vertex set V (Pk,π) = {a0, . . . , ak−1} ∪ {b0, . . . , bk−1}
and edge set

2 It is well known that all rectangular grids Gt,s are Hamiltonian except when t and s are both
odd.

928 BERMOND, GARGANO, RESCIGNO, AND VACCARO

a1a10

a0

a2

a3

a4

a5a6

a8

a9

a7

b10

b5
0b

b

b1

b7

b2
b8b3

b9

b4

6

Fig. 7. A 3-coloration of the GPG with n = 11 and s = 2.

E(Pk,π) = {(ai, ai+1(mod k)) : 0 ≤ i < k}
∪ {(bi, bi+1(mod k)) : 0 ≤ i < k} ∪ {(ai, bπ(i)) : 0 ≤ i < k}.

The Petersen graph has k = 5 and π(i) = 3i (mod 5), for i = 0, 1, 2, 3, 4; GPGs
have k odd and π(s · i (mod k)) = i, i = 0, . . . , k − 1, for a fixed integer s.

From Lemma 2.1 we know that g(Pk,π) ≥ |V (Pk,π)| − 1 = 2k − 1. We will show
that for any k and π such that Pk,π is 3-edge-colorable, we have the equality

g(Pk,π) = 2k − 1.

Each cubic GPG, other than the Petersen graph itself, is 3-edge-colorable [2]. More-
over, the class of 3-edge-colorable Pk,π’s includes the family of non-Hamiltonian GPGs
with k = 5 (mod 6) and s = 2 (see [2] and references therein quoted). For an example
of a 3-coloration of a GPG, see Figure 7.

The gossiping algorithm is described in Figure 8; it assumes that the edges of the
graph are colored with the three colors 1, 2, and 3. It is easy to prove by induction
on q that all the calls of Phase q, for q ≤ (k− 1)/2, can actually be done. Therefore,
after the first (k − 1)/2 phases, each node ai has the packet of ai±j(mod k) for j =
0, . . . , (k − 1)/2; that is, it knows the packet of each other node in its own cycle;
moreover, it knows the packet of (k − 1)/2 nodes in the cycle on {b0, . . . , bk−1}.
Analogously, each bi knows the packet of each other node in its own cycle and of
(k − 1)/2 nodes in {a0, . . . , ak−1}.

FAST GOSSIPING BY SHORT MESSAGES 929

Gossiping-3-color(Pk,π)
Phase q (1 ≤ q ≤ (k − 1)/2) [each phase consists of three communication rounds]:

round t (t = 1, 2, 3): make a call between the endpoints of each edge of color
t.
Calls are made so that:
when an edge (ai, ai+1(mod k)) is used, then ai receives the packet of
ai+q(mod k), and ai+1(mod k) receives the packet of ai+1−q(mod k);
when an edge (bi, bi+1(mod k)) is used, then bi receives the packet of bi+q(mod k),
and bi+1(mod k) receives the packet of bi+1−q(mod k);
when the edge (ai, bπ(i)) is used, then ai receives the packet of some bj , 0 ≤
j ≤ k − 1, and bπ(i) receives the packet of some aj , 0 ≤ j ≤ k − 1.

Phase 3(k − 1)/2 + q (1 ≤ q ≤ (k + 1)/2) [the phase consists of one communication
round]:

node ai (resp., bπ(i)), for i = 0, . . . , k − 1, sends to bπ(i) (resp., ai) the packet
of some aj (resp., bj) it has not already sent to it.

Fig. 8. Gossiping algorithm in Pk,π.

Therefore, the calls between nodes in {a0, . . . , ak−1} and in {b0, . . . , bk−1} of the
last (k+ 1)/2 communication rounds allow completion of the knowledge of each node
in the graph.

3. Gossiping by exchanging more than one packet at a time. In this sec-
tion we shall study the minimum number of time units gF1

(p,G) necessary to perform
gossiping in a graph G, under the restriction that at each time instant communicat-
ing nodes can exchange up to p packets, p fixed but arbitrary otherwise. We assume
that p is smaller than the number of nodes of the graph G; otherwise, the problem is
equivalent to the classical one. Again, for ease of notation, we shall write g(p,G) to
denote gF1

(p,G).

3.1. Lower bounds. First, we shall present a simple lower bound on g(p,G)
based on elementary counting arguments. Nonetheless, we shall prove in the sequel
that the obtained lower bound is tight for complete graphs with an even number of
nodes and for hypercubes. In order to derive the lower bound, let us define I(p, t) as
the maximum number of packets a vertex can have possibly received after t commu-
nication rounds in any graph. Since at each round i, with 1 ≤ i ≤ t, any vertex can
receive at most min{p, 2i−1} packets, it follows that

I(p, t) = 1 +

t∑
i=1

min{p, 2i−1},(11)

or equivalently,

I(p, t) = 1 +

dlog pe∑
i=1

2i−1 + p(t− dlog pe) = 2dlog pe + p(t− dlog pe)(12)

for any t ≥ dlog pe. Therefore, for any graph G = (V,E), the gossiping time g(p,G)
is always lower bounded by the smallest integer t? for which I(p, t?) ≥ |V |. Since t?

930 BERMOND, GARGANO, RESCIGNO, AND VACCARO

is obviously greater than or equal to dlog |V |e ≥ dlog pe, we can use (12) and obtain

g(p,G) ≥ dlog pe+

⌈
1

p

(|V | − 2dlog pe
)⌉

.

Moreover, notice that if the number of nodes in the graph is odd, then at each round
there is a node that does not receive any message. This implies that after any round
t there exists a node that can have possibly received at most I(p, t − 1) packets.
Therefore,

g(p,G) ≥ dlog pe+

⌈
1

p

(|V | − 2dlog pe
)⌉

+ 1.

The above arguments give the following lemma.
Lemma 3.1. For any graph G = (V,E), |V | = n, and integer p such that 2dlog pe ≤

n, we have

g(p,G) ≥

dlog pe+

⌈
1
p

(
n− 2dlog pe

)⌉
if n is even,

dlog pe+
⌈

1
p

(
n− 2dlog pe

)⌉
+ 1 if n is odd.

Using similar arguments, we can also generalize the lower bound (1) that we estab-
lished in section 2.1 for p = 1 to general values of p.

Lemma 3.2. Let G = (V,E) be a graph with n vertices and let µ(G) be the size
of a maximum matching in G. For any integer p such that 2dlog pe ≤ n,

g(p,G) ≥ dlog pe+

⌈
1

p

(
n(n− 1)

2µ(G)
− 2dlog pe + 1

)⌉
.

Remark 3.1. Given a gossiping algorithm A for a graph G that uses messages
of size not larger than p, we can easily derive from it an algorithm B to gossip in G
with messages of size q < p. Indeed, if a message of size > q is sent during a call of
A, then we can split this call into more calls, each transmitting up to q packets. For
example, we can use this observation to derive the following bound:

g(p,G) ≤ blog pc+ 1 + 2(g(2p,G)− blog pc − 1) = 2g(2p,G)− blog pc − 1.(13)

Bound (13) can be proved by noticing that during the first blog pc + 1 calls of the
algorithm attaining g(2p,G), the exchanged messages necessarily have size less than
or equal to p. From this observation and Theorem 2.5, it follows, for example, that for
the complete bipartite graph g(2,Kr,s) ≥ (g(1,Kr,s) + 1)/2 = d(r+ s− 1)r/(2s)e+ 1;
it is not difficult to derive an algorithm similar to the one in Figure 6 attaining the
equality.

3.2. Rings and paths. Let g(∞, G) denote the gossiping time of the graph G
in the absence of any restriction on the size of the messages. It is obvious that for
each p, g(p,G) ≥ g(∞, G) holds; it is possible to see that equality holds for any p ≥ 2
when G is either the ring Cn or the path Pn on n nodes.

It is well known that [17]

g(∞, Pn) = 2
⌈n

2

⌉
− 1 and g(∞, Cn) =

{
n/2 if n is even,
(n+ 3)/2 if n is odd.

FAST GOSSIPING BY SHORT MESSAGES 931

We just point out that it is easy to see that the algorithms attaining g(∞, Cn) and
g(∞, Pn) do not need to send more than two packets at a time. Therefore, the
following results hold.

Theorem 3.1. For each n ≥ 3 and p ≥ 2,

g(p, Cn) = g(2, Cn) =

{
n/2 if n is even,
(n+ 3)/2 if n is odd.

Theorem 3.2. For each n ≥ 2 and p ≥ 2,

g(p, Pn) = g(2, Pn) = 2
⌈n

2

⌉
− 1.

3.3. Complete graphs. In this section we study the gossiping time of the com-
plete graph Kn on n nodes. We shall denote by {0, 1, . . . , n− 1} the vertex set of Kn.
We recall that g(∞,Kn) is equal to dlog ne if n is even, and dlog ne+ 1 if n is odd.

Theorem 3.3. For each even integer n and integer p such that 2dlog pe ≤ n,

g(p,Kn) = dlog pe+

⌈
n− 2dlog pe

p

⌉
.

Proof. The lower bound follows from Lemma 3.1. We now give a gossiping
algorithm for Kn that uses the optimal number of rounds. For each node v, with v
even and 0 ≤ v ≤ n− 1, define the sequence of nodes vt as

vt =

v + 2t − 1 (mod n) if 1 ≤ t ≤ dlog pe,

v + 2dlog pe − 1 + τp+ 1 (mod n) if t = dlog pe+ τ , with τ ≥ 1 and p · τ odd,

v + 2dlog pe − 1 + τp (mod n) if t = dlog pe+ τ , with either p or τ ≥ 1 even.
(14)
Note that for each t the set Mt = {(v, vt) : v even, 0 ≤ v < n} is a perfect matching
between even and odd nodes. Finally, for each integer τ ≥ 1, for each even node v,
with 0 ≤ v ≤ n− 1, define

Peven(v, τ) =

{v + i(modn) : 1 ≤ i ≤ p} if p and τ are odd,

{v + i(modn) : 0 ≤ i ≤ p− 1} otherwise,
(15)

and for each odd node v, with 0 ≤ v ≤ n− 1,

Podd(v, τ) =

{v − i(modn) : 1 ≤ i ≤ p} if p and τ are odd,

{v − i(modn) : 0 ≤ i ≤ p− 1} otherwise.
(16)

Consider the gossiping algorithm given in Figure 9 and let In(v, t) denote the set
of nodes whose packets are known by v by the end of round t. For each node v the
size of In(v, t) doubles at each round of Phase 1 and increases by p in every round
of Phase 2. Indeed, it is immediate to see that for each t = 1, . . . , dlog pe

In(v, t) =

{v + i(modn) : 0 ≤ i ≤ 2t − 1} if v is even,

{v − i(modn) : 0 ≤ i ≤ 2t − 1} if v is odd,
(17)

932 BERMOND, GARGANO, RESCIGNO, AND VACCARO

Gossiping-even(p, Kn)
Phase 1

Round t, 1 ≤ t ≤ dlog pe: For each even node v
nodes v and vt exchange all the packets they know.

Phase 2

Round t = dlog pe+ τ , 1 ≤ τ ≤
⌈
n−2dlog pe

p

⌉
: For each even node v

node v sends to vt the packets of nodes in Peven(v, τ) and
node vt sends to v the packets of nodes in Podd(vt, τ).

Fig. 9. Gossiping algorithm in Kn, n even.

and for each τ = 1, . . . ,
⌈
n−2dlog pe

p

⌉
(18)

In(v, dlog pe+ τ) =

{v + i(modn) : 0 ≤ i ≤ 2dlog pe + τp− 1} if v is even,

{v − i(modn) : 0 ≤ i ≤ 2dlog pe + τp− 1} if v is odd.

Hence, In

(
v, dlog pe+

⌈
n−2dlog pe

p

⌉)
= {0, . . . , n− 1} = V for each node v.

Remark 3.2. A close look at the algorithm Gossiping-even(p,Kn) reveals that
the calls are always made between even and odd nodes. Therefore, the same protocol
works in the complete bipartite graphs Kr,r from which we get that for any p and r

g(p,Kr,r) = g(p,K2r) = dlog pe+

⌈
1

p

(
2r − 2dlog pe

)⌉
.

We now consider the case of complete graphs with odd number of nodes.
Theorem 3.4. For each odd integer N and integer p such that 2dlog pe ≤ N + 1,

dlog pe+

⌈
N − 2dlog pe

p

⌉
+ 1 ≤ g(p,KN) ≤ dlog pe+

⌈
N + 1− 2dlog pe

p

⌉
+ 2.

Proof. The lower bound follows from Lemma 3.1. To prove the upper bound,
we show that the algorithm Gossiping-odd(p,KN) given in Figure 10 completes

gossiping in KN in dlog pe +
⌈
N+1−2dlog pe

p

⌉
+ 2 rounds. The algorithm Gossiping-

odd(p,KN) is described in terms of the algorithm Gossiping-even(p,Kn), where
n = N + 1.

Let Vt, Peven(v, τ), and Podd(v, τ) be defined as in (14), (15), and (16), respec-
tively. In order to show the correctness of Gossiping-odd(p,KN), let us first consider
Phase 1. At round t, for 1 ≤ t ≤ dlog pe, node N + 1− 2t does not receive the infor-
mation of the nodes in In(N, t) − {N}. It is easy to see that the nodes that do not
have the packets of all the nodes in In(v, t) are the nodes in the set Xt defined by
X1 = ∅, and

Xt = Xt−1 ∪ {v + 2t − 1 (mod n) : v ∈ Xt−1 even }
∪{v − 2t + 1 (mod n) : v ∈ Xt−1 odd } ∪ {N + 1− 2t}

FAST GOSSIPING BY SHORT MESSAGES 933

Gossiping-odd(p, KN)
Phase 1

Round t, 1 ≤ t ≤ dlog pe: For each even node v, with v 6= N + 1− 2t, nodes
v and vt exchange all the packets they know;
Round t = dlog pe+ 1: each node v with
v ∈ {3 + 4i : 0 ≤ i ≤ 2dlog pe−2 − 2} ∪ {N − 3− 4i : 0 ≤ i ≤ 2dlog pe−2 − 1}
receives from v + 2 a message containing the packets of all the nodes in {N −
2dlog pe−1 + 1, . . . , N − 1}.

Phase 2
Round t = dlog pe + 1 + τ , 1 ≤ τ ≤

⌈
(N + 1− 2dlog pe)/p

⌉
: For each even v

with vt−1 6= N node v sends to vt−1 the packets of nodes in Peven(v, τ) and
vt−1 sends to v the packets of nodes in Podd(vt−1, τ).
Round t = dlog pe+

⌈
(N + 1− 2dlog pe)/p

⌉
+2: Each node v such that vt−1 =

n − 1 for some t = dlog pe + 1 + τ with 1 ≤ τ ≤
⌈
(N + 1− 2dlog pe)/p

⌉
+ 1

receives from v+1 a message containing the packets of the nodes in Podd(N, τ).

Fig. 10. Gossiping algorithm in KN , N odd.

for 2 ≤ t ≤ dlog pe. This gives

Xt = {3 + 4i : 0 ≤ i ≤ 2t−2 − 2} ∪ {N − 3− 4i : 0 ≤ i ≤ 2t−2 − 1}(19)

for t = 2, . . . , dlog pe.
Moreover, each node in Xt has at least those packets of all nodes in I(v, t) −

I(N, t−1). Therefore, at the end of round dlog pe, each node in Xdlog pe lacks at most

the packets of the nodes in I(N, dlog pe − 1) = {N − 2dlog pe−1 + 1, N − 2dlog pe−1 +
2, . . . , N − 1}, and the calls of round dlog pe + 1 between each node v ∈ Xdlog pe and
v + 2 /∈ Xdlog pe assure that each node knows the packets of all nodes in I(v, dlog pe).

Now consider Phase 2. It is immediate that at round t each node receives p new
packets, except for the even node v such that vt−1 = N . Hence, after the calls of

round dlog pe+
⌈
n−2dlog pe

p

⌉
+2, each node knows the packet of each of the other N−1

nodes.
For N odd, we believe that the true value of g(p,KN) is dlog pe+

⌈
N−2dlog pe

p

⌉
+1;

we can verify this equality for small values of N and p. In case p = 2, Theorem 3.1
and Lemma 3.1 tell us that g(2,KN) = (N + 3)/2 = g(2, CN), for each odd N ≥ 2.
Moreover, we can prove the following theorem.

Theorem 3.5. If p is a multiple of 4 then g(p,KN) = dlog pe+
⌈
N−2dlog pe

p

⌉
+1.

Proof. Execute the first dlog pe rounds of Gossiping-odd(p,KN): from (19) we
know that the nodes that have not received the packets of all nodes in In(v, dlog pe)
are those in the set

(20)

Xdlog pe = {3 + 4i : 0 ≤ i ≤ 2dlog pe−2 − 2} ∪ {N − 3− 4i : 0 ≤ i ≤ 2dlog pe−2 − 1}.

Continue the gossiping process as follows.
Round t = dlog pe+τ , 1 ≤ τ ≤ ⌈

(N − 2dlog pe)/p
⌉−1: For each even

v with vt 6= N , v sends to vt the packets of nodes in Peven(v, τ) and
vt sends to v the packets of nodes in Podd(vt, τ).

934 BERMOND, GARGANO, RESCIGNO, AND VACCARO

The set Xdlog pe+τ of the nodes that at round dlog pe + τ do not have the packets of
all nodes in In(v, dlog pe+ τ) satisfies

Xdlog pe+τ = Xdlog pe+τ−1 ∪ {v : vt ∈ Xdlog pe ∪ {N} }.

We can then deduce that for each τ ≤ ⌈
(N − 2dlog pe)/p

⌉− 1,

Xdlog pe+τ = {3 + 4i : 0 ≤ i ≤ 2dlog pe−2 + τp/4− 1}
∪ {N − 3− 4i : 0 ≤ i ≤ 2dlog pe−2 + τp/4− 2}.

Now consider the matchings M = {(v, v + 1) : v is even} and M ′ = {(v, v + 3) :
v is even}; it is easy to see that gossiping can be completed in two more rounds by

exchanging calls during rounds dlog pe+
⌈
N−2dlog pe

p

⌉
and dlog pe+

⌈
N−2dlog pe

p

⌉
+1 along

the edges of M and M ′ if N = 1(mod 4) or the edges of M ′ and M if N = 3(mod4),
respectively.

3.4. Hypercube. In the next theorem we shall determine g(p,G) for any p when
the graph G is the d-dimensional hypercube Hd with 2d nodes.

Theorem 3.6. For each integer p < 2d, g(p,Hd) = dlog pe+
⌈

1
p

(
2d − 2dlog pe

)⌉
.

Proof. The lower bound follows from Lemma 3.1. We now prove the matching
upper bound. Let p be fixed. Denote by td the minimum integer such that I(p, td) ≥
2d, where I(p, td) is given in (11). We shall show that there exists a gossiping protocol

that requires td rounds. Notice that td = dlog pe+
⌈

1
p

(
2d − 2dlog pe

)⌉
.

The proof is by induction on d. The assertion is trivially true for d = 1; suppose
that there exists a gossiping protocol in Hd that takes td rounds to be completed and
that satisfies the additional property that after any round t ≤ td−1 each vertex knows
exactly I(p, t) packets. We shall exhibit a gossiping protocol in Hd+1 that takes td+1

rounds to be completed and that also satisfies the aforesaid additional property.
Case 1: I(p, td) = 2d. This implies that in the last round of the gossiping proto-

col in Hd—the tdth—each vertex must receive exactly min{p, 2d−1} packets.
Consider the following protocol in the (d + 1)-dimensional hypercube Hd+1:
split Hd+1 into two hypercubes of dimension d according to the value of its
(d + 1)th dimension; during the first td rounds gossip separately in each d-
dimensional subcube according to the protocol whose existence is guaranteed
by the induction hypothesis. After td rounds each vertex has received all the
information of the subcube it belongs to; i.e., according to the hypothesis of
this case, each vertex has received exactly I(p, td) = 2d packets. Now, in suc-
cessive rounds, exchange packets along dimension d + 1 in Hd+1 by sending
either all 2d packets in one round, if p > 2d, or p packets per round except
in the last one, where one sends 2d − pb2d/pc (if nonzero) packets. It is clear
that this protocol requires td+1 rounds to be completed. Moreover, for each
t, with 0 ≤ t ≤ b2d/pc, after round td + t ≤ td+1 − 1 each node in Hd+1

knows exactly I(p, td) + p t = I(p, td + t) packets. Hence the protocol for
Hd+1 satisfies the inductive hypothesis.

Case 2: I(p, td) > 2d. This implies that p < 2d−1; otherwise it is easy to check
that one would have td = d and I(p, td) = 1 +

∑
i 2

i−1 = 2d. Consider the
protocol in Hd whose existence is implied by the induction hypothesis. By
inductive hypothesis at round td − 1 each vertex has received I(p, td − 1)
packets, and in the last round, receives α packets, with α < p; otherwise, we

FAST GOSSIPING BY SHORT MESSAGES 935

would be again in Case 1.

Let M = ∪2d−1

i=1 (xi, yi) be the perfect matching used in the last round, i.e.,
the round td, of the protocol on Hd, and let Ai (resp., Bi) be the set of new
packets that xi (resp., yi) receives in this last round. Note that Ai ∩ Bi = ∅
and |Ai| = |Bi| = α. For what follows, let Ci and Di be two sets of packets
such that |Ci| = |Di| = p − α and Ci ∩ Ai = ∅, Di ∩ Ai = ∅, Ci ∩ Bi = ∅,
Di ∩Bi = ∅, and Ci ∩Di = ∅. Such sets exist since |Ai|+ |Bi|+ |Ci|+ |Di| =
2p < 2d. Consider now the following gossiping protocol in Hd+1. Split Hd+1

according to the value of the (d+1)th dimension in two subcubes Hd and H ′
d

of dimension d; during the first td−1 rounds, gossip in Hd and H ′
d separately.

At the end of this phase each vertex knows 2d − α packets. Now, for each
node x in Hd, denote by x′ its neighbor in H ′

d. In the next round, exchange
p packets along dimension d+ 1 in such a way that xi (resp., yi, x

′
i, y

′
i) sends

to x′i (resp., y′i, xi, yi) p packets including Ci (resp., Di, C
′
i, D

′
i) and not Di

(resp., Ci, D
′
i, C

′
i).

In the next round, exchange p packets along the matching M in such a way
that xi (resp., yi) sends to yi (resp., xi) packets in Bi ∪ C ′

i (resp., Ai ∪D′
i),

and x′i (resp., y′i) sends to y′i (resp., x′i) all packets in B′
i∪Ci (resp., A′

i∪Di).
After the above td + 1 rounds we are sure that each vertex xi (resp., x′i)
knows all the packets of the subcube it belongs to, and so we can finish the
protocol by sending packets along dimension d+ 1 in such a way that p new
packets are received during each round (except possibly the last final round).
Therefore, for each t, with 1 ≤ t ≤ 1+ b2d/pc, each node in Hd+1 after round
td + t− 1 ≤ td+1− 1 knows exactly I(p, td− 1)+ p t = I(p, td + t− 1) packets.
Hence this protocol in Hd+1 satisfies all the induction hypothesis.

Remark 3.3. It is worth pointing out that the obvious inequality

gH1
(p,G) ≤ 2gF1

(p,G)(21)

and the above theorem allow us to improve the upper bound on gH1
(p,Hd) given by

Theorem 4 of [4] for all values of p which are not powers of two. Indeed, the authors
of [4] have gH1(p,Hd) ≤ 2d+ 2d+1/p− 2/p, while from Theorem 3.6 and (21), we get
Theorem 3.7.

Theorem 3.7. For each integer p < 2d,

gH1(p,Hd) ≤ 2dlog pe+ 2

⌈
1

p

(
2d − 2dlog pe

)⌉
.

4. p-optimal graphs. In this section we consider the problem of estimating the
minimum possible number of edges in any graph in which gossiping can be performed
in the minimum possible number of rounds. We consider only networks with an even
number of nodes. More formally, for any even integer n and integer p such that
2dlog pe ≤ n, let us denote by g(p, n) the minimum gossiping time of any graph with
n nodes, that is (cf. Theorem 3.3),

g(p, n) := min
G : |V (G)|=n

g(p,G) = dlog pe+

⌈
n− 2dlog pe

p

⌉
,

and by M(p, n), the quantity

936 BERMOND, GARGANO, RESCIGNO, AND VACCARO

M(p, n) := min {m : there exists G = (V,E) with |V | = n, |E| = m, g(p,G) = g(p, n)} .

Our objective is to find significant bounds on the function M(p, n). From a practical
point of view, an interconnection network G having gossiping time g(p,G) = g(p, n)
and M(p, n) edges represents the most economical network, if our main concern is the
number of communication lines, that still preserves the communication capabilities
of the complete graph, as far as gossiping is concerned. The analogous problem of
estimating the minimum possible number of edges in a network in which broadcasting
can be performed in minimum time has been extensively studied (see [5, 13] and
references therein quoted). Estimating M(p, n) seems a much harder task. Even
when p is unbounded, only few results are known [21].

Definition 4.1. Given a graph G(V,E) on n nodes and an integer p such that
2dlog pe ≤ n we say that G is p-optimal if g(p,G) = g(p, n) and |E| = M(p, n), that
is, if G is a sparsest graph among all the graphs with n nodes and minimum gossiping
time g(p, n).

We first consider the special cases p = 1 and p = 2 that admit a very simple
solution, and afterwards we consider the general case, that is, p ≥ 3.

4.1. Sending p ≤ 2 items per round. We have shown in sections 2.2 and 3.2
that for the ring Cn on n nodes

g(1, Cn) = g(1, n) = 2
⌈n

2

⌉
− 1 and g(2, Cn) = g(2, n) =

{
n/2 if n is even,
(n+ 3)/2 if n is odd.

Consider any connected graph (tree) G with n nodes and m ≤ n−1 edges. The lower
bound given in Corollary 2.2 tells us that g(1, G) ≥ 2n − 3. Moreover, it is easy to
verify that the inequality g(1, G) ≤ 2g(2, G) − 1 holds. The above two inequalities
imply that g(1, G) > g(1, n) = n − 1 for each n ≥ 3 and g(2, G) ≥ (g(1, G) + 1)/2 ≥
(2n − 2)/2 = n − 1 ≥ g(2, n) for each n ≥ 2 with n 6= 3. It is easy to see that P3 is
also optimal for p = 2. We have then proved the following theorem.

Theorem 4.1. M(1, 2) = M(2, 2) = 1, M(1, 3) = 3, M(2, 3) = 2, and for each
n ≥ 4

M(1, n) = M(2, n) = n.

4.2. Sending p ≥ 3 items per round. In this section we study p-optimal
graphs for p ≥ 3. We recall that such graphs are to be sought among those graphs
having gossiping time equal to g(p, n). Let us first recall that for each p ≥ 3 the ring
Cn is not p-optimal; indeed, from the results of section 3.2 we have minq g(q, Cn) =
g(2, Cn) > g(p, n).

We have proved in section 3.4 that the hypercube Hd has minimum gossiping
time for each value of p; moreover, it was shown in [21] that Hd is p-optimal for each
p ≥ 2d−1 (equivalently, for p unbounded); that is, Hd has the minimum number of
edges among all the networks with gossiping time g(∞, 2d) = d. A natural question
is whether the hypercube is p-optimal for other values of p < 2d−1. The results of
section 4.3 will imply a negative answer to the above question.

Let d(p, n) be the minimum possible degree a node can have in any p-optimal
graph on n nodes.

FAST GOSSIPING BY SHORT MESSAGES 937

Theorem 4.2. d(p, n) ≥ blog pc+ 1−
⌊
log

(⌈
n−2dlog pe

p

⌉
p− n+ 2dlog pe + 1

)⌋
.

Proof. Denote by r(p, t) the maximum number of items a node can receive with a
call made at round t, and by I(p, t) = 1+

∑t
i=1 r(p, i), the maximum possible number

of items a node can have received by round t. We recall that I(p, 0) = r(p, 1) = 1 and

r(p, t) = max{2t−1, p}

and

I(p, t) =

{
2t if t ≤ blog pc+ 1,
2blog pc+1 + (t− blog pc − 1)p if t > blog pc+ 1.

Fix any gossiping protocol P that completes in g(p, n) rounds. We denote by r(p, t, v)
the number of items node v receives at round t of P and let

I(p, t, v) = 1 +

t∑
i=1

r(p, i, v);

obviously r(p, t, v) ≤ r(p, t) and I(p, t, v) ≤ I(p, t) for each t = 1, . . . , g(p, n).
In order to prove the desired lower bound on d(p, n) we show that any node has to

make calls with at least blog pc+ 1−
⌊
log

(⌈
n−2dlog pe

p

⌉
p− n+ 2dlog pe + 1

)⌋
different

neighbors during the first blog pc+ 1 rounds of the protocol P.
Fix a node v and suppose that v communicates with blog pc + 1 − ` different

neighbors during the first blog pc + 1 rounds of P. This means that there exist `
rounds, say τ1, . . . , τ`, such that for each i = 1, . . . , ` at round τi, v is either idle or
makes a call with a node that will communicate again with v at some round δi with
τi < δi ≤ blog pc+ 1; we can bound r(p, τi, v) as follows.

i) If v does not participate in any call at round τi, then r(p, τi, v) = 0.
ii) If v makes calls with a particular node, say w, at both rounds τi and δi,

then at time δi node v will not receive again what it received at time τi from
w, nor will it receive what it sent to w at time τi. Therefore, r(p, δi, v) ≤
I(p, δi − 1, w)− r(p, τi, v)− r(p, τi, w); that is,

r(p, τi, v) + r(p, δi, v) ≤ I(p, δi − 1, w) ≤ 2δi−1 = r(p, δi).

By i) and ii) we get that for each round t ≥ blog pc+ 1,

I(p, t, v) = 1 +

t∑
i−1

r(p, i, v) ≤ I(p, t)−
∑̀
i=1

2τi−1

= 2blog pc+1 + (t− blog pc − 1)p−
∑̀
i=1

2τi−1.

Recalling that n is even and the graph has minimum gossiping time g(p, n) = dlog pe+⌈
n−2dlog pe

p

⌉
= blog pc+ 1 +

⌈
n−2blog pc+1

p

⌉
, the following inequality must be satisfied:

n ≤ I(p, g(p, n))−
∑̀
i=1

2τi−1 = 2blog pc+1 −
∑̀
i=1

2τi−1 +

⌈
n− 2blog pc+1

p

⌉
p.

938 BERMOND, GARGANO, RESCIGNO, AND VACCARO

Noticing that
∑`

i=1 2τi−1 ≤∑`
i=1 2i−1 = 2` − 1, we get

` ≤
⌊
log

(⌈
n− 2blog pc+1

p

⌉
p− n+ 2blog pc+1 + 1

)⌋
and the desired bound on d(n, p) follows.

4.3. A family of graphs with O(n2 log p) edges. In section 3.3 we have proved
that g(p,Kn) = g(p, n) for any even n and any p. Moreover, it is easy to see that in

order to implement the gossiping protocol of Figure 9, only O
(
n
(
n
p + log p

))
edges

of Kn are needed. This implies that M(p, n) = O
(
n
(
n
p + log p

))
. Actually, we can

prove a much better bound. We will construct for any p and even n a graph Gp,n

with n nodes, n(dlog pe+ 1)/2 edges, and optimal gossiping time g(p,Gp,n) = g(p, n).
Let p be an even integer and define the sequence of integers sp as follows: s2 =

(−1, 1) and for each p = 2m + q with q ≤ 2m, if s2m = (s1, . . . , sm+1), then

sp = (s1, . . . , sm+1, sm+2) with sm+2 =

{
p+ sm+1 if m is even,
−(p− sm+1) if m is odd.

If p is odd define sp = sp+1.
Example 4.1. s2 = (−1, 1), s3 = s4 = (−1, 1,−3), s5 = s6 = (−1, 1,−3, 3),

s7 = s8 = (−1, 1,−3, 5), s9 = s10 = (−1, 1,−3, 5,−5), s11 = s12 = (−1, 1,−3, 5,−7).
Let the node set be Vn = {0, 1, . . . , n− 1}. All operations on nodes will be performed
modulo n. Define the matching

Mp,n(t) = {(v, v + st) | v ∈ Vn is odd} for t = 1 . . . , dlog pe+ 1,

and the graph Gp,n = (Vn, Ep,n) with Ep,n = ∪dlog pe+1
t=1 Mp,n(t); Figure 11 shows

G6,14.
One can check that at the end of the algorithm Gossiping(Gp,n), given in Figure

12, any node knows the packets of all the other nodes in Gp,n. Therefore, using
Theorem 4.2, we get Theorem 4.3.

Theorem 4.3. For each integer p and even integer n ≥ 2dlog pe

n
2

(
blog pc+ 1−

⌊
log

(⌈
n−2dlog pe

p

⌉
p− n+ 2dlog pe + 1

)⌋)
≤M(p, n) ≤ n

2 (dlog pe+ 1).

Corollary 4.1. For each p ≥ 2 and even integer n such that n − 2dlog pe is a
multiple of p,

n

2
(blog pc+ 1) ≤M(p, n) ≤ n

2
(dlog pe+ 1).

Corollary 4.2. For each integer q ≥ 1 and integer r ≥ 2,

M(2q, r2q) = r2q−1(q + 1).

It is possible to improve the lower bound given in Theorem 4.2 proving that
d(2q − 1, n) ≥ q + 1− blog (d(n− 1)/(2q − 1)e(2q − 1)− n+ 2)c, which together with
Theorem 4.3 implies the following corollary.

Corollary 4.3. For each integer q ≥ 1 and odd integer r,

M(2q − 1, r(2q − 1) + 1) = (r(2q − 1) + 1)(q + 1)/2.

FAST GOSSIPING BY SHORT MESSAGES 939

0

1

13

12

2

3

4

5

67

8

9

10

11

M
6,14

edge in the matching (1)

M
6,14

M
6,14

edge in the matching (3)

M
6,14

edge in the matching (4)

edge in the matching (2)

Fig. 11.

Gossiping(Gp,n)
Let sp = (s1, . . . , sdlog pe+1);
At round t, t = 1, . . . , dlog pe + 1, each node sends max{2t−1, p} new
items to its neighbor in Mp,n(t);
At round t = dlog pe + 1 + τ , τ = 1, . . . , g(p, n) − dlog pe − 1, consider
the matching

Mp,n(t) =

{
Mp,n(dlog pe) if τ is odd,
Mp,n(dlog pe+ 1) if τ is even;

then each node sends p new items (or fewer than p in the last round) to
its neighbor in Mp,n(t).

Fig. 12. Gossiping algorithm in Gp,n.

940 BERMOND, GARGANO, RESCIGNO, AND VACCARO

5. Concluding remarks and open problems. We have considered the prob-
lem of gossiping in communication networks under the restriction that communicating
nodes can exchange up to a fixed number p of packets at each round. In the extremal
case p = 1 we have given optimal algorithms to perform gossiping in several classes
of graphs, including Hamiltonian graphs, paths, complete k-ary trees, and complete
bipartite graphs. For arbitrary graphs we gave asymptotically matching upper and
lower bounds.

In the case of arbitrary p we have determined the optimal number of communi-
cation rounds to perform gossiping under this hypothesis for complete graphs, hyper-
cubes, rings, paths, and complete bipartite graphs Kr,r.

Several open problems remain in the area. We list the most important of them
here.

• It would be interesting to determine the computational complexity of computing
gF1(1, G) (gF1(p,G)) for general graphs; it is very likely that it is NP-hard. (We know
that computing gF1(∞, G) is NP-hard; see [20].)
• We have left open the problem of determining the gossiping time gF1

(1, Gt,s), and
more generally gF1

(p,Gt,s), of rectangular grids Gt,s with both t and s odd. We know
from Corollary 2.1 that gF1

(1, Gt,s) ≥ st+ 1. Does equality hold? We can prove that
gF1(1, G3,3) = 10. A general upper bound on gF1(1, Gt,s) can be obtained by observing
that Gt,s = Pt×Ps, where Pt and Ps are the paths on t and s nodes, respectively, and
× denotes the cartesian graph product. Now, given two graphs G = (V,E) and H =
(W,F), it is easy to see that gF1

(1, G×H) ≤ min{gF1
(1, G)+|V |gF1

(1, H), gF1
(1, H)+

|W |gF1
(1, G)}, which, together with Corollary 2.5, immediately gives gF1

(1, Gt,s) ≤
2ts− 3−max{t, s}.
• We know from (4) that for any graph G with n vertices one has gF1(1, G) ≥ n if n
is odd, gF1(1, G) ≥ n− 1 if n is even, and from Theorem 2.1, we get that the equality
holds for Hamiltonian graphs. It would be interesting to characterize the class of
graphs for which this lower bound is tight. We know from the results of section 2.5
that this class is larger than the class of the Hamiltonian graphs.
• In view of the possible NP-hardness of computing g(p,G) for arbitrary graphs, it
would be interesting to design efficient algorithms to compute gossiping protocols that
complete in time “close” to g(p,G). Such algorithms have recently been provided for
g(∞, G) (see [14, 23]). However, the techniques used there do not seem to apply to
the case of bounded p.
• We have given fairly tight bounds on the function M(p, n). It would be interesting
to study the analogous quantity Mc(p, n) equal to the minimum number of edges
in any graph in which gossiping can be performed in quasi-optimal time g(p, n) + c,
where c is a small constant. In particular, we ask whether M1(p, n) = O(n).

Acknowledgments. The authors wish to thank R. Ravi for the proof of Theo-
rem 2.3. They also want to thank Levon Khachatrian and Jonny Bond for interesting
discussions. The first author would like to thank the Dipartimento di Informatica ed
Applicazioni, Università di Salerno, Italy, where part of this research was conducted,
for inviting him.

REFERENCES

[1] N. Alon, F.R.K. Chung, and R.L. Graham, Routing permutations on graphs via matchings,
in Proc. 25th ACM Symposium on the Theory of Computing (STOC ’93), San Diego, CA,
1993, pp. 583–591.

FAST GOSSIPING BY SHORT MESSAGES 941

[2] B. Alspach, The classification of Hamiltonian generalized Petersen graphs, J. Combin. Theory
Ser. B, 34 (1983), pp. 293–312.

[3] A. Bagchi, E.F. Schmeichel, and S.L. Hakimi, Sequential information dissemination by
packets, Networks, 22 (1992), pp. 317–333.

[4] A. Bagchi, E.F. Schmeichel, and S.L. Hakimi, Parallel information dissemination by pack-
ets, SIAM J. Comput., 23 (1994), pp. 355–372.

[5] J.-C. Bermond, P. Fraignaud, and J. Peters, Antepenultimate broadcasting, Networks, 25
(1995), pp. 125–137.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[7] B. S. Chlebus, K. Diks, and A. Pelc, Optimal gossiping with short unreliable messages, Disc.
Appl. Math., 53 (1994), pp. 15–24.

[8] K. Diks and A. Pelc, Efficient gossiping by packets in networks with random faults, SIAM J.
Disc. Math., 9 (1996), pp. 7–18.

[9] G. Fox, M. Johnsson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems
on Concurrent Processors, Volume I, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[10] P. Fraignaud and E. Lazard, Methods and problems of communication in usual networks,
Disc. Appl. Math., 53 (1994), pp. 79–134.

[11] S. Fujita, Gossiping in mesh-bus computers by packets with bounded length, IPS Japan SIGAL,
36 (1993), pp. 41–48.

[12] M. Fürer and B. Raghavachari, Approximating the minimum degree spanning tree to within
one from the optimal degree, in Proc. Third Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA ’92), Orlando, FL, 1992, pp. 317–324.

[13] M. Grigni and D. Peleg, Tight bounds on minimum broadcast networks, SIAM J. Disc. Math.,
5 (1992), pp. 207–222.

[14] G. Kortsarz and D. Peleg, Approximation algorithms for minimum time broadcast, SIAM
J. Disc. Math., 8 (1995), pp. 401–427.

[15] S. M. Hedetniemi, S. T. Hedetniemi, and A. Liestman, A survey of gossiping and broad-
casting in communication networks, Networks, 18 (1988), pp. 129–134.

[16] A. Hily and D. Sotteau, Communications in Bus Networks, in Parallel and Distributed
Computing, Lectures Notes in Computer Science 805, M. Cosnard, A. Ferreira, and J.
Peters, eds., Springer-Verlag, New York, 1994, pp. 197–206.

[17] J. Hromkovič, R. Klasing, B. Monien, and R. Peine, Dissemination of Information in In-
terconnection Networks (Broadcasting and Gossiping), in Combinatorial Network Theory,
F. Hsu and D.-Z. Du, eds., Kluwer Academic Publishers, Norwell, MA, 1995, pp. 125–212.

[18] S. L. Johnsson and C. T. Ho, Matrix multiplication on Boolean cubes using generic commu-
nication primitives, in Parallel Processing and Medium-Scale Multiprocessors, A. Wouk,
ed., SIAM, Philadelphia, 1989, pp. 108–156.

[19] D. W. Krumme, Fast gossiping for the hypercube, SIAM J. Comput., 21 (1992), pp. 365–380.
[20] D. W. Krumme, K. N. Venkataraman, and G. Cybenko, Gossiping in minimal time, SIAM

J. Comput., 21 (1992), pp. 111–139.
[21] R. Labhan, Some minimum gossip graphs, Networks, 23 (1993), pp. 333–341.
[22] R. Ravi, private communication.
[23] R. Ravi, Rapid rumor ramification: Approximating the minimum broadcasting time, in Proc.

35th Annual Symposium on Foundations of Computer Science (FOCS ’94), 1994, pp. 202–
213.

[24] J. de Rumeur, Communication dans les Reseaux de Processeur, Masson, Paris, 1994.

APPROXIMATION ALGORITHMS FOR THE FEEDBACK VERTEX
SET PROBLEM WITH APPLICATIONS TO CONSTRAINT

SATISFACTION AND BAYESIAN INFERENCE∗

REUVEN BAR-YEHUDA†‡ , DAN GEIGER† , JOSEPH (SEFFI) NAOR†§ , AND

RON M. ROTH†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 942–959, August 1998 002

Abstract. A feedback vertex set of an undirected graph is a subset of vertices that intersects
with the vertex set of each cycle in the graph. Given an undirected graph G with n vertices and
weights on its vertices, polynomial-time algorithms are provided for approximating the problem of
finding a feedback vertex set of G with smallest weight. When the weights of all vertices in G are
equal, the performance ratio attained by these algorithms is 4 − (2/n). This improves a previous

algorithm which achieved an approximation factor of O(
√

logn) for this case. For general vertex

weights, the performance ratio becomes min{2∆2, 4 log2 n} where ∆ denotes the maximum degree
in G. For the special case of planar graphs this ratio is reduced to 10. An interesting special case
of weighted graphs where a performance ratio of 4− (2/n) is achieved is the one where a prescribed
subset of the vertices, so-called blackout vertices, is not allowed to participate in any feedback vertex
set.

It is shown how these algorithms can improve the search performance for constraint satisfaction
problems. An application in the area of Bayesian inference of graphs with blackout vertices is also
presented.

Key words. approximation algorithms, vertex feedback set, combinatorial optimization, Bayesian
networks, constraint satisfaction

AMS subject classifications. 68Q25, 68R10, 05C85, 68T01

PII. S0097539796305109

1. Introduction. Let G = (V,E) be an undirected graph and let w : V (G) →
R

+ be a weight function on the vertices of G. A cycle in G is a path whose two
terminal vertices coincide. A feedback vertex set of G is a subset of vertices F ⊆ V (G)
such that each cycle in G passes through at least one vertex in F . In other words, a
feedback vertex set F is a set of vertices of G such that by removing F from G, along
with all the edges incident with F , a forest is obtained. A minimum feedback vertex
set of a weighted graph (G,w) is a feedback vertex set of G of minimum weight. The
weight of a minimum feedback vertex set will be denoted by µ(G,w).

The weighted feedback vertex set (WFVS) problem is defined as finding a minimum
feedback vertex set of a given weighted graph (G,w). The special case where w is
the constant function 1 is called the unweighted feedback vertex set (UFVS) problem.
Given a graph G and an integer k, the problem of deciding whether µ(G, 1) ≤ k
is known to be NP-complete [GJ79, pp. 191–192]. Hence, it is natural to look for
efficient approximation algorithms for the feedback vertex set problem, particularly

∗Received by the editors February 1, 1996; accepted for publication (in revised form) April 12,
1996; published electronically May 18, 1998. A preliminary version of this paper appeared in the
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, 1994,
pp. 344–354.

http://www.siam.org/journals/sicomp/27-4/30510.html
†Computer Science Department, Technion, Haifa 32000, Israel (dang@cs.technion.ac.il, naor@

cs.technion.ac.il).
‡Part of this research was done while the author was visiting SUNY at Buffalo. This research

was supported by the fund for the promotion of research at the Technion.
§The research of this author was supported in part by grant 92-00225 from the United States-

Israel Binational Science Foundation (BSF), Jerusalem, Israel. Part of this research was done while
the author was visiting DIMACS, Rutgers University, NJ.

942

THE FEEDBACK VERTEX SET PROBLEM 943

in view of the recent applications of such algorithms in artificial intelligence, as we
show in the sequel.

Suppose A is an algorithm that finds a feedback vertex set FA for any given
undirected weighted graph (G,w). We denote the sum of weights of the vertices in
FA by w(FA). The performance ratio of A for (G,w) is defined by RA(G,w) =
w(FA)/µ(G,w). When µ(G,w) = 0 we define RA(G,w) = 1 if w(FA) = 0 and
RA(G,w) = ∞ if w(FA) > 0. The performance ratio rA(n,w) of A for w is the
supremum of RA(G,w) over all graphs G with n vertices and for the same weight
function w. When w is the constant function 1, we call rA(n, 1) the unweighted
performance ratio of A. Finally, the performance ratio rA(n) of A is the supremum
of rA(n,w) over all weight functions w defined over graphs with n vertices.

An approximation algorithm for the UFVS problem that achieves an unweighted
performance ratio of 2 log2 n is essentially contained in a lemma due to Erdős and
Pósa [EP62]. This result was improved by Monien and Schulz [MS81], where they
achieved a performance ratio of O(

√
log n).

In section 2, we provide an approximation algorithm for the UFVS problem that
achieves an unweighted performance ratio of at most 4− (2/n). Our algorithm draws
upon a theorem by Simonovits [Si67], and our analysis uses a result by Voss [Vo68].
Actually, we consider a generalization of the UFVS problem, where a prescribed
subset of the vertices, called blackout vertices, is not allowed to participate in any
feedback vertex set. This problem is a subcase of the WFVS problem wherein each
allowed vertex has unit weight and each blackout vertex has infinite weight. Our
interest in graphs with blackout vertices is motivated by the loop cutset problem and
its application to the updating problem in Bayesian inference which is explored in
section 4.

In section 3, we present two algorithms for the WFVS problem. We first de-
vise a primal-dual algorithm which is based on formulating the WFVS problem as
an instance of the set cover problem. The algorithm has a performance ratio of 10
for weighted planar graphs and 4 log2 n for general weighted graphs. This ratio is
achieved by extending the Erdős-Pósa lemma to weighted graphs. The second al-
gorithm presented in section 3 achieves a performance ratio of 2∆2(G) for general
weighted graphs, where ∆(G) is the maximum degree of G. This result is interesting
for low-degree graphs.

A notable application of approximation algorithms for the UFVS problem in
artificial intelligence due to Dechter and Pearl is as follows [DP87, De90]. We are
given a set of variables x1, x2, . . . , xn, where each xi takes its values from a finite
domain Di. Also, for every i < j we are given a constraint subset Ri,j ⊆ Di × Dj

which defines the allowable pairs of values that can be taken by the pair of variables
(xi, xj). Our task is to find an assignment for all variables such that all the constraints
Ri,j are satisfied. With each instance of the problem we can associate an undirected
graph G whose vertex set is the set of variables, and for each constraint Ri,j which is
strictly contained in Di ×Dj (i.e., Ri,j 6= Di ×Dj) there is an edge in G connecting
xi and xj . The resulting graph G is called a constraint network and it is said to
represent a constraint satisfaction problem.

A common method for solving a constraint satisfaction problem is by backtrack-
ing, that is, by repeatedly assigning values to the variables in a predetermined order
and then backtracking whenever reaching a dead end. This approach can be improved
as follows. First, find a feedback vertex set of the constraint network. Then, arrange
the variables so that variables in the feedback vertex set precede all other variables and

944 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

apply the backtracking procedure. Once the values of the variables in the feedback
vertex set are determined by the backtracking procedure, the algorithm switches to a
polynomial-time procedure solve-tree that solves the constraint satisfaction prob-
lem in the remaining forest. If solve-tree succeeds, a solution is found; otherwise,
another backtracking phase occurs.

The complexity of the above modified backtracking algorithm grows exponentially
with the size of the feedback vertex set: if a feedback vertex set contains k variables,
each having a domain of size 2, then the procedure solve-tree might be invoked up
to 2k times. A procedure solve-tree that runs in polynomial time was developed
by Dechter and Pearl, who also proved the optimality of their tree algorithm [DP88].
Consequently, our approximation algorithm for finding a small feedback vertex set re-
duces the complexity of solving constraint satisfaction problems through the modified
backtracking algorithm. Furthermore, if the domain size of the variables varies, then
solve-tree is called a number of times which is bounded from above by the product
of the domain sizes of the variables whose corresponding vertices participate in the
feedback vertex set. If we take the logarithm of the domain size as the weight of a
vertex, then solving the WFVS problem with these weights optimizes the complexity
of the modified backtracking algorithm in the case where the domain size is allowed
to vary.

2. The UFVS problem. The best approximation algorithm prior to this work
for the UFVS problem attained a performance ratio of O(

√
log n) [MS81]. We now

use some results of [Si67] and [Vo68] in order to obtain an approximation algorithm
for the UFVS problem which attains a performance ratio ≤ 4. In fact, we actually
consider a slight generalization of the UFVS problem where we mark each vertex of a
graph as either an allowed vertex or a blackout vertex. In such graphs, feedback vertex
sets cannot contain any blackout vertices. We denote the set of allowed vertices in G
by A(G) and the set of blackout vertices by B(G). Note that when B(G) = ∅, this
problem reduces to the UFVS problem. A feedback vertex set can be found in a graph
G with blackout vertices if and only if every cycle in G contains at least one allowed
vertex. A graph G with this property will be called a valid graph. The motivation for
dealing with this modified problem is clarified in section 4 where we use the algorithm
developed herein to reduce the computational complexity of Bayesian inference.

Throughout this section, G denotes a valid graph with a nonempty set of vertices
V (G) which is partitioned into a nonempty set A(G) of allowed vertices, a possibly
empty set B(G) of blackout vertices, and a set of edges E(G) possibly with parallel
edges and self-loops. We use µa(G) as a shorthand notation for µ(G,w) where w
assigns unit weight to each allowed vertex and an infinite weight to each blackout
vertex. A neighbor of v is a vertex u ∈ V (G) which is connected to v by an edge
in E(G). The degree ∆G(v) of v in G is the number of edges that are incident with
v in G. A self-loop at a vertex v contributes 2 to the degree of v. The degree of
G, denoted ∆(G), is the largest among all degrees of vertices in G. A vertex in G
of degree 1 is called an endpoint . A vertex of degree 2 is called a linkpoint and a
vertex of any higher degree is called a branchpoint. A graph G is called rich if every
vertex in V (G) is a branchpoint. The notation ∆a(G) will stand for the largest among
all degrees of vertices in A(G) (a degree of a vertex in A(G) takes into account all
incident edges, including those that lead to neighbors in B(G)). In a rich valid graph
we have ∆a(G) ≥ 3.

Two cycles in a valid graph G are independent if their vertex sets share only
blackout vertices. Note that the size of any feedback vertex set of G is bounded from

THE FEEDBACK VERTEX SET PROBLEM 945

below by the largest number of pairwise independent cycles that can be found in G.
A cycle Γ in G is called simple if it visits every vertex in V (G) at most once. Clearly,
a set F is a feedback vertex set of G if and only if it intersects with every simple cycle
in G. A graph is called a singleton if it contains only one vertex. A singleton is called
self-looped if it contains at least one self-loop; for a singleton we have µ(G, 1) = 1 if
it is self-looped and µ(G, 1) = 0 otherwise.

A graph G is connected if for every two vertices there is a connecting path in
G. Every graph G can be uniquely decomposed into isolated connected components
G1, G2, . . . , Gk. Similarly, every feedback vertex set F of G can be partitioned into
feedback vertex sets F1, F2, . . . , Fk such that Fi is a feedback vertex set of Gi. Hence,
µa(G) =

∑k
i=1 µa(Gi).

A 2-3-subgraph of a valid graph G is a subgraph H of G such that the degree in
H of every vertex in A(G) is either 2 or 3. The degree of a vertex belonging to B(G)
in H is not restricted. A 2-3-subgraph exists in any valid graph which is not a forest.
A maximal 2-3-subgraph of G is a 2-3-subgraph of G which is not a subgraph of any
other 2-3-subgraph of G. A maximal 2-3-subgraph can be easily found by applying
depth-first search (DFS) on G.

A linkpoint v in a 2-3-subgraph H is called a critical linkpoint if v is an allowed
vertex, and there is a cycle Γ in G such that V (Γ)∩ V (H)∩A(G) = {v}. We refer to
such a cycle Γ in G as a witness cycle of v. Note that we can assume a witness cycle
to be simple and, so, verifying whether a linkpoint v in H is a critical linkpoint is
easy: remove the set of vertices (V (H)∩A(G))−{v} from G, with all incident edges,
and apply a breadth-first search (BFS) to check whether there is a cycle through v in
the remaining graph.

A cycle in a valid graph G is branchpoint-free if it does not pass through any
allowed branchpoints; that is, a branchpoint-free cycle passes only through allowed
linkpoints and blackout vertices of G.

The rest of this section is devoted to showing that the following algorithm cor-
rectly outputs a vertex feedback set and achieves an unweighted performance ratio
less than 4.

Algorithm SubG-2-3(Input: valid graph G; Output: feedback vertex set F
of G);

if G is a forest then
F ← ∅;

else begin:
Using DFS, find a maximal 2-3-subgraph H of G;
Using BFS, find the set X of critical linkpoints in H;
Let Y be the set of allowed branchpoints in H;
Find a set W that covers all branchpoint-free cycles of H which

are not covered by X;
F ← X ∪ Y ∪W ;

end.

Note that if B(G) = ∅, then all branchpoint-free cycles are isolated cycles in H
and so W consists of one vertex of each such cycle.

We elaborate on how the set W is computed when B(G) 6= ∅. Let H ′ be a graph
obtained from H by removing the set X along with its incident edges. Let Hb be the
subgraph of H ′ induced by the allowed linkpoints and blackout vertices of H ′. For
every isolated cycle in Hb, we arbitrarily choose an allowed linkpoint from that cycle
to W . Next, we replace each maximal (with respect to containment) chain of allowed

946 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

linkpoints in Hb by an edge, resulting in a graph H∗
b . We assign unit cost to all edges

corresponding to a chain of allowed linkpoints, and a zero cost to all other edges, and
compute a minimum-cost spanning forest T of H∗

b . We now add to W one linkpoint
from each chain of allowed linkpoints in Hb that corresponds to an edge in H∗

b −T . It
is now straightforward to verify that the complexity of SubG-2-3 is linear in |E(G)|.

The following two lemmas, which generalize some claims used in the proof of
Theorem 1 in [Si67], are used to prove that SubG-2-3 outputs a feedback vertex set
of a valid graph G.

Lemma 1. Let H be a maximal 2-3-subgraph of a valid graph G and let Γ be a
simple cycle in G. Then, one of the following holds:

(a) Γ is a witness cycle of some critical linkpoint of H or

(b) Γ passes through some allowed branchpoint of H or

(c) Γ is a cycle in H that consists only of blackout vertices or allowed linkpoints
of H.

Proof. Let Γ be a simple cycle in G and assume to the contrary that neither of
(a)–(c) holds. This implies in particular that Γ cannot be entirely contained in H. We
distinguish between two cases: (1) Γ does not intersect with H and (2) Γ intersects
with H only in blackout vertices and allowed linkpoints of H.

Case 1. In this case we could join Γ and H to obtain a 2-3-subgraph H∗ of G
that contains H as a proper subgraph. This however contradicts the maximality of
H.

Case 2. If Γ intersects with H only in blackout vertices, then as in Case 1, we
can join Γ and H and contradict the maximality of H. Suppose now that Γ intersects
with H in some allowed linkpoints of H. Note that in such a case Γ must intersect
with H in at least two distinct allowed linkpoints of H, or else Γ would be a witness
cycle of the only intersecting (critical) linkpoint. Since Γ is not contained in H by
assumption, we can find two allowed linkpoints v1 and v2 in V (Γ) ∩ V (H) that are
connected by a path P along Γ such that V (P) ∩ V (H) ∩ A(G) = {v1, v2} and P is
not entirely contained in H. Joining P and H, we obtain a 2-3-subgraph of G that
contains H as a proper subgraph, thus contradicting the maximality of H.

Lemma 2. Let H be a maximal 2-3-subgraph of G and let Γ1 and Γ2 be witness
cycles in G of two distinct critical linkpoints in H. Then Γ1 and Γ2 are independent
cycles, namely, V (Γ1) ∩ V (Γ2) ⊆ B(G).

Proof. Let v1 and v2 be the critical linkpoints associated with Γ1 and Γ2, respec-
tively, and assume to the contrary that V (Γ1) ∩ V (Γ2) contains an allowed vertex
u ∈ A(G). Then, there is a path P in G that runs along parts of the cycles Γ1 and Γ2,
starting from v1, passing through u, and ending at v2. Since Γ1 and Γ2 are witness
cycles, we have V (P)∩V (H)∩A(G) = {v1, v2}. And, since v1 and v2 are distinct crit-
ical linkpoints, the vertex u cannot possibly coincide with either of them. Therefore,
the path P is not entirely contained in H. Joining P and H we obtain a 2-3-subgraph
of G that contains H as a proper subgraph, thus reaching a contradiction.

Theorem 3. For every valid graph G, the set F computed by SubG-2-3 is a
feedback vertex set of G.

Proof. Let Γ be a simple cycle in G. We follow the three cases of Lemma 1 to
show that V (Γ) ∩ F 6= ∅.

(a) Γ is a witness cycle of some critical linkpoint of H. By construction, all
critical linkpoints of H are in F .

(b) Γ passes through some allowed branchpoint of H. By construction, all allowed
branchpoints of H are in F .

THE FEEDBACK VERTEX SET PROBLEM 947

(c) Γ is a cycle in H that consists only of blackout vertices or allowed linkpoints
of H. When V (Γ) contains a critical linkpoint, then SubG-2-3 selects that linkpoint
into the feedback vertex set F . Otherwise, the cycle Γ must be entirely contained in
the graph Hb that was used to create W . We now show that W covers all cycles in
Hb. Assume the contrary and let Γ be a cycle in Hb that is not covered by W . Recall
that in the construction of H∗

b , each chain of allowed linkpoints in Γ was replaced by
an edge with a unit cost. Let Γ∗ be the resulting cycle in H∗

b . Since W does not cover
Γ, all unit-cost edges in Γ∗ were necessarily chosen to the minimum-cost spanning
forest T . On the other hand, since T does not contain any cycles, there must be at
least one zero-cost edge of Γ∗ which is not contained in T . Hence, by deleting one of
the unit-cost edges of Γ∗ from T and inserting instead a particular zero-cost edge of
Γ∗ into T , we can obtain a new spanning forest T ′ for H∗

b . However, the cost of T ′ is
smaller than that of T , which contradicts our assumption that T is a minimum-cost
spanning forest.

A reduction graph G′ of an undirected graph G is a graph obtained from G by a
sequence of the following transformations:

• Delete an endpoint and its incident edge.
• Connect two neighbors of a linkpoint v (other than a self-looped singleton)

by a new edge and remove v from the graph with its two incident edges.

A reduction graph of a valid graph G is not necessarily valid, since the reduction
process may generate a cycle consisting of blackout vertices only. We will be interested
in reduction sequences in which each transformation yields a valid graph.

Lemma 4. Let G′ be a reduction graph of G. If G′ is valid, then µa(G
′) = µa(G).

Proof. Let H1 = G,H2, . . . , Ht−1, Ht = G′ be a sequence of reduction graphs
where each Hi is obtained by a removal of one linkpoint and possibly some endpoints
from Hi−1. Since G′ is valid, each Hi is a valid graph as well. Let vi be the linkpoint
that is removed from Hi to obtain Hi+1.

First we show that µa(G
′) ≥ µa(G). Suppose F is a feedback vertex set of Hi+1

for some i, 1 ≤ i < t and let Γ be a cycle in Hi that passes through vi. A reduction
of Γ obtained by replacing the linkpoint vi on Γ by an edge connecting the neighbors
of vi yields a cycle Γ̂ in Hi+1. The vertex set of Γ̂ intersects the set F . Hence, F is
also a feedback vertex set of Hi which implies that µa(Hi+1) ≥ µa(Hi).

Now we show that µa(G
′) ≤ µa(G). Suppose F is a minimal feedback vertex

set of Hi. If F does not contain vi, then F is also a feedback vertex set of Hi+1.
Otherwise, write F = {vi} ∪ F ′. We claim that the set F ′ cannot fail to cover more
than one cycle in Hi+1. If it failed, then there would be two distinct cycles Γ1 and Γ2

in Hi that contain vi, in which case the cycle in Hi induced by (V (Γ1)∪V (Γ2))−{vi}
would not be covered by F , thus contradicting the fact that F is a feedback vertex
set of Hi. It follows by this and the minimality of F that the set F ′ fails to cover
exactly one cycle in Hi+1. This cycle contains at least one allowed vertex u because
Hi+1 is a valid graph. Therefore, the set F ′ ∪ {u} is a feedback vertex set of Hi+1.
Hence, µa(Hi+1) ≤ µa(Hi).

A reduction graph G∗ of a graph G is minimal if and only if G∗ is a valid graph
and any proper reduction graph G′ of G∗ is not valid.

Lemma 5. If G∗ is a minimal reduction graph of G, then G∗ does not contain
blackout linkpoints, and every feedback vertex set of G∗ contains all allowed linkpoints
of G∗.

Proof. Recall that G∗ is a valid graph. If G∗ contains a blackout linkpoint, then
its removal creates a valid reduction graph which contradicts the minimality of G∗.

948 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

Now assume F is a feedback vertex set of G∗ and v is an allowed linkpoint which is
not in F . If the removal of v yields a graph that is not valid, then v must have been
included in F . If the removal of v yields a valid graph, then G∗ is not minimal.

The next lemma is needed in order to establish the performance ratio of SubG-
2-3. It is a variant of Lemma 4 in [Vo68].

Lemma 6. Let G be a valid graph with no blackout linkpoints and such that
no vertex has degree less than 2. Then, for every feedback vertex set F of G which
contains all linkpoints of G,

|V (G)| ≤ (∆a(G) + 1) |F | − 2 .

Proof. Suppose F = V (G). In this case we have |V (G)| ≤ 3|V (G)| − 2 ≤
(∆a(G) + 1)|V (G)| − 2 and, therefore, the lemma holds trivially. So we assume from
now on that |F | < |V (G)|.

Let EF denote the set of edges in E(G) whose terminal vertices are all vertices
in F . Define X = V − F and let EX denote the set of edges in E(G) whose terminal
vertices are all vertices in X. Also, let EF,X denote the set of those edges in G that
connect vertices in F with vertices in X. Clearly, EF , EX , and EF,X form a partition
on E(G). Now, the graph obtained by deleting F from G is a nonempty forest on
X and, therefore, |EX | ≤ |X| − 1. However, each vertex in X is a branchpoint in G
because all linkpoints are assumed to be in F and there are no vertices of degree less
than 2. Therefore,

3 |X| ≤
∑
v∈X

∆G(v) = |EF,X | + 2 |EX | ≤ |EF,X | + 2 (|X| − 1)

i.e.,

|EF,X | ≥ |X| + 2 = |V (G)| − |F | + 2 .

On the other hand,

∆a(G) |F | ≥
∑
v∈F

∆G(v) = |EF,X | + 2 |EF | .

Combining the last two inequalities we obtain

|V (G)| ≤ (∆a(G) + 1) |F | − 2 |EF | − 2 .

The main claim of this section now follows.
Theorem 7. The unweighted performance ratio of SubG-2-3 is at most 4 −

(2/|V (G)|).
Proof. Let F be the feedback vertex set computed by SubG-2-3 for a valid graph

G which is not a forest. We show that |F | ≤ 4µa(G) − 2. The theorem follows
immediately from this inequality.

Let H, X, Y , and W be as in SubG-2-3. Suppose µa(G) = 1. Then, all cycles
in G pass through some allowed vertex v in G and, so, no vertex other than v can be
a critical linkpoint in H. Now, if v is a linkpoint in H, then H is a cycle. Otherwise,
one can readily verify that H must contain exactly two branchpoints. In either case
we have |F | ≤ 2. We assume from now on that µa(G) ≥ 2.

For every vi ∈ X, let Γi be some witness cycle of vi in G. By Lemma 2, the cycles
Γi are pairwise independent. Therefore, the minimum number of vertices needed to
cover such cycles is |X|.

THE FEEDBACK VERTEX SET PROBLEM 949

Let {Γ∗j} be the set of branchpoint-free cycles in H that do not contain any critical
linkpoints of H. Note that each cycle Γ∗j is independent with any witness cycle Γi. We
now claim that any smallest set W ′ of vertices of V (H) that intersects with the vertex
set of each Γ∗j must be of size |W |. To see this, note that W ′ contains only allowed
linkpoints of H. If we remove from H∗

b all the edges that correspond to linkpoints
belonging to W ′, then we clearly end up with a forest. By construction, the minimum
number of edges (or allowed linkpoints) needed to be removed from H∗

b so as to make
it into a forest is |W |.

Recalling that every cycle Γ∗j is independent with any witness cycle Γi, the set
W ′ cannot possibly intersect with any of the cycles Γi. Hence, in order to cover the
cycles {Γi} ∪ {Γ∗j} in G, we will need at least |X|+ |W ′| vertices. Therefore,

µa(G) ≥ |X|+ |W ′| = |X|+ |W | .
On the other hand, we recall that |F | = |X|+ |Y |+ |W |.

We distinguish between the following two cases.
Case 1. |Y | ≤ 2|X|+ 2|W |. Here we have

|F | = |X|+ |Y |+ |W | ≤ 3|X|+ 3|W | ≤ 3µa(G) ≤ 4µa(G)− 2 .

Case 2. |Y | > 2|X| + 2|W |. Let F ∗ be a feedback vertex set of G of size µa(G)
and let W ′ be a smallest subset of F ∗ that intersects with the vertex set of each
Γ∗j . Clearly, W ′ consists of allowed linkpoints of H, and, as we showed earlier in this
proof, |W ′| = |W |. Let H1 be the subgraph of H obtained by removing all critical
linkpoints of H and all linkpoints in W ′. With each deleted linkpoint, we also remove
recursively all resulting endpoints from H while obtaining H1. Thus, a deletion of a
linkpoint from H can decrease the number of branchpoints by 2 at most. Hence, the
number of branchpoints left in H1 is at least |Y | − 2|X| − 2|W | > 0. Furthermore,
the graph H1 does not contain any endpoints.

Let H∗
1 be a minimal reduction graph of H1 and let H2 be a valid graph obtained

by removing all singleton components from H∗
1 . Since H1 does not contain any end-

points, the number of branchpoints of H1 is preserved in H∗
1 and in H2. Therefore,

the graph H2 contains at least |Y | − 2|X| − 2|W | branchpoints. On the other hand,
since H∗

1 is a minimal reduction and due to Lemma 5, there are no blackout link-
points in H∗

1 and every feedback vertex set of H∗
1 contains all allowed linkpoints of

H∗
1 . Furthermore, the graphs H∗

1 and H2 do not contain any endpoints.
It follows that we can apply Lemma 6 to H2 and any feedback vertex set of H2,

thus obtaining

|Y | − 2|X| − 2|W | ≤ 4µa(H2)− 2 ≤ 4µa(H
∗
1)− 2 = 4µa(H1)− 2 ,

where the equality is due to Lemma 4. Therefore,

|F | = |X|+ |Y |+ |W |
≤ 4|X|+ 4|W |+ |Y | − 2|X| − 2|W |
≤ 4(|X|+ |W |+ µa(H1))− 2 .(1)

Recall that W ′ was chosen as a subset of a smallest feedback vertex set F ∗ of G.
Let X ′ be a smallest subset of F ∗ that covers the witness cycles {Γi} and let Z ′ be
a smallest subset of F ∗ that covers the cycles of H1. Since H1 does not contain any
of the critical linkpoints of H, each witness cycle Γi is independent with any cycle in

950 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

H1 and, so, we have X ′ ∩ Z ′ = ∅. It also follows from our previous discussion that
X ′ ∩W ′ = ∅. In addition, by construction of H1 we have W ′ ∩Z ′ = ∅. It thus follows
that

|X|+ |W |+ µa(H1) ≤ |X ′|+ |W ′|+ |Z ′| ≤ |F ∗| = µa(G) .

Combining with (1), we obtain the desired result.

3. WFVS. In this section, we consider the approximation of the WFVS problem
described in section 1. That is, given an undirected graph G and a weight function w
on its vertices, find a feedback vertex set of (G,w) with minimum weight. As in the
previous section, we assume that G may contain parallel edges and self-loops.

A weighted reduction graph G′ of an undirected graph G is a graph obtained from
G by a sequence of the following transformations.

• Delete an endpoint and its incident edge.
• Let u and v be two adjacent vertices such that w(u) ≤ w(v) and v is a

linkpoint. Connect u to the other neighbor of v, and remove v from the
graph with its two incident edges.

The following lemma can be easily verified. (See, e.g., the proof of Lemma 4.)
Lemma 8. Let (G′, w′) be a weighted reduction graph of (G,w). Then, µ(G′, w′) =

µ(G,w).
A weighted reduction graph G∗ of a graph G is minimal if and only if any weighted

reduction graph G′ of G∗ is equal to G∗. A graph is called branchy if it has no
endpoints and, in addition, its set of linkpoints induces an independent set; i.e., each
linkpoint is either an isolated self-looped singleton or connected to two branchpoints.
Clearly, any minimal weighted reduction graph must be branchy. We note that the
complexity of transforming a graph into a branchy graph is linear in |E(G)|.

We are now ready to present our algorithms for finding an approximation for a
minimum-weight feedback vertex set of a given weighted graph. In section 3.1 we
give an algorithm that achieves a performance ratio of 4 log2 |V (G)|. In section 3.2
we present an algorithm that achieves a performance ratio of 2∆2(G).

3.1. The primal-dual algorithm. The basis of the first approximation algo-
rithm is the next lemma which generalizes a lemma due to Erdős and Pósa [EP62,
Lemma 3]. That lemma was obtained by Erdős and Pósa while estimating the small-
est number of edges in a graph which contains a given number of pairwise independent
cycles. Later on, in [EP64], they provided bounds on the value of µ(G, 1) in terms of
the largest number of pairwise independent cycles in G. Tighter bounds on µ(G, 1)
were obtained by Simonovits [Si67] and Voss [Vo68].

Lemma 9. The shortest cycle in any branchy graph G with at least two vertices
is of length ≤ 4 log2 |V (G)|.

Proof. Let t be the smallest even integer such that 2 · 2t/2 > |V (G)|. Apply BFS
on G of depth t starting at some vertex v. We now claim that the search hits some
vertex twice and so there exists a cycle of length ≤ 2t in G. Indeed, if it were not so,
then the induced BFS tree would contain at least 2 · 2t/2 distinct vertices of G, which
is a contradiction.

In each iteration of the proposed algorithm, we first find a minimal weighted
reduction graph, and then find a cycle Γ with the smallest number of vertices in the
minimal weighted reduction graph. The algorithm sets δ to be the minimum among
the weights of the vertices in V (Γ). This value of δ is subtracted, in turn, from the
weight of each vertex in V (Γ). Vertices whose weight becomes zero are added to the

THE FEEDBACK VERTEX SET PROBLEM 951

feedback vertex set and deleted from the graph. Each such iteration is repeated until
the graph is exhausted.

Algorithm MiniWCycle(Input: (G,w); Output: feedback vertex set F of
(G,w));
F ← ∅; (H,wH) ← (G,w);
While H is not a forest do begin:

Find a minimal weighted reduction graph (H ′, wH′) of (H,wH);
Find a cycle Γ′ in H ′ with the smallest number of vertices;
Set δ ← minv∈V (Γ′) wH′(v);
Set wH′(v) ← wH′(v)− δ for every v ∈ V (Γ′);
Let X = {v ∈ V (Γ′) : wH′(v) = 0};
Remove X (with all incident edges) from H ′;
(H,wH) ← (H ′, wH′);
F ← X ∪ F ;

end.
Finding a shortest cycle can be done by running BFS from each vertex until a

cycle is found and then selecting the smallest. A more efficient approach for finding
the shortest cycle is described in [IR78].

It is not hard to see that MiniWCycle computes a feedback vertex set of G.
We now analyze the algorithm employing techniques similar to those used in [Ho82],
[Ho83], and [KhVY94]. We note that the algorithm can also be analyzed using the
local ratio theorem of Bar-Yehuda and Even [BaEv85].

Theorem 10. The performance ratio of algorithm MiniWCycle is at most
4 log2 |V (G)|.

Proof. We assume that |V (G)| > 1. Given a feedback vertex set F of (G,w), let
x = [xv]v∈V (G) be the indicator vector of F , namely, xv = 1 if v ∈ F and xv = 0
otherwise. We denote by C the set of cycles in G. The problem of finding a minimum-
weight feedback vertex set of (G,w) can be formulated in terms of x by an integer
programming problem as follows:

minimize
∑

v∈V (G) w(v) · xv
ranging over all nonnegative integer vectors x = [xv]v∈V (G) such that∑

v∈V (Γ)

xv ≥ 1 for every Γ ∈ C .(2)

Let Cv denote the set of cycles passing through vertex v in G and consider the
following integer programming packing problem:

maximize
∑

Γ∈C yΓ

ranging over all nonnegative integer vectors y = [yΓ]Γ∈C such that∑
Γ∈Cv

yΓ ≤ w(v) for every v ∈ V .
(3)

Clearly, the linear relaxation of (3) is the dual of the linear relaxation of (2), with yΓ,
Γ ∈ C, being the dual variables.

Let (H ′, wH′) be a minimal weighted reduction graph computed at some iteration
of algorithm MiniWCycle. Then, for each cycle Γ′ ∈ H ′, we associate a unique cycle
Γ ∈ G as follows: if all vertices in V (Γ′) belong to G, then Γ = Γ′. Otherwise, we
“unfold” the transformation steps performed in obtaining H ′ from H in backward
order, i.e., from H ′ back to H: in each such step we add to Γ′ chains of linkpoints

952 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

(connecting vertices in Γ′) that were deleted. When this process finishes, the cycle Γ′

of H ′ transforms into a cycle Γ of G.
We now show that MiniWCycle can be interpreted as a primal-dual algorithm.

We first show that it computes a dual feasible solution for (3) with a certain max-
imality property. The initial dual feasible solution is the one in which all the dual
variables yΓ are zero.

Let Γ′i be a cycle chosen at iteration i of MiniWCycle and let Γi be the associated
cycle in G. We may view the computation of iteration i of MiniWCycle as setting
the value of the dual variable yΓi to the weight δ of a lightest vertex in V (Γ′i). The
updated weight wH′(v) of every v ∈ V (Γ′i) is precisely the slack of the dual constraint

∑
Γ∈Cv

yΓ ≤ w(v)(4)

that corresponds to v.
It is clear that by the choice of δ, the values of the dual variables yΓ at the end of

iteration i of MiniWCycle satisfy the dual constraints (4) corresponding to vertices
v ∈ V (Γ′i). It thus follows that the dual constraints hold for all vertices v ∈ V (H ′) at
iteration i.

Let v be a vertex that was removed from H to obtain H ′ in iteration i of Mini-
WCycle. It remains to show that the dual constraint (4) corresponding to such a
vertex holds in each iteration j of the algorithm for every j ≥ i.

We show this by backward induction on j. By the previous discussion it follows
that the constraints corresponding to vertices that exist in the last iteration all hold.
Suppose now that the dual constraints corresponding to vertices in V (H ′) in iteration j
are not violated. We show that the dual constraints corresponding to vertices in
V (H) − V (H ′) in that iteration are also not violated. Let c be a chain of linkpoints
in H in iteration j, and let v1 and v2 be the two branchpoints adjacent to c. Let
u be a vertex of minimum weight among v1, v2, and the vertices in c. We note
that the weighted reduction procedure deletes all vertices in c except possibly for one
representative, depending on whether u is in c or is one of its adjacent branchpoints.
We now observe that the set of cycles that passes through a linkpoint in c is the same
for all linkpoints in c and is contained in the set of cycles that pass through v1 and is
also contained in the set of cycles that pass through v2. This implies that if the dual
constraint corresponding to u is not violated, then the dual constraints corresponding
to any vertex in c is also not violated.

The algorithm essentially constructs a primal solution x from the dual solution
y: it selects into the feedback vertex set all vertices for which (i) the corresponding
dual constraints are tight and (ii) in the iteration the constraint first became tight,
the corresponding vertex belonged to the graph. As stated earlier, this construction
yields a feasible solution.

Let x∗ = [x∗v]v∈V (G) and y∗ = [y∗Γ]Γ∈C denote the optimal primal and dual frac-
tional solutions, respectively. It follows from the duality theorem that

∑
v∈V (G)

w(v) · xv ≥
∑

v∈V (G)

w(v) · x∗v =
∑
Γ∈C

y∗Γ ≥
∑
Γ∈C

yΓ .(5)

Hence, to prove the theorem it suffices to bound the ratio between the LHS and
the RHS of (5). First note that yΓ 6= 0 only for cycles Γ in G that are associated
with cycles Γ′ that were chosen at some iteration of MiniWCycle. By the above

THE FEEDBACK VERTEX SET PROBLEM 953

construction of x, it is clear that the dual variable yΓ of each such cycle Γ contributes
its value to at most V (Γ′) vertices. Hence,

∑
v∈V (G)

wv · xv ≤
∑

v∈V (G)

∑
Γ∈Cv

yΓ ≤
∑
Γ∈C

yΓ · |V (Γ′)| .

Now, in each iteration, the graph H ′ is a branchy graph. Therefore, by Lemma 9, we
have that |V (Γ′)| ≤ 4 log2 |V (G)|. Hence the theorem is proved.

Proposition 11. For planar graphs, the weighted performance ratio of MiniW-
Cycle is at most 10.

Proof. We first notice that the weighted reduction process preserves planarity
and, therefore, at each iteration of algorithm MiniWCycle we remain with a planar
graph.

We claim that every rich planar graph G must contain a face of length at most
5. Assume the contrary. By summing up the lengths of all the faces, we get that
2|E| ≥ 6|Z|, where Z denotes the set of faces of G. By Euler’s formula,

|E| − |V |+ 2 = |Z|.

Hence, 2|E| ≤ 3|V | − 6. However, since the degree of each vertex is at least 3, we get
that 2|E| ≥ 3|V |, which is a contradiction. Furthermore, this implies that a branchy
planar graph must contain a cycle of length at most 10.

3.2. Low-degree graphs. The algorithm presented in this section is based on
the following variant of Lemma 6.

Lemma 12. Let G be a branchy graph. Then, for every feedback vertex set F of
G,

|V (G)| ≤ 2∆2(G) · |F |.

Proof. Let F be a feedback vertex set of G. We can assume without loss of
generality that F contains only branchpoints, since this assumption can only decrease
|F |. Let G′ be the minimal (unweighted) reduction graph of G; i.e., G′ contains only
branchpoints or isolated self-looped singletons. Clearly, F is also a feedback vertex
set of G′. Thus, G′ and F satisfy the conditions of Lemma 6 (∆a = ∆), yielding that

|V (G′)| ≤ (∆(G′) + 1) · |F | − 2 .

Since G′ is a branchy graph, the number of linkpoints in G can be at most ∆(G′) ·
|V (G′)|/2. Hence,

|V (G)| ≤ (∆(G) + 2) · |V (G′)|
2

and, so,

|V (G)| ≤ (∆(G) + 2) · (∆(G) + 1) · |F |
2

≤ 2∆2(G) · |F |.

We now present a weighted greedy algorithm for finding a feedback vertex set in
a graph G.

954 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

Algorithm WGreedy(Input: (G,w); Output: feedback vertex set F of (G,w));
F ← ∅; i← 1; (H,wH) ← (G,w);
while H is not a forest do begin:

Find a minimal weighted reduction graph (H ′
i, wH′

i
) of (H,wH);

αi ← minv∈V (H′
i
) wH′

i
(v);

Ui ← {u ∈ V (H ′
i) | wH′

i
(u) = αi};

F ← F ∪ Ui;
remove Ui from H ′

i with its incident edges;
(H,wH) ← (H ′

i, wH′
i
);

i← i+ 1;
end.

For a subset S ⊆ V , let w(S) denote the sum of weights of the vertices in S. We
now prove the following theorem.

Theorem 13. Let G be a branchy graph. Denote by F the feedback vertex set
computed by algorithm WGreedy, and by F ∗ a minimum-weight feedback vertex set
in G. Then, w(F) ≤ 2∆2(G) · w(F ∗).

Proof. Assume that the number of iterations the while loop is executed in algo-
rithm WGreedy is p. We define the following weight functions w1, . . . , wp on V (G).
The weight function wi is defined, for 1 ≤ i ≤ p, as follows:

for all v ∈ V (G) : wi(v) =

{
αi − αi−1 if v ∈ V (H ′

i),
0 otherwise,

where α0 = 0.
For a subset S, let wi(S) denote the sum of weights of the vertices in S, where

the weight function is wi. Clearly,

w(F) =

p∑
i=1

w(Ui) =

p∑
i=1

wi(F).

Suppose that at one of the weighted reduction steps of algorithm WGreedy, a chain
c of equal weight linkpoints was reduced to a single vertex, say, v, which either belongs
to c or is one of the two branchpoints adjacent to c. Suppose further that v was added
to F . If F ∗ also contains a vertex from the chain c, then without loss of generality
we can assume that this vertex can be replaced by v.

Let u ∈ F ∗. Obviously, u ∈ H ′
1. We claim that if u /∈ F , then u ∈ H ′

i for all
i = 1, 2, . . . , p. Assume this is not the case. Then, with respect to the order in which
vertices entered F in algorithm WGreedy, let u be the first vertex such that u ∈ F ,
u /∈ F ∗, and u was removed from the graph in a weighted reduction step. This means
that u was at the time of its removal a linkpoint that had an adjacent vertex u′ with
smaller weight. But then, by exchanging u for u′ in F ∗, we obtain a feedback vertex
set which has smaller weight, contradicting the optimality of F ∗. Hence, for a vertex
u ∈ F ∗, w(u) ≥ ∑p

i=1 wi(u). Therefore,

w(F ∗) ≥
p∑

i=1

wi(F
∗) .

Notice that in the graph H ′
i, the weight function wi assigns the same weight to all

vertices. Hence, by Lemma 12, we have that wi(F) ≤ 2∆2(H ′
i) · wi(F

∗) for all
i = 1, 2, . . . , p. Since ∆(H ′

i) ≤ ∆(G) for all i, the theorem follows.
It follows from Lemma 8 that the performance ratio of algorithm WGreedy for

(G,w) is at most 2∆2(G) for any graph G.

THE FEEDBACK VERTEX SET PROBLEM 955

4. The loop cutset problem and its application. In section 4.1 we consider
a variant of the WFVS problem for directed graphs and in section 4.2 we describe its
application to Bayesian inference.

4.1. The loop cutset problem. The underlying graph of a directed graph D
is the undirected graph formed by ignoring the directions of the edges in D. A loop
in D is a subgraph of D whose underlying graph is a cycle. A vertex v is a sink with
respect to a loop Γ if the two edges adjacent to v in Γ are directed into v. Every
loop must contain at least one vertex that is not a sink with respect to that loop.
Each vertex that is not a sink with respect to a loop Γ is called an allowed vertex with
respect to Γ. A loop cutset of a directed graph D is a set of vertices that contains
at least one allowed vertex with respect to each loop in D. Our problem is to find
a minimum-weight loop cutset of a given directed graph D and a weight function w.
We denote by µ(D,w) the sum of weights of the vertices in such a loop cutset. Greedy
approaches to the loop cutset problem have been suggested by [SuC90] and [St90].
Both methods can be shown to have a performance ratio as bad as Ω(n/4) in certain
planar graphs [St90]. An application of our approximation algorithms to the loop
cutset problem in the area of Bayesian inference is described later in this section.

The approach we take is to reduce the weighted loop cutset problem to the
weighted feedback vertex set problem solved in the previous section. Given a weighted
directed graph (D,w), we define the splitting weighted undirected graph (Ds, ws) as
follows. Split each vertex v in D into two vertices vin and vout in Ds such that all
incoming edges to v become undirected incident edges with vin and all outgoing edges
from v become undirected incident edges with vout. In addition, we connect vin and
vout by an undirected edge. Set ws(vin) = ∞ and ws(vout) = w(v). For a set of vertices
X in Ds, we define ψ(X) as the set obtained by replacing each vertex vin or vout in X
by the respective vertex v in D from which these vertices originated.

Our algorithm can now be easily stated.
Algorithm LoopCutset (Input: (D,w); Output: loop cutset F of (D,w));

Construct (Ds, ws);
Apply MiniWCycle on (Ds, ws) to obtain a feedback vertex set X;
F ← ψ(X).

Note that each loop in D is associated with a unique cycle in Ds, and vice versa,
in a straightforward manner. Let I(Γ) denote the loop image of a cycle Γ in Ds, and
I -1(K) denote the cycle image of a loop K in D. It is clear that the mapping I is
1− 1 and onto.

The next lemma shows that algorithm LoopCutset outputs a loop cutset of
(D,w).

Lemma 14. Let (D,w) be a directed weighted graph and (Ds, ws) be its splitting
graph. Then (i) if F is a feedback vertex set of (Ds, ws) having finite weight, then
ψ(F) is a loop cutset of (D,w), and ws(F) = w(ψ(F)); (ii) if U is a loop cutset of D,
then the set Us obtained from U by replacing each vertex v ∈ U by vertex vout ∈ Ds is
a feedback vertex set of Ds, and w(U) = ws(Us).

Proof. We prove (i). The proof of (ii) is similar. Let Γ be a loop in D. To prove
the lemma we show that an allowed vertex with respect to Γ belongs to ψ(F). Let
I -1(Γ) be the unique cycle image of Γ in Ds. Since F is a cycle cover of Ds having
finite weight, there must be a vertex vout ∈ F in I -1(Γ). Now, it is clear that vertex
v ∈ Γ from which vout originated is an allowed vertex with respect to Γ as needed. To
complete the proof, by the finiteness of ws(F) we must have ws(F) = w(ψ(F)), since
ws(vout) = w(v) for each vertex in F .

956 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

It follows from Lemma 14 that µ(D,w) = µ(Ds, ws). In addition, due to Theorem
10 applied to the graph Ds, and since the number of vertices in Ds is twice the number
of vertices in D, we get the following bound on the performance ratio of algorithm
LoopCutset.

Theorem 15. The performance ratio of LoopCutset is at most 4 log2(2|V (D)|).
We now show that in the unweighted loop cutset problem we can achieve a perfor-

mance ratio better than 4. In this case, for each vertex v ∈ D, the weight of vin ∈ Ds

is one unit, and the weight of vout ∈ Ds is ∞. This falls within the framework consid-
ered in section 2, since vertices with infinite weight in Ds can be treated as blackout
vertices. We can therefore apply SubG-2-3 in the LoopCutset algorithm instead
of applying MiniWCycle and obtain the following improved performance ratio.

Theorem 16. When using SubG-2-3, the unweighted performance ratio of
LoopCutset is at most 4− (2/|V (D)|).

Proof. We have

w(ψ(F)) = ws(F) ≤ 4µ(Ds, ws)− 2,

where the equality is due to Lemma 14, and the inequality is due to Theorem 7. Since
µ(Ds, ws) = µ(D,w) ≤ |V (D)|, the claim is proved.

4.2. An application. We conclude this section with an application of approxi-
mation algorithms for the loop cutset problem.

Let P (u1, . . . , un) be a probability distribution where each ui draws values from
a finite set called the domain of ui. A directed graph D with no directed cycles is
called a Bayesian network of P if there is a 1-1 mapping between {u1, . . . , un} and
vertices in D such that ui is associated with vertex i and P can be written as follows:

P (u1, . . . , un) =
n∏
i=1

P (ui | ui1 , . . . , uij(i)) ,(6)

where i1, . . . , ij(i) are the source vertices of the incoming edges to vertex i in D.
It is worth noting that Bayesian networks are useful knowledge representation

schemes for many artificial intelligence tasks. Bayesian networks allow a wide spec-
trum of independence assumptions to be considered by a model builder so that a
practical balance can be established between computational needs and adequacy of
conclusions. For a complete exploration of this subject see [Pe88].

Suppose now that some variables {v1, . . . , vl} among {u1, . . . , un} are assigned
specific values {v1, . . . ,vl}, respectively. The updating problem is to compute the
probability P (ui | v1 = v1, . . . , vl = vl) for i = 1, . . . , n. In principle, such computa-
tions are straightforward because each Bayesian network defines the joint probability
distribution P (u1, . . . , un) from which all conditional probabilities can be computed
by dividing the appropriate sums. However, such computations are inefficient both
in time and space unless they use conditional independence assumptions defined by
(6). We shall see next how our approximation algorithms for the loop cutset problem
reduce the computations needed for solving the updating problem.

A trail in a Bayesian network is a subgraph whose underlying graph is a simple
path. A vertex b is called a sink with respect to a trail t if there exist two consecutive
edges a→ b and b← c on t. A trail t is active by a set of vertices Z if (1) every sink
with respect to t either is in Z or has a descendant in Z and (2) every other vertex
along t is outside Z. Otherwise, the trail is said to be blocked by Z.

THE FEEDBACK VERTEX SET PROBLEM 957

Verma and Pearl [VePe88] have proved that ifD is a Bayesian network of P (u1, . . . ,
un) and all trails between a vertex in {r1, . . . , rl} and a vertex in {s1, . . . , sk} are
blocked by {t1, . . . , tm}, then the corresponding sets of variables {ur1 , . . . , url} and
{us1 , . . . , usk} are independent conditioned on {ut1 , . . . , utm}. Furthermore, Geiger
and Pearl [GP90] proved a converse to this theorem. Both results are presented and
extended in [GVP90].

Using the close relationship between blocked trails and conditional independence,
Kim and Pearl [KiP83] developed an algorithm update-tree that solves the updat-
ing problem on Bayesian networks in which every two vertices are connected with at
most one trail. update-tree views each vertex as a processor that repeatedly sends
messages to each of its neighboring vertices. When equilibrium is reached, each vertex
i contains the conditional probability distribution P (ui | v1 = v1, . . . , vl = vl). The
computations reach equilibrium regardless of the order of execution in time propor-
tional to the length of the longest trail in the network.

Pearl [Pe86] solved the updating problem on any Bayesian network as follows.
First, a set of vertices S is selected such that any two vertices in the network are
connected by at most one active trail in S ∪ Z, where Z is any subset of vertices.
Then, update-tree is applied once for each combination of value assignments to the
variables corresponding to S, and, finally, the results are combined. This algorithm
is called the method of conditioning and its complexity grows exponentially with the
size of S. Note that according to the definition of active trails, the set S in Pearl’s
algorithm is a loop cutset of the Bayesian network. In this paper we have developed
approximation algorithms for finding S.

When the domain size of the variables varies, then update-tree is called a
number of times which is bounded from above by the product of the domain sizes of
the variables whose corresponding vertices participate in the loop cutset. If we take
the logarithm of the domain size as the weight of a vertex, then solving the weighted
loop cutset problem with these weights optimizes Pearl’s updating algorithm in the
case where the domain sizes are allowed to vary.

5. Discussion. It is useful to relate the feedback vertex set problem with the
vertex cover problem in order to establish lower bounds on the performance ratios
attainable for the feedback vertex set problem. A vertex cover of an undirected graph
is a subset of the vertex set that intersects with each edge in the graph. The vertex
cover problem is to find a minimum-weight vertex cover of a given graph. There is
a simple polynomial reduction from the vertex cover problem to the feedback vertex
set problem: Given a graph G, we extend G to a graph H by adding a vertex ve for
each edge e ∈ E(G) and connecting ve with the vertices in G with which e is incident
in G. It is easy to verify that there always exists a minimum feedback vertex set in H
whose vertices are all in V (G) and this feedback vertex set is also a minimum vertex
cover of G. In essence, this reduction replaces each edge in G with a cycle in H, thus
transforming any vertex cover of G to a feedback vertex set of H.

Due to this reduction, it follows that the performance ratio obtainable for the
feedback vertex set problem cannot be better than the one obtainable for the vertex
cover problem. The latter problem has attracted a lot of attention over the years
but has so far resisted any approximation algorithm that achieves in general graphs
a constant performance ratio less than 2. We note that the above reduction retains
planarity. However, for planar graphs, Baker [Bak94] provided a polynomial approx-
imation scheme (PAS) for the vertex cover problem. For the UFVS problem, there
are examples showing that 4 is the tightest constant performance ratio of algorithm
SubG-2-3.

958 REUVEN BAR-YEHUDA, DAN GEIGER, JOSEPH NAOR, AND RON ROTH

Another consequence of the above reduction is a lower bound on the unweighted
performance ratio of the greedy algorithm, GreedyCyc, for the feedback vertex set
problem. In each iteration, GreedyCyc removes a vertex of maximal degree from
the graph, adds it to the feedback vertex set, and removes all endpoints in the graph.
A similar greedy algorithm for the vertex cover problem is presented in [Jo74] and
in [Lo75]. The latter algorithm was shown to have an unweighted performance ratio
no better than Ω(log |V (G)|) [Jo74]. Due to the reduction to the cycle cover problem,
the same lower bound holds also for GreedyCyc, as demonstrated by the graphs
of [Jo74]. A tight upper bound on the worst-case performance ratio of GreedyCyc
is unknown.

Finally, one should notice that the following heuristics may improve the perfor-
mance ratios of our algorithms. For example, in each iteration MiniWCycle chooses
to place in the cover all zero-weight vertices found on the smallest cycle. This choice
might be rather poor especially if many weights are equal. It may be useful in this
case to perturb the weights of the vertices before running the algorithm. Similarly, in
algorithm SubG-2-3, there is no point in taking blindly all branchpoints of H. An
appropriate heuristic here may be to pick the branchpoints one by one in decreasing
order of residual degrees. Furthermore, the subgraph H itself should be constructed
such that it contains as many high-degree vertices as possible.

Remark. In a preliminary version of this paper, presented in [BaGNR94], we
conjectured that a constant performance ratio is attainable by a polynomial-time
algorithm for the WFVS problem. This has been recently verified in [BaBF95, BeG96]
where a performance ratio of 2 is obtained.

Acknowledgment. We would like to thank David Johnson for bringing [EP62]
to our attention and Samir Khuller for helpful discussions.

REFERENCES

[BaBF95] V. Bafna, P. Berman, and T. Fujito, Constant ratio approximations of the
weighted feedback vertex set problem for undirected graphs, in ISAAC 95, Al-
gorithms and Computation, J. Staples, P. Eades, N. Katoh, and A. Moffat, eds.,
Lecture Notes in Computer Science 1004, Springer-Verlag, 1995, pp. 142–151.

[Bak94] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs,
J. Assoc. Comput. Mach., 41 (1994), pp. 153–180.

[BaEv85] R. Bar-Yehuda and S. Even, A local-ratio theorem for approximating the weighted
vertex cover problem, Ann. Discrete Math., 25 (1985), pp. 27–46.

[BaGNR94] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, Approximation algorithms
for the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference, in Proceedings of the 5th Annual ACM-SIAM Symposium
on Discrete Algorithms, Arlington, VA, 1994, pp. 344–354.

[BeG96] A. Becker and D. Geiger, Optimization of Pearl’s method of conditioning and
greedy-like approximation algorithms for the vertex feedback set problem, Artifi-
cial Intelligence, 83 (1996), pp. 167–188.

[DP87] R. Dechter and J. Pearl, The cycle cutset method for improving search perfor-
mance in AI, in Proceedings 3rd IEEE on AI Applications, Orlando, FL, 1987.

[DP88] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction prob-
lems, Artificial Intelligence, 34 (1988), pp. 1–38.

[De90] R. Dechter, Enhancement schemes for constraint processing: Backjumping, learn-
ing, and cutset decomposition, Artificial Intelligence, 41 (1990), pp. 273–312.

[EP62] P. Erdős and L. Pósa, On the maximal number of disjoint circuits of a graph, Publ.
Math Debrecen, 9 (1962), pp. 3–12.

[EP64] P. Erdős and L. Pósa, On the independent circuits contained in a graph, Canad. J.
Math., 17 (1964), pp. 347–352.

THE FEEDBACK VERTEX SET PROBLEM 959

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, W. H. Freeman, San Francisco, CA, 1979.

[GP90] D. Geiger and J. Pearl, On the logic of causal models, in Uncertainty in Artificial
Intelligence 4, R.D. Shachter, T.S. Levitt, L.N. Kanal, and J.F. Lemmer, eds.,
North–Holland, New York, 1990, pp. 3–14.

[GVP90] D. Geiger, T. S. Verma, and J. Pearl, Identifying independence in Bayesian net-
works, Networks, 20 (1990), pp. 507–534.

[Ho82] D. S. Hochbaum, Approximation algorithms for set covering and vertex covering
problems, SIAM J. Comput., 11 (1982), pp. 555–556.

[Ho83] D. S. Hochbaum, Efficient bounds for the stable set, vertex cover, and set packing
problems, Discrete Appl. Math., 6 (1983), pp. 243–254.

[IR78] A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM J. Comput., 7
(1978), pp. 413–423.

[Jo74] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput.
System Sci., 9 (1974), pp. 256–278.

[KhVY94] S. Khuller, U. Vishkin, and N. Young, A primal-dual parallel approximation tech-
nique applied to weighted set and vertex cover, J. Algorithms, 17 (1994), pp. 280–
289.

[KiP83] H. Kim and J. Pearl, A computational model for combined causal and diagnostic
reasoning in inference systems, in Proceedings of the Eighth IJCAI, Morgan–
Kaufmann, San Mateo, CA, 1983, pp. 190–193.

[Lo75] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13
(1975), pp. 383–390.

[MS81] B. Monien and R. Schulz, Four approximation algorithms for the feedback vertex
set problem, in Proceedings of the 7th Conference on Graphtheoretic Concepts of
Computer Science, Hanser-Verlag, Munich, 1981, pp. 315–326.

[Pe86] J. Pearl, Fusion, propagation and structuring in belief networks, Artificial Intelli-
gence, 29 (1986), pp. 241–288.

[Pe88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan–Kaufmann, San Mateo, CA, 1988.

[Si67] M. Simonovits, A new proof and generalizations of a theorem by Erdős and Pósa on
graphs without k+ 1 independent circuits, Acta Math. Acad. Hungaricae Tomus,
18 (1967), pp. 191–206.

[St90] J. Stillman, On heuristics for finding loop cutsets in multiply connected belief net-
works, in Proceedings of the Sixth Conference on Uncertainty in Artificial Intel-
ligence, Cambridge, MA, 1990, pp. 265–272.

[SuC90] H. J. Suermondt and G. F. Cooper, Probabilistic inference in multiply connected
belief networks using loop cutsets, Internat. J. Approx. Reason., 4 (1990), pp. 283–
306.

[VePe88] T. Verma and J. Pearl, Causal networks: Semantics and expressiveness, in Pro-
ceedings of Fourth Workshop on Uncertainty in Artificial Intelligence, Minneapo-
lis, MN, Association for Uncertainty in Artificial Intelligence, Mountain View,
CA, 1988, pp. 352–359.

[Vo68] H. J. Voss, Some properties of graphs containing k independent circuits, in Proc.
Colloq. Tihany, Academic Press, New York, 1968, pp. 321–334.

PLANAR INTEGER LINEAR PROGRAMMING IS NC
EQUIVALENT TO EUCLIDEAN GCD∗

D. F. SHALLCROSS† , V. Y. PAN‡ , AND Y. LIN-KRIZ§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 960–971, August 1998 003

Abstract. It is not known if planar integer linear programming is P-complete or if it is in NC,
and the same can be said about the computation of the remainder sequence of the Euclidean algorithm
applied to two integers. However, both computations are NC equivalent. The latter computational
problem was reduced in NC to the former one by Deng [Mathematical Programming: Complexity
and Application, Ph.D. dissertation, Stanford University, Stanford, CA, 1989; Proc. ACM Symp. on
Parallel Algorithms and Architectures, 1989, pp. 110–116]. We now prove the converse NC-reduction.

Key words. integer linear programming, Euclidean algorithm, greatest common divisor, parallel
computational complexity

AMS subject classifications. 68Q15, 68Q22, 03D15

PII. S0097539794276841

1. Introduction. Our main result is the proof of the NC-equivalence of the
planar integer linear programming problem and the computation of the Euclidean
remainder sequence, defined by the Euclidean algorithm for two integers, which ter-
minates with their greatest common divisor (GCD). Hereafter, we will refer to these
two major computational problems as 2-ILP and EUGCD, respectively. Both 2-ILP
and EUGCD, as well as k-ILP, that is, the integer linear programming with k variables,
for a fixed k, belong to the class P; specifically, sequential Boolean time O(k9kL logL)
suffices for solving k-ILP [7], [8], [12], and time O(L2) suffices for EUGCD [1], [11],
where L denotes the input length (size).

On the other hand, very little is known about parallel complexity of both k-ILP
and EUGCD. In particular, it is not known if either of these problems belongs to NC
or if either of them is P-complete. (We recall that a computational problem is in
NC if it can be solved by using O((logL)c) time and O(Lc) processors for a fixed c
independent of the input length L; NC-reduction (or reduction in NC) of one problem
to another is the reduction under the above bounds on time and on the processor
number; NC-equivalence is the existence of NC-reductions in both directions; a P-
complete problem is one whose solution in NC would imply the NC solution of all
problems in P (see [4, Chapter 7], [5], [6], [10])).

There are relatively few computational problems for which, like for k-ILP and
EUGCD, we neither know if they belong to NC nor if they are P-complete. Sev-
eral computational problems of this kind are related to k-ILP and EUGCD via NC-
reductions (see [2], [3], and Figure 1). These problems include GCD (computing the
GCD of two integers), SGCD (solution of the set equation mZ+nZ = dZ), expanding

∗Received by the editors November 8, 1994; accepted for publication (in revised form) April 16,
1996; published electronically May 18, 1998. The results of this paper have been presented at the
3rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ‘92) and at the 34th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ‘93).

http://www.siam.org/journals/sicomp/27-4/27684.html
†Bellcore, 445 South St., Morristown, NJ 07962 (davids@bellcore.com).
‡Department of Mathematics and Computer Science, Lehman College of the City University of

New York, Bronx, NY 10468 (VPAN@lcvax.lehman.cuny.edu) and International Computer Science
Institute, 1947 Center St., Berkeley, CA 94704. The work of this author was supported by NSF grant
CCR-902690 and PSC CUNY awards 661340, 6622478, and 664334.

§1524 LSA Building, University of Michigan, Ann Arbor, MI 48109-1382 (ylinkriz@umich.edu).

960

PLANAR INTEGER PROGRAMMING AND EUCLIDEAN GCD 961

REU

SGCD

Opt-2-ILP

GCD

Continued Fraction

Expansion

Convergent

Sequence

EUGCD

EUMOD*

2-ILP

Basis Reduction

in 2D

k-ILP

Basis Reduction

in kD

Fig. 1. Arrowhead problems can be NC reduced to arrowtail problems.

the continued fraction for the ratio of two integers, computing the sequence of their
convergents, and reduction of a lattice of k dimensions for a fixed k.

Deng in [2], [3] proved NC-reduction from EUGCD to Opt-2-ILP, which is the
(stronger) optimization version of 2-ILP (see Definition 1). (In Figure 1, we use 2-ILP
for the feasibility integer linear programs.) The NC-reduction in the opposite direc-
tion, from Opt-2-ILP to EUGCD, turned out to be more elusive. Lin-Kriz and Pan
in [13] established NC-equivalence between Opt-2-ILP and the problem they called
REU, thus abbreviating relative EUGCD. REU amounts to solving both EUGCD and
EUMOD*, the special case of MOD*, where MOD* denotes the problem of comput-
ing MOD*(c, b1, ..., bn) = (...((c mod b1) mod b2)...) mod bn, for any set of natural
numbers c, b1, b2, ..., bn, whereas EUMOD* is the same problem where b1 > b2,
bi+2 = bi mod bi+1, i = 1, 2,...,n − 2; that is, in the input set for EUMOD*, the
values b3, ..., bn have been generated as the successive remainders computed by the
Euclidean algorithm for b1 and b2.

Although MOD* is a P-complete problem [9], we do not know if EUMOD* is in
NC or if it is P-complete, so that the works [2], [3], and [13] still left establishing NC-
equivalence between Opt-2-ILP and EUGCD as a research challenge. [13] proposed
to try to reduce EUMOD* to EUGCD in NC, which would resolve the issue, but this
has not worked so far.

The work on the version of [13] submitted for journal publication has brought in
an additional coauthor (David Shallcross) and a stronger result, which ended up in
the appearance of [14]. This paper combines the work of these two papers.

In this paper, we rely on applying a sequence of appropriate dissections and
unimodular transformations of triangles, a method previously used in [16] to count
the number of integer points in a polygon. We show that, used correctly, these
techniques are powerful enough to arrive at the desired NC-reduction of Opt-2-ILP
to EUGCD, which completes the long-awaited proof of NC-equivalence of these two
problems.

962 D. F. SHALLCROSS, V. Y. PAN, AND Y. LIN-KRIZ

2. Preliminaries. Hereafter, Z, Q, and R, as usual, denote the sets of integers,
rationals, and reals, respectively. For (column) vectors a, b, c, ... from Z2 and Q2,
we will let (a1, a2), (b1, b2), (c1, c2), ... denote the pairs of their coordinates. bxc and
dxe denote the two integers closest to a rational x such that bxc ≤ x ≤ dxe.

EUGCD denotes the computational problem which requires, for an input pair a0,
a1 of positive integers, to compute a sequence of integers a2, a3, ..., an+2 such that

ai+2 = ai − ai+1

⌊
ai
ai+1

⌋
, i = 0, 1, ..., n,

an+1 > an+2 = 0.
(1)

This is intimately related to continued fractions, as we can write

a0

a1
=

⌊
a0

a1

⌋
+

1⌊
a1

a2

⌋
+ 1

b a2a3 c+···
1

an/an+1

.(2)

Note that

n = O(log a0).(3)

We will promiscuously mix representations of triangles by their vertices and by
their facets or sides, because either representation can be transformed into the other
in NC by performing some basic linear algebra operations.

Define a unimodular matrix to be an integer matrix with determinant either 1 or
−1. Multiplying a unimodular matrix by an integer vector gives an integer vector, and
since the inverse of a unimodular matrix is also unimodular, only an integer vector
can multiply a unimodular matrix to give an integer vector.

Definition 1. An instance of Opt-2-ILP is the following: given A ∈ Zm×2,
v ∈ Zm, u = (u1, u2)

T ∈ Z2, find x = (x1, x2)
T ∈ Z2 such that Ax ≤ v that

maximizes uTx = u1x1 +u2x2, where vT denotes the transpose of a vector v. That is,
less formally, given a polygon P in R2 as an intersection of half-planes and a linear
objective function, find the integer point that maximizes that function over all integer
points in the polygon.

We observe that a unimodular transformation of a triangle transforms a solution
of Opt-2-ILP over this triangle to a solution of Opt-2-ILP over its image.

3. NC reduction of Opt-2-ILP to Opt-2-ILP over a triangle of a special
form. The next two lemmas are from [13] (compare also [2], [3]); we clarify their
proofs.

Lemma 3.1. Opt-2-ILP is NC-reducible to Opt-2-ILP over triangles.
Proof. For an instance of Opt-2-ILP with feasible region P given in the usual

manner as the intersection of half-planes, we may, in NC, compute the representation
of P as a polygon given by vertices and edges. We will next show a relatively simple
(although far from being the most efficient) method for doing this in NC. For every
pair of half-planes compute the point where their boundary lines intersect (if they do
intersect). For each such point, check whether it lies in each of the remaining half-
planes and reject infeasible points. Eliminate duplicates. Finally, declare two points
(now vertices) to be adjacent if they both lie on the boundary of the same half-plane.
If unbounded P are allowed as input, we can add explicit bounds on the components
of any finite optimal solution (see [15, Corollary 17.1c]).

We next triangulate this polygon in NC by taking an arbitrary vertex a, and, for
each adjacent pair of vertices b, c, neither equal to a, producing the triangle abc. By

PLANAR INTEGER PROGRAMMING AND EUCLIDEAN GCD 963

a note above, we can obtain in NC the equations of the sides of any triangle from its
vertices. Now we solve the original optimization problem by, in parallel, solving the
linear number of optimization problems over the triangles and taking the best of the
optima.

Lemma 3.2. Opt-2-ILP over triangles is NC-reducible to solving the following
pair of computational problems: GCD and Opt-2-ILP over triangles of the form
T =convex hull(α, β, γ) where α = (α1, α2)

T , β = (β1, β2)
T , γ = (γ1, γ2)

T are three
points in Q2 such that α1 = β1 < γ, α2 > β2, α2 > γ, and α is the solution to the
linear programming relaxation of the original Opt-2-ILP.

Proof. We will rely on the proof of Lemma 5.2 of [13], which we will essentially
reproduce with slightly changed notation for the triangles and their vertices and with
some unnecessary claims removed.

We shall apply (unimodular) linear transformations

U

(
x
y

)
=

(
ax+ by
cx+ dy

)
,

where U = (u11

u21

u12

u22
) is a 2× 2 matrix of the matrix class

GL2(Z) =

{(
g11 g12
g21 g22

)
: g11, g12, g21, g22 ∈ Z and g11g22 − g21g12 = ±1

}
.

Clearly, every such a transformation (with U ∈ GL2(Z)) will map all the integral
points into integral points; furthermore, if U ∈ GL2(Z), then U−1 ∈ GL2(Z), since

(det U)U−1 =

(
u22 −u12

−u21 u11

)

and since

det(U−1) =
u11u22 − u12u21

det U
= 1 .

Now let A0, B0, C0 denote the vertices of the triangle T0 = (A0B0C0), which is the
feasibility region of the input Opt-2-ILP. We now seek a linear transformation with
the matrix U ∈ GL2(Z) that transforms the triangle T0 = (A0B0C0) into a triangle
T = (ABC) satisfying the requirements of Lemma 3.2. Without loss of generality, we
may assume that A0 is an optimum for the LP relaxation of the input ILP and that
all the angles of the triangle T0 = (A0B0C0) are less than π

2 (Figure 2).
Next, we will transform the triangle T0 = (A0B0C0) into a triangle T = (ABC)

so that A − B will lie on the Y -axis and A (the image of A0) will be the optimum
point of correspondingly transformed linear program (see Figure 3). To formalize this

stage, we let A0 − B0 = (zt) = ~A0B0 denote the vector directed from B0 to A0, and
we will seek a matrix

M =

(
m11 m12

m21 m22

)
∈ GL2(Z)

such that (
m11 m12

m21 m22

)(
z
t

)
=

(
0
v

)
;

964 D. F. SHALLCROSS, V. Y. PAN, AND Y. LIN-KRIZ

constant level of obj. function
y

x

B

C

A

0

0

0

Fig. 2. An arbitrary triangle A0B0C0.

y

x

constant level of obj. fu
nction

A

B

C
bx+ay=c

Fig. 3. Triangle A0B0C0 shifted to triangle ABC.

that is,

m11z +m12t = 0 ,

m21z +m22t = v ,

m11m22 −m12m21 = ±1 .

Let v = gcd(z, t). We can compute m21,m22 by using the Euclidean algorithm or
any algorithm that computes v = gcd(z, t), since (as this can be immediately verified)

PLANAR INTEGER PROGRAMMING AND EUCLIDEAN GCD 965

m11 =
t

v
, m12 = − z

v
,

m11m22 −m12m21 =
t

v
m22 +

z

v
m21 = 1 .

Let T = (ABC) denote the resulting triangle.
During the entire transformation process, the image of A0 (at the end represented

by A′′) remains the optimum of the correspondingly transformed linear program.
Indeed, let f(x, y) = ux+ vy denote the objective function; then

ux+ vy =
(
u v

)(x
y

)
=
(
u v

)
M−1M

(
x
y

)
,

and M(xy) = (x
′

y′) is the optimum point in the new coordinate system, which is the

image of the original optimum point. The vector (u v)M−1 is easy to calculate
(M−1 ∈ GL2(Z) is the inverse of M), and it represents the direction of the constant
level of the transformed objective function. Therefore, the optimum point and the
optimum value are the transformation invariants.

Now we immediately observe that the requirements of Lemma 3.2 hold, except
that we have yet to prove that a > b in the equation for the edge AC : bx+ ay = c
(Figure 3). Let kAC denote the slope of AC; then all we need to prove is that
− π

4 < kAC ≤ 0. We use the customary notation for the unimodular group of 2 × 2
matrices:

SL2(Z) =

{(
s11 s12
s21 s22

)
: s11s22 − s21s12 = 1

}
.

Let α, β ∈ SL2(Z) denote two such matrices:

α =

(
1 0

−1 1

)
, β =

(
1 0
1 1

)
,

where α−1 = β. Denote ~CA = C −A = (gh); then

(a) α

(
g
h

)
=

(
g

h− g

)
,

(b) β

(
g
h

)
=

(
g

h+ g

)
.

We can always assume that g > 0; otherwise we would have multiplied the resulting

vector [gh] by (−1
0

0
1) ∈ GL2(Z). If h ≥ g, then we will multiply it by αb

h
g c and will

arrive at the vector [gh1
], where h1 = h− gbhg c < g, as is required. Similarly, if h < 0,

then we will multiply [gh] by βb
−h
g c and will arrive at [gh2

], where h2 = h+ gb−hg c > 0.
Thus, the requirements of Lemma 3.2 are satisfied for the triangle ABC.

4. Restriction of the problem to the boundary of the convex hull of all
the integer points of a superscribed right triangle. We will use the following
definitions.

966 D. F. SHALLCROSS, V. Y. PAN, AND Y. LIN-KRIZ

Definition 2. Hereafter, a triangle T of the form {(x1, x2) : ax1 + bx2 ≤ c, x1 ≥
g, x2 ≥ h}, for five integers a > 0, b > 0, c, g, h, will be called a right triangle.

Definition 3. For any set S, let δS denote the boundary of the convex hull of
the integer points in S.

To solve Opt-2-ILP over a triangle of Lemma 3.2, we will reduce (in NC) this
problem to solving EUGCD and to solving Opt-2-ILP over a few right triangles with
integer slopes (see the next sections). To solve the latter problem in NC (see section
6), we will need the following lemma.

Lemma 4.1. Let a, b be positive integers, and let c, d, e, f , g be integers such
that

T = {(x1, x2) : ax1 + bx2 ≤ c, dx1 + ex2 ≤ f, x1 ≥ g}
is a nonempty bounded triangle. Let u ∈ Z2 be such that maximum over T of uTx
occurs at the vertex x∗ = (g, (c − ag)/b). (This is the upper-left-hand corner of T .)
Then the maximum over T ∩ Z2 of uTx occurs among the integer points of δT ′, the
boundary of the convex hull H of integer points in the right triangle T ′, where

T ′ = {(x1, x2) : ax1 + bx2 ≤ c, x1 ≥ g, x2 ≥ h},
and h is an integer chosen so that T ⊂ T ′.

Proof. If x∗ defined above was an integer, then x = x∗ would optimize uTx over
T ∩Z2 and would be a vertex on δT ′. Otherwise let x = z∗ maximize uTx over T ∩Z2.
Now suppose that z∗ 6∈ δT ′, but rather z∗ = (z∗1 , z

∗
2) ∈ interior H, and we shall obtain

a contradiction. (See Figure 4.)
Let K be the open wedge {(x1, x2) : x1 < z∗1 , az

∗
1 + bz∗2 < ax1 + bx2}, and let P

be the parallelogram K ∩T ′. For all x ∈ P , x2 > z∗2 , so P is in fact a subset of T . All
points of K (and hence all of P) have a better objective value than z∗. In particular,
by choice of z∗, P contains no integer points.

Since x∗ is a vertex of T ′ but not an integer point, x∗ 6∈ H. Thus since z∗ ∈
interior H, the diagonal of P from z∗ to x∗ intersects δT ′ at some point t on an edge
between two integer points w and y. Because they are integer points, neither w nor
y can lie in P . They are in T ′, so they cannot lie anywhere else in K, but because
the edge between them contains a point of P , one of these, say y, satisfies y1 < z∗1 ,
ay1 + by2 < az∗1 + bz∗2 , and the other, w, satisfies w1 > z∗1 , aw1 + bw2 > az∗1 + bz∗2 .
Furthermore, either w2 > z∗2 or else y2 > z∗2 .

Let x̄ = w + y − z∗. By the above, and since w and y are in T ′, we can see that
x̄1 > g, and ax̄1 + bx̄2 < c. We can also see that x̄2 > h, so that x̄ ∈ T ′. The points
w and y are opposite vertices of a parallelogram with integer vertices y, x̄, w, and z∗

in T ′. Since the point t between w and y lies on the boundary of the convex hull of
integer points of T ′, we have the desired contradiction. Thus x∗ lies on the boundary
of H.

5. Recursive partition of a triangle into unimodular images of right
triangles.

Lemma 5.1. For integers k, l, p > 0, q > 0, r, the right triangle

S =

{
(x1, x2) : x2 ≤ r

q
− p

q
x1, x1 ≥ l, x2 ≥ k

}

(if nonempty) is the union (with disjoint interiors) of the right triangle

R =

{
(x1, x2) : x2 ≤ l′ −

⌊
p

q

⌋
x1, x1 ≥ l, x2 ≥ k

}
,

PLANAR INTEGER PROGRAMMING AND EUCLIDEAN GCD 967

z*

y

w

ax
1 +b

2 =c
dx1+ex2=f

x

Fig. 4.

sharing the horizontal edge with the triangle S, and the unimodular image U = MW
of the triangle

W =

{
(x1, x2) : x2 ≤ r

q′
− p′

q′
x1, x1 ≥ l′, x2 ≥ k′

}
,

where p′ = q, q′ = p− qbpq c, l′ = k(q
′

p) + bpq cr/p, k′ = l, and

M =

(
0 1

1 −
⌊
p
q

⌋)
.

Proof. We just divide S along the line of slope −bpq c that goes through the point

(rp − (qp)k, k), the lower-right-hand corner of S. (See Figure 5.) This gives S = R∪U
where R is as above, and

U =

{
(x1, x2) : l′ −

⌊
p

q

⌋
x1 ≤ x2 ≤ r

q
− p

q
x1, x1 ≥ l

}
.

Now perform an elementary unimodular transformation (x1, x2) → (x1, bpq cx1 + x2)
to map U to the triangle

V =

{
(x1, x2) : l′ ≤ x2 ≤ r

q
−
(
p

q
−
⌊
p

q

⌋)
x1, x1 ≥ l

}
.

968 D. F. SHALLCROSS, V. Y. PAN, AND Y. LIN-KRIZ

R

U

V

W

x 1
=x 2

Fig. 5. Lemma 5.1 for k = l = 0.

Notice that we have (pq) − bpq c = q′

p′ . Reflecting V over the line x1 = x2 gives us W
above.

Lemma 5.2. Given a sequence a0, a1, . . . ,an+1 of integers satisfying (1) and
three rationals h, k0, and l0 such that a0l0 + a1k0 ≤ h, we can compute in NC three
sequences of rationals ki, li, and unimodular matrices Mi such that if

T ∗ = {(x1, x2) : a0x1 + a1x2 ≤ h, x1 ≥ l0, x2 ≥ k0}

and

Vi =

{
(x1, x2) : x2 ≤ li+1 −

⌊
ai
ai+1

⌋
x1, x1 ≥ li, x2 ≥ ki

}
,

then

T ∗ =
n⋃
i=0

MiVi.

Proof. First we give recursions for the sequences ki, li, and Mi. Then we will
show that these sequences actually meet the requirements of the lemma.

Let

M0 =

(
1 0
0 1

)
,

and, for 0 ≤ i < n,

ki+1 = li,(4)

li+1 = ki
ai+2

ai
+

⌊
ai
ai+1

⌋
h

ai
,(5)

PLANAR INTEGER PROGRAMMING AND EUCLIDEAN GCD 969

M̃i =

(
0 1

1 −
⌊

ai
ai+1

⌋)
,(6)

Mi+1 = MiM̃i.(7)

Due to (3)–(7), the maximum magnitude µ of li and of the entries of Mi (over all i)
satisfies the relation

logµ = (log(a0 + a1))
O(1).(8)

For 0 ≤ i ≤ n, define the triangle

Si =

{
(x1, x2) : x2 ≤ h

ai+1
− ai
ai+1

x1, x1 ≥ li, x2 ≥ ki

}
,

so S0 = T ∗. Applying Lemma 5.1, for S = Si, p = ai, q = ai+1, r = h, V = Vi, l = li,
k = ki, l

′ = li+1, W = Si+1, p
′ = ai+1, q

′ = ai+2, M = M̃i, we can see that Si is the
union of the two triangles (with disjoint interiors) Vi and M̃iSi+1, where Sn+1 = ∅.
By induction, we easily deduce that T =

⋃n−1
i=0 MiVi.

Now, due to (8), and since the values ki and li are defined by a linear recurrence
with coefficients depending only on h and the ai, we may compute these values ki
and li in NC using the prefix algorithm on their transformation matrix. Similarly,
the prefix algorithm allows one to compute in NC the Mi as the products of the
M̃i.

Remark. If we let ui = (h− ai+1ki)/ai, then it can be verified, for i ≥ 2, that

li =

⌊
ai−1

ai

⌋
ui−1 + li−2,

ui =

⌊
ai−1

ai

⌋
li−1 + ui−2.

Thus, if h, k0, and l0 are integers, u0 and l1 can be expressed as fractions with
denominator a0, and all later terms can be expressed as fractions with denominator
a0a1. Likewise, if h, k0, and l0 are fractions with denominators dh, dk, and dl, all
terms can be expressed as fractions with denominator dhdkdla0a1.

6. Final reduction of Opt-2-ILP to EUGCD.
Lemma 6.1. Opt-2-ILP over a triangle of the form T = convex hull(α, β, γ),

where α, β, and γ are points in Q2 such that α1 = β1 < γ1, α2 > β2, and α2 ≥ γ2,
and with objective vector u ∈ Z2 such that uTα > uTβ and uTα > uT γ, can be
NC-reduced to EUGCD.

Proof. Given such a triangle by its vertices, we easily convert it in NC to the
representation used in the statement of Lemma 4.1 for T . We then trivially produce
the parameters for the triangle T ′ in the statement of that lemma. Using one call to
EUGCD, we produce the sequence a0, a1, . . . , an, an+1 according to the relation (1),
loosely speaking, the continued fraction representation of the slope a0/a1 of T ′. We
now apply Lemma 5.2 to T ′, computing in NC the unimodular matrices Mi and right
triangles Vi with integer slopes such that T ′ = ∪iMiVi. According to Lemma 4.1, the
maximum of uTx over x ∈ T occurs in δT ′ and so in T ∩δT ′. The set δT ′ is contained
in ∪iδ(MiVi), so T ∩ δT ′ is contained in T ∩ ∪iδ(MiVi), which equals ∪i(T ∩MiδVi).

970 D. F. SHALLCROSS, V. Y. PAN, AND Y. LIN-KRIZ

A

B

C

Fig. 6.

Each δVi can be expressed simply as the union of three pieces Ai, Bi, Ci, each
consisting of an arithmetic sequence of integer points, as follows:

δVi = Ai ∪Bi ∪ Ci,

Ai =

{
(dlie, dkie+ j),

j = 0, . . . , bli+1c −
⌊
ai+1

ai

⌋
dkie − dkie

}
,

Bi =

(dlie+ j, dkie),

j = 0, . . . ,
bli+1c − dkie⌊

ai+1

ai

⌋ − dlie

 ,

Ci =

(
dlie+ j, bli+1c −

⌊
ai+1

ai

⌋
dlie −

⌊
ai+1

ai

⌋
j

)
,

j = 0, . . . ,
bli+1c − dkie⌊

ai+1

ai

⌋ − dlie

 .

(See Figure 6.) Naturally, MiδVi is the union of MiAi, MiBi, and MiCi. Thus we can
maximize uTx over x ∈ T by taking the maximum (for i = 0, 1, ..., n) of the maxima
of uTx over x in T ∩MiAi, in T ∩MiBi, and in T ∩MiCi.

PLANAR INTEGER PROGRAMMING AND EUCLIDEAN GCD 971

Theorem 6.2. Opt-2-ILP can be NC-reduced to EUGCD.
Proof. By Lemma 3.1, Opt-2-ILP can be NC-reduced to Opt-2-ILP over triangles.

By Lemma 3.2, Opt-2-ILP over triangles can be NC-reduced to EUGCD plus Opt-
2-ILP over triangles of a particular form. Finally, by Lemma 6.1 Opt-2-ILP can be
NC-reduced to EUGCD.

Since [2], [3] give a reduction of EUGCD to Opt-2-ILP, we obtain that Opt-2-ILP
and EUGCD are NC-equivalent.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison–Wesley, Reading, MA, 1974.

[2] X. Deng, Mathematical Programming: Complexity and Application, Ph.D. dissertation, Stan-
ford University, Stanford, CA, 1989.

[3] X. Deng, On parallel complexity of integer linear programming, in Proc. ACM Symp. on
Parallel Algorithms and Architectures, Association for Computing Machinery, New York,
1989, pp. 110–116.

[4] A. Gibbons, W. Rytter, Efficient Parallel Algorithms, Cambridge University Press, London,
1988.

[5] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, A compendium of problems complete for
P, Tech. report TR 91-11, Dept. of Computer Science, University of Alberta, Edmonton;
Tech. report TR 99-05-01, CS and Engineering Dept., University of Washington, Seattle,
1991.

[6] R. Greenlaw, Polynomial completeness and parallel computation, in Synthesis of Parallel
Algorithms J. H. Reif, Ed., Morgan-Kaufman Publishers, San Mateo, CA, 1993, pp. 901–
954.

[7] R. Kannan, A polynomial algorithm for the two-variable integer linear programming problem,
J. Assoc. Comput. Mach., 27 (1980), pp. 118–122.

[8] R. Kannan, Improved algorithms for integer linear programming and related lattice problems,
in Proc. 15th Annual ACM Symp. on Theory of Computing, Association for Computing
Machinery, New York, 1983, pp. 193–206.

[9] H. H. Karloff and W. L. Ruzzo, The complexity of iterated MOD function, Inform. Comput.,
80 (1989), pp. 193–204.

[10] R. M. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory
machines, in Handbook of Theoretical Computer Science, North–Holland, Amsterdam,
1990, pp. 869–941.

[11] D. E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical Algorithms, Addison–
Wesley, Reading, MA, 1981.

[12] H. W. Lenstra, Jr., Integer linear programming with a fixed number of variables, Math. Oper.
Res., 8 (1983), pp. 538–548.

[13] Yu Lin-Kriz and V. Y. Pan, On parallel complexity of integer linear programming, gcd, and
the iterated mod function, in Proc. 3rd Ann. ACM-SIAM Symp. on Discrete Algorithms,
1992, pp. 124–137.

[14] D. F. Shallcross, V. Y. Pan, and Yu Lin-Kriz, The NC equivalence of planar integer linear
programming and Euclidean GCD, in Proc. 34th Ann. Symp. on Foundations of Computer
Science, IEEE Computer Soc. Press, Los Alamitos, CA, 1993, pp. 557–564.

[15] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New York,
1986.

[16] L. Ya. Zamanskii and V. L. Cherkasskii, A formula for finding the number of integer points

under a straight line and its application, Èkonom. i Mat. Metody, 20 (1984), pp. 1132–1138
(in Russian).

ALL HIGHEST SCORING PATHS IN WEIGHTED GRID GRAPHS
AND THEIR APPLICATION TO FINDING ALL APPROXIMATE

REPEATS IN STRINGS∗

JEANETTE P. SCHMIDT†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 972–992, August 1998 004

Abstract. Weighted paths in directed grid graphs of dimension (m×n) can be used to model the
string edit problem, which consists of obtaining optimal (weighted) alignments between substrings
of A, |A| = m, and substrings of B, |B| = n. We build a data structure (in O(mn logm) time)
that supports O(logm) time queries about the weight of any of the O(m2n) best paths from the
vertices in column 0 of the graph to all other vertices. Using these techniques we present a simple
O(n2 logn) time and Θ(n2) space algorithm to find all (the locally optimal) approximate tandem (or
nontandem) repeats xy within a string of size n. This improves (by a factor of log n) upon several
previous algorithms for this problem and is the first algorithm to find all locally optimal repeats.
For edit graphs with weights in {0,−1, 1}, a slight modification of our techniques yields an O(n2)
algorithm for the cyclic string comparison problem, as compared to O(n2 logn) for the case of general
weights.

Key words. string matching, tandem repeats, edit-distance, dynamic programming

AMS subject classification. 68P99

PII. S0097539795288489

1. Introduction. An approximately repeated pattern in a string A is a sub-
string x followed by a substring y, so that x and y match approximately. If x and y
are adjacent in A the repeat is called a tandem repeat. An important motivation for
the approximate tandem repeat problem is found in molecular biology. From a com-
putational point of view, DNA can be viewed as a string over a four letter alphabet
(the four nucleotides), while a protein can be viewed as a string over a twenty letter
alphabet (the twenty amino acids). Adjacent repeated patterns, or tandem repeats,
occur frequently and play an important role in both DNA and protein sequences.
Although the function of the repeating patterns that appear on the DNA or protein
level is not always well understood, they have been associated with several impor-
tant properties. For example, researchers have recently discovered that the tips of
chromosomes are made up of telomeres, consisting of many repetitions of the same
pattern. Each time the cell divides a fixed number of such repetitions is lost. The
number of remaining repetitions appears to hold the cell’s clock and to determine the
number of divisions the cell can still undergo. On the protein level repetitions have
been associated with structural properties and have helped determine the secondary
structure of proteins, that is, its local folding pattern. As is inevitably the case in
biological applications, the repetitions occurring in both DNA and protein sequences
are not exact. It is therefore natural to look for approximately repeated patterns.

A very general measure of an approximate match between two strings can be
expressed as a shortest (or longest) path in weighted grid graphs. An (m,n) grid graph
G = (V,E) is a directed (acyclic) weighted graph whose vertices are the (m+1)×(n+1)

∗Received by the editors July 5, 1995; accepted for publication (in revised form) April 30, 1996;
published electronically May 18, 1998.

http://www.siam.org/journals/sicomp/27-4/28848.html
†Department of Computer Science, Polytechnic University, 6 MetroTech, Brooklyn, NY 11201

(jps@pucs4.poly.edu). This author was partially supported by NSF grants CCR-9305873 and HRD-
9627109 and the New York State Science and Technology Foundation Center for Advanced Technol-
ogy.

972

FINDING ALL APPROXIMATE REPEATS IN STRINGS 973

points of the grid with rows 0 . . .m and columns 0 . . . n. Vertex (i, j) has a directed
edge to (i+1, j), (i+1, j+1), and (i, j+1), provided that these endpoints are within
the boundaries of the grid (Figure 1).

Fig. 1. A 3 × 4 grid graph.

The string edit problem is modeled by a grid graph and consists of obtaining
an optimal alignment between a substring A′ of A = A1 . . . Am and B′ of B =
B1 . . . Bn (i.e., transforming A′ into B′ by performing a “least cost” series of weighted
edit operations on A′). An alignment of Ac

i = Ai+1 . . . Ac with Bc′
i′ = Bi′+1 . . . Bc′

corresponds to a path from (i, i′) to (c, c′) in the graph. An edge 〈(k, l), (k+1, l)〉 (resp.,
〈(k, l), (k, l + 1)〉) on this path with weight w corresponds to skipping over character
Ak+1 (resp., character Bl+1), which incurs a penalty of w, while edge ((k, l), (k+1, l+
1)) with weight w′ corresponds to aligning Ak+1 and Bl+1 with penalty (reward) w′,
which can be either positive or negative. The weight w of a given edge can be specified
directly in the grid graph, or as is frequently the case in biological applications,
is given by a penalty matrix (which specifies the substitution cost for each pair of
characters and the deletion cost for each character from the alphabet). Depending
on whether a positive weight corresponds to a penalty or a reward a best alignment
of Ac

i with Bc′
i′ is given by a shortest (resp., longest) weighted path from (i, i′) to

(c, c′) in the grid graph. Since edges can assume negative weights in either case,
finding the longest or shortest path is analogous. We will henceforth assume that
best alignments correspond to longest (i.e., highest scoring) paths. Computing such
paths and hence a best alignment with arbitrary substitution/deletion weights can be
done by standard dynamic programming in O(|Ac

i ||Bc′
i′ |) time. If weights are arbitrary

this is also optimal [H-88].
When trying to identify repetitions in a string we may initially seek the pair

(Ac
i , A

c′
i′) whose score is highest among all such pairs. It turns out that under standard

similarity measures it appears to be much easier to find “the highest scoring” repeated
pattern when the patterns, Ac

i and Ac′
i′ , are allowed to overlap (i.e., when c′ is not

required to be greater than or equal to i). This is discussed in more detail in section 2.
In many applications, however, including the ones mentioned earlier, one is really
interested in finding nonoverlapping repeated patterns. This problem was addressed
in [M-92], [KM-93], and [B-94] using a general penalty matrix, and, among others, in
[ML-84], [AP-83], and [C-81] for exact repetitions. In [KM-93] a recursive algorithm
is described that reports “the highest scoring” nonoverlapping approximate repeat in
O(n2 log2 n) time and O(n2 log n) space. A modification of their algorithm was given
by [B-94], which reduced the space to O(n2). [LS-93] study the problem of finding

974 JEANETTE P. SCHMIDT

good tandem repeats under the Levenshtein distance, in which matching characters
score 0 and deletions/substitutions of characters score 1, and report repeated patterns
whose edit distance is less than k in timeO(kn log k log (n/k)). (The complexity stated
in [LS-93] is actually O(kn log k log n), but a more careful analysis of the algorithm
given there gives the slightly stronger bound stated above.) The algorithm presented
in this article is designed for arbitrary penalty matrices, runs in O(n2 log n) time, and
uses O(n2) space. Another major advantage of our algorithm over [KM-93], [B-94], in
addition to its improved running time, is that it reports all “locally optimal” repeats,
and not just the highest scoring pair. This is formally defined in section 3.

The remainder of this article is organized as follows. In section 2 we address the
problem of finding highest scoring paths in grid graphs and introduce the notion of
locally optimal alignments (and paths), as defined in [ES-83]. In section 3 we show
how to efficiently compute the highest scoring paths from all points on column zero to
all other points in the grid graph. In section 4 we show how the techniques developed
in sections 2 and 3 can be applied to solve the approximate tandem repeat problem.
In section 5 we show how the algorithm can be modified to report locally optimal
nontandem repeats. Finally, in section 6 we discuss an application to grid graphs
with unit weights.

2. High scoring paths in grid graphs. In this section we review some stan-
dard string matching problems and the (dynamic programming) techniques for solv-
ing them. We also define the notion of locally optimal alignments and give a general
framework for obtaining such alignments. Finally, we show how the notion of locally
optimal alignments applies to approximate repeats in a string, and we give an exam-
ple to explain why the “trivial” solution for identifying repetitions does not give the
desired results.

Finding the best alignment between a string A and a string B is one of many
string editing problems that occur in a number of applications. To solve this prob-
lem alignments between substrings of A and substrings of B are examined. Let
score(Ar

j , B
t
`) denote the score of the best alignment between Ar

j = Aj+1 . . . Ar

and Bt
` = B`+1 . . . Bt. The standard dynamic programming solution for finding

score(A,B) defines T [r, t] as score(Ar
0, B

t
0) and computes T [r, t] from the T values

of the points in {(r − 1, t), (r − 1, t − 1), (r, t − 1)} which are contained in the grid.
T [0, 0] is initialized to zero, and the solution, score(A,B), is given in T [m,n]. Another
common problem consists of seeking the substring of B that best matches A. This
corresponds to finding a highest scoring path from row zero to row m in the grid. The
only difference in the dynamic programming is that now T [r, t] holds the maximum in
{score(Ar

0, B
t
`) | ` ∈ [0, t]}. The computation of T [r, t], for r > 0, given the T values of

the relevant points in {(r−1, t), (r−1, t−1), (r, t−1)}, remains the same. The change
in the computation is reflected in the initial assignments T [0, t] = 0, for t ∈ [0,m]
(assuming as usual that horizontal edges in the graph carry negative weights). The
solution max0≤`≤t≤m score(A,Bt

`) is given in maxt∈[0,m] T [m, t].

A somewhat harder problem occurs when no restrictions on the substrings from A
and B are given and one seeks to find substrings of A which align well with substrings
of B. This latter problem is called the local alignment problem, since “local” pieces of
the two strings are matched. Provided that the score of the alignment of two empty
strings is defined as 0, and only pairs whose alignment scores above 0 are of interest,
[SW-81] showed that essentially the same dynamic O(n2) programming solution can
still be used. T [r, t] would now hold the maximum in {score(Ar

j , B
t
`) | j ∈ [0, r], ` ∈

[0, t]}. Note that if none of the suffixes of Ar
0 and Bt

0 can be aligned with a strictly

FINDING ALL APPROXIMATE REPEATS IN STRINGS 975

positive score, T [r, t] would be set to score(Ar
r, B

t
t) = 0. The score for the highest

scoring pair is given in maxr∈[0,m],t∈[0,n] T [r, t], but generally this is not the only pair
of interest. The question of what other pairs of matching substrings from A and B
to report, or in other words what pairs of substrings should be considered locally
optimal, has been analyzed in [ES-83] and [WE-87], among others. We will adopt the
definition of local optimality as given in Erickson and Sellers [ES-83], which we now
describe.

Definition 2.1. The pair (Ar
j , B

t
`) is locally optimal and satisfies the threshold

if the following three conditions hold.

1. score(Ar
j , B

t
`) ≥ threshold;

2. ∀r′ ≥ j and t′ ≥ `, score(Ar
j , B

t
`) ≥ score(Ar′

j , B
t′
`);

3. ∀j′ ≤ r and `′ ≤ t, score(Ar
j′ , B

t
`′) ≤ score(Ar

j , B
t
`).

Locally optimal alignments with any threshold τ > 0 can be found in two passes
of dynamic programming, each pass as just described. In the first pass each end-
point (r, t) records a pair of indexes (j, `) which maximizes score(Ar

j , B
t
`), by setting

S[r, t] = (j, `). This is easily done during the computation of T [r, `], since (j, `)
satisfies score(Ar

j , B
t
`) = T [r, t]. The second pass is a (backward) dynamic pro-

gramming on the transposed grid graph, where values T b[j, `] hold the maximum
in {score(Ar

j , B
t
`) | r ∈ [j,m], t ∈ [`, n]}. Each point (j, `) records a pair of indexes

(r, t) which maximizes score(Ar
j , B

t
`) (r ≥ j, t ≥ `) by setting E[j, `] = (r, t). It is

not difficult to verify that if the above maxima are unique, a pair (Ar
j , B

t
`) is locally

optimal (according to Definition 2.1) if and only if S[r, t] = (j, `) and E[j, `] = (r, t).
After the two dynamic programming passes, the locally optimal pairs and (with some
extra standard bookkeeping) their alignments can be reported. When the suffixes of
Ar

0 and At
0 (resp., prefixes of Am

j and Bn
`) yielding the best alignment are not unique

one can either use a tie-breaking rule (such as the maximum j and maximum `) or
record all pairs (j, `) (resp., (r, t)) yielding the highest score. In the latter case S[r, t]
and E[j, `] hold a set of points. A pair (Ar

j , B
t
`) would be considered locally optimal

if (j, `) ∈ S[r, t] and (r, t) ∈ E[j, `].

Similar questions, as just described, are of considerable interest when comparing
the string A to itself. Due to the symmetric nature of the grid graph corresponding
to the comparison of a string with itself, the analysis can be limited to the upper
triangular grid graph. In addition, the diagonal of the grid graph is initialized to zero,
to exclude the possibility of the uninteresting case corresponding to any character Aj

matching itself in an alignment.

Consider hence the (upper triangular) (n+1)× (n+1) grid graph obtained when
comparing string A = A1, . . . , An with itself. An approximate repeat (Ar

j , A
t
`) with

` ≥ r corresponds to the highest scoring path in the (upper triangular) grid graph from
point (j, `) to point (r, t). If score(Ar

j , A
t
`) is above the (predetermined) threshold, the

pair (Ar
j , A

t
`) would be considered an approximate repeat in A. If ` = r, so that there

is no gap between the two substrings, the repeat is tandem. All approximate tandem
repeats (Ac

j , A
t
c) correspond to a path in the (upper triangular) grid graph from a

point on column c to a point on row c. If pairs (Ar
j , A

t
`) are included for which ` < r

(indicating that the strings overlap), the problem changes drastically. Finding the
best scoring (possibly overlapping) repeat reduces to finding the substrings Ar

j and
At
`, for which the weight of the optimal path from (j, `) to (r, t) in the (upper trian-

gular) grid graph is highest among all such pairs, or alternatively finding the pairs of
substrings whose alignments are locally optimal . The above problem can be directly
solved by (one or two passes of) dynamic programming on a triangular grid graph,

976 JEANETTE P. SCHMIDT

as just described for square matrices. One problem in including these overlapping
repeats is that in many applications nonoverlapping repeats are sought. In addition,
these overlapping repeats present an “unfair competition” in the search for the best
repeats. The best tandem repeat (or highest scoring path from some column c to
some row c) might be very different than the best path starting at an earlier column
c′. More precisely, the overlapping repeats may “hide” interesting tandem repeats.
Consider, for example, the string A = IRQIQLWLRQIWIRLRQL, compared to
itself. Figure 2 shows a penalty matrix and the resulting (upper triangular) dynamic
programming matrix of A versus A. With the specified penalty matrix the (high-
est scoring) tandem repeat IRQIbQLWLRcdQIWIReLRQL would not be found.
The alignments that would be found (given a threshold value 3) would be the (ap-
proximate) nontandem repeat bIRQIcQLWLRQIWIRdLRQLe, the (approximate)
nontandem repeat bIRQIQLcWLRQIW dIRLRQLe, and the long overlapping re-
peat bIRQIQLW dLRQIcWIRLRQLe, whose alignments are shown in Figure 2.

 I R Q I Q L W L R Q I W I R L R Q L I L Q R W
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 2 1-1-1-1-1
I 0 0 0 0 2 1 1 0 1 0 0 2 1 2 1 1 0 0 1 L 2-1-1-1-1
R 0 0 0 0 1 1 0 0 0 3 2 1 0 1 4 3 3 2 1 Q 2-1-1-1
Q 0 0 0 0 0 3 2 1 0 2 5 4 3 2 3 3 2 5 4 R 2-1-1
I 0 0 0 0 0 2 4 3 2 1 4 7 6 5 4 4 3 4 6 W 3-1
Q 0 0 0 0 0 0 3 2 2 1 3 6 5 5 4 3 3 5 5 0
L 0 0 0 0 0 0 0 2 4 3 2 5 5 6 5 6 5 4 7
W 0 0 0 0 0 0 0 0 3 2 1 4 8 7 6 5 4 3 6
L 0 0 0 0 0 0 0 0 0 2 1 3 7 9 8 8 7 6 5 undetected tandem
R 0 0 0 0 0 0 0 0 0 0 1 2 6 8 11 10 10 9 8 repeat
Q 0 0 0 0 0 0 0 0 0 0 0 1 5 7 10 10 9 12 11
I 0 0 0 0 0 0 0 0 0 0 0 0 4 7 9 11 10 11 13
W 0 0 0 0 0 0 0 0 0 0 0 0 0 6 8 10 9 10 12
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 9 9 9 11
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 11 10 10
L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 12
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 11
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

Highest scoring alignment, *IRQIQLW--LRQI*WIRLRQL
with score 13: IRQIQLW*LRQI--WIRLRQL*

Highest scoring tandem repeat IRQI*QLWLR*QIWIRLRQL
has score 9, (not detected): IRQIQLWLR*QIWIR*LRQL

Dynamic Programming Matrix Penalty matrix

0

0

Fig. 2. Example of a tandem repeat, not detected in a global search.

It is worth noting that overlapping repeats are of independent interest, as they
might indicate that a smaller string is (approximately) repeated several times. It ap-
pears that a different scoring method might be needed to detect both many repetitions
of the same string and nonoverlapping repeats in the same search.

Note that a simple (but expensive) solution to the problem of finding nonover-

FINDING ALL APPROXIMATE REPEATS IN STRINGS 977

lapping repeats is to compare Ac
0 with An

c , for c = 1 . . . n. The comparison of Ac
0 and

An
c is modeled by a (rectangular) grid graph Gc of size (c + 1) × (n − c + 1). For

nonoverlapping, but not necessarily tandem repeats one simply needs to find, for each
c, the pair (Ar

j , A
t
`) (0 ≤ j ≤ r ≤ c, and c ≤ ` ≤ t ≤ n) for which score(Ar

j , A
t
`) is

maximal, or more generally, find all locally optimal such pairs. Tandem repeats in
this comparison have midpoint c and are of the form (Ac

j , A
t
c); they correspond to

paths that must start anywhere in column 0 of Gc and must end anywhere in the
last row (row c) of Gc. To compute the score of the highest scoring tandem repeat,
the dynamic programming would be adapted as follows. Tc[r, t] (defined for r ≤ c
and t ≥ c) would hold the maximum score in {score(Ar

j , A
t
c) | j ∈ [0, r]}, and Sc[r, t]

would hold the index j (as a representative for the pair (j, c)), maximizing the score.
The score of the best repeat is maxt Tc[c, t]. Adapting Definition 2.1 to the problem
of tandem repeats, we would seek all pairs (Ac

j , A
t
c) for which score(Ac

j , A
t
c) is both

maxj′≤c score(Ac
j′ , A

t
c) and maxt′≥c score(Ac

j , A
t′
c). An equivalent definition is given

below.

Definition 2.2. A tandem repeat (Ac
j , A

t
c) is locally optimal among all such

repeats if the best match for Ac
j is At

c and vice versa. Formally, score(Ac
j , A

t
c) =

maxt′≥c score(Ac
j , A

t′
c) and score(Ac

j , A
t
c) = maxj′≤c score(Ac

j′ , A
t
c).

As in the general case, locally optimal tandem repeats can be easily identified in
two passes of dynamic programming. We first compute Tc[r, t] and Sc[r, t], as just
defined. We then compute T b

c [j, `] (defined for j ≤ c and ` ≥ c), which holds the
maximum score in {score(Ac

j , A
t
`) | t ∈ [`, n]}, and Ec[j, `], which holds the index t

(representing the pair (c, t)) maximizing the score. Here the score of the best repeat is
given in maxj T

b[j, c]. A tandem repeat is locally optimal if Sc[c, t] = j and Ec[j, c] = t.

The straightforward algorithm outlined above would identify all locally optimal
tandem repeats and all locally optimal nonoverlapping repeats in O(n3) time. Our
algorithm will report the same set of repeats in O(n2 log n) time. We will treat tandem
and nontandem repeats separately. Our main algorithm is tailored to tandem repeats.
We then show how to modify the algorithm (without a penalty in either time or space)
to report nontandem repeats as well.

A key component of our scheme is a data structure for implicitly computing in
O(mn logm) time all O(m2n) best paths from vertices (i, 0) (for i ∈ [0,m]) to all
other reachable vertices in an (m,n) grid graph. In the same time bound we will also
compute the weight of the O(mn) best paths from vertices (i, 0) (for i ∈ [0,m]) to the
jth row in the grid graph (for j ≥ i). This feature appears to be essential for a fast
algorithm that identifies all repeats above a given score in a string A. The methods
exhibited in this article can be viewed as another example of speeding up dynamic
programming by keeping and computing only a select subset of important values, as
shown on several instances in the seminal articles [EG-92] and [EGa-92].

3. Computing the all source highest scoring paths in a grid graph.

3.1. Preliminary definitions. Suppose we wish to compute the highest scoring
path from each of the vertices (i, 0), i ∈ [0,m], to all other vertices, or just even to
all vertices on the last row of the grid graph. The latter problem has been studied in
[AALM-90, AP-88] as a tool to design a parallel algorithm for computing the highest
scoring path from (0, 0) to (m,n). They named the O(mn) matrix whose [i, j] entry
holds the highest scoring path from node (i, 0) to node (m, j) in the grid graph the
DIST matrix. ([AALM-90] actually used this notion to denote the (n + m)(n + m)
highest scoring paths from the left and upper boundaries of the grid to the bottom

978 JEANETTE P. SCHMIDT

xi
xi+1

yj+1

xi+1
i) ii)

yj+1

yj

xi

yj

Fig. 3. Paths that must cross.

and right boundaries of the grid.) All our results apply to that definition as well, but
for notational convenience it will be simpler to consider the smaller DIST matrices.

Although [AALM-90] introduced DIST matrices in the context of parallel algo-
rithms, it turns out that DIST matrices are interesting in sequential computations
as well. Indeed, they were used in both [KM-93] and [B-94].

Instead of just computing one DIST matrix, we will define and compute m + 1
DIST matrices associated with an (m,n) grid graph. These matrices will be denoted
by DIST0, . . . , DISTm and are formally defined below.

Definition 3.1. Let DIST` = [0 . . . `, 0 . . . n] denote the (`+1)× (n+1) matrix,
with DIST`[i, j] storing the weight of the highest scoring path from vertex (i, 0) to
vertex (`, j).

None of the methods outlined in the previous sections allow us to compute all the
entries in a DIST matrix efficiently. Note, however, that the highest scoring path
from column 0 to vertex (j, `) in the grid graph corresponds to the maximum value in
column j of the matrix DIST`. Using the methods outlined in the previous section
it is easy to see that the n column maxima of DIST` can be computed in O(`n)
time (without explicitly computing the entries of the DIST matrix). Similarly using
(backwards) dynamic programming, the ` row maxima can be computed in O(`n)
time. The naive computation of all the row and column maxima of the m+ 1 DIST
matrices would require O(m2n) time. If, however, the entries of the DIST matrices
had been somehow precomputed their row and column maxima can be computed
quickly. Indeed, Aggarwal and Park [AP-88] observed that DIST matrices are Monge
arrays (defined below), and [AKMSW-87] had shown that if all entries of a Monge
array M can be accessed in O(1) time, the m row maxima and n column maxima of
M can be computed in O(n) time (assuming m ≤ n).

Following their terminology, we have the following definition.
Definition 3.2. A matrix M [0 . . .m, 0 . . . n] is Monge if either condition 1 or 2

below holds for all i, j:
1. M [i, j] +M [i+ 1, j + 1] ≥M [i, j + 1] +M [i+ 1, j];
2. M [i, j] +M [i+ 1, j + 1] ≤M [i, j + 1] +M [i+ 1, j].
The fact that DIST matrices are Monge arrays (obeying property 2) is easily

seen by noticing that the highest scoring paths from xi = (i, 0) to yj = (`, j) and
from xi+1 = (i+ 1, 0) to yj+1 = (`, j + 1) (whose weights are recorded in DIST`[i, j]
and DIST`[i+ 1, j + 1]) must cross (see Figure 3). These two paths can be piecewise
combined to obtain a path from xi to yj+1 and a path from xi+1 to yj . The sum of the
weights of the two highest scoring paths from xi to yj+1 and xi+1 to yj is by definition
given by DIST`[i, j + 1] +DIST`[i+ 1, j]. It immediately follows that DIST`[i, j] +
DIST`[i+1, j+1] ≤ DIST`[i, j+1]+DIST`[i+1, j]. For similar reasons (see Figure 3)
we also have that DIST`[i + 1, j] + DIST`+1[i, j] ≤ DIST`[i, j] + DIST`+1[i + 1, j]
(and hence the arrays Xj [`, i] = DIST`[i, j] are also Monge arrays, this time obeying
property 1) (see Figure 3).

FINDING ALL APPROXIMATE REPEATS IN STRINGS 979

[AP-88] and [AALM-90] developed a recursive parallel algorithm to efficiently
compute all the values in the matrix DISTm. Its sequential counterpart takes
O(mn logm) time and is also the best known sequential algorithm for computing
DISTm. We need to compute the values in m + 1 DIST matrices. If all entries of
these matrices were to be output, O(m2n) would be an obvious lower bound for the
problem. This, however, turns out not to be necessary in our applications. Instead we
will build a data structure in O(mn logm) time that will allow us to answer a query
about the weight of the highest scoring path between (i, 0) and (`, j) in O(log `) time
(for any i ≤ ` and j ∈ [0, n]). Reporting all entries of a given DIST matrix will
take only O(1) time per entry. The data structure will also allow us to report the
n column maxima of matrix DIST` in O(n + ` log n) time and the ` row maxima
of matrix DIST` in O(` + n log `) time. If m ≤ n, the total time to report all row
and column maxima of the m+ 1 DIST matrices is hence dominated by the time to
construct the data structure and is achieved in O(mn logm) time. (For m > n the
time is O(m2 log n).)

Our computation of the matrices DIST` proceeds as follows. Iteratively, for all
values of ` ∈ [0,m], a representation for the matrix DIST` is constructed. Each such
representation is computed in O(n log `) time from the representation of the previ-
ous DIST matrix, DIST`−1. Given the representation of DIST`−1 the additional
space required to construct the representation of DIST` is O(n log `). Hence if all
representations are to be kept the total space used would be O(mn logm). In many
applications, however (for example, if only the row maxima or the column maxima
of the matrices DIST` are of interest), the representation of DIST`−1 does not have
to be kept after the representation of DIST` has been computed. We will prove the
following theorems in sections 3.2–3.4.

Theorem 3.3. Given an (m,n) grid graph G with arbitrarily weighted edges, a
representation of the m DIST` matrices can be computed in O(nm logm) time and
O(nm logm) space. Any entry in any one of the DIST` matrices can thereafter be
retrieved in O(log `) time. Retrieving an entire column of DIST` takes only O(1)
time per column entry.

The following theorem states that row and column maxima can be computed
efficiently in the above representation.

Theorem 3.4. Given an m× n grid graph G with arbitrary weights, all the row
maxima and column maxima of the matrices DIST`, for ` ∈ [0,m], can be computed
in O(nm logm) time if m ≤ n (and O(m2 log n) time otherwise) and O(mn) space.

3.2. Data structure used to represent the matrices DIST` and proof
of Theorem 3.3. The data structure used to represent matrix DIST` is a collection
B0
` , . . . , B

n
` of n+1 binary trees of height dlog (`+ 1)e. Each tree Bj

` has exactly (`+1)

leaves and its tree edges are labeled by real numbers. Bj
` is the tree “belonging” to

vertex (`, j) and its `+ 1 leaves are in 1-1 correspondence (in left to right order) with
the `+ 1 vertices (i, 0), i ∈ [0, `].

In particular, the weight of the highest scoring path from vertex (i, 0) to vertex
(`, j) (corresponding to DIST`(i, j)) is given by the sum of the weights of the edges
on the path from the root to leaf i in Bj

` (and can hence be retrieved in O(log `) time).

The tree Bj
` hence encodes column j of DIST`. Note that the second part of

Theorem 3.3 is readily achieved by the above representation of the DIST matrices.
To complete the proof of Theorem 3.3 it remains to show that the trees B` can be
efficiently computed.

The structure of all trees B` is the same. B` is a subtree of the perfectly balanced

980 JEANETTE P. SCHMIDT

binary tree with 2dlog (`+1)e leaves, containing only the paths to leaves 0 . . . `. The tree
path from the root to node i is hence (structurally) the same in all trees Bj

` , j ∈ [0 . . . n]
(and remains the same in trees B`′ for which dlog (`′ + 1)e = dlog (`+ 1)e). In addition
to the labels on the tree edges, each internal node x, whose left subtree is a complete
binary tree, carries a label that holds the sum of the labels of the edges from x to the
rightmost child in the left subtree of x.

Observation 3.5. The ` highest scoring paths from nodes (i, 0), i = 1 . . . `, to
(`, j) (i.e., the values in the jth column of the matrix DIST`) can be output in O(`)
time by traversing the tree Bj

` . Furthermore, if c = 2dlog (`+1)e−1 the highest scoring
path from (c, 0) to (`, j) can be retrieved in O(1) time (for each j) by accessing the
label of the root of Bj

` .
Note also that after traversing (and adding weights on) a path from the root to an

internal node x, the highest scoring path “to the middle child” of x can be retrieved
in O(1) time.

We proceed to show how to construct the trees B0
`+1 . . . B

n
`+1 from the trees

B0
` . . . B

n
` in O(n log `) time.

Definition 3.6. Denote by Bj
` (i) the sum of the weights from the root to leaf i

in Bj
` . B

j
` (i) is hence equal to DIST`[i, j], the highest scoring path from vertex (i, 0)

to vertex (`, j).
The values Bj

` (i) = DIST`[i, j] are related by the following recurrence.

Observation 3.7. Let wk,l
i,j be the weight of the edge from point (i, j) to point

(k, l) in the grid graph ((k, l) ∈ {(i, j + 1), (i+ 1, j + 1), (i+ 1, j)}); then:

∀ i, `, j ≥ 0, i ≤ `+ 1, j ≤ n− 1,

Bj+1
`+1 (i) = max

Bj+1
` (i) + w`+1,j+1

`,j+1 ,

Bj
` (i) + w`+1,j+1

`,j ,

Bj
`+1(i) + w`+1,j+1

`+1,j ,

Bj+1
0 (0) = Bj

0(0) + w0,j+1
0,j , B0

`+1(i) = B0
` (i) + w`+1,0

`,0 , and B0
0 = 0.

Given the trees Bj+1
` , Bj

` , and Bj
`+1, the tree Bj+1

`+1 can be constructed in O(log `)

time by addingO(log `) nodes to the existing structures. To construct Bj
`+1 we observe

that the following lemma must hold.
Lemma 3.8. For each j ∈ [0, n], the interval [0, `+1], corresponding to the source

vertices (rows) of the matrix DIST`+1 can be partitioned into three intervals [0, i1),
[i1, i2), and [i2, `+1], 0 ≤ i1 ≤ i2 ≤ `+1, so that a highest scoring path from (i, 0) to
(`+ 1, j + 1) goes through (`, j + 1) if i ∈ [0, i1), goes through (`, j) if i ∈ [i1, i2), and
goes through (` + 1, j) if i ∈ [i2, ` + 1]. (Notice that ` + 1 is always contained in the
third interval, as the only path from (`+ 1, 0) to (`+ 1, j + 1) goes through (`+ 1, j).)
Formally, there are indexes 0 ≤ i1 ≤ i2 ≤ `+ 1 so that

Bj+1
`+1 (i) =

Bj+1
` (i) + w`+1,j+1

`,j+1 , i ∈ [0, i1),

Bj
` (i) + w`+1,j+1

`,j , i ∈ [i1, i2),

Bj
`+1(i) + w`+1,j+1

`+1,j , i ∈ [i2, `+ 1].

Proof. We first give a quick proof derived from the fact that certain highest scoring
paths need not cross. We then proceed to a formal proof using the Monge property
which will also indicate why the points i1 and i2 should be efficiently computable.
Suppose that a partition as described in Lemma 3.8 was not possible; then there
are two points (0, i) and (0, i′) (i > i′) such that all highest scoring paths from

FINDING ALL APPROXIMATE REPEATS IN STRINGS 981

(`+ 1, j + 1) to (0, i) and from (`+ 1, j + 1) to (0, i′) immediately separate and then
cross. These paths can be combined to obtain a pair of paths (with same score) to
(0, i) and (0, i′) that overlap up to the crossing point and hence do not immediately
separate—a contradiction. The lemma can also be proven formally using the fact that
DIST arrays are Monge arrays, which directly implies that the following monotonicity
properties hold.

Monotonicity properties. For any fixed j < ` and for all i < `, the following
inequalities hold:

1. h difi = Bj+1
` (i)−Bj

` (i) ≥ Bj+1
` (i+ 1)−Bj

` (i+ 1) = h difi+1,

2. v difi = Bj
` (i)−Bj

`+1(i) ≥ Bj
` (i+ 1)−Bj

`+1(i+ 1) = v difi+1,
and (adding the inequalities)

3. d difi = Bj+1
` (i)−Bj

`+1(i) ≥ Bj+1
` (i+ 1)−Bj

`+1(i+ 1) = d difi+1.
The sequences (h difi), (v difi), and (d difi), i = 0 . . . `, are hence nonincreasing.

In addition, d difi = h difi + v difi.
Combining the above definitions of h dif, v dif , and d dif with Observation 3.7,

we obtain that

Bj+1
`+1 (i) = Bj+1

` (i) + w`+1,j+1
`,j+1 iff

{
h difi ≥ w`+1,j+1

`,j − w`+1,j+1
`,j+1 and

d difi ≥ w`+1,j+1
`+1,j − w`+1,j+1

`,j+1 ,

Bj+1
`+1 (i) = Bj

` (i) + w`+1,j+1
`,j iff

{
h difi ≤ w`+1,j+1

`,j − w`+1,j+1
`,j+1 and

v difi ≥ w`+1,j+1
`+1,j − w`+1,j+1

`,j ,

Bj+1
`+1 (i) = Bj

`+1(i) + w`+1,j+1
`+1,j iff

{
v difi ≤ w`+1,j+1

`+1,j − w`+1,j+1
`,j and

d difi ≤ w`+1,j+1
`+1,j − w`+1,j+1

`,j+1 .

Since h difi and d difi are nonincreasing it follows that Bj+1
`+1 (i) = Bj+1

` (i) +

w`+1,j+1
`,j+1 holds in the interval [0, i1) for some i1 ≥ 0. The proof for the other cases is

analogous.
Note that the values i1 and i2 in the lemma are generally not unique, but i1, for

example, can be chosen either as the smallest index for which h difi < w`+1,j+1
`,j −

w`+1,j+1
`,j+1 or d difi < w`+1,j+1

`+1,j −w`+1,j+1
`,j+1 , denoted by imax

1 , or it can be chosen as the

smallest index for which h difi ≤ w`+1,j+1
`,j −w`+1,j+1

`,j+1 or d difi ≤ w`+1,j+1
`+1,j −w`+1,j+1

`,j+1 ,

denoted by imin
1 . Alternatively, i1 can be chosen as any index in [imin

1 , imax
1].

Henceforth we will assume that i1 = imax
1 and i2 = imax

2 .
Lemma 3.9. Tree Bj+1

`+1 can be computed from the trees Bj+1
` , Bj

` , and Bj
`+1 in

O(log `) steps.
Proof. To compute Bj+1

`+1 from the trees Bj
` , B

j+1
` , and Bj

`+1 the first step will
consist of finding the breakpoints i1 and i2 (Lemma 3.8). To do so, we first perform
a search on the trees Bj+1

` and Bj
` , mimicking a binary search on the values h difi =

(Bj+1
` (i)−Bj

` (i)), i = 0 . . . `, to determine i′ the smallest i (if any) for which h difi <

w`+1,j+1
`,j − w`+1,j+1

`,j+1 . Clearly i1 ≤ i′; in fact, if the interval [i1, i2) is not empty then

i1 = i′. This is so because if i1 were less than i′ we would have h difi1 ≥ w`+1,j+1
`,j −

w`+1,j+1
`,j+1 , while d difi1 < w`+1,j+1

`+1,j − w`+1,j+1
`,j+1 . But if [i1, i2) is not empty then

v difi1 ≥ w`+1,j+1
`+1,j − w`+1,j+1

`,j . But since d difi1 = h difi1 + v difi1 , the above three
inequalities cannot all hold, and [i1, i2) not empty implies that i1 = i′. Therefore,
instead of determining the threshold value for d difi, we proceed with a binary search

982 JEANETTE P. SCHMIDT

new tree

edges with new
(cumulative) weight

Fig. 4. The tree Bj+1
`+1

, as pasted together from subtrees of Bj+1
`

(marked A), subtrees of Bj
`

(marked B), and subtrees of Bj
`+1

(marked C) and O(log `) additional nodes.

on v difi = (Bj
` (i) − Bj

`+1(i)), i = 0 . . . `, to find i′′ the smallest i (if any) for which

v dif(i) < w`+1,j+1
`+1,j − w`+1,j+1

`,j . For similar reasons as before, if [i1, i2) is not empty
then i2 = i′′. In addition, if i′′ > i′ then [i1, i2) cannot be empty. Hence if i′′ > i′ we
are done; otherwise the middle interval is empty and i1 = i2. The breakpoint (say i1)
between paths going through (`+1, j) and those going through (`, j+1) is determined
by an additional binary search on d dif(i) = (Bj+1

` (i) − Bj
`+1(i)), i = 0 . . . `, to

determine the smallest i ∈ [0, `] for which d difi < w`+1,j+1
`+1,j − w`+1,j+1

`,j+1 . If no such i
exists, i1 = i2 = `+ 1.

After the points i1 and i2 have been determined, we have to construct the new
tree Bj+1

`+1 . (Generally, the structure of the paths to leafs 0 . . . ` is the same in trees

Bj+1
`+1 and Bj+1

` . The only exception occurs when Bj+1
` is a complete binary tree, in

which case the paths in Bj+1
`+1 have an additional first edge.) Bj+1

`+1 should “contain”

the portion of the tree Bj+1
` to leaves in [0, i1) with additional weight w`+1,j+1

`,j+1 and

should “contain” the portion of the tree Bj
` to leaves in [i1, i2) with additional weight

w`+1,j+1
`,j+1 , as well as the portion of the tree Bj

`+1 to leaves in [i2, `+1] with additional

weight w`+1,j+1
`+1,j . To construct the tree Bj+1

`+1 we start by creating a new root and new
nodes along the path leading to the parent of leaf i1 as well as the path leading to
the parent of i2. All edges on these new paths will carry a label with value 0 (see
Figure 4).

Denote the path to the parent of i1 in Bj+1
`+1 by P1 and the path to the parent of

i2 by P2. To complete the tree Bj+1
`+1 the appropriate subtrees from Bj+1

` , Bj
` , and

FINDING ALL APPROXIMATE REPEATS IN STRINGS 983

Bj
`+1 are attached to P1 and P2, and the edges to these subtrees must be labeled

with the proper weights. Each node on Bj+1
`+1 is in a natural 1-1 correspondence with

a node on Bj
`+1. Let L be the least common ancestor of leaf `+ 1 and leaf ` in Bj

`+1.
With the exception of the nodes on the path from L to leaf `+ 1 all nodes also have
a corresponding node on Bj+1

` and Bj
` . Let x be a node (internal or leaf) in Bj+1

` ,

and let Bj+1
` (x) denote the sum of weights on the path from the root to node x. The

missing left subtrees of P1 are taken from Bj+1
` . The label of the edge from p ∈ P1 to

such a subtree rooted at x is set to Bj+1
` (x)+w((`, j+1), (`+1, j+1)). The missing

right subtrees of P2 are taken from Bj
`+1. The label from p ∈ P2 to such a right

subtree rooted at x is set to Bj
`+1(x) +w((`+ 1, j), (`+ 1, j + 1)). All other subtrees

are taken from Bj
` , and the label of these edges is set to Bj

` (x)+w((`, j), (`+1, j+1)).

Notice that Bj+1
` (x) is only computed for children of nodes lying on the path to leaf

i1, and these values can therefore be computed in O(log `) time. A similar claim holds
for the values Bj

` (x) and Bj
`+1(x) needed in the construction of Bj+1

`+1 . In addition,
each node on P1 and P2 that has a complete binary tree as its left subtree must
compute the sum of the labels of the path to the rightmost child of this left subtree.
Depending on which of the three intervals this child belongs to, this vertex label is
computed (in O(1) amortized time) from the labels on the new tree edges, and the
vertex labels of the corresponding node in trees Bj+1

` , Bj
` , or Bj

`+1. The tree Bj+1
`+1 is

hence constructed in O(log `) time and the weights on its edges and vertices satisfy
the required properties. The construction of the tree B0

`+1 from B0
` is slightly different

(and in fact simpler) and is readily seen to be achievable in O(log `) time. The new
nodes created are those on the path to leaf ` + 1. The trees Bj

0 have one leaf each

and Bj+1
0 is constructed in O(1) time from Bj

0.

We are now ready to summarize the proof of Theorem 3.3.

Theorem 3.3. Given an (m,n) grid graph G with arbitrarily weighted edges, a
representation of the m DIST` matrices can be computed in O(nm logm) time and
O(nm logm) space. Any entry in any one of the DIST` matrices can thereafter be
retrieved in O(log `) time. Retrieving an entire column of DIST` takes only O(1)
time per column entry.

Proof. The representation of DIST` is the collection of subtrees B0
` . . . B

n
` .

DIST`(i, j) corresponds to the weight of the path to leaf Bj
` (i) in tree Bj

` and can
hence be retrieved in O(log `) time. By Lemma 3.9 this collection can be computed
from the collection B0

`−1 . . . B
n
`−1 in O(n log `) steps and O(n log `) space. The m

DIST matrices are hence computed in O(nm logm) time and space. To retrieve
all entries of column c of DIST` it suffices to compute the weight of the paths to
Bc
` (0), Bc

` (2) . . . Bc
` (`), which is readily achieved in O(`) time by traversing the tree

Bc
` .

3.3. Reconstructing the highest scoring paths. Given the properties estab-
lished in section 3.2 it is easy to augment the grid graph with two indices per grid
point enabling one to produce a (reverse) highest scoring path between a given vertex
and any vertex in column 0 in time proportional to the number of vertices on the
path. Each vertex in the grid graph simply records the two threshold values i1 and
i2. To reconstruct a highest scoring path from endpoint (` + 1, j + 1) to a starting
point (i, 0) each vertex on the path (starting with (`+1, j+1)) in turn compares i to
its threshold values and determines the vertex preceding (`+ 1, j + 1) on the highest
scoring path as follows. Whenever i ≥ i2 the previous vertex is (` + 1, j), whenever

984 JEANETTE P. SCHMIDT

i1 ≤ i < i2 the previous vertex is (`, j) and whenever i < i1 the previous vertex is
(`, j + 1), until vertex (i, 0) is reached.

Lemma 3.10. Given the row and column maxima of the matrix DIST`, the score
and endpoint of a highest scoring path from any point on row ` to column 0 and from
any point on column 0 to row ` can be reported in O(1) time. By augmenting each
gridpoint with the two threshold values, these paths can be output in time linear in the
length of the path.

Proof. If the maximum score in row r of DIST` is obtained at DIST`[r, j], then
the highest scoring path from point (r, 0) to row ` in the grid has value DIST`[r, j] and
ends at (`, j). If the maximum score in column r of DIST` is obtained at DIST`[j, r]
then the highest scoring path from point (`, r) to column 0 in the grid has value
DIST`[j, r] and ends at (j, 0). The lemma follows.

We proceed to show in the next section how to compute row and column maxima
efficiently.

3.4. Row maxima in the DIST matrices and proof of Theorem 3.4. In
order to compute the row (or column) maxima of the DIST matrices we could use
the algorithm described in [AKMSW-87]. They showed that if all entries of a Monge
array M can be accessed in O(1) time the m row maxima of M can be computed
in O(n) time (if m < n). In our model each entry is accessible in O(logm) time,
which immediately yields an O(n logm) algorithm for computing all the row (as well
as column) maxima. It turns out that in our model a much simpler and (by a constant
factor) faster algorithm based on a simple binary search that takes advantage of the
fact that some entries can be accessed in O(1) time, also takes O(n logm) time. To
compute the row maxima jc of row c = 2dlog `+1e−1 in O(n) time, we find the minimum
of the n + 1 values B`

j(c), j = 0 . . . n. Note that each B`
j(c) can be accessed in O(1)

time, since c is the rightmost child of the left subtree of the root. The row maxima of
rows i > c must lie in columns ji ≤ jc while those in rows below c will lie in columns
ji ≥ jc. The row maxima for rows i > c can be found in the right subtrees of the
root of the trees Bj

` , j = 1 . . . jc, while the row maxima for rows i < c can be found

in the left subtrees of the trees Bj
` , j = jc . . . n. Furthermore, after traversing (and

adding weights on) a path from the root to a node x, if x is at height r in the tree, the
highest scoring path to the 2r−1st child of x (generally “the middle child” of x) can be
retrieved in O(1) time. The m row maxima can therefore be computed in O(n logm)
time (or O(m+ n logm) if m > n).

The column maxima are computed in a similar (even simpler) fashion, inO(m log n+
n) time.

We can now summarize the proof of Theorem 3.4 and its corollary.

Theorem 3.4. Given an m× n grid graph G with arbitrary weights, all the row
maxima and column maxima of the matrices DIST` for ` ∈ [0,m] can be computed
in O(nm logm) time if m ≤ n (and O(m2 log n) time otherwise).

Proof. Using the algorithm of [AKMSW-87] this follows immediately from the
fact that entries in DIST` can be accessed in O(logm) time. We have also shown
that a simpler algorithm achieves the same complexity. Since the representation of
DIST`−1 need not be kept after the representation of DIST` is completed, the space
requirement is only O(mn).

3.5. Formal presentation of algorithm. Figure 5 gives high level pseudocode
for the computation of the treesBk

` (encoding high scoring paths) and the computation
of the table Col to row max, whose [j, `] entry stores the highest scoring path from
point j on the origin column to row `.

FINDING ALL APPROXIMATE REPEATS IN STRINGS 985

Procedure Compute high scoring paths(M [r0 . . .m, k0 . . . n])
1. for `← r0 to m
2. {for k ← k0 to n
3. { Compute tree Bk

`

4. /* Bk
` encodes the paths from points on column k0 to (k, l) */

5. }
6. Compute all row maxima in DIST` /* these correspond to best paths */
7. /* to row ` from all points (j, k0), j ← r0 . . . ` */
8. and record in (Col to row max[j, `].score, Col to row max[j, `].index)
9. for j ← r0 to `
10. { Output “the best path from point (j, k0) to row ` has a score of
11. Col to row max[j, `].score and ends at Col to row max[j, `].index.”
12. }
13. }

Fig. 5. Computing the highest scoring paths from column k0 to all other points in
M [r0 · · ·m, k0 · · ·m].

4. Identifying tandem repeats. We now show how the above construction
can be used to identify approximate repeats in a string A. We would like to report all
approximate repeats that are “locally optimal” as defined in Definition 2.2 in section 2.

Recall that a tandem repeat (Ai
j , A

t
i) is locally optimal if the best match for Ai

j is

At
i and vice versa. Alternatively, (Ai

j , A
t
i) is locally optimal if a best path from point

(j, i) to row i is to (i, t) and a best path from column i to (i, t) starts from point (j, i).
It immediately follows from the above definition that there are no more than n(n−1)
approximate tandem repeats xy that are locally optimal. (Each substring s of A can
participate in at most two locally optimal repeats, one of the form sy, the other of
the form xs.)

Our algorithm will report the set of locally optimal approximate repeats with
weight above some predetermined threshold T .

All locally optimal approximate tandem repeats with midpoint c correspond to
locally optimal paths in the grid graph that start at column c and end at row c (see
Figure 6).

To identify the repeats we use an algorithm that can be viewed as an adaptation of
the algorithm of [ML-84] to the approximate repeat problem together with the meth-
ods developed in section 3. Observe that all paths in the grid graph that correspond
to approximate repeats either (a) cross column n/2 or (b) cross row n/2 or (c) lie en-
tirely in the upper triangular grid graph delimited by the three points (0, 0), (0, n/2),
(n/2, n/2) or in the triangular grid graph delimited by the three points (n/2, n/2),
(n/2, n), and (n, n) (see Figure 6).

We first find approximate repeats of types (a) and (b) and then recursively apply
the algorithm to the two subcases corresponding to (c).

To find the approximate repeats that cross column n/2 we use the construction of
section 3 twice. First, for each k, we find the highest scoring paths from nodes (k, n/2)
(k = 1 . . . c) to row c, by constructing the trees B1jc (j = n/2 . . . n) and computing
the c row maxima. We compute and record the best path from each point (k, n/2)
to row c in the table Col to row max[k, c], as a pair (s, i), where s is the score of
the highest scoring path to row c and i is the largest index for which the path from
(k, n/2) to (c, i) has score s. (This corresponds to computing the maximum in row

986 JEANETTE P. SCHMIDT

recursive
subproblems

c0 n/2 n

n/2

c

0repeat of
type a)

repeat of
type b)

Fig. 6. The four “types” of repeats examined by the algorithm.

k of DISTc, using a tie breaking rule.) We then use the construction (with minor
modifications) to construct the highest scoring paths (in the grid graph with reversed
edges) from nodes (k, n/2) to (the relevant parts of) columns n/2 . . . 0 by constructing
the trees B2jc (j = 0 . . . c). B2jc(k) is the weight of the highest scoring path from (j, c)
to (k, n/2) and is computed for k ∈ [j · · · c]. We compute and record the best path
from each point (k, n/2) to column c in Col to col max[k, c].

Any approximate repeat whose path crosses column n/2 at (k, n/2) is composed of
two pieces: a highest scoring path from (k, n/2) to row c, and a highest scoring path (in
the grid graph with reversed edges) from (k, n/2) to column c. We have computed and
stored all theseO(n2) values in Col to col max[k, c] and Col to row max[k, c] (for k =
1 . . . n/2 and c = k . . . n/2) in O(n2 log n) time. Combining the two paths we obtain
the best approximate repeat from column c to row c that crosses column n/2 at row k.
We then repeat the above procedure to find “best tandem repeats” whose alignment
path crosses row n/2. Finally we recursively find the repeats that lie entirely in the
upper triangular grid graphs of M [1 · · ·n/2, 1 · · ·n/2] and of M [n/2 · · ·n, n/2 · · ·n].
It is easy to verify that a repeat that is locally optimal will always correspond to such
a “best repeat.” Unfortunately, not all such “best repeats” will correspond to locally
optimal repeats. We address this problem later. Note that the above algorithm will
identify at most O(n2) candidate repeats that cross column n/2 (and O(n2) repeats
that cross row n/2). The time taken to identify these candidates is O(n2 log n). The
algorithm then proceeds recursively as outlined in Figure 6 to find repeats that are
contained in the two triangular grid graphs of size n/2. This yields an algorithm
of complexity T (n) = O(n2 log n) + 2T (n/2), which gives T (n) = O(n2 log n). The
number of candidate repeats identified is at most C(n) = O(n2) + 2C(n/2), which is
O(n2).

Figure 7 summarizes how the above-described candidate set is constructed. The
“highest scoring tandem repeat” corresponds to the element with maximum score in
this set. A slightly modified Compute High Scoring paths procedure (from Figure 5) is
used in Figure 7 for each of the following four computations. To compute the highest
scoring paths: (a) from points on the origin column c0 to rows r0 . . . r0+t we will refer
to Compute High Scoring paths col to row and store the best path from (p, c0) to row

FINDING ALL APPROXIMATE REPEATS IN STRINGS 987

r in Col to row max[p, r]; (b) for the highest scoring paths (in the reverse graph)
from points on the origin column c0 to columns c0 . . . c0 − t we will refer to Com-
pute High Scoring paths col to col and store the best path from (p, c0) to column c in
Col to col max[p, c]; (c) for the highest scoring paths from points on the origin row r0
to rows r0 . . . r0 + t we will refer to Compute High Scoring paths row to row and store
the best path from (r0, k) to row r in Row to row max[k, r]; finally, to compute the
highest scoring paths from points on the origin row r0 to columns c0 + t . . . c0 we will
call Compute High Scoring paths row to col and store the best path from (r0, k) to col-
umn c in Row to col max[k, c]. Note that the procedure Compute High Scoring paths
in Figure 5 corresponds to Compute High Scoring paths col to row.

Procedure Construct Candidates(r0, n0)
1. k0 ← (n0 + r0) div 2
2. Compute High Scoring paths col to row(M [r0 . . . k0, k0 . . . n0])
3. Compute High Scoring paths col to col(M [r0 . . . k0, r0 . . . k0])
4. for p← r0 to k0 /* find repeats crossing (p, k0) */
5. for r ← p to k0

6. {(score1, indxc) ← Col to row max[p, r]
7. (score2, indxr) ← Col to col max[p, r]
8. s← score1 + score2 /* s is score of best repeat with midpoint r

going through (p, k0) */
9. Add 〈(indxr, r), (r, indxc), s〉 to Candidate set
10. /* 〈(indxr, r), (r, indxc), s〉 represents the path from (indxr, r)

to (r, indxc) with score s */
11. }
12. Compute High Scoring paths row to row(M [k0 . . . n0, k0 . . . n0])
13. Compute High Scoring paths row to col(M [r0 . . . k0, k0 . . . n0])
14. for p← k0 to n0 /* find repeats crossing row k0 */
15. for r ← k0 to n0

16. {(score1, indxr) ← Row to row max[p, r]
17. (score2, indxc) ← Row to col max[p, r]
18. s← score1 + score2 /* s is score of best repeat with midpoint r

going through (k0, p) */
19. Add 〈(indxr, r), (r, indxc), s〉 to Candidate set
20. /* 〈(indxr, r), (r, indxc), s〉 represents the path from (indxr, r)

to (r, indxc) with score s */
21. }
22. Construct Candidates(r0, k0)
23. Construct Candidates(k0, n0)
24. 〈(indxr, c), (c, indxc), s〉 ← element with maximum score in Candidate set
25. Output “a best repeat is given by path from (indxr, c) to (c, indxc) with score s”;

Fig. 7. Computing the highest scoring repeat.

Although the candidate set certainly contains the set of all locally optimal repeats
above the threshold score, it may also contain approximate repeats that are not locally
optimal. The simplest such case occurs when two repeats x, y and x, y′ (or x′, y) are
reported, in which case only one can be locally optimal. A trickier case occurs when
the repeat x, y was reported, and there is a repeat x′, y (x is a suffix of x′) with higher

988 JEANETTE P. SCHMIDT

score which was, however, not reported because a repeat x′, y′ was detected with even
higher score. By simply examining the candidate repeats it is not possible to detect
whether x, y is indeed locally optimal. We proceed to show how to determine whether
a given candidate repeat is locally optimal.

4.1. Detecting locally optimal repeats. All repeats in this section will refer
to repeats with the same midpoint c, i.e., repeats corresponding to highest scoring
paths from column c to row c. As discussed in section 2, to show that a tandem repeat
corresponding to a highest scoring path from (i, c) to (c, j) is locally optimal, it suffices
to show that the highest scoring path from (i, c) to row c ends at (c, j) and that the
highest scoring path from (c, j) to column c (in the transposed graph) ends at (i, c).
Suppose that the path from (i, c) to (c, j) was reported in the previous algorithm and
that this path crosses column n/2 at row k. This path has the property that it is the
highest scoring path from (i, c) to row c through point (k, n/2) and the highest scoring
path from (c, j) column c through (k, n/2). The above path corresponds to a locally
optimal repeat if and only if the highest scoring path from (i, c) to row c indeed goes
through (k, n/2) and so does the highest scoring path from (c, j) to column c.

Consider the following highest scoring paths matrices R1
n/2
c and R2

n/2
c for re-

peats with midpoint c that cross column n/2. R1
n/2
c [k, j] is the weight of the repeat

corresponding to the highest scoring path from column c through point (k, n/2) to

(c, j), while R2
n/2
c [k, i] is the weight of the highest scoring path from (i, c) through

(k, n/2) to row c. “The best repeat” through column n/2 ending at (c, j) corre-

sponds to the maximum value in column j of the matrix R1
n/2
c , while the best repeat

through column n/2 starting at (i, c) corresponds to the maximum value in column i

of R2
n/2
c . Given Col to col max[c, k] and the trees B1c (resp., Col to row max[c, k]

and B2c) we can compute a given value in the matrix R1
n/2
c (resp., R2

n/2
c) in

O(log n) time, by observing that R1
n/2
c [k, j] = Col to col max[c, k] + B1jc(k) and

R2
n/2
c [k, i] = Col to row max[c, k] + B2ic(k). B1jc(k) (resp., B2ic(k)) is computable

in O(log n) time by traversing the path from the root to leaf k in tree B1jc (resp.,
B2ic(k)).

Note that R1
n/2
c and R2

n/2
c have the same properties as a DIST array and are

therefore Monge arrays. To compute all the column maxima of the matrices R1
n/2
c and

R2
n/2
c we could use the algorithm given in [AKMSW-87]. Alternatively, we can again

also use a simpler algorithm, by taking advantage of the fact that if accessed in the

right order, entries of R1
n/2
c and R2

n/2
c can be accessed in O(1) time. Let j0 = 3n/4

be the index of the middle element in the relevant portion of row c. We can find the
maximum (over k) of Col to col max[c, k] + B1j0c (k) in O(n) time (by accessing all
the values in the tree B1j0c). If this maximum is obtained at point (k0, n/2) then the
maxima for j < j0 will be at points (k, n/2), with k ≥ k0, and those for j > j0 will
be at points (k, n/2), with k ≤ k0. This clearly gives an O(n log n) time algorithm

for finding all the column maxima in R1
n/2
c , and hence the total time to compute

the column maxima in all matrices R1
n/2
c , c = 1 . . . n/2, is O(n2 log n). The column

maxima in the matrices R2
n/2
c are computed in the same manner.

Notice that if the computation is to use no more than O(n2) space we would first
compute the O(n2) values Col to row max[c, k] and Col to col max[c, k] (as well as
those in Row to row max[c, k] and Row to max max[c, k]). At this point the “best
tandem repeat” crossing row n/2 and column n/2 has been determined. We then
recompute the trees Bj

c to determine the column maxima of R1 and R2 to find all

FINDING ALL APPROXIMATE REPEATS IN STRINGS 989

locally optimal repeats. The computation then recursively continues as shown in
Figure 7 (lines 22 and 23).

Throughout the computation each point (c, r) will remember the best repeat
(above the threshold) ending at (c, r) found so far, by setting S[c, r] = j and setting
T [c, r] to the weight of the path from (j, c) to (c, r). Similarly, each point (j, c) will
also record the best repeat starting at (j, c) found so far, by setting E[j, c] = r and
setting T [j, c] to the weight of the path from (j, c) to (c, r). (Each gridpoint will hence
store exactly two pairs of values, corresponding to the best repeat starting at that
point and the best repeat ending at that point.) A repeat corresponding to a path
from (j, c) to (c, r) will be reported at the end of the algorithm if E[j, c] = r and
S[c, r] = j.

5. Locally optimal nontandem repeats. As mentioned in the introduction,
[KM-93] have addressed the problem of finding the (not necessarily adjacent) nonover-
lapping repeat in a string. Their algorithm takes O(n2 log2 n) time. Our algorithm
can easily be modified to address this problem as well, and can report all locally
optimal repeats as defined in section 3.

The algorithm described in section 4, modified as described below, can be used
to identify such repeats.

1. In addition to computing the highest scoring path from point (k, n/2) to row
c (resp., column c), one also computes the highest scoring path from (k, n/2)
up to row c (resp., column c). This is easily done by simply computing
the maximum of Col to row max[k, c′] (resp., Col to col max[k, c′]) over all
c′ ≤ c. The best nontandem repeat through (k, n/2) starting at (i, c) is then
the highest scoring path from (i, c) to (k, n/2) followed by the highest scoring
path from (k, n/2) to a row c′ ≤ c.

2. In addition to repeats that cross column n/2 and those that cross row n/2,
and the recursive subproblems, one also needs to examine repeats that cor-
respond to paths that lie entirely in the subgrid delimited by points (0, n/2),
(0, n), (n/2, n), and (n/2, n/2); see Figure 6. For each point (i, j) in this
square subgrid we need to find the highest scoring path starting anywhere
in this subgrid and ending at (i, j). Note that this corresponds to a local
alignment of the first half of the string with the second half. This can hence
be easily achieved by running a forward and backward dynamic programming
as explained in section 2.

A nontandem repeat corresponding to a path from (i, j) to (i′, j′) is reported,
after all iterations are completed, if E[i, j] = (i′, j′) and S[i′, j′] = (i, j). Note that
the number of locally optimal nontandem repeats is also bounded by O(n2).

6. Grid graphs corresponding to edit graphs with unit weights. In this
section we show how to efficiently use the methods of section 3 in a restricted scoring
scheme. Two types of edit graphs with unit weights have been extensively studied
in the literature. The first type corresponds to the Levenshtein measure [L-66]; in
this measure matching symbols score 0, while substitutions/deletions score 1. This
measure has been proven to provide combinatorial leverage not found in other scoring
schemes when seeking alignments with a weight below a given threshold k, for example,
in [LV-88], [My-86], [LS-93], and [LMS-94]. A seemingly similar but in fact much
more sensitive measure is obtained when deletions and substitutions have (constant)
weight −S, for some integer S, and matching symbols have (constant) integer weight
M (typically for very small integers S and M), and a maximum cost alignment is
sought. A maximum weight alignment in this second model will favor long alignments

990 JEANETTE P. SCHMIDT

with k deletions/substitutions over short alignments with (say) the same number of
substitutions; in particular, alignments with a score above 0 will have a fraction of

S
M+S matching symbols.

The methods developed in section 3 can be modified to compute some represen-
tation of the matrices DIST`, ` = 1 . . . ,m, of an (m,n) grid graph in O(mn) time.
In the current special case a representation of DIST` can be computed in O(n) time,
when given an appropriate representation of DIST`−1. The representation will allow
us to augment the grid graph as outlined in section 3.3, so that any highest scoring
path can be produced in time proportional to its length. However, general queries
about the score of a highest scoring path will also require O(n) time and hence will
require as much time to be answered as it takes to produce the path itself. We will
show that this limited capability, while not yielding a faster algorithm for the approx-
imate repeat problem, does yield a faster algorithm for the cyclic string comparison
(defined in the next subsection).

It is easy to see that if all horizontal and vertical edges in a grid graph have weight
−S, and diagonal edges have weight M or −S, then DIST`[i, j+1] ≥ DIST`[i, j]−S
and DIST`[i, j] ≥ DIST`[i, j+1]−S−M . It immediately follows that DIST`[i, j+1]−
DIST`[i, j] assumes integer values in [−S, S+M]. Similarly, it is not hard to see that
DIST`[i, j]−DIST`+1[i, j] assumes integer values in [−S−M,S]. Instead of actually
computing the values DIST`[i, j], i = 1 . . . `, we will only compute the differences
DIST`[i, j + 1] − DIST`[i, j], i = 1 . . . `, and DIST`[i, j] − DIST`+1[i, j], i = 1 . . . `.
Since these differences assume at most 2S +M = O(1) values and are nonincreasing
for i ∈ [0,m], they can be represented as a list of O(1) elements I0, I1, . . . , IP , P =
2S+M+1, such that (DIST`[i, j+1]−DIST`[i, j]) = −S+j in the interval [Ij , Ij+1).

Theorem 6.1. Given a grid graph G with edge weights in {−S,M} (for integer
values M and S) and in which all horizontal and vertical edges have weight S, the row
maxima and column maxima of the matrix DISTn can be computed in O(nm) time.

Proof (sketch). Let i′ be the smallest i ∈ [0, `] for which DIST`[i, j + 1] − S <

DIST`[i, j] + w`+1,j+1
`,j , or ` + 1 if there is no such i. Let i′′ be the smallest i ∈ [0, `]

for which DIST`[i, j] + w`+1,j+1
`,j < DIST`+1[i, j] − S, or ` + 1 if there is no such i.

If i′′ ≥ i′ then let i1 = i′ and i2 = i′′. Otherwise let i2 be the smallest i for which
DIST`[i, j + 1]−DIST`+1[i, j] < 0, and set i1 = i2.

Given the intervals in which DIST`[i, j + 1] − DIST`[i, j] is constant and the
intervals in which DIST`[i, j] − DIST`+1[i, j] is constant, the values i1 and i2 can
clearly be computed in O(1) time. Given these values we can, as in the case of
general weight matrices, break down the general recurrence from Observation 3.7 into
the following three cases.

DIST`+1[i, j + 1] =

DIST`[i, j + 1]− S, i ∈ [0, i1),

DIST`[i, j] + w`+1,j+1
`,j , i ∈ [i1, i2),

DIST`+1[i, j]− S, i ∈ [i2, `+ 1].

Note, however, that the above equalities cannot be used directly to actually com-
pute DIST`+1[i, j+1], as DIST`[i, j+1] is not directly available; only the differences
DIST`[i, j+1]−DIST`[i, j] and DIST`[i, j]−DIST`+1[i, j] are available, which was
sufficient for computing the breakpoints i1 and i2. From the above equalities, given
the differences DIST`[i, j + 1] − DIST`[i, j], DIST`[i, j] − DIST`+1[i, j], the differ-
ences DIST`[i, j + 1] −DIST`+1[i, j] and DIST`+1[i, j] −DIST`+1[i, j] can now be
computed in O(S +M) = O(1) time (for each point (`+ 1, j + 1)). In addition, each
node (`+ 1, j + 1) in the grid can be augmented as in section 3.3 with the threshold

FINDING ALL APPROXIMATE REPEATS IN STRINGS 991

values i1 and i2 that indicate whether the highest scoring path to (i, 0) for a given
i is to go through (`, j + 1), (`, j), or (` + 1, j). After computing the above repre-
sentation of the matrix DIST` from DIST`−1, one could compute all values in that
matrix in O(`n) time. and at the same time compute all the row and column maxima.
Alternatively, one could compute the values in any row i in O(n) time. Note that
DIST [i, 0] = (m− i)S for any i. We can hence compute the n values in this row from
the differences DISTm(i, j + 1)−DISTm(i, j) in O(n) time.

6.1. Application to the cyclic string comparison problem. Given two
strings A and B the cyclic string comparison problem consists of finding the cyclic
shift of A which can be best aligned with B. Formally, if B = B1 . . . Bn, we wish
to find the i for which the optimal alignment of A = Ai, Ai+1, . . . Am, A1, . . . Ai−1

with B1, . . . Bn gives the best score. For general weight matrices, this problem was
addressed in [Ma-90] where an O(mn logm) algorithm was presented. The techniques
in [AALM-90] result in a parallel algorithm for that problem. [LMS-94] have shown
how to solve the cyclic string comparison problem under the Levenshtein measure in
O(n+km) time provided that the cost of the best alignment is bounded by k. Here we
consider the problem when all values in the weight matrix are restricted to an interval
[−S,M] for positive constants S and M . The cyclic string comparison problem can
be reduced to the following highest scoring paths problem. Consider computing the
(2m×n) grid graph of the comparison of the string AA (A concatenated with A) with
B. Consider the matrix DISTm of that grid graph. The weights of the best alignments
of the cyclic shifts of A with B are given by the values DISTm+i[i, n], i = 0 . . .m− 1.
After computing the representation of the DIST matrices described in the previous
section in O(mn) time, each value DISTm+i[i, n] can be computed in O(n) time. The
cyclic shift of A that best matches B and its alignment with B can hence be produced
in O(mn) time.

7. Conclusions. The algorithms presented in this paper allow the quick com-
putation of certain highest scoring paths in grid graphs. We have given two string
matching applications in which such paths can help solve interesting sequence com-
parison problems, while improving upon previous algorithms by a factor of O(log n).
It would be interesting to find additional applications for these methods. An interest-
ing question that remains open is whether approximate repeats can be found quicker
in the simple scoring schemes considered in the last section.

Acknowledgments. I would like to thank Dina Kravets and Gad Landau for
discussions on the subject, and Raffaele Giancarlo for valuable comments on an earlier
version of this manuscript.

REFERENCES

[AALM-90] A. Apostolico, M. Atallah, L. Larmore, and S. McFaddin, Efficient parallel
algorithms for string editing problems, SIAM J. Comput., 19 (1990), pp. 968–
988.

[AKMSW-87] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric appli-
cations of a matrix-searching algorithm, Algorithmica, 2 (1987), pp. 195–208.

[AP-88] A. Aggarwal and J. Park, Notes on searching in multidimensional monotone
arrays, in Proc. 29th IEEE Symp. on Foundations of Computer Science, 1988,
pp. 497–512.

[AP-83] A. Apostolico and F. P. Preparata, Optimal off-line detection of repetitions in
a string, Theoret. Comput. Sci., 22 (1983), pp. 297–315.

992 JEANETTE P. SCHMIDT

[B-94] G. Benson, A space efficient algorithm for finding the best non-overlapping align-
ment score, in Proc. Fifth Ann. Symp. on Combinatorial Pattern Matching,
Lecture Notes in Computer Science 807, Springer-Verlag, New York, 1994,
pp. 1–14.

[C-81] M. Crochemore, An optimal algorithm for computing repetitions in a word, In-
form. Process. Lett., 12 (1981), pp. 244–250.

[EG-92] D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano, Sparse dynamic pro-
gramming II: Convex and concave cost functions, J. Assoc. Comput. Mach.,
39 (1992), pp. 546–567.

[EGa-92] D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano, Sparse dynamic pro-
gramming I: Linear cost functions, J. Assoc. Comput. Mach., 39 (1992),
pp. 519–545.

[ES-83] B. W. Erickson and P. H. Sellers, Recognition of patterns in genetic sequences,
in Time Warps, String Edits, and Macromolecules: The Theory and Practice
of Sequence Comparison, D. Sankoff and J. B. Kruskal, eds., Addison-Wesley,
Reading, MA, 1983, pp. 55–91.

[H-88] X. Huang, A lower bound for the edit-distance problem under arbitrary cost func-
tion, Inform. Process. Lett., 27 (1988), pp. 319–321.

[KM-93] S. K. Kannan and E. W. Myers, An algorithm for locating non-overlapping re-
gions of maximum alignment score, in Proc. Fourth Ann. Symp. on Combi-
natorial Pattern Matching, Lecture Notes in Computer Science 684, Springer-
Verlag, New York, 1993, pp. 74–86.

[L-66] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions and
reversals, Soviet Phys. Dokl., 10 (1966), pp. 707–710.

[LMS-94] G. Landau, G. Myers, and J. Schmidt, Incremental string comparison, SIAM J.
Comput., 27 (1998), to appear.

[LS-93] G. M. Landau and J. P. Schmidt, An algorithm for approximate tandem repeats,
in Proc. Fourth Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes
in Computer Science 684, Springer-Verlag, New York, 1993, pp. 120–133.

[LV-88] G. M. Landau and U. Vishkin, Fast string matching with k differences, J. Comput.
System Sci., 37 (1988), pp. 63–78.

[M-92] W. Miller, An Algorithm for Locating a Repeated Region, manuscript.
[Ma-90] M. Maes, On a cyclic string-to-string correction problem, Inform. Process. Lett.,

35 (1990), pp. 73–78.
[ML-84] M. G. Main and R. J. Lorentz, An O(n logn) algorithm for finding all repetitions

in a string, J. Algorithms, 5 (1984), pp. 422–432.
[My-86] E. Myers, An O(ND) difference algorithm and its variations, Algorithmica, 1

(1986), pp. 251–266.
[SW-81] T. F. Smith and M. S. Waterman, Identification of common molecular subse-

quences, J. Molecular Biol., 147 (1981), pp. 195–197.
[WE-87] M. S. Waterman and M. Eggert, A new algorithm for best subsequence alignment

with application to tRNA-rRNA comparisons, J. Molecular Biol., 197 (1987),
pp. 723–728.

BOUNDING THE POWER OF PREEMPTION IN RANDOMIZED
SCHEDULING∗

RAN CANETTI† AND SANDY IRANI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 993–1015, August 1998 005

Abstract. We study on-line scheduling in overloaded systems. Requests for jobs arrive one by
one as time proceeds; the serving agents have limited capacity and not all requests can be served.
Still, we want to serve the “best” set of requests according to some criterion. In this situation,
the ability to preempt (i.e., abort) jobs in service in order to make room for better jobs that would
otherwise be rejected has proven to be of great help in some scenarios.

We show that, surprisingly, in many other scenarios this is not the case. In a simple, generic
model, we prove a polylogarithmic lower bound on the competitiveness of randomized and preemptive
on-line scheduling algorithms. Our bound applies to several recently studied problems. In fact, in
certain scenarios our bound is quite close to the competitiveness achieved by known deterministic,
nonpreemptive algorithms.

Key words. randomized algorithms, scheduling, preemption, lower bounds

AMS subject classifications. 68M10, 68M20, 90B12

PII. S0097539795283292

1. Introduction. Scheduling problems pervade many aspects of system design
and management. Consider, for instance, the following problems.

(a) A system with several processors is assigned jobs of varying duration and load,
where each job is to be performed on a single processor. The jobs arrive one by one
and each job must be assigned to a processor before the next job is known. The goal
is to assign the jobs to processors “in the best possible way.”

(b) A set of gateways connects a network of computers to a set of peripheral
devices. At any point in time, a node in the network may request a connection to
a particular type of device for some period of time. The bandwidth required for the
different connections vary. The goal is, again, to assign connections to gateways “in
the best possible way.”

(c) A communication network with guaranteed bandwidth policy (e.g., asyn-
chronous transfer mode (ATM) [23]) services many different types of traffic. Requests
for connections between nodes in the network arrive and depart through time. The
durations, priorities, and bandwidth requirements of connections vary (e.g., e-mail,
video, etc.). Connections should be allocated bandwidth and routed “in the best
possible way.”

A prominent characteristic of all these scenarios is that the scheduling algorithm
learns about the incoming requests as they enter the system one by one, and must
decide how to handle each task without knowledge of future tasks. Any such algorithm
which must make decisions without complete knowledge of the entire input sequence
is said to be an online algorithm.

∗Received by the editors March 20, 1995; accepted for publication (in revised form) May 2, 1996;
published electronically May 18, 1998.

http://www.siam.org/journals/sicomp/27-4/28329.html
†T. J. Watson Research Center, Yorktown Heights, New York (canetti@watson.ibm.com). This

author was supported by American-Israeli Binational Science Foundation grant 92-00226.
‡Department of Information and Computer Science, University of California, Irvine, CA 92717

(irani@ics.uci.edu). This author was supported in part by NSF grants CCR-9309456 and GER-94-
50142.

993

994 RAN CANETTI AND SANDY IRANI

Two natural optimization problems arise from these and other related scenarios.
First, we may assume that all requests will be served and aim at minimizing the
maximum load on any serving agent (e.g., processor, gateway, link) at any point in
time. We call this problem load balancing. Alternatively, we may consider a situation
where the capacity of the system is limited and not all requests can be served. Here
the goal is to schedule the subset of requests with maximum value according to some
criterion. We call this problem admission control. Both optimization problems have
been studied in several models. The load balancing problem emerging from example
(a) above is an old problem introduced in [14] and extensively studied since [1, 6, 9, 16].
The admission control problem emerging from this example is studied in [10, 11, 22].
The load balancing problem emerging from example (b) is studied in [5, 7] and from
example (c) in [1]. The admission control problem emerging from example (c) has
been extensively studied (e.g., [2, 3, 12, 13, 8]). In this work we address admission
control problems. (We refer the reader to [10] for an exposition of the importance of
admission control.)

A natural question in such scenarios has to do with the power of preemption. The
ability to alter previous decisions in certain ways has proven to be very powerful (say,
when algorithms are allowed to reassign a job to a different server at some cost [20,
19, 15]). We address the following notion of preemption, natural in limited capacity
scenarios. We allow a job to be aborted in the middle of execution in order to make
room for a more valuable job that would otherwise be rejected. However, no credit
is accrued for uncompleted jobs. Preempting jobs in the middle of execution may
be problematic in some scenarios (say, when service is guaranteed upon admission).
In other scenarios, preemption seems to be acceptable and even very helpful (say, in
systems that support real-time jobs, e.g., [21]).

It has been demonstrated that an appropriate use of preemption helps consider-
ably to enhance the throughput in certain settings [8]. We study the following question.
To what extent can the ability to preempt jobs enhance the performance in more gen-
eral cases (e.g., when the criteria for performance are different, or when the setting is
different)?

We provide some surprising answers to this question by demonstrating that pre-
emption does not help much (if at all) in a large variety of on-line admission control
problems. First we consider a generic model for on-line admission control. In this
model we show a lower bound on the competitiveness of any randomized, preemptive
on-line scheduling algorithm. This bound applies, via several reductions, to a large
variety of models, and in particular to the admission control problems emerging from
the three examples above. We elaborate on the different scenarios where our result
applies in section 1.1.

We describe our generic model. A server is given a sequence of job requests,
arriving one by one as time proceeds. The server can serve only one job at a time.
Each job is characterized by its arrival time, its duration (known upon arrival), and
its value. A job has to be either rejected or served immediately for the specified
duration. The server can preempt (i.e., abort) jobs in service. The value gained
from a sequence is the sum of the values of completed jobs. No value is gained for
preempted jobs. We consider randomized scheduling algorithms (or schedulers). A
scheduler is f -competitive if for any sequence S of jobs the value gained by the best
(off-line) schedule on S, divided by the value gained by the online scheduler on S,
is at most f . Note that f may be a function of the request sequence, rather than a
constant. In this model, we prove the following bound.

PREEMPTION IN RANDOMIZED SCHEDULING 995

Theorem 1. Any randomized, preemptive scheduler has a competitive ratio of at
best

1

10

√
logµ

log logµ
,

where µ is any of the following two measures:
(i) µ = µv, the ratio between the largest and smallest values of a job in the request

sequence;
(ii) µ = µd, the ratio between the largest and smallest durations of a job in the

request sequence.
We actually prove a stronger fact than suggested by the theorem: for any ran-

domized preemptive scheduler A and for any µ, we construct a sequence S which
simultaneously satisfies µd(S) ≤ µ and µv(S) ≤ µ, such that the competitiveness of
A on S is 1/10

√
logµ/ log logµ. An identical bound applies also to scenarios where

more than one job can be served at a time. In section 5 we describe a simple, ran-
domized, preemptive O(log(min{µd, µv}))-competitive scheduler in our generic model,
thus demonstrating that our bound is at most a roughly quadratic factor from opti-
mality.

Many previously studied scheduling problems can be reduced to this generic
model. In particular, our bound applies to the setting in which Awerbuch, Azar, and
Plotkin show a scheduler with competitiveness logarithmic in µd and µv [2]. Their
scheduler is both deterministic and nonpreemptive. Thus, in their setting, the com-
bined power of randomization and preemption results in at most a roughly quadratic
improvement. (We note, however, that the scheduler in [2] does not apply to the
setting of Theorem 1.)

Our proof of the bound is nontrivial and occupies most of this paper. It involves
techniques which we believe are of independent interest. For each randomized sched-
uler, we construct a request sequence on which the scheduler performs poorly relative
to the best strategy. We stress that the sequence is fixed for this scheduler; that
is, the sequence does not change in different runs of the scheduler. The sequence is
constructed one request at a time via an interaction with the scheduler, A. Each next
request is generated based on the probability distribution of the job that A currently
has in service. More specifically, at each step we keep a set of threshold values. We
generate the next request depending on whether the probability that A has some spe-
cific job in service is above or below one of the thresholds. Our adversarial strategy is
a randomized adaptation of a simple deterministic lower bound. Our technique may
prove useful in transforming similar deterministic lower bounds into randomized ones.

1.1. Applications of the bound. We describe how our lower bound applies
to several recently studied admission control problems. In section 4 we formally state
and prove these applications.

Consider the setting of example (a) above. A system consists of a set of processors,
each with limited capacity. Jobs of varying load, duration, and value arrive through
time, each with a deadline. At all times the sum of the loads of the jobs in service on
a given processor must not exceed its capacity. A scheduler must decide which jobs to
execute (and on which processor) in order to complete the set of jobs with the largest
total value before their deadlines. Via a simple reduction, our lower bound applies
to this setting, with any number of processors, where µ is either µd or µv. A lower
bound of Ω(

√
µv) on the competitive ratio of any deterministic preemptive scheduler

996 RAN CANETTI AND SANDY IRANI

is shown in [11, 18], where the value of a job is arbitrary. However, their bound does
not apply to randomized schedulers. Our bound holds even for the cases where:

(1) a single job cannot occupy more than a predefined fraction δ of the capacity,
for any δ > 0 (see Corollary 1);

(2) each job has a value equal to its duration, as opposed to having an arbitrary
value;

(3) all jobs have the same value.
In the last two cases, the bound holds with respect to µd and µl, where µl is the
ratio of largest to smallest load of a job in the input sequence. (See Corollaries 2
and 3.) Surprisingly, our bound does not apply when the value of each job equals its
load times its duration. In fact, constant competitive algorithms exist in this case
[10, 11, 22, 17, 18, 8]. We suggest an explanation for this phenomenon below.

We note that example (b) given at the beginning of the introduction is a general-
ization of this multiprocessor scheduling problem. The bound applies, yielding similar
results.

Next we address call control and virtual circuit routing problems. Here we have
a communication network with guaranteed bandwidth policy in which the links have
limited capacities. Requests for connections (or calls) arrive through time, where each
call has its source and destination nodes, as well as duration, bandwidth requirement,
and value. The scheduler must route accepted calls within the capacity limitations
of the links; that is, the sum of the bandwidth of calls using each link must be at all
times less than its capacity.

Awerbuch, Azar, and Plotkin show a deterministic, nonpreemptive O(logµ)-
competitive scheduler in this model, where µ = µd · µv · n and n is the number
of nodes in the network [2]. They also show that this is the best that any determin-
istic, nonpreemptive scheduler can achieve. Their scheduler has the drawback that
every job is constrained to require bandwidth at most 1/ logµ of the capacity of any
edge. Awerbuch et al. remove this constraint for networks with a tree topology via
a randomized, nonpreemptive scheduler [3]. Awerbuch et al. improve the bounds for
trees and give randomized, nonpreemptive schedulers for meshes [4].

Garay and Gopal initiated the study of preemptive call control in [12]. They show
constant competitive preemptive schedulers for simple networks and value functions.
Garay et al. show competitive schedulers on a single link and a line network, for the
special case that at most one call can be accommodated on any link, and for several
specific ways for determining the value of a call [13]. Bar-Noy et al. generalize their
results by showing constant competitive schedulers on a single link when the value of
a call is the bandwidth times the duration and every call has a bandwidth requirement
which is at most a limited fraction of the capacity of the link [8]. Their strategies
apply also to line networks if all calls have infinite durations. (Here the bandwidth
times the duration of a call reflects the “amount of information” contained in the call.
Thus, preemption helps when the quantity to be maximized is the throughput of the
link.)

We provide a lower bound of 1/10
√

logµ/ log logµ on the competitiveness of
any preemptive, randomized scheduler for any network, when the value of a call is
arbitrary. The bound holds even when a single call cannot occupy more than a
predefined fraction δ of the link capacity (for any δ > 0), and even if the value of a
call is its duration or if all calls have the same value (see Corollary 4).

Furthermore, if the network has no cycles then the bound applies with µ =
min{µd, D}, where D is the diameter of the network. In this case, the bound holds

PREEMPTION IN RANDOMIZED SCHEDULING 997

even when the value of a call equals the duration times bandwidth, or the distance
from source to destination, or the distance times duration, or the distance times
duration times bandwidth (see Corollary 6).

We suggest the following explanation of this “dichotomy.” The bandwidth times
duration measures the “amount of information” contained in a call, whereas the band-
width times duration times distance measures the “work” invested in a call. It can
thus be said that, in the single link case, when the value of a job is directly propor-
tional to the information contained in it then the bound does not apply and constant
competitive algorithms exist. If the value of a job is determined in any other way
then the bound applies. In more complex networks (even in a line of links), the
bound applies even when the value of a call is directly proportional to the amount of
information, or to the work invested.

Organization. In section 2 we formally define our generic model. In section 3
we state and prove the basic lower bound as stated in Theorem 2. (In section 3.1 we
first prove a weaker version of the bound; the proof of this weaker version is simpler
and offers intuition for the proof of the full bound.) In section 4 we state and prove
several corollaries of the bound. In section 5 we demonstrate the tightness of the
bound by sketching a scheduler in our model, with logarithmic competitiveness.

2. The model. We formalize the generic model described in the Introduction.
A server is given a sequence of job requests, arriving one by one as time proceeds.
We assume that time is discrete, although several requests may arrive at a single time
unit. The server can serve at most one job at a time. Each job c is characterized by its
arrival time tc, its duration dc (known upon arrival), and its value vc. The scheduling
of jobs is subject to the following rules. A job has to be either served immediately
for the specified duration or rejected. The server can preempt (i.e., abort) a job in
service. The server accrues an additive gain of vc for each completed job c. No gain
is accrued for preempted jobs.1

A sequence S = c1, . . . , cn of job requests is timely if tci ≥ tcj for every i > j.
Say that S is feasible if no two jobs intersect in time; that is, for no i 6= j we have

ti < tj < ti + di. The gain of S is G(S)
4
=
∑

c∈S vc. The optimal feasible gain of S is
O(S) = max{S′⊆S|S′ feasible}G(S′), where S′ ⊆ S means that S′ is a subsequence of
S.

For a scheduling algorithm A, let A(S, r) ⊆ S be the sequence of jobs completed
by A on sequence S and random input r. Algorithm A is a valid scheduler if whenever
S is timely, A(S, r) is feasible for all r.

Definition 1. Let µ1(·), . . . , µt(·) be a set of measure functions from request
sequences into the reals. A scheduler A is f -competitive with respect to µ1(·), . . . , µt(·)
if for all large enough m and for all timely sequences S with maxti=1{µi(S)} ≤ m we
have

f(m) ≥ O(S)

Er(G(A(S, r)))
,

where Er(G(A(S, r))) denotes the expected value of G(A(S, r)) when r is uniformly
chosen from the set of random inputs of A. We stress that the sequence S does not
depend on the random choices of A (i.e., using standard terminology, the adversary
is oblivious).

1It may be helpful to visualize each job c as a rectangle with length dc and height vc/dc; the
rectangle is located on the number line so that its left edge is at point tc. The area of the rectangle
is vc. Thus the goal is to maximize the total area of completed jobs. See Figure 3.1.

998 RAN CANETTI AND SANDY IRANI

We sometimes use EGA(S) to shorthand Er(G(A(S, r))). We also say that
O(S)

EGA(S) is the competitive ratio of A on sequence S. Below we use the following

simple observation. For a sequence S, a scheduler A, and a job c ∈ S, let Ic denote
the binary random variable having value 1 iff job c is completed in a run of A on S.
Then,

Er(G(A(S, r))) = Er

(∑
c∈S

Ic · vc
)

=
∑
c∈S

Er(Ic) · vc =
∑
c∈S

vc · Prob(A completes c).

That is, the expected gain of the scheduler is the sum over all jobs in the input
sequence of the probability that the job is completed times its value.

3. The lower bound. Let g(x) = 1
10 ·

√
log(x)

log log(x) . Let µd(S) (resp., µv(S))

be the ratio between the largest and smallest durations (resp., value) of a job in
the request sequence S. We prove the following bound.

Theorem 2. Any randomized, preemptive on-line scheduler is at best g-competitive,
with respect to measures µd and µv.

For the proof we construct, for each scheduling algorithm A and infinitely many
values m, a timely sequence S with max{µd(S), µv(S)} ≤ m, and we show a feasible

“off-line schedule” S′ ⊆ S such that G(S′)
EGA(S) ≥ g(m). We first present a very rough

description of the construction. Say that two jobs are of the same type if they have
the same duration and value. The sequence S consists of several different types of
jobs. Let pi(t) denote the probability that a job of type i is being served by A at
the end of time unit t. Let ~p(t) = 〈p0(t), . . . , pk(t)〉, where the number of different
types of jobs is k + 1. Since at most one job can be scheduled at a time, we have∑k

i=0 pi(t) ≤ 1 for all t. Given A, ~p(t) is a function only of the prefix of S consisting
of the jobs requested up to time t.

The construction of the sequence S can be pictured as an interactive game between
the scheduler and an adversary, where in each time unit t the adversary generates some
requests based on ~p(t−1) and the jobs requested so far. Next the scheduler generates
~p(t) based on the new requests and the history of the interaction, subject to the

conditions that
∑k

i=0 pi(t) ≤ 1, and pi(t) ≤ pi(t − 1) unless a new i-job is requested
at time t. (Here we give the scheduler some extra “leeway” by letting it know in
advance all the jobs requested during the entire time unit.) Sequence S is now the
concatenation of the jobs requested by the adversary in the game. We stress that S
is fixed for each scheduler; it does not depend on the random choices of the scheduler
in a specific run.

The adversary strategy in the above game consists of several recursive applications
of roughly the same scheme. In order to better present the construction and analysis,
we first describe a simpler adversary that consists of only one application of this
scheme. This simpler adversary, called a 1-adversary, shows a weaker result than
Theorem 2, namely, that no valid scheduler is less than (e+1

e − o(1))-competitive
(where e is the base of natural logarithms).

3.1. A 1-adversary. A 1-adversary generates, for each scheduler A and each
value m, a sequence S with µd(S) = m2 and µv(S) = m, and a feasible “off-line

schedule” S′ ⊆ S such that G(S′)
EGA(S) ≥ e+1

e · (1−O(1
m)
)
.

PREEMPTION IN RANDOMIZED SCHEDULING 999

m2

1

m

1 2 3 4
t0

b-jobb-jobb-jobb-job

Time

Duration
Value

a-job

Fig. 3.1. A 1-adversary. b-jobs are requested until time t0.

The 1-adversary uses only two types of jobs: a-jobs have duration m2 and value
m2; b-jobs have duration 1 and value m. The sequence S is constructed as follows.
The adversary first requests an a-job at time 0. Next, at each time t = 0, . . . , t0 (where
t0 is computed below) a b-job is requested. Note that any feasible subsequence of S
consists of either the a-job or some of the b-jobs (see Figure 3.1).

Setting an appropriate “stopping time,” t0, is the crux of the adversarial strategy.
If the scheduler were deterministic (or alternatively, if the adversary could see the
random choices of the scheduler), then computing t0 would be simple. If A preempts
the a-job in favor of some b-job, the input sequence would stop. This way, A gains m
while the optimal schedule is the a-job, with gain at least m2. If A never preempts
the a-job then we set t0 = m2 (that is, b-jobs are requested during the entire duration
of the a-job), and the optimal schedule is all the b-jobs with gain m3. In any case,
the competitive ratio of A on S would be m.

However, the random choices of A are not known. Instead, the adversary will,
at the onset of any time unit t+ 1, compute pa(t), the probability that A still serves
the a-job. If pa(t) is large enough (i.e., above some threshold described below) then
another b-job is requested. Otherwise the request sequence is stopped. The threshold
is computed as follows. Let Ob(t) denote the maximum gain that can be accrued from
the requested b-jobs up to time t (that is, Ob(t) = t ·m for time t where pa(t) has not
yet dropped below the threshold). Let the threshold at time t be f(Ob(t)) (that is,
f(t ·m)), where the threshold function f(·) is:

f(x) =

{
1− αe

x
m2 if x ≤ m2,

1− αe if x > m2 ,

and α = 1
e+1 . The adversarial strategy can now be described as follows. First,

request an a-job and a b-job at time 0. Next, at each time t = 1, . . . ,
m2−1 do: if pa(t−1) ≥ f((t−1)m) request a b-job; else end the request

sequence.

1000 RAN CANETTI AND SANDY IRANI

x

1

m

f(x)

t0 m2

Fig. 3.2. A 1-adversary. The shaded area shows the expected gain of the algorithm from type-b
jobs.

We suggest the following explanation for our choice of the threshold function.
Let t0 be the first time that pa(t) drops below the threshold. It will be seen that the
competitive ratio of the algorithm is roughly at least the reciprocal of

f(x) +
1

m2

∫ x

0

(1− f(y))dy if x ≤ m2,(3.1)

1− f(x) if x > m2 ,(3.2)

where x = t0 ·m and f(·) is the threshold function in use (see Figure 3.2). This choice
of f(x) ensures that expression (3.1) evaluates to the same minimal value for all x.
In particular, for any α the function f(x) = 1− αe

x
m2 solves the differential equation

d

dx

[
f(x) +

1

m2

∫ x

0

(1− f(y))dy

]
= 0,

thus making sure that (3.1) doesn’t change for 0 ≤ x ≤ m2. The choice of α is such
that 1− α = αe; that is, f(0) = f(m2) = 1− f(x) for all x > m2. Thus (3.1) has the
same value also for x > m2. Consequently, the competitive ratio of A on S will be
roughly the same (minimal) value for all values of t0.

Analysis of the operation of A on S. We consider three cases.

Case 1. t0 ≤ m. In this case the best feasible subsequence of S is the a-job, with
gain m2 (that is, O(S) = m2). The expected gain of A is computed as follows. The
probability that A completes the a-job is pa(t0). The probability that A completes
the b-job offered at time t is pb(t) ≤ 1− pa(t). Using the observation from the end of
section 2, we have

EGA(S) ≤ m2pa(t0) + m

t0∑
t=0

(1− pa(t)).

It follows from the adversary strategy that pa(t0) < f(t0 ·m), and pa(t) ≥ f(t ·m) for
all t < t0. Thus,

PREEMPTION IN RANDOMIZED SCHEDULING 1001

EGA(S) ≤ m2f(t0 ·m) + m

(
t0−1∑
t=0

(1− f(t ·m))

)
+ m · pb(t0)(3.3)

≤ m2f(t0 ·m) +

∫ t0m

0

(1− f(x))dx + m(3.4)

= m2(1− αe
t0
m) +

∫ t0m

0

αe
x
m2 dx + m(3.5)

= m2(1− αe
t0
m) + m2α(e

t0
m − 1) + m(3.6)

= m2(1− α) + m.(3.7)

(See Figure 3.2.) Thus, in this case the competitive ratio of A is at best m2

m2(1−α)+m =
1

1−α −O(1
m).

Case 2. m < t0 < m2 − 1. In this case the best feasible subsequence of S is all
the b-jobs, with gain t0m. For the expected gain of A, we now have

EGA(S) ≤ m2f(t0 ·m) + m

(
t0−1∑
t=0

(1− f(t ·m))

)
+ m · pb(t0)

≤ m2(1− αe) + m

(
m−1∑
t=0

αe
t
m

)
+ m

(
t0−1∑
t=m

αe

)
+ m

≤
[
m2(1− αe) +

∫ m2

0

αe
x
m2 dx

]
+ (t0m−m2)αe + m

≤ m2(1− α) + (t0m−m2)αe + m

≤ t0mαe + m.

(The derivation of the third row from the second is done using the same integral
as in (3.4)–(3.7); the derivation of the fifth row from the fourth uses the fact that
1− α = αe.) Thus, in this case the competitive ratio of A is at least 1

αe −O(1
m).

Case 3. t0 = m2 − 1. The difference from Case 2 is that here pa(t) may never
go below the threshold. However, this does not help the scheduler. The best feasible
subsequence of S is all the b-jobs, with gain m3. Bounding the expected gain of the
scheduler, we have (since pa(t) > 1− αe for all t):

EGA(S) ≤ m2pa(m
2 − 1) + m

m2−1∑
t=1

(1− pa(t)) ≤ m2 + m3(αe).

Thus, the bound on the competitive ratio of A is the same as in the previous case.

In all three cases, the competitive ratio of A on S is at least min
{

1
1−α ,

1
αe

}
−

O(1
m) = e+1

e −O(1
m). A straightforward calculation shows that any m ≥ 8 is enough

for showing a nontrivial bound (that is, a bound more than 1).

3.2. Proof of Theorem 1.
Outline. Roughly speaking, the scheme described in section 3.1 used the b-jobs to

make sure that A accrues only a fraction of the value of the a-job requested. The same
scheme can be used recursively to make sure that A accrues only a fraction of the value
of each b-job requested. That is, use a third type of jobs, called c-jobs, with smaller
duration and value than b-jobs. The c-jobs have the property, however, that the total

1002 RAN CANETTI AND SANDY IRANI

Table 3.1
Summary of main notation.

Notation Meaning Page

i-job a job of duration di = k4i and value vi = k2+2i 1002
i-period the time period between two consecutive multiples of di 1002
i-small job a j-job with j < i 1002
Oi(t) off-line gain from i-small jobs in this i-period until time t 1002
pi(t) Prob(a j-job is running at time t) 1002
qi(t) Prob(a j-job is running at time t | no higher index job is running) 1002
i-step the time interval between two subsequent increases in Oi+1(t) 1005
i-height of τ the amount of increase in Oi+1(t) during i-step τ 1005
EGA(S) the expected gain of A from sequence S 997
EGAτ (S) the expected gain of A from jobs in S requested during step τ 1005

value of a series of consecutive c-jobs scheduled back-to-back for the duration of a
single b-job is greater than the value of the b-job. For each requested b-job recursively
apply the above scheme, using the c-jobs. Consequently, the “effective gain” that the
scheduler accrues from each b-job is only a fraction of its real value. Thus, a better
threshold function can now be used with respect to the a-job, forcing A to accrue
only a smaller fraction of the optimal gain of the entire sequence. The adversary
used for proving Theorem 2 uses this idea, implementing several levels of recursion.
Throughout the proof we introduce various notation. Table 3.1, summarizing the
main definitions, will hopefully facilitate the reading.

Construction of a k-adversary. Define Advk, an adversary implementing k levels
of recursion, as follows. Advk requests k + 1 different types of jobs. The value of a
job of type i (where i = 0, . . . , k) is vi = k2+2i and its duration is di = k4i. Thus,
vi+1

vi
= k2. (Using the terms of section 3.1, the lower index jobs play the role of the b-

jobs and the higher index jobs play the role of the a-jobs.) Let an i-period be the time
period in between two consecutive integer multiples of di. A job is said to be i-small
if it is a j-job with j < i. Let the partial gain function Oi(t) denote the maximum
(off-line) gain that can be obtained by scheduling only i-small jobs that have been
requested by the adversary since the beginning of the current i-period through time t.
Advk employs k threshold functions f1(·), . . . , fk(·), defined below. The ith threshold
at time t is fi(Oi(t)).

At each time t, the threshold values are compared with the following values,
derived from the behavior of the scheduler. Recall that pi(t) denotes the probability
that the scheduler has a job of type i running at time t. Let qk(t) = pk(t); for i ≤ k,
let qi(t) denote the probability that the scheduler has a job of type i running at time
t, conditioned on the event that no j-job with j > i is currently running. That is,

qi(t) =
pi(t)

1−∑k
j=i+1 pj(t)

.

Advk thus operates as follows. At time t = 0, request k + 1 jobs, one of each type.
At each other time t+1, run procedure AdvStrategy(k, qk(t)), described in Figure
3.3 below.

Let the ith threshold function be:

fi(x) =

{
1− αie

βi−1
vi

·x
if x ≤ vi,

1− αie
βi−1 if x > vi ,

PREEMPTION IN RANDOMIZED SCHEDULING 1003

AdvStrategy(i, qi(t)):
(1) if di divides t then

Request an i-job;
(2) if i > 0 and qi(t) ≥ fi(Oi(t)) then
call AdvStrategy(i− 1, qi−1(t))
end

Fig. 3.3. At each time unit t, Advk runs AdvStrategy(k, qk(t)).

where βi and αi are defined as follows. Let β0 = 1 and

βi = βi−1

[
eβi−1

1 + βi−1 · eβi−1

]
+ γ,(3.8)

where γ = 2
k2 . Let αi = 1 − (βi − γ) = 1

1+βi−1·eβi−1
. Note that the 1-adversary of

section 3.1 is identical to Adv1, with v0 = m = k2 and v1 = m2.
Some intuition. We suggest the following explanation to the operation of the

adversary. The condition in step (1) makes sure that the times at which an i-job
may be requested are di time units apart. Thus, only a single i-job can be requested
during an i-period, and the duration of an i-job is a full i-period. (Namely, i-jobs are
requested “back-to-back.”) The condition in step (2) of each level i controls whether
to call the (i−1)st level. Roughly, the (i−1)st level is called if the probability that an
i-job is being served by A at time t, given that all the j-jobs for j = i+ 1, . . . , k were
preempted, is more than the threshold. This condition corresponds to the condition
of section 3.1 regarding whether to request any further b-jobs.

Also here, the threshold functions are chosen so that in each level i the scheduler
will have the same expected gain regardless of when qi(t) “dips” below the threshold.
The competitive ratio of the scheduler against Advi is later shown to be roughly
bounded by the reciprocal of

fi(x) + βi−1
1

vi

∫ x

0

(1− fi(y))dy if x ≤ vi,(3.9)

βi−1(1− fi(vi)) if x > vi ,(3.10)

where fi(·) is the ith threshold function in use, and x = Oi(t). (The value 1/βi
represents a lower bound on the competitive ratio of a scheduler against Advi. See
Lemma 1 below.) For every αi and βi, the choice of fi(x) ensures that expression
(3.9) evaluates to the same (minimal) value for all x ≤ vi, using a differential equation
in the same way as in section 3.1. The αi’s and βi’s are determined as follows. We set
β0 = 1. Next, for any i > 0, αi is chosen so that the competitive ratios at x ≤ vi and
at x > vi are equal; using (3.9) and (3.10) this translates to fi(0) = βi−1(1− fi(vi)),
or (by the definition of fi(x)):

αi =
1

βi−1eβi−1 + 1
(3.11)

(for i = 1 this condition identifies with the corresponding condition in section 3.1:
α1 = 1

e+1). Next, βi can be computed by evaluating (3.9) at any value of x (and
adding a small “error term” γ). Setting, say, x = 0 and using (3.11), we get βi =
fi(0) + γ = 1− αi + γ = 1− 1

βi−1e
βi−1+1

+ γ. The recursion relation (3.8) follows.

1004 RAN CANETTI AND SANDY IRANI

Analysis of Advk.
Lemma 1. Let k ≥ 0. Let A be a scheduler and let S be the request sequence

generated via an interaction between A and Advk. Then, the competitive ratio of A
on S is at best 1

βk+δ , where δ
4
= 3

k−1 .
In order to derive Theorem 2 from Lemma 1, we need the following technical

lemma.
Lemma 2. Let βk be as defined in (3.8). Then βk ≤ 4/

√
k.

Proof. We will verify inductively that

βi ≤ 4/
√
i for i ≤ k.(3.12)

Plugging β0 = 1 into (3.8) with i = 1, we get that β1 ≤ 3
4 . Since βi decreases with i,

we know that (3.12) holds whenever 3/4 ≤ 4/
√
i. Thus, we only have to worry about

the cases where 3/4 > 4/
√
i. Since the function

F (x) = x

[
ex

1 + xex

]

is increasing in x, we can use the upper bound on βi from the inductive hypothesis
to obtain an upper bound for βi+1 as follows:

4√
i

 e

4√
i

1 + 4√
i
e

4√
i

+ γ ≥ βi

[
eβi

1 + βi · eβi
]

+ γ ≥ βi+1.

Plugging in γ = 2
k2 ≥ 2

i2 , it just has to be verified that

4√
i + 1

≥ 4√
i

 e

4√
i

1 + 4√
i
e

4√
i

+

2

i2
.

After some algebraic manipulation, it can be seen that this is equivalent to

i

i + 1
− 1

i
3
2

+
1

4i3
≥ e

8√
i

(
1− 4√

i + 1
+

2

i2

)2

.

From the Taylor expansion of ex, we can verify that ex ≤ (1+x+ 3
4x

2) for any x ≤ 1.

Using the fact that 4/
√
i < 3/4, we can assume that i ≥ 28. Using both of these

facts, it is not hard to verify that 4/
√
i− 1/7 ≤ 4/

√
i + 1. Plugging all of these back

into the above inequality establishes (3.12).
Now, to establish Theorem 2, we first compute the maximum possible value for

k (namely, the maximum possible number of recursion levels), and we note that a
sequence S generated by Advk has µv(S) = v0

vk
= k2k (and µd(S) = vk

vo
= k4k). Thus,

given that µ(S) = m we can employ Advk, where k = b logm
4 log logmc.

Theorem 2 always holds for
√

logm
log logm ≤ 10, since the competitive ratio is always

at least 1. Thus, if we use k = b logm
4 log logmc, we can assume that k ≥ 25. Using this

lower bound on k, the fact that δ = 3
k−1 and the result from Lemma 2, we can bound

βk + δ by 5√
k
. Using Lemma 1 and plugging in k = b logm

4 log logmc, establishes Theorem

2.

PREEMPTION IN RANDOMIZED SCHEDULING 1005

Proof of Lemma 1. Consider a sequence S generated via an interaction between
A and Advk. We introduce the following notation. A time unit t is called i-critical if
Oi+1(t) > Oi+1(t− 1). A time interval τ = [ts, tf] is called an i-step if ts and tf + 1
are i-critical and ts+1, . . . , tf are not i-critical. For every i, the sequence S partitions
time into a sequence of i-steps. Let the i-height of τ be hi(τ) = Oi+1(ts)−Oi+1(ts−1).
(Note that if τ = [ts, tf] is the first i-step in an i-period then the i-height of τ is vi.)
The optimal gain from sequence S is the sum of the k-heights of all the k-steps in the
duration of S.

Roughly, we will show that the expected gain of A from the jobs requested during
each k-step is at most βk times the k-height of this step. However, we first distinguish
between the main contribution to the competitive ratio of A and several special cases
which result in additional, small “error terms.” These error terms, encapsuled in the
term δ defined above, result from three classes of requests. These classes are defined
below and are taken care of in Lemma 4.

A j-job c is said to be final for level i if j < i and c is the last j-job to be requested
in its i-period. A j-job is final if it is final for some level i where i > j. A j-job c is a
step-2 job for level i if i > j and c is requested during the second i-step in its i-period.
A job is step-2 if it is step-2 for some level i with i > j. A j-job c is said to be
high-probability if qj(t) ≥ fj(Oj(t)) for all times t in its duration. (High probability
jobs correspond, in principle, to Case 3 in the analysis of a 1-adversary in section
3.1. This is the case where the probability that a job is running never falls below the
threshold.) A job is regular if it is neither a step-2, final, nor high-probability job.

Let EGAτ (S) denote the expected gain of A from the regular jobs requested by
Advk during some step τ . That is, EGAτ (S) =

∑
c∈Sτ vc · Prob (A completes c),

where Sτ is the sequence of regular jobs requested during τ . Lemma 3 states that
EGAτ (S) is at most βk times the k-height of each k-step τ . We know that O(S) =∑

{k-steps τ} hk(τ). It follows that the expected gain of A from S due to regular jobs

is at most βk · O(S). Lemma 4 states that the total gain of A from all the nonregular
jobs in S is at most δ · O(S). Lemma 1 follows.

On the structure of S. In the proofs of Lemmas 3 and 4, we use the following
observations regarding the structure of S. The first job requested in each i-period
is an i-job. The rest of the jobs in this i-period are i-small. Each i-period can be
partitioned into i-steps (any i-step is contained within a single i-period). The first
i-step in an i-period occurs due to the request of the i-job and has i-height vi. This
i-step can be partitioned to several (i−1)-steps. In the second i-step (if there is one),
the optimal gain due to the i-small jobs exceeds the gain of the i-job for the first time.
If this happens, then the optimal schedule in the i-period contains only i-small jobs
instead of the i-job. As a result, any additional increase in Oi+1 within this i-period
causes the same increase in Oi, and any subsequent i-step τ is also an (i − 1)-step.
Furthermore, hi(τ) = hi−1(τ). Note that if there is a second i-step τ , then τ is also
an (i− 1)-step, but it is not necessarily the case that hi(τ) = hi−1(τ) for the second
i-step. This is because the arrival of an i-small job may cause the optimal gain from
i-small jobs to exceed the value of the i-job by only a small amount.

Lemma 3. Let k ≥ 0. Let A be a scheduler and let S be the request sequence
generated via an interaction between A and Advk. Let τ be a k-step. Then,

EGAτ (S) ≤ βk · hk(τ).(3.13)

1006 RAN CANETTI AND SANDY IRANI

Proof. Outline. We prove the lemma by induction on k. The lemma trivially
holds for Adv0 (using one type of job), since β0 = 1. Also, the case of Adv1 was
analyzed in section 3.1.

Let k > 0 and assume that there exists a scheduler A and a k-step τ such that
(3.13) is violated. We construct a scheduler A′ with the following property that
contradicts the induction hypothesis. Consider the sequence S′ generated via the
interaction of A′ with Advk−1. Then there exists a (k − 1)-step τ ′ in S′ such that

EGA′
τ ′(S

′) > βk−1 · hk−1(τ
′),(3.14)

where EGA′
τ ′(S

′) is defined similarly to EGAτ (S), with respect to A′, S′, and τ ′.
Construction of A′. Consider the sequence S generated by Advk interacting with

A. First a (k−1)-period of S, starting at time t∗, is chosen in a way described below.
Roughly, A′ will imitate the operation of A starting at time t∗, conditioned on the
event that A has preempted the k-job. More precisely, let pi(t) (resp., p′i(t)) denote the
probability that A (resp., A′) has a job of type i scheduled at time unit t. Scheduler
A′ is constructed so that when playing against Advk−1 for the duration of a (k− 1)-
period, the following probability vector ~p′(t) = p′0(t), . . . , p

′
k−1(t) is maintained:

p′i(t) =
pi(t + t∗)

1− pk(t + t∗)
.(3.15)

Scheduler A′ can always be implemented since
∑k−1

i=0 p′i(t) ≤ 1, and p′i(t) > p′i(t− 1)
only if an i-job is requested at time t. In choosing t∗ we distinguish two cases.

Case 1. Step τ is not the first k-step. Then τ is also a (k−1)-step and is contained
in a (k− 1)-period. Let t∗ be the beginning of this (k− 1)-period. In the analysis, we
will divide this case into two subcases, depending on whether the step is the second
k-step or not.

Case 2. Step τ is the first k-step. The first k-step is partitioned into several
(k− 1)-steps, τ1, . . . , τl. Let τ∗ be the (k− 1)-step contained in τ that maximizes the
ratio

max
1≤i≤l

{
EGAτi(S)

(1− pk(eτi)) · hk−1(τi)

}

among all the (k − 1)-steps contained in τ , where eτi is the latest ending time of a
regular job requested during τi (note that eτi may be later than the end of τi). For
convenience, we assume that the initial k-job is not included in the first (k− 1)-step.
Let t∗ be the beginning of the (k−1)-period containing τ∗. Note that A′ may perform
very poorly on request sequences different than those generated by Advk−1. The only
purpose of A′ is to contradict the induction hypothesis.

Analysis of scheduler A′. It can be seen from (3.15) and the adversary strategy
(Figure 3.3) that at each time t in the interaction of Advk−1 with A′, Advk−1 requests
exactly the same jobs that Advk requests at time t + t∗ when interacting with A;
this holds with the following two exceptions. First, Advk may request an initial k-job
at time t∗, where Advk−1 does not. Second, the sequence S may end before S′, if
pk(t) falls below the threshold for some time t. Let Ŝ denote the subsequence of S
starting at time t∗ with the initial k-job removed (if there is one). Then, Ŝ is a prefix
of S′. Furthermore, for any (k − 1)-step τ in Ŝ we have hk−1(τ) = hk−1(τ

′), where
τ ′ is the (k− 1)-step in S′ that corresponds to τ . We consider the above two cases of
determining t∗.

PREEMPTION IN RANDOMIZED SCHEDULING 1007

Case 1a. Step τ is the second k-step. All jobs requested in this step are step-2
jobs and are thus not regular. Thus, EGAτ (S) = 0. (Step-2 jobs are accounted for in
Lemma 4.)

Case 1b. Step τ is neither the first nor the second k-step. Then, τ is a (k − 1)-
step as well. Let τ ′ be the (k − 1)-step that corresponds to τ in S′. Then, hk(τ) =
hk−1(τ) = hk−1(τ

′). We show below that the probability that A completes each
regular job c ∈ S is at most βk

βk−1
times the probability that A′ completes the cor-

responding job c′ ∈ S′ during τ ′. Thus, if (3.13) is violated with respect to τ then
(3.14) holds with respect to step τ ′.

Scheduler A completes an i-job c with probability pi(ec), and A′ completes c′ with

probability pi(ec)
1−pk(ec)

, where ec is the time at which c ends. It remains to show that

1− pk(ec) ≤ βk
βk−1

. Since c is not a final job, we have that pk(ec) ≥ fk(Ok(ec)). Since

τ is not the first k-step, the optimal gain has already exceeded vk, and Ok(ec) > vk.
Thus, fk(Ok(ec)) = 1− αke

βk−1 and 1− pk(ec) ≤ αke
βk−1 ≤ βk

βk−1
.

Case 2. Step τ is the first k-step. Let τ∗′ be the (k−1)-step that corresponds to τ∗
with respect to S′. We show that if EGA′

τ∗′(S
′) ≤ βk−1 · hk−1(τ∗′) then EGAτ (S) ≤

βk ·vk. We proceed in two steps: first we show (3.17), where t0 is defined below. Next
we show (3.18).

Showing (3.17), we first express EGAτ (S) in terms of the expected gain of A
in the (k − 1)-steps τ1, . . . , τl contained in τ . Assume that the initial k-job is not a
high-probability job. In this case, there is a time t such that pk(t) < fk(Ok(t)). Let
t0 = t if t happens before the end of τ ; otherwise t0 is the first time unit after the end
of τ . Thus,

EGAτ (S) ≤ vk · fk(Ok(t0)) +
l∑

i=1

EGAτi(S).(3.16)

Inequality (3.16) is satisfied even if the initial k-job is a high-probability job. In this
case, the contribution of this job is not included in EGAτ (S); it is considered in
Lemma 4.

Scheduler A′ completes each job c′ ∈ S′ requested during τ∗ with probability
at least 1

(1−pk(ec))
times the probability that A completes the corresponding job c ∈

S. Since ec ≤ eτ∗ , we have EGAτ∗(S) ≤ (1 − pk(eτ∗)) · EGA′
τ∗′(S

′). Recall that
EGA′

τ∗′(S
′) ≤ βk−1 · hk−1(τ∗′), and hk−1(τ∗′) = hk−1(τ∗). Thus,

EGAτ∗(S) ≤ (1− pk(eτ∗)) · βk−1 · hk−1(τ∗).

It follows from the choice of τ∗ that EGAτi(S) ≤ (1 − pk(eτi))βk−1 · hk−1(τi) for all
steps τi. Thus, (3.16) implies that

EGAτ (S) ≤ vk · fk(Ok(t0)) +
l∑

i=1

(1− pk(eτi)) · βk−1 · hk−1(τi).(3.17)

It remains to show that

vk · fk(Ok(t0)) +
l∑

i=1

(1− pk(eτi)) · βk−1 · hk−1(τi) ≤ βk · vk.(3.18)

First, we show that

vk · fk(Ok(t0)) +
l∑

i=1

(1− pk(sτi)) · βk−1 · hk−1(τi) ≤ (βk − γ) · vk,(3.19)

1008 RAN CANETTI AND SANDY IRANI

where sτi is the starting time of step τi, and γ = 2
k2 is a small “error term.” Next we

show that

l∑
i=1

(pk(sτi)− pk(eτi)) · βk−1 · hk−1(τi) ≤ γ · vk.(3.20)

Showing (3.19), we have

vk · fk(Ok(t0)) +
l∑

i=1

(1− pk(sτi)) · βk−1 · hk−1(τi)

≤ vk · fk(Ok(t0)) + βk−1 ·
l∑

i=1

(1− fk(Ok(sτi))) · hk−1(τi)

≤ vk · fk(Ok(t0)) + βk−1 ·
∫ Ok(t0)

0

(1− fk(y))dy = (∗).

The last derivation uses a standard transformation from a sum to an integral. We
integrate only up to Ok(t0), since either t0 is after the end of τ , or the only jobs
requested at or after time t0 are final jobs. Let x = Ok(t0). Since this is the first

k-step we have x ≤ vk; thus, fk(x) = 1− αke
βk−1x

vk . Thus:

(∗) = vk · fk(x) + βk−1 ·
∫ x

0

(1− fk(y))dy

=

(
1− αke

βk−1x

vk

)
vk + βk−1

∫ x

0

αke
βk−1y

vk dy

=

(
1− αke

βk−1x

vk

)
vk + βk−1

vk
βk−1

αk

(
e
βk−1x

vk − 1

)
= (1− αk)vk

= (βk − γ)vk.

To show (3.20), let wi denote the largest j such that a j-job is requested on the
first time unit of τi. Rewriting the left-hand side of (3.20) we get

βk−1

l∑
i=1

hk−1(τi)·(pk(sτi)−pk(eτi)) ≤ βk−1

k−1∑
j=0

vj ·
∑

{i : wi=j}
(pk(sτi)−pk(eτi)) = (∗∗).

Observe that pk(t) is a nonincreasing function, and that for any wi1 , wi2 with i1 >
i2, step τi1 begins only after all the jobs requested during τi2 have ended. Thus,∑

{i | wi=j}(pk(sτi)− pk(eτi)) ≤ 1. Since vwi
= k2+2wi and βk−1 ≤ 1, we have

(∗∗) ≤ βk−1

k−1∑
j=0

vj · 1 ≤ 2 · vk−1· ≤ 2

k2
· vk = γ · vk.

Lemma 4. Let k ≥ 0. Let A be a scheduler and let S be the request sequence
generated by an interaction between A and Advk. Then, the total gain of A from all
the step-2, final, and high-probability jobs in S is at most 3

k−1O(S).

PREEMPTION IN RANDOMIZED SCHEDULING 1009

Proof. We first bound the gain of A from the final and step-2 jobs. The gain
achievable, even by the optimal schedule, from all the step-2 jobs for level i requested
within a given i-period is at most vi−1. For each i-job and every j < i, there is at
most one final j-job. Let ni be the total number of i-jobs in S. The optimal gain
achievable from the jobs that are either final or step-2 for level i is thus at most

ni

vi−1 +

i−1∑
j=0

vj

 ≤ 2nivi

i−1∑
j=0

1

k2(i−j) ≤
2nivi
k2 − 1

.

For every i, the sequence of all i-jobs in S is a feasible subsequence of S, with gain
nivi. Therefore, O(S) ≥ maxi(nivi). The sum of the values of all final and step-2
jobs is thus at most:

k∑
i=0

2nivi
k2 − 1

≤ (k + 1) max
i

2nivi
k2 − 1

≤ 2

k − 1
O(S).

Next we bound the gain achievable from the high-probability jobs which are not
final. Consider a high-probability i-job c which is not final. We first show that an
(i− 1)-job is requested in each (i− 1) period for the duration of c. To see why this is
true, recall that an (i− 1) job is requested in an (i− 1)-period if at the first time unit
t in this period qj(t) ≥ fj(Oj(t)) for all j ≥ i. If c is not final, then qj(t) ≥ fj(Oj(t))
for all j > i and for all times t in the duration of c. If c is high-probability then
qi(t) ≥ fi(Oi(t)) for all times t in the duration of c.

Consequently, k4 jobs of type (i−1) are requested in the duration of c. The total
value of these (i − 1)-jobs is k2 times the value of c. Let gi be the number of all
nonfinal high-probability i-jobs in S. We know that k2vigi ≤ vi−1ni−1. Therefore,
the total gain from all nonfinal high-probability jobs is at most

k∑
i=1

vigi ≤ 1

k2

k∑
i=1

vi−1ni−1 ≤ 1

k
max
i

vini ≤ 1

k
O(S).

4. Applications of the bound. In this section, we present a series of corollaries
showing how the lower bound of Theorem 2 can be generalized and extended to related
problems. The proofs of most corollaries are very similar techniques. For clarity, we
give a full proof of the first corollary (Corollary 1). Next we describe our general
technique in abstract terms. For the rest of the proofs we merely state how certain
parameters of the general technique should be set.

4.1. Multiprocessor scheduling. We first describe how the bound in Theo-
rem 2 can be generalized to situations where more than a single job can be served at
a time. Each job c has a load lc, and a feasible sequence is one in which the sum of
the loads of any set of overlapping jobs is at most the capacity U of the server. The
bound holds even if there is more than one server (each with capacity U) and even if
there is an upper bound on the load that any single job may require.

Recall that µd, µl, and µv denote the ratio of maximum to minimum duration,

load and value of a job, respectively. Let g(x) = 1
8

√
log x

log log x .

Corollary 1. Let δ < 1. Theorem 2 holds even when there are m servers, each
with capacity U , and even if lc ≤ δU for each job c.

Proof. We assume the existence of a scheduler A′ that contradicts the corollary.
Based on A′, we then construct scheduler A that contradicts Theorem 2. A keeps a

1010 RAN CANETTI AND SANDY IRANI

copy of A′ running. On a sequence S of requests, A generates for A′ a sequence S′

constructed as follows.

Construction of A. Let α be chosen so that 1/α = d1/δe. Upon receiving a
request c with duration dc and value vc, A generates a set S′c of Nc = m/α requests
for A′. Each request in S′c has the same duration as c, has value vc′ = αvc/m and
load lc′ = Uα. Note that if all jobs from S′c are scheduled, they use up the entire
capacity of the system. Furthermore, the sum of the values of all the jobs in S′c is
equal to Ncvc′ = vc.

Let nc(t) denote the expected number of jobs in S′c scheduled by A′ at time t. A
will accept and preempt jobs so as to maintain the invariant that at all times t, the
probability that A has job c scheduled is nc(t)/Nc. In showing how A achieves this
we assume that A′ has the property that after the arrival of a set of jobs S′c, the entire
capacity of all m servers is being used. No generality is lost by this assumption, since
A′ can always decide to preempt jobs later in favor of an incoming job. Now suppose
that A has a job c̃ running during time unit t−1 and jobs c1, c2, . . . , ck arrive at time
t. A will preempt c̃ with probability (nc̃(t− 1)− nc̃(t))/nc̃(t− 1). If A preempts its
current job or did not have any jobs running during time t − 1, then it accepts job
ci with probability nci(t)/

∑k
j=1 ncj (t). It can be verified by induction on t that the

invariant holds.

Analysis of A. Given a feasible subsequence Ŝ ⊆ S, the following feasible subse-
quence Ŝ′ ⊆ S′ satisfies O(Ŝ) ≤ O(Ŝ′): for every c ∈ Ŝ, include all the jobs from S′c
in Ŝ′. Thus O(S) ≤ O(S′).

Let ec be the ending time of job c. The expected gain of A′ from the jobs in
S′c is vc′nc(ec) = vcnc(ec)α/m. The expected gain of A from job c is vcnc(ec)/Nc =
vcnc(ec)α/m. Thus, the expected gain of A on its input sequence S is equal to
the expected gain of A′ on the constructed sequence S′. Since µd(S) = µd(S

′) and
µv(S) = µv(S

′), the existence of A′ contradicts Theorem 2.

The remaining corollaries are proven using a reduction technique similar to the
proof of Corollary 1. We first describe this technique in more general terms. Next,
we state the corollaries and fill in the necessary details in the proofs.

Assume the existence of a scheduler A′ that contradicts some corollary. Based
on A′, we then construct scheduler A that contradicts Theorem 2. A keeps a copy
of A′ running. Given a sequence S of requests, A gives A′ a sequence S′ constructed
as follows. Upon receiving a request c in S, A generates a set S′c of Nc requests
for A′, each of value vc′ and load lc′ . The duration of each job in S′c is exactly dc.
The parameters of the constructed requests depend on the reduction. However, they
will always have the property that the total load of the Nc jobs in S′c equals the
capacity of the system. The sum of the values of all the jobs in S′c is equal to vc (i.e.,
Ncvc′ = vc). A maintains the invariant that at all times t the probability that A has
job c scheduled is nc(t)/Nc. Thus, we can deduce that O(S) ≤ O(S′). Also, given a
feasible subsequence Ŝ ⊆ S, we can obtain a feasible subsequence Ŝ′ ⊆ S′ such that
G(Ŝ) ≤ G(Ŝ′): for every c ∈ Ŝ, include all the jobs from S′c in Ŝ′.

As in the previous proof, the expected gain of A′ from the jobs in S′c is vc′nc(ec).
Consequently, the expected gain of A from job c is vcnc(ec)/Nc.

The next two corollaries show that the bound applies also when some specific
value functions are used.

Corollary 2. Assume jobs have arbitrary load and duration, and the value of
a job is its duration. Then, any randomized, preemptive on-line scheduler is at best
g/2-competitive for measures µd and µl.

PREEMPTION IN RANDOMIZED SCHEDULING 1011

Proof. We choose Nc = vc/dc, lc′ = Udc
vc

, and dc′ = dc. The expected gain of A′

from jobs in S′c is dcnc(ec), and the expected gain of A from job c is vcnc(ec)/Nc =
dcnc(ec). Thus, the expected gain of A on its input sequence S is equal to the expected
gain of A′ on the constructed sequence S′. Since µd(S) = µd(S

′) and µl(S
′) ≤

µd(S) · µv(S), we have that max{g(µd(S′)), g(µl(S′))} ≤ 2 max{g(µd(S)), g(µv(S))}.
Thus, if A′ is g/2-competitive with respect to measures µd and µl, then A is g-
competitive with respect to measures µd and µv, contradicting Theorem 2.

We remark that the construction can be adapted to the cases where there is a
bound δU (for any δ ≤ 1) on the load of a single job and where there are m servers.
This is accomplished in a similar manner as in Corollary 1, that is, by increasing the
number of jobs by a factor of m/δ and reducing the load of each job by a factor of δ.

Corollary 3. Assume jobs have arbitrary load and duration, and the value of all
jobs is 1. Then, any randomized, preemptive on-line scheduler is at best g-competitive
for measures µl and µd.

Proof. We choose Nc = vc, lc′ = U
vc

, and dc′ = dc. The expected gain of A′ from
the S′c jobs is nc(ec), and the expected gain of A from job c is vcnc(ec)/Nc = nc(ec).
Thus, the expected gain of A on its input sequence S is equal to the expected gain
of A′ on the constructed sequence S′. Since µd(S) = µd(S

′) and µl(S
′) = µv(S), the

existence of A′ contradicts Theorem 2.
Again, the construction can be adapted as in Corollary 1 to the cases where there

is a bound δU (for any δ ≤ 1) on the load of a single job and where there are m
servers.

4.2. Bandwidth allocation. Next we address bandwidth allocation problems.
Job scheduling for the uniprocessor model discussed above is identical to the band-
width allocation (call control) model on a single link, when load is translated to
bandwidth. We generalize the result to work for an arbitrary network as follows.

Corollary 4. Assume calls have arbitrary values. Then, any randomized, pre-
emptive call control algorithm for any network has a competitive ratio of at best g for
measures µd and µv.

Proof. Pick any pair of nodes s and t in the network. Let F be the value of the
maximum flow from s to t, where u(e) is the capacity of an edge. Let ε be the greatest
common divisor of all the edge capacities. We will only request calls between s and t
with bandwidth at most ε. Thus, the set of paths between s and t can be treated as
a single edge with capacity F .

We use the same reduction above, choosing Nc = F/ε, vc′ = vcε/F , dc′ = dc, and
lc = ε. The expected gain of A′ from the c′ jobs is vcnc(ec)ε/F , and the expected gain
of A from job c is vcnc(ec)/Nc = vcnc(ec)ε/F . Thus, the expected gain of A on its
input sequence S is equal to the expected gain of A′ on the constructed sequence S′.
Since µd(S) = µd(S

′) and µv(S) = µv(S
′), the existence of A′ contradicts Theorem

2.
Corollary 5. Any randomized, preemptive call control algorithm for any net-

work has a competitive ratio of at best g for measures µd and µl, even if the value of
a call is its duration, or if the values of all calls are 1.

Proof. Use the techniques of the proof of Corollary 4 to extend Corollaries 2 and
3 to general networks.

Next we concentrate on networks with no cycles, namely trees. Corollaries 4 and
5 apply. In addition, here the bound can be shown to apply to other natural ways
for determining a call value. Let rc denote the distance in the tree between the two

1012 RAN CANETTI AND SANDY IRANI

endpoints of the call c. Let D be the diameter of the tree. (D can be regarded as the
ratio between the lengths of the longest and shortest paths in a network.)

Corollary 6. Suppose we have a tree network with diameter D. Then any
randomized, preemptive call control algorithm for this network has a competitive ratio
of at best Ω (g) for measures µd and D, even with the following criteria for call value.

(i) vc = lcdc.

(ii) vc = rc.

(iii) vc = rclc.

(iv) vc = rcdc.

(v) vc = rclcdc.

Remarks. (1) Note that although D is not a parameter of the input sequence, it
describes the network which is part of the input to the problem. The definition of
competitiveness in section 2 can be adapted accordingly. (2) Method (i) for determin-
ing the value of a call measures the amount of information potentially contained in a
call. Measure (iv) measures the amount of “work” invested in a call. The fact that
the bound holds for these measures stands in contrast to the single-edge and mul-
tiprocessor cases. There, constant competitive algorithms exist for similar measures
(see, e.g., [8]).

Proof. We construct a reduction to Theorem 2. Assume that D, as well as vc and
vc/dc for each job c requested of A, are powers of 2 (and dc is an integer). Such a
situation can be achieved by rescaling and rounding, with a loss of at most a factor
of 4 in effectiveness. That is, first rescale vc and dc to be all integers. Next, D and
vc for each call c are rounded to the largest power of two smaller than D.

(i) Assume the existence of an o(g)-competitive scheduler A′ on a tree network
with diameter D = µd(S) · µv(S), where the value of a call c is lc · dc. We construct
a scheduler A that contradicts Theorem 2.

A first chooses a simple path of length D in the network on which A′ operates
and numbers the nodes along the path 0, 1, . . . , D. For each requested job c, scheduler
A requests a set S′c of vc/dc calls for A′, where the ith call starts at node [(i−1) · Ddc

vc
]

and ends at node [i · Ddc
vc

]. (That is, Nc = vc/dc and each generated call c′ is of

length rc′ = D dc
vc

. All these calls can be served “back to back” on the path.) All
generated calls have lc′ = 1. Next, A maintains the property that call c is in service
with probability proportional to the fraction of the corresponding c′ calls currently
served by A′.

The expected gain of A′ from the jobs in S′c is dcnc(ec), and the expected gain
of A from job c is vcnc(ec)/Nc = dcnc(ec). Thus, the expected gain of A on its input
sequence S is equal to the expected gain of A′ on the constructed sequence S′. Since
µd(S) = µd(S

′) and µv(S) · µd(S) ≥ D, the existence of A′ contradicts Theorem 2.

(ii) As in the proof of (i), A picks a path of length D in the tree. The vertices
of this path are labeled {0, . . . , D}. Nc = 1, lc = 1, dc = dc′ . The endpoints of the
call in S′c are node 0 and node vc. Thus, vc = rc′ = vc′ . Since µd(S) = µd(S

′) and
µv(S) = D, the existence of A′ contradicts Theorem 2.

(iii) The construction for (ii) works here since for all c, lc = 1.

(iv) As in the proof of (i), A picks a path of length D in the tree. The vertices
of this path are labeled {0, . . . , D}. Nc = 1, lc = 1, dc = dc′ . The endpoints of
the call in S′c are 0 and node vc/dc. Thus, rc′ = vc/dc and vc = rcdc′ = vc′ . Since
µd(S) = µd(S

′) and µv(S) · µd(S) ≥ D, the existence of A′ contradicts Theorem 2.

(v) The construction for (iv) works here since for all c, lc = 1.

PREEMPTION IN RANDOMIZED SCHEDULING 1013

5. Tightness of the bound. We sketch two simple preemptive, randomized
schedulers in the basic model defined in section 2. The first is O(logµv)-competitive
and the second is O(logµd)-competitive. Depending on whether µd ≤ µv, we can
implement the appropriate one to obtain an O(logµ)-competitive scheduler for µ =
min{µv, µd}. In both cases we use a technique of [3].

For the O(logµv)-competitive scheduler, let m (resp., M) be the minimum (resp.,
maximum) possible value of a job. Let k = dlog(M/m)e and let v0, . . . , vk satisfy
v0 = m, vk = M , and vi/vi−1 ≤ 2. The scheduler first picks 1 ≤ i ≤ k at random.
Next, it rejects all jobs whose value does not fall between vi−1 and vi. Jobs with value
between vi−1 and vi are scheduled as follows: accept an incoming job if it terminates
before the currently running job. This scheduler is 2-competitive over the sequence
of jobs in the chosen range. Thus, the competitive ratio of the randomized algorithm
is 4 log2 µv = 4 log2(M/m).

For the O(logµd)-competitive scheduler, let d (resp., D) be the minimum (resp.,
maximum) possible duration of a job. Let k = dlog(D/d)e and let d0, . . . , dk satisfy
d0 = m, dk = M , and di/di−1 ≤ 2. The scheduler first picks 1 ≤ i ≤ k at random.
Next, it rejects all jobs whose duration does not fall between di−1 and di. Jobs with
duration between di−1 and di are scheduled as follows: accept an incoming job if
there is no currently running job or if the new job has at least twice the value of the
currently running job.

We first show that the competitive ratio of this scheduler is 14-competitive, as-
suming that all jobs have the same duration. Then we employ the above [3] technique
to argue that the competitive ratio of this scheduler is O(log2 µd) = O(log2(M/m)).

Assume all jobs have the same duration. First we observe that the total value
of all jobs which the scheduler preempts is at most the total value of the jobs which
the scheduler completes. This follows from the fact that the scheduler only preempts
a job in favor of a job which is at least twice the value of the currently running job.
Next we bound the gain from jobs which the scheduler rejects (i.e., never schedules).
Each rejected job intersects in time with a running job. (The running job can later
be either completed or rejected.) It can be seen that the maximum gain from rejected
jobs that intersect each running job c is at most 6vc. Thus the maximum gain from
rejected jobs is at most 6 times the total gain from completed or preempted jobs.
Altogether, the maximum gain from rejected, preempted, and completed jobs is at
most 14 times the gain from completed jobs.

In the above construction it is assumed that the scheduler would know µd and µv
in advance. We remark that this can be avoided by “rerandomizing” every time a job
is introduced which increases µd or µv. We do not elaborate here.

6. Open questions. The first question we leave open is to close the quadratic
gap for our generic scheduling problem. A logarithmic lower bound would not only
match the upper bound shown in section 5 but would also match the other logarithmic
upper bounds discussed in section 1.1.

Although much of the recent work in online routing in communication networks
addresses the limited capacity problem, most of the work on the more traditional
load balancing problems relates to makespan minimization. Despite the general lack
of attention, the limited capacity problem seems to be well suited to many of the
applications for the variety of scheduling paradigms in the literature. This points out
an important and largely unexplored area in online scheduling. For example, there
has been little which addresses admission control problems related to either example
(a) or (b) at the beginning of the introduction. Although the work of [10], [11], and

1014 RAN CANETTI AND SANDY IRANI

[22] is an important step in this direction, that work addresses a very special case.
Thus, generalizing these results to apply to more complex models is an important and
relevant new direction for research.

Acknowledgments. We are grateful to the hospitality of Zvi Galil and Columbia
University that enabled us to carry out this work during the summer of 1994. We
also thank the anonymous referees for their very helpful comments.

REFERENCES

[1] J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, On-line load balancing with appli-
cations to machine scheduling and virtual circuit routing, in Proc. 25th ACM Symposium
on the Theory of Computing, 1993, pp. 623–631.

[2] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive online routing, in 34th
IEEE Symposium on Foundations of Computer Science, 1993, pp. 32–40.

[3] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosen, Competitive non-preemptive call control,
in Proc. 5th ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA,
1994, pp. 312–320.

[4] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, On-line admission control and
circuit routing for high performance computing and communication, in Proc. 35th Annual
IEEE Symposium on the Foundations of Computer Science, 1994, pp. 412–423.

[5] Y. Azar, A. Z. Broder, A. R. Karlin, Online load balancing, in Proc. 33rd Annual IEEE
Symposium on the Foundations of Computer Science, 1992, pp. 218–225.

[6] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts, Online load balanc-
ing of temporary tasks, in Workshop on Algorithms and Data Structures, 1993, pp. 119–130;
J. Algorithms, 22 (1996), pp. 93–110.

[7] Y. Azar, J. Naor, and R. Rom, The competitiveness of on-line assignments, in Proc. 3rd
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1992, pp. 203–
210.

[8] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Bandwidth allocation
with preemption, in Proc. 27th ACM Symposium on Theory of Computing, 1995, pp. 616–
625.

[9] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra, New algorithms for an ancient scheduling
problem, in Proc. 24th ACM Symposium on Theory of Algorithms, 1992, pp. 51–58; J.
Comput. System Sci., 51 (1995), pp. 359–366.

[10] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha, On-line
scheduling in the presence of overload, in Proc. 32nd Annual IEEE Symposium on the
Foundations of Computer Science, 1991, pp. 100–110.

[11] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang, On the competitiveness of on-line real-time task scheduling, J. Real-Time
Systems, 4 (1992), pp. 124–144.

[12] J. A. Garay and I. S. Gopal, Call preemption in communication networks, in Proceedings of
INFOCOM ‘92, IEEE, 1992.

[13] J. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung, Efficient on-line call control
algorithms, in Proc. 2nd Israel Symposium on Theory of Computing and Systems, 1993,
pp. 285–293; J. Algorithms, 23 (1997), pp. 180–194.

[14] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416–429.

[15] M. Harchol-Balter and A. B. Downey, Exploiting Process Lifetime Distributions for Dy-
namic Load Balancing, Tech. Report TR-95-021, International Computer Science Institute,
Berkeley, CA, 1995.

[16] D. R. Karger, S. J. Phillips, and E. Torng, A better algorithm for an ancient scheduling
problem, J. Algorithms, 20 (1996), pp. 400–430.

[17] G. Koren and D. Shasha, Dover: An Optimal On-Line Scheduling Algorithm for Overloaded
Real-Time Systems, Tech. Report 594, Courant Institute, New York University, 1992.

[18] G. Koren and D. Shasha, MOCA: A multiprocessor on-line competitive algorithm for real-
time system scheduling, Theoret. Comput. Sci., Special Issue on Dependable Parallel Com-
puting, 128 (1994), pp. 75–97.

[19] R. Motwani, S. Phillips, and E. Torng, Non-clairvoyant scheduling, Theoret. Comput. Sci.,
130 (1994), pp. 17–47.

PREEMPTION IN RANDOMIZED SCHEDULING 1015

[20] S. Phillips and J. Westbrook, On-line load balancing and network flow, in Proc. 25th ACM
Symposium on Theory of Computing, 1993, pp. 402–411.

[21] K. K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D Ting, P. Tzelnic, S. Glaser,
and W. Duso, Operating system support for a video-on-demand file service, in Network and
Operating System Support for Digital Audio and Video: Fourth International Workshop,
Springer-Verlag, Lancaster, UK, 1993, pp. 225–236.

[22] G. Woeginger, On-line scheduling of jobs with fixed start and end times, Theoret. Comput.
Sci., 130 (1994), pp. 5–16.

[23] Special Issue on Asynchronous Transfer Mode, Internat. J. Digital Analog Cabled Systems, 1
(4), 1988.

SURFACE APPROXIMATION AND GEOMETRIC PARTITIONS∗

PANKAJ K. AGARWAL† AND SUBHASH SURI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1016–1035, August 1998 006

Abstract. Motivated by applications in computer graphics, visualization, and scientific compu-
tation, we study the computational complexity of the following problem: given a set S of n points
sampled from a bivariate function f(x, y) and an input parameter ε > 0, compute a piecewise-linear
function Σ(x, y) of minimum complexity (that is, an xy-monotone polyhedral surface, with a mini-
mum number of vertices, edges, or faces) such that |Σ(xp, yp) − zp| ≤ ε for all (xp, yp, zp) ∈ S. We
give hardness evidence for this problem, by showing that a closely related problem is NP-hard . The
main result of our paper is a polynomial-time approximation algorithm that computes a piecewise-
linear surface of size O(Ko logKo), where Ko is the complexity of an optimal surface satisfying the
constraints of the problem.

The technique developed in our paper is more general and applies to several other problems
that deal with partitioning of points (or other objects) subject to certain geometric constraints. For
instance, we get the same approximation bound for the following problem arising in machine learning:
given n “red” and m “blue” points in the plane, find a minimum number of pairwise disjoint triangles
such that each blue point is covered by some triangle and no red point lies in any of the triangles.

Key words. approximation algorithms, dynamic programming, levels of detail, machine learn-
ing, terrains, simplification, visualization

AMS subject classifications. 65Y25, 68Q20, 68Q25, 68U05.

PII. S0097539794269801

1. Introduction. In scientific computation, visualization, and computer graph-
ics, the modeling and construction of surfaces is an important area. A small sample
of some recent papers [1, 2, 4, 8, 11, 14, 22, 23] on this topic gives an indication of
the scope and importance of this problem. Rather than delve into any specific prob-
lem studied in these papers, we focus on a general, abstract problem that seems to
underlie them all.

In many scientific and computer graphics applications, computation takes place
over a surface in three dimensions. The surface is generally modeled by piecewise
linear (or sometimes piecewise cubic) patches, whose vertices lie either on or in the
close vicinity of the actual surface. In order to ensure that all local features of the
surface are captured, algorithms for an automatic generation of these models generally
sample at a dense set of regularly spaced points. Demands for real-time speed and
reasonable performance, however, require the models to have as small a combinatorial
complexity as possible. A common technique employed to reduce the complexity of
the model is to somehow “thin” the surface by deleting vertices with relatively “flat”
neighborhoods. Only ad hoc and heuristic methods are known for this key step. Most
of the thinning methods follow a set of local rules (such as deleting edges or vertices
whose incident faces are almost coplanar), which are applied in an arbitrary order

∗Received by the editors June 10, 1994; accepted for publication (in revised form) May 22, 1996;
published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-4/26980
†Department of Computer Science, Box 1029, Duke University, Durham, NC 27708-0129

(pankaj@euclid.cs.duke.edu). The work of this author was supported by National Science Foun-
dation research grant CCR-93-01259, by Army Research Office MURI grant DAAH04-96-1-0013, by
a Sloan fellowship, by a National Science Foundation NYI award and matching funds from Xerox
Corp., and by a grant from the U.S.-Israeli Binational Science Foundation.
‡Department of Computer Science, Washington University, Campus Box 1045, One Brookings

Drive, St Louis, MO 63130 (suri@cs.wustl.edu).

1016

GEOMETRIC PARTITIONING 1017

until they are no longer applicable. Not surprisingly, these methods come with no
performance guarantee, and generally no quantitative statement can be made about
the surface approximation computed by them.

In this paper, we address the complexity issues of the surface approximation
problem for surfaces that are xy-monotone. These surfaces represent the graphs of
continuous bivariate functions f(x, y), and they arise quite naturally in many scientific
applications. One possible approach for handling arbitrary surfaces is to break them
into monotone pieces and apply our algorithm individually on each piece. Let us
formally define the main problem studied in our paper.

Let f be a continuous function of two variables x and y, and let S be a set
of n points sampled from f . A continuous piecewise-linear function Σ is called an
ε-approximation of f , for ε > 0, if

|Σ(xp, yp)− zp| ≤ ε

for every point p = (xp, yp, zp) ∈ S. Given S and ε, the surface-approximation
problem is to compute a piecewise-linear function Σ that ε-approximates f with a
minimum number of breakpoints. The breakpoints of Σ can be arbitrary points of
R3, and they are not necessarily points of S. In many applications, f is generally a
function hypothesized to fit the observed data—the function Σ is a computationally
efficient substitute for f . The parameter ε is used to achieve a complexity–quality
tradeoff: the smaller the ε, the higher the fidelity of the approximation. (The graph
of a piecewise-linear function of two variables is also called a polyhedral terrain in
computational geometry literature; the breakpoints of the function are the vertices of
the terrain.)

Although there is a vast literature on the surface-approximation problem in the
graphics community, the state of theoretical knowledge of this problem appears to be
rather slim. The provable performance bounds are known only for convex surfaces.
For this special case, an O(n3) time algorithm is presented by Mitchell and Suri [17]
for computing an ε-approximation of a convex polytope of n vertices in R3. Their
algorithm produces an approximation of size O(Ko log n), where Ko is the size of
an optimal ε-approximation. Extending their work, Clarkson [7] has proposed an
O(Kon

1+δ) expected time randomized algorithm for computing an approximation of
size O(Ko logKo), where δ can be an arbitrarily small positive number. Recently
Brönnimann and Goodrich [5] have refined Clarkson’s algorithm and have given a
polynomial-time algorithm for computing an approximation of size O(K0).

In this paper, we study the approximation problem for surfaces that correspond
to graphs of bivariate functions. We give evidence that the surface approximation may
be hard, by showing that a closely related problem is NP-hard . In particular, we prove
that it is NP-hard to decide whether the set of sample points can be ε-approximated
with k triangles whose projections on the z = 0 plane are pairwise disjoint. (The
latter problem relaxes the continuity requirement of the surface approximation.)

The main result of our paper, however, is a polynomial-time algorithm for comput-
ing an ε-approximating surface of a guaranteed quality. If an optimal ε-approximating
surface of f has Ko vertices, then our algorithm produces a surface with O(Ko logKo)
vertices. (The number of vertices, edges, and faces are linearly related by Euler’s for-
mula, and so the approximation holds for any of the three measures.) Observe that we
are dealing with two approximation measures here: ε, which measures the absolute z
difference between f and the “simplified” surface Σ, and the ratio between the sizes of
the optimal surface and the output of our algorithm. For lack of better terminology,

1018 PANKAJ AGARWAL AND SUBHASH SURI

we use the term “approximation” for both measures. Notice, though, that ε is an
input (user-specified) parameter, and logKo is the approximation guarantee provided
by the analysis of our algorithm.

The key to our approximation method is an algorithm for partitioning a set of
points in the plane by pairwise disjoint triangles. This is an instance of the geometric
set-cover problem, with an additional disjointness constraint on the covering objects
(triangles). Observe that the disjointness condition on covering objects precludes
the well-known greedy method for set covering [12, 15]; in fact, we can show that
a greedy solution has size Ω(Ko

2) in the worst case. Let us now reformulate our
surface-approximation problem as a constrained geometric partitioning problem.

Let p̄ denote the orthogonal projection of a point p ∈ R3 onto the xy-plane z = 0.
In general, for any set A ⊂ R3, we use Ā to denote the orthogonal projection of A
onto the xy-plane. Then, in order to get an ε-approximation of f , it suffices to find a
set of triangles in 3-space so that (i) the projections of these triangles on plane z = 0
are pairwise disjoint and they cover the projected set of points S̄, and (ii) the vertical
distance between a triangle and any point of S directly above/below it is at most
ε. Our polynomial-time algorithm produces a family of O(Ko logKo) such triangles.
We stitch together these triangles to produce the desired surface Σ. The “stitching”
process introduces at most a constant factor more triangles.

The geometric partition framework also includes several extensions and general-
izations of the basic surface-approximation problem. For instance, we can formulate
a stronger version of the problem by replacing each sample point by a horizontal
triangle (or any polygon). Specifically, we are given a family of horizontal triangles
(or polygons) in 3-space, whose projections on the xy-plane are pairwise disjoint. We
want a piecewise-linear, ε-approximating surface whose maximum vertical distance
from any point on the triangles is ε. Our approximation algorithm works equally
well for this variant of the problem—this variant addresses the case when some local
features of the surface are known in detail; unfortunately, our method works only for
horizontal features.

Finally, let us mention the planar bichromatic partition problem, which is of
independent interest in the machine learning literature. Given a set R of “red” points
and another set B of “blue” points in the plane, find a minimum number of pairwise
disjoint triangles so that each blue point lies in a triangle and no red point lies in
any of the triangles. Our algorithm gives a solution with O(Ko logKo) triangles. It
can also be used to construct a linear decision tree of size O(Ko logKo), which is
consistent with respect to R and B, where Ko is the size of an optimal linear decision
tree.

The running time of our algorithms, though polynomial, is quite high, and at
the moment has only theoretical value. These being some of the first results in this
area, however, we expect that the theoretical time complexity of these problems would
improve with further work. Perhaps some of the ideas in our paper may also shed
light on the theoretical performance of some of the “practical” algorithms that are
used in the trade.

2. A proof of NP-hardness. We first show that the planar bichromatic parti-
tion problem is NP-hard , by a reduction from the planar 3-SAT. Later we extend the
proof to the surface approximation by pairwise disjoint triangles. We do not know
whether they are in NP since the coordinates of the triangles in the solution may
require very high precision. We recall that the 3-SAT problem consists of n variables
x1, . . . , xn, and m clauses C1, . . . , Cm, each with three literals Ci1, Ci2, Ci3, where

GEOMETRIC PARTITIONING 1019

Cij is either xk or x̄k. The problem is to decide whether the boolean formula

F =

m∧
i=1

(Ci1 ∨ Ci2 ∨ Ci3)

has a truth assignment. An instance of 3-SAT is called planar if its variable-clause
graph is planar. In other words, F is an instance of the planar 3-SAT if the graph
G(F) = (V,E) is planar (see [13]), where V and E are defined as follows:

V = {x1, x2, . . . , xn},
E = {(xj , Ci) | xi or x̄i appears in Ci} .

Theorem 2.1 (planar bichromatic partition problem). The following problem is
NP-hard. Given a set R of “red” points, another set B of “blue” points in the plane,
and an integer parameter k, do there exist k pairwise disjoint triangles containing all
the blue points and none of the red points?

Proof. Our construction is similar to the one used by Fowler, Paterson, and Tani-
moto [10], who prove the intractability of certain planar geometric covering problems
(without the disjointness condition); see also [3, 9] for similar constructions. We
first describe our construction for the bichromatic partition problem. To simplify the
proof, our construction allows three or more points to lie on a line—the construction
can be modified easily to remove these degeneracies.

Let F be a boolean formula, and let G = (V,E) be a straight-line planar em-
bedding of the graph G(F). We construct an instance of the bichromatic partition
problem whose solution determines whether F is satisfiable.

We start by placing a “blue” point at each clause node Cj , 1 ≤ j ≤ m. Let xi
be a variable node, and let ei1, ei2, . . . , eil be the edges incident to it. In the plane
embedding of G, the edges eij form a “star” (see Figure 1 (i)). We replace this star
by its Minkowski sum with a disk of radius δ, for a sufficiently small δ > 0. Before
performing the Minkowski sum, we shrink each edge eij by 2δ at its endpoint Cij , so
that different “star-shaped polygons” meeting at a clause node do not overlap (see
Figure 1 (ii)). Let Pi denote the star-shaped polygon corresponding to xi. In the
polygon Pi, there is a tube corresponding to each edge eij . The tube consists of two
copies of eij , each translated by distance δ, plus a circular arc sij near the clause node
Cj .

We place an even number of (say, 2ki) “blue” points on the boundary of Pi, as
follows. We put two points aij and bij on the circular arc sij near its tip. If Cj
contains the literal xi, we put six points on the straight-line portion of Pi’s boundary,
three each on translated copies of the edge eij . On each copy, we move the middle
point slightly inwards so as to replace the original edge of Pi by a path of length 2.
On the other hand, if Cj contains the literal x̄i, we put four points on the straight-line
portion of Pi’s boundary, two each on translated copies of the edge eij . Thus, the
number of blue points added on the tube corresponding to the edge eij is either six
or eight. (2ki is the total number of points put along Pi.) Let B denote the set of all
blue points placed in this way, and let k =

∑n
i=1 ki.

Finally, we scatter a large (but polynomially bounded) number of “red” points so
that

(i) any segment connecting two blue points that are not adjacent along the
boundary of some Pi contains a red point, and

1020 PANKAJ AGARWAL AND SUBHASH SURI

x2

x3

C1
x1 x4C2

P4P1

P3

C1

C2

C1

a11

b11

P2

P1

(iii)

(ii)

(i)

(iv)

Fig. 1. (i) An instance of planar 3-SAT: F = (x1∨ x̄2∨x3)∧ (x2∨ x̄3∧x4). (ii) Corresponding
instance of bichromatic partition. (iii) Details of P1 and C1; only some of the red points lying near
P1 and C1 are shown. (iv) Two possible coverings of blue points on P2.

(ii) any triangle with three blue points as its vertices contains at least one red
point unless the triangle is defined by aijbijCj for some edge eij ∈ E. (See
Figure 1 (iii).)

Let R be a set of red points satisfying the above two properties.

We claim that the set of blue points B can be covered by k pairwise disjoint
triangles, none of which contains any red point, if and only if the formula F has a truth
assignment. Our proof is similar to the one in Fowler, Paterson, and Tanimoto [10];
we only sketch the main ideas. The red points act as enforcers, ensuring that only
those blue points that are adjacent on the boundary of a Pi can be covered by a single
triangle. Thus, the minimum number of triangles needed to cover all the points on Pi

GEOMETRIC PARTITIONING 1021

is ki. Further, there are precisely two ways to cover these points using ki triangles:
in one covering, aij and bij are covered by a single triangle for those clauses only in
which xi ∈ Cj , and, in the other covering, aij and bij are covered by a single triangle
for those clauses only in which x̄i ∈ Cj ; see Figure 4 (iv). We regard the first covering
as setting xi = 1, and the second covering as setting xi = 0.

Suppose xi = 1. For any clause Cj that contains xi, the points aij and bij are
covered by a single triangle, and we can cover the clause point corresponding to Cj
by the same triangle. The same holds if xi = 0 and the clause Cj contains x̄i. In
other words, the clause point of Cj can be covered for free if Cj is satisfied. Thus, the
set of blue points B can be covered by k triangles if and only if the clause point for
each clause Cj is covered for free, that is, the formula F has a truth assignment. This
completes our proof of NP -hardness of the planar bichromatic partition problem.

Remark. The preceding construction is degenerate in that most of the red points
lie on segments connecting two blue points. There are several ways to remove these
collinearities; we briefly describe one of them. For each polygon Pi, replace every blue
point b on Pi by two blue points b′, b′′, placed very close to b. (We do not make copies
of “clause points” Cj , 1 ≤ j ≤ m.) For every pair of blue points bj , bl that we did not
want to cover by a single triangle in the original construction, we place a red point
in the convex hull of b′j , b

′′
j , b
′
l, b
′′
l . If there are 4ki blue points on the boundary of Pi,

they can be covered by ki triangles, and there are exactly two ways to cover these blue
points by ki triangles, as earlier. Following a similar, but more involved, argument,
we can prove that the set of all blue points can be covered by

∑n
i=1 ki triangles if and

only if F is satisfiable.

Theorem 2.2. The following problem is NP-hard. Given a set S of n points
sampled from a bivariate function f(x, y), a real parameter ε > 0, and an integer k,
can the points of S be ε-approximated by k triangles whose projections on the plane
z = 0 are pairwise disjoint?

Proof. Our construction is similar in spirit to the one for the bichromatic partition
problem, albeit slightly more complex in detail. We use points of three colors: red,
white, and black. The “white” points lie on the plane z = 0, the “black” points lie
on the plane z = 2A, and the “red” points lie between z = 0 and z = A, where A is a
sufficiently large constant. To maintain a connection with the previous construction,
the black and white points play the role of blue points, while the red points play
the role of enforcers as before, restricting the choice of “legal” triangles that can
cover the black or white points. We will describe the construction in the xy-plane,
which represents the orthogonal projection of the actual construction. The actual
construction is obtained simply by vertically translating each point to its correct
plane, depending on its color.

We start out again by putting a “black” point at each clause node Cj . Then,
for each variable xi, we construct the “star-shaped” polygon Pi; this part is identical
to the previous construction. We replace each of the two straight-line edges of Pi by
“concave chains,” bent inward, and also make a small “dent” at the tip of the circular
arc sij , as shown in Figure 2. We place 12 points on each arm of Pi, alternating black
and white, as follows. At the tip of the circular arc sij , we put a white point cij at
the outer endpoint of the dent and a black point dij at the inner endpoint of the dent
(Figure 2 (ii)). The rest of the construction is shown in Figure 2 (i): we put two more
points aij , bij on the circular arc and four points αlij , β

l
ij (1 ≤ l ≤ 4) on each of the

two concave chains. The two points surrounding cij , dij , namely, aij and bij , are such
that any segment connecting them to any point on the two concave chains lies inside

1022 PANKAJ AGARWAL AND SUBHASH SURI

a22a21 b22b21
d21

c′21
c′22

d22

(ii)

422

c22

421

(i)

e21 e22

c′11

(iii)

411

421

c′31

b21

c21

Ci

β1
21

α4
21

β4
21

c′21

431x̄2 ∈ C1 x2 ∈ C2

α1
21

a21

Fig. 2. Placing points on the polygon P2 corresponding to Figure 1. (i) Modified P2 and points
on P2. (ii) Points and triangles in the neighborhood of c21, c22. (iii) Points and triangles near C1.

Pi. Next, corresponding to each edge eij of the graph G(F), we put a “white” point
c′ij on the segment joining cij and the clause point Cj , very close to cij , such that

d(cij , c
′
ij) ≤

ε

2A
d(cij , Cj) .

(See Figure 2 (iii).) This condition says that, in the final construction when the black
and white points have been translated to their correct z-plane, the vertical distance
between c′ij and the segment Cjcij is no more than ε—recall that ε is the input
measure of approximation.

This completes the placement of white and black points. The only remaining part
of the construction is the placement of “red” points, which we now describe.

We add a set of triangles, each containing a large (but polynomially bounded)
number of red points—the role of these triangles is to restrict the choice of legal
triangles that can cover black/white points. The set of triangles associated with Pi
is labeled Ti. The construction of Ti is detailed in Figure 2 (i). Specifically, for an
edge eij , if xi ∈ Cj , then we add a small triangle that intersects the segment bijc

′
ij

but not bijcij . On the other hand, if x̄i ∈ Cj , then we add a small triangle that
intersects aijc

′
ij but not aijcij . Next, we add a small number of triangles inside Pi,

near its concave chains, so that at most three consecutive points along Pi may be
covered by one triangle without intersecting any triangle of Ti. We ensure that one
of these triangles intersects the triangle 4α1

ijaijdij , so that {α1
ij , aij , dij} cannot be

covered by a single triangle. We also place three triangles near each clause Cj , each
containing a large number of red points; see Figure 2 (iii). Finally, we translate black
and white points in the z-direction, as described earlier. Let {τ1, . . . , τt} be the set
of all “red” triangles. We move all points in τi vertically to the plane z = A

4 (1 + 2i
t).

Now, suppose that polygon Pi has 3ki white or black points on its boundary.

GEOMETRIC PARTITIONING 1023

Then, there are two ways to cover the points of Pi with ki legal (nonintersecting)
triangles: one in which aij , dij , cij are covered by a single triangle, and one in which
bij , dij , cij are covered by a triangle. These coverings are associated with the true and
false settings of the variable xi. Let P denote the set of all points constructed, and
let k =

∑n
i=1 ki. Let t denote the total number of “red” triangles. Recall also that m

is the number of clauses in F .

We claim that the set of points P can be ε-approximated with k+m+ t triangles
if and only if F has a truth assignment, provided that ε is sufficiently small. The
claim follows from the observations that it is always better to cover all red points
lying in a horizontal triangle τi by τi itself, and that a clause Cj requires one triangle
to cover its points if and only if one of the literals in Cj is set true; otherwise it
requires two triangles. (For instance, if Cj contains the literal xi and xi is set true,
then the triangle aij , dij , cij can be enlarged slightly to cover c′ij . The remaining
three points for the clause Cj can be covered by one additional triangle.) The rest of
the argument is the same as for the bichromatic partition problem. Finally, we can
perturb the points slightly so that no four of them are coplanar.

Remark. Our proof has some technical problems if the approximating surface is
required to be continuous. While the surface approximation and the approximation by
disjoint triangles seem closely related, we can only claim to have proved the hardness
for the latter. In the remainder of the paper, however, we develop algorithms for the
continuous version of the surface approximation; of course, our algorithmic results
hold for the problem of approximation by triangles as well.

3. A canonical trapezoidal partition. We introduce an abstract geometric
partitioning problem in the plane, which captures the essence of both the surface-
approximation problem and the bichromatic partition problem. The abstract problem
deals with trapezoidal partitions under a boolean constraint function C satisfying
the “subset restriction” property. More precisely, let C be a boolean function from
compact, connected subsets of the plane to {0, 1} satisfying the following property:

C(U) = 1 =⇒ C(V) = 1 for all V ⊆ U ⊆ R2.(3.1)

For technical reasons, we choose to work with “trapezoids” instead of triangles,
where the top and bottom edges of each trapezoid are parallel to the x-axis. The
trapezoids and triangles are equivalent for the purpose of approximation: each triangle
can be decomposed into two trapezoids, and each trapezoid can be decomposed into
two triangles.

Given a set of n points P in the plane, a family of trapezoids ∆ = {∆1, . . . ,∆m}
is called a valid trapezoidal partition (a trapezoidal partition, for brevity) of P with
respect to a boolean constraint function C if the following conditions hold:

(i) C(∆) = 1, for all ∆ ∈∆;
(ii) ∆ covers all the points: P ⊂ ⋃mi=1 ∆i; and
(iii) the trapezoids in ∆ have pairwise disjoint interiors.

We can cast our bichromatic partition problem in this abstract framework by
setting P = B (the set of “blue” points) and, for a trapezoid τ ⊂ R2, defining
C(τ) = 1 if and only if τ is empty of red points, that is, τ ∩ R = ∅. In the surface-
approximation problem, we set P = S̄ (the orthogonal projection of S on the plane
z = 0), and a trapezoid τ ⊂ R2 has C(τ) = 1 if and only if τ can be vertically lifted
to a planar trapezoid τ̂ in R3 so that the vertical distance between τ̂ and any point
of S directly above/below it is at most ε.

1024 PANKAJ AGARWAL AND SUBHASH SURI

The space of optimal solutions for our abstract problem is potentially infinite—
the vertices of the triangles in our problem can be anywhere in the plane. For our
approximation results, however, we show that a restricted choice of trapezoids suffices.

Given a set of n points P in the plane, let L(P) denote the set consisting of the
following lines: the horizontal lines passing through a point of P , and the lines passing
through two points of P . Thus, |L(P)| = O(n2). We will call the lines of L(P) the
canonical lines determined by P . We say that a trapezoid ∆ ⊂ R2 is canonical if
all of its edges belong to lines in L(P). A trapezoidal partition ∆ is canonical if
all of its trapezoids are canonical (see Figure 3). The following lemma shows that
by limiting ourselves to canonical trapezoidal partitions only, we sacrifice at most a
constant (multiplicative) factor in our approximation.

Fig. 3. A canonical trapezoidal partition.

Lemma 3.1. Any trapezoidal partition of P with k trapezoids can be transformed
into a canonical trapezoidal partition of P with at most 4k trapezoids.

Proof. We give a construction for transforming each trapezoid ∆ ∈ ∆ into four
trapezoids ∆i ⊆ ∆, for 1 ≤ i ≤ 4, with pairwise disjoint interiors, so that ∆i together
cover all the points in P ∩∆. By (3.1), the new set of trapezoids is a valid trapezoidal
partition of P . Our construction works as follows.

Consider the convex hull of the points P∆ = P ∩ ∆. If the convex hull itself is
a trapezoid, we return that trapezoid. Otherwise, let `, r, t, b denote the left, right,
top, and bottom edges of ∆, as shown in Figure 4 (i). We perform the following four
steps, which constitute our transformation algorithm.

(i) We shrink the trapezoid ∆ by translating each of its four bounding edges
towards the interior, until it meets a point of P∆. Let ∆′ ⊆ ∆ denote the
smaller trapezoid thus obtained (Figure 4 (i)). Let p`, pr, pt, pb, respectively,
denote a point of P∆ lying on the left, right, top, and bottom edges of ∆′; we
break ties arbitrarily if more than one point lies on an edge.

(ii) We partition ∆′ into two trapezoids, ∆L and ∆R, by drawing the line segment
pupb, as shown in Figure 4 (ii).

(iii) We next partition ∆L into two trapezoids ∆LU and ∆LB , by drawing the
maximal horizontal segment through p`. Let p′` denote the right endpoint of
this segment. Similarly, we partition ∆R into ∆RU and ∆RB , lying, respec-
tively, above and below the horizontal line segment prp

′
r.

(iv) We rotate the line supporting the left boundary of ∆LU around the point p`
in clockwise direction until it meets a point of the set P ∩∆LU . Let q` denote
the intersection of this line and the top edge of ∆LU . We set ∆1 = p`q`pup

′
`

(Figure 4 (iv)). (If q` = pu, then ∆1 is a triangle, which we regard as a
degenerate trapezoid; e.g., ∆4 in Figure 4 (iii).) The top and bottom edges of

GEOMETRIC PARTITIONING 1025

∆′ ∆R

∆L

u

r

(i)

(iv)

∆RB∆LB

(iii)

b

∆

pu

pr

pb

∆4

` p`

∆2

∆1

∆3

p′`
p′r

(ii)

∆LU ∆RU

Fig. 4. Illustration of the canonicalization.

∆1 contain pu and p`, respectively, the left edge contains p` and q`, and the
right edge is determined by the pair of points pu and pb. Thus, the trapezoid
∆1 is in canonical position. The three remaining trapezoids ∆2,∆3,∆4 are
constructed similarly.

In the above construction, if any of the four trapezoids ∆i does not cover any point
of P∆ (e.g., ∆4 in Figure 4 (iv)), then we can discard it. Thus, an arbitrary trapezoid
of the partition ∆ can be transformed into at most four canonical trapezoids. This
completes the proof of the lemma.

4. Greedy algorithms. At this point, we can obtain a weak approximation
result using the canonical trapezoidal partition. Roughly speaking, we can use the
greedy set-cover heuristic [7, 15], ignoring the disjointness constraint, and then refine
the heuristic output to produce disjoint trapezoids. Unfortunately, the last step can
increase the complexity of the solution quite significantly.

Theorem 4.1. Given a set P of n points in the plane and a boolean constraint
function C satisfying (3.1) that can be evaluated in polynomial time, we can compute
an O(Ko

2 log2 n)-size trapezoidal partition of P respecting C in polynomial time, where
Ko is the size of an optimal trapezoidal partition.

Proof. Consider the set Ξ of all valid, canonical trapezoids in the plane; the set
Ξ has O(n6) trapezoids. We form the geometric set-system

X = (P, {P ∩∆ | ∆ ∈ Ξ & C(∆) = 1 }) .

X can be computed by testing whether each ∆ ∈ Ξ is valid. We compute a set cover
of X using the greedy algorithm [12, 15] in polynomial time. The greedy algorithm
returns a set R consisting of O(Ko log2 n) trapezoids, not necessarily disjoint. In
order to produce a disjoint cover, we first compute the arrangement A(R) of the
plane induced by R. Then, we decompose each face of A(R) into trapezoids by
drawing a horizontal segment through each vertex until the segment hits an edge of
the arrangement. The resulting partition is a trapezoidal partition of P . The number

1026 PANKAJ AGARWAL AND SUBHASH SURI

of trapezoids in the partition is O(Ko log n), since the arrangement A(R) has this
size. The total running time of the algorithm is polynomial.

Remark. (i) The canonical form of trapezoids is used only to construct a finite
family of trapezoids to search for an approximate solution. A direct application of the
definition in the previous subsection gives a family of O(n6) canonical trapezoids. By
using a slightly different canonical form, we can reduce the size of canonical triangles
to O(n4).

(ii) One can show that the number of trapezoids produced by the above algorithm
is Ω(Ko

2) in the worst case.

5. A recursively separable partition. We now develop our main approxima-
tion algorithm. The algorithm is based on dynamic programming, and it depends on
two key ideas: a recursively separable partition and a compliant partition.

A trapezoidal partition ∆ is called recursively separable if the following hold:
(i) ∆ consists of a single trapezoid, or
(ii) there exists a line ` such that (i) ` does not intersect the interior of any

trapezoid in ∆, (ii) ∆+ = ∆ ∩ `+ and ∆− = ∆ ∩ `− are both nonempty,
where `+ and `− are the two half-planes defined by `, and (iii) each of ∆+

and ∆− is recursively separable.
The following key lemma gives an upper bound on the penalty incurred by our

approximation algorithm if only recursively separable trapezoidal partitions are used.
Lemma 5.1. Let P be a finite set of points in the plane and let ∆ be a trapezoidal

partition of P with k trapezoids. There exists a recursively separable partition ∆? of
P with O(k log k) trapezoids. In addition, each separating line is either a horizontal
line passing through a vertex of ∆ or a line supporting an edge of a trapezoid in ∆.

Proof. We present a recursive algorithm for computing ∆?. Our algorithm is
similar to the binary space partition algorithm proposed by Paterson and Yao [18].
We assume that the boundaries of the trapezoids in ∆ are also pairwise disjoint—this
assumption is only to simplify our proof.

At each recursive step of the algorithm, the subproblem under consideration lies
in a trapezoid T . (This containing trapezoid may degenerate to a triangle, or it may
even be unbounded.) The top and bottom edges of T (if they exist) pass through
the vertices of ∆, while the left and right edges (if they exist) are portions of edges
of ∆. Initially T is set to an appropriately large trapezoid containing the family ∆.
Let ∆T denote the trapezoidal partition of P ∩ T obtained by intersecting ∆ with
T , and let VT be the set of vertices of ∆T lying in the interior of T . An edge of ∆T

cannot intersect the left or right edge of T , because they are portions of the edge of
T . Therefore, each edge of ∆T either lies in the interior of T or intersects only the
top and bottom edges of T .

If |∆T | = 1, we return ∆T and stop. Otherwise, we proceed as follows. If there is
a trapezoid 4 ∈∆T that completely crosses T (that is, its vertices lie on the top and
bottom edges of T), then we do the following. If 4 is the leftmost trapezoid of ∆T ,
then we partition T into two trapezoids T1, T2 by drawing a line through the right
edge of ∆, so that T1 contains 4 and T2 contains the remaining trapezoids of ∆T . If
4 is not the leftmost trapezoid of ∆T , then we partition T into T1, T2 by drawing a
line through the left edge of ∆.

If every trapezoid ∆ in ∆T has at least one vertex in the interior of T , and so
the previous condition is not met, then we choose a point v ∈ VT with a median
y-coordinate. We partition T into trapezoids T1, T2 by drawing a horizontal line `v
passing through v. Each trapezoid ∆ ∈ ∆T that crosses `v is partitioned into two

GEOMETRIC PARTITIONING 1027

trapezoids by adding the segment ∆ ∩ `v. At the end of this dividing step, let ∆1

and ∆2 be the set of trapezoids that lie in T1 and T2, respectively. We recursively
refine ∆1 and ∆2 into separable partitions ∆?

1 and ∆?
2, respectively, and return

∆?
T = ∆?

1 ∪∆?
2. This completes the description of the algorithm.

We now prove that ∆∗ satisfies the properties claimed in the lemma. It is clear
that ∆∗ is recursively separable and that each separating line of ∆∗ either supports
an edge of ∆ or is horizontal. To bound the size of ∆∗, we charge each trapezoid
of ∆∗ to its bottom-left vertex. Each such vertex is either a bottom-left vertex of a
trapezoid of ∆ or it is an intersection point of a left edge of a trapezoid of ∆ with the
extension of a horizontal edge of another trapezoid of ∆. There are only k vertices of
the first type, so it suffices to bound the number of vertices of the second type. Since
the algorithm extends a horizontal edge of a trapezoid of ∆T only if every trapezoid
of ∆T has at least one vertex in the interior of T , and we always extend a horizontal
edge with a median y-coordinate, it is easily seen that the number of vertices of the
second type is O(k log k). This completes the proof.

Remark. Given a family ∆ of k pairwise disjoint orthogonal rectangles parti-
tioning P , we can find a set of O(k) recursively separable rectangles that forms a
rectangular partition of P—this uses the orthogonal binary space partition algorithm
of Paterson and Yao [19].

6. An approximation algorithm. Lemma 5.1 applies to any trapezoidal par-
tition of P . In particular, if we start with a canonical trapezoidal partition ∆, then
the output partition ∆? is both canonical and recursively separable, and each sepa-
rating line in ∆? belongs to the family of canonical lines L(P). For lack of a better
term, we call a trapezoidal partition of P that satisfies these conditions a compliant
partition. Lemmas 3.1 and 5.1 together imply the following useful theorem.

Theorem 6.1. Let P be a set of n points in the plane and let C be a boolean
constraint function satisfying the condition (3.1). If there is a trapezoidal partition
of P respecting C with k trapezoids, then there is a compliant partition of P also
respecting C with O(k log k) trapezoids.

In the remainder of this section, we give a polynomial-time algorithm, using
dynamic programming, for constructing an optimal compliant partition. By Theo-
rem 6.1, this partition has O(Ko logKo) trapezoids. Recall that the set L = L(P)
consists of all canonical lines determined by P .

Consider a subset of points R ⊆ P and a canonical trapezoid ∆ containing R.
Let σ(R,∆) denote the size of an optimal compliant partition of R in ∆; the size of a
partition is the number of trapezoids in the partition. Theorem 6.1 gives the following
recursive definition of σ:

σ(R,∆) =

{
1 if C(∆) = 1,
min
`
{σ(R+,∆+) + σ(R−,∆−)} otherwise,

where the minimum is over all those lines ` ∈ L that are either horizontal and intersect
∆ or intersect both the top and bottom edges of ∆; `+ and `− denote the positive
and negative half-planes induced by `, R+ = R ∩ `+ and R− = R ∩ `−. The goal of
our dynamic programming algorithm is to compute σ(P, T) for some canonical trape-
zoid T enclosing all the points P . We now describe how the dynamic programming
systematically computes the required partial answers.

Every canonical trapezoid ∆ in the plane can be described (uniquely) by a 6-tuple
(i, j, k1, k2, l1, l2) consisting of integers between 1 and n. The first two numbers fix

1028 PANKAJ AGARWAL AND SUBHASH SURI

two points pi and pj through which the lines containing the top and bottom edges
of ∆ pass; the second pair fixes the points pk1

, pk2
through which the line containing

the left edge of ∆ passes; and the third pair fixes the points pl1 , pl2 through which
the line containing the right edge of ∆ passes. (In case of ties, we may choose the
points closest to the corners of ∆.) We use the notation ∆(i, j, k1, k2, l1, l2) for the
trapezoid associated with the 6-tuple (i, j, k1, k2, l1, l2). If the 6-tuple does not produce
a trapezoid, then ∆(i, j, k1, k2, l1, l2) is undefined.

Let P (i, j, k1, k2, l1, l2) = P∩∆(i, j, k1, k2, l1, l2). We use the abbreviated notation
σ(i, j, k1, k2, l1, l2) to denote the size of an optimal compliant partition for the points
contained in ∆(i, j, k1, k2, l1, l2):

σ(i, j, k1, k2, l1, l2) = σ
(
P (i, j, k1, k2, l1, l2), ∆(i, j, k1, k2, l1, l2)

)
.

The quantity σ(i, j, k1, k2, l1, l2) is undefined if the trapezoid ∆(i, j, k1, k2, l1, l2) is
undefined. If the points in P are sorted in increasing order of their y-coordinates, then
∆(i, j, k1, k2, l1, l2) is defined only for i ≥ j. Our dynamic programming algorithm
computes the σ values as follows.

If C(∆(i, j, k1, k2, l1, l2)) = 1, then

σ(i, j, k1, k2, l1, l2) = 1 .

Otherwise,

σ(i, j, k1, k2, l1, l2) = min

 min
i≤u≤j

{σ(i, u, k1, k2, l1, l2) + σ(u+ 1, j, k1, k2, l1, l2)}
min
v1,v2

{σ(i, j, k1, k2, v1, v2) + σ(i, j, v1, v2, l1, l2)}

 ,

where the last minimum varies over all pairs of points v1, v2 such that the line passing
through them intersects both the top and the bottom edges of ∆(i, j, k1, k2, l1, l2).

If Ξ denotes the set of all canonical trapezoids, then |Ξ| = O(n6); each 6-tuple
is associated with at most one unique trapezoid. If Q(n) denotes the time to decide
whether C(∆) = 1 for an arbitrary trapezoid ∆, then we can initially compute all
trapezoids for which C(∆) = 1 in total time O(n6Q(n)); for these trapezoids, we
initially set σ(∆) = 1. For all the remaining trapezoids in Ξ, we use the recursive
formula presented above to compute their σ. Computing σ for a trapezoid requires
computing the minimum of O(n2) quantities. Thus the total running time of the
algorithm is O(n8). The following theorem states the main result of our paper.

Theorem 6.2. Given a set P of n points in the plane and a boolean constraint C
satisfying condition (3.1), we can compute a geometric partition of P with respect to
C using O(Ko logKo) trapezoids, where Ko is the number of trapezoids in an optimal
partition. Our algorithm runs in worst-case time O(n8 + n6Q(n)), where Q(n) is the
time to decide whether C(R) = 1 for any subset R ⊆ P .

Remark. By computing σ’s in a more clever order and exploiting certain geomet-
ric properties of a geometric partition, the time complexity of the above algorithm can
be improved by one order of magnitude. This minor improvement, however, doesn’t
seem worth the effort needed to explain it.

Theorem 6.2 immediately implies polynomial-time approximation algorithms for
the surface-approximation and the planar bichromatic partition problem. In the case
of the surface-approximation problem, deciding C(∆) for a trapezoid ∆ requires check-
ing whether there is a plane π in R3 such that the vertical distance between π and the
points covered by ∆ is at most ε. This problem can be solved in linear time using the

GEOMETRIC PARTITIONING 1029

fixed-dimensional linear programming algorithm of Megiddo [16]. (A more practical
algorithm, running in time O(n log n), is the following. Let A ⊆ P denote the set of
points covered by the trapezoid ∆. For a point p ∈ A, let p+ and p−, respectively,
denote the point p translated vertically up and down by ε. Let A+ = {p+ |p ∈ A} and
A− = {p− | p ∈ A}. Then, C(∆) = 1 if and only if sets A+ and A− can be separated
by a plane. The two sets are separable if their convex hulls are disjoint. This can be
tested in O(n log n) time; for instance, see the book by Preparata and Shamos [20].

Theorem 6.3. Given a set S of n points in R3 and a parameter ε > 0, in polyno-
mial time we can compute an ε-approximate polyhedral terrain Σ with O(Ko logKo)
vertices, where Ko is the number of vertices in an optimal terrain. Our algorithm
runs in O(n8) worst-case time.

In the planar bichromatic partition problem, deciding whether C(∆) = 1 requires
checking whether ∆ contains any point from the red set R. This can clearly be
done in O(n) time. Alternatively, R can be preprocessed in time O(n2+δ logO(1) n),
for any δ > 0, into a triangle range-searching data structure, which can determine
in O(log n) time whether a query trapezoid contains any point of R; see, e.g., [6].
Our main purpose, however, is to only establish a polynomial-time bound for the
approximation algorithm.

Theorem 6.4. Given a set R of “red” points and another set B of “blue” points
in the plane, we can find in polynomial time a set of O(Ko logKo) pairwise disjoint
triangles that cover B but do not contain any red point; Ko is the number of triangles
in an optimal solution.

In view of the remark following Theorem 6.1, given a set R of “red” points and
another set B of “blue” points in the plane, we can find in polynomial time a set of
O(Ko) disjoint orthogonal rectangles that cover B but do not contain any red point.
In this case, the time complexity improves by a few orders of magnitude, because
there are only O(n4) canonical rectangles and each rectangle is subdivided into two
rectangles by drawing a horizontal or vertical line passing through one of the points.
Omitting all the details, the running time in this case is O(n5). Hence, we obtain the
following result.

Theorem 6.5. Given a set R of “red” points and another set B of “blue” points in
the plane, we can find in polynomial time a set of O(Ko) pairwise disjoint orthogonal
rectangles that cover B but do not contain any red point; Ko is the number of rectangles
in an optimal solution.

We conclude this section by noting that Theorem 6.4 can be used to construct
small size linear decision trees in the plane. A linear decision tree in Rd is a full binary
tree, of which each leaf is labeled +1 or −1 and each interior node v is associated
with a (d − 1)-hyperplane hv; the left (resp., right) child of v is also associated with
the half-space lying above (resp., below) hv. T is used to classify a point p ∈ Rd by
traversing a path of T , starting from the root, as follows. Suppose v is the node being
currently visited. If v is a leaf, return the label of v. Otherwise, if p lies above (resp.,
below) hv, we recursively visit the left (resp., right) child of v. T is consistent with B
and R if it assigns +1 to all the points of B and −1 to all the points of R. Each leaf
of T corresponds to a convex polyhedron, which is the intersection of the half-spaces
associated with its ancestors, and these regions induce a convex partition of Rd. For
d ≤ 3, a convex polyhedron can be triangulated into a linear number of simplices.
Hence, for d ≤ 3, the size of an optimal linear decision tree that is consistent with R
and B is Ω(Ko), where Ko is the size of an optimal bichromatic partition for R and
B. See [21] for a survey of known results on decision trees.

1030 PANKAJ AGARWAL AND SUBHASH SURI

Using Theorem 6.4, we can construct a linear decision tree of size O(Ko logKo)
for R and B as follows. Let ∆ be the partition computed by the above algorithm. If
∆ consists of a single trapezoid, say τ , then we construct a linear decision tree with
four interior nodes, each associated with the line supporting one of the edges of τ .
The leaves of the tree partition the plane into five regions, of which one is τ itself. The
leaf corresponding to τ is labeled +1 and the others are labeled −1. If |∆| > 1, then
there is a separating line `; let ∆+ (resp., ∆−) be the subset of trapezoids lying above
(resp., below) `. We associate the root with `, recursively construct the decision trees
for ∆+ and ∆−, and attach them as the left and right subtrees of the root. Putting
everything together, we obtain the following result.

Theorem 6.6. Given a set R of “red” points and another set B of “blue”
points in the plane, we can construct in polynomial time a linear decision tree of size
O(Ko logKo), which is consistent with R and B; Ko is the size of an optimal linear
decision tree that is consistent with R and B.

7. Extensions. We can extend our algorithm to a slightly stronger form of
surface approximation. In the basic problem, the implicit function (surface) is repre-
sented by a set of sample points S. What if the sample consists of two-dimensional
compact, connected pieces? In this section, we show an extension of our algorithm
that deals with the case when the sample consists of a set T of n horizontal triangles
with pairwise disjoint xy-projection. (Since any polygon can be decomposed into tri-
angles, this case also handles polygons.) Our goal is to compute a polyhedral terrain
Σ, so that the vertical distance between any point in Ti ∈ T and Σ is at most ε.
We produce a terrain Σ with O(Ko logKo) vertices, where Ko is again the number of
vertices in an optimal such surface.

Let T = {T1, . . . , Tn} be the input set of n horizontal triangles in R3 with the
property that their vertical projections on the plane z = 0 are pairwise disjoint. We
will consistently use the following notational convention: for an object s ∈ R3, s̄
denotes its orthogonal projection on the plane z = 0, and for a subset g ⊆ s̄, ĝ
denotes the portion of s in R3 such that g = ¯̂g. Abusing the notation slightly, we
say that a set Ξ of trapezoids (or triangles) in R3 ε-approximates T within a region
Q ⊆ R2 if the vertical distance between T and Ξ in Q is at most ε and the vertical
projections of trapezoids of Ξ are pairwise disjoint on z = 0.

Let S denote the set of vertices of the triangles in T , and let S̄ be their orthogonal
projection on z = 0. We set P = S̄, as the set of points in our abstract problem.
The constraint function is defined as follows. Given a trapezoid ∆ ∈ R3, we have
C(∆) = 1 if and only if the vertical distance between ∆ and any point in

⋃n
i=1 Ti

directly above/below ∆ is at most ε. (Thus, while the point set P includes only the
vertices of T , the constraint set takes into consideration the whole triangles.) The
constraint C satisfies (3.1), and it can be computed in polynomial time.

It is also clear that the size of an optimal trapezoidal partition of P with respect
to C is a lower bound on the size of a similar partition for T , the set of triangles.
We first apply Theorem 6.3 to obtain a family ∆ of O(k log k) trapezoids that ε-
approximates P with respect to C; clearly k ≤ Ko. The next step of our algorithm
is to extend ∆ to a polyhedral terrain that ε-approximates the triangles of T . Care
must to be exercised in this step if one wants to add only O(k log k) new trapezoids.
In the second step, we work with the projection of T and ∆ in the plane z = 0.

Let ∆̄ = {∆̄ | ∆ ∈ ∆} and T̄ = {T̄ | T ∈ T }. Let R be the set of connected
components of the closure of

⋃
T∈T T̄ \ ⋃

∆∈∆ ∆̄. That is, R is the portion of⋃
T∈T T̄ lying in the common exterior of ∆̄, as shown in Figure 5 (i). R is a collection

GEOMETRIC PARTITIONING 1031

(ii)(i) (iii)

Fig. 5. (i) T̄ and ∆̄; (ii) R1 and G; (iii) R2 and Qi’s.

of simple polygons, each of which is contained in a triangle of T̄ . Since the corners
of the triangles of T̄ are covered by ∆̄, the vertices of all polygons in R lie on the
boundary of ∆̄, and each edge of R is contained in an edge of ∆̄ or of T̄ . Let R1 ⊆ R
be the subset of polygons that touch at least three edges of trapezoids in ∆̄, and let
R2 = R−R1.

For each polygon Pi ∈ R1, we compute a set of triangles that ε-approximate T
within Pi. For a vertex v ∈ Pi, lying on the boundary of a trapezoid ∆̄, let v̂ denote
the point on ∆ whose xy-projection is v. Let T̄i be the triangle containing Pi. We
triangulate Pi and, for each triangle 4abc in the triangulation, we pick 4âb̂ĉ. Since
Ti is parallel to the xy-plane, it can be proved that the maximum vertical distance
between 4âb̂ĉ and Ti is ε. We repeat this step for all polygons in R1. The number
of triangles generated in this step is proportional to the number of vertices in the
polygons of R1, which we bound in the following lemma.

Lemma 7.1. The total number of vertices in the polygons of R1 is O(k log k).

Proof. Each vertex of a polygon in R1 is either (i) a vertex of a trapezoid in ∆̄,
or (ii) an intersection point of an edge of ∆̄ with an edge of a triangle in T . There
are only O(k log k) vertices of type (i), so it remains to bound the number of vertices
of type (ii).

We construct an undirected graph G = (V,E), as follows. Let Γ = {γ1, . . . , γt}
be the set of edges in ∆̄.1 To avoid confusion, we will call the edges of Γ segments and
those of E arcs. For each segment γi, we place a point i close to γi, inside the trapezoid
bounded by γi. The set of resulting points forms the node set V . If there is an edge
pq of a polygon in R1 such that p ∈ γi and q ∈ γj , we add the arc (i, j) to E; see
Figure 5 (ii). It is easily seen that G is a planar graph and that |E| = O(k log k). Fix
a pair of segments γ1, γ2 ∈ Γ such that (1, 2) ∈ E. Let E12 = {p1q1, p2q2, . . .} be the
set of edges in R1, sorted either left to right or top to bottom, as the case may be, that
are incident to γ1 and γ2. Let |E12| = mij . Assume that for every 1 ≤ i ≤ mij , pi lies
on γ1 and qi lies on γ2. The number of vertices of type (ii) is obviously 2

∑
(i,j)∈Emij .

We call two edges piqi, pjqj ∈ E12 equivalent if the interior of the convex hull of piqi
and pjqj does not intersect any trapezoid of ∆̄. This equivalence relation partitions
E12 into equivalent classes, each consisting of a contiguous subsequence of E12. Let
µij denote the number of equivalence classes in Eij .

1The segments of Γ may overlap, because the trapezoids of ∆̄ can touch each other. If a segment
γi of Γ is an edge of two trapezoids, then no edge of R1 can be incident to γi.

1032 PANKAJ AGARWAL AND SUBHASH SURI

Qi

Qj

(ii)

pi

qi+1

qi

qi−1

(i)

pi−1

pi+1

γ1 γ2 pi

pi+1 qi+1

qi

γ1 γ2

∆̄

Fig. 6. (i) Edges in one equivalent class of E12, and (ii) edges in different equivalent classes.

Claim 1. There are at most two edges in each equivalence class of E12.
Proof. Assume for the sake of a contradiction that three edges pi−1qi−1, piqi,

and pi+1qi+1 belong to the same equivalence class. Further, assume that the triangle
T̄ ∈ T̄ bounded by piqi lies below piqi (see Figure 6 (i)). Since the quadrilateral Q
defined by piqi and pi+1qi+1 does not contain any trapezoid of ∆̄, pi+1qi+1 is also an
edge of T̄ and Q ⊆ T̄ . But then Q is a connected component of R and it touches
only two edges of ∆̄, thereby implying that piqi is not an edge of a polygon of R1, a
contradiction.

Thus,∑
(i,j)∈E

mij ≤ 2
∑

(i,j)∈E
µij = 2|E|+

∑
(i,j)∈E

(µij − 1) = O(k log k) +
∑

(i,j)∈E
(µij − 1) .

Next, we bound the quantity
∑

(i,j)∈E(µij−1). Let Ej12 and Ej+1
12 be two consec-

utive equivalence classes of E12, let piqi be the bottom edge of Ej12, and let pi+1qi+1

be the top edge of Ej+1
12 . The quadrilateral Qj12 = piqiqi+1pi+1 contains at least one

trapezoid ∆̄ of ∆̄. We call piqi, pi+1qi+1 the triangle edges of Q, and pipi+1, qiqi+1

the trapezoidal edges of Q. The triangle edges of Qj12 are adjacent in E12. Let

Q =
⋃
{Qlij | (i, j) ∈ E and l < µij}

be the set of resulting quadrilaterals. Since |Q| =
∑

(i,j)∈E(µij − 1), it suffices to
bound the number of quadrilaterals in Q.

Consider the planar subdivision induced by Q and call it A(Q). The number of
faces in the subdivision is proportional to the number of quadrilaterals in Q, so we
bound the number of faces in the subdivision. For each bounded face f ∈ A(Q),
let Q(f) be the smallest quadrilateral of Q that contains f . Since the boundaries of
quadrilaterals do not cross, Q(f) is well defined.

Claim 2. Every face f of A(Q) can be uniquely associated with a trapezoid ∆ ∈ ∆̄
such that ∆ ⊆ f .

Proof. The claim is obviously true for the unbounded face, so assume that f is
a bounded face. If Qi = Q(f) does not contain any other quadrilateral of Q, then
f = Qi. As mentioned above, Qi, and therefore f , contains a trapezoid of ∆̄. We
associate this trapezoid with f . If there is more than one trapezoid lying in f , we
arbitrarily choose one of them.

If Qi = Q(f) contains another quadrilateral of Q, let Qj ∈ Q be the largest
quadrilateral that lies inside Qi; that is, ∂Qj is a part of ∂f . If neither of the

GEOMETRIC PARTITIONING 1033

trapezoidal edges of Qj lies in the interior of Qi, then the trapezoidal edges of both
Qi, Qj lie on the same segments of Γ, say, γ1, γ2. Consequently, the triangle edges of
both Qi, Qj belong to E12, which is impossible, because then the triangle edges of Qi
are not adjacent in E12. Hence, one of the trapezoidal edges of Qj lies in the interior
of Qi. Let ∆̄ be the trapezoid bounded by this edge. Since the triangle edges of Qj
lie outside ∆̄ and the interior of ∆̄ does not intersect any edge of R1, ∆̄ lies in f . We
associate ∆̄ with f . It can be verified that ∆̄ is not associated with any other face.
This completes the proof of Claim 2.

By Claim 2, the number of faces in A(Q) is at most |∆̄| = O(k log k). Hence,∑
(i,j)∈E

(µij − 1) = |Q| = O(k log k),

as required.
Next, we partition the polygons of R2 into equivalence classes in the same way

as we partitioned the edges of E12 in the proof of Lemma 7.1. That is, we call two
polygons τ1, τ2 ∈ R2 equivalent if (i) their endpoints lie on the same pair of edges in
∆̄, and (ii) the interior of the convex hull of τ1 ∪ τ2 does not intersect any trapezoid
of ∆̄. Using the same argument as in the proof of the above lemma, the following
lemma can be established.

Lemma 7.2. The edges of R2 can be partitioned into O(k log k) equivalence
classes.

For each equivalence class Ei ⊆ R2, let Qi be the convex hull of Ei—observe that
Qi is a convex quadrilateral, as illustrated in Figure 5 (iii). Each quadrilateral Qi
can be ε-approximated using at most three triangles in R3 in the same way as we
approximated each polygon Pi of R1. By Lemma 7.2, the total number of triangles
created in this step is also O(k log k).

Putting together these pieces, we obtain the following lemma.
Lemma 7.3. The family of trapezoids ∆ can be supplemented with O(k log k)

additional trapezoids in R3 so that all the triangles of T are ε-approximated. The
orthogonal projection of all the trapezoids on the plane z = 0 is pairwise disjoint.

The area not covered by the projection of trapezoids found in the preceding
lemma, of course, can be approximated without any regard to the triangles of T . The
final surface has O(Ko logKo) trapezoids and it ε-approximates the family of triangles
T . We finish with a statement of our main theorem in this section.

Theorem 7.4. Given a set of n horizontal triangles in R3, with pairwise disjoint
projection on the plane z = 0 and a parameter ε > 0, we can compute in polynomial
time an ε-approximate polyhedral terrain of size O(Ko logKo) for T , where Ko is the
size of an optimal ε-approximate terrain.

8. Closing remarks. We presented an approximation technique for certain ge-
ometric covering problems with a disjointness constraint. Our algorithm achieves a
logarithmic performance guarantee on the size of the cover, thus matching the bound
achieved by the “greedy set cover” heuristic for arbitrary sets and no disjointness con-
straint. Applications of our result include polynomial-time algorithms to approximate
a monotone, polyhedral surface in 3-space, and to approximate the disjoint cover by
triangles of red-blue points. We also proved that these problems are NP-hard .

The surface-approximation problem is an important problem in visualization and
computer graphics. The state of theoretical knowledge on this problem appears to
be rather slim. Except for the convex surfaces, no approximation algorithms with
good performance guarantees are known [7, 17]. For the approximation of convex

1034 PANKAJ AGARWAL AND SUBHASH SURI

polytopes, it turns out that one does not need disjoint covering, and therefore the
greedy set-cover heuristic works.

We conclude by mentioning some open problems. An obvious open problem
is to reduce the running time of our algorithm for it to be of any practical value.
Finding efficient heuristics with good performance guarantees seems hard for most of
the geometric partitioning problems and requires further work. A second problem of
great practical interest is to ε-approximate general polyhedra—this problem arises in
many real applications of computer modeling. To the best of our knowledge, the latter
problem remains open even for the special case where one wants to find a minimum-
vertex polyhedral surface that lies between two monotone surfaces. The extension of
our algorithm presented in Section 7 does not work because we do not know how to
handle the last fill-in stage.

Acknowledgments. The authors thank Joe Mitchell, Prabhakar Raghavan, and
John Reif for several helpful discussions.

REFERENCES

[1] E. Allgower and S. Gnutzmann, An algorithm for piecewise linear approximation of an
implicitly defined two-dimensional surfaces, SIAM J. Numer. Anal., 24 (1987), pp. 452–
469.

[2] E. Allgower and P. Schmidt, An algorithm for piecewise linear approximation of an im-
plicitly defined manifold, SIAM J. Numer. Anal., 22 (1985), pp. 322–346.

[3] E. Arkin, H. Meijer, J. Mitchell, D. Rappaport, and S. Skiena, Decision trees for
geometric models, in Proc. 9th Annual ACM Symp. on Comput. Geom., 1993, pp. 369–
378.

[4] J. Bloomenthal, Polygonization of implicit surfaces, Computer Aided Design, 5 (1988),
pp. 341–355.

[5] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension,
Discrete Comput. Geom., 14 (1995), pp. 263–279.

[6] B. Chazelle, M. Sharir, and E. Welzl, Quasi-optimal upper bounds for simplex range
searching and new zone theorems, Algorithmica, 8 (1992), pp. 407–429.

[7] K. L. Clarkson, Algorithms for polytope covering and approximation, in Proc. 3rd Workshop
on Algorithms and Data Structures, Lectures Notes in Comput. Sci. 709, Springer-Verlag,
New York, 1993, pp. 246–252.

[8] M. DeHaemer and M. Zyda, Simplification of objects rendered by polygonal approximations,
Computers and Graphics, 15 (1992), pp. 175–184.

[9] S. Fekete, Several Hardness Results on Problems of Point Separation and Line Stabbing,
Tech. Report, Dept. of Applied Math. and Stats., SUNY Stony Brook, New York, 1993.

[10] R. Fowler, M. Paterson, and L. Tanimoto, Optimal packing and covering in the plane
are NP-complete, Inform. Process. Lett., 35 (1981), pp. 85–92.

[11] I. Ihm and B. Naylor, Piecewise linear approximations of digitized space curves with appli-
cations, in Scientific Visual. of Physical Phenomena, Springer-Verlag, New York, 1991,
pp. 545–569.

[12] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Computer Systems
Sci., 9 (1974), pp. 256–278.

[13] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput., 11 (1982), pp. 329–343.
[14] W. Lorenson and H. Cline, Marching cubes: A high resolution 3D surface construction

algorithm, Computer Graphics, 21 (1987), pp. 163–169.
[15] L. Lovász, On the ratio of optimal integral and fractional cover, Discrete Math., 13 (1975),

pp. 383–390.
[16] N. Megiddo, Linear-time algorithms for linear programming in R3 and related problems,

SIAM J. Comput., 12 (1983), pp. 759–776.
[17] J. Mitchell and S. Suri, Separation and approximation of polyhedral surfaces, Comput.

Geom. Theory Appl., 5 (1995), pp. 95–114.
[18] M. S. Paterson and F. F. Yao, Efficient binary space partitions for hidden-surface removal

and solid modeling, Discrete and Comput. Geom., 5 (1990), pp. 485–503.

GEOMETRIC PARTITIONING 1035

[19] M. S. Paterson and F. F. Yao, Optimal binary space partitions for orthogonal objects, J.
Algorithms, 13 (1992), pp. 99–113.

[20] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

[21] S. Salzberg, R. Chandar, H. Ford, S. Murthy, and R. White, A survey of decision tree
classifier methodology, IEEE Trans. Systems, Man and Cybernetics, 21 (1991), pp. 660–
674.

[22] W. Schroeder, J. Zarge, and W. Lorensen, Decimation of triangle meshes, Computer
Graphics, 26 (1992), pp. 65–78.

[23] F. Schmitt, B. Barsky, and W. H. Du, An adaptive subdivision method for surface fitting
from sampled data, Computer Graphics, 20 (1986), pp. 179–188.

[24] S. Suri, On some link distance problems in a simple polygon, IEEE Trans. Robotics and
Automation, 6 (1990), pp. 108–113.

[25] G. Turk, Re-tiling of polygonal surfaces, Computer Graphics, 26 (1992), pp. 55–64.

RANDOMIZED DATA STRUCTURES FOR THE DYNAMIC
CLOSEST-PAIR PROBLEM∗

MORDECAI GOLIN† , RAJEEV RAMAN‡ , CHRISTIAN SCHWARZ§ , AND MICHIEL SMID¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1036–1072, August 1998 007

Abstract. We describe a new randomized data structure, the sparse partition, for solving the
dynamic closest-pair problem. Using this data structure the closest pair of a set of n points in
D-dimensional space, for any fixed D, can be found in constant time. If a frame containing all the
points is known in advance, and if the floor function is available at unit cost, then the data structure
supports insertions into and deletions from the set in expected O(logn) time and requires expected
O(n) space. This method is more efficient than any deterministic algorithm for solving the problem in
dimension D > 1. The data structure can be modified to run in O(log2 n) expected time per update
in the algebraic computation tree model. Even this version is more efficient than the best currently
known deterministic algorithm for D > 2. Both results assume that the sequence of updates is not
determined in any way by the random choices made by the algorithm.

Key words. computational geometry, proximity, dynamic data structures, randomization

AMS subject classification. 68U05

PII. S0097539794277718

1. Introduction. We consider the dynamic closest-pair problem: we are given
an initially empty set S of points in D-dimensional space and want to keep track of
the closest pair of points in S, as S is being modified by insertions and deletions of
individual points. We assume that D is an arbitrary constant and that distances are
measured in the Lt-metric for some fixed t, 1 ≤ t ≤ ∞. Recall that in the Lt-metric,
the distance dt(p, q) between two points p = (p(1), . . . , p(D)) and q = (q(1), . . . , q(D))
in D-dimensional space is defined by

dt(p, q) :=

(
D∑
i=1

|p(i) − q(i)|t
)1/t

if 1 ≤ t <∞, and for t = ∞ it is defined by

d∞(p, q) := max
1≤i≤D

|p(i) − q(i)|.

Throughout this paper, t will be implicit, and we will write d(p, q) for dt(p, q).
The precursor to this problem is the classical closest-pair problem which is to

compute the closest pair of points in a static set S, |S| = n. Shamos and Hoey [20] and

∗Received by the editors November 23, 1994; accepted for publication (in revised form) May
24, 1996; published electronically May 19, 1998. This research was supported by the European
Community, Esprit Basic Research Action 7141 (ALCOM II). A preliminary version appeared in the
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1993.
The work was partly done while the first author was employed at INRIA Rocquencourt, France, and
visiting Max-Planck-Institut für Informatik, Germany, and the second and the third authors were
employed at Max-Planck-Institut für Informatik.

http://www.siam.org/journals/sicomp/27-4/27771.html
†Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

(golin@cs.ust.hk). This author was partially supported by NSF grant CCR-8918152 and by Hong
Kong RGC/CRG grant 181/93E.

‡Algorithm Design Group, Department of Computer Science, King’s College London, Strand,
London WC2R 2LS, UK (raman@dcs.kcl.ac.uk).

§International Computer Science Institute, Berkeley, CA 94704 (schwarz@icsi.berkeley.edu).
¶Max-Planck-Institut für Informatik, D-66123 Saarbrücken, Germany (michiel@mpi-sb.mpg.de).

1036

THE DYNAMIC CLOSEST-PAIR PROBLEM 1037

Bentley and Shamos [2] gave O(n log n)-time algorithms for solving the closest-pair
problem in the plane and in arbitrary but fixed dimension, respectively. This running
time is optimal in the algebraic computation tree model [1]. If we allow randomization
as well as the use of the (nonalgebraic) floor function, we find algorithms with better
(expected) running times for the closest-pair problem. Rabin, in his seminal paper
[16] on randomized algorithms, gave an algorithm for this problem which ran in O(n)
expected time [16, 5]. Since then, alternative methods with the same running time
have been discovered. In addition to the randomized incremental algorithm presented
in [11], there is a different approach, described by Khuller and Matias [12], which
uses a randomized “filtering” procedure. This method is at the heart of our dynamic
algorithm.

There has been a lot of work on maintaining the closest pair of a dynamically
changing set of points. When we were restricted to the case where only insertions of
points are allowed (sometimes known as the on-line closest-pair problem), a series of
papers culminated in an optimal data structure due to Schwarz, Smid, and Snoeyink
[23]. Their data structure required O(n) space and supported insertions in O(log n)
time.

The existing results are not as satisfactory when deletions must be performed. If
only deletions are to be performed, Supowit [24] gave a data structure with O(logD n)
amortized update time which uses O(n logD−1 n) space. When both insertions and
deletions are allowed, Smid [22] described a data structure which uses O(n logD n)
space and runs in O(logD n log log n) amortized time per update. Another data struc-
ture due to Smid [21], with improvements stemming from results of Salowe [17] and
Dickerson, Drysdale, and Sack [7], uses O(n) space and requires O(

√
n log n) time

for updates. Very recently, after a preliminary version of this paper was presented,
Kapoor and Smid [13] devised a deterministic data structure of linear size which
achieves polylogarithmic amortized update time, namely, O(logD−1 n log log n) for
D ≥ 3 and O(log2 n/(log log n)`) for the case D = 2, where ` is an arbitrary nonneg-
ative integer constant.

In this paper we discuss a randomized data structure, the sparse partition, which
solves the dynamic closest-pair problem in arbitrary fixed dimension using O(log n)
expected time per update. The data structure needs O(n) expected space. This time
bound is obtained assuming that the floor function can be computed in constant time
and that the algorithm has prior knowledge of a frame which contains all the points
in S at any time (this assumption enables the algorithm to create and use dynamic
hash tables). Without either of the above assumptions, we obtain an O(log2 n) ex-
pected update time in the algebraic computation tree model. Even this version of the
randomized algorithm is more efficient than the currently best-known deterministic
algorithms for solving the problem for D > 2 and almost matches the running time of
the recently developed method of Kapoor and Smid [13] in the case D = 2. Indeed,
our algorithm is the first to obtain polylogarithmic update time using linear space for
the dynamic closest-pair problem.

Our results require that the updates are generated by an oblivious adversary,
who fixes a worst-case sequence of operations in advance and reveals it to the data
structure in an on-line manner. Hence, the adversary’s knowledge of the internal state
of the data structure (which is a random variable) is limited to that which can be
obtained a priori, and, in particular, the sequence of updates is not determined in any
way by the random choices made by the algorithm.

Given a set S of points, the sparse partition that stores S will be a randomly

1038 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

chosen one from many possible structures. In one version of the data structure, the
probability that a particular structure is the one that is being used will depend only
on the set S that is being stored and not upon the sequence of insertions and deletions
that were used to construct S. In this sense, the data structure is reminiscent of skip
lists or randomized search trees [15, 19].

The paper is organized as follows. In section 2, we give an implementation-
independent definition of the sparse partition, give a static algorithm to build it, and
show how to augment this data structure to find the closest pair in constant time. A
grid-based implementation of the sparse partition is given in section 3, and algorithms
for updating the sparse partition are given in section 4. In section 5, we show how to
modify the grid-based data structure in order to obtain an algorithm which fits in the
algebraic computation tree model. Section 6 contains extensions of the method. We
show how to modify the data structure to achieve O(n) worst-case space rather than
that which is only expected, at the cost of making the update time bound amortized.
We also give high probability bounds for the running time of a sequence of update
operations. Section 7 contains some concluding remarks.

2. Sparse partitions. We start with some notation. Let S be a set of n points
in D-dimensional space. The minimal distance of S is δ(S) := min{d(p, q) : p, q ∈
S, p 6= q}. A closest pair in S is a pair p, q ∈ S such that d(p, q) = δ(S). The distance
of p to its nearest neighbor in S is denoted by d(p, S) := min{d(p, q) : q ∈ S \ {p}}.
For convenience, we often speak of the closest pair, although there might be more
than one. This causes no problems since, as we shall see, our data structure not only
allows us to find a single closest pair but also to report all pairs of points attaining
the minimal distance in time proportional to their number.

We now describe an idealized version of our data structure. Although the final
data structure will be different in many significant ways, the idealized description may
offer some insight into the working of the final data structure. For now, assume that
the points are in general position and define the sparseness of a point p ∈ S as being
simply d(p, S). We will assume the existence of a data structure which, for some fixed
δ > 0, maintains a set T of points under insertions, deletions, and queries of the form
“is d(p, T) > δ?” for an arbitrary point p, and “enumerate all q ∈ T with d(p, q) ≤ δ.”
Insertions, deletions, and the former query are assumed to take constant time, while
the latter query takes constant time per element reported.

Our idealized data structure partitions the points of S based on their sparseness.
Suppose the set S initially contains n points, and we preprocess S to obtain a distance
threshold δ such that between 1/3 and 2/3 of the points have sparseness greater than
δ. This preprocessing can be done in O(n) expected time as follows: simply pick a
random p ∈ S, compute δ = d(p, S), and check how many points have sparseness
greater than δ. The fundamental observation of [12] is that p’s position in a list of
the points in S ordered by sparseness is also random, and hence O(1) such random
trials suffice on average to compute a suitable threshold.

We now perform a sequence of cn updates to S for some sufficiently small constant
c > 0. Let S′ denote the set of points in S at any time during this sequence of updates
whose sparseness is greater than δ. Since the sparseness of a point changes only when
its nearest neighbor in S changes, and a point can only be the nearest neighbor of O(1)
points in the set, each update can only change the sparseness of O(1) other points.
Hence, during this sequence of updates, S′ will continue to contain a constant fraction
of points in S. Furthermore, no point in S′ will be part of a closest pair in S. At the
end of this sequence of updates we can recompute a suitable threshold in linear time,

THE DYNAMIC CLOSEST-PAIR PROBLEM 1039

the cost of which can be amortized over the Θ(n) updates since the last threshold
computation. Applying the partitioning idea recursively to the set S \ S′ then leads,
modulo some details, to a solution to the closest-pair problem with O(log n) expected
amortized time per update—in essence, there will be O(log n) levels of recursion, and
each update results in O(1) amortized expected work per level of recursion.

The most significant problem with this idealized approach is that the “distance
threshold” queries that we postulated appear difficult to answer in reality. However,
we can quite easily answer the approximate versions of these queries, which can dis-
tinguish between the cases d(p, T) > (1 + ε)δ and d(p, T) ≤ δ for some fixed ε > 0
but may give an arbitrary answer for values in between (a grid-based implementa-
tion using the floor function will doubtless occur to a reader familiar with Rabin’s
algorithm [16]). This causes many problems with the above approach which we have
not been able to overcome in a direct manner. The main differences are that the sets
“sieved out” at each level have to be more carefully defined and that the rebuilding
rules now contain probabilistic components rather than being purely deterministic as
above. A few more complications arise when we go from the grid-based algorithm to
the algebraic one.

We now present an abstract framework which captures all the properties that we
need from the sets sieved out at each level and prove some basic facts about these
sets in the abstract framework.

Definition 2.1. Let S be a set of points in D-space. A sparse partition for
the set S is a sequence of 5-tuples (Si, S

′
i, pi, qi, δi), 1 ≤ i ≤ L, where L is a positive

integer, such that the following hold.

(a) For i = 1, . . . , L,
(a.1) Si 6= ∅;
(a.2) S′i ⊆ Si ⊆ S;
(a.3) pi, qi ∈ Si and pi 6= qi if |Si| > 1;
(a.4) δi = d(pi, qi) = d(pi, Si).

(b) For all 1 ≤ i ≤ L, and for all p ∈ Si,
(b.1) if d(p, Si) > δi/2 then p ∈ S′i;
(b.2) if d(p, Si) ≤ δi/4D then p 6∈ S′i.

(c) For all 1 ≤ i < L and for all p ∈ Si,
if p ∈ Si+1, then there is a point q ∈ Si such that d(p, q) ≤ δi/2 and q ∈ Si+1.

(d) S1 = S and for 1 ≤ i ≤ L− 1, Si+1 = Si \ S′i.
For each i, we call the points of S′i the sparse points in Si, and the set S′i the

sparse set. Each 5-tuple itself is also called a level of the partition.

Conditions (b.1) and (b.2) govern the decision on whether a point of Si is in the
sparse set S′i or not. The threshold values given in (b.1) and (b.2) depend on the
nearest neighbor distance d(pi, Si) of the point pi ∈ Si, which will be called the pivot
in the following. For a point p ∈ Si such that d(pi, Si)/4D < d(p, Si) ≤ d(pi, Si)/2, the
decision may be arbitrary as far as the results of this section are concerned and will be
made precise by the implementation later. Condition (c) is used while implementing
updates to the sparse partition efficiently. Some readers may now wish to adjourn
to section 3 and read up to the end of the proof of Lemma 3.2, where a concrete
implementation of a sparse partition is discussed, before continuing with the rest of
this section.

Lemma 2.1. Any sparse partition for S satisfies the following properties:

(1) The sets S′i, for 1 ≤ i ≤ L, are nonempty and pairwise disjoint. For any
1 ≤ i ≤ L, Si =

⋃
j≥i S

′
j. In particular, {S′1, S′2, . . . , S′L} is a partition of S.

1040 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

(2) For any 1 ≤ i < L, δi+1 ≤ δi/2. Moreover, δL/4D < δ(S) ≤ δL.
Proof. Part (1) is obvious. To prove the first part of (2), let 1 ≤ i < L. Since

pi+1 ∈ Si+1, we know from condition (c) in Definition 2.1 that there is a point q ∈ Si
such that d(pi+1, q) ≤ δi/2 and q ∈ Si+1. Therefore,

δi+1 = d(pi+1, Si+1) ≤ d(pi+1, q) ≤ δi/2.

To prove the second part of (2), let p, q be a closest pair in S. Let i and j be such
that p ∈ S′i and q ∈ S′j . Assume w.l.o.g. that i ≤ j. Then it follows from (1) that p
and q are both contained in Si. It is clear that δ(S) = d(p, q) = d(p, Si). Condition
(b.2) in Definition 2.1 implies that d(p, Si) > δi/4D, and from the first part of (2),
we conclude that δ(S) > δi/4D ≥ δL/4D. The inequality δ(S) ≤ δL obviously holds,
because δL is a distance between two points of S.

Definition 2.2. Let Si be some set of points and let (Si, S
′
i, pi, qi, δi) be a 5-

tuple chosen randomly from some distribution. This 5-tuple is called uniform if, for
all p ∈ Si, Pr[p = pi] = 1/|Si|. Now let (Si, S

′
i, pi, qi, δi), 1 ≤ i ≤ L, be a sparse

partition for the set S chosen randomly from some distribution on all of the sparse
partitions on S1 = S. The set S is said to be uniformly stored by the sparse partition
if all its 5-tuples are uniform.

We now give an algorithm that, given an input set S, stores it uniformly as a
sparse partition.

Algorithm Sparse Partition(S)
(i) S1 := S; i := 1.
(ii) Choose a random point pi ∈ Si. Calculate δi = d(pi, Si). Let qi ∈ Si be such that

d(pi, qi) = δi.
(iii) Choose S′i to satisfy (b.1), (b.2), and (c) in Definition 2.1.
(iv) If Si = S′i stop; otherwise set Si+1 := Si \ S′i, set i := i+ 1 and goto (ii).

Lemma 2.2. Let S be a set of n points in R
D. Run Sparse Partition(S) and let

(Si, S
′
i, pi, qi, δi), 1 ≤ i ≤ L, be the 5-tuples constructed by the algorithm. Then this

set of 5-tuples is a uniform sparse partition for S, and we have E(
∑L

i=1 |Si|) ≤ 2n.
Proof. The output generated by algorithm Sparse Partition(S) obviously fulfills

the requirements of Definitions 2.1 and 2.2. To prove the bound on the size of the
structure, we first note that L ≤ n by Lemma 2.1. Define SL+1 := SL+2 := · · · :=
Sn := ∅. Let si := E(|Si|) for 1 ≤ i ≤ n. We will show that si+1 ≤ si/2, from which

it follows that si ≤ n/2i−1. By the linearity of expectation, we get E(
∑L

i=1 |Si|) ≤∑n
i=1 n/2

i−1 ≤ 2n.
It remains to prove that si+1 ≤ si/2. If si = 0, then si+1 = 0 and the claim holds.

So assume si > 0. We consider the conditional expectation E(|Si+1|
∣∣ |Si| = l). Let

r ∈ Si such that d(r, Si) ≥ δi. Then, condition (b.1) of Definition 2.1 implies that
r ∈ S′i; i.e., r 6∈ Si+1.

Take the points in Si and label them r1, r2, . . . , rl such that d(r1, Si) ≤ d(r2, Si) ≤
· · · ≤ d(rl, Si). The point pi is chosen randomly from the set Si, so it can be any of
the rj ’s with equal probability. Thus E(|Si+1|

∣∣ |Si| = l) ≤ l/2, from which it follows

that si+1 =
∑

l E(|Si+1|
∣∣ |Si| = l) · Pr(|Si| = l) ≤ si/2.

We remark that the procedure Sparse Partition is the essential component of
Khuller and Matias’s algorithm [12], where it was used as a filtering procedure to
compute δL and only kept track of the current set Si. Our dynamic algorithm stores
the sets Si and S′i at all the levels. As we now show, the minimal distance is closely
related to the sparse sets S′i, i.e., the points that were thrown away in each step of
the iteration in [12]. This enables us to use the sparse partition to find δ(S) quickly.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1041

Definition 2.3. Let S′1, S
′
2, . . . , S

′
L be the sparse sets of a sparse partition for S.

For any p ∈ R
D and 1 ≤ i ≤ L, define the restricted distance

d∗i (p) := min

δi, d(p, ⋃
1≤j≤i

S′j
) ,

i.e., the smaller of δi and the minimal distance between p and all points in S′1 ∪ S′2 ∪
· · · ∪ S′i.

For convenience, we define, for all i ≤ 0, S′i := ∅, δi := ∞, and d∗i (p) := ∞ for
any point p.

Lemma 2.3. Let p ∈ S and let i be the index such that p ∈ S′i.
(1) d∗i (p) > δi/4D.
(2) If q ∈ S′j, where 1 ≤ j < i−D, then d(p, q) > δi.

(3) d∗i (p) = min
(
δi, d(p, S

′
i−D ∪ S′i−D+1 ∪ · · · ∪ S′i)

)
.

Proof. The proof of (1) is obvious. To prove (2), let q ∈ S′j , where 1 ≤ j < i−D.
Since d(p, q) > δj/4D, Lemma 2.1 implies that

d(p, q) >
δj
4D

≥ δi−D−1

4D
≥ 2D+1δi

4D
≥ δi.

(3) follows immediately from (2).
Lemma 2.4.

δ(S) = min
1≤i≤L

min
p∈S′

i

d∗i (p) = min
L−D≤i≤L

min
p∈S′

i

d∗i (p).

Proof. The value d∗i (p) is always the distance between two points in S. Therefore,
δ(S) ≤ min1≤i≤L minp∈S′

i
d∗i (p). Let p, q be a closest pair, with p ∈ S′i and q ∈ S′j .

Assume w.l.o.g. that j ≤ i. Clearly, d(p, q) = d(p,
⋃
`≤i S

′
`) ≥ d∗i (p). This implies that

δ(S) ≥ min1≤i≤L minp∈S′
i
d∗i (p), proving the first equality.

It remains to prove that we can restrict the value of i to L−D,L−D+ 1, . . . , L.
We know from Lemma 2.3(1) that minp∈S′

i
d∗i (p) > δi/4D. Moreover, we know

from Lemma 2.1(2) that for i < L−D, δi/4D ≥ δL−D−1/4D ≥ (2D+1/4D)·δL ≥ δL ≥
δ(S).

Now we are ready to describe how to find the closest pair using the sparse par-
tition. According to the characterization of δ(S) in Lemma 2.4, we will augment the
sparse partition with a data structure which stores, for each level i ∈ {1, . . . , L}, the
set of restricted distances {d∗i (p) : p ∈ S′i}.

The data structure that we use for this purpose is a heap. (See, e.g., [6, Chapter
7].) A heap storing n items can be built in linear time, and the operations insert(item),
delete(item), and change key(item, key)—which changes the key of the item item to
the value key—are supported in O(log n) time. Also, operation find min(H) can be
performed in O(1) time, and find all min(H), which returns all A items with minimum
key, can be performed in time O(A).

So, for each i ∈ {1, . . . , L}, we maintain a min-heap Hi which stores items having
the restricted distances {d∗i (p) : p ∈ S′i} as their keys. How we compute these values
depends on the way we implement the sparse partition, which will be described in the
following sections, where we also describe the exact contents of our heap items.

Lemma 2.5. Let S′1, S
′
2, . . . , S

′
L be the sparse sets of a sparse partition for S,

and for each 1 ≤ i ≤ L, let the set {d∗i (p) : p ∈ S′i} of restricted distances be stored

1042 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

in a min-heap Hi. Then the minimum distance δ(S) can be found in constant time.
Moreover, all point pairs attaining this minimum distance can be reported in time
proportional to their number.

Proof. For i ≤ 0, define Hi as the empty heap. Lemma 2.4 characterizes δ(S) as a
minimum of certain restricted distances. In particular, Lemma 2.4 says that δ(S) can
only be stored in one of the heaps HL−D, HL−D+1, . . . , HL. To find δ(S) it is therefore
enough to take the minima of these D + 1 heaps and then to take the minimum of
these D + 1 values. Moreover, we can report all closest pairs in time proportional
to their number as follows: in all of the at most D + 1 heaps whose minimum key
is δ(S), we report all items whose key is equal to δ(S). From the discussion of
heaps above, this can be done in time proportional to the number of items that are re-
ported.

We close this section with an abstract description of our data structure.

The closest-pair data structure for set S.
• A data structure storing S uniformly as a sparse partition according to Defi-

nitions 2.1 and 2.2.
• The heaps H1, H2, . . . , HL, where Hi stores the set of restricted distances
d∗i (p), cf. Definition 2.3, for all points p in the sparse set S′i.

In the rest of the paper, we discuss two different ways to implement the data
structure. First, we describe a grid-based implementation. Since this data structure
is the most intuitive one, we describe the update algorithms for this structure. Then
we define the other variant of the data structure. Concerning implementation details
and update algorithms, we then only mention the changes that have to be made in
comparison with the grid-based implementation in order to establish the results.

3. A grid-based implementation of the sparse partition. Let S be a set
of n points in D-space. To give a concrete implementation of a sparse partition for
S, we only have to define the set S′i, i.e., the subset of sparse points in Si for each i.

3.1. The notion of neighborhood in grids. We start with some definitions.
Let δ > 0. We use Gδ to denote the grid with mesh size δ and a lattice point at
(0, 0, . . . , 0). Hypercubes of the grid are called boxes. More precisely, a box has the
form

[i1δ : (i1 + 1)δ)× [i2δ : (i2 + 1)δ)× · · · × [ikδ : (ik + 1)δ)

for integers i1, . . . , ik. We call (i1, . . . , ik) the index of the box. Note that with this
definition of a box as the product of half-open intervals, every point in R

D is contained
in exactly one grid box. The neighborhood of a box b in the grid Gδ, denoted by N(b),
consists of b itself plus the collection of 3D−1 boxes bordering on it. Let p be any point
in R

D and let bδ(p) denote the box of Gδ that contains p. The neighborhood of p in
Gδ, denoted by Nδ(p), is defined as the neighborhood of bδ(p); i.e., Nδ(p) := N(bδ(p)).
Let V be a set of points in R

D. The neighborhood of p in Gδ relative to V is defined
as

Nδ(p, V) := Nδ(p) ∩ (V \ {p}).

We say that p is sparse in Gδ relative to V if Nδ(p, V) = ∅, i.e., if, besides p, there are
no points of V in Nδ(p). In cases where V and δ are understood from the context we
will simply say that p is sparse.

The following observations follow directly from the definitions.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1043

Lemma 3.1. Let V be a set of points in R
D, and let p and q be arbitrary points

in R
D.
(N.1) If Nδ(p, V) = ∅, then d(p, V) > δ.
(N.2) If q ∈ Nδ(p, V), then d(p, q) ≤ 2Dδ.
(N.3) q ∈ Nδ(p) ⇐⇒ p ∈ Nδ(q).
We are now in a position to define the sets S′i precisely. For i ≥ 1, let

S′i := {p ∈ Si : p sparse in Gδi/4D relative to Si}.(1)

For convenience, we now modify the abstract definition of the sparse partition
given in Definition 2.1 and replace it by one which is defined in terms of grid neigh-
borhoods. Recall that in Definition 2.1 S′i was not fully specified; the definition only
gave conditions, specifically (b.1), (b.2), (c), and (d), which S′i had to satisfy. We now
replace those conditions by equation (1); with this new definition the sparse partitions
are totally specified and we will be able to use them in section 4 to develop and later
analyze our update algorithms.

Definition 3.1. A sparse partition for the set S is a sequence of 5-tuples
(Si, S

′
i, pi, qi, δi), 1 ≤ i ≤ L, where L is a positive integer, such that
1. For i = 1, . . . , L,

(a) ∅ 6= Si ⊆ S;
(b) pi, qi ∈ Si and pi 6= qi if |Si| > 1;
(c) δi = d(pi, qi) = d(pi, Si);
(d) S′i = {p ∈ Si : Nδi/4D(p, Si) = ∅}.

2. S1 = S and for 1 ≤ i ≤ L− 1, Si+1 = Si \ S′i.
Lemma 3.2. Let (Si, S

′
i, pi, qi, δi), 1 ≤ i ≤ L, be a set of 5-tuples satisfying

Definition 3.1. Then this set of 5-tuples also satisfies Definition 2.1.
Proof. We only have to prove conditions (b) and (c) of Definition 2.1. Let

1 ≤ i ≤ L and let p ∈ Si. First assume that p 6∈ S′i. Then there is a point q ∈ Si which
is in the neighborhood of p. By (N.2), d(p, Si) ≤ d(p, q) ≤ 2D · δi/4D = δi/2. This
proves condition (b.1). To prove (b.2), assume that p ∈ S′i. Then, the neighborhood
of p relative to Si is empty. Hence, by (N.1), d(p, Si) > δi/4D.

To prove (c), let 1 ≤ i < L and let p ∈ Si+1 = Si \ S′i. It follows that there is
a point q ∈ Si such that q ∈ Nδi/4D(p). By the symmetry property (N.3), this is
equivalent to p ∈ Nδi/4D(q) and therefore q ∈ Si+1. From condition (b.1), we also
have d(p, q) ≤ δi/2.

In Figure 1 we provide an example of a sparse partition based on Definition
3.1.

We now come to some additional properties of the sparse partition as defined in
Definition 3.1 that will be used in the dynamic maintenance of the data structure.
For this purpose, we give some additional facts about neighborhoods.

We start with some notation. Let p be a point in R
D. We number the 3D

boxes in the neighborhood of p as follows. The number of a box is a D-tuple over
{−1, 0, 1}. The jth component of the D-tuple is −1, 0, or 1, depending on whether
the jth coordinate of the box (i.e., its lower left coordinate) is smaller than, equal
to, or greater than the corresponding coordinate of bδ(p). We call this D-tuple the
signature of a box. We denote by bΨδ (p) the box with signature Ψ in Nδ(p).

We now define the notion of partial neighborhood of a point p. (See Figure 2.)
For any signature Ψ, we denote by NΨ

δ (p) the part of p’s neighborhood that is in the

neighborhood of bΨδ (p). Note that NΨ
δ (p) contains all the boxes bΨ

′
δ (p) of Nδ(p) whose

signature Ψ′ differs from Ψ by at most 1 for each coordinate—these are exactly the

1044 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

r

17

r4

r5

r6

r7

r8

r9r10
r
11

r12
r13

r14

r1

r15

r2

r16

r3

S1 : p1 = 16, δ1 = d(16, 12)

r4

r7

r10
r12

r15

r2

r16

S′1

q

17

q5

q6

q8

q9
q
11

q13

q1

q14

q3

S2 : p2 = 17, δ2 = d(17, 5)
q

17q 6

q8

q
11

q13

q1

q14

q3

S′2

q5
q9

S3 : p3 = 5, δ3 = d(5, 9)

q5

q9
Q

Q
Q

QQs

�
�

�
��3

q5
q9

S′3

Fig. 1. A sparse partition. Although the sets S′
i are also stored in grids, we have not shown

the corresponding grids.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1045

0, 1 1, 1

1, 0−1, 0

−1,−1 1,−10,−1

0, 0

−1, 1

p

b1,1δ (p)

N1,1
δ (p)

Fig. 2. The neighborhood of a point p in Gδ. The dark shaded area denotes the box b1,1
δ

(p) in

the upper right corner of p’s neighborhood. This box also belongs to N1,1
δ

(p), the partial neighborhood

of p with signature 1, 1. The light shaded area shows the other three boxes of N1,1
δ

(p).

boxes bordering on bΨδ (p) including bΨδ (p) itself. In particular, N0,...,0
δ (p) = Nδ(p);

i.e., the partial neighborhood with signature 0, . . . , 0 is the whole neighborhood of p.
The following properties will let us relate the neighborhoods of a point in different

grids and more specifically in the different grids that correspond to different levels of
the same sparse partition.

Lemma 3.3. Let 0 < δ′ ≤ δ′′/2 be real numbers and let p ∈ R
D. Then the

following hold.
(N.4) Nδ′(p) ⊆ Nδ′′(p).
(N.5) For any signature Ψ ∈ {−1, 0, 1}D: bΨδ′(p) ⊆ NΨ

δ′′(p).

Proof. For any grid size δ and 1 ≤ j ≤ D, denote by hL,jδ , hl,jδ , hr,jδ , hR,jδ the jth
coordinates of the four hyperplanes bounding the grid boxes of p’s neighborhood in
the j-direction, ordered from “left” to “right.” See Figure 3.

Let q = (q(1), q(2), . . . , q(D)) ∈ R
D, and let Ψ = (α1, . . . , αD) ∈ {−1, 0, 1}D be a

signature. Then q ∈ bΨδ (p) in Gδ if and only if for all 1 ≤ j ≤ D,

hl,jδ ≤ q(j)≤hr,jδ if αj = 0,

hr,jδ ≤ q(j)≤hR,jδ if αj = 1,

hL,jδ ≤ q(j)≤hl,jδ if αj = −1.

Also, q ∈ NΨ
δ (p) if and only if for all 1 ≤ j ≤ D,

hL,jδ ≤ q(j)≤hR,jδ if αj = 0,

hl,jδ ≤ q(j)≤hR,jδ if αj = 1,

hL,jδ ≤ q(j)≤hr,jδ if αj = −1.

1046 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

δ′′

hL,2δ′′

hl,2δ′′

hr,2δ′′

hR,2δ′′

hR,2δ′

hr,2δ′

hl,2δ′

hL,2δ′

δ′

hR,1δ′hr,1δ′hl,1δ′hL,1δ′

hR,1δ′′hr,1δ′′hl,1δ′′hL,1δ′′

p

b1,1δ′ (p)

N1,1
δ′′ (p)

Fig. 3. The neighborhoods of a point p in grids Gδ′ and Gδ′′ where δ′ ≤ δ′′/2.

Figure 3 shows the neighborhoods of p in the two grids Gδ′ and Gδ′′ .
Now observe that, since δ′ ≤ δ′′/2,

hL,jδ′ ≥ hL,jδ′′ ,(2)

hR,jδ′ ≤ hR,jδ′′(3)

for 1 ≤ j ≤ D. These facts are equivalent to Nδ′(p) ⊆ Nδ′′(p), which is claim (N.4).
Furthermore, by the definition of the hyperplanes w.r.t. p,

hr,jδ′ ≥ hl,jδ′′ ,(4)

hl,jδ′ ≤ hr,jδ′′(5)

for 1 ≤ j ≤ D. This proves claim (N.5): bΨδ′(p) ⊆ NΨ
δ′′(p).

Notation. Consider a set S which is stored in a set of 5-tuples (Si, S
′
i, pi, qi, δi),

1 ≤ i ≤ L, according to Definition 3.1. Since we will only use grids Gδi/4D for
the data structures that store level i of the partition, we will use the abbreviations
Gi := Gδi/4D and Ni(p) := Nδi/4D(p) from now on. We use the same convention for
the neighborhood relative to a set.

Corollary 3.1. Let p be an arbitrary point of R
D, and let (Si, S

′
i, pi, qi, δi),

1 ≤ i ≤ L, be a sparse partition. Then for any 1 ≤ i < j ≤ L, Nj(p) ⊆ Ni(p).
Proof. Apply (N.4) from Lemma 3.3 with δ′′ = δi/4D, δ′ = δj/4D, noting that

δ′ ≤ δ′′/2 by Lemma 2.1.
In particular, if Ni(p, Si) = ∅ for a point p ∈ R

D, i.e., if p is sparse in Gi relative
to Si, then since Si+1 ⊆ Si, Corollary 3.1 implies Ni+1(p, Si+1) = ∅, which means

THE DYNAMIC CLOSEST-PAIR PROBLEM 1047

that p is also sparse in Gi+1 relative to Si+1. This property will be crucial to our
update algorithms.

The following lemma will also be useful later on.
Lemma 3.4. Let (Si, S

′
i, pi, qi, δi), 1 ≤ i ≤ L, be a sparse partition. Then for any

p ∈ S \ Si+1, 1 ≤ i < L,

Ni(p, S) = ∅.

Proof. We use induction on i. If i = 1, then for any p ∈ S \ S2 = S′1, N1(p, S) =
N1(p, S1) = ∅ by definition. Now let i > 1 and assume that, for any p ∈ S \ Si, we
have Ni−1(p, S) = ∅.

1. If p ∈ S \ Si, then Ni(p, S) ⊆ Ni−1(p, S) = ∅ by Corollary 3.1 and our
induction hypothesis, respectively.

2. If p ∈ S′i, then Ni(p, Si) = ∅ by definition. It remains to show that Ni(p, S \
Si) = ∅. This is true because if there were a point q ∈ S \ Si such that q ∈
Ni(p), then by the symmetry property (N.3) we have p ∈ Ni(q), contradicting
Ni(q, S) = ∅, which was shown in item 1 above.

We have thus shown that Ni(p, S) = ∅ for any p ∈ S \ Si+1 = (S \ Si) ∪ S′i.

3.2. Storing a point set according to a grid. We now explain how to store
the point sets involved in the sparse partition of our input set S. Let δ be a grid
size and V ⊆ S be a subset of S. We store each nonempty box in the grid Gδ in a
hash table, using the index of the box in Gδ as a key. Associated with each box b, we
store a list containing the points in V ∩ b in arbitrary order. We call this storing V
according to Gδ, and the data structure itself is called the box dictionary.

The dynamic perfect hashing algorithm of [10] allows us to store a set of integer-
valued keys in linear space such that the information stored at a given key can be
accessed in O(1) worst-case time and permits a key to be inserted or deleted in O(1)
expected time. This algorithm needs to know in advance the range of integers from
which the keys to be inserted or deleted may be drawn, but this range can easily be
computed from δ if we know a frame containing all the points in S.

If V is stored according to Gδ, then we can answer the question “are any points of
V in box b?” in O(1) worst-case time. Moreover, if the answer is yes, we can report
all points in V ∩ b in time proportional to their number. By checking all boxes in the
neighborhood of an arbitrary point q, we can check in O(1) time if q is sparse in the
grid Gδ relative to V , and by doing this for each point in V we can, in linear time,
find the subset V ′ ⊆ V of sparse points in V.

3.3. The complete data structure. Recall that, when discussing a sparse
partition, we use Gi as a short form for the grid of mesh size δi/4D. Our data
structure now consists of the following:

For each 1 ≤ i ≤ L,
• the pivot pi ∈ Si, its nearest neighbor qi in Si and δi = d(pi, qi),
• Si stored according to Gi,
• S′i stored according to Gi,
• the heap Hi.

Note that this means that Si and S′i are kept in two separate grid data structures
defined on Gi. We now add some more details to the description. Let b be a box of
Gi which is nonempty w.r.t. Si or S′i. The list of points in Si ∩ b will be called L(b),
and the list of points in S′i ∩ b will be called L′(b). Each element of L(b) is a record
containing the following information:

1048 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

p ∈ L(b): record point: p upper:↑p in Si−1 lower : ↑p in Si+1

Here, “↑p in V ” means a pointer to the representation of point p in the data structure
storing V . The pointers are nil if the corresponding representation of the point does
not exist.

Each element of L′(b) is a record with the following information:

p ∈ L′(b): record point: p it : ↑ it(p) in Hi left : ↑p in Si

Here, “↑ it(p) in Hi” means a pointer to the heap item it(p) with key d∗i (p). (See be-
low.) Note that each list L′(b) normally contains at most one point, by the sparseness
property of the set S′i, but may temporarily contain more than one point during an
update.

Now let us turn to the heaps. The key of an item in heap Hi is the value d∗i (p) for
some p ∈ S′i. Let q—if it exists—be such that d∗i (p) = d(p, q) < δi, and let l be such
that 0 ≤ l ≤ D and q ∈ S′i−l. Then the heap item it(p) of Hi contains the following
information:

item it(p) ∈ Hi : record key: d∗i (p) point: ↑p in S′i point2: ↑q in S′i−l

If the point q does not exist, i.e., if d∗i (p) = δi, then the pointer point2 is nil.
We are now in a position to describe a complete procedure which constructs the

sparse partition and its auxiliary data structures. It will be convenient to have two
slight variants of the procedure. The first, called Build(T, j), takes as arguments a
set of points T and an integer j and stores set T uniformly in levels j, j + 1, . . . of a
sparse partition. The second, Near Build(T, p, j), again stores the given set of points
T uniformly in levels j, j + 1, . . . of a sparse partition but uses the given point p ∈ T
as the pivot for level j. In all invocations of Near Build, p will be chosen at random
from T .

Algorithm Near Build(T, p, j)
1. i := j; Si := T ; pi := p.
2. Calculate δi := d(pi, Si). Let qi ∈ Si be such that d(pi, qi) = δi.
3. Store Si according to Gi.
4. Compute S′i := {p ∈ Si : p sparse in Gi relative to Si}.
5. Store S′i according to Gi.
6. Compute the restricted distances {d∗i (p) : p ∈ S′i} and, using a linear time

algorithm, construct a heap Hi containing these values with the minimal
value at the top.

7. If Si = S′i stop; otherwise set Si+1 := Si \ S′i; choose a random point pi+1 ∈
Si+1; set i := i+ 1; and goto 2.

Algorithm Build(T, j)
Choose a random point p ∈ T and call Near Build(T, p, j).

For the sake of simplicity, we did not mention in this algorithm how to establish
the above-described links between the various parts of the data structure. The links
between heap items and points in a list L′(b), i.e., points stored in a sparse set S′i,
can be installed during the construction of the heaps. The pointers between repre-
sentations of a point p in subsequent nonsparse sets Si, Si+1 can be established easily
in step 7 when Si+1 is obtained by stripping off the sparse set S′i from Si.

Lemma 3.5. Let (Si, S
′
i, pi, qi, δi), 1 ≤ i ≤ L, be a sparse partition, and let p ∈ S′i

for some i ∈ {1, . . . , L}. If we have the data structures storing the sets S′j according
to Gj available for 1 ≤ j ≤ i, then the value d∗i (p) can be computed in O(1) time.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1049

Proof. We know from Lemma 2.3(2) that if d∗i (p) = d(p, q) with d(p, q) < δi then
q must be in one of the sets S′i, S

′
i−1, . . . , S

′
i−D. Furthermore, there are only a constant

number of boxes in the grids Gj , i − D ≤ j ≤ i, in which the point q can possibly
appear: since the boxes in the grids Gj have side length δj/4D ≥ δi/4D, these are the
grid boxes that are within 4D boxes of the box in which p is located. Finally, because
of the sparseness of the sets S′j , there can be at most one point in each grid box and
using the hash tables storing S′j , i − D ≤ j ≤ i, we can find all points contained in
these boxes and compute d∗i (p) in O(1) time.

Lemma 3.6. Let T be a set of points in R
D. The procedures Build(T, j) and

Near Build(T, p, j) complete in O(|T |) expected time and produce sparse partitions
of O(|T |) expected size.

Proof. For k = 0, 1, . . ., consider the kth iteration of algorithm Build(T, j) for
which the loop index i has value j+k. Step 2 can be performed in O(|Si|) deterministic
time by calculating the distance between pi and all other points in Si. Steps 3 and
5 build the grid data structures for Si and S′i and take O(|Si|) and O(|S′i|) expected
time, respectively. By the discussion at the end of subsection 3.2, step 4, which
computes S′i from Si, can be performed in O(|Si|) deterministic time. This implicitly
includes the work of step 7.

Since we have the data structures for S′l , j ≤ l ≤ j + k, available in the kth
iteration of the algorithm, we can apply Lemma 3.5 to conclude that computing the
restricted distances {d∗i (p) : p ∈ S′i} in step 6 takes O(|S′i|) worst-case time. The
heap Hi can be constructed within the same time bound.

Therefore, the expected running time of the algorithm is bounded byO(E(
∑

i |Si|)),
which is also the amount of space used. Lemma 2.2 shows that this quantity is O(|T |).

The analysis for Near Build is similar.
Recall that given this data structure, we can find the closest pair in S in O(1)

time by Lemma 2.5.

4. Dynamic maintenance of the data structure. In this section, we show
how to maintain the sparse partition when the input set S is modified by insertions
and deletions of points. The algorithms for insertions and deletions turn out to be very
similar. We will demonstrate the ideas that are common to both update operations
when we treat insertions. Then we give the deletion algorithm.

4.1. The insertion algorithm. We start with an intuitive description of the
insertion algorithm. Let S be the current set of points, and assume we want to insert
the point q. Further assume that S is already uniformly stored in the sparse partition.
Our goal is to randomly build a sparse partition which uniformly stores S ∪ {q}.

If we were to build a uniform sparse partition of S ∪ {q} from scratch then q
would be the pivot of S1 with probability 1/(|S1|+ 1); otherwise one of the points in
S is chosen at random as the pivot. By assumption, p1 (the pivot of S1) is a random
element of S1 = S. Therefore, to generate a pivot for S1∪{q} it suffices to retain p1 as
pivot with probability |S1|/(|S1|+1) and to choose q with probability 1/(|S1|+1). If q
is chosen, then we discard everything and run Near Build(S1∪{q}, q, 1), terminating
the procedure. The latter event happens, however, only with probability 1/(|S1|+ 1)
and so its expected cost is O(1).

Assume now that p1 remains unchanged as the pivot. We now check to see if
q1—the nearest neighbor of p1—and hence, δ1, have to be changed. First note that q
can be the nearest neighbor of at most 3D−1 ≤ 3D points in S1. (See [8].) This means
that δ1 changes only if p1 is one of these points. Since the updates are assumed to be
independent of the coin flips of the algorithm, and since p1 is chosen uniformly from

1050 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

S1, it follows that the probability of δ1 changing is at most 3D/|S1|. If δ1 changes,
we run Build(S1 ∪ {q}, 1) and terminate the procedure. The expected cost of this is
O(1). The previous two steps are called “check for rebuild” in the later part of this
section.

Assume now that p1, q1, and δ1 remain unchanged. Let us denote S ∪ {q} by S̃.

We now need to determine the set S̃2, which contains the nonsparse points in S̃1 = S̃.
If q is sparse in S1, it will go into S̃′1, and nothing further needs to be done; that is,

the tuples (Si, S
′
i, pi, qi, δi) and (S̃i, S̃

′
i, p̃i, q̃i, δ̃i) are identical for 2 ≤ i ≤ L. So, in this

case, we can terminate the procedure. Otherwise, S̃2 contains q and possibly some
points from S′1. The set of points which are deleted from S′1 due to the insertion of
q is called down1. This completes the construction of the first 5-tuple. Two of the
three cases that may occur while constructing the first 5-tuple are given in Figures 4
and 5. The algorithm for constructing the new 5-tuples for S̃i, i > 1 follows the same
general idea. We now describe more formally how to construct the new 5-tuples for
S̃i, i ≥ 1 and extend the notion of the set down1 from the first level to the other levels
of the sparse partition.

Let i ≥ 1 and take down0 := ∅. The following invariant holds if the algorithm
attempts to construct the 5-tuple for S̃i without having performed a rebuilding yet.

Invariant INS(i)
(a) For 1 ≤ j < i,

(a.1) q ∈ S̃j and the set of 5-tuples (S̃j , S̃
′
j , p̃j , q̃j , δ̃j) satisfies Definitions 3.1

(sparse partition) and 2.2 (uniformity), where p̃j = pj , q̃j = qj , δ̃j = δj ;

(a.2) S̃j+1 = S̃j \ S̃′j .
(b) The sets downj , 0 ≤ j < i, have been computed and S̃i = Si ∪downi−1 ∪{q}.

Note that at the beginning of the algorithm, INS(1) holds because down0 = ∅. We
will show later that 3D is an upper bound on the size of the union of all the down
sets. Thus each single down set has size at most 3D.

Now let us construct the 5-tuple for S̃i. From invariant INS(i) (b), we have

S̃i = Si ∪ downi−1 ∪ {q}. As discussed above, to construct the first 5-tuple we had to
take the new point q as new pivot with probability 1/(1+|S1|). In general, constructing

(S̃i, S̃
′
i, p̃i, q̃i, δ̃i) from (Si, S

′
i, pi, qi, δi) requires that up to 3D + 1 points (q as well as

the points in downi−1) be considered as new pivots and also increases the chance of
one of these points being closer to the old pivot than the pivot’s previous nearest
neighbor. This would result in a rebuilding (see Figure 6), but as the probabilities
only increase by a constant factor, the effect is negligible.

If no rebuilding takes place, we determine S̃′i, the set of sparse points in S̃i. We
define the set downi, which consists of the points of S that were already sparse at
some level j ≤ i but that will not be sparse at level i due to the insertion of q, as
follows. Let Di := S′i ∪ downi−1. Then

downi := Ni(q,Di) = {x ∈ Di : x ∈ Ni(q)} .(6)

The set Di is called the “candidate set” for downi. We can compute S̃′i as follows:

throw out from Di all elements that belong to downi and add q, if it is sparse in S̃i.
(We shall prove later that the set S̃′i computed in this way actually is the set of sparse

points in S̃i.)

We have constructed the 5-tuple (S̃i, S̃
′
i, p̃i, q̃i, δ̃i) and can now compute S̃i+1 =

S̃i \ S̃′i, the next subset of our new sparse partition for S̃. If q ∈ S̃′i then, by the

THE DYNAMIC CLOSEST-PAIR PROBLEM 1051

q

17

q4

q18
q5

q6

q7

q8

q9q10
q
11

q12
q13

q14

q1

q15

q2

q16

q3

S1 : p1 = 16, δ1 = d(16, 12)

q4

q18

q7

q10
q12

q15

q2

q16

S′1

q

17

q5

q 6

q8

q9
q
11

q13

q1

q14

q3

S2 : p2 = 17, δ2 = d(17, 5)
q

17q6

q8

q
11

q13

q1

q14

q3

S′2

q5
q9

S3 : p3 = 5, δ3 = d(5, 9)

q5

q9
Q

Q
Q

QQs

�
�

�
��3

q5
q9

S′3

Fig. 4. This is the sparse partition that resulted when point 18 was inserted into the sparse
partition of the previous example. Point 18 was not chosen to be the pivot and was sparse in S1

with the old pivot p1 = 16. Thus 18 ∈ S′
1.

1052 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

q

17

q4

q18
q5

q6

q7

q8

q9q10
q
11

q12
q13

q14

q1

q15

q2

q16

q3

S1 : p1 = 18, δ1 = d(18, 14)
q

17

q4

q18
q5

q6

q7

q8

q9q10
q
11

q12
q13

q14

q1

q15

q2

q16

q3

S′1

Fig. 5. This is the sparse partition that results when the same point 18 is inserted as in the
previous example but with point 18 now being chosen to be the pivot, something that occurs with
probability 1/18. Note that in this case every point in S1 becomes sparse so the partition only has
one level.

definition of the down sets, downi = ∅ and Si+1 = S̃i+1. This means that the levels
i + 1, . . . , L of the sparse partition remain unchanged, and we are finished with the
construction of the sparse partition for S̃. Otherwise, q ∈ S̃i+1. So q and the points

in downi are not sparse in S̃i and we can add q and downi to Si+1, giving the set

S̃i+1. The invariant INS(i + 1) holds, as we will prove later. We then continue with
level i+ 1.

After the sparse partition has been updated, it remains to update the heaps. It
is clear that the new point q has to be inserted into the heap structure appropriately.
To see what kind of changes will be performed for the points of S, let us examine
the point movements between the different levels of the sparse partition due to the
insertion of q more closely. Let us look at level i, where i ≥ 1. From invariant INS(i)
(b) (respectively, INS(i + 1) (b)), the points in downi−1 (respectively, downi) move

at least down to level i (respectively, level i + 1). The construction rule for S̃′i now

implies S̃′i \ {q} = (S′i ∪ downi−1) \ downi. Thus we have the following lemma.

Lemma 4.1. Let p be a point in S:

(i) p ∈ downi \ downi−1 ⇐⇒ p ∈ S′i and p /∈ S̃′i,
(ii) p ∈ downi−1 \ downi ⇐⇒ p /∈ S′i and p ∈ S̃′i,
(iii) p ∈ downi−1 ∩ downi ⇐⇒ p /∈ S′i and p /∈ S̃′i.
That is, the points in (i) start moving at level i, the points in (ii) stop moving at

level i, and the points in (iii) move through level i. For all the points satisfying (i) or
(ii), we have to update the heaps where values associated with these points disappear
(i) or enter (ii).

The complete insertion algorithm is given in Figure 7.

It remains to describe the procedures that actually perform the heap updates.
Before we do this, however, we will show that steps 1–3 in lines (3)–(21) of the

algorithm actually produce a sparse partition for the new set S̃.

Lemma 4.2. Assume algorithm Insert(q) has computed 5-tuples (S̃j , S̃
′
j , p̃j , q̃j , d̃j),

1 ≤ j < i, and a set S̃i that satisfy INS(i). Then if no rebuilding occurs, the ith

THE DYNAMIC CLOSEST-PAIR PROBLEM 1053

q

17

q4

q18
q5

q6

q7

q8

q9q10
q
11

q12
q13

q14

q1

q15

q2

q16

q3

S1 : p1 = 16, δ1 = d(16, 12)

q4

q7

q12

q16

S′1

q

17

q5
q18

q6

q8

q9q10
q
11

q13

q1

q14

q2

q15

q3

S2 : p2 = 10, δ2 = d(10, 18)
q

17

q5
q18

q6

q8

q9q10
q
11

q13

q1

q14

q2

q15

q3

S′2

Fig. 6. In this diagram a different point 18 is added to the first sparse partition. This point
18 is not sparse; it has neighbors 2, 15, and 10. In fact, because of the insertion of 18, these three
points, which used to be sparse, are no longer sparse and are therefore placed in down1. When the
algorithm reached S2 it then decided, probabilistically, that 10 should be the new pivot of that level.
After making 10 the pivot, it found that all points were sparse and so terminated the algorithm.

iteration of the algorithm constructs the 5-tuple (S̃i, S̃
′
i, p̃i, q̃i, δ̃i) and the set S̃i+1,

which satisfy INS(i + 1) (a.1)–(a.2). Furthermore, if q /∈ S̃′i, then INS(i + 1) (b) also
holds.

Proof. Let us first prove (a.1), saying that the 5-tuple (S̃i, S̃
′
i, p̃i, q̃i, δ̃i) satisfies

Definitions 3.1 and 2.2, with p̃i = pi, q̃i = qi, and δ̃i = δi. The 5-tuple is certainly
uniform, and it retains the pivot as well as the pivot’s nearest neighbor when the
algorithm has passed step 2 (check for rebuild) of the algorithm without a rebuilding;
cf. the discussion at the beginning of this section.

It remains to show that Ni(p, S̃i) = ∅ ⇐⇒ p ∈ S̃′i for any p ∈ S̃i; see Definition 3.1,

1(d). We have S̃i = Si+1 ∪ S′i ∪ downi−1 ∪ {q} from invariant INS(i) (b). Since

Ni(p, S̃i) 6= ∅ for p ∈ Si+1, it remains to prove the claim for p ∈ Di = S′i ∪ downi−1

1054 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

(1) Algorithm Insert (q);
(2) begin
(3) 1. initialize : i := 1; down0 := ∅; h := ∞

(∗ From invariant INS(i) (b), we know that S̃i = Si ∪ downi−1 ∪ {q}.
We want to determine S̃′i. Before that, we check if the data
structure has to be rebuilt. ∗)

2. check for rebuild :

(4) flip an |S̃i|-sided coin, giving pivot p̃i of S̃i ;
(5) if p̃i /∈ Si then

(6) Near Build(S̃i, p̃i, i); h := i− 1; goto 4.
(7) else

(8) the old pivot pi of Si is also the pivot for S̃i
(9) fi ;
(10) if d(pi, p) < δi for some p ∈ downi−1 ∪ {q} then

(11) Build(S̃i, i); h := i− 1; goto 4.
(12) else

(13) do nothing (∗ di = d(pi, Si) = d(pi, S̃i) ∗)
(14) fi ;

3. Determine S̃′i :
(15) compute the set downi from its candidate set Di = S′i ∪ downi−1;

see equation (6);

(16) S̃′i := Di \ downi; S̃i+1 := Si+1 ∪ downi; (∗ now S̃i+1 = (S̃i \ S̃′i) \ {q} ∗)
(17) if Ni(q, S̃i) = ∅ then

(18) add q to S̃′i; goto 4. (∗ q is sparse in S̃i, and so S̃i+1 = Si+1 ∗)
(19) fi ; (∗ q is not sparse in S̃i ∗)
(20) add q to S̃i+1 ;
(21) i := i+ 1; goto 2.

4. Update heaps :

(∗ Invariant: q /∈ S̃′` for ` < i.
Also min{i, h} is h = i− 1, if a rebuilding was performed.
Otherwise, h = ∞ and so min{i, h} = i. ∗)

(22) for ` := 1 to min{i, h} do
(23) forall p ∈ down` \ down`−1 do
(24) removefromheap(p, `)
(25) od
(26) forall p ∈ down`−1 \ down` do
(27) addtoheap(p, `)
(28) od ;
(29) od ;

(30) if q ∈ S̃′min{i,h} then

(31) addtoheap(q,min{i, h})
(32) fi ;
(33) end ;

Fig. 7. Algorithm Insert(q). The heap update procedures addtoheap and removefromheap called
in step 4 will be given later.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1055

and p = q. Note that since Di ⊆ S \ Si+1 we have Ni(p, S) = ∅ by Lemma 3.4 and,
therefore, for any p ∈ Di,

Ni(p, S̃i) = ∅ ⇐⇒ q /∈ Ni(p)

⇐⇒ p /∈ Ni(q) by symmetry (N.3)

⇐⇒ p /∈ downi by definition of downi

⇐⇒ p ∈ S̃′i by definition of S̃′i.

If p = q, then Ni(p, S̃i) = ∅ ⇐⇒ q ∈ S̃′i by lines (17)–(19).

Next, we show that S̃i+1 = S̃i \ S̃′i. After line (16), we have S̃i+1 = Si+1 ∪ downi
and S̃′i = (S′i∪downi−1)\downi, and at the end of step 3, q has been added to exactly

one of these sets. Thus S̃i+1 ∪ S̃′i = (Si+1 ∪S′i)∪ downi−1 ∪ {q} = Si ∪ downi−1 ∪ {q}
which equals S̃i by INS(i) (b). Since S̃i+1 and S̃′i are disjoint, it follows that S̃i+1 =

S̃i \ S̃′i.
Finally, if q /∈ S̃′i, INS(i+ 1) (b) holds because S̃i+1 = Si+1 ∪ downi ∪{q} by lines

(16) and (20).
Corollary 4.1. At the end of step 3 of algorithm Insert, we have computed a

uniform sparse partition for S̃ according to Definitions 3.1 and 2.2.
Proof. Refer to Figure 7. Let ı̂ denote the value of i after the last completion

of step 3. This in particular means that for each level 1 ≤ j < ı̂, no rebuilding has
yet occurred and q /∈ S̃′j . By induction on the number of levels, INS(̂ı) (a)–(b) hold.
(We have already seen that INS(1) vacuously holds, forming the base of the induction.
The induction step is established by Lemma 4.2.)

Invariant INS(̂ı) (a) implies that the 5-tuples at levels 1, . . . , ı̂ − 1 satisfy Defini-
tions 3.1 and 2.2. Now the last iteration at level ı̂ is either a rebuilding or produces
a 5-tuple such that q ∈ S̃′ı̂.

In the former case, the algorithm Build(S̃ı̂, ı̂) computes a uniform sparse partition

for S̃ı̂, and the result is a uniform sparse partition for the set S̃.
In the latter case, another application of Lemma 4.2 establishes INS(̂ı+1) (a). Let

L̃ denote the number of levels of the partition at the end of step 3. If L̃ = ı̂, then all
the levels have been reconstructed and satisfy Definitions 3.1 and 2.2. Otherwise, if
L̃ > ı̂, then some levels of the partition have not been reconstructed and thus L̃ = L.
In this case, the 5-tuples for S̃j are the old 5-tuples for Sj , ı̂ < j ≤ L, which fulfill

the desired property anyway. Therefore, all the 5-tuples (S̃i, S̃
′
i, p̃i, q̃i, δ̃i), 1 ≤ i ≤ L̃,

are uniform and S̃i+1 = S̃i \ S̃′i for 1 ≤ i < L̃. It follows that this set of 5-tuples is a

uniform sparse partition for S̃.
Having established the correctness of the algorithm, we now go into the implemen-

tation details in order to establish the running time. First, as promised, we examine
the sizes of the down sets. The crucial fact which enables us to estimate the total size
of the down sets is that at any level of the partition, only the new point q can make
a previously sparse point nonsparse. We express this in the following lemma.

Lemma 4.3. Let the sets downj , 1 ≤ j ≤ i, be defined, and let p ∈ downj for a
level j ∈ {1, . . . , i}. Then

(1) p ∈ Nj(q) and
(2) Nj(p, S) = ∅.
Proof. The first claim is obvious from the definition of downj ; cf. equation (6).

The second claim is true because p ∈ downj implies p ∈ S \Sj+1, and by Lemma 3.4,
Nj(p, S) = ∅ for each p ∈ S \ Sj+1.

1056 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

Lemma 4.4. Let the sets down0, . . . , downi be as defined in equation (6). Then∣∣∣ ⋃
1≤j≤i

downj

∣∣∣ ≤ 3D.

Proof. Assume that p ∈ downj for some j ≤ i. Then p ∈ Nj(q) and Nj(p, S) = ∅
by Lemma 4.3. Moreover, let Ψ ∈ {−1, 0, 1}D be such that p ∈ bΨj (q). The partial

neighborhood NΨ
j (q) is the intersection of q’s neighborhood with the neighborhood

of p in the grid Gj . Refer to Figures 2 and 3. Since Nj(p, S) = ∅, NΨ
j (q) contains no

point of S \ {p}.
Now consider a point p′ ∈ down` for any ` > j. From Lemma 4.3, we know

that p′ ∈ N`(q). Furthermore, assume that p′ is in the box of q’s neighborhood with
signature Ψ; i.e., p′ ∈ bΨ` (q). Since δ` ≤ δj+1 ≤ δj/2 by Lemma 2.1(2), Lemma 3.3
(property (N.5)) gives p′ ∈ NΨ

j (q), from which it follows that p′ must be identical to
p.

This means that at levels j + 1 ≤ ` ≤ i, there cannot be any point in down`
with signature Ψ except p itself. (Note that a point can be in several down sets.) It
follows that for each Ψ ∈ {−1, 0, 1}D, there is at most one point p in S which satisfies
p ∈ downj ∧ p ∈ bΨj (q).

Computing the down sets in constant time. We have just shown that the
total size of the down sets is constant, implying in particular that each single down set
has constant size. Now we show that, given the candidate set Di = S′i∪downi−1, where
S′i is stored according to grid Gi, we can compute downi in constant time. According
to equation (6), we want to find all p ∈ S′i∪downi−1 such that p ∈ Ni(q, S

′
i∪downi−1).

How do we find these points? The elements in S′i are already stored at that level,
whereas the elements in downi−1 ∪ {q} are not. We tentatively insert these points
into the data structure storing the sparse set S′i and then search in the neighborhood
of q. This proves that we can find downi in constant time.

Performing the changes in the data structures storing the sparse par-
tition. Of course, the changes from (Si, S

′
i, pi, qi, δi) to (S̃i, S̃

′
i, p̃i, q̃i, δ̃i) also have to

be performed in the data structures that actually store the 5-tuple. We will now fill
in these details.

The operations that we have to take care of are computing the new sparse set
S̃′i in lines (16) and (18) and computing the new set S̃i+1 in lines (16) and (20) of
algorithm Insert.

To compute S̃′i = (S′i ∪ downi−1) \ downi, we just have to insert and delete a
constant number of points in the data structure storing the sparse set S′i. To insert a

point p into S̃′i (respectively, S̃i+1), we add p to the list L′(b) (respectively, L(b)) where
b is the box containing p. We also have to insert the box b into the box dictionary
of the grid data structure, if it was not there before. This takes O(1) expected time.
(The same holds for the deletion of a box from the box dictionary.)

Now let us turn to the deletion of points. Note that during the insertion algorithm,
deletions are performed in the sparse sets S′i; more specifically there may be points

that are in S′i but are not in S̃′i. We can easily delete those points because we know
that the lists L′(b) can only contain a constant number of points: at most one point
at the start of the operation by the sparseness property, plus the points in downi−1

that might have been tentatively inserted into the list. We remark here that instead
of actually deleting the points of downi from the data structure storing the sparse
set, we only mark them as deleted. The reason for this is that in step 4 when we

THE DYNAMIC CLOSEST-PAIR PROBLEM 1057

update the heaps we need to access both the old set S′i and the new set S̃′i. The actual
deletions will be performed after step 4 has been completed.

The lists L(b) for the nonsparse set Si+1 can contain more than a constant number
of points. However, observe that a point is only deleted from a nonsparse set Si+1

during the insertion algorithm if a rebuilding occurs.
To sum up, performing the changes from the old 5-tuple (Si, S

′
i, pi, qi, δi) to the

new 5-tuple (S̃i, S̃
′
i, p̃i, q̃i, δ̃i) of the sparse partition takes O(1 + |downi−1|+ |downi|)

expected time.
Lemma 4.5. Steps 1–3 of algorithm Insert(q) take expected time O(log n).
Proof. Consider one iteration of the steps 2 and 3. If no rebuilding occurs, the

running time of step 2 is constant. (Recall that we assume that we can obtain a
random number of O(log n) bits in constant time.) By the discussion in the two
paragraphs before the lemma, the expected running time of step 3 at level i is O(1 +
|downi−1|+ |downi|) = O(1).

We now give a probabilistic analysis for the insertion time, taking rebuildings into
account. We show that the expected running time over all iterations of steps 1–3 is
O(log n). The expectation is taken both over the new random choices and over the
expected state of the old data structure.

Let the initial set of tuples be (Si, S
′
i, pi, qi, δi), 1 ≤ i ≤ n, padding the sequence

out with empty tuples if necessary. Let Ti be the time to construct S̃i from Si
assuming no rebuilding has taken place while constructing S̃1, . . . , S̃i−1. Clearly, the
overall running time X satisfies X ≤∑n

i=1 Ti. For 1 ≤ i ≤ n, we have the following:
with probability at most min(1, c/|Si|) for some constant c, a rebuilding happens
at level i and, therefore, E(Ti) = O(|Si|) in this case. Otherwise, E(Ti) = O(1).
These expected time bounds stem from the running times of the hashing algorithms
that are used to rebuild or to update the structure, respectively. Since the random
choices made by the hashing algorithms are independent of the coin flips made by our
algorithms Insert and Build to choose the pivots, we can multiply the probabilities of
the events with the expected running times that are valid for the event and so obtain
that the expected value of Ti is O(1), independently of the previous state of the data
structure.

We now note that E(
∑n

i=k Ti) = O(|Sk|) for any 1 ≤ k ≤ n. This is because
either a rebuild occurs at level k, requiring O(|Sk|) expected time, and we are done.
Otherwise E(Tk) = O(1) and by induction, E(

∑n
i=k+1 Ti) = O(|Sk+1|). Since |Sk+1| ≤

|Sk| − 1 (the pivot at level N is always sparse) we can choose the constant within the
Big-Oh large enough to conclude that E(

∑n
i=k Ti) = O(|Sk|) in this case as well.

Let N = dlog ne. From the above discussion,

E(X) ≤
N∑
i=1

E(Ti) + E

(
n∑

i=N+1

Ti

)
≤ O(log n) +O(E(|SN+1|)) = O(log n)

since E(|Sdlogne+1|) is O(1).
Remark. Note that not only is the running time at each level of the sparse

partition a random variable, but also the number of levels is a random variable, and
its value can be as high as n. This means in particular that the running times of
consecutive update operations are not independent.

Discussion of the heap updates. We are now ready to discuss step 4 of the
insertion algorithm. Heap updates are necessary when points move to a different level
due to the insertion of q.

1058 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

(1) proc removefromheap (p, h);
(2) begin

(3) (∗ p starts moving at level i, i.e., p ∈ S′i, but p /∈ S̃′i ∗)
(4) Delete(Hi, it(p));
(5) for ` := i to min{i+D,h} do

(6) forall r ∈ S′` ∩ S̃′` such that d(r, p) < δ` do
(7) Change key(it(r), d∗` (r))
(8) od
(9) od ;
(10) end ;

Fig. 8. Procedure removefromheap(p, h).

Assume point p moves to a different level. Then heap updates are necessary (i)
when p starts moving at level i and (ii) when p stops moving at some level j, where
i < j. In the first case, we basically perform a deletion of the heap values associated
with p, while in the second case we perform the corresponding reinsertions into the
heap structure. Note that the latter case does not occur if the data structure has
been rebuilt at some level i < l ≤ j. In this case, the rebuilding algorithm inserts the
values associated with p into the heap structure.

Note that at each level i a point can be associated with only a constant number
of heap values, which are located in the heaps H`, i ≤ ` ≤ i+D. From Lemma 2.3(3),
we know that d∗i (p) = min

(
δi, d(p, S

′
i−D ∪ · · · ∪ S′i)

)
. Thus a point p ∈ S′i can be

associated with a heap in two different ways: either there is a value d∗i (p) in Hi or for
each i ≤ ` ≤ i + D there may be points r ∈ S′` such that d(r, p) gives rise to d∗` (r) in
H`.

Recall that L̃ denotes the last level of the sparse partition after the update. In
our heap update procedures given below, we want to rearrange the heaps such that
heap Hj , 1 ≤ j ≤ L̃, contains the values{

d∗j (p) = min
(
δ̃j , d(p, S̃

′
j−D ∪ · · · ∪ S̃′j)

)
: p ∈ S̃′j

}
.

At the moment, the heaps contain the restricted distances w.r.t. the old sparse parti-
tion, except for the levels that have been rebuilt. We therefore take care that we only
rearrange heaps at levels that have not been rebuilt. In step 4, a parameter h occurs.
It denotes the last level that has not been rebuilt if such a rebuilding has taken place.
Otherwise, h = ∞. The heap update procedures are shown in Figures 8 and 9.

Lemma 4.6. After step 4 of algorithm Insert(q), the heap Hi stores the set

{d∗i (p) : p ∈ S̃′i} for all levels 1 ≤ i ≤ L̃. Also, the running time of the procedures
addtoheap and removefromheap is O(1) plus the time spent on the heap operations.
The number of heap operations that are performed in step 4 is constant.

Proof. Recall that at the beginning of step 4 the new sparse partition is computed,
and since the elements of S′i that are not in S̃′i have only been marked deleted, we
have both sparse sets at hand at each level.

Notation. For each level i, we call points that remain sparse, i.e., the points in
S′i ∩ S̃′i, the passive points and the points that cease or start being sparse, i.e., the

points in (S′i \ S̃′i) ∪ (S̃′i \ S′i), the active points.
Claim. Exactly those restricted distances which can change due to the change of

the sparse partition and which have not been handled by rebuilding have been treated
by the procedures shown in Figures 8 and 9.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1059

(1) proc addtoheap (p, h);
(2) begin

(3) (∗ p stops moving at level j, i.e., p /∈ S′j , but p ∈ S̃′j ∗)
(4) compute d∗j (p); let r be such that d∗j (p) = d(r, p) if it exists;
(5) it(p) := new item; it(p).key := d∗j (p); it(p).point := p; it(p).point2 := r ;
(6) Insert(Hj , it(p));
(7) for ` := j to min{j +D,h} do

(8) forall r ∈ S′` ∩ S̃′` such that d(r, p) < δ` do
(9) Change key(it(r), d∗` (r))
(10) od
(11) od ;
(12) end ;

Fig. 9. Procedure addtoheap(p, h).

Proof of claim. At the beginning of step 4, we know h, the index of the last level
for which heap Hh has to be reconstructed, if a rebuilding has taken place. In this
case, the data structure has been rebuilt at level h + 1. (Otherwise h = ∞.) We can
therefore guarantee that our heap update procedures do not treat levels whose heaps
have already been correctly computed by a rebuilding.

Now consider the levels where the heaps have to be rearranged. Heap Hi contains
the restricted distances of points p ∈ S′i to points in S′i−D ∪ · · · ∪ S′i. For the active

points, the claim is clear: these are the points in the symmetric difference of S′i and S̃′i.
By Lemma 4.1, these are exactly the points in the symmetric difference of downi−1

and downi. Our heap update procedures are called exactly for these points and the
restricted distances of these points are deleted in line (4) of removefromheap and
inserted in line (6) of addtoheap, respectively.

For a passive point p, we only have to examine, at levels j = i, . . . , i − D, the
points that are

1. active at level j and
2. closer to p than the threshold distance δi.

These are exactly the points that are treated in lines (5)–(9) of removefromheap and
in lines (7)–(11) of addtoheap.

Also note that for every point that is treated by the heap update procedures,
either the corresponding heap item is deleted, if it belongs to the set of points that
ceases being sparse at that level, or its restricted distance according to the new sparse
partition is computed (and inserted if it is a point that starts being sparse). This
establishes the correctness of the heap update procedures and step 4 of algorithm
Insert.

Now let us look at the running time of the heap update procedures. Each re-
stricted distance can be computed in O(1) time by Lemma 3.5. Moreover, from the
proof of Lemma 3.5 we know that the restricted distances can be computed by search-
ing the area of at most 4D boxes away from p in the grids that store the sparse sets
S′i+l, 0 ≤ l ≤ D. Outside this area, the restricted distance of a point r cannot be
affected by removal or insertion of p. Since we assume that the dimension D is fixed,
the total number of heap operations carried out by the procedure is constant, and the
time spent by the procedure not counting the heap operations is also constant.

Lemma 4.7. Algorithm Insert(q) correctly maintains the data structure and takes
expected time O(log n).

1060 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

Proof. From Lemma 4.2, steps 1–3 establish that S ∪{q} is stored uniformly as a
sparse partition. Also, from Lemma 4.6, the heaps are maintained correctly by step
4. This proves the correctness of the algorithm.

As shown in Lemma 4.5, steps 1–3 have expected cost O(log n). Now consider
step 4. From Lemma 4.4 we know that the heap update procedures are only called for
a constant number of points. Since by Lemma 4.6 one procedure call only performs
O(1) heap operations and, apart from these operations, performs only O(1) additional
work, the total time for step 4 is O(log n).

4.2. The deletion algorithm. Now we come to the algorithm that deletes a
point q from the data structure. Let S̃ denote S \{q}. Deletion is basically the reverse
of insertion and may involve some points becoming sparse at their current levels due
to the deletion of q, thus causing them to move up a few levels. In particular, points
which move to lower levels during an insertion of q move back to their old levels when
q is deleted directly afterward (provided no rebuilding takes place).

An insertion ends at the level where the new point q is sparse. Therefore, assuming
that q ∈ S′`, we have to delete q from S′` and also from all the sets Si, 1 ≤ i ≤ `. Note
that in order to be able to delete q efficiently from the nonsparse sets Si containing
it, we linked the occurrence of a point in Si to its occurrence in Si−1 and vice versa,
if the corresponding level exists.

Although it looks natural to implement a deletion starting at the level ` where q
is sparse and then walking up the levels, it is much easier to implement the deletion
algorithm in a top-down fashion, as in the insertion algorithm. In the insertion algo-
rithm, we collected in downi the points that were sparse at some level j ≤ i but that
were no longer sparse at level i due to the insertion of q. Now we want to collect in
upi the points that are nonsparse at level i but will be sparse there after a deletion.

The deletion algorithm starts at the top level and moves downward, as algorithm
Insert. We define up0 := ∅. Let i ≥ 1. The following invariant, which is analogous to
invariant INS(i) in algorithm Insert, holds if the algorithm attempts to construct the

5-tuple for S̃i without having performed a rebuilding yet.
Invariant DEL(i)
(a) This invariant is identical to INS(i), saying that the new 5-tuples at the levels

1, . . . , i− 1 satisfy Definitions 3.1 and 2.2.
(b) The sets upj , 0 ≤ j < i, have been computed and S̃i = (Si \ upi−1) \ {q}.

Note that at the start of the algorithm, DEL(1) holds because up0 = ∅.
To construct the 5-tuple for S̃i, the deletion algorithm first checks if a rebuilding

has to be performed, as does the insertion algorithm. Having done that, it constructs
the new sparse set S̃′i and, along with it, the nonsparse set S̃i+1. S̃

′
i is computed from

the previous sparse set S′i by adding the points of upi and deleting the points of upi−1.

Also, we obtain S̃i+1 by deleting the points of upi from Si+1. Now, q is still in S̃′i or

S̃i+1, depending on whether it was previously in S′i or Si+1, respectively. Deleting q

from the set containing it finishes the computation of S̃′i and S̃i+1. If q was sparse at

level i, then Si+1 = S̃i+1 and the construction of the new sparse partition is complete.
(Note that upi must be empty in this case.) Otherwise, we go into the next iteration

and construct the 5-tuple for S̃i+1.
When the new sparse partition is computed, the heaps have to be updated. Anal-

ogously to the insertion algorithm, (i) p ∈ upi−1 \upi means p starts moving at level i,

i.e., p ∈ S′i and p /∈ S̃′i, (ii) p ∈ upi \upi−1 means p stops moving at level i, i.e., p /∈ S′i
and p ∈ S̃′i, and (iii) p ∈ upi−1 ∩ upi means that p moves through level i, i.e., p /∈ S′i

THE DYNAMIC CLOSEST-PAIR PROBLEM 1061

(1) Algorithm Delete (q);
(2) begin
(3) 1. initialize : i := 1; up0 := ∅; h := ∞

(∗ From invariant DEL(i) (b), we know that S̃i = (Si \ upi−1) \ {q}. ∗)
2. check for rebuild :

(4) (∗ we do not need to flip a coin for a new pivot ∗)
(5) if q or an element of upi−1 is the pivot pi or the nearest neighbor of pi
(6) then Build(S̃i, i); h := i− 1; goto 4.

(7) fi ; (∗ di = d(pi, Si) = d(pi, S̃i) ∗)
3. Determine S̃′i :

(8) compute upi =
{
p ∈ Si : Ni(p, Si) = {q}

}
;

(9) S̃′i := (S′i ∪ upi) \ upi−1; S̃i+1 := Si+1 \ upi; (∗ now S̃i+1 ∪ S̃′i = S̃i ∪ {q} ∗)
(10) if q ∈ S̃′i then

(11) delete q from S̃′i; goto 4. (∗ q is sparse in S̃i, and so S̃i+1 = Si+1 ∗)
(12) fi ; (∗ q is not sparse in S̃i ∗)
(13) delete q from S̃i+1 ;
(14) i := i+ 1; goto 2.

4. Update heaps :
Completely analogous to algorithm Insert. At levels 1 ≤ ` ≤ min{i, h},
we execute the heap update procedures for the points in the
symmetric difference of upi−1 and upi, and for the deleted point q,
if we are on a level where q contributes a heap value.

(15) end ;

Fig. 10. Algorithm Delete(q).

and p /∈ S̃′i. As before, the points that start or stop moving cause heap updates. The
deletion algorithm is described in Figure 10.

From the similarity of invariants INS(i)(b) and DEL(i)(b), it is easy to see that
the arguments used in Lemma 4.4 to derive the bound on the size of the down sets
carry over to the up sets, and thus we obtain |⋃1≤i≤L upi| ≤ 3D.

The computation of the up sets is slightly different from the computation of the
down sets. In order to compute the down sets efficiently, we gave an alternative but
equivalent definition for these sets (equation (6)) and showed that the alternative
definition could be efficiently realized. The difficulty there was that the points in
downi could come from the set S \ Si+1 = S′1 ∪ · · · ∪ S′i, and there seemed to be no
direct way of extracting the points of downi from this set. In contrast to the insertion
case, the points that are nonsparse at level i but will be sparse there after a deletion
are all contained in Si. We can compute the set upi in constant time as follows.
From DEL(i)(b), it follows that p ∈ upi if and only if Ni(p, Si) = {q}. Checking this
condition means finding all points in Si having only q in their neighborhood. Using
the symmetry property (N.3), this can be done in O(1) time.

Lemma 4.8. Algorithm Delete(q) correctly maintains the data structure and takes
expected time O(log n).

Proof. The proofs of correctness and running time are analogous to those for the
insertion algorithm and are therefore omitted.

We summarize the results of this section in the following theorem:
Theorem 4.1. There exists a data structure which stores a set S of n points in

RD such that the minimal distance δ(S) can be found in O(1) time, and all point pairs

1062 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

attaining δ(S) can be reported in time proportional to their number. The expected size
of the structure is O(n), and we can maintain the data structure as S is modified by
insertions or deletions of arbitrary points in O(log n) expected time per update. The
algorithms run on a RAM and use randomization. The bounds are obtained under
the assumption that we know a frame that contains all the points that are in the set
S at any time, that the floor function can be computed in constant time, and that the
updates do not depend upon the random choices made by the data structure.

5. An algebraic computation tree implementation. The solution from the
previous section uses a somewhat inelegant model, which is an uneasy marriage of
the unit-cost RAM and the algebraic computation tree. This algorithm may also be
a poor one to use in practice, as the integers (box indices) which are computed as
intermediate results may be so large that they cannot be manipulated in constant
time by the hashing routines. Even if we implement the box dictionary by search
trees, dividing point coordinates by very small numbers (interpoint distances) may
lead to numerical problems.

We now present an algorithm which fits into the algebraic computation tree model.
It can be verified that the algorithm requires only addition, subtraction, comparison,
and multiplication of real numbers to maintain the closest pair (although computing
the actual value of the minimum distance δ(S) in the Lt-metric for 1 < t < ∞
will require the tth root function as well). However, it is well known that the floor
function used by the previous algorithm is very powerful: the maximum-gap problem
requires Ω(n log n) time in the algebraic computation tree model but can be solved in
O(n) time by adding this function. Hence, we may expect some increase in the time
complexity of the operations, and this does indeed turn out to be the case.

Note that the floor function was only used to compute the grid box containing a
given point. Therefore, we will modify the algorithm Theorem 4.1 by using a degraded
grid for which we only need algebraic functions. The method we use already appears
in [9] and [11]. We sketch the structure here and refer to these papers or [18] for
details.

Consider a standard grid of mesh size δ. Fixing the origin as a lattice point, we
divide the space into slabs of width δ in each dimension. Since we can identify a slab
using the floor function, this gives rise to an implicit storage of the slabs. To avoid
the use of the floor function, we store these slabs explicitly by keeping a dictionary
for the coordinates of its endpoints in each dimension.

In contrast to the standard grid, a degraded grid is defined in terms of the point
set stored in it. To emphasize this, we use the notation DGδ,V for a degraded δ-grid
defined by the points of a set V ⊆ RD in comparison with the grid Gδ. In a degraded
δ-grid DGδ,V , all boxes have sides of length at least δ, and the boxes that contain a
point of V have sides of length at most 2δ. See Figure 11.

The degraded grid can be maintained under insertions and deletions of points in
logarithmic time, and the box containing a point can be identified in logarithmic time
as well.

In order to implement our data structure, we only have to define the sparse sets
S′i. The alignment of boxes in slabs enables us to transfer the notion of neighborhood
directly from standard grids to degraded grids. The neighborhood of a box consists
of the box itself plus the 3D − 1 boxes bordering on it.

Consider a degraded δ-grid DGδ,V . As in the grid case, the neighborhood of a
point p ∈ RD is defined as the neighborhood of the box bδ,V (p) that contains p; i.e.,
Nδ,V (p) := N(bδ,V (p)). The notion of partial neighborhood is also defined analogously.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1063

a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 a

(1)
5 a

(1)
6 a

(1)
7

a
(2)
4

a
(2)
1

a
(2)
2

a
(2)
3

δ

δ

≥ δ, ≤ 2δ

≥ δ

≥ δ

Fig. 11. Example of a degraded δ-grid. It is dependent on the set stored in it.

See Figure 2. We number the 3D boxes in the neighborhood of a point p as described
there, giving each box a signature Ψ ∈ {−1, 0, 1}D. The box with signature Ψ is
denoted by bΨδ,V (p). The boxes of p’s neighborhood which are adjacent to bΨδ,V (p) form

the partial neighborhood of p with signature Ψ, denoted by NΨ
δ,V (p).

We now define the neighborhood of a point relative to a set of points. For any set
V̂ , the neighborhood of p in DGδ,V relative to V̂ , denoted by Nδ,V (p, V̂), is defined as

Nδ,V (p, V̂) := Nδ,V (p) ∩ (V̂ \ {p}). Note that in this definition the set V̂ need not be
identical to the defining set V of the degraded grid. As before, we say that a point p
is sparse in the degraded grid relative to V̂ if Nδ,V (p, V̂) = ∅.

The basis of correctness and running time of the grid algorithms were the neigh-
borhood properties (N.1)–(N.5). We now adapt these to handle degraded grids. Two
changes are needed. First, we change the constants in response to the fact that a
nonempty box might now have side length up to 2δ. Second, although we defined the
neighborhood relative to a set V̂ independently of the defining set V of the degraded
δ-grid, a lot of properties will only continue to hold if V̂ ⊆ V . This is because boxes
of a degraded δ-grid DGδ,V that do not contain a point of the defining set V may be

unbounded. For example, this may cause a point q ∈ V̂ to be in the neighborhood
Nδ,V (p) of a point p ∈ RD even if it is arbitrarily far away from p.

Lemma 5.1. Let V be a set of points in RD, and let p, q ∈ V . Consider a
degraded δ-grid DGδ,V .

(N.1’) If q /∈ Nδ,V (p), then d(p, q) > δ.
(N.2’) If q ∈ Nδ,V (p), then d(p, q) ≤ 4Dδ.
(N.3’) q ∈ Nδ,V (p) ⇐⇒ p ∈ Nδ,V (q).
Lemma 5.2. Let 0 < δ′ ≤ δ′′/4 be real numbers. Consider a degraded δ′-grid

DGδ′,V ′ and a degraded δ′′-grid DGδ′′,V ′′ , and let p, q ∈ V ′. Then
(N.4’) q ∈ Nδ′,V ′(p) =⇒ q ∈ Nδ′′,V ′′(p).
(N.5’) For any signature Ψ ∈ {−1, 0, 1}D, let q ∈ bΨδ′,V ′(p). Then q ∈ NΨ

δ′′,V ′′(p).

1064 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

Proof. Refer to the proof of (N.4) and (N.5). By the organization of the degraded
grid boxes in slabs, the argument carries over directly, except that we have to care
about the width of the slabs. Since p, q ∈ V ′, the slabs containing p and q w.r.t. each
coordinate have width at most 2δ′. Since δ′ ≤ δ′′/4, equations (2) and (3) hold, which
proves (N.4’). Once (N.4’) is proved, stating that the neighborhood in the smaller
grid is contained in the neighborhood of the larger grid, (N.5’) follows completely
analogous to (N.5) by equations (4) and (5), because these equations hold by the
definition of the hyperplanes employed in the proof. See Figure 3.

Now we are ready to define our degraded grid-based sparse partition. Let gi :=
δi/16D. We store the set Si in a degraded gi-grid DGgi,Si . Analogously to equation (1)
for standard grids, we define

S′i := {p ∈ Si : p sparse in DGgi,Si relative to Si}.(7)

The sparse set S′i will also be stored in a degraded gi-grid DGgi,Si . Defining the sets
S′i for each i by equation (7) yields a definition of a sparse partition analogous to the
one given in Definition 3.1 for the grid case.

We adapt the abstract definition of the sparse partition (Definition 2.1) to de-
graded grids by changing “δi/2” to “δi/4” and “δi/4D” to “δi/16D.” The bounds
in Lemma 2.1 then become δi ≤ δi+1/4 and δL/16D ≤ δ(S) ≤ δL, respectively.
The constants in the other lemmas of section 2 are changed analogously. Using a
proof completely analogous to the one of Lemma 3.2, using (N.1’)–(N.3’) instead of
(N.1)–(N.3), we get Lemma 5.3.

Lemma 5.3. Using the definition for S′i given in equation (7), we get a sparse
partition according to Definition 2.1, with the constants changed as outlined above.

The degraded grid-based data structure. For each 1 ≤ i ≤ L, we have
• the pivot pi ∈ Si, its nearest neighbor qi in Si, and δi = d(pi, qi),
• Si stored in a degraded gi-grid DGgi,Si ,
• S′i stored in a degraded gi-grid DGgi,Si

,
• the heap Hi.

Now let us examine the update algorithms. In section 4, we defined the sets
downi. The definition remains the same here, with the notion of neighborhood in
degraded grids. The down sets describe the point movements between the levels of
the sparse partition during an insertion. Similarly, the up sets contain the points that
move to a different level during a deletion.

Due to the point movements between the levels, the defining set of the degraded
grid at level i may contain extra points additional to the ones of Si. We therefore use
a distinguished name for the defining set of the degraded grid at level i; we call it Vi.

When the insertion algorithm reaches level i without having yet performed a
rebuilding, it brings along the points of downi−1 and the new point q, see section 4.
Therefore, Vi = Si ∪ downi−1 ∪ {q}. It is important to see that, as for the sets Si, we
have

V1 ⊇ V2 ⊇ · · · ⊇ VL.(8)

In the deletion algorithm, no additional point is introduced at any level except
in the sparse sets S′i. We therefore have Vi = Si. (Points which vanish from level i
because they move upward may be deleted from the defining set Vi at the end of the
deletion algorithm.)

Remark. The defining set Vi may differ from the nonsparse set at level i only
during an update algorithm. After completion of an update operation, these sets are

THE DYNAMIC CLOSEST-PAIR PROBLEM 1065

equal. In particular, the update algorithms maintain the degraded grid DGδ,Si
for

both Si and S′i. That is, a point p which is new in Si due to an update is also added
to the degraded δ-grid storing the sparse set S′i, even if it is not contained in S′i.

In the remainder of this section, we discuss the analysis of the insertion algorithm.
The crucial point is the estimate on the size of the down sets. We transfer the relevant
results to the degraded grid case, using the adapted neighborhood properties (N.4’),
(N.5’) given in Lemma 5.2. These properties hold with a restriction to the defining set
of the degraded grid, whereas the original properties (N.4), (N.5) were valid without
restriction to any point set. The nesting property (8) allows us to carry over the
results nevertheless.

Analogously to the grid case, we use the following convention to describe neigh-
borhoods in the sparse partition. For any point p, we let Ni(p) := Ngi,Vi

(p). We use
the analogous notation for the neighborhood relative to a set.

For the following statements, let (Si, S
′
i, pi, qi, δi), 1 ≤ i ≤ L, be a sparse partition

as defined above, where Vi denotes the defining set of the degraded grid at level i.
The results corresponding to Corollary 3.1 and Lemma 3.4, obtained using (N.4’),

are as follows.
• For any 1 ≤ i < j ≤ L and any p ∈ Vj , Nj(p, Vj) ⊆ Ni(p, Vi).
• For any p ∈ (S \ Si+1) ∩ Vi, 1 ≤ i < L, Ni(p, S ∩ Vi) = ∅.

Now assume that algorithm Insert(q) processes the levels 1, . . . , i without a re-
building, and the sets downj , 1 ≤ j ≤ i, are defined according to equation (6). The
corresponding statement to Lemma 4.3, which is obtained by using the above two
statements, follows.

Let p ∈ downj for a j ∈ {1, . . . , i}. Then p ∈ Nj(q) and Nj(p, S ∩ Vj) = ∅.(9)

With these preparations, we can prove that Lemma 4.4 remains valid; i.e.,∣∣∣ ⋃
1≤j≤i

downj

∣∣∣ ≤ 3D.

We recall the proof of Lemma 4.4 together with the changes that are needed. The
proof is now done with (9) and (N.5’) replacing Lemma 4.3 and (N.5), respectively.

Assume that p ∈ downj for some j ≤ i. Then p ∈ Nj(q) and Nj(p, S ∩Vj) = ∅ by
(9). Let Ψ ∈ {−1, 0, 1}D be a signature such that p ∈ bΨj (q). Refer to Figures 2 and

3. Note that the boxes bΨj (q) and bj(q) have side lengths between gj and 2gj in the

degraded gj-grid, because both p and q are in Vj . The partial neighborhood NΨ
j (q)

is equal to Nj(q)∩Nj(p). Since Nj(p, S ∩ Vj) = ∅ by (9), NΨ
j (q) contains no point of

(S ∩ Vj) \ {p}.
Now consider a point p′ ∈ down` for any ` > j. Then p′, q ∈ V`, and we have

p′ ∈ N`(q) by (9). Assume that p′ ∈ bΨ` (q). Since δ` ≤ δj+1 ≤ δj/4, (N.5’) gives
p′ ∈ NΨ

j (q). We also have p′ ∈ Vj , because p′ ∈ V` and V` ⊆ Vj by the nesting

property (8). However, we know from above that NΨ
j (q) contains no point of S ∩ Vj

except p. Therefore, p′ = p.
This shows that, for each signature Ψ ∈ {−1, 0, 1}D, all boxes bΨj (q), 1 ≤ j ≤ i,

together contribute at most one element to the union
⋃

1≤j≤i downj , which completes
the proof.

Now let us turn to the running time of the algorithm. In Theorem 4.1, the box
dictionary, which stores the indices of the nonempty grid boxes, was implemented
using perfect hashing. Clearly, we can also store these indices in a balanced binary

1066 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

search tree. Since identifying the box containing a given point now takes O(log n)
time anyway on a structure of size n, the cost of searching for that box in the box
dictionary (also O(log n)) may be ignored. As we are now doing in logarithmic time
what previously took constant time, the overall running time is also increased by a
logarithmic factor. We conclude with Theorem 5.1.

Theorem 5.1. There exists a data structure which stores a set S of n points in
RD such that the minimal distance δ(S) can be found in O(1) time, and all point pairs
attaining δ(S) can be reported in time proportional to their number. The expected size
of the structure is O(n), and we can maintain the data structure as S is modified by
insertions or deletions of arbitrary points in O(log2 n) expected time per update. The
data structure is randomized and fits in the algebraic decision tree model. The time
bounds are obtained assuming that the updates do not depend upon the random choices
made by the data structure.

Note that the degraded grid not only depends on gi, as in the grid case, but also on
the set Si stored in it (respectively, on the set Vi ⊃ Si during the insertion algorithm).
Actually, it even depends on the way Si has developed by updates. This means that
this data structure no longer has the property that its distribution is independent of
the history of updates. This does not affect the analysis of the algorithms, however.

6. Extensions. The data structure, as described so far, uses O(n) expected
space. In this section, we give a variant of the data structure that achieves linear
space in the worst case. The update time bounds on this structure are amortized
in that they will bound the expected running time of a sequence of update opera-
tions. We also show that this variant executes an update sequence quickly with high
probability.

6.1. A data structure with linear space in the worst case. Recall that
the space requirements are bounded by the sum of the sizes of the nonsparse sets
S1, . . . , SL of the sparse partition, whose expected value was shown to be O(n). To
turn this into a worst-case bound, our first step is to slightly modify the algorithm
Sparse Partition given in section 2.

The modification is as follows: after picking the pivot of the grid randomly we
determine the set of sparse points induced by this random choice. If at least half of
the points are sparse, we call the pivot good and retain it as the pivot. Otherwise, we
discard it and make a new random choice, continuing this process until a good pivot
is found. We then continue on to the next set, making sure it has a good pivot as
well, etc. Note that if all of the pivots in the sparse partition are good then, for all i,
|S′i| ≥ |Si|/2 so |Si+1| < |Si|/2,

∑
j>i |Sj | = O(|Si|) and the data structure will use

O(n) space. Furthermore, since |Si+1| ≤ |Si|/2, the sparse partition has only O(log n)
levels.

Note that at least half of the elements of a set are good pivots, and so at most two
trials are needed on average until a good pivot is found. Using the same data structures
as before to implement the sparse partition, we can easily prove that Lemma 6.1 holds.

Lemma 6.1. Let S be a set of n points in RD. The modified version of algorithm
Sparse Partition produces a sparse partition for S of worst-case size O(n) in O(n)
expected time.

Note that the above lemma only discusses creating the sparse partition itself and
does not discuss creating the auxiliary data structures. However, this additional work
can be completed within the same time bound, and therefore we do not discuss it.
In the next section, in which we discuss high probability bounds, we will need to
distinguish between constructing the sparse partition itself on the one hand and the

THE DYNAMIC CLOSEST-PAIR PROBLEM 1067

complete data structure on the other. For the remainder of this section we assume
that the procedures Build and Near Build have been modified as above to produce
sparse partitions of worst-case linear size.

We now move on to the update algorithms. The idea will be to maintain a sparse
partition all of whose pivots are good or at least not too far from being good. We
make the following observations.

1. The uniformity property (Definition 2.2) is lost. However, since at least half
of the elements are good pivots, the probability of an element being the pivot
right after the construction of a new sparse partition is 2/n for a set of size
n.

2. Updates can gradually unbalance the data structure in the sense that more
than a constant proportion of the elements at that level can become non-
sparse. In the earlier version of the algorithm the uniformity condition guar-
anteed that the data structure was, probabilistically, well balanced. Lacking
the uniformity condition we enforce the balance of the sparse partition “by
hand” to ensure that the data structure uses linear space. That is, we count
the number of update operations that affect a level of the data structure,
rebuilding after this count has reached a suitable constant fraction of the
cardinality of the set at that level at the time of the last rebuilding. This
will ensure that |S′i| is always at least some constant proportion of |Si|. In
the sequel we call these rebuildings amortized to distinguish them from the
probabilistic rebuildings that can be caused by a particular update.

We now sketch the modifications to the update algorithms, using the notation
from section 4. We associate two variables, lasti and counti, with level i of the
current sparse partition. lasti equals |Si| after the last (amortized or probabilistic)
rebuilding that affected Si, i.e., the last rebuilding performed at a level j ≤ i. counti
denotes the number of update operations since the last rebuilding that affected level
i. In what follows, c > 1 is a sufficiently large constant.

In the insertion algorithm (Figure 7), let q be the newly inserted point, and

suppose we are at level i, downi−1 has been computed, and S̃i = Si ∪ downi−1 ∪ {q}.
Only step 2 (checking for rebuild) is changed as follows:

1. counti := counti + 1; if counti ≥ lasti/c then Build(S̃i, i); stop;
2. if q or an element of downi−1 is closer to the pivot pi than its previous

nearest neighbor
then Build(S̃i, i); stop;

The first item is the amortized rebuilding discussed above, and the second item is
one component of the probabilistic rebuilding in the original algorithm. Note that
the first part of that rebuild step—which ensured the uniformity of the pivots by
probabilistically deciding whether to make one of the elements in downi−1 ∪ {q} the
new pivot—does not appear here. Since we do not have complete uniformity here
anyway (bad elements cannot be pivots), we treat a newly inserted element as if it
were a bad element.

In the deletion algorithm (Figure 10), suppose again that we are at level i, upi−1

has been computed, and we have S̃i = (Si \ upi−1) \ {q}. Only step 2 is changed as
follows:

1. counti := counti + 1; if counti ≥ lasti/c then Build(S̃i, i); stop;
2. if q or an element of upi−1 is either the pivot pi or its nearest neighbor qi

then Build(S̃i, i); stop;
It is clear that the above modifications do not affect the correctness of the update

1068 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

algorithms. We now analyze its cost. First note that immediately after a rebuilding
|S′i| ≥ |Si|/2. A single update may only add or subtract a constant number of items
to or from Si and S′i. Thus if c is taken to be large enough, the amortized rebuildings
guarantee that |S′i| > |Si|/4 always holds, ensuring that (i) the data structure has
O(log n) levels and (ii) the size of the structure is O(n). (Note that the constant
number of points that can be moved at each step depends upon the dimension D, so
c must be chosen dependent upon D as well.)

As long as no rebuilding occurs, the algorithm uses a constant number of dic-
tionary operations at each level. Since there are O(log n) levels the total expected
cost of all dictionary operations is O(log n). The heap updates cost O(log n) time as
before. Thus the total expected time required for an update operation which does
not perform a rebuilding is O(log n).

Recall now that there are two types of rebuildings: amortized and probabilistic.
We start by analyzing the amortized rebuildings. Note that an amortized rebuilding
occurs on a set Si of size m only if a sequence of Θ(m) updates has occurred without a
rebuilding of Si. Since a rebuilding costs O(m) expected time each of the sequence of
Θ(m) updates incurs an O(1) amortized cost for the rebuilding of Si. Summing over
all O(log n) levels in the data structure gives an amortized expected cost of O(log n)
per update operation.

For the probabilistic rebuildings, we will show that for each update which affects a
set Si of size m, the probability of a rebuilding is at most c′/m for some fixed constant
c′. Since the expected cost of a rebuilding is O(m) this means that the expected cost
of rebuilding a set at a given level at any particular step will be O(1). Summing over
all O(log n) levels yields a total expected cost of O(log n) per update.

To show that the probability of a rebuilding is at most c′/m for some c′ we note
that immediately after a rebuilding the probability of rebuilding a set Si of size m
is c′/m where c′ = 2. Between rebuildings, an adversary gains knowledge about the
possible pivots of the data structure permitting him to force a rebuilding with an
appropriately chosen insert or delete command. However, we have already seen that
an adversary can only exclude at most a constant number of points from being a
pivot in each update operation. Thus, if c is taken to be large enough that after m/c
updates at a level of initial size m, the adversary still must consider |Si|/4 possible
good pivots, this implies that the probability of a probabilistic rebuilding (i.e., item
2 of the modified updates) is still O(1/m). This proves the following theorem.

Theorem 6.1. The data structure of Theorem 4.1 can be modified to use O(n)
worst-case space. The modified data structure has O(log n) amortized expected update
time, and the time complexities of all other operations are unchanged.

Applying the same modifications to the data structure of Theorem 5.1 we get
Theorem 6.2.

Theorem 6.2. The data structure of Theorem 5.1 can be modified to use O(n)
worst-case space. The modified data structure has O(log2 n) amortized expected update
time, and the time complexities of all other operations are unchanged.

6.2. High probability bounds. The previous theorem yields the expected run-
ning time of the dynamic closest-pair algorithm on a sequence of updates. We now
discuss the probability that the running time of the data structure of Theorem 6.2 on
such an update sequence deviates significantly from its expectation. In what follows
we say that an event occurs with n-polynomial probability if, for any fixed s > 0, it
occurs with probability 1 − O(n−s). A process is said to take O(f(n)) time with n-
polynomial probability if, for any fixed s > 0, the process takes at most c(s)f(n) time

THE DYNAMIC CLOSEST-PAIR PROBLEM 1069

for sufficiently large n, where c(s) is a constant dependent upon s, with probability
1−O(n−s).

Theorem 6.3. Let S be a set of n points in RD. The data structure of Theo-
rem 6.2 performs a sequence of n updates on S in O(n log2 n) time with n-polynomial
probability.

Remark. We can also prove that the data structure of Theorem 6.1 processes
a sequence of Θ(n) updates, starting with a set of size n, in O(n log2 n) time with
n-polynomial probability; see [18] for details.

Proof. First note that the theorem is obviously correct if we only count the costs
of the part of the updates that do not include rebuildings. The nonrebuilding part
of the update consists of O(1) heap operations, each costing O(log n) time for a total
of O(log n) time, and of O(log n) dictionary operations each costing O(log n) time
for a total of O(log2 n) time. (Recall that our data structure has O(log n) levels in
the worst case for a set of size n.) Hence, if no rebuilding occurs, an update takes
O(log2 n) time in the worst case.

We now analyze the rebuilding cost and show that rebuilding a sparse partition
for a set of size m will require O(m log n) time with n-polynomial probability. First
note that during the rebuilding of a level the chance of a random pivot being a good
one is at least 1/2; the probability of not finding a good pivot after k trials is therefore
at most 2−k, so with n-polynomial probability only O(log n) pivots need to be checked
before finding a good one. At first sight, it appears as if even checking if a single pivot
is good should take O(m log n) time, since checking to see if a point is sparse appears
to require O(1) queries to the box dictionary, each costing O(log n) time.

However, if we only want to check if a pivot is good, we can avoid queries to the
box dictionary as follows: during the building of the degraded grid data structure, we
can link each nonempty box with the nonempty boxes in its neighborhood, where we
mean the occurrences of the boxes in the box dictionary (not only in the geometric
representation, which is trivial). We can use these pointers to find the sparse points
of the point set which is being stored in linear time, as follows: walk through the list
of nonempty boxes of the grid. With the help of the above-described pointers, we can
access the point lists associated with the neighboring boxes in constant time, replacing
the queries in the box dictionary. (This faster method was not mentioned earlier as
computing the sparse points of a set was never previously a bottleneck.) Thus we can
identify the sparse points and decide whether the pivot is good in O(m) time; it is
only in the computing of the restricted distances where we will need Θ(m log n) time.

We conclude that a good pivot can be found and the grid for that level built and
processed in O(m log n) time with n-polynomial probability. Since the levels decrease
geometrically in size, good pivots for all succeeding levels of the partition can also be
found in O(m log n) time with n-polynomial probability. The remainder of the Build
procedure takes O(m log n) time as before.

We now analyze the amortized and probabilistic rebuildings separately, studying
the amortized ones first. Actually, using the same reasoning as developed in the
previous subsection, we find that an amortized rebuilding of set Si of size m is only
performed if Θ(m) previous updates did not rebuild Si. Now rebuilding Si requires
O(m log n) time with n-polynomial probability, so with n-polynomial probability the
amortized rebuilding cost per update of Si is O(log n). Since there are O(log n) levels,
this adds up to O(n log2 n) time with n-polynomial probability.

Before analyzing the cost of the probabilistic rebuildings, i.e., the rebuildings
caused by a deletion of a pivot or insertion/deletion of the nearest neighbor to a pivot,

1070 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

it will help to quickly review what we are trying to study. As we start with a data
structure which contains n points and then make n updates to it, the data structure
contains at most 2n items at any update step. Since |S′i| > |Si|/4 we have |Si+1| <
3|Si|/4 so the data structure never contains more than L = log4/3(2n) = Θ(logn)
levels. Now suppose that |Si| = m. Then as described in the previous subsection Si
is rebuilt with probability O(1/m). The cost of rebuilding Si will be O(m log n) with
n-polynomial probability. Let mi,t denote the size of Si at the end of update t− 1 for
1 ≤ i ≤ L and 1 ≤ t ≤ n. If Si does not exist at the end of update t− 1 set mi,t = 1
by convention. Now define the random variables

Xi,t =

{
mi,t with probability 1/mi,t,
0 with probability 1− 1/mi,t.

Then the cost of probabilistically rebuilding Si at update t, counting both degraded
grid and heap operations, is O(Xi,t log n) with n-polynomial probability by the above
discussion. Hence the total cost of probabilistic rebuildings over all updates is bounded
by O(M log n) with n-polynomial probability, where M =

∑
i,tXi,t. We now show

that M itself is O(n log n) with n-polynomial probability. The proof of Theorem 6.3
will follow.

The first complication we encounter in bounding M is that the Xi,t are not
independent because the mi,t depend upon each other. Nevertheless, since |S| ≤ 2n
and the amortized rebuilding ensures that |Si+1| < 3|Si|/4, the relation

mi,t ≤ max{1, 2 · (3/4)i−1 · n}(10)

must always hold. We sidestep the dependence issue by showing that, for any values of
mi,t that satisfy equation (10), M has n-polynomial probability of being O(n log n).
This allows us to assume that we are given some fixed (but arbitrary) values mi,t

which satisfy (10), and that the variables Xi,t are as defined above and independent
of each other.

The following lemma is obtained by a straightforward modification of the proof
of the Chernoff bound given in [14, p. 68].

Lemma 6.2. Let Y1, . . . , Yk be independent random variables, and let a1, . . . , ak ∈
[1, A] for some A ≥ 1. For i = 1, . . . , k suppose that

Yi =

{
ai with probability 1/ai,
0 with probability 1− 1/ai,

and let Y =
∑k

i=1 Yi. Then for any δ > 0,

Pr[Y > (1 + δ)k] <

[
eδ

(1 + δ)(1+δ)

]k/A
.(11)

Proof. Let λ = (ln(1 + δ))/A and note that λ > 0. Then

Pr[Y > (1 + δ)k] = Pr[eλY > eλ(1+δ)k]

≤ E(eλY)

eλ(1+δ)k

=

∏k
i=1 E(eλYi)

eλ(1+δ)k

=

∏k
i=1(

1
ai
eλai + 1− 1

ai
)

eλ(1+δ)k
.

THE DYNAMIC CLOSEST-PAIR PROBLEM 1071

However, f(x) = eλx/x + 1 − 1/x can easily be seen to be an increasing function of
x, for x > 0. Therefore,

Pr[Y > (1 + δ)k] ≤
(

1
Ae

λA + 1− 1
A

)k
eλ(1+δ)k

≤ (1 + δ/A)k

(1 + δ)(1+δ)k/A
<

[
eδ

(1 + δ)(1+δ)

]k/A
.

Let s be a given positive integer. We apply Lemma 6.2 to Xi =
∑n

t=1 Xi,t for
each 1 ≤ i ≤ 5 log log n, noting that mi,t ≤ 2n for this range of i. By choosing
δ = c · log n/ log log n− 1 for sufficiently large c > 0 and A = 2n, we obtain that, for
all 1 ≤ i ≤ 5 log log n,

Pr[Xi > c · n · log n/ log log n] < n−s−1.(12)

We now apply Lemma 6.2 to Xi =
∑n

t=1 Xi,t for each 5 log logn < i ≤ L, noting
that mi,t ≤ n/ log n for this range of i. By choosing δ = c′ − 1 for sufficiently large
c′ > 1 and A = n/ log n, we obtain that, for all 5 log logn < i ≤ L,

Pr[Xi > c′ · n] < n−s−1.(13)

From (12) and (13) we conclude that M =
∑n

i=1 Xi = O(n log n) with probability
at least 1− n−s, and hence M = O(n log n) with n-polynomial probability.

7. Concluding remarks. In this paper, we have given the first solution to the
fully dynamic closest pair problem which achieves linear space and polylogarithmic
update time simultaneously. After a preliminary version of this paper was published,
Kapoor and Smid [13] achieved this goal with a deterministic method which has
amortized update time O(logD−1 n log log n) for D ≥ 3 and O(log2 n/(log log n)`) for
the case D = 2, where ` is an arbitrary nonnegative integer constant. Also, Callahan
and Kosaraju [4] gave a deterministic data structure achieving O(log2 n) update time
while using linear space for any fixed dimension. Finally, Bespamyatnikh [3] gave an
optimal deterministic solution for the dynamic closest pair problem: for any fixed
dimension, his technique achieves O(log n) update time and uses O(n) space.

REFERENCES

[1] M. Ben-Or, Lower bounds for algebraic computation trees, in Proc. 15th Ann. ACM Sympos.
Theory Comput., 1983, pp. 80–86.

[2] J. L. Bentley and M. I. Shamos, Divide-and-conquer in multidimensional space, in Proc. 8th
Ann. ACM Sympos. Theory Comput., 1976, pp. 220–230.

[3] S. N. Bespamyatnikh, An optimal algorithm for closest pair maintenance, in Proc. 11th Ann.
ACM Sympos. Comput. Geom., 1995, pp. 152–161.

[4] P. B. Callahan and S. R. Kosaraju, Algorithms for dynamic closest-pair and n-body poten-
tial fields, in Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, 1995, pp. 263–272.

[5] J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput. System
Sci., 18 (1979), pp. 143–154.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. McGraw–Hill,
New York, 1990.

[7] M. T. Dickerson, R. L. Drysdale, and J. R. Sack, Simple algorithms for enumerating
interpoint distances and finding k nearest neighbors, Internat. J. Comput. Geom. Appl., 2
(1992), pp. 221–239.

[8] W. H. E. Day and H. Edelsbrunner, Efficient algorithms for agglomerative hierarchical
clustering methods, J. Classification, 1 (1984), pp. 7–24.

[9] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid, Static and dynamic algorithms for
k-point clustering problems, J. Algorithms, 19 (1995), pp. 474–503.

[10] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and
R. E. Tarjan, Dynamic perfect hashing: Upper and lower bounds, SIAM J. Comput., 23
(1994), pp. 738–761.

1072 M. GOLIN, R. RAMAN, C. SCHWARZ, AND M. SMID

[11] M. J. Golin, R. Raman, C. Schwarz, and M. Smid, Simple randomized algorithms for closest
pair problems, Nordic J. Comput., 2 (1995), pp. 3–27.

[12] S. Khuller and Y. Matias, A simple randomized sieve algorithm for the closest-pair problem,
Inform. and Comput., 118 (1995), pp. 34–37.

[13] S. Kapoor and M. Smid, New techniques for exact and approximate dynamic closest-point
problems, SIAM J. Comput., 25 (1996), pp. 775–796.

[14] R. Motwani and P. Ragahavan, Randomized Algorithms, Cambridge University Press, Lon-
don, 1995.

[15] W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Comm. Assoc. Comput.
Mach., 33 (1990), pp. 668–676.

[16] M. O. Rabin, Probabilistic algorithms, in Algorithms and Complexity, J. F. Traub, Ed., Aca-
demic Press, New York, 1976, pp. 21–30.

[17] J. S. Salowe, Enumerating interdistances in space, Internat. J. Comput. Geom. Appl., 2
(1992), pp. 49–59.

[18] C. Schwarz, Data Structures and Algorithms for the Dynamic Closest Pair Problem, Ph.D.
thesis, Universität des Saarlandes, Saarbrücken, Germany, 1993.

[19] R. Seidel and C. R. Aragon, Randomized search trees, Algorithmica, 16 (1996), pp. 464–497.
[20] M. I. Shamos and D. Hoey, Closest-point problems, in Proc. 16th Ann. IEEE Sympos. Found.

Comput. Sci., 1975, pp. 151–162.
[21] M. Smid, Maintaining the minimal distance of a point set in less than linear time, Algorithms

Rev., 2 (1991), pp. 33–44.
[22] M. Smid, Maintaining the minimal distance of a point set in polylogarithmic time, Discrete

Comput. Geom., 7 (1992), pp. 415–431.
[23] C. Schwarz, M. Smid, and J. Snoeyink, An optimal algorithm for the on-line closest-pair

problem, Algorithmica, 12 (1994), pp. 18–29.
[24] K. J. Supowit, New techniques for some dynamic closest-point and farthest-point problems,

in Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, 1990, pp. 84–90.

SEPARATING EXPONENTIALLY AMBIGUOUS FINITE
AUTOMATA FROM POLYNOMIALLY AMBIGUOUS FINITE

AUTOMATA∗

HING LEUNG†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1073–1082, August 1998 008

Abstract. We resolve an open problem raised by Ravikumar and Ibarra [SIAM J. Comput.,
18 (1989), pp. 1263–1282] on the succinctness of representations relating to the types of ambiguity
of finite automata. We show that there exists a family of nondeterministic finite automata {An}
over a two-letter alphabet such that, for any positive integer n, An is exponentially ambiguous and
has n states, whereas the smallest equivalent deterministic finite automaton has 2n states, and any
smallest equivalent polynomially ambiguous finite automaton has 2n − 1 states.

Key words. nondeterministic finite automata, ambiguity, succinctness of representation

AMS subject classification. 68Q68

PII. S0097539793252092

1. Introduction. In their 1989 paper [RI89] Ravikumar and Ibarra raised some
interesting questions relating the type of ambiguity of finite automata to the suc-
cinctness in their number of states. They considered the following five classes of finite
automata: deterministic finite automata (DFA), nondeterministic finite automata
(NFA), unambiguous NFA (UFA), finitely ambiguous NFA (FNA), and polynomially
ambiguous NFA (PNA). Formal definitions of these classes are given in section 2 of
this paper.

Let C1 and C2 be any two of the above five classes of finite automata. We say
that C1 can be polynomially converted to C2 (written C1 ≤P C2) if there exists a
polynomial p such that for any finite automaton in C1 with n states we can find
an equivalent finite automaton in C2 with at most p(n) states. C1 is said to be
polynomially related to C2 (written C1 =P C2) if C1 ≤P C2 and C2 ≤P C1. C1 is
said to be separated from C2 if C1 6=P C2. We write C1 <P C2 if C1 ≤P C2 and
C1 6=P C2.

It is immediate that DFA ≤P UFA, UFA ≤P FNA, FNA ≤P PNA, and PNA ≤P
NFA.

The following is known: DFA <P NFA [MF71], [Mo71], DFA <P UFA [Sc78],
[SH85], [RI89], UFA <P FNA [Sc78], [RI89], and UFA <P NFA [SH85]. It is unknown
whether FNA <P NFA. Ravikumar and Ibarra conjecture that FNA <P PNA and
that PNA <P NFA [RI89].

In this paper, we prove that PNA <P NFA which immediately implies that FNA
<P NFA. The other conjecture that FNA <P PNA still remains open.

In summary, we have
DFA <P UFA <P FNA ≤P PNA <P NFA.

Specifically, we show that there exists a family of NFAs {An | n ≥ 1} over a two-
letter alphabet such that, for any positive integer n, An is exponentially ambiguous

∗ Received by the editors July 14, 1993; accepted for publication (in revised form) May 31, 1996;
published electronically May 19, 1998. This research was supported by an Alexander von Humboldt
research fellowship and was done while the author was visiting the University of Frankfurt, Germany.
A preliminary version of the paper appeared in the proceedings of ISAAC’93.

http://www.siam.org/journals/sicomp/27-4/25209.html
† Department of Computer Science, New Mexico State University, Las Cruces, NM 88003

(hleung@cs.nmsu.edu).

1073

1074 HING LEUNG

and has n states, whereas the smallest equivalent DFA has 2n states and any smallest
equivalent PNA has 2n − 1 states.

Our results show that any PNA equivalent to An cannot do better in the number
of states than the smallest equivalent DFA obtained by the subset construction except
for the saving of the dead state.

Another way to interpret our results is as follows: let us first define that an NFA
is ”strongly” ambiguous if there is a useful state q (that is, q can be reached from
some starting state and can reach some final state) and a string w such that M can
process w starting from state q and ending also with state q in more than one way.
Then by a characterization in [IR86] our results show that An is strongly ambiguous
with n states, whereas the smallest equivalent DFA has 2n states and any smallest
equivalent NFA that is not strongly ambiguous has 2n − 1 states.

Section 2 presents the definitions and some basic results. Section 3 presents the
family of NFAs {An} and proves the main result of this paper by a series of lemmas.

2. Preliminaries. We assume that the reader is familiar with the basic defini-
tions and notations in finite automata theory and the Myhill–Nerode theorem [HU79]
as well as the basics of graph theory [Ha69].

Let w be a string, and L a language. We denote by wR the reverse of w and by
LR the set of strings vR where v ∈ L.

Throughout this paper, we assume a model of NFA that is slightly more general
than the one defined in [HU79] in that we allow a set of starting states instead of only
one starting state. Thus, an NFA M is a 5-tuple (Q,Σ, δ, QI , QF) where Q is the set
of states, Σ is the alphabet set, δ : Q×Σ −→ 2Q is the transition function, QI is the
set of starting states, and QF is the set of final states.

Given an NFA M , we define the ambiguity of a string w to be the number of
different accepting paths for w in M . Note that a string w is in the language of M if
and only if the ambiguity of w is not zero. The ambiguity function ambM : N0 −→ N0

is defined such that ambM (n) is the maximum of the ambiguities of strings that are
of length n or less. Remark: ambM is nondecreasing.

M is called unambiguous if the ambiguity of any string is either zero or one. M
is called finitely (respectively, polynomially, exponentially) ambiguous if ambM can
be bounded by a constant (respectively, polynomial, exponential) function f ; that is,
for all n ∈ N0, ambM (n) ≤ f(n).

It is easy to see that ambM (n) ≤ s1s
n where s1 is the cardinality of QI and s is

the cardinality of Q. Thus, every NFA must be exponentially ambiguous.

M is called strictly exponentially ambiguous [IR86] if M is exponentially ambigu-
ous but not polynomially ambiguous. It is known [IR86] that M is strictly exponen-
tially ambiguous if and only if there is a useful state q and there is a string w such
that M can process w starting from state q and ending also with state q in more than
one way.

3. Main result. For any positive integer n, we define an NFAAn = (Q,Σ, δ, {q1},
{q1}) where Q = {q1, q2, . . . , qn}, q1 is the only starting state and the only final state,
Σ = {0, 1}, and δ (see Figure 1) is defined as follows:

• δ(q1, 0) = {q1, q2},
• δ(qi, 0) = {qi+1} for 2 ≤ i ≤ n− 1,
• δ(qn, 0) = {q1},
• δ(q1, 1) = ∅,
• δ(qi, 1) = {qi} for 2 ≤ i ≤ n.

SEPARATING AMBIGUOUS FINITE AUTOMATA 1075

��

��
��.....................

.....................

��

��
��.....................

.....................

��

��
��.....................

.....................

��

��
��.....................

.....................
..

..
..

... . . .

.............
........
.............
........

...

0 1 1 1

0 0 0 0

0

q q q q1 2 3 n

Fig. 1. Transition diagram of An.

We denote the language of An by Ln, which is (0 + (01∗)n−10)∗. It is easy to see
that Ln = LRn = L∗n.

It is argued in section 2 that every NFA is exponentially ambiguous. Thus An is
exponentially ambiguous. Moreover, An is strictly exponentially ambiguous since the
ambiguity of 0m is at least 2bm/nc.

We will prove that any DFA recognizing Ln has at least 2n states (Lemma 2), any
UFA recognizing Ln has at least 2n − 1 states (Lemma 4), and any PNA recognizing
Ln also has at least 2n − 1 states (Theorem 1).

First, we present some definitions. Given a language L and a string x, prefix(L)
def
= {w |

∃w′, ww′ ∈ L} and x−1(L)
def
= {w | xw ∈ L}. The two operations prefix and x−1 com-

mute since both x−1(prefix(L)) and prefix(x−1(L)) equal {w | ∃w′, xww′ ∈ L}.
Let kill non q1 denote 0(10)n−1, accept denote 0n−1, and reset denote accept kill non q1.

The intuitive concepts of the strings kill non q1, accept, and reset are reflected in the
following properties: for any P ⊆ Q, δ(P, kill non q1) = P − {q2, . . . , qn}. For any
nonempty subset P ⊆ Q, observe that q1 ∈ δ(P, accept) and δ(P, reset) = {q1}.
Equivalently, for any x ∈ prefix(Ln), x accept ∈ Ln and (x reset)−1(Ln) = Ln.

For any P ⊆ Q, let wP ∈ Σ∗ be w10wn0wn−10 . . . 0w1 where wi = ε if qi ∈ P and
wi = 1 otherwise; and let uP ∈ Σ∗ be 0n−1 wP . The meaning of wP and uP can be
understood as the strings that satisfy Lemma 1 and Corollary 1, respectively, given
below. The following properties (Lemma 1 and Corollaries 1 and 2) of the strings wP
and uP are very crucial in proving the main theorem of the paper.

Lemma 1. For any P ⊆ Q, we have

(1) δ(P,wP) = P ;

(2) for any q ∈ P , δ(q, wP) ⊇ {q};
(3) δ(Q− P,wP) = ∅.
Proof. The proof of Lemma 1, which is quite long but straightforward, is given

in the appendix.

Corollary 1. For any P ⊆ Q, δ(q1, uP) = P .

Proof. δ(q1, uP) = δ(q1, 0
n−1 wP) = δ(Q,wP) = δ(P,wP)

⋃
δ(Q − P,wP) =

δ(P,wP) = P by parts (1) and (3) of Lemma 1.

Corollary 2. For any P, P ′ ⊆ Q, uPwP ′ ∈ prefix(Ln) if and only if P
⋂
P ′

6= ∅.
Proof. Suppose P

⋂
P ′ 6= ∅. Let q ∈ P

⋂
P ′. Then δ(q1, uPwP ′) = δ(P,wP ′) ⊇

δ(q, wP ′) ⊇ {q} 6= ∅ by Corollary 1 and part (2) of Lemma 1. Since all states in An
are useful, uPwP ′ ∈ prefix(Ln).

Suppose P
⋂
P ′ = ∅. Then P ⊆ Q − P ′ and δ(q1, uPwP ′) = δ(P,wP ′) ⊆ δ(Q −

P ′, wP ′) = ∅ by Corollary 1 and part (3) of Lemma 1. Thus we have that uPwP ′ 6∈
prefix(Ln).

1076 HING LEUNG

With the basic properties established, we begin to prove the first result that the
smallest DFA recognizing Ln has 2n states.

Lemma 2. The smallest DFA recognizing Ln has 2n states.

Proof. By Corollary 1, all subsets of states can be realized in the subset construc-
tion. We show that any two different subsets of states are not equivalent; then we
are done by the Myhill–Nerode theorem. Let P 6= P ′ ⊆ Q. Let qi be the state with
the largest subscript such that qi belongs only to exactly one of P and P ′. That is,
for any qj where i + 1 ≤ j ≤ n, either qj belongs to both P and P ′ or qj does not
belong to any one of P and P ′. If i = 1, then P and P ′ can be distinguished by the
empty string. Assume that 1 < i ≤ n. Then P and P ′ can be distinguished by
(10)n+1−i.

The next result (Lemma 4) that we want to establish is that a smallest UFA
recognizing Ln cannot do better in the number of states than a smallest DFA besides
the saving of the dead state. Some technical definitions and a technical lemma (Lemma
3) are needed first.

Let Mn be a 2n − 1 × 2n − 1 matrix over the field of characteristic 2 with rows
and columns indexed by the nonempty subsets of Q such that Mn(P, P ′) = 1 if
uP wP ′ accept ∈ Ln, and Mn(P, P ′) = 0 otherwise. By Corollary 2 and the property
of accept, Mn(P, P ′) = 1 if P

⋂
P ′ 6= ∅ and Mn(P, P ′) = 0 otherwise.

Lemma 3. The rank of Mn is 2n − 1.

Proof. Equivalently, we can index rows and columns of Mn by n-bit positive
binary numbers in the order of increasing values such that any n-bit positive binary
number bnbn−1 . . . b1 corresponds to the nonempty subset P ⊆ Q with the property
that for any 1 ≤ i ≤ n, qi ∈ P if and only if bi = 1. Note that the indices range
from binary number of value 1 to binary number of value 2n− 1. Thus, Mn(α, β) = 1
if there is some i such that the ith bits of α and β are both 1, and Mn(α, β) = 0
otherwise.

We are going to show by induction on n that Mn has rank 2n − 1. For n = 1,
then Mn = [1], which is a 1× 1 matrix of rank 21 − 1 = 1.

Suppose that the statement is true for n = k. Consider n = k + 1. We observe
that the matrix Mk+1 (see Figure 2) can be characterized as follows:

• The matrix Mk+1 is symmetric. (Reason: According to the definition given
above for Mn(α, β), it is immediate that Mn(α, β) = Mn(β, α).)

• The middle row and the middle column both have 2k−1 zeros followed by 2k

ones. (Reason: The middle row has an index of a one followed by k zeros. On
the other hand, the first 2k−1 column indices are binary numbers that begin
with zero, and the last 2k column indices are binary numbers that begin with
one. Thus, by definition, the middle row has 2k−1 zeros followed by 2k ones.
Since Mk+1 is symmetric, the middle column also has 2k − 1 zeros followed
by 2k ones.)

• Separated by the middle row and the middle column, we have four square
submatrices of sizes 2k − 1× 2k − 1 each. Let us name the upper-left, upper-
right, lower-left, and lower-right submatrices as UL, UR, LL, and LR. Then
UL, UR, and LL are the same as Mk, and LR is a matrix of ones. (Reason:
Elements in LR correspond to row and column indices that both begin with
one. Thus LR is a matrix of ones. For elements in other submatrices, either
the row or column index begins with zero. Thus the element values are
determined by the remaining k bits of the row and column indices, which
behave in the same way as the row and column indices of Mk. Hence, UL,

SEPARATING AMBIGUOUS FINITE AUTOMATA 1077

Mk
.

.

.

.

.

.

.

0 0 1 1 1
1

1

0

0
.

.

.

.

.

.

.

0 0 1 1 1
1

1

0

0

Mk Mk

Mk

. . .

. . .

.

.

.
.
.
.

+1
1 1

1 1

UL UR

LL LR

Fig. 2. Structure of Mk+1.

Mk
.

.

.

.

.

.

.

0 0 1 1 1
0

0

0

0
.

.

.

.

.

.

.

0 0 1 1 1
0

0

0

0

Mk

MkMk

. . .

. . .

.

.

.
.
.
.

+1

0 0

0 0
UL UR

LL LR

Fig. 3. Structure of Mk+1 (after transformations).

UR, and LL are the same as Mk.)
We want to apply elementary row operations to show that Mk+1 can be trans-

formed to an identity matrix. By subtracting the middle row from each of the rows
in the lower half of the matrix, LL remains unchanged whereas the rest of the entries
in the lower half become all zeros. Note that the middle column now has all zeros
except a one in the middle. Let us swap the lower half of the matrix with the upper
half. See Figure 3 for the current structure of Mk+1.

By induction, we can apply elementary row operations to the upper half such that
UL becomes an identity matrix, and the rest of the entries in the upper half are zeros.
With UL being the identity matrix and zeros elsewhere in the upper half, we apply
again elementary row operations so that LL becomes all zeros whereas LR remains
the same as Mk. See Figure 4 for the current structure of Mk+1.

Next, again by induction, we can transform LR to identity matrix since the rest
of the entries in the lower half are all zeros. Finally subtract each of the rows in the
lower half from the middle row; the middle row becomes a row with all zeros except
a one in the middle position. Therefore, an identity matrix is obtained and the rank
of Mk+1 is thus 2k+1 − 1.

Lemma 4. A smallest UFA recognizing Ln has 2n − 1 states.
Proof. First, by removing the dead state from the DFA obtained by the subset

construction, we have a UFA with 2n−1 states. Next we are going to use a technique
introduced in [Sc78] to show that any UFA would require at least 2n − 1 states.

Let U be a UFA recognizing Ln with the finite set of states denoted by K. Let
R be a matrix over the field of characteristic 2 with rows indexed by K and columns
indexed by the nonempty subsets of Q such that R(k, P) = 1 if U can reach a final
state starting from state k ∈ K on consuming wP accept, and R(k, P) = 0 otherwise.

We claim that any row in Mn is a linear combination of the rows in R. Given a
nonempty subset P of Q, let K ′ ⊆ K be the set of states reached by U from the set of
starting states on consuming uP . For any k1 6= k2 ∈ K ′ and for any nonempty subset

1078 HING LEUNG

Mk
.

.

.

.

.

.

.

0 0 1 1 1
0

0

0

0
.

.

.

.

.

.

.

0 0 1 1 1
0

0

0

0
Ik

Mk

. . .

. . .

.

.

.
.
.
.

+1

0 0

0 0
UL UR

LL LR

. . .

. . .

.

.

.
.
.
.

0 0

0 0

Fig. 4. Structure of Mk+1 (after transformations).

P ′ of Q, R(k1, P
′) and R(k2, P

′) cannot both have value one; that is, at most one
of R(k, P ′), for k ∈ K ′, is 1. Otherwise, there are two different accepting paths for
uPwP ′accept in U , which contradicts the assumption that U is unambiguous. Thus,
the row indexed by P in Mn is the sum of the rows indexed by K ′ in R.

Therefore, the rank of Mn is less than or equal to the rank of R. Hence, K must
have at least 2n − 1 states so that the rank of R is at least 2n − 1.

We need Lemma 5 below to prove Lemma 6, which is the main technical lemma
that helps us to show that a smallest PNA recognizing Ln has 2n−1 states (Theorem
1). In fact, Lemma 5 can be viewed as a generalization of Lemma 4.

Lemma 5. Any UFA recognizing L such that prefix(L) = prefix(Ln) requires at
least 2n − 1 states.

Proof. Since L is regular, there exists a finite set of strings {γ1, . . . , γh} ⊆ Σ∗

such that for any z ∈ prefix(L), exactly one of zγi, for 1 ≤ i ≤ h, is in L.

Let X be a 2n − 1× h(2n − 1) matrix over the field of characteristic 2 with rows
indexed by the nonempty subsets of Q and columns indexed by {(P, i) | ∅ 6= P ⊆
Q, 1 ≤ i ≤ h} such that X(P, (P ′, i)) = 1 if uPwP ′γi ∈ L, and X(P, (P ′, i)) = 0
otherwise.

We claim that the rank of X is 2n−1. We define X ′ to be a 2n−1×2n−1 matrix
over the field of characteristic 2 with rows and columns indexed by the nonempty
subsets of Q such that the column indexed by P is the sum of the h columns in X
indexed by {(P, i) | 1 ≤ i ≤ h}.

We want to show that X ′ is the same matrix as Mn. That is, we want to show
that X ′(P, P ′) = 1 if P

⋂
P ′ 6= ∅ and X ′(P, P ′) = 0 otherwise.

Suppose P
⋂
P ′ 6= ∅. By Corollary 2, uPwP ′ ∈ prefix(Ln) = prefix(L). By the

definition of γi’s, exactly one of uPwP ′γi, for 1 ≤ i ≤ h, is in L. That is, exactly one
of X(P, (P ′, i)), for 1 ≤ i ≤ h, is 1. Hence, X ′(P, P ′) = 1.

Suppose P
⋂
P ′ = ∅. By Corollary 2, uPwP ′ 6∈ prefix(Ln) = prefix(L). Therefore,

uPwP ′γi 6∈ L for 1 ≤ i ≤ h. Hence, X(P, (P ′, i)) = 0 for 1 ≤ i ≤ h and X ′(P, P ′) = 0.

By Lemma 3, the rank of X ′ is 2n − 1. Since each column of X ′ is obtained by a
linear combination of the columns of X, the rank of X must be bigger than or equal
to the rank of X ′. Thus, the rank of X is at least 2n− 1. Moreover since the number
of rows in X is 2n − 1, the rank of X is at most 2n − 1. Therefore, the rank of X is
2n − 1.

Finally, since the rank of X is 2n − 1 and by using the same technique as in the
proof of Lemma 4, a smallest UFA for L must have at least 2n − 1 states.

The following lemma is a generalization of Lemma 5, which is the special case
where x = ε.

SEPARATING AMBIGUOUS FINITE AUTOMATA 1079

Lemma 6. Let U be a UFA with the number of states less than 2n−1 which accepts
L such that prefix(L) ⊆ prefix(Ln). Then for all x ∈ prefix(Ln), x−1(prefix(L)) ⊂
x−1(prefix(Ln)).

Proof. From prefix(L) ⊆ prefix(Ln), it is immediate that x−1(prefix(L)) ⊆
x−1(prefix(Ln)) for any arbitrary x. We want to show that x−1(prefix(L)) 6=
x−1(prefix(Ln)) for any x ∈ prefix(Ln).

Suppose to the contrary that x−1(prefix(L)) = x−1(prefix(Ln)) for some x ∈
prefix(Ln). Thus, z−1(prefix(L)) = z−1(prefix(Ln)) where z = x reset. Since z−1 and
prefix commute, prefix(z−1(L)) = prefix(z−1(Ln)). Let L′ be z−1(L). Then we obtain
prefix(L′) = prefix(Ln) since z−1(Ln) = Ln by the property of reset.

We are going to construct a UFA U ′ with less than 2n − 1 states to recognize L′

which is a contradiction, because of Lemma 5.

The transition diagram for U ′ is the same as that of U . The set of starting states
for U ′ is defined to be the set of states reached by U on consuming z from the set of
starting states of U . The set of final states for U ′ is again the same as that of U . It is
clear that the language accepted by U ′ is L′ = z−1(L). Also, U ′ cannot be ambiguous
otherwise U is also ambiguous. Moreover, the number of states in U ′ is the same as
the number of states in U ; therefore, it is less than 2n − 1.

We are ready to prove the main result of this paper.

Theorem 1. A smallest PNA recognizing Ln has 2n − 1 states.

Proof. By removing the dead state from the DFA obtained by the subset con-
struction, we have a UFA, which is polynomially ambiguous, with 2n − 1 states.

Let M be a PNA for Ln with the smallest number of states. Then every state in
M must be useful.

Consider the transition diagram of M . Since the strongly connected components
form a partial ordering with respect to reachability, there must exist one strongly con-
nected component, denoted T , that cannot be reached from other strongly connected
components.

We claim that T must have at least 2n − 1 states. Suppose to the contrary that
it has less than 2n − 1 states.

T must have some starting states in it. Otherwise it is not useful which contra-
dicts the definition of M . Let the set of starting states of M that appears in T be
{p1, . . . , pk}.

Let 1 ≤ i ≤ k. We define an NFA Tpi such that pi is now the only starting and final
state, and the transition diagram for Tpi is T . We want to check that Lemma 6 can
be applied to the language of Tpi . First, Tpi has less than 2n−1 states. Next, Tpi is a
UFA; otherwise by the characterization given in section 2, M is strictly exponentially
ambiguous, a contradiction. Let w ∈ prefix(L(Tpi)). Then pi must reach a nonempty
subset of states in T on consuming w. Since all states in M are useful, w is therefore
in prefix(Ln). Hence, prefix(L(Tpi)) ⊆ prefix(Ln).

Consider the set of UFAs {Tpi | 1 ≤ i ≤ k}. Let x0 = ε ∈ prefix(Ln). For
1 ≤ i ≤ k, we define xi to be a string chosen arbitrarily from

(x0x1 . . . xi−1)
−1(prefix(Ln))− (x0x1 . . . xi−1)

−1(prefix(L(Tpi)).

Thus, x0x1 . . . xi ∈ prefix(Ln) for 0 ≤ i ≤ k. The existence of xi, for 1 ≤ i ≤ k,
is then guaranteed by Lemma 6. Let x be x1 . . . xk. By the way xi’s are defined,
x 6∈ prefix(L(Tpi)) for 1 ≤ i ≤ k. Thus, each UFA Tpi , 1 ≤ i ≤ k, reaches the empty
set from the starting state pi on consuming x since all states in Tpi are useful.

1080 HING LEUNG

Let z = x reset. Since x ∈ prefix(Ln), then z−1(Ln) = Ln by the property of
reset.

Let us consider M again. From the set of starting states, M reaches a subset of
states, denoted P , on consuming z. Since z ∈ prefix(Ln) and L(M) = Ln, P is not
empty. Moreover, by the previous discussions, P does not include any state in T .

We define another NFA M ′ by removing the set of states in T from the state set
of M and let P be the new set of starting states, whereas the set of final states is the
set of final states of M minus the set of states in T . By the facts that M accepts Ln
and z−1(Ln) = Ln, M ′ must also accept Ln. But this is a contradiction since M ′ is
now a PNA accepting Ln with a smaller number of states than M .

Therefore, T cannot have less than 2n − 1 states. Hence, M has at least 2n − 1
states.

Remark. We can prove the same results for the related family of automata Bn,
defined as the same as An except that all states in Bn are final.

Appendix (Proof of Lemma 1).
Lemma 1. For any P ⊆ Q, we have
(1) δ(P,wP) = P ;
(2) for any q ∈ P , δ(q, wP) ⊇ {q};
(3) δ(Q− P,wP) = ∅.
Proof. Given a state qi ∈ Q, we define shift(qi) to be qi+1 if 1 ≤ i ≤ n − 1, and

q1 if i = n. Given P ⊆ Q, we extend the definition of shift such that shift(P) =
{shift(q) | q ∈ P}. Moreover, for any q ∈ Q and P ⊆ Q, we define shift0(q) = q and
shift0(P) = P . Note that shiftn(q) = q and shiftn(P) = P .

We begin by proving part (1) of the lemma that δ(P,wP) = P .
Observe that δ(P,w1) = P . This is because if q1 ∈ P , then w1 = ε and δ(P,w1) =

δ(P, ε) = P . Otherwise if q1 6∈ P , then w1 = 1 and δ(P,w1) = δ(P, 1) = P since
q1 6∈ P .

Therefore, δ(P,wP) = δ(P, 0wn0wn−1 . . . 0w1).
We want to show by induction that δ(P, 0wn0wn−1 . . . 0wn−i+1) = shifti(P) for

0 ≤ i ≤ n. Then we are done since δ(P, 0wn0wn−1 . . . 0w1) = shiftn(P) = P .
Base. i = 0. δ(P, ε) = P = shift0(P).
Induction hypothesis. Assume that the statement is true for 0 ≤ k ≤ n− 1.
Induction step. By induction, we have δ(P, 0wn0wn−1 . . . 0wn−k+10wn−k) =

δ(δ(P, 0wn0wn−1 . . . 0wn−k+1), 0wn−k) = δ(shiftk(P), 0wn−k). The induction proof
is completed if we can verify that δ(shiftk(P), 0wn−k) = shiftk+1(P).

Case 1. (qn−k ∈ P). Then wn−k = ε and qn ∈ shiftk(P). Thus, δ(shiftk(P), 0wn−k)
= δ(shiftk(P), 0) = shiftk+1(P) since qn ∈ shiftk(P).

Case 2. (qn−k 6∈ P). Then wn−k = 1 and qn 6∈ shiftk(P). Thus, δ(shiftk(P), 0wn−k)
= δ(shiftk(P), 01) = shiftk+1(P) since qn 6∈ shiftk(P).

We finish the proof of part (1) of the lemma. Next, we prove part (2) of the
lemma that for any q ∈ P , δ(q, wP) ⊇ {q}.

Observe that δ(q, w1) = {q}. This is because if q1 ∈ P , then w1 = ε and δ(q, w1) =
δ(q, ε) = {q}. Otherwise if q1 6∈ P , then w1 = 1 and δ(q, w1) = δ(q, 1) = {q} since
q 6= q1 by the facts that q1 6∈ P and q ∈ P .

Therefore, δ(q, wP) = δ(q, 0wn0wn−1 . . . 0w1).
We want to show by induction that δ(q, 0wn0wn−1 . . . 0wn−i+1) ⊇ shifti({q}) for

0 ≤ i ≤ n. Then we are done since δ(q, 0wn0wn−1 . . . 0w1) ⊇ shiftn({q}) = {q}.
Base. i = 0. δ(q, ε) = {q} = shift0({q}). Thus, δ(q, ε) ⊇ shift0({q}).
Induction hypothesis. Assume that the statement is true for 0 ≤ k ≤ n− 1.

SEPARATING AMBIGUOUS FINITE AUTOMATA 1081

Induction step. By induction, we have δ(q, 0wn0wn−1 . . . 0wn−k+10wn−k) =
δ(δ(q, 0wn0wn−1 . . . 0wn−k+1), 0wn−k) ⊇ δ(shiftk({q}), 0wn−k). The induction proof
is complete if we can verify that δ(shiftk({q}), 0wn−k) ⊇ shiftk+1({q}).

Case 1. (qn = shiftk(q)). Then wn−k = ε since qn−k = q ∈ P . Thus, δ(shiftk({q}),
0wn−k) = δ(shiftk({q}), 0) = δ(qn, 0) = {q1} = shift({qn}) = shift(shiftk({q})) =
shiftk+1({q}). Hence, δ(shiftk({q}), 0wn−k) ⊇ shiftk+1({q}).

Case 2. (qn 6= shiftk(q)). Then no matter whether wn−k = ε or wn−k = 1, we
always have δ(shiftk({q}), 0wn−k) ⊇ shiftk+1({q}).

We finish the proof of part (2) of the lemma. Finally, we prove part (3) of the
lemma that δ(Q− P,wP) = ∅.

We claim that δ(Q−P,w10wn0wn−10 . . . 0w2) = ∅. Hence, δ(Q−P,wP) = δ(Q−
P,w10wn0wn−10 . . . 0w20w1) = δ(δ(Q−P,w10wn0wn−10 . . . 0w2), 0w1) = δ(∅, 0w1) =
∅.

First observe that δ(Q − P,w1) = Q − P − {q1}. This is because if q1 ∈ P then
w1 = ε and q1 6∈ Q−P . Thus δ(Q−P,w1) = δ(Q−P, ε) = Q−P = Q−P −{q1} since
q1 6∈ Q − P . Otherwise if q1 6∈ P then w1 = 1. Thus δ(Q − P,w1) = δ(Q − P, 1) =
Q− P − {q1}.

Next we want to show by induction that for 1 ≤ i ≤ n, δ(Q−P−{q1}, 0wn0wn−1 . . .
0wn−i+2) = shifti−1(Q−P)−{q1, q2, . . . , qi}. Then we are done since by taking i = n,
we have δ(Q−P −{q1}, 0wn0wn−1 . . . 0w2) = shiftn−1(Q−P)−{q1, q2, . . . , qn} = ∅.

Base. i = 1. δ(Q− P − {q1}, ε) = Q− P − {q1} = shift0(Q− P)− {q1}.
Induction hypothesis. Assume that the statement is true for 1 ≤ k ≤ n− 1.
Induction step. By induction, we have δ(Q−P−{q1}, 0wn0wn−1 . . . 0wn−k+20wn−k+1)

= δ(shiftk−1(Q − P) − {q1, q2, . . . , qk}, 0wn−k+1). The induction proof is completed
if we can verify that δ(shiftk−1(Q−P)−{q1, q2, . . . , qk}, 0wn−k+1) = shiftk(Q−P)−
{q1, q2, . . . , qk, qk+1}.

Case 1. (qn−k+1 ∈ P). Then wn−k+1 = ε and qn 6∈ shiftk−1(Q − P). Thus,
shiftk−1(Q−P) = shiftk−1(Q−P)−{qn}. Hence, δ(shiftk−1(Q−P)−{q1, q2, . . . , qk},
0wn−k+1) = δ(shiftk−1(Q−P)−{qn, q1, q2, . . . , qk}, 0) = shiftk(Q−P) − {q1, q2, . . . ,
qk, qk+1}.

Case 2. (qn−k+1 6∈ P). Then wn−k+1 = 1. Thus, δ(shiftk−1(Q−P)−{q1, q2, . . . , qk},
0wn−k+1) = δ(shiftk−1(Q−P)−{q1, q2, . . . , qk}, 01) = shiftk(Q−P)−{q1, q2, . . . , qk, qk+1}.

We finish the proof of the claim and hence part (3) of the lemma.

Acknowledgments. The author thanks Andreas Weber for many fruitful dis-
cussions and comments throughout this work. He also thanks Jonathan Goldstine
and Detlef Wotschke for their valuable discussions.

REFERENCES

[Ha69] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[HU79] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages and Compu-

tation, Addison-Wesley, Reading, MA, 1979.
[IR86] O. Ibarra and B. Ravikumar, On sparseness, ambiguity and other decision problems for

acceptors and transducers, in Proc. 3rd Annual Symposium on Theoretical Aspects of
Computer Science, Orsay, France, Lecture Notes in Computer Science 210, 1986, pp. 171–
179.

[MF71] A. Meyer and M. Fischer, Economy of description by automata, grammars, and formal
systems, in Proc. 12th Symposium on Switching and Automata Theory, 1971, pp. 188–191.

[Mo71] F. Moore, On the bounds for state-set size in the proofs of equivalence between determin-
istic, nondeterministic, and two-way finite automata, IEEE Trans. Comput., 20 (1971),
pp. 1211–1214.

1082 HING LEUNG

[RI89] B. Ravikumar and O. Ibarra, Relating the type of ambiguity of finite automata to the
succinctness of their representation, SIAM J. Comput., 18 (1989), pp. 1263–1282.

[Sc78] E. Schmidt, Succinctness of Descriptions of Context-Free, Regular, and Finite Languages,
Ph.D. Thesis, Cornell University, Ithaca, NY, 1978.

[SH85] R. Stearns and H. Hunt, On the equivalence and containment problems for unambiguous
regular expressions, regular grammars and finite automata, SIAM J. Comput., 14 (1985),
pp. 598–611.

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL
NETWORKS ∗

LESLIE ANN GOLDBERG† , MARK JERRUM‡ , AND PHILIP D. MACKENZIE§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1083–1098, August 1998 009

Abstract. Optical communication is likely to significantly speed up parallel computation be-
cause the vast bandwidth of the optical medium can be divided to produce communication networks
of very high degree. However, the problem of contention in high-degree networks makes the routing
problem in these networks theoretically (and practically) difficult. In this paper we examine Valiant’s
h-relation routing problem, which is a fundamental problem in the theory of parallel computing. The
h-relation routing problem arises both in the direct implementation of specific parallel algorithms on
distributed-memory machines and in the general simulation of shared-memory models such as the
PRAM on distributed-memory machines. In an h-relation routing problem each processor has up
to h messages that it wishes to send to other processors and each processor is the destination of at
most h messages. We present a lower bound for routing an h-relation (for any h > 1) on a complete
optical network of size n. Our lower bound applies to any randomized distributed algorithm for this
task. Specifically, we show that the expected number of communication steps required to route an

arbitrary h-relation is Ω(h+
√

log logn). This is the first known lower bound for this problem which
does not restrict the class of algorithms under consideration.

Key words. parallel algorithms, randomized algorithms, routing, optical networks

AMS subject classifications. 68Q22, 68R05

PII. S0097539794272569

1. Introduction. In current distributed-memory parallel computers, a number
of processors equipped with private local memory communicate by sending messages
via a network of communication links. Current technology restricts the network to be
of low degree: each processor in the network can communicate directly with only a
few others, and the remainder must be reached indirectly by routing messages along a
sequence of links. The emerging technology of optical communication challenges the
assumption that the network must be of low degree. In particular, the huge bandwidth
of the optical medium can be divided so that each processor has its own channel for
receiving messages and each processor can send on any channel. Even though such an
interconnection network is a complete graph, there remains the problem of contention:
no processor can receive messages simultaneously from two other processors without
corruption. The problem of avoiding contention is much more difficult in high-degree
networks (such as optical networks) than in traditional low-degree networks.

The problem of routing in optical networks is captured mathematically by the
OCPC model. In an n-processor completely connected Optical Communication Paral-

∗Received by the editors August 8, 1994; accepted for publication June 7, 1996; published elec-
tronically May 19, 1998. A preliminary version of this paper appeared in the Proceedings of the 6th
Annual ACM Symposium on Parallel Algorithms and Architectures, Cape May, NJ, 1994.

http://www.siam.org/journals/sicomp/27-4/27256.html
†Department of Computer Science, University of Warwick, Coventry CV4 7AL UK (leslie@dcs.

warwick.ac.uk). This work was performed while the author was at Sandia National Laboratories and
was supported by the U.S. Department of Energy under contract DE-AC04-76DP00789.

‡Department of Computer Science, The University of Edinburgh, The King’s Buildings, Edinburgh
EH9 3JZ UK (mrj@dcs.ed.ac.uk). This work was supported in part by grant GR/F 90363 of the
UK Science and Engineering Research Council, and Esprit Working Group “RAND” and was partly
done while the author was visiting the NEC Research Institute, Princeton, NJ.

§Department of Mathematics and Computer Science, Boise State University, Boise, ID 83725
(philmac@cs.idbsu.edu). This work was performed while the author was at the University of Texas
and was supported by Texas Advanced Research Projects Grant 003658480.

1083

1084 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

lel Computer (n-OCPC) n processors with local memory are connected by a complete
network. A computation on this computer consists of a sequence of communication
steps. During each communication step each processor can perform some local com-
putation and then send one message to any other processor. If a processor is sent
a single message during a communication step then it receives this message success-
fully, but if it is sent more than one message then the transmissions are garbled and
it receives none of them.

Eshaghian [5, 6] first studied the computational aspects of parallel architectures
with complete optical interconnection networks. The OCPC model is an abstract
model of computation which formalizes important properties of such architectures. It
was first introduced by Anderson and Miller [1] and Eshaghian and Kumar [7] and has
subsequently been studied by several authors including Valiant [22], Geréb-Graus and
Tsantilas [12], and Gerbessiotis and Valiant [11] (though not always under the name
OCPC). Aside from its importance as a model for optical communication, the OCPC
has the attraction of being a clean, mathematically appealing model that allows us
to study a single issue, namely the resolution of contention between independent
processors, in isolation from other factors. It has recently been observed that the
n-processor OCPC is equivalent to an ERCW PRAM with n global memory cells.
Thus our results carry over to that model. For details, see [20].

In this paper we study a fundamental communication problem for multiprocessor
computers: that of routing h-relations. This problem arises both in the direct imple-
mentation of specific parallel algorithms [1], and in the simulation of shared-memory
models, such as the PRAM, on more realistic distributed-memory models [22]. An
h-relation routing problem [22] is a communication problem in which each processor
has up to h messages that it wishes to send to other processors. The destinations of
these messages can be arbitrary except that each processor is the destination of at
most h messages. The goal is to design a fast algorithm for the n-OCPC that can
route an arbitrary h-relation.

Anderson and Miller [1] have observed that an h-relation can easily be routed in h
communication steps if all of the processors are given total information about the h-
relation to be routed. A more interesting (and more realistic) situation arises if we
assume that each processor initially knows only about the messages that it wants to
send, and that processors learn about the rest of the h-relation only through receiving
messages from other processors. This is the usual assumption, and the one that will
be made here.

Valiant [22], building on work of Anderson and Miller [1], developed a random-
ized algorithm that routes an arbitrary h-relation in O(h + log n) steps, on average.
Subsequently, Goldberg, Jerrum, Leighton, and Rao [13] presented a more complex
randomized algorithm for the same task that runs in O(h + log logn) steps and has
failure probability n−α for any constant α. The latter algorithm is asymptotically the
fastest known, and it would be interesting to discover whether it is the best possible.
Our attention therefore turns to lower bounds.

Goldberg et al. [13] proved a lower bound for a restricted class of algorithms
known as direct, in which a processor may only send messages directly to their final
destination. (Thus the only freedom a processor has is in its choice of when to attempt
to send its messages.) They proved that for any (randomized) direct algorithm there is
a 2-relation that takes Ω(log n) steps to route with success probability 1

2 , thus showing
that even in a completely connected network it is advantageous to route messages
indirectly. Subsequently, MacKenzie, Plaxton, and Rajaraman [19] generalized this

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1085

result by showing that for any (randomized) direct algorithm and any h ≥ 2 there
is an h-relation that takes Ω(h + log h log n) expected steps to route. (This bound
is tight as the randomized direct algorithm of Geréb-Graus and Tsantilas [12] routes
h-relations in O(h+ log h log n) expected steps.)

Obtaining a lower bound for unrestricted algorithms has proved a much greater
challenge, owing, no doubt, to the rich variety of strategies that are available to a
nondirect algorithm. (Some of the possibilities will be glimpsed in section 2.) Indeed,
no lower bound beyond the trivial Ω(h) was previously known. The new result in this
paper is a lower bound on the number of steps required to route 2-relations on an
n-OCPC. We prove that for any randomized algorithm there is a 2-relation such that
the expected number of steps required to route the relation is Ω(

√
log log n). (See

Theorem 3.1 for a precise statement of the result.) Our result implies that for any h >
1 the number of steps required to route an arbitrary h-relation is Ω(h+

√
log log n).

We note that our lower bound also holds for routing c+ 1-relations in the c-collision
OCPC model studied by Dietzfelbinger and Meyer auf der Heide [2].

Our proof technique is based on one used in MacKenzie [18] (see also [16]). The
technique is a novel extension to the random restriction method which Furst, Saxe,
and Sipser [10] used to prove circuit lower bounds. In this extension the choice of
which inputs to randomly restrict at each stage depends on a careful analysis of the ap-
propriate step of the algorithm under consideration. Although the random restriction
method was first used to obtain a deterministic lower bound, we obtain a random-
ized lower bound by proving that the induction hypothesis in the random restriction
method holds with high probability (and not merely with nonzero probability). Other
randomized lower bounds were obtained by this method in Hastad [15].

The gap between the current upper and lower bounds on routing h-relations
deserves comment. Section 4 indicates why a lower bound of the form Ω(

√
log log n)

is the limit of the current technique. An example presented in that section points to
an issue that must be faced in any attempt to improve the current lower bound. It
appears that some new idea is necessary to make further progress on this front.

2. Some preliminary observations. Imagine that two processors p and q wish
to deliver a single message each to a common destination processor within O(log log n)
steps. Assume that p and q do not know each other’s identity. A simple strategy is
for p and q each to flip a coin and attempt to transmit its packet to the destination
processor if the coin comes up “heads.” After O(log log n) steps, the probability that
p and q have failed to transmit their packets is at least (logn)−O(1). If nΩ(1) pairs of
processors simultaneously employ this strategy to deliver their messages to separate
destinations, the probability that they all succeed is negligible. Some more subtle
approach is required.

One possibility, suggested by Rao, is the following. Suppose the processors are
assigned binary sequence numbers, and that the numbers assigned to p and q are
p1p2 . . . pr and q1q2 . . . qr, where r ∼ log n. By simultaneously sending messages to
processors p1p2 . . . pr/20 . . . 0 and q1q2 . . . qr/20 . . . 0, respectively, processors p and q
may discover whether their sequence numbers differ in the first r/2 bits. After about
log log n experiments of this general form, and using binary search, p and q can agree
on a bit position at which their sequence numbers differ; this bit can then be used
to determine a priority for the processors, and hence resolve the conflict. Note that
this method (with slight modification) could be used by nΩ(1) pairs of processors
simultaneously. Observe that p and q are not sending messages in order to get the
content of the message to another processor but to learn some information about the

1086 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

competing processor.

A second strategy is replication of messages. In O(log log n) binary replication
steps, p and q can each prime a set of Θ(log n) processors with the message they are
required to transmit. These two sets of processors then use the naive coin-flipping
strategy to attempt to send their cloned messages to a common target set of size
Θ(logn). In just a constant number of attempts, the probability that either a p-
message or a q-message fails to get through is reduced to n−Ω(1) where the implicit
constant is arbitrary. Finally, the messages in the target set can be funneled into the
destination processor by a procedure which is an inverse of the cloning phase. Note
that the failure probability is much smaller here than for the naive strategy and can
be expected to remain small when many pairs of processors simultaneously attempt
to send to distinct targets.

These two examples indicate the subtle strategies that are available to indirect
algorithms. With these in mind, it is possible to give a little of the flavor of the lower
bound argument. After t-steps, some set of processors (of size at most exponential in t)
will be aware that processor p or q has a packet to send. Viewing the situation crudely,
these “agents” for p and q can act in one of two modes, or possibly a mixture: (a) they
can send messages to some narrow set of destinations that is only weakly dependent
on the identity of the source processor, or (b) they can send to a wide destination set,
or one that is strongly dependent on the identity of the source processor.

The first strategy sketched above operates purely in mode (a), while the second
strategy relies on mode (b) to recruit the processors that are required in the replication
phase. The key point is that the effectiveness of mode (a) is limited by the collisions
that inevitably occur, while mode (b) is limited in its ability to “advance messages
toward their destination.” The lower bound proof to be described in section 3 analyzes
the tradeoff between these modes. That both strategies described above are effective
suggests that the whole range of the tradeoff must be examined and explains some of
the technical complexity of the proof.

3. The lower bound argument.

3.1. Definitions and goals. Our goal is to establish the following.

Theorem 3.1. Let A be a randomized algorithm that routes 2-relations on an
n-OCPC. Then there is a 2-relation on which the expected number of communication
steps used by A is at least

√
log log n/4.1

The first step in the proof of Theorem 3.1 will be to reduce to the case of deter-
ministic A. A certain restricted class of 2-relations (to be defined presently) will be
termed “relevant.” We will use a weak form of a theorem of Yao (as stated in [9]) to
show that Theorem 3.1 reduces to proving the following.

Theorem 3.2. Let A be a deterministic algorithm that allegedly routes 2-relations
in T =

√
log log n/2 steps. Let the input to A be drawn u.a.r. from the set of relevant

2-relations. Then the probability that A successfully routes the input is at most 1
2 .

To define the class of relevant 2-relations, we make the following definitions, which
will be explained below. (For the purpose of the proof, we define “h-relation” in a
restricted way. In the h-relations that we consider, a processor can receive up to
h messages but can send at most one message.)

Definition. A partial h-relation is a function from the set {1, . . . , n} of proces-
sors to {0, 1, ∗}.

1All logarithms in this paper are to the base 2.

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1087

Definition. An h-relation is a partial h-relation in which no processor is mapped
to “∗.”

Intuitively, we think of the n-OCPC as being partitioned into n4/5 ranges con-
taining n1/5 processors each. If an h-relation maps a processor to 1 then this processor
has a message to send, and if it maps a processor to 0 then this processor does not
have a message to send. The destination of each message is the first processor in the
range containing the sending processor. We can now make the following definitions.

Definition. A relevant 2-relation is an h-relation in which exactly two processors
in each range are mapped to “1.”

Definition. A partial h-relation f is a refinement of a partial h-relation f ′ (this
is denoted by f ≤ f ′) if f ′(p) = 1 implies f(p) = 1, and f ′(p) = 0 implies f(p) = 0.

Definition. A partial relevant 2-relation is a partial h-relation that has a re-
finement which is a relevant 2-relation.

Definition. f∗ is the partial h-relation that maps every processor to “∗.”
3.2. Generating a random 2-relation. Algorithm RANDOMSET can be

used to randomly generate a relevant 2-relation one processor at a time. It is called
with a partial relevant 2-relation f and a set P of processors which are mapped to
“∗” by f . The processors in P are randomly mapped to “0” or “1” in such a way that
the resulting function f ′ is a partial relevant 2-relation and the following claim holds.

Function RANDOMSET(f, P)
Let f ′ = f
For each p ∈ P

Let s = | { q | q is in the range of p and f(q) = “∗” } |
If no processors in the same range as p are mapped to “1” by f

With probability 2/s set f ′(p) = 1
With probability 1− 2/s set f ′(p) = 0

If one processor in the same range as p is mapped to “1” by f
With probability 1/s set f ′(p) = 1
With probability 1− 1/s set f ′(p) = 0

Otherwise set f ′(p) = 0
Return f ′

End RANDOMSET

Claim 3.3. An h-relation f generated solely by calls to RANDOMSET is a
relevant 2-relation generated uniformly at random (u.a.r.) from the set of relevant
2-relations.

Proof. The proof is straightforward.

3.3. Defining the knowledge set and t-good partial h-relations. Now we
make some definitions that deal with the running of a deterministic algorithm A on
an n-OCPC when the input is an h-relation f .

Definition. The (0, f)-trace of processor p is the tuple 〈p, f(p)〉. The (t, f)-trace
of processor p (for t > 0) is the tuple 〈p, f(p), λ1, . . . , λt〉 in which λj is the message
that processor p receives at step j if such a message exists and λj is the null symbol
otherwise.

Note that we lose no generality by assuming that if p sends a message on step
t then it sends its entire (t − 1)-trace. (Since each processor is allowed to know the
algorithms that the other processors run we can simulate an algorithm which sends
different messages by an algorithm which sends traces using the same pattern of
communications.)

1088 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

Definition. Processor p is a direct (t, f)-receiver of processor q if either p = q
or when A is run with input f , p receives a message from q in the first t steps.

Definition. Processor p is an indirect (t, f)-receiver of q if either p is a direct
(t, f)-receiver of q, or when A is run with input f , there is some processor k and some
time step t′ < t such that k is an indirect (t′, f)-receiver of q and p receives a message
from k during steps t′ + 1, . . . , t.

Definition. A set S of processors is a (t, g)-dependency set of a processor p if
g is a partial h-relation and for any relevant 2-relations f1 and f2 which refine g and
have f1(q) = f2(q) for every processor q ∈ S, the (t, f1)-trace of p is the same as the
(t, f2)-trace of p.

The intuition behind the above definition is that p is not dependent on processors
outside S, since these could not affect its trace. Note that if S′ and S′′ are (t, g)-
dependency sets of a processor p then so is S′∩S′′, so p has a unique (t, g)-dependency
set of minimum size.

Definition. The (t, g)-knowledge set of a processor p is the smallest (t, g)-
dependency set of p.

Suppose that g is a partial h-relation and that f is a relevant 2-relation which
refines g. Note that if g(p) = “∗” and q has a (t, g)-dependency set which excludes
p then q cannot be an indirect (t, f)-receiver of p. Also note that if g(p) 6= “∗” then
p is not in the (t, g)-knowledge set of any processor. We now define the following
constants and functions of n.

Definition. ki = 3i, s0 = n1/5, wi = s
1/ki
i /21k2

i , ri = s4i , and si = w
1/7
i−1 (for

i ≥ 1).
Recall that T =

√
log log n/2. We will use the following facts.

Fact 3.4. For large enough n and t ≤ T , st ≥ 2log1/3 n.
Proof. Note that for t ≥ 1 we have

st = (7/3)
−1/7

9−t/7st−1
1/(7·3t−1).

Let α(t) denote 1/(7t3(t2)). It is easy to prove (by induction on t) that

st ≥ (7/3)
−2/7

9−2t/7s0
α(t).

Therefore

sT ≥ (7/3)
−2/7

9−2T/72α(T) log n/5.

To see that the claim follows, note that 3(T2) ≤ (log n)
(log 3)/4

and (log 3)/4 <
2/3.

Fact 3.5. For large enough n and t < T , 3kt ≤ w
1/7
t .

Proof. Using Fact 3.4, for large enough n and t < T we have

3kt = kt+1 ≤ 3
√

log log n ≤ 2log1/3 n ≤ st+1 = w
1/7
t .

Fact 3.6. rt/w
4/7
t > s3t .

Proof. The proof is immediate from the definitions.
Definition. A t-good partial h-relation is a partial h-relation f which satisfies

the following three conditions.
1. rt ranges have st processors that are mapped to “∗” by f , and no processors

that are mapped to “1” by f , while the remaining ranges have no processors
mapped to “∗” by f , and two processors that are mapped to “1” by f .

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1089

2. The (t, f)-knowledge set of each processor p has size at most one.
3. Each processor q is in the (t, f)-knowledge set of at most kt processors.

Condition 2 captures a crucial idea, which can be traced to Fich, Meyer auf der
Heide, and Wigderson [8], and may be expressed informally as follows. Suppose that
A is run on input g, where g is a 2-relation that refines f . Then the entire state of
the n-OCPC at time t depends in a particularly simple way on the restriction of g
to the processors p with f(p) = “∗.”

3.4. Refining partial 2-relations with CONSTRUCT. At the heart of our
proof is a randomized procedure CONSTRUCT(t, f) that takes a time t and a partial
2-relation f and returns a new partial 2-relation f ′ that is a refinement of f . Aside
from the parameters t and f , CONSTRUCT depends implicitly on the algorithm A,
in particular on the action of A at time step t + 1. (The approach here is similar to
that used by MacKenzie in the context of lower bounds for load balancing [18].) The
procedure CONSTRUCT has two important properties, the first of which is concerned
with invariance. Namely, we will show that if t < T and CONSTRUCT is called
with parameters (t, f), where f is t-good, then with high probability, CONSTRUCT
will return a partial 2-relation f ′ that is (t + 1)-good. The second property is that
CONSTRUCT is unbiased. Specifically, suppose that GENERATE is a procedure
that starts with the partial 2-relation f0 = f∗ and applies CONSTRUCT T times to
generate a sequence of partial relevant 2-relations f0 = f∗ ≥ f1 ≥ · · · ≥ fT ≥ f in
which each ft = CONSTRUCT(t, ft−1) is a refinement of ft−1, and f is a relevant
2-relation generated u.a.r. from the set of refinements of fT . We will show that
the relevant 2-relation f produced by GENERATE is uniformly distributed. From
invariance, we will also be able to conclude that with high probability the partial
2-relation fT is T -good.

Before describing algorithm CONSTRUCT, we note that the proof of Theorem 3.2
follows quickly from the properties of CONSTRUCT that we have described, provided
we are prepared to set aside a minor technical complication, which is dealt with later in
this section. With high probability, the partial 2-relation fT produced by GENERATE
has many ranges with no processors mapped to “1” by fT . In these ranges the target
processor has a (T, fT)-knowledge set of size at most one; thus the target processor
can have received at most one of the messages destined for it.

We now describe algorithm CONSTRUCT which is called with a time t and a
partial 2-relation f , and which randomly refines f based on the action of algorithm
A at step t + 1. Let the jth range be denoted by Rj and let Sj denote the set of
processors in Rj that are mapped to “∗” by f . Let J be the set of indices j such that
|Sj | > 0.

Definition. A processor p zero-affects a processor q if there is a processor p′

such that p is in the (t, f)-knowledge set of p′, and for any relevant 2-relation g which
refines f and has g(p) = 0: when A is run with input g, processor p′ sends to q on
step t+ 1.

The notion of p one-affecting processor q is defined analogously. Whenever it is
the case that a processor p is zero-affected or one-affected by a processor q, there is
a risk that the (t+ 1, f)-knowledge set of p will grow to size greater than one. Recall
that the aim of CONSTRUCT is to produce a refinement f ′ of f that is (t+ 1)-good;
in particular this entails arranging that the (t + 1, f ′)-knowledge set of p has size at
most one. CONSTRUCT’s strategy is to nominate, for each range Rj with j ∈ J ,
a certain subset of Sj . The subsets are chosen in such a way that each processor p
is affected by at most one processor in the subsets. Then CONSTRUCT randomly

1090 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

selects a refinement f ′ of f such that the undetermined part of f ′ lies precisely over
the union of the subsets that were nominated.

We now describe CONSTRUCT in detail. Let W ′
j be a subset of Sj which is as

large as possible and has the property that if two processors p1 and p2 are in W ′
j

and zero-affect the same processor q, then two processors in Sj −W ′
j also zero-affect

processor q. Let W ′′
j be a subset of W ′

j which is as large as possible and has the
property that if two processors p1 and p2 are in W ′′

j and one-affect the same processor
q, then all processors in W ′′

j one-affect processor q.

For each processor p in range Rj we define the set AFFECTS(p) as follows.

1. If p is in the (t, f)-knowledge set of any processor q then put q in AFFECTS(p).
2. If p zero-affects any processor q and there are not two processors in Sj −W ′

j

which zero-affect q then put q in AFFECTS(p).
(The intuition here is that if there are two processors in Sj −W ′

j which zero-
affect q and all of the processors in Sj −W ′

j are mapped to “0” there will be
a collision at processor q at step t+ 1 so q will not be affected by p.)

3. If p one-affects any processor q and there is some processor in W ′′
j which does

not one-affect q then put q in AFFECTS(p).
(The intuition here is that if every processor in W ′′

j one-affects q and all of the
processors in Sj−W ′′

j are mapped to “0” there will be a collision at processor
q at step t+ 1 so q will not be affected by p.)

Let Wj be a subset of W ′′
j which is as large as possible and has the property that

for any two processors p1 and p2 in Wj , AFFECTS(p1) ∩ AFFECTS(p2) is empty.
(Intuitively, at this point, we would like each processor to be affected by at most one
processor in each Wj .)

In CONSTRUCT, we will split J into groups J1, J2, . . . , J` each of size rt/w
4/7
t ,

with the last group possibly smaller. For each group Ji CONSTRUCT will construct
a set Vi containing some of the processors from up to one of the ranges in Ji. The sets
will have the property that if two processors p and p′ are in

⋃
i Vi, then AFFECTS(p)∩

AFFECTS(p′) is empty. Intuitively, this means that no processor could be affected by
two processors in

⋃
i Vi. We will let V denote

⋃
i Vi. CONSTRUCT will produce f ′

by making random assignments to the processors which are not in V . We will say

that algorithm CONSTRUCT is successful if each set Vi has size w
1/7
t .

Function CONSTRUCT(t, f)
For each i ∈ {1, . . . , `}

Let Vi = ∅
For each j ∈ Ji

Let S = ∅
Let S′ = ∅
While |S| < w

1/7
t and |Wj − S − S′| > 0

Let p be the lowest numbered processor in Wj − S − S′

If there is no p′ ∈ V1 ∪ · · · ∪ Vi−1 such that
AFFECTS(p) ∩AFFECTS(p′) 6= ∅ Then
Let S = S ∪ {p}

Else
Let S′ = S′ ∪ {p}

Let f = RANDOMSET(Sj − S, f)
If f maps any processor in Sj − S to “1” Then

Let f = RANDOMSET(S, f)
Next j

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1091

Else
Let Vi = S
For each remaining j′ ∈ Ji

Let f = RANDOMSET(Sj′ , f)
Next i

Let f ′ = f
Return f ′

End CONSTRUCT

3.5. Analysis of CONSTRUCT.
Claim 3.7. If f is t-good then |AFFECTS(p)| ≤ 3kt for each p.
Proof. Since f is t-good, each p is in the (t, f) knowledge set of at most kt

processors. Each of these kt processors can cause p to zero-affect at most one other
processor and to one-affect at most one other processor.

Claim 3.8. If f is t-good then each processor q is in at most 3 sets AFFECTS(p)
with p ∈W ′′

j .
Proof. Since f is t-good, the (t, f)-knowledge set of q has size at most one.

Therefore, q is added to at most one set AFFECTS(p1) using the first part of the
definition of AFFECTS(p). By the construction of W ′

j , q is added to at most one set
AFFECTS(p2) using the second part of the definition of AFFECTS(p). Finally, by
the construction of W ′′

j , q is added to at most one set AFFECTS(p3) using the third
part of the definition of AFFECTS(p).

Claim 3.9. If f is t-good then for each j ∈ J we have |W ′
j | ≥ |Sj |/(2kt + 1).

Proof. We use the following procedure, which we call Procedure A.
Procedure A

For each j ∈ J
Let S′ = ∅
Let S = Sj
While |S| > 0
Select a processor p ∈ S

Let S = S − p
Let S′ = S′ ∪ {p}
For each processor q which p zero-affects

Let Z = {v|v zero-affects q and v ∈ S}
If Z > 1 Then

Let p1, p2 be two processors in Z
Let S = S − {p1, p2}

Else
If Z = 1 Then

Let p1 be the processor in Z
Let S = S − {p1}

End A
Using Procedure A we can construct a set S′ ⊆ Sj such that if two processors p1

and p2 are in S′ and zero-affect the same processor q, then two processors in Sj − S′

also zero-affect processor q. Procedure A starts by setting S = Sj . Since f is t-
good each processor p ∈ S zero-affects at most kt processors. So for each iteration
of the while loop at most 2kt + 1 processors are removed from S with exactly one
of them placed in S′. Thus |S′| ≥ |Sj |/(2kt + 1). By the definition of W ′

j , we have
|W ′

j | ≥ |S′| ≥ |Sj |/(2kt + 1).

Claim 3.10. If f is t-good then for each j ∈ J we have |W ′′
j | ≥ |W ′

j |1/kt/kt.

1092 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

Proof. For p ∈ W ′
j , let D(p) be the set of processors which p one-affects. Then

|D(p)| ≤ kt. A sunflower is defined as a collection of sets such that if an element is in
two of the sets, then it is contained in all of the sets. The Erdös–Rado theorem ([4];
see also [17]) says the following: let t and m be positive integers and let F be a family
of sets such that every element of F has size at most t and |F | > t!(m− 1)

t
. Then F

contains a sunflower of size m. If we let F be the family of sets D(p) for p ∈W ′
j , then

F contains a sunflower of size (|W ′
j |/kt!)1/kt ≥ |W ′

j |1/kt/kt. If two processors p1 and
p2 correspond to two sets in this sunflower and they one-affect the same processor
q, then (by the definition of D(p) and sunflower) all p corresponding to sets in this
sunflower one-affect q, and since W ′′

j is the largest set of processors which satisfy this

property, |W ′′
j | ≥ |W ′

j |1/kt/kt.
A construction similar to the one used in the proof of Claim 3.10 was used by

Grolmusz and Ragde [14].
Claim 3.11. If f is t-good then for each j ∈ J we have |Wj | ≥ |W ′′

j |/7kt.
Proof. Construct a graph G = (W ′′

j , E) where (p, q) ∈ E if AFFECTS(p) ∩
AFFECTS(q) is nonempty. Then an independent set S in this graph has the property
that for p1, p2 in S, AFFECTS(p1)∩AFFECTS(p2) is empty. Then Wj is simply the
largest independent set in this graph. By Turán’s theorem, |Wj | ≥ |W ′′

j |2/(|W ′′
j | +

2|E|). By Claims 3.7 and 3.8, for each p ∈ W ′′
j , |AFFECTS(p)| ≤ 3kt, and each q

is in at most 3 sets AFFECTS(p). Thus each p ∈ W ′′
j is an endpoint of at most 6kt

edges in E and therefore |E| ≤ 3kt |W ′′
j |. We conclude that |Wj | ≥ |W ′′

j |/7kt.
A construction similar to the one used in the proof of Claim 3.11 was used by

Fich, Meyer auf der Heide, and Wigderson [8].
Corollary 3.12. If f is t-good then for each j ∈ J we have |Wj | ≥ wt.
Proof. Since f is t-good, |Sj | = st. Then the corollary follows from Claims 3.9,

3.10, and 3.11.
Claim 3.13. If f is t-good then the number of groups used by algorithm CON-

STRUCT is w
4/7
t .

Proof. This follows from the definition of t-good and from the fact that the size

of the groups is rt/w
4/7
t .

Claim 3.14. If f is t-good and t < T then the while loop in algorithm CON-

STRUCT always terminates with |S| = w
1/7
t .

Proof. We will show that if f is t-good then |S| < w
1/7
t implies |Wj −S−S′| > 0.

Suppose that some vertex p in Wj cannot be added to S. Then for some p′ ∈ V1 ∪
· · · ∪ Vi−1 we have AFFECTS(p) ∩ AFFECTS(p′) 6= ∅. But the size of each set Vα
is at most w

1/7
t and i is at most the number of groups, which is equal to w

4/7
t by

Claim 3.13. Furthermore, for each p′ ∈ V1 ∪ · · · ∪ Vi−1, |AFFECTS(p′)| ≤ 3kt. So at

most 3ktw
5/7
t members of Rj will be put in S′. By Fact 3.5, 3ktw

5/7
t < wt − w

1/7
t for

t < T and large enough n. We conclude using Corollary 3.12 that if |S| < w
1/7
t then

|Wj − S − S′| > wt − (w
1/7
t)− (wt − w

1/7
t) = 0.

Claim 3.15. If f is t-good and t < T then the probability that CONSTRUCT is
successful is at least 1− n−2.

Proof. We have already shown in the proof of Claim 3.14 that if f is t-good and t <

T then the while loop in algorithm CONSTRUCT always terminates with |S| = w
1/7
t .

It remains to show that with probability at least 1− n−2 each group i has a range j
such that the function f returned by the call “Let f = RANDOMSET(Sj − S, f)”
does not map any processor in Sj − S to “1.” Assume that this is true for groups 1
to i − 1. For 1 ≤ v ≤ i − 1, let Xv be the random variable equal to the index of the

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1093

first such range in group v. For 1 ≤ j ≤ rt/w
4/7
t , let Yi,j be a binary random variable

which is 1 when range j is such a range for group i. Let Zi =
∑rt/w

4/7
t

j=1 Yi,j . Note that
Zi is zero if and only if group i does not have such a range. Note that for j 6= j′, Yi,j
and Yi,j′ are independent. By construction, for any b1, . . . , bi−1 ∈ [1, rt/w

4/7
t], using

the facts that st ≥ 2log1/3 n (from Fact 3.4), and rt/w
4/7
t > s3t (from Fact 3.6), and

assuming n is large,

Pr(Zi = 0|Xi−1 = bi−1, . . . , X1 = b1)

= Pr

rt/w

4/7
t∑

j=1

Yi,j = 0|Xi−1 = bi−1, . . . , X1 = b1

= Pr

rt/w

4/7
t⋂

j=1

(Yi,j = 0)|Xi−1 = bi−1, . . . , X1 = b1

=

rt/w
4/7
t∏

j=1

Pr(Yi,j = 0|Xi−1 = bi−1, . . . , X1 = b1)

=

(
1− (w

1/7
t
2)

(st2)

)rt/w
4/7
t

≤
(
1− 1

s2t

)s3t
≤ e−st

≤ n−3.

The probability of failing in any group can then be bounded by

w
4/7
t∑
i=1

Pr(Zi = 0|Zi−1 = 1, . . . , Z1 = 1)

=

w
4/7
t∑
i=1

∑
b1,...,bi−1∈[1,rt/w

4/7
t]

Pr(Zi = 0|Xi−1 = bi−1, . . . , X1 = b1)

Pr(Xi−1 = bi−1, . . . , X1 = b1)

≤ n−3

w
4/7
t∑
i=1

∑
b1,...,bi−1∈[1,rt/w

4/7
t]

Pr(Xi−1 = bi−1, . . . , X1 = b1)

= w
4/7
t n−3

≤ n−2.

Corollary 3.16. If f is t-good and algorithm CONSTRUCT is successful then
after CONSTRUCT is executed rt+1 ranges have st+1 processors that are mapped to
“∗” by f ′, and no processors that are mapped to “1” by f ′, while the remaining ranges

1094 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

have no processors mapped to “∗” by f ′, and two processors that are mapped to “1”
by f ′

Proof. The proof is immediate from the definition of successful and from Claim
3.13.

Claim 3.17. If f is t-good then after CONSTRUCT is executed every processor
q that is in the (t+ 1, f ′)-knowledge set of a processor p has p ∈ AFFECTS(q).

Proof. By the definition of dependency sets, we can form a (t+1, f ′) dependency
set D of p by taking the union of the (t, f)-knowledge set of p and the (t, f)-knowledge
sets of all processors p′ satisfying the following: there is some refinement g of f which
is a relevant 2-relation and on which p′ sends to p on step t + 1. Note that D is the
union of the (t, f)-knowledge set of p and the set of processors that zero-affect p and
the set of processors that one-affect p. If q is in the (t, f)-knowledge set of p then p
is in AFFECTS(q) by the first part of the definition of AFFECTS. Suppose that q1
is a processor in some range j which zero-affects p and that p 6∈ AFFECTS(q1). By
the second part of the definition of AFFECTS we know that there are two processors
in Sj −W ′

j which zero-affect p. If both of these are mapped to “0” by f ′ then for
any refinement of f ′ processor p has a conflict at step t+ 1 so D − q1 is a (t+ 1, f ′)-
dependency set of p. If, on the other hand, one of these is mapped to “1” by f ′

then algorithm CONSTRUCT maps every member of the range of q1 to “0” or “1”
so D − q1 is a (t + 1, f ′)-dependency set of p. (Recall that if f ′(q1) 6= “∗” then q1
cannot be in the (t + 1, f ′)-knowledge set of any processor.) Similarly, suppose that
q2 is a processor in some range j which one-affects p and that p 6∈ AFFECTS(q2). By
the third part of the definition of AFFECTS we know that every processor in W ′′

j

one-affects p. If all of the processors in Sj−W ′′
j are mapped to “0” by f ′ then for any

refinement of f ′ that is a relevant 2-relation processor p has a conflict at step t + 1
so D − q2 is a (t + 1, f ′)-dependency set of p. If, on the other hand, one of these is
mapped to “1” by f ′ then algorithm CONSTRUCT maps every member of the range
of q2 to “0” or “1” so D − q2 is a (t+ 1, f ′)-dependency set of p.

Claim 3.18. If f is t-good and algorithm CONSTRUCT is successful then after
CONSTRUCT is executed the (t + 1, f ′)-knowledge set of every processor p has size
at most one.

Proof. We know from Claim 3.17 that every processor p has a (t+1, f ′)-dependency
set D which contains only those processors q such that p ∈ AFFECTS(q). Suppose
that two processors q and q′ have f ′(q) = f ′(q′) = “∗.” (If a processor q is not mapped
to “∗” by f ′ then it is not in the (t+ 1, f ′)-knowledge set of any processor so it is not
in the (t + 1, f ′)-knowledge set of p.) Then q must be in some Wj ⊂ W ′′

j ⊂ W ′
j and

q′ must be in some Wj′ ⊂W ′′
j′ ⊂W ′

j′ and both q and q′ are in the set V constructed
by algorithm CONSTRUCT. If j = j′, then the definition of Wj guarantees that
AFFECTS(q) ∩ AFFECTS(q′) = ∅, implying that p is in just one of these sets, and
thus either q or q′ is not in D. If, on the other hand, j 6= j′ by the construction of V ,
AFFECTS(q) ∩ AFFECTS(q′) = ∅, implying p is in just one of these sets, and thus
either q or q′ is not in D. Thus |D| ≤ 1.

Claim 3.19. If f is t-good then after CONSTRUCT is executed each processor
q is in the (t+ 1, f ′)-knowledge set of at most kt+1 processors.

Proof. Let q be a processor which is in the (t+1, f ′)-knowledge set of a processor
p. By Claim 3.17, p ∈ AFFECTS(q). But by Claim 3.7, |AFFECTS(q)| ≤ 3kt = kt+1.
The claim follows.

Lemma 3.20. If t < T and CONSTRUCT is called with parameters (t, f), where
f is t-good, then with probability at least 1− n−2 CONSTRUCT will return a partial

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1095

2-relation f ′ that is (t+ 1)-good.
Proof. The proof follows from Claims 3.15, 3.18, and 3.19 and Corollary 3.16.

3.6. Function GENERATE. We use the following function, which calls CON-
STRUCT to generate a sequence of partial relevant 2-relations f0 = f∗ ≥ f1 ≥ · · · ≥
fT ≥ f in which each ft is a refinement of ft−1, f is a refinement of fT , and f is a
relevant 2-relation generated u.a.r.

Function GENERATE
Let f0 = f∗
Let f = f0

Let t = 0
While t ≤ T Do

If for some p, f(p) = “∗” Then
Let ft = CONSTRUCT(t, f)

Else
Let ft = f

t = t+ 1
f = ft

Let P = {p|f(p) = “∗”}
Return RANDOMSET(f, P)

End GENERATE
Lemma 3.21. The relevant 2-relation f produced by GENERATE is uniformly

distributed.
Proof. The lemma follows from Claim 3.3.
Lemma 3.22. With probability at least 1 − n−1, the partial 2-relation fT is T -

good.
Proof. Let Zt be a random variable which is equal to 1 when CONSTRUCT

succeeds at step t. Then the probability of failing at any step t ≤ T can then be
bounded by

T∑
t=1

Pr(Zt = 0 | Zt−1 = 1, . . . , Z1 = 1).

By Lemma 3.20, this is at most Tn−2 which is at most n−1.
We now prove the following theorem.
Theorem 3.2. Let A be a deterministic algorithm that allegedly routes 2-relations

in T =
√

log log n/2 steps. Let the input to A be drawn u.a.r. from the set of relevant
2-relations. Then the probability that A successfully routes the input is at most 1

2 .
Proof. We will generate a relevant 2-relation by running algorithm GENERATE.

By Lemma 3.21, algorithm GENERATE generates relevant 2-relations u.a.r. GEN-
ERATE also produces a sequence f0 ≥ · · · fT ≥ · · · f in which f is the final relevant
2-relation. By Lemma 3.22, fT will be T -good with probability at least 1− 1/n.

Suppose that fT is T -good. Then there is a range R that has a set S of sT
processors which are mapped to “∗” by fT . R has no processors which are mapped
to “1” by fT . Let d denote the first processor in range R. (d is the destination of the
messages in range R.) The (T, fT)-knowledge set of d contains at most one processor.
There are three cases which must be examined concerning fT .

Case 1. The (T, fT)-knowledge set of d contains a processor q which is a member
of S: we wish to bound the probability that A succeeds, given that fT is in Case 1.
Let F1 denote the set of relevant 2-relations which refine fT and map q to “1” and

1096 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

let F0 denote the set of relevant 2-relations which refine fT and map q to “0.” One
can see by examining algorithm RANDOMSET that the probability that f is in F1 is
2/sT and the probability that f is in F0 is 1− 2/sT . We now examine the following
subcases concerning f .

Case 1A. f is in F1: we wish to bound the probability that A succeeds, given
that f is in F1. There is a particular trace τ which is the (T, f ′)-trace of d for every
input h-relation f ′ ∈ F1. Since A runs in T steps processor d uses this trace τ to
deduce the pair of messages that were destined for d in every input h-relation that is
in F1. But there are sT − 1 such pairs of messages, each of which is equally likely to
come up in a randomly chosen member of F1. So the probability that A is successful
given that f is in F1 is at most 1/(sT − 1).

Case 1B. f is in F0: we wish to bound the probability that A succeeds, given that
f is in F0. There is a particular trace τ which is the (T, f ′)-trace of d for every input
h-relation f ′ ∈ F0. Since A runs in T steps processor d uses this trace τ to deduce
the pair of messages that were destined for d in every input h-relation that is in F0.
But there are

(
sT−1

2

)
such pairs of messages, each of which is equally likely to come

up in a randomly chosen member of F1. So the probability that A is successful given
that f is in F1 is at most 1/

(
sT−1

2

)
.

Therefore the probability that A succeeds given that fT is in Case 1 is at most
(2/sT)(1/(sT − 1)) + (1− 2/sT)(1/

(
sT−1

2

)
) which is at most 2/

(
sT−1

2

)
.

Case 2. The (T, fT)-knowledge set of d contains a processor q which is not a
member of S: similar arguments to those used in Case 1 show that the probability
that A succeeds given that fT is in Case 2 is at most 1/

(
sT
2

)
.

Case 3. The (T, fT)-knowledge set of d is the empty set: similar arguments to
those used in Case 1 show that the probability that A succeeds given that fT is in
Case 3 is at most 1/

(
sT
2

)
.

Finally, we conclude that the probability that A successfully routes f in T steps
is at most the sum of 1/n (an upper bound on the probability that fT is not T -good,
by Lemma 3.22) and (1 − 1/n) × 2/

(
sT−1

2

)
(an upper bound on the probability that

A succeeds given that fT is T -good). We can use Fact 3.4 to show that this quantity
is at most 1/2.

Therefore, with probability at least 1/2, an f drawn u.a.r. from the set of relevant
2-relations will not be routed by algorithm A in T steps.

Corollary 3.23. Let A be a deterministic algorithm that routes 2-relations. Let
the input to A be drawn u.a.r. from the set of relevant 2-relations. Then the expected
number of communication steps used by A is at least

√
log log n/4.

Proof. The corollary follows from the fact that
√

log log n/4 ≤ (1/2)(T +1).

The following weak form of a theorem of Yao is stated (and proved) in Fich,
Ragde, and Wigderson’s paper [9].

Theorem 3.24 (see [23]). Let T1 be the expected running time for a given prob-
abilistic algorithm solving problem P , maximized over all possible inputs. Let T2 be
the average running time for a given input distribution, minimized over all possible
deterministic algorithms to solve P . Then T1 ≥ T2.

We now prove the following theorem.

Theorem 3.1. Let A be a randomized algorithm that routes 2-relations on an
n-OCPC. Then there is a 2-relation on which the expected number of communication
steps used by A is at least

√
log log n/4.

Proof. Corollary 3.23 shows that the average running time for the uniform distri-
bution on relevant 2-relations, minimized over all deterministic algorithms, is at least

AN Ω(
√

log logn) LOWER BOUND FOR ROUTING IN OPTICAL NETWORKS 1097

√
log log n/4. Theorem 3.1 now follows from Theorem 3.24.

4. The prospect for tightening the bound. Recall the situation in which two
processors p and q each have a single message to transmit to a common destination.
Consider the following OCPC “algorithm” which is a parallel version of a strategy
consider in section 2. In Θ(

√
log log n) steps, p and q recruit k = Θ

(
exp(

√
log log n)

)
“agents” to help discover a bit position at which the binary sequence numbers for p
and q differ. This is done using the method of section 2 but with k-way search in
place of binary search: a p-agent and a q-agent simultaneously attempt to transmit a
message to processors with sequence numbers of the form 0 . . . 0pi+1 . . . pi+r/k0 . . . 0
and 0 . . . 0qi+1 . . . qi+r/k0 . . . 0, respectively, and hence discover whether the sequence
numbers of p and q differ on a particular block of r/k bits. This would seem to give
an O(

√
log log n) algorithm for delivering the messages.

Of course, the catch is that a p-agent that finds a block on which the sequence
numbers of p and q differ is unable to alert the other p-agents to the discovery, at
least not sufficiently quickly to obtain an improvement over the original binary search
strategy. Unfortunately, the lower bound argument presented here is oblivious to a
cheating “algorithm” in which an agent that finds an appropriate block broadcasts
its discovery to the other agents in one step. The problem is that in the lower bound
argument, the behavior of a processor is considered to be a function of a partial 2-
relation f that provides far more information than a processor could in reality know.

Acknowledgments. The authors thank Satish Rao and Mike Sipser for useful
discussions.

REFERENCES

[1] R. J. Anderson and G. L. Miller, Optical Communication for Pointer Based Algorithms,
Technical Report CRI 88-14, Computer Science Department, University of Southern Cali-
fornia, Los Angeles, CA, 1988.

[2] M. Dietzfelbinger and F. Meyer auf der Heide, Simple Efficient Shared Memory Simula-
tions, in Proceedings of the ACM Symposium on Parallel Algorithms and Architectures 5,
1993, pp. 110–119.

[3] P. W. Dowd, High performance interprocessor communication through optical wavelength di-
vision multiple access channels, Symp. on Computer Architectures 18, 1991, pp. 96–105.

[4] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc., 35
(1960), pp. 85–90.

[5] M. M. Eshaghian, Parallel Computing with Optical Interconnects, Ph.D. thesis, University of
Southern California, Los Angeles, CA, Dec 1988.

[6] M. M. Eshaghian, Parallel Algorithms for Image Processing on OMC, IEEE Trans. Comput.,
40 (1991), pp. 827–833.

[7] M. M. Eshaghian and V. K. P. Kumar, Optical arrays for parallel processing, in Proceedings
of the Second Annual Parallel Processing Symposium, 1988, pp. 58–71.

[8] F. E. Fich, F. Meyer auf der Heide, and A. Wigderson, Lower bounds for parallel random-
access machines with unbounded shared memory, Advances in Computing Research 4,
F. Preparata, Ed., JAI Press, Greenwich, CT, 1987, pp. 1–15.

[9] F. E. Fich, P. Ragde, and A. Wigderson, Relations between concurrent-write models of
parallel computation, SIAM J. Comput., 17 (1988), pp. 606–627.

[10] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–28.

[11] A. V. Gerbessiotis and L. G. Valiant, Direct Bulk-Synchronous Parallel Algorithms, Scan-
dinavian Workshop on Algorithm Theory 3, Springer-Verlag, Berlin, New York, 1992.

[12] M. Geréb-Graus and T. Tsantilas, Efficient optical communication in parallel computers,
in Proceedings of the ACM Symposium on Parallel Algorithms and Architectures 4, 1992,
pp. 41–48.

[13] L. A. Goldberg, M. Jerrum, T. Leighton, and S. Rao, A doubly logarithmic communica-
tion algorithm for the completely connected optical communication parallel computer, in

1098 L. A. GOLDBERG, M. JERRUM, AND P. D. MACKENZIE

Proceedings of the ACM Symposium on Parallel Algorithms and Architectures 5, 1993,
pp. 300–309.

[14] V. Grolmusz and P. Ragde, Incomparability in parallel computation, in Proceedings of the
IEEE Symposium on Foundations of Computer Science 28, 1987, pp. 89–98.

[15] J. Hastad, Computational Limitations for Small Depth Circuits, MIT Press, Cambridge, MA,
1987.

[16] R. Impagliazzo, R. Paturi, and M. E. Saks, Size-depth trade-offs for threshold circuits, in
Proceedings of the ACM Symposium on Theory of Computing 25, 1993, pp. 541–550.

[17] M. Luby and B. Veličković, On deterministic approximation of DNF, in Proceedings of the
ACM Symposium on Theory of Computing 23, 1991, pp. 430–438.

[18] P. D. MacKenzie, Load balancing requires Ω(log∗ n) expected time, in Proceedings of the
ACM-SIAM Symposium On Discrete Algorithms 3, 1992, pp. 94–99.

[19] P. D. MacKenzie, C. G. Plaxton, and R. Rajaraman, On contention resolution protocols
and associated probabilistic phenomena, in Proceedings of the ACM Symposium on Theory
of Computing 26, 1994, pp. 153–162.

[20] P. D. MacKenzie and V. Ramachandran, ERCW PRAMs and optical communication,
in Proceedings Euro-Par ’96, Springer-Verlag LNCS 1124, Lyon, France, August 1996,
pp. 293–302.

[21] S. B. Rao, Properties of an Interconnection Architecture Based on Wavelength Division Mul-
tiplexing, Technical Report TR-92-009-3–0054-2, NEC Research Institute, 4 Independence
Way, Princeton, NJ 08540, 1992.

[22] L. G. Valiant, General purpose parallel architectures, Chapter 18 of Handbook of Theoretical
Computer Science, J. van Leeuwen, Ed., Elsevier, New York, 1990; see especially p. 967.

[23] A. C.-C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Pro-
ceedings of the 18th Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1977, pp. 222–227.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS
WHERE THE OUTPUT IS REAL∗

DARIO BINI† AND VICTOR Y. PAN‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1099–1115, August 1998 010

Abstract. Surprisingly simple corollaries from the Courant–Fischer minimax characterization
theorem enable us to devise a very effective algorithm for the evaluation of a set S interleaving the
set E of the eigenvalues of an n×n real symmetric tridiagonal (rst) matrix Tn (as well as a point that
splits E into two subsets of comparable cardinalities). Furthermore, we extend this algorithm so as to
approximate all the n eigenvalues of Tn at nearly optimal sequential and parallel cost, that is, at the
cost of staying within polylogarithmic factors from the straightforward lower bounds. The resulting
improvement of the known processor bound in NC algorithms for the rst-eigenproblem is roughly
by factor n. Our approach extends the previous works [M. Ben-Or and P. Tiwari, J. Complexity,
6(1990), pp. 417–442] and [M. Ben-Or et al., SIAM J. Comput., 17(1988), pp. 1081–1092] for the
approximation of the zeros of a polynomial having only real zeros, and our algorithm leads to an
alternative and simplified derivation of the known record parallel and sequential complexity estimates
for the latter problem.

Key words. symmetric tridiagonal eigenvalues, approximation algorithms, computational com-
plexity, real polynomial zeros

AMS subject classifications. 68Q05, 68Q40, 68H05

PII. S0097539790182482

1. Introduction.

1.1. The problem. The problem of approximating the eigenvalues of an n× n
Hermitian or real symmetric matrix A is one of the central problems of practical
matrix computations [GL], [Par]. The first step of its solution in all the customary
algorithms is the reduction of the input matrix A to the real symmetric tridiagonal
(rst) form; this step can be effectively parallelized [Pan87], [BP94, Proposition 5.4,
p. 325].

In the present paper, we consider the remaining eigenvalue problem for an n× n
rst-matrix Tn. From technical and theoretical points of view, this problem is closely
related to approximating the zeros of polynomials having only real zeros. In com-
puting practice, such polynomials usually appear as the characteristic polynomials
of Hermitian (or real symmetric) matrices, which also cover the class of orthogonal
polynomials. Given the coefficients of an nth-degree polynomial p(λ) having only real
zeros, λ1, . . . , λn, we may compute the entries of an n × n rst-matrix Tn that has
the characteristic polynomial p(λ) and the eigenvalues λ1, . . . , λn. In Appendix A
and also in [BP94, pp. 117–120], we achieve this by applying the extended Euclidean
scheme to p(λ) and p′(λ), whereas, for a given Tn, we may compute the coefficients of
p(λ) by applying a simpler algorithm, which we present in section 5. In the practice
of matrix computations, the reduction of the rst-eigenvalue problem to computing

∗ Received by the editors June 1, 1990; accepted for publication June 11, 1996; published elec-
tronically May 19, 1998. The results of this paper were presented at the Second Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, CA, 1991.

http://www.siam.org/journals/sicomp/27-4/18248.html
† Dipartimento di Matematica, Università di Pisa, 56100 Pisa, Italy (bini@dm.unipi.it). This

research was supported by NSF grant 8805782 and by the Italian M.P.I. 40% funds.
‡ Department of Mathematics and Computer Science, Lehman College, City University of New

York, Bronx, NY 10468 (vpan@lcvax.lehman.cuny.edu). This research was supported by NSF grant
8805782 and by PSC-CUNY Awards 668541 and 669210.

1099

1100 DARIO BINI AND VICTOR Y. PAN

the coefficients of the characteristic polynomial p(λ) is avoided because of the numer-
ical stability problems (in particular, the value |p(0)| = |detTn| can be very large);
this does not apply, however, to computing the values of p(λ), which is a customary
auxiliary step of the rst-eigenvalue computation [Par], [GL, pp. 437–440].

1.2. Our results (outline). Our main result is a new parallel NC algorithm
for approximating the eigenvalues of an rst-matrix Tn given its entries. We assume
the customary arithmetic and Boolean PRAM models of parallel computation (where
in each parallel step each nonidle processor performs one arithmetic or, respectively,
Boolean operation), and we deduce nearly optimum upper bounds on parallel time and
the number of processors required by our algorithm. (By nearly optimum we mean
upper bounds that are within polylogarithmic factors from the known, and in our
case straightforward, lower bounds.) This is a dramatic improvement of the previous
best parallel solution, based on the reduction of the problem to approximating the
zeros of p(λ) and on the solution of the latter problem by means of the algorithm of
[BOT]. Our approach avoids using extended Euclidean computations involved in the
algorithm of [BOT], and this gives us the edge over [BOT].

The sequential version of our algorithm, as well as its extension to the sequential
and parallel approximation of the zeros of p(λ) given the coefficients, supports the
same complexity estimates as the algorithm of [BOT] does, and in the sequential
case, these upper estimates are nearly optimal too. Our approach, however, may be
considered conceptually simpler and easier to comprehend, as the reader may observe
from the comparison of our techniques with ones of [BOT], made in the beginning of
section 2.

1.3. Our complexity estimates. To estimate the sequential and parallel cost,
we will write OA(t, p) and OB(t, p) for the algorithms that require O(t) parallel steps
using p arithmetic processors and O(t) parallel steps using p bit-serial processors,
respectively. The bounds OA(t, sp) and OB(t, sp) imply the bounds OA(st, p) and
OB(st, p), respectively, for s ≥ 1, according to Brent’s scheduling principle of parallel
computing [Br]. (In particular, OA(t, p) and OB(t, p) imply the sequential arith-
metic cost bound OA(tp, 1) and the sequential Boolean cost bound OB(tp, 1), respec-
tively.) Under this notation, our algorithm supports approximating the eigenvalues of
Tn (whose entries have magnitudes at most 2m), within the absolute error bound
2−h, at the arithmetic and Boolean parallel cost bounded by OA(log2 n(log2 b +
log n) log logn, n/ log log n) and OB(log2 n log(nb)(log2 b + log n) log logn log log(nb),
n2b/ log log n), respectively, and at the sequential cost bounded byOA(n log2 n(log2 b+
log n), 1) and OB(n2b log2 n log(nb)(log2 b + log n) log log(nb), 1), respectively, where
b = m + h. For approximating all the n zeros of a polynomial p(λ) having only
real zeros, the same sequential cost bounds hold, but the parallel cost bounds change
(in particular, to OA(log2 n(log2 b + log n), (n/ log b)2) under the arithmetic PRAM
model) since we need to add the cost of performing the extended Euclidean algorithm
that supports the transition from p(λ) to Tn. In section 8, we comment on some ways
to further minor improvements.

1.4. A parallel modification. Our major concern in this paper is about the
computational complexity estimates. On the other hand, caring more about numeri-
cal stability of lower precision computations than about decreasing their asymptotic
complexity, we have modified our main algorithm in [BP92] (cf. our Remark 5.1 in
section 5 and comments in section 8). In the parallel NC algorithm of [BP92], we
only need about n/ log n times more processors but achieve substantially improved

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1101

numerical stability, which makes the algorithm competitive with the known alterna-
tive practical algorithms for the symmetric eigenvalue problem. In [B] and in [BG1],
further progress in this direction has been obtained.

1.5. Organization of the paper. We will organize our paper as follows: in
section 2, we deduce some properties of interlacing sets by using the Cauchy inter-
lace theorem for the matrix eigenvalues. In section 3, for each eigenvalue of Tn, we
compute either its approximation within a fixed error bound or an interval containing
this eigenvalue but no other eigenvalues of Tn. In section 4, given an interval con-
taining only one eigenvalue, we compute an approximation to this eigenvalue within
the required precision by means of Newton’s method and of the bisection of the ex-
ponents. In section 5, we describe an algorithm for the simultaneous computation of
the values of the characteristic polynomial and its derivative at a set of points. In
section 6, we summarize the construction of sections 2–5 and devise an algorithm for
the approximation of all the eigenvalues. In section 7, we estimate the bit-complexity
of the algorithm. In section 8, we briefly discuss some results that appeared more
recently, after this paper had been submitted for publication—in particular, some
results related to the complexity estimates and to practical performance of the algo-
rithm of the present paper. In section A.1 of the appendix, we discuss the relations
between the polynomial root-finding problem and the problem of the computation of
the eigenvalues of a matrix, and in section A.2, the reduction of a Hermitian or real
symmetric matrix to the tridiagonal form.

2. Interlacing sets and splitting points for the set of the eigenvalues.
In the following, all logarithms are to the base 2.

Hereafter, Tn denotes an n × n rst-matrix having diagonal entries a1, . . . , an,
subdiagonal entries b1, . . . , bn−1, and a set Λ of n eigenvalues, Λ = {λ1 ≤ · · · ≤ λn}.
Without loss of generality, suppose that b1 . . . bn−1 6= 0. (Indeed, if bj = 0 for some
j, the eigenvalue problem would be split into two eigenvalue problems of smaller
dimensions.) We assume that |ai|, |bi| ≤ 2m, m is a positive integer, and then, by
virtue of Gerschgorin’s theorem ([GL, p. 341]),

− 3(2m) ≤ λi ≤ 3(2m).(2.1)

We say that the set R = {r0, . . . , rk} interleaves the set Q = {q1, . . . , qk} and
that R is an interlacing set for Q if r0 ≤ q1 ≤ r1 ≤ q2 ≤ · · · ≤ qk−1 ≤ rk−1 ≤ qk ≤ rk,
where, in particular, we will allow r0 = −∞ and/or rk = +∞, and then we will write
R = {ri, . . . , rk−j}, where i, j = 0, 1. We say that s is a splitting point of the level
(g, h) for the set Q if qg < s < qh.

In this section, we will prove some simple corollaries from Cauchy’s interlace theo-
rem [Par, p. 186] or from the Courant–Fischer minimax characterization [GL, p. 411].
Later on, they will lead us to simple algorithms for the evaluation of the interlacing
sets and splitting points for the set of the eigenvalues of Tn. Using such sets and/or
points will enable us to devise divide-and-conquer algorithms for approximating the
eigenvalues of Tn, and we will specify such an algorithm in section 6.

It is instructive to compare these results with the techniques of [BOT] and [BFKT]
dealing with a polynomial p(λ) that has only real zeros and can be considered as the
characteristic polynomial of Tn. Specifically, the algorithm of [BOT] relies on com-
puting the Sturm and pseudoremainder sequences associated with p(λ) and defining a
set S of real points that interleaves the set of the zeros of p(λ). Computing such a set
S is the central (and also most innovative, most intricate, and most involved) part of

1102 DARIO BINI AND VICTOR Y. PAN

the algorithm of [BOT], and here we will introduce our main innovation too: we will
replace the major techniques of [BOT] by some simple corollaries from Cauchy’s in-
terlace theorem or the Courant–Fischer minimax characterization theorem, and then,
we will immediately arrive at a set interleaving the set of the eigenvalues Λ of Tn.

Technically, it may also be interesting that Cauchy’s theorem or the Courant–
Fischer minimax characterization may replace Sturm sequences in at least one more
application. Namely, in [BFKT], the Sturm sequences have been used for computing
a splitting point (rather than the interleaving set) for the set of the zeros of p(λ); then
again, some simple corollary from Cauchy’s theorem or the Courant–Fischer minimax
characterization will give us a simple algorithm for computing such a splitting point
for the eigenvalues of Tn, and this computation is more effective than one of [BFKT].
We will give more comments later on, after the statement of our Corollary 2.1.

Hereafter, Diag(B1, . . . , Bs) denotes the block diagonal matrix having diagonal
blocks B1, . . . , Bs.

We will rely on the following result, known as Cauchy’s interlace theorem.
Theorem 2.1. If Ar denotes an r × r principal submatrix of an n × n real

symmetric matrix A, then the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of A and the eigenvalues
µ1 ≤ µ2 ≤ · · · ≤ µr of Ar satisfy the following relations:

λi ≤ µi ≤ λi+n−r, i = 1, . . . , r.

Proof. The latter relations hold for r = n−1 (see Corollary 8.1-4 to the Courant–
Fischer theorem in [GL, p. 411]). In the general case, it is sufficient to apply these
relations to a sequence A = An, An−1, An−2, . . . , Ar of principal submatrices of A
such that Ai is a principal submatrix of Ai+1. An alternative proof can be found on
pp. 186–187 of [Par].

We are ready to prove the following basic result.
Theorem 2.2. The eigenvalues of Tn satisfy the following relations:
(a) If nk is a multiple of 2(k + 1) and if {µ1 < µ2 < · · · < µ k

k+1n
} is the set

of all the eigenvalues of the k × k principal submatrices T̃i of Tn, i = 1, . . . , n
k+1 , T̃i

containing the (s, s) entries as of Tn for s = (i− 1)(k + 1) + j, j = 1, . . . , k, then

λ nk
2(k+1)

≤ µ nk
2(k+1)

≤ λn(k+2)
2(k+1)

.

(b) If 1 ≤ j ≤ n−2 and if {γ1 ≤ γ2 ≤ · · · ≤ γn−1} is the set of all the eigenvalues
of the two principal submatrices of Tn,

Tj =

a1 b1

b1 a2
. . .

. . .
. . . bj−1

bj−1 aj

 , T̂n−j−1 =

aj+2 bj+2

bj+2 aj+3
. . .

. . .
. . . bn−1

bn−1 an

 ,

then

λi ≤ γi ≤ λi+1, i = 1, . . . , n− 1.

In other words, part (a) defines a splitting point of the level (nk
2(k+1) ,

n(k+2)
2(k+1)) for the

set of the eigenvalues of Tn, and part (b) defines an interlacing set for this set of the
eigenvalues.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1103

Proof. Theorem 2.2 immediately follows from Theorem 2.1. In particular, to prove
part (a), apply Theorem 2.1 to the r×r principal submatrix of Tn (where r = n− n

k+1)
obtained by deleting the (i(k + 1))th rows and columns of Tn for i = 1, 2, . . . , n

k+1 .

This submatrix is the block diagonal matrix Diag(T̃1, . . . , T̃ n
n+1

). To prove part (b),

apply Theorem 2.1 to the (n − 1) × (n − 1) principal submatrix of Tn obtained by
deleting the ith row and column of Tn; this submatrix is the 2 × 2 block diagonal
matrix Diag(Tj , T̂n−j−1).

Remark 2.1. To extend part (a) to the case of any n, apply Theorem 2.2 to the
tridiagonal matrix

(
Tn O
O qIs

)

for an appropriate s < 2k + 2 and any fixed real q, where Is is the s × s identity
matrix.

Apply part (a) of Theorem 2.2 for k = 1, then modify it by replacing T̃i by the
1-by-1 matrices (a2i) for i = 1, . . . , n2 , and thus arrive at Corollary 2.1.

Corollary 2.1. If n is a multiple of 4, {σ1 ≤ σ2 ≤ · · · ≤ σn
2
} = {a2i−1, i =

1, . . . , n2 }, {θ1 ≤ θ2 ≤ · · · ≤ θn
2
} = {a2i, i = 1, . . . , n2 }, then

λn
4
≤ σn

4
≤ λ 3

4n
, λn

4
≤ θn

4
≤ λ 3

4n
.

Corollary 2.1 in a weaker form has been proven in [BFKT], where it states some
properties of the zeros of the polynomials generated by the Euclidean scheme for the
two polynomials p(λ) = det(λI − Tn) and p′(λ) and where it is used in order to solve
the root-finding problem in NC for a polynomial having only real zeros. The result of
part (b) of Theorem 2.2 has been proven in [BOT], still in terms of the zeros of the
polynomials generated by the Euclidean scheme. The proofs in both papers [BFKT]
and [BOT] are quite intricate, whereas the matrix formulation of these properties is
a straightforward consequence of Theorem 2.1, and the results can be immediately
extended to polynomial zeros (as we pointed out in the introduction).

Let us again apply the Courant–Fischer theorem in order to obtain still another
interlacing set for the set Λ of the eigenvalues of Tn; this time, we will rely on a
suitable rank-one modification of the matrix Tn (cf. Remark 2.1 at the end of this
section).

Theorem 2.3. Let {φ1 ≤ φ2 ≤ · · · ≤ φn} be the set of all the eigenvalues of the
matrices Sk = Tk− Diag(0, . . . , 0, bk), Rn−k = T̂n−k− Diag(bk, . . . , 0), where Tk and
T̂n−k are defined in Theorem 2.2. Set φn+1 = φn + 2bk, φ0 = φ1 + 2bk.

If bk > 0, then

φi ≤ λi ≤ φi+1, i = 1, . . . , n.

If bk < 0, then

φi−1 ≤ λi ≤ φi, i = 1, . . . , n.

Proof. Theorem 2.3 follows from Theorem 8.1-5 of [GL, p. 412], applied to the
matrix equation

Tn = Diag(Sk, Rn−k) + 2bkee
T ,

1104 DARIO BINI AND VICTOR Y. PAN

where e = (ei), ei = 1/
√

2 for i = k, and i = k + 1, ei = 0 elsewhere.
A different proof of Theorem 2.3 is given in [Cu] and [BNS], where this theorem

is used for separating the eigenvalues of an rst-matrix as a basis for devising practi-
cally effective divide-and-conquer algorithms for approximating the eigenvalues and
eigenvectors of rst-matrices. As in [BNS] and [Cu], we may extend our algorithm
to computing the eigenvectors of Tn, although our approach does not require us to
compute the eigenvectors if we only need to compute the eigenvalues.

Remark 2.2. The algorithm supporting our asymptotic complexity estimates can
be based on Theorems 2.2 or 2.3 as well. Application of Theorem 2.3 leads to some
advantages for practical computation, particularly due to the possibility of using the
so-called secular function (cf. [Cu], [BP92]).

3. Computing the number of the eigenvalues in the intervals of nearly
interlacing sets. With a set interleaving the zeros of p(λ) (and the eigenvalues of Tn)
available, the subsequent approximations to these zeros (and to these eigenvalues) are
obtained by using more customary techniques of [BOT]; for the sake of completeness,
we will elaborate a modification of these techniques in this section and in section 4.
(Some additional care is required here since we actually start not with an interlacing
set but with its approximation.) The resulting algorithm consists of three main stages.
At the first stage, specified in this section, we approximate some eigenvalues of Tn
within a required error bound and cover each remaining eigenvalue by a real line
interval containing no other eigenvalues of Tn. Such an eigenvalue may lie arbitrarily
close to the end of the interval and, consequently, to other eigenvalues of Tn. However,
the second stage ensures sufficiently strong isolation of all such eigenvalues from each
other (by means of the bisection and the double exponential sieve algorithms). In the
third stage, we rapidly approximate the isolated eigenvalues by means of Newton’s
iteration. The second and the third stages are described in section 4.

Now, let the set {d0, . . . , dn} interleave the set Λ of the eigenvalues of Tn,

d0 < λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ · · · ≤ dn−1 ≤ λn < dn.(3.1)

Let the pairs, d−i , d+
i , of approximations to the real points di be given for

i = 1, . . . , n− 1, such that for a fixed ∆, we have

d+
i − d−i = 2∆, d−i ≤ di ≤ d+

i , i = 0, . . . , n;(3.2)

that is, the values di lie in the intervals

Ii = {λ : d−i ≤ λ ≤ d+
i }, i = 0, . . . , n.(3.3)

Let us be given ∆, d−i , d+
i = d−i +2∆ for i = 0, . . . , n, and the black box subrou-

tine for the exact evaluation of the value at point λ of the characteristic polynomial
of Tn,

p(λ) = det(Tn − λI).(3.4)

In this section, for every eigenvalue λj of Tn (for j = 1, . . . , n), either we will compute
its approximation, within the absolute error bound 2∆, or we will determine that the
interval

Kj = {λ : d+
j−1 ≤ λ ≤ d−j−}(3.5)

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1105

contains λj and no other eigenvalues of Tn. This problem was solved in [BOT]; we
propose an alternative solution.

With no loss of generality, we assume that

p(d−i) p(d+
i) 6= 0, i = 0, . . . , n,(3.6)

and we will use the next definition and simple auxiliary results implied by (3.1)–(3.6).

Definition 3.1. The number of the eigenvalues of Tn in a real interval I is
called the index of I and is denoted c(I).

Proposition 3.1. Any interval Kj cannot contain more than one eigenvalue of
Tn.

Proposition 3.2. d−i ≤ λi+1 ≤ d+
i+1, for i = 0, 1, . . . , n− 1.

Corollary 3.1. If Ii ∩ Ii+1 ∩ · · · ∩ Ii+h 6= �, then the points λ̃i+j = 1
2 (d−i+j +

d+
i+j−1) approximate λi+j within the absolute error bound 2∆ for j = 1, 2, . . . , h.

Moreover, h ≤ c(I), where I = {λ : d−i ≤ λ ≤ d+
i+h}. Furthermore, c(I) ≤ h + 2, if

in addition, Ii−1 ∩ Ii = Ii+h ∩ Ii+h+1 = �.

We will also use the following simple fact.

Proposition 3.3. Let p(a)p(b) 6= 0, I = {λ : a ≤ λ ≤ b}. Then p(a)p(b) < 0 if
and only if c(I) is odd.

Algorithm 3.1.

Input: Positive rational ∆, an integer n, and a set of rational numbers D =
{d−i , d+

i , i = 1, . . . , n − 1} ∪ {d+
0 = −3(2−m), d−n = 3(2m)} such that (3.1), (3.2),

and (3.6) hold, and d+
0 ≤ λ1, λn ≤ d−n (compare (2.1)).

Output: For every j, j = 1, . . . , n, either the interval Kj of (3.5) containing a

unique eigenvalue λj of Tn or an approximation λ̃j to λj such that |λj − λ̃j | < 2∆.

Stage 1 (form the union of the overlapping intervals): For i = 0 and for every
i such that d+

i < d−i , determine the maximum h = h(i) such that d+
i+j−1 ≥ d−i+j ,

for j = 1, . . . , h, letting h(i) = 0 if d+
i < d−i+1. Output λ̃i+j = (d−i+j + d+

i+j−1)/2,

j = 1, . . . , h. (By virtue of Corollary 3.1, |λi+j − λ̃i+j | ≤ 2∆.) Save the values
ηi = (d−i + d+

i)/2, νi+h+1 = (d−i+h + d+
i+h)/2 as candidates for being approximations

to λi and λi+h+1. Write

Ji,h = {λ : d−i ≤ λ ≤ d+
i+h} =

h⋃
j=0

Ii+j(3.7)

and observe that

λi ≤ d+
i = d−i + 2∆,

λi+h+1 ≥ d−i+h ≥ d+
i+h − 2∆,

so that

|λi − ηi| ≤ ∆ if λi ∈ Ji,h,

|λi+h+1 − νi+h+1| ≤ ∆ if λi+h ∈ Ii,h.

1106 DARIO BINI AND VICTOR Y. PAN

Stage 2 (define the indices of the intervals Kj of (3.5) and Ji,h of (3.7)): Compute
p(d−i) and p(d+

i) for all i. Recall the relations (3.5)–(3.7), Propositions 3.1 and 3.3,
and Corollary 3.1. For all i and j, define

c(Kj) =

{
0 if p(d−j+1) p(d

+
j) > 0,

1 otherwise,

c(Ji,h) = h+ 1 if

{
either h is even and p(d−i)p(d+

i+h) < 0,
or h is odd and p(d−i)p(d+

i+h) > 0;

otherwise, either c(Ji,h)− h = 0 or c(Ji,h)− h = 2.(3.8)

Output the set of indices j such that c(Kj) = 1, in which case λj−1 ∈ Kj .
Stage 3 (choose approximations among the candidate values): By the beginning

of this stage, for every j, j = 1, . . . , n, it has been determined whether

λj ∈ Kj+1 (see Stage 2)

or

|λj − λ̃j | ≤ 2∆ (for λ̃j defined in Stage 1),

or, otherwise, at least one of the next two bounds hold:

|λj − ηj | ≤ ∆,

|λj − νj | ≤ ∆.

It remains to distinguish between the two latter cases and to choose an approximation
to λj by one of the two candidates νj and ηj . This process relies on the two following
simple rules:

(a) For every interval Ji,h, of the two candidate values ηi and νi+h+1, exactly
c(Ji,h) − h values should be selected as approximations within ∆ to λi and/or λi+h

(due to the observations made at the end of the description of Stage 1).
As soon as we decide about selecting one of the two candidate values ηi and

νi+h+1, we apply the latter rule in order to decide if we should or should not select
another of the two candidates (recall that we know the parity of c(Kj)− h).

(b) For every j, j = 1, . . . , n, of the two consecutive candidate values νj and ηj ,
separated by the single interval Kj , exactly 1− c(Kj) values should be selected as an
approximation to the eigenvalue λj of Tn. (Indeed, d−j−1 < νj < d+

j−1 < d−j < ηj < d+
j

and d−j−1 ≤ λj ≤ d+
j , so that either d+

j−1 ≤ λj ≤ d−j , and then c(Kj) = 1, or

d−j−1 ≤ λj ≤ d+
j−1, and then |νj −λj | ≤ ∆, or d−j ≤ λj ≤ d+

j , and then |ηj −λj | ≤ ∆.)
Rule (b) implies that neither of the values νj and ηj should be selected if c(Kj) =

1; otherwise, we choose exactly one of them as an approximation to λj .
Recursive application of rules (a) and (b) completely defines the selection of the

approximations to λj among all the candidate values ηj and νj for all j provided
that we are given the values p(d+

i) and p(d−i) for all i and that we know whether
the leftmost interval Jj,h contains λj . The latter inclusion can be easily checked by
using (3.1), (3.2), and Propositions 3.1–3.3. We shall decrease the parallel time of this

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1107

selection process by using the following equivalent procedure (the equivalence can be
easily verified by inspection).

To select an approximation to λj by ηj or by νj , first partition the set S of all the
intervals Ji,h satisfying (3.8) into the maximal subsets whose consecutive intervals
are only interleaved with intervals Kj having indices 0 and with intervals Ji,h having
indices h + 1. Number the intervals in each maximal subset from left to right by
1, 2, For each subset, let N(i, h) denote the number assigned to the interval Ji,h
in this enumeration. Let δ = 0 if there is no interval Kj having index 1 to the left of
the subset and let δ = 1 otherwise. Then determine the indices of the intervals of the
subset as follows:

c(Ji,h) = h+ 1 + (−1)δ+N(i,h).(3.9)

Select both ηi and νi+h+1 as approximations within ∆ to λi and λi+h+1 if
c(Ji,h) = h+ 2 and select none of them if c(Ji,h) = h (according to rule (a)).

Finally, for every i such that c(Ji,h) = h + 1, apply rule (b) to select one of the
ηi and νi+h+1 as an approximation within ∆ to λi or to λi+h+1, respectively.

4. Approximation to the eigenvalues by using Newton’s iterations, dou-
ble exponential sieve, and the bisection method. In this section we will com-
plement Algorithm 3.1 with an algorithm that approximates (within a fixed absolute
output error ∆) an eigenvalue λj of Tn given a pair of real c and d, such that the
interval K = {λ : c ≤ λ ≤ d} contains only this eigenvalue of Tn. We will apply the
techniques of [BOT] and [R] based on the following result of [R].

Theorem 4.1. Let p(x) = an
∏n

i=1(x− ξi) be a polynomial. Let x(0) ∈ C be such
that |x(0) − ξ1| ≤ |x(0) − ξ2| ≤ · · · ≤ |x(0) − ξn|. If

|x(0) − ξ1| < 1

5n2
|x(0) − ξ2|,(4.1)

then the sequence x(i+1) = x(i) − p(x(i))/p′(x(i)), i = 0, 1, . . . , generated by Newton’s

method, converges to ξ1; moreover, |x(i) − ξ1| ≤ 23−2i |x(0) − ξ1|.
If we have an initial approximation x(0) such that c < x(0) < d and

|x(0) − λj | ≤ 1

5n2
min{x(0) − c, d− x(0)},(4.2)

then we may invoke Theorem 4.1 and use Newton’s iteration, thus arriving at the
desired approximation to λj in dlog log(0.8 d−c

∆n2)e Newton’s steps. This observation
leads us to the next procedure, which consists of the double exponential sieve process
(Stages 2 and 3), bisection (Stage 4), together ensuring (4.1), and Newton’s iteration
(Stage 5), which outputs a real point λ̃ such that

|λ̃− λ| ≤ ∆, λ = λj .(4.3)

Algorithm 4.1.
Input: Natural numbers c < d such that c < λ < d and a positive rational ∆.
Output: A rational λ̃ such that |λ− λ̃| < ∆.
Stage 1. If d − c < 2∆, then output λ̃ = c+d

2 and stop. Otherwise, set β = 0,
compute p(c) and p((c + d)/2), set c0 = c, d0 = d, and restrict further computations
to the interval [c, c+d

2] if p(c)p((c + d)/2) < 0 and to the interval [c+d
2 , d] otherwise.

Suppose, with no loss of generality, that p(c) < 0, p((c + d)/2) > 0, and perform the
following stages.

1108 DARIO BINI AND VICTOR Y. PAN

Stage 2. Set γ0 = (c0 + d0)/2 and apply the bisection of the exponents (also
called the double exponential sieve) procedure to the interval [c0, (c0 + d0)/2]; that

is, successively evaluate p(γi) for γi = c0 + (d0 − c0)2
−2i , i = 1, 2, . . ., until either

γi − c0 < 2∆ or γi − c0 < β or p(γi) ≤ 0. In the first case, output (c0 + γi)/2 and
stop; in the second case, set d0 = γi, x0 = (c0 + γi)/2 and go to Stage 4; otherwise,
set β = γi − c0 and go to the next stage. (Note that the second case may only occur
for β ≥ 2∆ > 0, that is, not at the first pass through Stage 2.)

Stage 3. Set c1 = γi and d1 = γi−1. (Note that d1−c1 ≥ c1−c0 ≥ 2∆.) Compute
p((c1 + d1)/2). If p((c1 + d1)/2) < 0, then set c0 = (c1 + d1)/2, d0 = d1 and go to the
next stage (in this case, λ ∈ [c0, d0] and d0 − c0 < min{c0 − c, d − d0}). Otherwise,
set c0 = c1, d0 = (c1 + d1)/2, and go to Stage 2.

Stage 4. Apply dlog(5n2)e bisection steps to [c0, d0] in order to find a starting
point x(0) satisfying (4.1).

Stage 5. Apply dlog log(0.8d0−c0
∆n2)e Newton’s steps (starting with x(0)) in order

to arrive at an approximation λ̃ to λ such that |λ̃− λ| < ∆.
Since β only grows, whereas d0 − c0 decreases by at least two times, in each

recursive call to Stages 2 and 3, there can only be O(log2(m+ log(∆−1))) such calls,
and there can only be O(log(m + log(∆−1))) Newton’s iteration steps at Stage 5
provided that −3(2m) < c < d < 3(2m).

5. Computing the values of the characteristic polynomial and its deriva-
tive at a set of points. We will concurrently apply Algorithm 4.1 to all the se-
lected intervals, each containing a single eigenvalue of Tn. At any of the O(log2(m+
log(∆(−1)))) steps we will have to compute the values p(λ) and p′(λ) at a set of at
most n points. In this section we will devise an algorithm for computing the values
of the characteristic polynomial p(λ) = pn(λ) = det(Tn − λI) of Tn and of its first
derivative at a given set of n points.

Due to the tridiagonal structure of the matrix Tn, we have the following three-
term recurrence for the polynomials pi(λ) = det(Ti − λI):

p0(λ) = 1, p1(λ) = a1 − λ,

pi+1(λ) = (ai+1 − λ) pi(λ)− b2i pi−1(λ), i = n− 1, n− 2, . . . , 1,(5.1)

or in the equivalent matrix form,

(
pi+1(λ)
pi(λ)

)
=

(
ai+1 − λ −b2i

1 0

)(
pi(λ)
pi−1(λ)

)
,

so that (
pi+1(λ)
pi(λ)

)
= Fi . . . F0

(
1
0

)
,(5.2)

Fj =

(
aj+1 − λ −b2j

1 0

)
, j = 0, . . . , i, b0 = 0.(5.3)

Now, we will compute the coefficients of p(λ). At this stage, we do not have to
restrict our computation to the real or complex case; we may allow the input entries
of Tn from any field F.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1109

Algorithm 5.1.

Input: A positive integer n = 2h (compare Remark 2.1), and a1, . . . , an, b1, . . . , bn−1

(the entries of Tn, being the elements of a field F).

Output: α0, . . . , αn ∈ F, such that p(λ) = det(Tn − λI) =
∑n

i=0 αiλ
i.

Computation: First setH
(0)
j = Fj , j = 0, . . . , n−1; then, for i = 1, 2, . . . , log n =

h, compute H
(i)
j = H

(i−1)
2j+1 H

(i−1)
2j , j = 0, . . . , 2−in − 1, output the coefficients of the

polynomial p(λ) = (1 0)H
(h)
0 (1

0).

The ith level of the computation is essentially reduced to 8n/2i multiplications

of the entries of the matrices H
(i)
j , which are polynomials of degrees at most 2i, and

to four additions of the products. Over the complex or real fields F, this means
the OA(log n, n) cost bound at each level i [AHU], [BM]; that is, the overall cost of
Algorithm 5.1 is OA(log2 n, n).

Given the coefficients of p(λ), and therefore, of p′(λ), we may compute the values
of both p(λ) and p′(λ) on a fixed set of n points, at the cost OA(log2 n log log n,
n/ log log n) (see [AHU], [BM], [RT]).

Now recall that we apply Newton’s iteration to approximate the n eigenvalues
of Tn. Each Newton’s iteration step essentially amounts to computing the ratio
p(x)/p′(x) at n points, which now means the cost OA(log2 n log log n, n/ log log n),
and this is also an estimate for the cost of performing Algorithm 3.1.

Remark 5.1. Given the matrix Tn and a scalar x, p(λ) can be evaluated at
λ = x at the cost OA(log n, n). It is sufficient to apply Algorithm 5.1 replacing λ by
λ+ x and performing the computation modulo λ. The same computation modulo λ2

outputs the linear polynomial p(x) + p′(x)λ. Thus, given an n× n rst-matrix Tn, we
may compute p(λ) and p′(λ) at O(n) points at the cost OA(log n, n2), avoiding the
evaluation of the coefficients of p(λ). Even though the number of processors grows,
the numerical stability of the computations is greatly improved in this way, which
is the basis of the practical modification of our algorithm presented in [BP92]. The
latter algorithm actually uses a slightly different modification of Algorithm 5.1, which
yields the same output values of p(λ) and p′(λ) at the same computation cost but in,
numerically, a more stable way. Besides improved numerical stability, we have also
modified (in [BP92]) the isolation stage so as to bound the relative output errors,
which is important for practical implementation.

6. The main algorithm. By using the tools and steps described in the pre-
ceding sections, we will now devise our main algorithm for the approximation of the
eigenvalues of an n × n rst-matrix Tn with integer entries. This is a divide-and-
conquer algorithm, which recursively reduces the original computational problem to
two problems of half-size.

Algorithm 6.1.

Input: Two positive integers m and n, positive u; n integers a1, . . . , an and n−1
nonzero integers b1, . . . , bn−1, such that n is a power of 2 (compare Remark 2.1), |ai|,
|bi| ≤ 2m. (This input defines an rst-matrix Tn and the tolerance 2−u to the output
errors.)

Output: Reals γ1, . . . , γn such that |γi−λi| < 2−u, where λi are the eigenvalues
of Tn, i = 1, . . . , n.

Stage 1. Compute the coefficients of the characteristic polynomial of Tn by ap-
plying Algorithm 5.1.

1110 DARIO BINI AND VICTOR Y. PAN

Stage 2. Apply Algorithm 6.1 to the input set

u+ 1, m,
n

2
, a1, . . . , an

2−1, an
2
− bn

2
, b1, . . . , bn2−1,

which defines an rst-matrix Sn
2
, and to the input set

u+ 1, m,
n

2
, an

2 +1 − bn
2
, an

2 +2, . . . , an, bn2 , . . . , bn−1,

which defines an rst-matrix Rn
2
, thus obtaining approximations δ1 ≤ δ2 ≤ · · · ≤ δn

to the eigenvalues of Sn
2

and Rn
2

within the absolute error bound ∆ = 2−u−1. (The
matrices Sn

2
and Rn

2
have been defined in Theorem 2.3.)

Stage 3. Recall that the set of all the eigenvalues of Sn
2

and Rn
2

interleaves the

set {λi} (see Theorem 2.3), set d+
i = δi + ∆, d−i = δi −∆, and apply Algorithms 3.1

and 4.1, to obtain γ1, . . . , γn such that |γi − λi| < 2−u.
The overall cost of performing the algorithm is OA(log3 n log log n(log2 b+ log n),

n/ log log n), b = u+m, but this bound can be decreased to OA(log2 n log log n(log2 b+
log n), n/ log log n), since we need the output of Algorithm 4.1 with a precision lower
than b bits until we arrive at the stage of approximating the eigenvalues of the original
matix Tn (see the details in [BOT]).

Remark 6.1. An equivalent version of Algorithm 6.1 can be obtained by replacing
the matrices Sn

2
and Rn

2
at Stage 3 by the matrices Tn

2
and T̂n

2−1 of part (b) of
Theorem 2.2.

7. Bit-complexity estimates. We will prove the following result.
Theorem 7.1. Algorithm 6.1 can be implemented at the Boolean cost bounded by

OB(log(nb) log2 n(log2 b+ log n) log logn log log(bn), n2 b+logn
log log n), where |ai|, |bi| ≤ 2m,

b = m+ u.
The most expensive computations in Algorithm 6.1 are the evaluation of the

coefficients of the characteristic polynomial p(λ) of Tn at Stage 1, performed by means
of Algorithm 5.1, and the evaluation at Stage 3 of the values of p(λ) and p′(λ) on a set
of n points, performed by means of the multipoint polynomial evaluation algorithm
of [AHU], [BM].

We will use the following auxiliary result.
Theorem 7.2. Let n be a power of 2, k a positive integer, p = 2nk/2 + 1,

u(x) and v(x) two polynomials with coefficients in Zp (Zp is the ring of integers with
arithmetic modulo p), deg v(x) = n2 ≤ deg u(x) = n1 = O(n). Then the coefficients
of the polynomial

w(x) = u(x)v(x)

can be computed modulo p at the Boolean cost OB(log n log(nk) log log(nk), n2k).
Moreover, if the polynomial v(x) is monic, the coefficients of the two polynomials
q(x) and r(x) such that

u(x) = v(x)q(x) + r(x)

and degree(r(x)) < n2 can be computed modulo p at the Boolean cost bounded by

OB(log n log log n log(nk) log log(nk), n2k
log log n).

Proof. We just need to combine the known estimates from [AHU] and [RT]. The
Boolean cost of each arithmetic operation in Zp is OB(log d log log d, d), d = dlog pe

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1111

(see [AHU, p. 226], [RT]). Moreover, 2jk 6= 1 mod p, j = 1, . . . , n − 1, and 2nk =
1 mod p; that is, 2k is a primitive nth root of 1 in Zp, and any integer power of 2, in
particular, n, has its inverse in Zp. Therefore, in Zp, we may compute the product
of a pair of nth-degree polynomials, by means of three FFTs, at the arithmetic cost
OA(log n, n) and, therefore, at the Boolean cost OB(log n log(nk) log log(nk), n2k).
Finally, no divisions are needed for computing q(x) and r(x), since v(x) is monic, and
the computation can be performed in Zp by using the polynomial division algorithm
of [RT]. We arrive at the cost bounds OA(log n log log n, n/ log log n) and, therefore,

OB(log n log(nk) log logn log log(nk), n2k/ log log n).

Now, recall that the ith stage of Algorithm 5.1 (which evaluates the coefficients of
the characteristic polynomial of Tn) consists in evaluating 8(n/2i) products of pairs
of polynomials of degrees at most 2i−1 and having integer coefficients whose absolute
values are less than 2i+m2i+1

, for i = 1, 2, . . . , log n. Such coefficients are well defined
by their values modulo p = 2nk/2 + 1, already for k = 4m + 4. Therefore, we may
use integer arithmetic modulo p, apply Theorem 7.2, and deduce that the cost of
performing Algorithm 5.1 is given by

OB(log2 n log(nm) log log(nm), n2m).

This bound is dominated by the cost bound of Theorem 7.1, since b = m+ u, u > 0,
and Brent’s principle enables us to multiply the time bound by s = log logn and
simultaneously divide the processor bound by s.

Now, consider the evaluation of p(x) and p′(x) at a set of points γ1, γ2, . . . , γn. We
first observe that |γi| ≤ 2m+2, since γi, for i = 1, . . . , n, are approximations, within
absolute errors at most 2−u ≤ 1, to the eigenvalues of rst-matrices having the 1-norms
at most 3(2m). Moreover, we may consider γi a binary value, γi = yi/2

u+logn, where
yi is an integer, |yi| ≤ 2m+2+u+logn, since we are looking for an approximation within
the absolute error bound 2−u−logn. Therefore, the evaluation of p(γi) and p′(γi) can
be kept within the set of integers in the following way.

Consider Q(y) =
∑n

i=−1 αi2
(u+logn)(n−i)yi, where p(x) =

∑n
i=0 αix

i. The poly-
nomial Q(y) has integer coefficients, each represented with at most n(m+u+2 log n)
bits, and satisfies the following relation: Q(y) = 2(u+log n)np(x), y = 2u+lognx. More-
over, the size of the integers Q(yi) is bounded as follows:

|Q(yi)| ≤ 2n(2m+2u+3 log n+2) = 2nk/2, k = O(m+ u+ log n).(7.1)

Now, we apply the known algorithm for multipoint polynomial evaluation [AHU],
[BM], where we use integer arithmetic modulo p = 2nk/2 + 1 in the following way.

Recursively compute the coefficients of the monic polynomials S
(j)
i of degrees 2j ,

S
(0)
k = y − yk, k = 1, . . . , n,

S
(j)
i = S

(j−1)
2i−1 S

(j−1)
2i , i = 1, . . . ,

n

2j
, j = 1, . . . , log n− 1.

Recursively compute the coefficients of the polynomials r
(j)
k of degrees at most

n/2j ,

r
(0)
1 = Q(y),

1112 DARIO BINI AND VICTOR Y. PAN

r
(j)
2i−1 = r

(j−l)
i mod S

(log n−j)
2i−1 ,

r
(j)
2i = r

(j−l)
i mod S

(log n−j)
2i ,

i = 1, . . . , 2j−1, j = 1, . . . , log n, such that r
(log n)
k = Q(yk), k = 1, . . . , n. Combining

the relations (7.1) and Theorem 7.1 and recalling that b = m + µ, we deduce that
such a multipoint polynomial evaluation can be performed at the overall cost

OA(log2 n log log n, n/ log log n)

and, consequently,

OB(log2 n log log n log(nb) log log(nb), n2b/ log log n).

Therefore, Algorithm 6.1 can be carried out at the cost

OB(log2 n log(nb)(log2 b+ log n) log logn log log(nb), n2b/ log log n),

performing a total of

O(n2b log2 n log(nb)(log2 b+ log n) log log(nb))

bit-operations.

8. Discussion. We keep our results and proofs in their original form (cf. also
[BP91]) assuming the PRAM models, though this assumption is not pertinent to
the efficiency of our algorithms. Since the time of the submission of the present pa-
per, some related results have appeared. The recent divide-and-conquer algorithms of
[P95], [P96] approximate within 2−b all the n complex zeros of any nth-degree polyno-
mial, with its zeros in the unit disc, by using O(n log2 b log2 n) arithmetic operations
or O((b + n)n2 log2 n log(bn) log log(bn)) bit-operations; moreover, these algorithms
have NC- and processor-efficient parallelization. The latter complexity bounds apply
to any polynomial and are only slightly inferior to the current record bounds of the
[BOT] and the present paper, which are restricted to the case where all the zeros of
p(x) are real. Combining the results of [P95], [P96] with the known algorithms for
computing the coefficients of the characteristic polynomial of a general n × n ma-
trix A gives an NC- and processor-efficient algorithm for the unsymmetric eigenvalue
problem for A. On the other hand, the algorithms of [P95], [P96] do not extend
directly to approximating the eigenvalues of unsymmetric matrices; extension of the
divide-and-conquer techniques to the latter problem is a challenging open problem of
practical importance.

Some minor improvements of the parallel complexity estimates of the present pa-
per are possible, for instance, due to the recent improvement of parallel polynomial
division achieved in [BP93] or via replacement of some integer divisions by multipli-
cations.

The algorithm of this paper has several attractive features for its practical ap-
plication; in particular, its computational cost is low, and its rapid convergence is
guaranteed even where the input rst-matrix has clustered eigenvalues. The only ma-
jor obstacle for the practical implementation is the stage of fast multipoint polynomial
evaluation, which is known to be numerically unstable. There are two ways out of this
difficulty, not counting recent progress in improving multipoint polynomial evaluation

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1113

(cf. [P95a], [PSLT], [PZHY]). One way, elaborated upon in [BP92], [B], and [BG1],
proceeds by replacing the latter stage by slower but numerically stable computation.
Another way, proposed and elaborated in [GE], relies on replacing the stage of mul-
tipoint polynomial evaluation by solving the associated secular equation by means of
the multipole algorithm of [Ro85]. Unfortunately, [GE] deceptively claims its con-
tribution to decreasing the known estimates for the computational complexity of the
symmetric tridiagonal eigenproblem. In fact, the paper [GE] contains neither compu-
tational complexity estimates nor proper analysis of the case of clustered eigenvalues
(effectively treated by the techniques of [BOT], [BP91], and [BP92]). Furthermore,
[GE] fails to inform its readers about the existence of the much earlier papers [BOT],
[BP91], and [BP92], with faster algorithms for the rst-eigenvalues, whereas compari-
son and, perhaps, combination of the techniques and the results of these papers with
ones of [GE] could be informative and useful for the study of the symmetric tridiago-
nal eigenproblem. We also recall the papers [R93] (as the rediscovery of [BOT]) and
[R97], whose main result (on multipoint polynomial evaluation) repeats one of [PSLT]
and [PZHY].

Appendix A.

A.1. Reduction of approximating polynomial zeros to approximating
matrix eigenvalues. Let p(x) be a polynomial of a degree n having integer coef-
ficients in the range from 2m to 2m and having only real zeros. There exist many
n×n rst-matrices Tn whose characteristic polynomials are proportional to p(x), that
is, equal to p(x) = pn(x) after their appropriate normalization. We may specify Tn
much better if, in addition to pn(x), we will fix the characteristic polynomials pn−1(x)
of Tn−1, the (n − 1) × (n − 1) leading principal submatrix of Tn, and apply the ex-
tended Euclidean algorithm to pn(x) and pn−1(x). Suppose that we have chosen
pn−1(x) such that this algorithm performs all its n− 1 recursive steps, producing the
(n − 1 − i)th-degree polynomial in the ith step, for i = 1, . . . , n − 1. (This holds, in
particular, if p(x) has only real zeros and if pn−1(x) = −p′(x).) Then, due to (5.1),
p(x) = pn(x) is the characteristic polynomial of an rst-matrix Tn whose entries ai, bi
satisfy (5.1) for all i, and such a matrix Tn is defined uniquely, except that we may
vary the signs of bi as we like.

Let us analyze the complexity and errors of these computations assuming that
pn−1(x) = −p′(x). Then the computation by the extended Euclidean algorithm can
be performed at the cost bounded by OA(n log2 n, 1) [AHU] or OA(log3 n, n2/ log n)
[BP94]. Combining these bounds with the cost bounds of Algorithm 6.1 implies the
estimates OA(n log2 n(log2 b+log n), 1) and OA(log2 n(log2 b+log n), (n/ log b)2/ log n)
for the sequential and parallel arithmetic complexity of approximating the zeros of
a polynomial having only real zeros (compare [BOT]), and similarly, the sequential
and parallel Boolean complexity estimates for approximating the zeros of p(x) can
be reduced to the estimates for Boolean complexity of the extended Euclidean com-
putations and approximating the eigenvalues of Tn. The estimates for the sequential
Boolean complexity and for the parallel Boolean time of the latter stage dominate
the respective estimates for the overall complexity of approximating the zeros of p(x),
whereas the opposite is true for the bit-serial processor bound.

We will conclude this part of the appendix with two theorems that will enable us
to bound the precision of the entries of Tn remaining within a prescribed tolerance
to the errors of approximating the eigenvalues of Tn. As before, let ai, i = 1, . . . , n,
and bj , j = 1, . . . , n − 1, denote the diagonal and the subdiagonal entries of Tn,
respectively. We do not assume any bounds on ai and bj but will deduce them.

1114 DARIO BINI AND VICTOR Y. PAN

Theorem A.1. The entries of Tn have absolute values at most 2m+1.5.
Proof. Due to the Cauchy well-known bounds on the magnitudes of polynomial

zeros, the zeros of p(x) have absolute values at most 1+2m < 2m+1. Due to Theorem
2.1, for r = 1, the diagonal entries of Tn, that is, a1, . . . , an, have absolute values at
most 2m+1. By applying Theorem 2.1 with r = 2, we deduce that the eigenvalues of
all the 2× 2 submatrices

(
ai bi
bi ai+1

)

have absolute values at most 2m+1, that is, |aiai+1 − b2i | ≤ 22m+2; whence |bi| ≤
2m+1.5.

On the other hand, the eigenvalues of Tn are not very sensitive to the pertubation
of the entries.

Theorem A.2. Let T̂n be an rst-matrix having diagonal and subdiagonal entries
ãi, i = 1, . . . , n, and b̃j, j = 1, . . . , n−1, respectively, such that |ãi−ai|, |b̃j−bj | ≤ 2−ν ,
i = 1, . . . , n; j = 1, . . . , n − 1. Then for any eigenvalue λi of Tn, there exists an
eigenvalue λ̃i of T̃n such that |λ̃i − λi| ≤ 3(2−ν).

Proof. Theorem A.2 follows from the Bauer–Fike theorem (see [GL, p. 342])
applied for the Euclidean norm, since ‖T̃ − T‖2 ≤ 3(2−ν).

From the above theorems, we deduce that the rst-matrix T̃n obtained by setting
ãi = d2νaie, b̃j = d2νbje has integer entries with absolute values at most 2ν+m+1.5;

furthermore, its eigenvalues, divided by 2−ν , yield approximations λ̃i to the eigenval-
ues of Tn such that |λ̃i− λi| ≤ 3(2−ν). Thus, to insure the latter bound, it suffices to
compute the entries of Tn with the precision of dν +m+ 1.5e bits.

A.2. Reduction of a Hermitian or real symmetric matrix to the tridi-
agonal form. Various randomized techniques are well known [GL] for the reduction
of an n × n Hermitian or real symmetric matrix A to an rst-matrix Tn via simi-
larity transformations (which leave invariant the eigenvalues and the characteristic
polynomial of A). In [P87] and [BP94, Proposition 5.4, p. 325], a parallel implemen-
tation of such a tridiagonal reduction is shown and is analyzed. In particular, in the
implementation of [BP94], tridiagonal reduction is essentially reduced

(a) to computation of the 2n + 1 scalars hi = ~pTAi~q, i = 0, 1, . . . , 2n, for two
random column vectors ~p and ~q, and

(b) to the LDLT (triangular) factorization of the associated Hankel matrix H =
(hi,j), hi,j = hi+j , i, j = 0, 1, . . . , n− 1.

The overall computational cost of such a reduction can be bounded by OA(log2 n,
n3/ log n) or, alternatively, by OA(log3 n, P (n)/ log n), provided that a pair of n × n
matrices can be multiplied at the cost bounded by OA(log n, P (n)/ log n), P (n) =
O(n2.38).

Acknowledgments. The authors thank Prasoon Tiwari for kindly supplying a
copy of [BOT] and the referee for helpful comments.

REFERENCES

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, MA, 1976.

[B] D. Bini, Divide and conquer techniques for the polynomial root-finding problem, in Proc.
1st World Congress of Nonlinear Analysts, Tampa, FL, 1992, V. Lakshmikantham,
ed., Walter de Gruyter, Berlin, 1996, pp. 3885–3896.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1115

[BFKT] M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, A fast parallel algorithm for determining
all roots of a polynomial with real roots, SIAM J. Comput., 17 (1988), pp. 1081–1092.

[BG1] D. Bini and L. Gemigniani, Iteration schemes for the divide-and-conquer eigenvalue
solver, Numer. Math., 67 (1994), pp. 403–425.

[BM] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric
Problems, American Elsevier, New York, 1975.

[BNS] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-one modification of the sym-
metric eigenproblem, Numer. Math., 31 (1978), pp. 31–48.

[BOT] M. Ben-Or and P. Tiwari, Simple algorithm for approximating all roots of a polynomial
with real roots, J. Complexity, 6 (1990), pp. 417–442.

[BP91] D. Bini and V. Y. Pan, Parallel complexity of tridiagonal symmetric eigenvalue problem,
in Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, and SIAM, Philadelphia, 1991, pp. 384–393.

[BP92] D. Bini and V. Y. Pan, Practical improvement of the divide-and-conquer eigenvalue
algorithms, Computing, 48 (1992), pp. 109–123.

[BP93] D. Bini and V. Y. Pan, Improved parallel polynomial division, SIAM J. Comput., 22
(1993), pp. 617–627.

[BP94] D. Bini and V. Y. Pan, Matrix and Polynomial Computations, Volume 1: Fundamental
Algorithms, Birkhauser, Boston, 1994.

[Br] R. P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput.
Mach., 21 (1974), pp. 201–208.

[Cu] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenprob-
lem, Numer. Math., 36 (1981), pp. 177–195.

[GE] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiag-
onal eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–191.

[GL] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins Univ.
Press, Baltimore, MD, 1989.

[Pan 87] V. Y. Pan, Complexity of parallel matrix computations, Theoret. Comput. Sci., 54 (1987),
pp. 65–85.

[P87] V. Y. Pan, Sequential and parallel complexity of approximate evaluation of polynomial
zeros, Comput. Math. Appl., 14 (1987), pp. 591–622.

[P95] V. Y. Pan, Optimal (up to polylog factors) sequential and parallel algorithms for approxi-
mating complex polynomial zeros, in Proc. 27th Annual ACM Symposium on Theory
of Computing, ACM, New York, 1995, pp. 741–750.

[P95a] V. Y. Pan, An algebraic approach on approximate evaluation of a polynomial on a set of
real points, Adv. Comput. Math., 3 (1995), pp. 41–58.

[P96] V. Y. Pan, Optimal and nearly optimal algorithm for approximating complex polynomial
zeros, Comput. Math. Appl., 31 (1996), pp. 97–138.

[Par] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs,
NJ, 1980.

[PSLT] V. Y. Pan, A. Sadikou, E. Landowne, and O. Tiga, A new approach to fast polynomial
interpolation and multipoint evaluation, Comput. Math. Appl., 25 (1993), pp. 25–30.

[PZHY] V. Y. Pan, A. Zheng, X. Huang, and Y. Yu, Fast multipoint polynomial evaluation
and interpolation via computations with structured matrices, Ann. Numer. Math., 4
(1997), pp. 483–510.

[Ro85] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput.
Phys., 60 (1985), pp. 187–207.

[RT] J. H. Reif and S. H. Tate, Optimal size integer division circuits, in Proc. 21st ACM
Symposium on Theory of Computing, ACM Press, New York, 1989, pp. 264–270.

[R] J. Renegar, On the worst-case arithmetic complexity of approximating zeros of polyno-
mials, J. Complexity, 3 (1987). pp. 90–113.

[R93] J. H. Reif, An O(n log3 n) algorithm for the real root problem, in Proc. 34th Annual
IEEE Symposium on Foundations on Computer Science, IEEE, Piscataway, NJ, 1993,
pp. 626–635.

[R97] J. H. Reif, Approximate complex polynomial evaluation in near constant work per point,
in Proc. 29th Annual ACM Symposium on Theory of Computing, ACM, New York,
1997, pp. 30–39.

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE
COMPLEXITY∗

ODED GOLDREICH† , RAFAIL OSTROVSKY‡ , AND EREZ PETRANK§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1116–1141, August 1998 011

Abstract. We study the computational complexity of languages which have interactive proofs
of logarithmic knowledge complexity. We show that all such languages can be recognized in BPPNP .
Prior to this work, for languages with greater-than-zero knowledge complexity only trivial compu-
tational complexity bounds were known. In the course of our proof, we relate statistical knowledge
complexity to perfect knowledge complexity; specifically, we show that, for the honest verifier, these
hierarchies coincide up to a logarithmic additive term.

Key words. zero knowledge, interactive proofs, knowledge complexity, randomness, complexity
classes, cryptography.

AMS subject classification. 68Q15

PII. S0097539795280524

1. Introduction. The notion of knowledge complexity was introduced in the
seminal paper of Goldwasser, Micali, and Rackoff [GMR-85, GMR-89]. Knowledge
complexity is intended to measure the computational advantage gained by interaction.
A formulation of knowledge complexity, for the case that it is not zero, has appeared
in [GP-91]. A very appealing suggestion, made by Goldwasser, Micali, and Rackoff, is
to characterize languages according to the knowledge complexity of their interactive
proof systems [GMR-89].

The lowest level of the knowledge-complexity hierarchy is the class of languages
having interactive proofs of knowledge complexity zero, better known as zero know-
ledge. Actually, there are three hierarchies extending the three standard definitions
of zero knowledge: perfect, statistical, and computational. Assuming the existence of
one-way functions, the third hierarchy collapses; that is, the zero level of the computa-
tional knowledge-complexity hierarchy contains all languages having interactive proof
systems [GMW-86, IY-87, B+ 88], and thus contains all levels of the (computational)
knowledge-complexity hierarchy. In this paper we will be only interested in the other
two hierarchies. Previous works have provided information only concerning the zero
level of these hierarchies (see, for example, Fortnow [F-89] and Aiello and H̊astad
[AH-87]). Our main result is an upper bound on the computational complexity of
languages having logarithmic (statistical) knowledge complexity; namely, we show
that such languages are contained in BPPNP .

We consider the (statistical) knowledge-complexity hierarchy to be a very natural

∗Received by the editors January 18, 1995; accepted for publication June 12, 1996; published elec-
tronically May 19, 1998. An extended abstract of this paper appeared in the 26th ACM Symposium
on Theory of Computing (STOC 94), Montreal, Quebec, Canada, May 23–25, 1994.

http://www.siam.org/journals/sicomp/27-4/28052.html
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot, Israel (oded@wisdom.weizmann.ac.il). This research was supported by grant 92-00226
from the United States—Israel Binational Science Foundation, Jerusalem, Israel.

‡Bell Communications Research, 445 South Street, Morristown, NJ 07960-6438 (rafail@
bellcore.com). Part of this work was done at University of California at Berkeley and Interna-
tional Computer Science Institute at Berkeley and supported by an NSF postdoctoral fellowship and
ICSI.

§DIMACS Center, P.O. Box 1179, Piscataway, NJ 08855-1179 (erez@dimacs.rutgers.edu). This
work was done while the author was a graduate student at the Technion, Haifa, Israel.

1116

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1117

one. Its lowest level resides in the second level of the polynomial-time hierarchy
(cf. [F-89, AH-87, B-85]), whereas as a whole it covers all of PSPACE (cf. [LFKN-90,
Sh-90]). Another hierarchy with a similar feature, which also deserves investigation,
is the hierarchy of languages classified by the number of rounds in their (“shortest”)
interactive proof system. Interestingly, the latter hierarchy has a multiplicative col-
lapse (cf. [BM-88]), whereas no such result is known for the knowledge-complexity
hierarchy.

1.1. Background on knowledge complexity. Loosely speaking, an interactive-
proof system for a language L is a two-party protocol, by which a powerful prover
can “convince” a probabilistic polynomial-time verifier of membership in L but will
fail (with high probability) when trying to fool the verifier into “accepting” nonmem-
bers [GMR-89]. An interactive proof is called zero knowledge if the interaction of any
probabilistic polynomial-time machine with the predetermined prover, on common
input x ∈ L, can be “simulated” by a probabilistic polynomial-time machine (called
the simulator), given only x [GMR-89]. We say that a probabilistic machine M sim-
ulates an interactive proof if the output distribution of M is statistically close to the
distribution of the real interaction between the prover and the verifier.

The formulation of zero knowledge presented above is known as statistical (almost-
perfect) zero knowledge. Alternative formulations of zero knowledge are computational
zero knowledge and perfect zero knowledge. In this paper we concentrate on statistical
zero knowledge and the knowledge-complexity hierarchy that generalizes it.

Loosely speaking, the knowledge complexity of a protocol Π is the number of
oracle bits that are needed to simulate the protocol efficiently. Namely, we say that
a prover leaks (at most) k(·) bits of knowledge to verifier V if there is a probabilistic
polynomial-time oracle machine (“simulator”) M such that on any input x ∈ L,
machine M makes at most k(|x|) oracle queries, and the output distribution of M(x)
is statistically close to the distribution of the conversations in the interaction between
the prover and V . For a formal definition and further discussion, see section 2.2.

The knowledge complexity of a language is the minimum knowledge complexity of
an interactive proof system for that language. We consider the knowledge complexity
of a language to be a very natural parameter. Furthermore, the question of how this
parameter relates to the complexity of deciding the language is a very fundamental
question.

1.2. Previous work. The complexity of recognizing zero-knowledge languages
was first bounded by Fortnow [F-89]. He showed that any language that admits
a zero-knowledge interactive proof is in the class coAM. Subsequently, Aiello and
H̊astad [AH-87] showed that these languages are also in AM.

Bellare and Petrank [BP-92] bounded the computational complexity of languages
which have short interactive proofs with low knowledge complexity. Specifically, they
showed that if a language L has a g(n)-round interactive proof which leaks at most
k(n) bits of knowledge and if k(n) · g(n) = O(log n), then the language can be recog-
nized in BPPNP . This result does not apply to the general class of low knowledge-
complexity languages, since these languages might not have interactive proofs which
are both of small round complexity and low knowledge complexity.

1.3. This work. In this work we extend the result of [BP-92], showing that
any language having an interactive proof with logarithmic knowledge complexity can
be recognized in BPPNP . We recall that BPPNP is contained in the third level of
the polynomial-time hierarchy (PH). It is believed that PH is a proper subset of

1118 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

PSPACE . Thus, assuming PH ⊂
6= PSPACE , our result yields the first proof that

there exist languages in PSPACE which cannot be proven by an interactive proof
that yields O(log n) bits of knowledge. In other words, there exist languages which do
have interactive proofs but only interactive proofs with super-logarithmic knowledge
complexity. We stress that prior to our work there was no indication that would
contradict the possibility that all languages in PSPACE have interactive proofs which
yield only one bit of knowledge.

Our proof that languages of logarithmic knowledge complexity are in BPPNP

consists of two parts. In the first part, we show that the BPPNP procedure described
by Bellare and Petrank [BP-92] is applicable for recognizing languages that have
interactive proofs of logarithmic perfect knowledge complexity. To this end, we use a
more careful analysis than the one used in [BP-92]. In the second part of our proof, we
transform interactive proofs of statistical knowledge complexity k(n) into interactive
proofs of perfect knowledge complexity k(n) + O(log n). This transformation refers
only to knowledge complexity with respect to the honest verifier, but this suffices
since the first part of our proof applies to the knowledge complexity with respect to
the honest verifier. Yet, the transformation is interesting for its own sake, and a few
words are in place.

The question of whether statistical zero knowledge equals perfect zero knowledge
is one of the most fundamental open problems regarding zero knowledge. The question
has been open also for the case of zero knowledge with respect to the honest veri-
fier. Our transformation implies, as a special case, that any statistical zero-knowledge
interactive proof can be modified into an interactive proof of perfect knowledge com-
plexity bounded by a logarithmic function. Following the conference presentation of
our work, Aiello, Bellare, and Venkatesan showed that statistical zero knowledge co-
incides with negligible on the average perfect knowledge complexity [ABV-95]. Their
result is stronger in two respects; it refers to all verifiers, not only the honest verifier,
and it bounds the perfect knowledge complexity by a negligible function rather than
by a logarithmic one. On the other hand, their result is weaker as it refers to a much
more liberal notion of (perfect) knowledge complexity, that is, “average” knowledge
complexity rather than “worst-case” knowledge complexity (as considered here).

1.4. Organization. In section 2, we present the main definitions referred to in
the rest of the paper. These include the definition of an interactive proof system as
well as the definition of its knowledge complexity. Section 3 provides an overview
to our proof that languages having (statistical) knowledge complexity bounded by a
logarithmic function reside in BPPNP . The first part of our proof (i.e., the case of
perfect knowledge complexity) is presented in section 4. The second part of our proof
(i.e., the transformation of statistical knowledge complexity to perfect knowledge
complexity) is presented in section 5. Some concluding remarks appear in section 6.

In Appendix A, we discuss a flaw in Fortnow’s paper [F-89]. We stress that the
main result of [F-89] as well as its main techniques remain valid.

2. Preliminaries. Throughout this paper we use n to denote the length of the
input x. A function f : N → [0, 1] is called negligible if for every positive polynomial p
and all sufficiently large n’s f(n) < 1

p(n) . We will say that two distribution ensembles

indexed by strings are statistically close if the statistical distance between them is a
negligible function of the length of the index.

2.1. Interactive proofs. Let us recall the concept of interactive proofs pre-
sented by [GMR-89]. For formal definitions and motivating discussions the reader is

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1119

referred to [GMR-89]. A protocol between a (computationally unbounded) prover P
and a (probabilistic polynomial-time) verifier V constitutes an interactive proof for a
language L if there exists a negligible function ε : N → [0, 1] such that the following
hold.

1. Completeness. If x ∈ L then

Pr [(P, V)(x) accepts] ≥ 1− ε(n).

2. Soundness. If x 6∈ L then for any prover P ∗

Pr [(P ∗, V)(x) accepts] ≤ ε(n).

2.2. Knowledge complexity. Throughout the rest of the paper, we only refer
to knowledge complexity with respect to the honest verifier, namely, the ability to
simulate the honest verifier’s view of its interaction with the prover. (In the stronger
definition, one considers the ability to simulate the point of view of any efficient
verifier while interacting with the prover.)

We let (P, V)(x) denote the random variable that represents V ’s view of the
interaction with P on common input x. The view contains the verifier’s random tape
as well as the sequence of messages exchanged between the parties.

We begin by briefly recalling the definitions of perfect and statistical zero knowl-
edge. A protocol (P, V) is perfect zero knowledge (resp., statistical zero knowledge)
over a language L if there is a probabilistic polynomial-time simulator M such that for
every x ∈ L the random variable M(x) is distributed identically to (P, V)(x) (resp.,
the statistical difference between M(x) and (P, V)(x) is a negligible function in |x|).

Next, we present the definitions of perfect (resp., statistical) knowledge complex-
ity which we use in the sequel. These definitions extend the definition of perfect (resp.,
statistical) zero knowledge, in the sense that knowledge complexity zero is exactly zero
knowledge. Actually, there are two alternative formulations of knowledge complexity,
called the oracle version and the fraction version. These formulations coincide at the
zero level and differ by at most an additive constant otherwise [GP-91]. For further
intuition and motivation see [GP-91]. It will be convenient to use both definitions in
this paper.

By the oracle formulation, the knowledge complexity of a protocol (P, V) is the
number of oracle (bit) queries that are needed to simulate the protocol efficiently as
described in the following definition.

Definition 2.1 (knowledge complexity—oracle version). Let k: N → N. We
say that an interactive proof (P, V) for a language L has perfect (resp., statistical)
knowledge complexity k(n) in the oracle sense if there exists a probabilistic polynomial-
time oracle machine M and an oracle A such that

1. on input x ∈ L, machine M queries the oracle A for at most k(|x|) bits;
2. for each x ∈ L, machine MA produces an output with probability at least 1

2 ,
and given that MA halts with an output, MA(x) is identically distributed
(resp., statistically close) to (P, V)(x).

In the fraction formulation, the simulator is not given any explicit help. Instead,
one measures the density of the largest subspace of the simulator’s executions (i.e.,
coins) which is identical (resp., statistically close) to the (P, V) distribution.

Definition 2.2 (knowledge complexity—fraction version). Let ρ: N → (0, 1].
We say that an interactive proof (P, V) for a language L has perfect (resp., statistical)
knowledge complexity log2(1/ρ(n)) in the fraction sense if there exists a probabilistic
polynomial-time machine M with the following good subspace property. For any x ∈ L

1120 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

there is a subset of M ’s possible random tapes, denoted Sx, such that the following
hold.

1. The set Sx contains at least a ρ(|x|) fraction of the set of all possible coin
tosses of M(x).

2. Conditioned on the event that M(x)’s coins fall in Sx, the random vari-
able M(x) is identically distributed (resp., statistically close) to (P, V)(x).
Namely, for the perfect case this means that for every c̄,

Prob(M(x, ω)= c̄ |ω∈Sx) = Prob((P, V)(x)= c̄),

where M(x, ω) denotes the output of the simulator M on input x and coin
tosses sequence ω.

As mentioned above, these two measures are almost equal.
Theorem (see [GP-91]). The fraction measure and the oracle measure are equal

up to an additive constant.
Since none of our results is sensitive to a difference of an additive constant in

the measure, we ignore this difference in the subsequent definition as well as in the
statement of our results.

Definition 2.3 (knowledge-complexity classes). PKC(k(·)) (resp., SKC(k(·)))
denotes the class of languages having interactive proofs of perfect (resp., statistical)
knowledge complexity k(·).

2.3. The simulation-based prover. An important ingredient in our proof is
the notion of a simulation-based prover, introduced by Fortnow [F-89]. Consider a
simulator M that outputs conversations of an interaction between a prover P and
a verifier V . We define a new prover P ∗, called the simulation-based prover, which
selects its messages according to the conditional probabilities induced by the simula-
tion. Namely, on a partial history h of a conversation, P ∗ outputs a message α with
probability

Prob(P ∗(h)=α)
def
= Prob(M|h|+1 =h◦α ∣∣M|h|=h),

where Mt denotes the distribution induced by M on t-long prefixes of conversations.
(Here, the length of a prefix means the number of messages in it.)

It is important to note that the behavior of P ∗ is not necessarily close to the
behavior of the original prover P . Specifically, if the knowledge complexity is greater
than zero and we consider the simulator guaranteed by the fraction definition, then
P ∗ and P might have quite a different behavior. Our main objective will be to show
that even in this case P ∗ still behaves in a manner from which we can benefit.

3. Overview. Using Definition 2.3, we state the main result of this paper as
follows.

Main Theorem. SKC(O(log(·))) ⊆ BPPNP .
We recall that all that was previously known regarding the SKC(·) hierarchy is

SKC(0) ⊆ AM ∩ coAM and BPP ⊆ SKC(k) ⊆ SKC(k + 1) ⊆ PSPACE for every
k : N 7→ N.

The Main Theorem is proven in two stages:
1. PKC(O(log(·))) ⊆ BPPNP (see Theorem 1);
2. SKC (k(·)) ⊆ PKC (k(·) +O(log(·))) for every k : N 7→ N (see Theorem 2).

In the rest of this section we make several remarks regarding the above theorems and
provide an overview to their proofs.

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1121

3.1. On the definitions underlying our results.
Remark 1. Usually, the definition of interactive proofs is robust in the sense that

setting the error probability to be bounded away from 1
2 does not change their ex-

pressive power, since the error probability can be reduced by repetitions. However,
this standard procedure is not applicable when knowledge complexity is measured,
since (even sequential) repetitions may increase the knowledge complexity. The ques-
tion is, thus, what is the right definition. The definition used in section 2.1 is quite
standard and natural; it is certainly less arbitrary then setting the error to be some
favorite constant (e.g., 1

3) or function (e.g., 2−n). Yet, our techniques yield nontrivial
results also in case one defines interactive proofs with nonnegligible error probability
(e.g., constant error probability). For example, languages having interactive proofs
with error probability 1

4 and perfect knowledge complexity 1 are also in BPPNP . For
more details see Appendix B.

Remark 2. In the definition used in section 2.1 we have allowed two-sided error
probability, rather than insisting on “perfect completeness” (as is sometimes done).
This strengthens our Main Theorem but weakens the statistical-to-perfect transfor-
mation (i.e., Theorem 2), since a transformation for the case of one-sided error implies
a transformation for the two-sided case,1 whereas the converse is not clear.

Remark 3. The definitions of knowledge complexity in section 2.2 refer to sim-
ulations of the honest verifier. Analogous definitions of knowledge complexity refer
to simulations of arbitrary polynomial-time verifiers (cf. [GP-91]). Let us denote the
corresponding classes by PKC∗(·) and SKC∗(·). Clearly, PKC∗(k(·)) ⊆ PKC(k(·))
and SKC∗(k(·)) ⊆ SKC(k(·)) for every k : N 7→ N. Thus, our Main Theorem is only
strengthened by referring to the honest-verifier classes, whereas Theorem 2 is arguably
weaker than an analogous statement referring to the arbitrary-verifier classes.

3.2. The perfect case—Overview. Our proof of Theorem 1 follows the pro-
cedure suggested in [BP-92], which in turn follows the approach of [F-89, BMO-90,
Ost-91] while introducing a new “uniform generation” procedure which builds on ideas
of [Si-83, St-83, GS-89, JVV-86].

Suppose that (P, V) is an interactive proof of perfect knowledge complexity k(n) =
O(log n) for the languages L, and let M be the simulator guaranteed by the fraction
formulation (i.e., Definition 2.2). We consider the conversations of the original verifier
V with the simulation-based-prover P ∗ (see the definition in section 2.3). We show
that the probability that the interaction (P ∗, V) is accepting is negligible if x 6∈ L
and greater than a polynomial fraction if x ∈ L. Our proof differs from [BP-92] in the
analysis of the case x ∈ L (and thus we get a stronger result although we use the same
procedure). This separation between the cases x 6∈ L and x ∈ L can be amplified
by sequential repetitions of the protocol (P ∗, V). So it remains to observe that we
can sample the (P ∗, V) interactions in probabilistic polynomial time having access
to an NP-oracle. This observation originates from [BP-92] and is justified as follows.
Clearly, V ’s part of the interaction can be produced in polynomial time. Also, by
the uniform generation procedure of [BP-92] we can implement P ∗ by a probabilistic
polynomial-time oracle machine that has access to an NP-oracle. Thus, it remains
only to analyze the accepting probability of (P ∗, V) on input x.

1Suppose one is given a transformation for the one-sided case. Then, given a two-sided interactive
proof of some statistical knowledge complexity one could first transform it to a one-sided error proof
system of the same knowledge complexity (cf. [GMS-87]). Applying the transformation for the one-
sided case to the resulting one-sided error-proof system yields an (one-sided error) interactive proof
with the desired knowledge complexity.

1122 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

The case x 6∈ L follows trivially from the soundness condition of V . The challeng-
ing case is when x ∈ L. If k(n) = 0 this case is easy since P ∗ behaves exactly as P
and so the completeness condition guarantees that x will be accepted with very high
probability. However, in case k(n) > 0 this argument is not valid and the simulator-
based prover may behave very differently from the prescribed prover. Note that it is
possible to define a prover P ∗∗ based on the behavior of the simulator on the “good
subspace” and that P ∗∗ will indeed behave as P . However, it is not clear if P ∗∗ can be
implemented in a relatively efficient manner (e.g., by a probabilistic polynomial-time
machine that has access to an NP-oracle). Thus, we need to analyze the behavior
of (P ∗, V) on x ∈ L. For the sake of simplicity, we consider here only the special
case in which (P, V)(x) is always accepting (i.e., “perfect” completeness). Recall that
the deviation of P ∗ from the behavior of P is due to the fact that behavior of the
former is conditioned on the entire probability space of the simulator, whereas the
latter is conditioned on the “good subspace.” In each case the next prover move is
determined by the set of all simulator coins which match the current history of the
interaction. For P ∗ this is the set of all coin tosses which may produce this history,
whereas for P this is the set of all good coin tosses (i.e., coins in the “good subspace”)
which produce this history. We first observe that the key parameter for the analysis
of P ∗ is the ratio between the size of the residual probability space of the simulator
and the size of the residual space of good coins. Actually, we consider the reciprocal
of the above ratio. We observe that the expected value of the latter ratio may only
increase as a function of the history length, where the expectation is taken over all
possible histories of fixed length as produced by a (P ∗, V) interaction. Finally, we
observe that the expected value of the ratio for a full interaction is a lower bound on
the probability that P ∗ makes V accept the input, whereas for the empty interaction
the ratio equals 2−k.

3.3. The transformation—Overview. Our proof of Theorem 2 refers to the
oracle formulation of knowledge complexity (see Definition 2.1). Suppose we are given
a simulator which produces output that is statistically close to the real prover–verifier
interaction. We will change both the interactive proof and its simulation so that
they produce exactly the same distribution. We will take advantage of the fact that
the prover in the interactive proof and the oracle that “assists” the simulator are
both infinitely powerful. Thus, the modification to the prover’s program and the
augmentation to the oracle need not be efficiently computable. We stress that the
modification to the simulator itself will be efficiently computable. Also, we maintain
the original verifier (of the interactive proof), and thus the resulting interactive proof
is still sound. Furthermore, the resulting interaction will be statistically close to the
original one (on any x ∈ L) and, therefore, the completeness property of the original
interactive proof is maintained (although the error probability here may increase by
a negligible amount).

The key question is how can we modify the two relevant distributions so that they
become identical rather than statistically close. The easy case is when some conversa-
tion is more likely in the simulation (than in the original prover–verifier interaction).
This case is handled by providing the oracle with a candidate conversation and hav-
ing the oracle decide probabilistically whether we should output this conversation or
not. Thus, we can use one additional oracle query in order to lower the probability
of conversations produced by the original simulator. However, the challenging case
is when some conversation is less probable in the simulation (than in the original
interaction). Using the oracle to produce such conversations is too costly, in terms of

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1123

query complexity, unless we consider average-case query complexity (as in [ABV-95]).
Thus, we need a different approach. Our approach is to modify the original prover
so that it truncates conversations at a point where they become less probable in the
simulation. This truncation is also probabilistic. A new simulator, with the help of
an augmented oracle, will have to detect the truncation point and produce truncated
conversations with the same probability as they are produced in interaction with the
new prover. In order to specify the truncation point we need to get a t-ary value from
the oracle, where t is the total number of bits in the interaction. This is implemented
using log2 t queries giving rise to the additive logarithmic factor in the result of the
theorem.

4. The perfect case. In this section we prove that the Main Theorem holds for
the special case of perfect knowledge complexity.

Theorem 1. PKC(O(log n)) ⊆ BPPNP .
As stated above, our proof follows the procedure suggested in [BP-92]. Suppose

that (P, V) is an interactive proof of perfect knowledge complexity k(n) = O(log n)
for the languages L, and let M be the simulator guaranteed by Definition 2.2. Let us
denote by P ∗ the simulation-based prover (for M); see section 2.3. Then the following
holds.

Lemma 4.1 (see [BP-92]). P ∗ can be implemented by a probabilistic polynomial-
time oracle machine that has access to an NP-oracle.

Lemma 4.2 (analysis of the behavior of P ∗).
1. If x ∈ L then the probability that (P ∗, V) outputs an accepting conversation

is at least 1
2 · 2−k(|x|).

2. If x 6∈ L then the probability that (P ∗, V) outputs an accepting conversation
is negligible (in |x|).

Remark. In [BP-92], a weaker lemma is proven. Specifically, they show that
the probability that (P ∗, V) outputs an accepting conversation on x ∈ L is related
to 2−k(|x|)·t(|x|), where t(·) is the number of rounds in the protocol. We stress that
our lemma does not refer to the number of rounds which may be polynomial in |x|,
whereas the weaker form of [BP-92] is meaningful only for logarithmic number of
rounds (i.e., t(n) = O(log n)).

4.1. Proof of Theorem 1. Combining Lemma 4.1 with the fact that V is prob-
abilistic polynomial time and using Lemma 4.2, we obtain a probabilistic polynomial-
time oracle machine A that when given access to an NP-oracle satisfies, for some
polynomial p, the following statements.

1. If x ∈ L then Prob(ANP (x)=1) ≥ 1
p(|x|) .

2. If x 6∈ L then Prob(ANP (x)=1) ≤ 1
2p(|x|) .

(For example, p(n) = 2k(n)+1 will do.) Using standard amplification, we conclude
that L ∈ BPPNP .

4.2. Proof of Lemma 4.2. The second part of the lemma follows from the
soundness property of V ; namely, the probability that V accepts x 6∈ L is negligible
no matter what the prover does. We thus concentrate on the first part. We fix an
arbitrary x ∈ L for the rest of the proof and allow ourselves not to mention it in the
sequel discussion and notation. Let k = k(|x|) and q be the number of coin tosses

made by M . We denote by Ω
def
= {0, 1}q the set of all possible coin tosses, and by S

the “good subspace” of M (i.e., S has density 2−k in Ω and for ω chosen uniformly
in S the simulator outputs exactly the distribution of the interaction (P, V)).

1124 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

4.2.1. Motivation. Consider the conversations that are output by the simulator
on coins ω ∈S. The probability of getting such a conversation when the simulator is
run on ω uniformly selected in Ω is at least 2−k. We claim that the probability to get
these conversations in the interaction (P ∗, V) is also at least 2−k. This is not obvious,
since the distribution produced by (P ∗, V) may not be identical to the distribution
produced by M on a uniformly selected ω ∈ Ω. Nor is it necessarily identical to the
distribution produced by M on a uniformly selected ω ∈ S. However, the prover’s
moves in (P ∗, V) are distributed as in the case that the simulator selects ω uniformly
in Ω, whereas the verifier’s moves (in (P ∗, V)) are distributed as in the case that the
simulator selects ω uniformly in S. Thus, it should not be too surprising that the
above claim can be proven.

However, we need more than the above claim. It is not enough that the (P ∗, V)
conversations have an origin in S, they must be accepting as well. (Note that this is
not obvious since M simulates an interactive proof that may have two-sided error.)
Again, the density of the accepting conversations in the “good subspace” of M is high,
yet we need to show that this is the case also for the (P ∗, V) interaction. Actually,
we will show that the probability than a (P ∗, V) conversation is accepting and “has
an origin” in S is at least 1

2 · 2−k.
4.2.2. Preliminaries. Let us begin the formal argument with some notations.

For each possible history of the interaction h, we define subsets of the random tapes
of the simulator (i.e., subsets of Ω) as follows. Ωh is the set of ω ∈ Ω which causes the
simulator to output a conversation with prefix h. Sh is the subset of ω’s in Ωh which
are also in S. Ah is the set of ω’s in Sh which are also accepting. Thus, letting Mt(ω)
denote the t-message long prefix output by the simulator M on coins ω, we get

Ωh
def
= {ω : M|h|(ω)=h},

Sh
def
= Ωh ∩ S,

Ah
def
= {ω ∈ Sh : M(ω) is accepting}.

Let C be a random variable representing the (P ∗, V) interaction, and χ be an indicator
so that χ(c̄) = 1 if the conversation c̄ is accepting and χ(c̄) = 0 otherwise. Our aim
is to prove that Prob(χ(C) = 1) ≥ 1

2 · 2−k. Note that

Prob(χ(C) = 1) =
∑
c̄

Prob(C= c̄) · χ(c̄)

≥
∑
c̄

Prob(C= c̄) · |Ac̄|
|Ωc̄| .

The last expression is exactly the expectation value of |Ac|
|Ωc| . Thus, it suffices to show

that

Expc̄

(|Ac̄|
|Ωc̄|

)
>

1

2
· 2−k,(1)

where the expectation is over the possible conversations c̄ as produced by the inter-
action (P ∗, V). Once equation (1) is proven, we are done. Denote the empty history
by λ. To prove equation (1) it suffices to prove that

Expc̄

(|Ac̄|
|Ωc̄| ·

|Ac̄|
|Sc̄|

)
≥ |Aλ|
|Ωλ| ·

|Aλ|
|Sλ|(2)

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1125

since using equation (1), |Aλ|
|Sλ| >

√
1
2 and |Sλ|

|Ωλ| ≥ 2−k, we get

Expc̄

(|Ac̄|
|Ωc̄|

)
≥ |Aλ|

|Ωλ| ·
|Aλ|
|Sλ|

=

(|Aλ|
|Sλ|

)2

· |Sλ||Ωλ|
>

1

2
· 2−k.

The proof of equation (2) is by induction on the number of rounds. Namely, for each

round i we show that the expected value of |Ah|
|Ωh| ·

|Ah|
|Sh| over all possible histories h of i

rounds (i.e., length i) is greater or equal to the expected value of this expression over
all histories h′ of i − 1 rounds. In order to show the induction step we consider two
cases:

1. the current step is by the prover (i.e., P ∗); and
2. the current step is by the verifier (i.e., V).

In both cases we show, for any history h,

Expm

(|Ah◦m|
|Ωh◦m| ·

|Ah◦m|
|Sh◦m|

)
≥ |Ah|
|Ωh| ·

|Ah|
|Sh| ,(3)

where the expectation is over the possible current moves m, given history h, as pro-
duced by the interaction (P ∗, V).

4.2.3. A technical claim. The following technical claim is used for deriving
the inequalities in both cases.

Claim 4.3. For 1 ≤ i ≤ n, let xi and yi be positive reals. Then,

n∑
i=1

xi
2

yi
≥ (

∑n
i=1 xi)

2∑n
i=1 yi

.

Proof. The Cauchy–Schwarz inequality asserts(
n∑
i=1

ai
2

)
·
(

n∑
i=1

bi
2

)
≥
(

n∑
i=1

ai · bi
)2

.

Setting ai
def
=
√
yi (we can do this since yi is positive) and bi

def
= xi

ai
and rearranging

the terms, we get the desired inequality.

4.2.4. Prover step (denoted α). Using the fact that P ∗ is a simulation-based
prover for M , we observe that given history h, the prover P ∗ sends α as its next

message with probability exactly |Ωh◦α|
|Ωh| . Thus,

Expα

(|Ah◦α|
|Ωh◦α| ·

|Ah◦α|
|Sh◦α|

)
=
∑
α

|Ωh◦α|
|Ωh| · |Ah◦α|

|Ωh◦α| ·
|Ah◦α|
|Sh◦α|

=
1

|Ωh| ·
∑
α

|Ah◦α|2
|Sh◦α|

≥|Ah|
|Ωh| ·

|Ah|
|Sh| .

The inequality is justified by using Claim 4.3 and noting that
∑

α |Ah◦α| = |Ah| and∑
α |Sh◦α| = |Sh|.

1126 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

4.2.5. Verifier step (denoted β). Using the perfectness of the simulation,
when restricted to the good subspace S, we observe that given history h the verifier

V sends β as its next message with probability exactly
|Sh◦β |
|Sh| . Thus,

Expβ

(|Ah◦β |
|Ωh◦β | ·

|Ah◦β |
|Sh◦β |

)
=
∑
β

|Sh◦β |
|Sh| · |Ah◦β |

|Ωh◦β | ·
|Ah◦β |
|Sh◦β |

=
1

|Sh| ·
∑
β

|Ah◦β |2
|Ωh◦β |

≥|Ah|
|Ωh| ·

|Ah|
|Sh| .

The inequality is justified by using Claim 4.3 and noting that
∑

β |Ah◦β | = |Ah| and∑
β |Ωh◦β | = |Ωh|.

Having proven equation (3) for both cases, equation (2) follows and so does the
lemma.

5. The transformation. In this section we show how to transform statistical
knowledge complexity into perfect knowledge complexity, incurring only a logarithmic
additive term.

Theorem 2. For every (poly-time computable) k : N 7→ N,

SKC (k(·)) ⊆ PKC (k(·) +O(log(·))) .

We stress again that these knowledge-complexity classes refer to the honest verifier
and that we don’t know whether such a result holds for the analogous knowledge-
complexity classes referring to arbitrary (polynomial-time) verifiers.

The rest of this section is devoted to proving the above theorem. All the numbered
claims appearing below are quite evident from the corresponding definitions and so
the reader may skip their proofs (which are provided for sake of completeness). This
holds also with respect to Claim 5.3.

5.1. Preliminaries. Let L ∈ SKC(k(·)), and let (P, V) be the guaranteed in-
teractive proof. Without loss of generality, we may assume that all messages are
of length 1. Here we use the oracle formulation of knowledge complexity (see Def-
inition 2.1). Recall that Definition 2.1 only guarantees that the simulator produces
output with probability at least 1

2 . Yet, employing Proposition 3.8 of [GP-91], we get
that there exists an oracle machine M that, after asking k(n) + 2 log logn queries,
always produces an output so that the output is statistically close to the interaction

of (P, V). Let A denote the associated oracle and let M ′ def
= MA. When we talk in

the sequel of modifying M ′, what we actually mean is modifications to the code of M
and augmentations of the oracle A. All the modifications in the code correspond to
operations that can be performed in probabilistic polynomial time.

Let P ′ be the simulation-based prover induced by M ′. Similarly, let V ′ be the
simulator-based verifier induced by M ′. A simulator-based verifier is defined analo-
gously to the simulator-based prover. It is a fictitious entity which does not necessarily
coincide with V . Thus, M ′(x) and (P ′, V ′)(x) are identically distributed. In the rest
of the presentation, we fix a generic input x ∈ L and omit it from the notation.

Notation. Let [A,B]i be a random variable representing the i-message (i-bit)
long prefix of the interaction between A and B (the common input x is implicit in

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1127

the notation). We denote by A(h) the random variable representing the message sent
by A after interaction history h. Thus, if the ith message is sent by A, we can write
[A,B]i−1 ◦ A([A,B]i−1) = [A,B]i. By X

s
= Y we denote the fact that the random

variables X and Y are statistically close.
Using these notations we may write for every h ∈ {0, 1}i and σ ∈ {0, 1},

Prob(P ′(h) = σ) = Prob ([M ′]i+1 = h ◦ σ | [M ′]i = h)

and, similarly,

Prob(V ′(h) = σ) = Prob ([M ′]i+1 = h ◦ σ | [M ′]i = h) .

Claim 5.1 (analysis of the behavior of (P ′, V)). The distribution induced by
(P ′, V) is statistically close to the distributions induced by both M ′ = (P ′, V ′) and
(P, V).

Proof. By definition, the distributions produced by M ′ = (P ′, V ′) and (P, V) are
statistically close. Thus, we have

[P, V]i
s
= [P ′, V ′]i for every i.(4)

We prove that [P ′, V] is statistically close to [P ′, V ′] by induction on the length of the
interaction. We stress that we will use the induction hypothesis only once in our proof
of the induction step, and thus the statistical distance grows at most linearly with
the number of induction steps. Since the number of induction steps is polynomial,
the statistical distance at the last induction step (i.e., between the random variables
representing the full interaction) is negligible. (Note that for every negligible function

µ and any polynomial p the function µ′(n)
def
= p(n) · µ(n) is negligible.)

We now prove the induction step. Assuming that [P ′, V]i
s
= [P ′, V ′]i, we wish to

prove it for i+ 1. We distinguish two cases. In case the i+ 1st move is by the prover,
we get

[P ′, V]i+1 = [P ′, V]i ◦ P ′([P ′, V]i)
s
= [P ′, V ′]i ◦ P ′([P ′, V ′]i)
= [P ′, V ′]i+1,

where
s
= follows by the induction hypothesis. (Actually, we also use the fact that the

statistical distance can only decrease when the same probabilistic process is applied

to two random variables; specifically, the process here is R(x)
def
= x ◦ P ′(x).) In case

the i+ 1st move is by the verifier, we get

[P ′, V]i+1 = [P ′, V]i ◦ V ([P ′, V]i)
s
= [P ′, V ′]i ◦ V ([P ′, V ′]i)
s
= [P, V]i ◦ V ([P, V]i)

= [P, V]i+1

s
= [P ′, V ′]i+1,

where the first
s
= is justified by the induction hypothesis and the other two by equa-

tion (4).

1128 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

5.2. Motivating discussion. Note that the statistical difference between the
interaction (P ′, V) and the simulation M ′ = (P ′, V ′) is due solely to the difference
between the proper verifier (i.e., V) and the verifier induced by the simulator (i.e.,
V ′). This difference is due to V ′ putting too much probability weight on certain moves
and thus also too little weight on their sibling messages (recall that a message in the
interaction consists of a single bit). In what follows we deal with two cases.

The first case is when this difference between the behavior of V ′ (induced by M ′)
and the behavior of the verifier V is “more than tiny.” This case receives most of
our attention. We are going to use the oracle in order to move weight from a verifier
message β that gets too much weight (after a history h) to its sibling message β ⊕ 1
that gets too little weight in the simulation. Specifically, when the new simulator M ′′

invokes M ′ and comes up with a conversation that has h◦β as a prefix, the simulator
M ′′ (with the help of the oracle) will output a conversation with the prefix h ◦ (β⊕ 1)
instead of outputting the original conversation. The simulator M ′′ will do this with
probability that exactly compensates for the difference between V ′ and V . This leaves
one problem. How does the new simulator M ′′ come up with a conversation that has a
prefix h◦(β⊕1)? The cost of letting the oracle supply the rest of the conversation (after
the known prefix h ◦ (β ⊕ 1)) is too high. We adopt a “brutal” solution in which we
truncate all conversations that have h◦ (β⊕1) as a prefix. The truncation takes place
both in the interaction (P ′′, V), where P ′′ stops the conversation after β ⊕ 1 (with a
special stop message) and in the simulation where the oracle recognizes cases in which
the simulator M ′′ should output a truncated conversation. These changes make M ′′

and V behave exactly the same on messages for which the difference between V ′ and
V is more than tiny. Naturally, V immediately rejects when P ′′ stops the interaction
abruptly, so we have to make sure that this change does not foil the ability of P ′′

to convince V on an input x ∈ L. It turns out that these truncations happen with
negligible probability since such truncation is needed only when the difference between
V and V ′ is more than tiny. Thus, P ′′ convinces V on x ∈ L almost with the same
probability as P ′ does.

The second possible case is that the difference between the behavior of V and V ′ is
tiny. In this case, looking at a full conversation c̄, we get that the tiny differences sum
up to a small difference between the probability of c̄ in the distributions of M ′ and of
(P ′, V). We correct these differences by lowering the probabilities of all conversations
in the new simulator. The probability of each conversation is lowered so that its
relative weight (relative to all other conversations) is equal to its relative weight in
the interaction (P ′′, V). Technically, this is done by M ′′ not producing an output in
certain cases that M ′ did produce an output.

Technical remark. The oracle can be used to allow the simulator to toss bias
coins even when the simulator does not “know” the bias. Suppose that the simulator
needs to toss a coin so that it comes up head with probability N

2m , where N < 2m

and both N and m are integers. The simulator supplies the oracle with a uniformly
chosen r ∈ {0, 1}m and the oracle answers head if r is among the first N strings
in {0, 1}m and tail otherwise. A similar procedure is applicable for implementing a
lottery with more than two a priori known values. Using this procedure, we can get
extremely good approximations of probability spaces at a cost related to an a priori
known upper bound on the size of the support (i.e., the oracle answer is logarithmic
in the size of the support).

5.3. Weak, good, critical, and cocritical conversations. Motivated by the
above discussion we make the following definitions.

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1129

Definition. Let ε
def
= 1

4t , where t is the number of rounds in the interaction
(P, V). (This setting guarantees that (1− ε)t ≥ 3

4 .)

• Let h be a partial history of the interaction and β be a possible next move by
the verifier. We say that β is weak with respect to h if

Prob(V ′(h)=β) < (1− ε) · Prob(V (h)=β).

• A conversation c̄ = (c1, ..., ct) is i-weak if ci is weak with respect to (c1, ..., ci−1),
otherwise it is i-good. (Note that a conversation can be i-weak only if the ith
move is a verifier move.)

• A conversation c̄ = (c1, ..., ct) is i-critical if it is i-weak but j-good for every
j < i. A conversation c̄ is i-cocritical if the conversation obtained from c̄, by
complementing (only) the ith bit, is i-critical. (Note that a conversation can
be i-critical only for a single i, yet it may be i-cocritical for many i’s.)

• A conversation is weak if it is i-weak for some i, otherwise it is good.

We first show that weak conversations occur with negligible probability.

Claim 5.2 (rarity of weak conversations). (P ′, V) outputs weak conversations
with negligible probability.

Proof. Recall that [P ′, V]
s
= [P ′, V ′] and that the same holds also for prefixes of

the conversations. Namely, for any 1 ≤ i ≤ t, [P ′, V]i
s
= [P ′, V ′]i. Let us define a

prefix h ∈ {0, 1}i of a conversation to be bad if either

Prob([P ′, V ′]i=h) <
(
1− ε

2

)
· Prob([P ′, V]i=h)

or

Prob([P ′, V ′]i=h) >
(
1 +

ε

2

)
· Prob([P ′, V]i=h).

The claim follows by combining two elementary facts.

Fact 5.2.1. The probability that (P ′, V) outputs a conversation with a bad prefix
is negligible.

Proof. For any i ≤ t, define Bi to be the set of bad prefixes of length i. By the
statistical closeness of [P ′, V]i and [P ′, V ′]i, we get that

∆
def
=
∑
h∈Bi

|Prob([P ′, V]i=h)− Prob([P ′, V ′]i=h)| ≤ γ

for some negligible fraction γ. On the other hand,

∆ =
∑
h∈Bi

Prob([P ′, V]i=h) ·
∣∣∣∣1− Prob([P ′, V ′]i=h)

Prob([P ′, V]i=h)

∣∣∣∣ > Prob([P ′, V]i∈Bi) ·
∣∣∣± ε

2

∣∣∣ .
Thus, Prob([P ′, V]i∈Bi) <

2γ
ε and the fact follows.

Fact 5.2.2. If a conversation c̄ = (c1, ..., ct) is weak then it contains a bad prefix.

Proof. Suppose that β
def
= ci+1 is weak with respect h

def
= (c1, ..., ci). If h is a bad

prefix then we are done. Otherwise it holds that

Prob([P ′, V ′]i=h) ≤
(
1 +

ε

2

)
· Prob([P ′, V]i=h).

1130 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

Using the fact that β is weak with respect to h, we get

Prob([P ′, V ′]i+1 =h ◦ β) <
(
1 +

ε

2

)
· (1− ε) · Prob([P ′, V]i+1 =h ◦ β)

<
(
1− ε

2

)
· Prob([P ′, V]i+1 =h ◦ β),

which implies that h ◦ β is a bad prefix.
Combining Facts 5.2.1 and 5.2.2, Claim 5.2 follows.

5.4. Dealing with weak conversations. We start by modifying the prover P ′,
resulting in a modified prover denoted P ′′, that stops once it gets a verifier message
which is weak with respect to the current history; otherwise, P ′′ behaves as P ′.

Definition (modified prover - P ′′). For any h ∈ {0, 1}∗ and β ∈ {0, 1},

P ′′(h ◦ β) =

{
stop if β is weak with respect to h,
P ′(h ◦ β) otherwise.

We assume that the verifier V stops and rejects immediately upon receiving an illegal
message from the prover (and in particular upon receiving this stop message).

Next, we modify the simulator, M ′, so that it outputs either good conversations
or truncated conversations which are originally i-critical. Jumping ahead, we stress
that such truncated i-critical conversations will be generated from both i-critical and
i-cocritical conversations. The modified simulator, denoted M ′′, proceeds as follows.
(We stress that P ′′ is not necessarily the simulator-based prover of M ′′.)

Definition (modified simulator - M ′′). First, M ′′ invokes M ′ and obtains a
conversation c̄ = (c1, ..., ct). Next, it queries the augmented oracle on c̄. The oracle
answers probabilistically and its answers are of the form (i, σ), where i ∈ {1, ..., t} and
σ ∈ {0, 1}. Finally, M ′′ halts outputting (c1, ..., ci−1, ci ⊕ σ).

In case σ = 1 the output of M ′′ is not a prefix of the output it has obtained from
M ′. Furthermore, i may be smaller than t, in which case M ′′ outputs a truncated
conversation which, as we see below, is always i-critical; otherwise, M ′′ outputs a
nontruncated conversation. Observe that the oracle message contains 1 + log2 t bits,
where t is the length of the interaction between P ′ and V . It remains to specify the
oracle’s answer distribution. We first remark that the oracle only returns pairs (i, σ)
for which one of the following three conditions holds

1. c̄ is good, i = t and σ = 0 (if c̄ is good and is not j-cocritical for any j then
the oracle always answers this way);

2. c̄ is i-critical and σ = 0;
3. c̄ is i-cocritical and σ = 1. (Hence, (c1, ..., ci−1, ci ⊕ 1) is i-critical.)

To motivate the definition of the augmented oracle, we first consider two special
cases. In the first case, the conversation generated by M ′ is i-critical for some i but
is not j-cocritical for any j < i. In this case the oracle always answers (i, 0) and
consequently the simulator always outputs the i-bit long prefix. However, this prefix
is still being output with too low probability. This will be corrected by the second
case hereby described. In this case, the conversation c̄ generated by M ′ is good and
i-cocritical for a single i. This means that the i-bit long prefix is given too much
probability weight, whereas the prefix obtained by complementing the ith bit gets too
little weight. To correct this, the oracle outputs (i, 1) with probability q and (t, 0)
otherwise, where q will be specified. What happens is that M ′′ will output the “i-
complemented prefix” with higher probability than with which it has appeared in M ′.
The value of q is determined as follows. Denote p

def
= Prob(V (c1, ..., ci−1)=ci⊕1) and

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1131

p′ def
= Prob(V ′(c1, ..., ci−1)=ci ⊕ 1). Then, setting q so that p′ + (1− p′) · q = p (i.e.,

q = p−p′
1−p′) allows the simulator to output the prefix (c1, ..., ci−1, ci ⊕ 1) with the right

probability (i.e., as in a (P ′′, V) interaction). In the general case, the conversation
generated by M ′ may be i-cocritical for many i’s as well as j-critical for some (single)
j. In case it is j-critical, it can be i-cocritical only for i < j.

Definition (the augmented oracle answers). Let us consider the sequence of in-
dices (i1, ..., il) for which the generated conversation c̄ is critical or cocritical (i.e., the
conversation is ik-cocritical for all k < l and is either il-critical or il-cocritical). We
consider two cases. In both cases the qk’s are set as in the above example; namely, qk =
pk−p′k
1−p′

k
, where pk

def
= Prob(V (c1, ..., cik−1)=cik ⊕ 1) and p′k

def
= Prob(V ′(c1, ..., cik−1)=

cik ⊕ 1).
1. The generated conversation c̄ = (c1, ..., ct) is ik-cocritical for every k < l and

is il-critical. In this case, the distribution of the oracle answers is as follows.
For every k < l, the pair (ik, 1) is returned with probability (

∏
j<k(1−qj)) ·qk,

whereas the pair (il, 0) appears with probability
∏

j<l(1− qj). We stress that
no other pair appears in this distribution (and indeed the reader can easily
verify that these probabilities sum up to 1).

2. The generated conversation c̄ = (c1, ..., ct) is ik-cocritical for every k ≤ l. In
this case, the distribution of the oracle answers is as follows. For every k ≤ l,
the pair (ik, 1) is returned with probability (

∏
j<k(1 − qj)) · qk, whereas the

pair (t, 0) appears with probability
∏

j≤l(1−qj). Again, no other pair appears
in this distribution. In particular, if l = 0 then the oracle always returns the
pair (t, 0).

Claim 5.3 (analysis of the behavior of P ′′ and M ′′).
1. [P ′′, V]

s
= [P ′, V].

2. Let c̄ be an arbitrary conversation of (P ′′, V). Then

Prob (M ′′= c̄) ≥ (1− ε)t · Prob ([P ′′, V]= c̄) .

Recall that (1− ε)t ≥ 3
4 (by definition of ε).

Proof. The weak conversations are negligible in the output distribution of (P ′, V)
(see Claim 5.2). The only difference between [P ′′, V] and [P ′, V] originates from a
different behavior of P ′′ on weak conversations; specifically, P ′′ truncates them while
P ′ does not. Yet, the distribution on the good conversations remains unchanged.
Therefore, the distribution of [P ′′, V] is statistically close to the distribution of [P ′, V],
and we are done with part 1.

We start the proof of part 2 by writing again the probability that (P ′′, V) outputs
c̄ as the product of the conditional probabilities of the t steps. Namely,

t∏
i=1

Prob ([P ′′, V]i+1 =hi ◦ ci+1 | [P ′′, V]i=hi) ,

where hi
def
= (c1, ..., ci). We do the same for the probability that M ′′ outputs a conver-

sation c̄. We will show by induction that each step of any conversation is produced
by M ′′ with at least (1 − ε) times the probability of the same step in the (P ′′, V)-
interaction. Once we have shown this, we are done. Clearly this claim holds for the
null prefix. To prove the induction step, we consider the two possibilities for the party
making the i+ 1st step.

i + 1st step is by the prover. Consider the conditional behavior of M ′′ given the
history so far. We will show that this behavior is identical to the behavior of P ′′ on

1132 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

the same partial history. A delicate point to note here is that we may talk about the
behavior of M ′′ on a prefix hi only if this prefix appears with positive probability in
the output distribution [M ′′]i. However, by the induction hypothesis any prefix that
is output by [P ′′, V]i appears with positive probability in [M ′′]i.

We partition the analysis into two cases.
1. First, we consider the case in which the last message of the verifier is weak

with respect to the history that precedes it. Namely, h = h′ ◦β and β is weak
with respect to h′. In this case, both in the interaction (P ′′, V) and in the
simulation M ′′, the next message of the prover is set to stop with probability
1. Namely,

Prob (M ′′ = h ◦ stop | [M ′′]i = h) = 1 = Prob (P ′′(h) = stop) .

2. The other possible case is that the last message of the verifier is not weak
with respect to its preceding history. In this case, the simulator M ′′ behaves
like M ′ and the prover P ′′ behaves like P ′. (Note that the changes in critical
and cocritical steps apply only to verifier steps.) Thus,

Prob ([M ′′]i+1 = h ◦ α | [M ′′]i = h) = Prob ([M ′]i+1 = h ◦ α | [M ′]i = h)

= Prob (P ′(h) = α)

= Prob (P ′′(h) = α) .

To summarize, the conditional behavior of M ′′ in the prover steps and the conditional
behavior of P ′′ are exactly equal.

i+ 1st step is by the verifier. Again, we consider the conditional behavior of M ′′

given the history so far. Let us recall the modification applied to M ′ when deriving
M ′′. This modification changes the conditional probability of the verifier steps in
the distribution of M ′ in order to add weight to steps having low probability in the
simulation. We note that this modification is made only in critical or cocritical steps
of the verifier. Consider a history hi which might appear in the interaction (P ′′, V)
and a possible response β of V to hi. Again, by the induction hypothesis, hi has
a positive probability to be output by the simulation M ′′ and, therefore, we may
consider the conditional behavior of M ′′ on this history hi. There are three cases to
be considered, corresponding to whether either β or β⊕1 or none is weak with respect
to hi.

We start with the simplest case in which neither β nor β ⊕ 1 is weak (w.r.t. hi).
In this case, the behavior of M ′′ is identical to the behavior of M ′ since the oracle
never sends the message (i + 1, σ) in this case. However, by the fact that β is not
weak, we get that

(1− ε) · Prob(V (h) = β) ≤ Prob ([M ′]i+1 = h ◦ β | [M ′]i = h)

= Prob ([M ′′]i+1 = h ◦ β | [M ′′]i = h)

and we are done with this simple case.
We now turn to the case in which β is weak (w.r.t. hi). In this case, given that

M ′′ has produced the prefix hi, it produces hi ◦ β whenever M ′ produces the prefix
hi ◦ β. Furthermore, with conditional probability q (as defined above), M ′′ produces
the prefix hi ◦ β also in case M ′ produces the prefix hi ◦ (β ⊕ 1). As above, we define

p
def
= Prob (V (hi) = β) ,

p′ def
= Prob (V ′(hi) = β) .

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1133

Since V ′ is the simulation-based verifier (for M ′), we may also write

p′ = Prob ([M ′]i+1 = hi ◦ β | [M ′]i = hi) .(5)

Also, recall that q was defined as p−p′
1−p′ . Now, using these notations,

Prob ([M ′′]i+1 = hi ◦ β | [M ′′]i=hi) = Prob ([M ′]i+1 =hi ◦ β | [M ′]i=hi)

+
p− p′

1− p′
· Prob ([M ′]i+1 =hi ◦ (β ⊕ 1) | [M ′]i=hi) .

Using equation (5), we get

= p′ +
p− p′

1− p′
· (1− p′)

= p

= Prob (V (h) = β) .

Finally, we turn to the case in which β ⊕ 1 is weak (w.r.t. hi). This means that
β is cocritical in c̄. Given that M ′′ has produced the prefix hi, it produces hi ◦ β
only when M ′ produces the prefix hi ◦ β and, furthermore, M ′′ does so only with
probability 1−q (where q is again as defined above). We denote p and p′ with respect
to the critical message β ⊕ 1. Namely,

p
def
= Prob (V (hi) = β ⊕ 1) ,

p′ def
= Prob (V ′(hi) = β ⊕ 1)

= Prob ([M ′]i+1 = hi ◦ (β ⊕ 1) | [M ′]i = hi) .

Thus, recalling that q = p−p′
1−p′ , we get

Prob ([M ′′]i+1 =hi ◦ β | [M ′′]i=hi) =

(
1− p− p′

1− p′

)
· Prob ([M ′]i+1 =hi ◦ β | [M ′]i=hi)

=
1− p

1− p′
· (1− p′)

= 1− p

= Prob (V (hi) = β) .

This completes the proof of Claim 5.3.

5.5. Lowering the probability of some simulator outputs. By virtue of the
modification of M ′ into M ′′, we have arrived at a situation in which every conversation
appears in the output of M ′′ with probability which cannot be much smaller than
the probability that the conversation appears in [P ′′, V]. Specifically, by part 2 of
Claim 5.3 (and by (1− ε)t ≥ 3

4), we have for every c̄

Prob (M ′′= c̄) ≥ 3

4
· Prob ([P ′′, V]= c̄) .(6)

Thus, all that is required is to lower the probabilities that the (modified) simulator
outputs each conversation c̄ to exactly 3

4 ·Prob([P ′′, V]= c̄). This can be done by “siev-
ing” the output of M ′′ using an additional query to the (further-augmented) oracle.
Specifically, the modified simulator, denoted M ′′′, runs M ′′ to obtain a conversation

1134 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

c̄. (Note that M ′′ always produces output.) Using a further-augmented oracle, M ′′′

outputs c̄ with probability

pc̄
def
=

3

4
· Prob([P ′′, V]= c̄)

Prob([M ′′]= c̄)

and halts without output otherwise. Note that pc̄ ≤ 1 holds due to equation (6).

Claim 5.4 (analysis of the behavior of M ′′′).
1. M ′′′ produces output with probability 3

4 .
2. The output distribution of M ′′′ (i.e., in case it has output) is identical to the

distribution [P ′′, V].

Proof. The probability that M ′′′ produces an output is exactly

∑
c̄

Prob ([M ′′]= c̄) · pc̄ =
3

4
.

As for Part (2), we note that the probability that a conversation c̄ is output by
M ′′′ is exactly 3

4 · Prob ([P ′′, V]= c̄). Since the simulator halts with an output with
probability exactly 3

4 , we get that given that M ′′′ halts with an output, it outputs c̄
with probability exactly Prob ([P ′′, V]= c̄) and we are done.

5.6. Final details. An important point not explicitly addressed so far is whether
all the modifications applied to the simulator preserve its ability to be implemented
by a probabilistic polynomial-time machine with bounded access to an oracle. Specif-
ically, an issue ignored so far is the ability to efficiently implement the probabilistic
choices required of the augmented oracle. A hint toward resolving this problem was
given in the technical remark at the end of the motivating subsection (section 5.2).
Namely, probabilities of the form N

2m can be implemented by uniformly selecting a
string in {0, 1}m and sending it to the oracle which responds with either 0 or 1. How-
ever, this only allows to approximate probabilities which are not of the above form. In
particular, one can obtain approximations up to exponentially small deviation error.
We first comment that such approximations suffice through the entire analysis except
for the construction of M ′′′ which must satisfy Claim 5.4 (where the probabilistic
behavior must be exact).

Thus, M ′′′ must be implemented with more care. But before we do this, we
modify P ′′ so that it makes its random choices (in case it has any) by flipping a
polynomial number of unbiased coins.2 This modification may change the behavior
of P ′′ slightly, but the deviation can be made so small that the above assertions
(specifically Claim 5.3) still hold.

We now turn to the implementation of M ′′′. Consider the specific “sieving prob-

ability” we need to implement when going from M ′′ to M ′′′. Namely, pc̄ = 3
4 · a/bc/d ,

where a
b = Prob([P ′′, V]= c̄) and c

d = Prob([M ′′]= c̄). A key observation is that c is
the number of coin tosses which lead M ′′ to output c̄. Observing that b is the size of
probability space for [P ′′, V] and using the above modification to P ′′, we may rewrite
pc̄ as 3ad

4b · 1
c = e

c2f
, where e and f = poly(n) are some nonnegative integers.

2The implementation of P ′′ was not discussed explicitly. It is possible that P ′′ uses an infinite
number of coin tosses to select its next message (either 0 or 1). However, an infinite number of coin
tosses is not really needed since rounding the probabilities so that a polynomial number of coins
suffices, causes only exponentially small rounding errors.

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1135

We now note that the oracle can enable the simulator to sieve conversations with
probability e

c for any 0 ≤ e ≤ c in the following way. M ′′′ sends to the oracle the
random tape ω that it has tossed for M ′′, and the oracle sieves only e out of the
possible c random tapes which lead M ′′ to output c̄. The general case of pc̄ = e

c2f

is dealt with by writing pc̄ = q
c + r

c2f
, where q = b e

2f
c and r = e − q2f < 2f . To

implement this sieve, M ′′′ supplies the oracle with a uniformly chosen f -bit long string
(in addition to ω). The oracle sieves out q random tapes (of M ′′) as before and uses
the extra bits in order to decide on the sieve in case ω equals a specific (different)
random tape. Formally, the process is implemented as follows.

Definition (implementing M ′′′ with an oracle). Let f = poly(n). For every

possible c̄, let pc̄ = q(c̄)
|Ωc̄| + r(c̄)

2f ·|Ωc̄| , where Ωc̄ is the set of random tapes which makes

M ′′ produce c̄ and 0 ≤ r(c̄) < 2f . Let Gc̄ ⊆ Ωc̄ be a subset of cardinality q(c̄),
ac̄ ∈ Ωc̄ \ Gc̄ and Rc̄ ⊆ {0, 1}f be a subset of cardinality r(c̄). Then, M ′′′ uniformly
selects a random tape ω for M ′′ and a string r ∈ {0, 1}f . Machine M ′′′ queries the
oracle on (ω, r) and outputs M ′′(ω) if the oracle responds with 1 (otherwise M ′′′ halts
with no output). The oracle determines c̄ = M ′′(ω) and responds 1 if either ω ∈Gc̄

or (ω=ac̄) ∧ (r∈Rc̄), otherwise the oracle responds 0.

We conclude the proof of Theorem 2 by observing that the following statements
hold.

• (P ′′, V) is an interactive proof system for L. (The completeness condition

follows by Claim 5.1 and part 1 of Claim 5.3 which together yield [P ′′, V]
s
=

[P, V]. Note that we may incur an additional, negligible, completeness error.)
• (P ′′, V) has perfect knowledge complexity k(n) + 2 log2 log2 n + 2 + log2 t =
k(n) +O(log n). (The perfectness of the simulator M ′′′ follows by Claim 5.4,
whereas the query count follows from the construction: the double-logarithmic
term is due to the modification in section 5.1, a 1 + log2 t term is introduced
in the construction of M ′′, and an additional last query is due to M ′′′.)

This completes the proof of Theorem 2.

6. Concluding remarks. We consider our main result as a very first step to-
ward a classification of languages according to the knowledge complexity of their in-
teractive proof systems. In an early version of this paper we suggested two challenges.
The first challenge was to provide evidence that NP-complete languages cannot be
proven within low (say logarithmic or even constant) knowledge complexity, by show-
ing that languages having logarithmic knowledge complexity are in coAM (rather
than in BPPNP). Recall that NP is unlikely to be in coAM—see [BHZ-87]. Indeed,
following our work and using some of our results, Petrank and Tardos have recently
shown that languages having logarithmic knowledge complexity are in AM∩ coAM
[PT-96]. The second challenge, still opened, is to try to provide indications that there
are languages in PSPACE which do not have interactive proofs of linear (rather than
logarithmic) knowledge complexity. The reader can easily envision more moderate
and more ambitious challenges in this direction.

Another interesting question is whether each level of the knowledge-complexity
hierarchy contains strictly more languages than previous levels or if some partial
collapse occurs. For example, it is open whether the constant knowledge-complexity
classes collapse to the zero level.

Regarding our transformation of statistical knowledge complexity into perfect
knowledge complexity (i.e., Theorem 2), a few interesting questions arise. First, can
the cost of the transformation be reduced to below O(log n) bits of knowledge? A

1136 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

result for the special case of statistical zero knowledge will be almost as interesting.
Second, can one present an analogous transformation that preserves one-sided error
probability of the interactive proof? (Note that our transformation introduces a neg-
ligible error probability into the completeness condition.) Finally, can one present
an analogous transformation that applies to knowledge complexity with respect to
arbitrary verifiers? (Our transformation applies only to knowledge complexity with
respect to the honest verifier.)

Appendix A. A flaw in [F-89]. In [F-89], Fortnow presents a constructive

method for proving that SZK def
= SKC(0) is contained in co-AM. Given an interactive

proof (P, V) for a language L and a (statistical) zero-knowledge simulator M (for the
honest verifier V), he constructs a two-round protocol (P ′, V ′). This protocol was
claimed to constitute an interactive proof system for L. This claim, as we are going
to show, is wrong. Yet, the result SZK ⊆ co-AM does hold, since the work of Aiello
and H̊astad contains the necessary refinements which enable us to present a modified
AM-protocol for L (see [AH-87, H-94]). Furthermore, Fortnow’s basic approach is
valid, and indeed it was used in subsequent works (e.g., [AH-87, BMO-90, Ost-91,
BP-92, OW-93]).

Fortnow’s basic approach starts with the observation that the simulator M must
behave differently on x ∈ L and x 6∈ L. Clearly, the difference cannot be recognized in
polynomial time, unless L ∈ BPP. Yet, stronger recognition devices such as interac-
tive proofs should be able to tell the difference. Fortnow suggests a characterization
of the simulator’s behavior on x ∈ L and uses this characterization in his protocol for
L, yet this characterization is wrong. Aiello and H̊astad present a refinement of Fort-
now’s characterization [AH-87]; their characterization is correct and can be used to
show that SZK ⊆ AM (which is the goal of their paper) as well as SZK ⊆ co-AM.

Fortnow’s characterization. Given an interactive proof (P, V) for L and a
simulator M and fixing a common input x ∈ {0, 1}∗, the following sets are defined.
Let us denote by t the number of random bits that the verifier V uses on input x,
and by q the number of random bits used by the simulator M . For every conversation
prefix h, we consider the set of the verifier’s coin tosses which are consistent with h (the
conversation so far). We denote this set byRh

1 . Namely, suppose h = (α1, β1, ..., αi, βi)
or h = (α1, β1, ..., αi, βi, αi+1). Then, r ∈ Rh

1 iff V (x, r, α1, ..., αj) = βj for every j ≤ i,
where V (x, r, ᾱ) denotes the message sent by V on input x random tape r and prover
message sequence ᾱ. The set Rh

1 depends only on the verifier V . Next, we consider
sets Rh

2 which are subsets of the corresponding Rh
1 ’s. Specifically, they contain only

r’s that can appear with h in an accepting conversation output by the simulator M .
Namely, r ∈ Rh

2 iff r ∈ Rh
1 and there exists ω ∈ {0, 1}q so that M(x, ω) is an accepting

conversation with prefix h. (Here M(x, ω) denotes the conversation output by M on
input x and simulator random tape ω.)

Motivation. For simplicity, suppose that the simulation is perfect (i.e., M wit-
nesses that (P, V) is perfect zero knowledge) and that (P, V) has one-sided error (i.e.,
“perfect completeness”). Then, for every x ∈ L and every possible h, we must have
Rh

2 = Rh
1 (otherwise the simulation is not perfect). However, if x 6∈ L then there must

exist h’s so that Rh
2 is much smaller than Rh

1 . Otherwise the simulator-based prover
(for M) will always convince V to accept x, thus violating the soundness condition
of (P, V). The problem with the above dichotomy is that it is “too existential” and
thus it is not clear how to use it. Instead Fortnow claimed a dichotomy which is more
quantitative.

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1137

A false characterization. Let pref(c̄) denote the set of all message prefixes in the
conversation c̄:

• if x ∈ L then

Probω(∀h∈pref(M(x, ω)) :
∣∣Rh

2

∣∣ ≈1

∣∣Rh
1

∣∣) >
3

4
;

• if x 6∈ L then

Probω(∀h∈pref(M(x, ω)) :
∣∣Rh

2

∣∣ ≈2

∣∣Rh
1

∣∣) <
1

4
,

where the probability (in both cases) is taken uniformly over ω ∈ {0, 1}q. We did not
specify what is meant by ≈i. One may substitute α ≈1 β by α ≥ 1

2 · β and α ≈2 β
by α ≥ 1

4 · β. The gap between the two is needed for the approximate lower/upper
bound protocols.

A counterexample. The mistake is in the second item of the characterization.
The false argument given in [F-89] confuses between the probability distribution of
conversations output by the simulator and the probability distribution of the con-
versations between a simulator-based prover (denote P ∗) and the verifier. These
distributions are not necessarily the same (note that we are in the case x 6∈ L).
Consequently, the probability that “good” conversations (i.e., conversations for which
|R2| ≈ |R1| for all prefixes) occur in the (P ∗, V) interaction is not the same as the
probability that the simulator outputs “good” conversations. This point is ignored in
[F-89] and leads there to the false conclusion that the characterization holds. Below,
we present an interactive proof (P, V) and a (perfect) zero-knowledge simulator for
which the characterization fails.

The interactive proof that we present is for the empty language Φ. This interactive
proof is perfect zero knowledge for the trivial reason that the requirement is vacuous.
Yet, we present a simulator for this interactive proof which, for every x ∈ {0, 1}∗ = Φ,
outputs “good” conversation with probability close to 1. Thus, the characterization
fails.

The interactive proof (from the verifier’s point of view – input x ∈ {0, 1}n).
• The verifier uniformly selects α ∈ {0, 1}n and sends α to the prover.
• The verifier waits for the prover’s message β ∈ {0, 1}n.
• Next, the verifier uniformly selects γ ∈ {0, 1}n and sends γ to the prover.
• The verifier accepts iff either α = 0n or β = γ.

Regardless of the prover’s strategy, the verifier accepts each x ∈ {0, 1}n with negligible
probability; specifically, 2−n + (1 − 2−n) · 2−n. Thus, the above protocol indeed
constitutes an interactive proof for the empty language Φ.

The simulator operates as follows (on input x ∈ {0, 1}n and parameter ε).
• With probability 1 − ε, the simulator M outputs a conversation uniformly

distributed in 0n × {0, 1}2n
.

• With probability ε, the simulator M outputs a conversation uniformly dis-
tributed in ({0, 1}n − 0n)× {0, 1}2n

.
The parameter ε is set to be negligible, say, ε = 2−n.

Claim. In contradiction to the characterization, for every x ∈ {0, 1}∗ = Φ,

Probω(∀h∈pref(M(x, ω)) :
∣∣Rh

2

∣∣ = ∣∣Rh
1

∣∣) ≥ 1− ε,

where the probability is taken uniformly over ω ∈ {0, 1}q.

1138 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

Proof. Recall that all conversations are 3n-bit long strings and for a conversation
αβγ ∈ {0, 1}3n the verifier coins are αγ. Note that with probability 1−ε, the simulator
outputs a conversation of the form 0nβγ. Thus, it suffices to show that every conversa-
tion of the form 0nβγ satisfies Rh

2 = Rh
1 for each prefix (i.e., h ∈ {λ, 0n, 0nβ, 0nβγ}).

First observe that Rλ
1 = {0, 1}2n

= Rλ
2 , since for every αγ ∈ {0, 1}2n the simu-

lator outputs the accepting conversation αγγ with nonzero probability. Similarly,
R0n

1 = 0n{0, 1}n = R0n

2 (here we use α = 0n). Next, for every β ∈ {0, 1}n we have

R0nβ
1 = 0n{0, 1}n = R0nβ

2 , since for every γ ∈ {0, 1}n the simulator outputs the ac-
cepting conversation 0nβγ with nonzero probability. (Here we use the fact that the

verifier always accepts when α = 0n.) Similarly, R0nβγ
1 = 0nγ = R0nβγ

2 .

Conclusion. The source of trouble is that the definition of the set Rh
2 does not

take into account the probability weight assigned by the simulator to ω’s that witness
the assertion “the simulator outputs an accepting conversation that starts with h.”
Indeed, this is exactly the nature of the refinement suggested by Aiello and H̊astad
[AH-87].

Appendix B. Interactive proofs with nonnegligible error probabilities.
As explained in Remark 1 of section 3.1, the notion of an interactive proof with
bounded knowledge complexity is not robust under changes in the allowed error prob-
ability. Throughout the paper, we use the natural definition of interactive proofs in
which the error probability is negligible. However, our techniques yield nontrivial
results also in the case where one defines interactive proofs with some specific non-
negligible error probability. In this appendix we explain how such assertions may be
obtained and state such results for two special cases.

Denote by εc(n) an upper bound on the probability that the verifier rejects an
input x although x ∈ L and the prover plays honestly. This is the error probability
related to the completeness condition. Similarly, denote by εs(n) an upper bound on
the probability that the verifier accepts x 6∈ L when the prover follows its optimal
strategy (not necessarily following the protocol). This is the error probability related
to the soundness condition. We say that an interactive proof has error probabilities
(εs, εc) if its error probability in the soundness condition is bounded by εs and its
error probability in the completeness condition is bounded by εc.

B.1. The perfect case. In this subsection, we consider the restricted case of
perfect knowledge complexity and derive Theorem B.1 which is the analogue of The-
orem 1 for the case that the error probabilities are not negligible. Following the
definitions in section 4, we denote the simulation-based prover by P ∗.

Let us follows the steps of the proof of our main theorem and observe which
assertions hold for the case of nonnegligible error probability. We begin by observing
that the following generalization of Lemma 4.2 holds.

Lemma B.1. Let (P, V) be an interactive proof for L with error probabilities
(εs(n), εc(n)) and with knowledge complexity k(n), then the following hold.

1. If x ∈ L then the probability that (P ∗, V) outputs an accepting conversation

is at least (1− εc(n))
2 · 2−k(n), where n = |x|.

2. If x 6∈ L then the probability that (P ∗, V) outputs an accepting conversation
is at most εs(n), where n = |x|.

The proof of this lemma is identical to the proof of Lemma 4.2, except that here
|Aλ|
|Sλ| ≥ 1 − εc(n). As explained in section 4, an efficient machine with access to an

NP-oracle can sample conversations in (P ∗, V). By Lemma B.1, this would yield an

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1139

accepting conversation with probability at most εs(n) in the case x 6∈ L and at least
(1− εc(n))2 ·2−k(n) when x ∈ L. In case these two probabilities differ sufficiently (i.e.,
by more then a polynomial fraction), we can use standard amplification techniques
to get a probabilistic algorithm that determines whether x ∈ L with error probability
less than 1

3 (or negligible, or 2−n). To summarize, we get the following theorem for
perfect knowledge complexity.

Theorem B.1. If a language L has an interactive proof with perfect knowledge
complexity k(n) and error probabilities (εs, εc) and if there exists a positive polynomial
p(n) such that

(1− εc(n))
2 · 2−k(n) > εs(n) +

1

p(n)
,

then L ∈ BPPNP .
Examples. Theorem B.1 implies, for example, that if a language L has an interac-

tive proof of knowledge complexity 1 and error probability 1
4 (both in the soundness

condition and in the completeness condition), then L is in BPPNP . Another inter-
esting example is the case of one-sided error (i.e., εc = 0). Theorem B.1 implies that,
for any polynomial p(·), if a language L has a one-sided error interactive proof (P, V)
of knowledge-complexity at most log2 p(·) and error probability εs ≤ 1

2p(·) , then L is

in BPPNP .

B.2. The general (statistical) case. Unfortunately, the analogue result for
statistical knowledge complexity is not as clean and has various different formulations
according to possible properties of the error probabilities. Let us explain how such
results can be obtained and give a specific example for the special case in which εc = 0;
i.e., the original interaction has one-sided error.

Recall that the proof for the negligible error-probability case uses the transforma-
tion from statistical to perfect knowledge complexity (i.e., Theorem 2) and then uses
Theorem 1. This transformation increases the knowledge complexity by a logarithmic
additive term. In view of Lemma B.1, it is desirable not to increase the knowledge
complexity without concurrently decreasing the error probability. Thus, before ap-
plying the transformation, we reduce the error probability by iterating the protocol
as many times as possible while maintaining logarithmic knowledge complexity.

Specifically, we start with a protocol (P, V) of statistical knowledge complexity
k(·) and denote by l(·) the total length of the conversation in this protocol. Also,
fix an input x of length n, and let l = l(n), k = k(n), εs = εs(n), and εc = εc(n).

We begin by running the original protocol (P, V) sequentially t
def
= d(log2 l)/ke times.

These repetitions yield a new protocol (P ′, V ′) whose length is t · l, its knowledge-
complexity is bounded by t · k < k + log2 l, and its error probability decreases. To
compute the decrease in the error probabilities, we partition the analysis into two
cases according to whether the original protocol has one-sided error or not.

If the original interaction has one-sided error, i.e., the verifier always accepts when
x ∈ L, then the new verifier V ′ accepts only if all repetitions of the original protocols
end up accepting. The error probabilities in this case decrease from (εs, 0) to (εts, 0). In
the case where the original interactive proof was not one sided, the verifier counts the
number of original interactions that end up with the original verifier accepting. The

new verifier accepts if this number is greater than εs+(1−εc)
2 · t. In order to compute

the new error probabilities we may apply the Chernoff bound and get an upper bound
on the new error probabilities which depends on t, on the difference between 1 − εc
and εs, and, of course, on εs and εc themselves.

1140 ODED GOLDREICH, RAFAIL OSTROVSKY, AND EREZ PETRANK

Next, we apply the transformation of section 5 and get a new interactive proof
(P ′′, V ′′) for L which has knowledge complexity (k + log l) + 2 + 2 log2 log2 n +
dlog2(l · t)e, where the additional 2 + 2 log2 log2 n+ dlog2(l · t)e term comes from the
transformation. Finally, if the resulting parameters of (P ′′, V ′′) satisfy the conditions
stated in Theorem B.1, then we get that the language L is in BPPNP . Let us provide
full details for the special (yet important) case of one-sided error (i.e., εc = 0).

In the special case of one-sided error, we end up using Theorem B.1 for an inter-
active proof with knowledge complexity (k+log l)+2+2 log2 log2 n+dlog2(l · t)e and
error probabilities (εs

t, ε), where ε is a negligible fraction (introduced by the transfor-
mation). Thus, we get the following theorem for statistical knowledge complexity.

Theorem B.2. Suppose that a language L has an interactive proof of statistical
knowledge complexity k(n), one-sided error probability εs(n), and with length l(n) so
that there exists a polynomial p(n) for which the following inequality holds:

1

8 · (log2 n)2 · 2k(n) · l(n)2 ·
⌈

log2 l(n)
k(n)

⌉ ≥ εs(n)d(log2 l(n))/k(n)e +
1

p(n)
.

Then L ∈ BPPNP .
For l(n) ≤ 2k(n) the condition simplifies to 2−3k(n) ≥ 8(log2 n)2 · εs(n) +

1/poly(n), whereas for l(n) > 2k(n) the condition simplifies to

1

8 · (log2 n)3 · l(n)3
≥ εs(n)d(log2 l(n))/k(n)e +

1

poly(n)
.

Acknowledgment. We thank Leonard Shulman for providing us with a simpler
proof of Claim 4.3.

REFERENCES

[ABV-95] W. Aiello, M. Bellare, and R. Venkatesan, Knowledge on the average – Perfect,
statistical and logarithmic, in Proceedings of the 27th Annual ACM Symposium
on the Theory of Computing, Association for Computing Machinery, New York,
1995.

[AH-87] W. Aiello and J. Håstad, Perfect zero-knowledge can be recognized in two rounds,
in Proc. 28th Annual IEEE Symposium on the Foundations of Computer Science,
IEEE, Piscataway, NJ, 1987.

[B-85] L. Babai, Trading group theory for randomness, in Proc. 17th Annual ACM Sympo-
sium on the Theory of Computing, Association for Computing Machinery, New
York, 1985.

[BM-88] L. Babai and S. Moran, Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[BMO-90] M. Bellare, S. Micali, and R. Ostrovsky, The (true) complexity of statistical zero-
knowledge, in Proc. 22nd Annual ACM Symposium on the Theory of Computing,
Association for Computing Machinery, New York, 1990.

[BP-92] M. Bellare and E. Petrank, Making zero-knowledge provers efficient, in Proc. 24th
Annual ACM Symposium on the Theory of Computing, Association for Comput-
ing Machinery, New York, 1992.

[B+ 88] M. Ben-Or, S. Goldwasser, O. Goldreich, J. Håstad, J. Kilian, S. Micali, and
P. Rogaway, Everything provable is provable in zero-knowledge, Advances in
Cryptology—Proceedings of CRYPTO 88, S. Goldwasser, ed., Lecture Notes in
Computer Science 403, Springer-Verlag, Berlin, New York, 1989.

[BHZ-87] R. Boppana, J. Håstad, and S. Zachos, Does co-NP have short interactive proofs,
Inform. Process. Lett., 25 (1987), pp. 127–132.

[F-89] L. Fortnow, The complexity of perfect zero-knowledge, Adv. Comput. Res., 5 (1989),
pp. 327–343.

COMPUTATIONAL COMPLEXITY AND KNOWLEDGE COMPLEXITY 1141

[GMS-87] O. Goldreich, Y. Mansour, and M. Sipser, Interactive proof systems: Provers that
never fail and random selection, in Proc. 28th Annual IEEE Symposium on the
Foundations of Computer Science, IEEE, Piscataway, NJ, 1987.

[GMW-86] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design, J. Assoc. Comput.
Mach., 38 (1991), pp. 691–729.

[GP-91] O. Goldreich and E. Petrank, Quantifying knowledge complexity, in Proc. 32nd
Annual IEEE Symposium on the Foundations of Computer Science, IEEE, Pis-
cataway, NJ, 1991; Comput. Complexity, to appear.

[GMR-85] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive
proofs, in Proc. 17th Annual ACM Symposium on the Theory of Computing,
Association for Computing Machinery, New York, 1985.

[GMR-89] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive
proofs, SIAM J. Comput., 18 (1989), pp. 186–208.

[GS-89] S. Goldwasser and M. Sipser, Private coins vs. public coins in interactive proof
systems, Adv. Comput. Res., 5 (1989), pp. 73–90.

[H-94] J. Håstad, Perfect zero-knowledge in AM∩ co-AM, 1994, manuscript. Explains the
underlying ideas behind [AH-87].

[IY-87] R. Impagliazzo and M. Yung, Direct minimum-knowledge computations, in Advances
in Cryptology—Proceedings of CRYPTO 87, Lecture Notes in Computer Science
293, Springer-Verlag, Berlin, New York, 1987.

[JVV-86] M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–
188.

[LFKN-90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive
proof systems, in Proc. 31st Annual IEEE Symposium on the Foundations of
Computer Science, IEEE, Piscataway, NJ, 1990, pp. 2–10.

[Ost-91] R. Ostrovsky, One-way functions, hard on average problems, and statistical zero-
knowledge proofs, in Proc. Structures in Complexity Theory 6th Annual Confer-
ence IEEE, Piscataway, NJ, 1991.

[OW-93] R. Ostrovsky and A. Wigderson, One-way functions are essential for non-trivial
zero-knowledge, in Proc. 2nd Israeli Symp. on Theory of Computing and Systems,
IEEE, Piscataway, NJ, 1993, pp. 3–17.

[PT-96] E. Petrank and G. Tardos, On the knowledge complexity of NP, in Proc. 37th
IEEE Symposium on the Foundations of Computer Science, IEEE, Piscataway,
NJ, 1996, pp. 494–503.

[Sh-90] A. Shamir, IP=PSPACE, in Proc. 31st Annual IEEE Symposium on the Foundations
of Computer Science, IEEE, Piscataway, NJ, 1990, pp. 11–15.

[Si-83] M. Sipser, A complexity theoretic approach to randomness, in Proc. 15th Annual ACM
Symposium on the Theory of Computing, Association for Computing Machinery,
New York, 1983.

[St-83] L. Stockmeyer, The complexity of approximate counting, in Proc. 15th Annual ACM
Symposium on the Theory of Computing, Association for Computing Machinery,
New York, 1983.

THE COMPLEXITY OF PLANAR COUNTING PROBLEMS∗

HARRY B. HUNT III† , MADHAV V. MARATHE‡ , VENKATESH RADHAKRISHNAN§ ,
AND RICHARD E. STEARNS†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1142–1167, August 1998 012

Abstract. We prove the #P-hardness of the counting problems associated with various satis-
fiability, graph, and combinatorial problems, when restricted to planar instances. These problems
include 3Sat, 1-3Sat, 1-Ex3Sat, Minimum Vertex Cover, Minimum Dominating Set, Minimum
Feedback Vertex Set, X3C, Partition Into Triangles, and Clique Cover. We also prove
the NP-completeness of the Ambiguous Satisfiability problems [J. B. Saxe, Two Papers on Graph
Embedding Problems, Tech. Report CMU-CS-80-102, Dept. of Computer Science, Carnegie Mellon
Univ., Pittsburgh, PA, 1980] and the DP -completeness (with respect to random polynomial reducibil-
ity) of the unique satisfiability problems [L. G. Valiant and V. V. Vazirani, NP is as easy as detecting
unique solutions, in Proc. 17th ACM Symp. on Theory of Computing, 1985, pp. 458–463] associated
with several of the above problems, when restricted to planar instances. Previously, very few #P-
hardness results, no NP-hardness results, and no DP -completeness results were known for counting
problems, ambiguous satisfiability problems, and unique satisfiability problems, respectively, when
restricted to planar instances.

Assuming P 6= NP, one corollary of the above results is that there are no ε-approximation algo-
rithms for the problems of maximizing or minimizing a linear objective function subject to a planar
system of linear inequality constraints over the integers.

Key words. planar, 3Sat, graphs, #P-complete, DP -complete, NP-complete

AMS subject classifications. 68Q15, 68R10.

PII. S0097539793304601

1. Introduction. A number of papers in the literature, including [1, 5, 16, 20,
21, 25, 26], have considered the complexity of counting problems, proving many such
problems to be #P-complete. Other papers have studied the complexity of ambiguous
and unique satisfiability problems [23, 27], proving such problems to be NP-hard
and DP -hard,1 respectively. Still other papers [3, 4, 5, 6, 15] have considered the
complexity of decision problems when restricted to planar instances, proving many
such problems to be NP-hard. In this paper, we combine these lines of research and
prove for the first time that even when restricted to planar instances, many counting
problems remain #P-complete, many ambiguous satisfiability problems remain NP-
complete, and many unique satisfiability problems remain DP -hard.

Previously, very few #P-hardness results, no NP-hardness results, and no DP -
completeness results were known for counting problems, ambiguous satisfiability prob-
lems, and unique satisfiability problems, respectively, when restricted to planar in-

∗Received by the editors August 15, 1993; accepted for publication (in revised form) June 12,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-4/30460.html
†Department of Computer Science, State University of New York (SUNY) at Albany, Albany,

NY 12222 (hunt@cs.albany.edu, res@cs.albany.edu). This work was supported by NSF grants CCR
89-03319, CCR 94-06611, and CCR 90-06396.

‡Los Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos, NM 87545 (marathe@
lanl.gov). This research was supported by the Department of Energy under contract W-7405-ENG-
36. Part of the work was done while the author was at SUNY-Albany and supported by NSF grants
CCR 89-03319 and CCR 94-06611.

§Mailstop 47LA-2, Hewlett-Packard Company, 19447 Pruneridge Avenue, Cupertino, CA 95014-
9913 (rven@cup.hp.com). Part of this work was done while the author was at SUNY-Albany and
was supported by NSF grants CCR 89-03319 and CCR 94-06611.

1Throughout this paper, all the DP -hardness results are with respect to random polynomial time
reductions.

1142

PLANAR COUNTING 1143

stances. Such results are presented for several satisfiability, graph, and combinatorial
problems. These results show that planar counting, planar ambiguous satisfiability,
and planar unique satisfiability problems are as hard as arbitrary such problems, with
respect to polynomial time and random polynomial time reducibilities. The results in
this paper both extend the results in the literature and also provide additional tools
for proving hardness results for planar problems for various complexity classes. These
tools include parsimonious and weakly parsimonious crossover boxes, the NP-hardness
of various basic planar satisfiability problems, and the NP-hardness of the planar am-
biguous satisfiability problems. (Henceforth, we denote the restriction of a problem
Π to planar instances by Pl-Π.) The particular results presented here include the
following.

1. The problem 3Sat has a parsimonious planar crossover box. Among other
things, this implies that the problem #Pl-3Sat is #P-complete, the problem
Ambiguous-Pl-3Sat is NP-complete, and the problem Unique-Pl-3SAT is DP -
complete.

2. The problem 3Sat is simultaneously polynomial time, planarity-preserving,
and parsimoniously reducible to each of the basic CNF satisfiability problems listed
in Table 1.1. (Previously, 3Sat was only known to be so reducible to the problem
1-Ex3Sat [3].)

3. There exist polynomial time, weakly parsimonious, and planarity-preserving
reductions from the problem 1-Ex3MonoSat to several graph problems including
Minimum Vertex Cover, Minimum Dominating Set, and Minimum Feedback
Vertex Set.

4. Using the results 1, 2, and 3, variants of known reductions, and new reduc-
tions, we show that for all of the problems Pl-Π in Table 1.1, the problem #Pl-Π is
#P-hard. Similarly, we show that for many of the problems in Table 1.1, the problems
Ambiguous Pl-Π and Unique Pl-Π are NP-hard and DP -hard, respectively.

5. All of the #P-hardness results for planar counting problems in Table 1.1 can
easily be shown to hold, even when the input to the problem consists of a formula
f and one of its satisfying assignments, a graph G and one of its minimum vertex
covers, a graph G and one of its dominating sets, etc.

Thus the #P-hardness of the problems #Pl-Π in Table 1.1 is not simply a corol-
lary of the NP-hardness of the problem Pl-Π, since the problems #Pl-Π are #P-hard
even when restricted to sets of instances for which the problems Pl-Π are trivially
polynomial time solvable. Moreover, quoting from [27] we note that “whether the
number of solutions of all NP-complete problems are nevertheless polynomial time in-
terreducible (i.e., whether NP-completeness implies #P-completeness) is still open.”

Corollaries of our results and their proofs include the following.

1. The problems #1-Valid 3Sat and #1-Valid Pl-3Sat are #P-complete.
(It is trivially seen that every instance of the problem 1-Valid 3Sat is satisfiable by
the assignment making all variables equal to 1. See Definition 2.10.)

2. The problems Ambiguous 1-Valid 3Sat and Ambiguous 1-Valid Pl-
3Sat are NP-complete. The problems Unique 1-Valid 3Sat and Unique 1-Valid
Pl-3Sat are Co-NP-complete.

3. Assuming P 6= NP, there are no ε-approximation algorithms for the problems
of maximizing or minimizing a linear objective function subject to a planar system of
inequalities over the integers.

Table 1.1 gives a summary of our #P-hardness results. The rest of the paper
is organized as follows. Section 2 contains definitions and preliminaries. Section 3

1144 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

discusses the complexity of #Pl-3Sat and other basic CNF satisfiability problems.
These problems are used to prove the #P-hardness of other problems discussed in the
subsequent sections. Section 4 discusses the complexity of various counting problems
for planar graphs. Section 5 contains the ambiguous and unique satisfiability results
and the result on the nonapproximability of the objective functions of integer linear
programs. Finally, section 6 consists of conclusions and open problems.

Table 1.1
Summary of NP- and #P-hardness results for planar instances. The third column summarizes

the decision complexity of the problems while the fourth column summarizes the complexity of the
counting versions. A star (*) denotes a result obtained in this paper. The numbers in square brackets
are the references where the corresponding results are proved.

No. Problem Decision problem Counting version
(NP-complete) #P-hard

1 Pl-3Sat [15] *
2 Pl-Ex3Sat * *
3 Pl-1-3Sat [3] *
4 Pl-1-Ex3Sat [3] *
5 Pl-1-Ex3MonoSat * *
6 Pl-Vertex Cover [6] *
7 Pl-Hamiltonian Circuit [15] [20]
8 Pl-Dominating Set [6] *
9 Pl-Feedback Vertex Set [6] *
10 Pl-3-Coloring [6] [11]
11 Pl-Graph Homomorphism [5] [11]

and Onto Homomorphism
12 Pl-Subgraph Isomorphism [5] *
13 Pl-Clique Cover [3] *
14 Pl-Hitting Set [3] *
15 Pl-X3C [3] *
16 Pl-Partition Into Triangles [3] *
17 Pl-Partition Into Claws [3] *

2. Definitions and preliminaries. In this section we review the basic def-
initions and notation used in this paper. Additional definitions can be found in
[3, 5, 19, 23].

Definition 2.1. A search problem Π consists of a set DΠ of objects called
instances, and for each instance I ∈ DΠ, a set SΠ[I] of objects called solutions for
I. An algorithm is said to solve a search problem Π if, given I ∈ DΠ as input, the
algorithm outputs no if SΠ[I] = φ and outputs an s ∈ SΠ[I] otherwise.

Definition 2.2. The enumeration problem associated with a search problem Π
is the problem of determining, given I ∈ DΠ, the cardinality of SΠ[I].

Definition 2.3. The class #P consists of all enumeration problems associated
with search problems Π such that there is a nondeterministic algorithm for solving Π
such that, for all I ∈ DΠ, the number of distinct accepting sequences for I by the
algorithm equals |SΠ[I]| and the length of the longest accepting computation of the
algorithm on I ∈ DΠ is bounded by a polynomial in the length of I.

Definition 2.4. A reduction [5] f : DΠ → DΠ′ is parsimonious if and only if
∀I ∈ DΠ the number of solutions of I is equal to the number of solutions of f(I).

Definition 2.5. A reduction f is weakly parsimonious if and only if |S(I)| =
g(I)|S(f(I))|, where |S(I)| and |S(f(I))| denote the number of solutions of I and
f(I), respectively, and g(I) is a polynomial time computable function represented using
binary notation.

PLANAR COUNTING 1145

An enumeration problem is said to be #P-hard if each problem in #P is polynomial
time parsimoniously or weakly parsimoniously Turing reducible to it. If, in addition,
the enumeration problem is in #P, the problem is said to be #P-complete.

Definition 2.6. #3Sat is the problem of computing the number of satisfying
assignments of a Boolean formula F in conjunctive normal form with at most three
literals per clause.

The following basic results on the complexity of counting problems are used in
this paper.

Theorem 2.7 (see [5, 25]). The problems #3Sat and #Graph 3-Coloring
are #P-complete.

Definition 2.8. The bipartite graph associated with a CNF satisfiability prob-
lem is defined as follows. The clauses and variables in a formula are in one to one
correspondence with the vertices of the graph. There is an edge between a clause node
and a variable node if and only if the variable appears in the clause. A CNF formula
is planar if and only if its associated bipartite graph is planar.

Definition 2.9. (1) Ex3Sat is the restriction of the problem 3Sat to formulas
in which each clause has exactly three literals.

(2) 1-3Sat is the problem of determining if a CNF formula in which each clause
has no more than three literals has a satisfying assignment such that exactly one literal
per clause is satisfied.

(3) 1-Ex3Sat is the problem of determining if a CNF formula in which each
clause has exactly three literals has a satisfying assignment such that exactly one
literal per clause is satisfied.

(4) 1-Ex3MonoSat is the restriction of 1-Ex3SAT to formulas having no negated
literals.

Definition 2.10 (see [24]). A relation R(x1, x2, . . . , xn) is 1-valid if and only if
(1, 1, . . . , 1) ∈ R. A CNF formula f is 1-valid if the formula is satisfied when all the
variables in the formula are set to true.

Definition 2.11. Given a Boolean formula F and an assignment v to the vari-
ables of F , the notation v[F] denotes the value of F under v.

Definition 2.12. (1) Exact Cover By 3-Sets (X3C): An instance of this
problem consists of a set X with 3m elements and a collection C of three-element
subsets of X. The question is: does there exist a subcollection C ′ of C such that every
element of X occurs in exactly one set in C ′?

(2) Hitting Set: An instance of this problem consists of a collection C of subsets
of a finite set S and a positive integer K ≤ |C|. The question is: is there a subset
S′ ⊆ S with |S′| ≤ K such that S′ contains at least one element from each subset in
C?

As in the case of 3Sat, we can associate a bipartite graph G = (S, T,E) with
an instance of each of the above problems. For example, Pl-X3C is defined as
follows. Each element in C has a corresponding vertex in S, each element in X
has a corresponding vertex in T , and a vertex in S is joined to a vertex in T if and
only if the set corresponding to the vertex in S contains the element corresponding
to the vertex in T .

Definition 2.13. (1) Dominating Set: An instance of this problem consists
of an undirected graph G = (V,E) and an integer K ≤ |V |. The question is: is there
a dominating set of size at most K in G; i.e., is there a subset V ′ of V , |V ′| ≤ K,
such that for each u ∈ V − V ′ there is a v ∈ V ′ such that (u, v) ∈ E?

(2) Clique Cover: An instance of this problem consists of an undirected graph
G = (V,E) and an integer K ≤ |V |. The question is: is there a clique cover of size

1146 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

at most K in G; i.e., can the graph be partitioned into at most K sets of nodes such
that each set is a clique?

(3) Partition into Claws: An instance of this problem consists of an undirected
graph G = (V,E), |E| = m. The question is: is there a way to partition the edges
of the graph into sets E1, . . . , Es, s = m/3, such that each Ei induces a subgraph
isomorphic to K1,3 (i.e., a claw)?

(4) Feedback Vertex Set: An instance of this problem consists of a directed
graph G = (V,E) and an integer K ≤ |V |. The question is: is there a feedback vertex
set of size at most K in G; i.e., does there exist a subset V ′ of V of size at most K
such that V ′ contains at least one vertex from every cycle in G?

Definition 2.14. Let Π denote a CNF satisfiability problem. Then the associated
ambiguous version of Π, denoted by Ambiguous-Π, is the problem of determining,
given an instance I of Π and an assignment v to the variables of I such that v[I] = 1,
if there is an additional assignment of values to the variables of I satisfying I. The
associated unique version of Π, denoted by Unique-Π, is the problem of determining
if the given instance I of Π has exactly one satisfying assignment.

More generally, let Π be any decision problem. Henceforth, when applicable, we
denote the restriction of Π to planar instances by Pl-Π, the counting version of Π
by #Π, the ambiguous version of Π by Ambiguous-Π, and the unique version of
the problem by Unique-Π. For example, recalling Definition 2.12 and the discussion
immediately following it,

(i) Pl-X3C is the problem X3C restricted to instances (X,C) for which the
bipartite graph G = (S, T,E) is planar;

(ii) #X3C is the problem of computing, given (X,C), the number of distinct
subsets C ′ ⊆ C such that each element of X occurs in exactly one set in C ′;

(iii) Ambiguous-X3C is the problem of determining, given (X,C,C ′), where
C ′ ⊆ C and each element of X occurs in exactly one set in C ′, if there exists another
subset C ′′ ⊆ C that is an exact cover of the elements in X.

Finally, henceforth, by reduction, we mean a polynomial time many-one reduction.

3. Basic planar counting problems. In this section, we prove that the prob-
lem Pl-3Sat has a parsimonious crossover box. Specifically, we show that the
crossover box in [15] is parsimonious. One immediate corollary is that the problem
#Pl-3Sat is #P-hard. We also prove that the problem 3Sat is planarity-preserving
and parsimoniously reducible to each of the basic Sat problems listed in Table 1.1.

Definition 3.1. A crossover box for a satisfiability problem Π is a formula fc
with four distinguished variables a, a1, b, b1, which can be laid out on the plane with
the distinguished variables on the outer face, such that

(1) the old variables a and b are opposite to the corresponding new variables a1

and b1,
(2) each assignment to a and b can be extended to a satisfying assignment of fc,
(3) for any satisfying assignment of fc, a ≡ a1 and b ≡ b1.

The crossover box is parsimonious if and only if for each assignment to the old vari-
ables, there is exactly one extension of this assignment to the variables in the crossover
box such that fc is satisfied.

Theorem 3.2. The problem 3Sat has a parsimonious planar crossover box.
Hence, 3Sat is parsimoniously reducible to Pl-3SAT and #Pl-3Sat is #P-complete.

Proof. The crossover box described here is the same as the one given in [15]. Here
we prove that the crossover box also preserves the number of solutions. For expository
purposes, we describe the crossover box in two steps. The first step is to consider the

PLANAR COUNTING 1147

following formula:

fc = (a2 + b2 + α) ∧ (a2 + α) ∧ (b2 + α)
∧

(a2 + b1 + β) ∧ (a2 + β) ∧ (b1 + β)
∧

(a1 + b1 + γ) ∧ (a1 + γ) ∧ (b1 + γ)
∧

(a1 + b2 + δ) ∧ (a1 + δ) ∧ (b2 + δ)
∧

(α+ β + γ + δ)
∧

(α+ β) ∧ (β + γ) ∧ (γ + δ) ∧ (δ + α)
∧

(a2 + a) ∧ (a+ a2) ∧ (b2 + b) ∧ (b+ b2).

Following [15], we give an intuitive explanation of formula fc. Clauses 1, 2, and 3
imply that (α↔ (a2∧ b2)); clauses 4, 5, and 6 imply (β ↔ (a2∧ b1)); clauses 7, 8, and
9 imply (γ ↔ (a1 ∧ b1)); clauses 10, 11, and 12 imply (δ ↔ (a1 ∧ b2)). Clause 13 (the
four literal clause) implies that at least one of α, β, γ, or δ is true. Clauses 14, 15, 16,
17 imply that (α+γ) → (β∧δ) and (β+δ) → (α∧γ). Finally, clauses 18 and 19 imply
(a ↔ a2) and (b ↔ b2). It can now be verified that the formula fc implies (a1 ↔ a)
and (b1 ↔ b). For example, consider an assignment v such that v[a1] = v[b1] = 0.
Then fc implies that v[β] = v[δ] = v[α] = v[a2] = v[b2] = 0 and v[γ] = 1. We leave
it to the reader to verify the other three cases. Thus, in any satisfying assignment
to fc, the new variables a1, a2, b1, b2, α, β, γ, and δ are functionally dependent on a
and b. In other words, given an assignment to the variable a and b there is a unique
way to extend this assignment so as to satisfy all the clauses in fc. Thus fc is a
parsimonious crossover box. Even though the formula itself is a parsimonious planar
crossover box, it is unsuitable for a reduction to Pl-3Sat because it has one clause
with four literals, namely, (α + β + γ + δ). The second step is to obtain the formula
f ′c by replacing this clause with the formula (α+ δ + ξ) ∧ (ξ + β + γ). The planarity
of the formula f ′c is demonstrated in Figure 3.1. This step also preserves numbers of
satisfying assignments as demonstrated by the following claim.

Claim 3.3. (1) Exactly one of α, β, γ, δ is true in any satisfying assignment to
fc. (2) ξ is functionally dependent on α, β, γ, and δ. Thus a satisfying assignment
for fc can be extended in a unique way to a satisfying assignment to the formula f ′c.

Proof. We prove the claim for the case when α is true. The other three cases are
similar. As already discussed, clauses 14, 15, 16, 17 imply that (α+ γ) → (β ∧ δ) and
(β + δ) → (α ∧ γ). Consider a satisfying assignment v such that v[α] = 1. Then the
above discussion implies that v[β] = v[δ] = 0. Now, since (β ↔ (a2 ∧ b1)) and v[β]
= 0, we have v[a2] = 1 and v[b1] = 1. Since (γ ↔ (a1 ∧ b1)) and v[b1] = 1 it implies
that v[γ] = 0. This forces v[ξ] = 0.

1148 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

1

2

21
ξ

α

βγ

δ

b

b

b

aaa

Fig. 3.1. The parsimonious planar crossover box for 3Sat. The clauses are denoted by ellipses
and the variables are denoted by circles.

Thus, the satisfying assignments to f ′c satisfy fc. It can now be seen that in a
satisfying assignment to the variables of f ′c, the values of a1, a2, b1, b2, α, β, γ, δ, and
ξ are all functionally dependent on a and b. Therefore, f ′c is a parsimonious crossover
box.

We can now describe the reduction given in [15] from 3Sat to Pl-3Sat. For
any 3CNF formula, lay the formula in the plane, possibly with certain edge pairs
crossing over at “crossover points.” This layout is a planar graph with vertex set
consisting of the variables, clauses, and crossover points. In this layout, we add a
new variable node on the edge between two crossover points or between a crossover
point and a clause node, as shown in Figure 3.2. The resulting graph is bipartite
where the first set of nodes consists of the variable nodes and the second set consists
of the clause nodes and the crossover points. Each edge is between a variable and
a crossover point, or between a variable and a clause. Also, each crossover point
has four distinct variables as neighbors. We now replace each crossover point with
the crossover box in Figure 3.1, where a2, b2, α, β, γ, δ, and ξ are given distinct
names in each replacement. Here a, b, a1, and b1 are identified with the neighbors of
the crossover point in cyclic order in the layout. The new layout is planar and the

PLANAR COUNTING 1149

z

y

x

w

x + y + zw + y + zw + x + y

Fig. 3.2. Figure showing how new variables are introduced in the bipartite graph for 3Sat to
obtain an instance of Pl-3Sat. In the example, the instance of 3Sat is given by F = (w + x+ y) ∧
(w + y + z) ∧ (x+ y + z). The circles denote original variables, ellipses denote the original clauses,
and the black dots denote new variables added. Each crossover of edges is replaced by a crossover
box shown in Figure 3.1.

new formula has the same number of solutions as the original, since in any satisfying
assignment the new variables are functionally dependent on the old.

Next, we strengthen Theorem 3.2 by showing that counting the number of sat-
isfying assignments of a planar 3CNF formula is #P-complete, even when the input
consists of a planar 3CNF formula F and an assignment v[F] to the variables of F
which satisfies F .

Theorem 3.4. Given an instance F of Pl-3Sat and an assignment v to the
variables of F such that v[F] = 1, the problem of counting the number of satisfying
assignments of F is #P-complete.

Proof. Step 1. Given an arbitrary planar 3CNF formula f(x1, x2, . . . , xn), we first
construct a new formula f1(x1, x2, . . . , xn, xn+1), where f1 = (f ∧ xn+1)

∨
[x1 ∧ x2 ∧

· · · ∧ xn ∧ xn+1].

Obviously, an assignment v, such that v[x1] = v[x2] = · · · = v[xn] =
v[xn+1] = 0, satisfies f1. Hence f1 is always satisfiable. Also, the number of
satisfying assignments of f1 is one more than the number of satisfying assignments of
f . Therefore, knowing the number of satisfying assignments of f1 tells us the number
of satisfying assignments of f .

Step 2. Convert f1(x1, x2, . . . , xn, xn+1) into an equivalent 3CNF formula
f2(x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+p), where xn+2, . . . , xn+p are new variables. This
is done in the standard way as follows. Obtain a parse tree of f1. For each non-leaf
node in the parse tree introduce new variables y1, y2, . . . , ym, where ym is the variable
corresponding to the root of the parse tree. Each node of the parse tree corresponds
to an operator applied to one or two inputs. Let the children of a non-leaf node i be
j and k.

1150 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

Case 1. If the operator at node i is an AND operator, construct a new 3CNF
formula equivalent to the formula yi ≡ (yj ∧ yk).

Case 2. If the operator is an OR operator, construct a 3CNF formula equivalent
to the formula yi ≡ (yj + yk).

Case 3. If the operator is a NOT operator, construct a 3CNF formula equivalent
to the formula yi ≡ yj .

The final 3CNF formula f2 is a conjunction of all the 3CNF formulas along with
ym. Now it is easy to see that f2 is satisfiable if and only if f1 is satisfiable and the
reduction is parsimonious. (The new variables are functionally dependent on the old.)

Step 3. Next, lay out f2 on a plane and replace each crossover in the layout by the
crossover box described in Theorem 3.2. Let f3 be the resulting planar 3CNF formula.
By Theorem 3.2, the reduction from f2 to f3 is parsimonious. Thus the number of
satisfying assignments of f3 is one more than the number of satisfying assignments of
f . The theorem now follows.

Next we extend this result to prove that counting the number of satisfying as-
signments of a 1-valid planar 3CNF formula is #P-hard.

Theorem 3.5. The problem #1-Valid Pl-3Sat is #P-complete.

Proof. Given an arbitrary Pl-3CNF formula f(x1, x2, . . . , xn) and a satisfying as-
signment v such that v[f] = 1, we construct a new formula f1(x1, x2, . . . , xn, y1, . . . , yp),
where y1, . . . , yp are new variables. The formula f1 is constructed as follows. Let
xl1 , xl2 , . . . , xlp be the variables in f such that v[xl1] = v[xl2] = · · · = v[xlp] = 0.
Then replace xli by yi and xli by yi, 1 ≤ i ≤ p. Obviously, the formula f1 is 1-valid
and the reduction is parsimonious.

Karp and Luby [14] presented randomized fully polynomial time approximation
schemes for several #P-complete problems, including #DNF. Since then, substantial
research has been done in the area of approximation algorithms for various counting
problems. Saluja, Subramanium, and Thakur [22] give a logical characterization of
the counting problems that have a polynomial time random approximation scheme.
Our #P-hardness of #Pl-3Sat and other problems immediately raise the question
of approximating the optimal values of these counting problems. The parsimonious
reduction from 3Sat to Pl-3Sat implies that, given a deterministic polynomial time
algorithm A to approximately count the number of satisfying assignments of a planar
3CNF formula, we can construct a deterministic polynomial time algorithm A′ with
the same performance guarantee to approximately count the number of satisfying
assignments of an arbitrary 3CNF formula.

Intuitively Theorem 3.2 and the above observation mean that counting the num-
ber of satisfying assignments of a planar 3CNF formula is as hard as counting the
number of satisfying assignments of an arbitrary 3CNF formula with respect to poly-
nomial time reducibility. We remark that the result holds even for 1-Valid Pl-3CNF
formulas.

Next, we prove the #P-hardness of other basic satisfiability problems. First we
prove two lemmas.

Lemma 3.6. Let F be the planar monotone formula (c + d + e) ∧ (c + e + f) ∧
(d+ e+ f). Then there is a unique satisfying assignment v to the variables of F such
that each clause has exactly one true literal, namely, v[c] = v[d] = v[f] = 0; and
v[e] = 1.

Proof. The proof is by inspection.

Lemma 3.7. The following Ex3CNF formula is planar and has exactly one
satisfying assignment, namely, the assignment v defined by v[xi] = 0(1 ≤ i ≤ 9):

PLANAR COUNTING 1151

10

115

42

712

1

3

136

148

4

97

1

32

685

xx

x

xx

x x

x

x

9

Fig. 3.3. Pl-Ex3Sat formula as described in Lemma 3.7. Ellipses denote the clauses in G.
The clauses are numbered in the order in which they appear in Lemma 3.7.

G(x1, . . . , x9) = (x1 + x2 + x3) ∧ (x1 + x2 + x7) ∧ (x2 + x3 + x8) ∧ (x3 + x1 + x9) ∧
(x4 + x1 + x7) ∧ (x5 + x2 + x8) ∧ (x6 + x3 + x9) ∧ (x7 + x5 + x8) ∧ (x8 + x6 + x9) ∧
(x9 + x4 + x7) ∧ (x1 + x4 + x9) ∧ (x2 + x5 + x7) ∧ (x3 + x6 + x8) ∧ (x7 + x8 + x9).

Proof. Planarity is demonstrated by Figure 3.3. The given assignment v satisfies
G since each clause of G contains a negated literal.

Suppose G is true. Let u be any truth assignment to the variables in G. Then,
x7 → x8 by clauses 6, 8, and 12; x8 → x9 by clauses 7, 9, and 13; x9 → x7 by clauses
5, 10, and 11. Therefore, (x7 + x8 + x9) → (x7 ∧ x8 ∧ x9). Hence by clause 14, u[x7]
= u[x8] = u[x9] = 0. Given this, x1 → x2 by clause 2; x2 → x3 by clause 3; and
x3 → x1 by clause 4. Therefore, (x1 + x2 + x3) → (x1 ∧ x2 ∧ x3). Hence by clause 1,
u[x1] = u[x2] = u[x3] = 0. But this implies that u[x4] = u[x5] = u[x6] = 0 by
clauses 5, 6, and 7. Hence in any satisfying assignment u of G, u[xi] = 0 (1 ≤ i ≤ 9).

Next we give planarity-preserving parsimonious reductions from 3Sat to the basic
Sat problems listed in Table 1.1. Without loss of generality, we assume that the given
instance of the CNF formula does not have any single literal clause.

Theorem 3.8. There exist planarity-preserving parsimonious reductions from
3Sat to each of the following problems: Ex3Sat, 1-3Sat, 1-Ex3Sat, 1-Ex3MonoSat
and X3C.

Proof. 3Sat → Ex3Sat: Let f be a 3CNF formula with clauses cj(1 ≤ j ≤ k).
For 1 ≤ j ≤ k, let c′j be cj , if cj is a three-literal clause. If cj = (lj1 + lj2), let c′j be

(lj1 + lj2 + xj9) ∧G(xj1, . . . , x
j
9).

1152 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

G is defined as in Lemma 3.7 and xji (1 ≤ i ≤ 9) are distinct new variables. Let

g =

k∧

j=1

c′j .

Then by Lemma 3.7, Figure 3.3, and direct inspection of the definitions of the for-
mulas c′j , the reduction mapping f into g is seen to be a planarity-preserving and
parsimonious reduction of the problem 3Sat to the problem Ex3Sat.

3Sat → 1-Ex3Sat2: Let f be a 3CNF formula with clauses cj(1 ≤ j ≤ m).
(1) For each three-literal clause cj = (zp + zq + zr) of f , let c′j = (zp + uj + vj) ∧

(zq +uj +wj)∧ (vj +wj + tj)∧(zr +vj +xj), where uj , vj , wj , tj , and xj are distinct
new variables local to c′j .

(2) For each two-literal clause cj = (zp + zq) of f , let c′j = (zp + uj + vj) ∧ (zq +

uj +wj)∧ (vj +wj + tj)∧ (aj +vj +xj)∧ (aj +dj +ej)∧ (aj +ej +f j)∧ (dj +ej +f j),
where uj , vj , wj , tj , xj , aj , dj , and ej are all new variables local to c′k. Let

f ′ =

m∧

j=1

c′j .

To see the planarity of this reduction, see Figure 3.4. We claim that f ′ is exactly-
one satisfiable if and only if the original formula f is satisfiable. Moreover, the re-
duction is planarity-preserving and parsimonious. To prove that the reduction is
parsimonious, it suffices to show the following two claims.

Claim 3.9. No assignment of truth values to the variables of clause cj (1 ≤ j ≤
m) of f which does not satisfy cj can be extended to an assignment of truth values to
the variables of the formula c′j that exactly-one satisfies c′j.

Proof. Let cj = (zp + zq + zr) and u be an assignment to the variables such that
u[zp] = u[zq] = u[zr] = 0. Let v be an exactly-one satisfying assignment to the
variables of c′j such that v[zp] = v[zq] = v[zr] = 0 (i.e., v is an extension of u).

Then, the clauses (zq +uj +wj) and (zr +vj +xj) imply that v[uj] = v[wj] = v[vj]
= v[xj] = 0. It follows that v does not exactly-one satisfy the clause (zp +uj +wj)
of c′j .

Let cj = (zp + zq) and u be an assignment to the variables such that u[zp] =
u[zq] = 0. Let v be an exactly-one satisfying assignment to the variables of c′j such

that v[zp] = v[zq] = 0. Then, the clauses (zp + uj + vj) and (zq + uj + wj) imply

that v[uj] = v[wj] = 0 and v [vj] = 1. But given this, the clause (aj + vj + xj)
implies that v[aj] = 1. Lemma 3.6 now implies that v does not exactly-one satisfy
c′j .

Claim 3.10. For each satisfying assignment to the variables of the clause cj (1 ≤
j ≤ m) of f , there is exactly one way the assignment can be extended to the variables
of the formula c′j so as to exactly-one satisfy c′j.

Proof. When cj = (zp + zq + zr), we need to verify that the only exactly-one
satisfying assignments c′j are the following:

1. zp = 1, zq = 0, zr = 0, uj = 0, vj = 0, wj = 0, tj = 1, xj = 0;
2. zp = 0, zq = 1, zr = 0, uj = 1, vj = 0, wj = 0, tj = 1, xj = 0;
3. zp = 0, zq = 0, zr = 1, uj = 0, vj = 1, wj = 0, tj = 0, xj = 0;

2Although they claim to have a parsimonious reduction, the reduction actually given in [3] is not
parsimonious.

PLANAR COUNTING 1153

z

zz

z

z

p

q

r

p r

u

w

v

t

x

1

2 3

4

zq

zp

u

w

t x

v a

e f

d

z

zq

p

1

2

3

4

5

7

6

zq

Fig. 3.4. Figure illustrating the reduction from 3Sat to 1-Ex3Sat. (a) shows how to transform
a three-literal clause. (b) shows how to transform a two-literal clause. The clauses are numbered in
the order in which they appear in the reduction outlined in the proof of Theorem 3.8. Note that the
reduction is a local replacement–type reduction and hence preserves planarity.

4. zp = 1, zq = 1, zr = 0, uj = 0, vj = 0, wj = 1, tj = 0, xj = 0;
5. zp = 1, zq = 0, zr = 1, uj = 0, vj = 0, wj = 0, tj = 1, xj = 1;
6. zp = 0, zq = 1, zr = 1, uj = 1, vj = 0, wj = 0, tj = 1, xj = 1;

and
7. zp = 1, zq = 1, zr = 1, uj = 0, vj = 0, wj = 1, tj = 0, xj = 1.

When cj = (zp + zq), we need to verify that the only exactly-one assignments of c′j
are the following:

1. zp = 1, zq = 0, uj = 0, vj = 0, wj = 0, tj = 1, xj = 0, cj =
0, dj = 0, ej = 1, f j = 0;

2. zp = 0, zq = 1, uj = 1, vj = 0, wj = 0, tj = 1, xj = 0, cj = 0,
dj = 0, ej = 1, f j = 0; and

3. zp = 1, zq = 1, uj = 0, vj = 0, wj = 1, tj = 0, xj = 0, cj = 0,
dj = 0, ej = 1, f j = 0.

1-Ex3Sat → 1-Ex3MonoSat: Let f be an instance of 1-Ex3Sat. Let

f =

m∧

j=1

cj .

For each cj , construct c′j as follows. Replace each negated literal of the form zp
appearing in the clause cj by a distinct new variable yjp in cj , then add the clauses

(zp+yjp+ajp)∧(ajp+djp+ejp)∧ (ajp+f jp +ejp)∧(djp+f jp +ejp). Note that for each negated

1154 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

q

jc

j
q

j

j

jj

j

j

j

j j j j

j

j

p

rq

p

pp

p

r

r

r

r

q

q

q

r

p

rq

p

d

d
d

f
f

f

e

e
e

aa

a

y

yy

zz

z

zz

z

j

Fig. 3.5. Figure illustrating the reduction from 1-Ex3Sat to 1-Ex3MonoSat. The figure
illustrates the construction for a three-literal clause cj which contains all negated literals.

literal, we introduce new copies of the auxiliary variables ajp, . . . , f
j
p . See Figure 3.5

for an example.
Let

f ′ =

m∧

j=1

c′j .

Then f ′ is an instance of 1-Ex3MonoSat obtained from f . The result follows from
Lemma 3.6 and the fact that for all variables x and y, (x+y) is exactly-one satisfiable
if and only if x = y.

1-Ex3MonoSat → X3C: Although Dyer and Frieze [3] do not observe this, the
reduction given in their paper [3] from 1-Ex3Sat to X3C is actually parsimonious.
The reduction presented here is essentially the same as that given in [3], except that
we start from an instance of 1-Ex3MonoSat. Thus in our reduction, we do not
have to take care of negated literals. We now describe the reduction. Each variable
is represented by a cycle of 3 element sets. If the variable occurs r times in the 1-
Ex3Sat instance, then there are 2r sets, with each successive pair of sets sharing an
element. This cycle is augmented with r additional sets and 2r elements by adding a
3-set to one of the external elements in each pair. The 3 elements now corresponding
to an appearance of vj will be called a connector. The variable vj is set to true if and
only if all three connector elements are covered by the cycle when vj appears in the
corresponding clause. Figure 3.6 illustrates the variable component. Next, consider
each clause ci. Each ci is represented by a configuration shown in Figure 3.7. This has
12 elements and 9 sets. Of the 12 elements, 3 are internal and the rest are grouped in
groups of 3. Each group of 3 elements is called a terminal of ci. Finally, we connect a

PLANAR COUNTING 1155

connector

Fig. 3.6. Variable configuration for reduction to X3C. The black dots represent element nodes,
while the ellipses denote the triples.

terminals

1

2 3 4
5

6

7

8

9
a

b c

d e
f

g
h

i

j

k

l

Fig. 3.7. Figure illustrating the clause configuration. The sets {l, a, b}, {d, c, f}, {j, i, h} repre-
sent the three terminals. The vertices labeled c, g, k are the internal elements.

clause component to the variable component as follows. For each vj ∈ ci we identify
three distinct connector elements with one of the terminals in ci. The construction is
depicted in Figure 3.8. Let G denote the graph obtained as a result of the construction.
Planarity of G follows by the fact that each component replacing a variable and a
clause is planar and the components are joined in a planarity-preserving way. We first
prove that there is an exact cover of ci configuration if and only if exactly one terminal
is covered externally, when we restrict the covering such that either none or all 3 of
the elements in each terminal are covered externally. But the configuration has the

1156 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

variable
configuration

variable
configuration

clause
configuration

connector and
terminals

Fig. 3.8. Figure illustrating the way the clause and variable configurations are attached.

property that each of the 3 internal elements appear in 3 of the 9 sets and no 2 appear
in the same set. It follows that if this configuration forms part of an exact cover by
3-sets, then exactly 3 of the sets must be used, hence 9 of the 12 elements will be
covered internally. Moreover, this can only be done so that exactly 1 of the terminals
will be left uncovered. This uncovered terminal is covered by sets in the variable
configuration and amounts to setting the literal true. It can then be argued that the
exact cover by 3-sets has a solution if and only if the corresponding 1-Ex3MonoSat
instance is satisfiable. It is easily verified that the reduction is parsimonious. This is
because the clause configuration forces precisely 1 literal to be set to true and the other
2 literals to be false. Moreover, for each satisfying assignment of 1-Ex3MonoSat,
there is exactly 1 way the sets can be chosen so as to have an exact cover. Hence, the
reduction is parsimonious.

Corollary 3.11. The problems Pl-Ex3Sat, Pl-1-Ex3Sat, and Pl-1-
Ex3MonoSat are NP-complete. The problems #Pl-Ex3Sat, #Pl-1-3Sat, #Pl-
1-Ex3Sat, #Pl-1-Ex3MonoSat, and #Pl-X3C are #P-complete.

4. Planar graph problems.

4.1. Overview of our proofs. In this section we give parsimonious/weakly
parsimonious and planarity-preserving reductions from Pl-1-Ex3MonoSat to vari-
ous graph problems. The problems considered here are Minimum Vertex Cover,
Minimum Dominating Set, Clique Cover, Feedback Vertex set, Parti-
tion into Claws, Partition in Triangles, and Bipartite Dominating Set.
Previously, reductions showing that these problems were NP-hard frequently did not
preserve the number of solutions. Central to the proofs is the reduction (called RED1)
from 1-Ex3MonoSat to 3Sat with the property that every formula is mapped to a
formula in which all satisfying assignments satisfy exactly one literal in each three-
literal clause. This in turn enables us to obtain (weakly) parsimonious reductions
from Ex1-3MonoSat to the problems considered here.

PLANAR COUNTING 1157

x + y + z x + y + z

x y

z z

x y

x + z

x + y

y + z

(a) (b)

Fig. 4.1. Figure illustrating the reduction RED1 discussed in section 4.2. Observe that the
reduction is planarity-preserving.

4.2. Reduction RED1. Let RED1 be a mapping from an instance

f =

m∧

j=1

cj

of 1-Ex3MonoSAT to an instance

f ′ =
m∧

j=1

c′j

of 3Sat, where for cj = (x+ y + z), c′j = (x+ y + z) ∧ (x+ y) ∧(x+ z) ∧(z + y).
Lemma 4.1. The formula f ′ has the following properties.
(1) The satisfying assignments of f ′ are exactly the exactly-one satisfying assign-

ments of f .
(2) In any satisfying assignment of f ′, all but one clause in c′j is exactly-one

satisfiable.
(3) Each variable in the formula f ′ occurs at least twice negated and at least once

unnegated.
(4) RED1 is planarity-preserving. (See Figure 4.1.)
(5) RED1 is parsimonious.
Proof. The proof is by inspection.
We call each of the c′j a clause group. Observe that each c′j has four clauses; one

is a three-literal clause and the others are two-literal clauses.

4.3. Weakly parsimonious reductions and basic graph problems.
Theorem 4.2. There exists a planarity-preserving and weakly parsimonious re-

duction from 1-Ex3MonoSat to each of the following problems: (1) Minimum Ver-
tex Cover, (2) Minimum Dominating Set, (3) Minimum Feedback Vertex
Set, and (4) Subgraph Isomorphism.

Proof. (1) Minimum Vertex Cover: The reduction is from 1-Ex3MonoSat
and is similar to the one given in [5] for proving NP-hardness of Minimum Vertex
Cover. Let f be a 1-Ex3MonoSat formula. Apply RED1 to f to obtain f ′. Next,

1158 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

x + z

x + y + z

x + y

y + z

x

x

x

x

x

x

z
z

z

z

z

z

y y

y

y
y y

Fig. 4.2. Figure illustrating the reduction from 1-Ex3MonoSat to Vertex Cover and the
transformation of a clause group (x + y + z) ∧ (x + y) ∧ (x + z) ∧ (z + y). The dotted enclosures
depict how to locally transform the clauses as well as the variables so as to preserve planarity of the
resulting graph.

starting from f ′, construct an instance G(V,E) of the vertex cover problem as shown
in Figure 4.2 as follows.

1. Consider a clause group c′j = (x + y + z) ∧ (x + y) ∧(x + z) ∧(z + y).
Corresponding to the clause (x + y + z), construct a triangle with vertices {x, y, z}
and edges {(x, y), (x, z), (y, z)}. Corresponding to a clause of the form (x + y) add
the edge {(x, y)}. Call this the clause graph.

2. For each variable x that appears i times we construct a simple cycle with 2i
vertices. Let the odd-numbered variables represent the negated occurrences and the
even-numbered variables represent the unnegated occurrences. Call this the variable
graph.

3. Join the vertices of the clause graph to the vertices of the variable graph
as follows. Consider a clause group c′j . Corresponding to a clause, join the triangle
vertices x, y, and z to the corresponding unnegated occurrences of x, y, and z in the
cycles. Corresponding to a clause of the form (x+ y), join the two vertices x, y to the
negated occurrence of the variables x and y, respectively. Repeat the procedure for
each clause group.

Now set K = 1/2
∑

Ci + 2m + 3m, where Ci is the length of the cycle of the
variable i and m is the number of clause groups in f ′. The reduction is illustrated in
Figure 4.2.

Claim 4.3. (1) The formula f ′ is satisfiable if and only if the graph G has a
vertex cover of size K.

(2) The reduction is planarity-preserving and weakly parsimonious.

Proof. Part 1. Observe that for any vertex cover, one needs to pick at least half of
the nodes from each cycle, two of the three nodes from each triangle, and one from the

PLANAR COUNTING 1159

simple edge for each two-literal clause. (Recall that there are 3m two-literal clauses
in f ′.) The sum is exactly K. Given this observation, the proof is similar to the one
given in [5].

Part 2. It can be easily verified by observing in Figure 4.2 that the reduction is
planarity-preserving. To see that for each distinct satisfying assignment of f ′, there
are 2m distinct vertex covers of size K, note that, by Lemma 4.1, for each satisfying
assignment, all but one clause in each clause group has only one true literal. This
forces the choice of vertices from the clause graph for all clauses having only one true
literal. For each satisfying assignment and for each clause group there is one clause in
the clause group in which both the literals are true. For each such clause any of the
two vertices can be included in the vertex cover. Since there are m clause groups, we
have m such clauses and hence we have 2m different vertex covers for each satisfying
assignment.

Note that our reduction shows that counting the number of vertex covers of size
≤ k is #P-hard even if there are no vertex covers of size strictly less than k. For the
next two results, we use such an instance of #-vertex cover for our reductions.

(2) Minimum Dominating Set: The reduction is from the Minimum Vertex
Cover problem. The reduction in [13] from Vertex Cover to Dominating Set
can easily be modified to get a parsimonious reduction. Let G1 = (V1, E1), V1 =
{v1, . . . , vn} be an instance of the Minimum Vertex Cover problem. We construct
an instance G2 = (V2, E2) of the Minimum Dominating Set problem as follows.
There is one vertex in V2 corresponding to every vertex in V1. For each edge in G1

we also introduce two additional vertices and join them to the two endpoints of the
original edge. Formally, V2 = U1 ∪ U2 and E2 = A1 ∪A2, where

U1 = {ui | vi ∈ V1},

U2 = {xij1 , xij2 | (vi, vj) ∈ E1},

A1 = {(ui, uj) | (vi, vj) ∈ E1},

A2 = {(ui, xij1), (xij1 , uj), (ui, x
ij
2), (xij2 , uj) | (vi, vj) ∈ E1}.

Claim 4.4. G1 has a minimum vertex cover of size k if and only if G2 has a
minimum dominating set of size k. Furthermore, the reduction is planarity-preserving
and parsimonious.

Proof. It is easy to see that the reduction is planarity-preserving. Consider a
minimum vertex cover V C = {vi1 , vi2 , . . . , vik} of G1. Corresponding to V C we claim
that there is exactly one dominating set in the graph G2, namely, the vertex set
DS = {ui1 , ui2 , . . . , uik}. First note that for each edge in the original graph G we
have four new edges and two new vertices in G2. Consider a pair of nodes of the form
xij1 , x

ij
2 connected to the nodes ui and uj . It is clear that the only way to dominate

both xij1 , x
ij
2 by using only one node is to include one of ui or uj in the dominating

set. We need to consider two cases. First consider the case when exactly one of vi
or vj is in V C. Then it is clear that there is exactly one dominating set DS in G2

corresponding to V C. When both vi and vj are in V C, the minimality of V C implies
that at least one edge incident on vi and at least one edge incident on vj are covered
solely by vi and vj , respectively. This implies that both ui and uj have to be in

1160 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

any feasible dominating set of G2. Thus we have exactly one dominating set DS in
G2 corresponding to the vertex cover V C in G1. Conversely, consider a minimum
dominating set DS = {ui1 , ui2 , . . . , uik} of size k in G2. Consider an edge (vi, vj) in

G. If ui and uj are not in DS, then by construction of G2, both xij1 and xij2 are in
DS. But we could then construct a new dominating set DS′ of G2, where

DS′ = DS − {xij1 , xij2 } ∪ {ui}.

Clearly |DS′| < |DS|, which is a contradiction to the assumption that DS is a min-
imum dominating set. Thus, DS does not contain any vertex from the set U2. We
now claim that V C = {vi1 , vi2 , . . . , vik} is a vertex cover of G. The claim follows by
observing that corresponding to each edge (vi, vj) ∈ E1, at least one of the vertices

ui, uj , x
ij
1 , x

ij
2 are in the set DS. We have already argued that xij1 , x

ij
2 6∈ DS. Thus

one of ui, uj is in DS. The corresponding vertex in V C is seen to cover the edge
(vi, vj).

(3) Feedback Vertex Set: The reduction is from the Minimum Vertex
Cover problem. Starting from an instance G1(V1, E1) of the Minimum Vertex
Cover problem, we construct the graph G2 that is identical to the one given for the
Minimum Dominating Set problem. By arguments similar to those given in the
proof of the Minimum Dominating Set problem, it is easy to see that the G1 has
a minimum vertex set of size K if and only if G2 has a feedback vertex set of size K
and the reduction is parsimonious.

(4) Subgraph Isomorphism: This follows directly by taking the graph H to
be a simple cycle on n nodes, and the weakly parsimonious reduction from 3Sat to
the Hamiltonian Circuit problem given in Provan [20].

Corollary 4.5. The problems #Pl-Minimum Vertex Cover, #Pl-Minimum
Dominating Set, #Pl-Minimum Feedback Vertex Set, and #Pl-Subgraph
Isomorphism are #P-complete.

4.4. Parsimonious reductions and other graph problems. In this section
we briefly discuss why the reductions studied by [6, 15] and [3, 4] from X3C to various
other graph problems are parsimonious and planarity-preserving.

Theorem 4.6. There exist planarity-preserving and parsimonious reductions
from X3C to each of the problems (1) Minimum Clique Cover, (2) Partition
into Claws, (3) Bipartite Dominating Set, (4) Partition into Triangles,
and (5) Minimum Hitting Set.

Proof. (1) Minimum Clique Cover: The reduction is the same as given in [3, 5].
Given an instance I(X,C) of X3C such that |X| = 3p and |C| = m, we construct
an instance G of the Minimum Clique Cover problem such that G has a clique
cover with cliques of size 3 if and only if I has a solution. The reduction consists of
replacing each triple in the instance of I by a triangle and by replacing an edge from
a triple to an element by a set of triangles. The reduction is illustrated in Figure
4.3. Formally, for each element, we have a vertex in G. Corresponding to each triple
ti = {xi, yi, zi} and the associated edges (ti, xi), (ti, yi), (ti, zi), we create the subgraph
as shown in Figure 4.3. The graph G obtained by carrying out the above reduction for
each triple has 3p+9m vertices and 18m edges. The reduction is planarity-preserving,
as each component is planar and they are joined in a planarity-preserving way. We
claim that I has a solution if and only if G has a clique cover of size (p + 3m). In
particular, as shown in [3, 5], if t1, . . . , tp is the set of triples in an exact cover, then

PLANAR COUNTING 1161

x y z

(a) (b)

t

triple node
representing

x y z

t t

t

1 2

3

α β γ δ κ π

i

i i i

xi y zi i{ }

i i

i

i i i i i i

iii

Fig. 4.3. Figure illustrating the reduction from X3C to Clique Cover.

the corresponding clique cover is constructed by taking

{αi, βi, xi}, {γi, δi, yi}, {κi, πi, zi}, {ti1, ti2, ti3}

whenever ti = {xi, yi, zi} is in the exact cover and by taking the cliques

{αi, βi, ti1}, {γi, δi, ti2}, {κi, πi, ti3}

when the corresponding triple ti is not in the exact cover. Conversely, since G has
3p + 9m vertices, if G has a clique cover of size p + 3m it implies that each clique
consists of exactly three vertices. (Recall that we do not have cliques of size 4 in
G.) The corresponding exact cover is given by choosing those ti ∈ C such that the
triangles ti1, t

i
2, t

i
3 are in the clique cover. Finally, we prove that the reduction is

parsimonious. First note that if the triple triangle {ti1, ti2, ti3} is not chosen then we
have to choose the triangles {αi, βi, ti1}, {γi, δi, ti2}, {κi, πi, ti3} so as to cover the triple
vertices. Second, once the triangle {ti1, ti2, ti3} is chosen there is exactly one way for
the auxiliary nodes (and thus the element nodes) to be covered, namely, the lower
triangle corresponding to the covering triple, i.e., choosing the triangles

{αi, βi, xi}, {γi, δi, yi}, {κi, πi, zi}.

These observations immediately imply that the reduction is parsimonious.
(2) Partition into Claws: The reduction is from X3C and is the same as the

one given in [3]. The reduction consists of the following steps.
1. Construct the bipartite graph G(C ∪ X,E) corresponding to the given in-

stance I(X,C) of X3C.
2. As in [3], we assume that each element vertex appears in either two or three

sets; i.e., the element vertices have a degree 2 or 3.
3. For each element of degree 3, we add an extra edge and for each element of

degree 2, we add two extra edges. This is shown in Figure 4.4. Let G1 denote the
resulting graph.

1162 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

element of
degree 3

element of
degree 2

new edges
new
edge

triples triples

Fig. 4.4. Figure illustrating the reduction from X3C to Partition into Claws.

Clearly the reduction is planarity-preserving. We now recall the proof in [3] to
show that the edges of G1 can be partitioned into a disjoint set of claws. Note that
each element vertex is adjacent to either 1 or 2 vertices of degree 1, so it follows that
each element node must be the center of at least one claw. But each such element
node has degree 4 and hence can be the center of exactly one claw. After removing
the claws from G1 the resulting graph G2 has the property that all element nodes
have degree 1. This implies that the only way to partition G2 into claws is for each
triple to have a degree of 0 or 3. Thus the triples with degree 3 induce a solution for
the X3C in an obvious way. Conversely, given a solution for I, the above argument
can be reversed to yield a partition of the edges in G1 into claws. The following
observations immediately imply that the reduction is parsimonious.

1. There is a unique way to pick the claws in G1 with the element nodes as
centers.

2. In G2, each triple vertex has degree 3 or 0 and each element node has degree
1 in G2.

(3) Bipartite Dominating Set: Reduction from X3C. The construction is
similar to that in [3]. Let I(X,C) be an instance of Pl-X3C with each element
occurring in at most three triples. We first construct the bipartite graph G associated
with I. Next, we attach a 2-claw (K1,2) to each triple vertex in G as shown in
Figure 4.5. (In [3], they add a path of length 2.) Let G′ denote the graph obtained
as a result of the transformation. The construction is depicted in Figure 4.5. Since
G is bipartite and we added a claw as shown in Figure 4.5, it follows that G′ is also
bipartite. Also note that the reduction is planarity-preserving and thus G′ is planar.
Let the number of triples be m and the number of elements be 3p. Then we set
k = p + m. Now by arguments similar to those in [3], it is easy to see that G′ has
a dominating set of size k if and only if I has an exact cover of size p. We prove
the reduction is parsimonious. Consider a solution S(I) for I. Since each triple in
the solution covers three distinct element nodes, these element nodes cannot be used
to dominate the vertices in G′ without increasing the cardinality of the solution for
G′. This means that for each of the p triples chosen in the solution S(I), we have
exactly one node in G′ that can be used in the dominating set so as to dominate all
the element nodes. Moreover, due to the constraints on the size of the dominating set
in G′, it follows that we can select exactly one vertex per claw (the vertex with degree
3 and marked a) in the dominating set. These observations imply that the reduction
is parsimonious.

PLANAR COUNTING 1163

(a) (b)

y zxy zx

t

a

b c

claw attached to
the triple vertex

t

triple node
representing { x, y, z }

Fig. 4.5. Figure illustrating the parsimonious reduction from X3C to Bipartite Dominating
Set. It is easy to see that the reduction preserves planarity of the graph.

(4) Partition into Triangles: The reduction is from X3C and is the same
as the reduction described in the proof of Clique Cover. Given that the resulting
graph has no cliques of size 4, the proof follows.

(5) Minimum Hitting Set: As given in [5], each instance of vertex cover can
be seen to be an instance of a hitting set, in which every edge (u, v) corresponds to
the set {u, v}. The elements of the set are simply the nodes of the graph. The result
now follows by noting that there is a weakly parsimonious reduction from 3Sat to
Minimum Vertex Cover.

Corollary 4.7. The problems #Pl-Minimum Clique Cover, #Pl-Partition
into Claws, #Pl-Bipartite Dominating Set, #Pl-Partition into Trian-
gles, and #Pl-Minimum Hitting Set are #P-complete.

Theorem 4.8. Let Π be one of the problems in Table 1.1. It is #P-complete to
count the number of solutions to Π, even when one is given an instance of Π and a
solution which is guaranteed to satisfy Π.

Proof. Starting from a 3CNF formula obtained in the proof of Theorem 3.4, we
now do the same set of reductions discussed in the earlier theorems to obtain an
instance of the problem Π. Since we know that the 3CNF formula is satisfiable, it
follows that the instance of Π has a solution.

5. Unique and ambiguous planar problems. Our parsimonious planar cross-
over box for 3Sat can also be used to show that additional problems for planar CNF
formulas are as hard as the corresponding problems for arbitrary CNF formulas, with
respect to polynomial time or random polynomial time reducibilities. We briefly
describe these results. We first recall the definitions of DP and random polynomial
time reductions from [19, 27].

Definition 5.1. DP = {L1−L2 | L1, L2 ∈ NP}. Intuitively, a problem is in DP

if it can be solved by asking one question in NP and one question in Co-NP.

Definition 5.2. Problem A is reducible to problem B by a randomized polynomial
time reduction if there is a randomized polynomial time Turing machine T and a
polynomial p such that

(1) ∀x, [x 6∈ A→ T [x] 6∈ B];

1164 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

(2) ∀x, [x ∈ A→ T [x] ∈ B with probability at least 1/p(|x|)].
Theorem 5.3. Unique-Pl-3Sat is DP -complete under randomized polynomial

time reductions.

Proof. We modify the proof of the DP -completeness of Unique Sat in [27], so
that whenever their reduction outputs a boolean formula f , our reduction outputs the
planar formula Pl(f) obtained by applying the parsimonious planar crossover box to
f . The formula Pl(f) has exactly the same number of satisfying assignments as f . In
particular, Pl(f) is uniquely satisfiable if and only if f is uniquely satisfiable.

A second example is the following.

Theorem 5.4. Ambiguous-Pl-3Sat is NP-complete.

Proof. Given an instance of an arbitrary 3CNF formula f , we first construct a
new formula using the same construction as in Step 1 of Theorem 3.4. As pointed out
in the proof of Theorem 3.4, the new formula is ambiguously satisfiable if and only if
the original formula is satisfiable. We then do the same sequence of reductions as in
Theorem 3.4 to obtain a planar formula that is ambiguously satisfied if and only if
the original formula is satisfied.

Using the ideas similar to those in the proof of Theorem 3.5, we can prove the
following theorem.

Theorem 5.5. Ambiguous-1-Valid Pl-3Sat is NP-complete.

Corollary 5.6. Unique-1-Valid Pl-3Sat is Co-NP-complete.

Proof. To prove the membership in Co-NP, consider an arbitrary formula F (x1,
. . . , xn), which is an instance of 1-Valid Pl-3Sat. By the definition of 1-Valid
formulas, an assignment v to the variables such that v[x1] = v[x2] = · · · v[xn] = 1
satisfies F (x1, . . . , xn). Now consider the formula H(x1, . . . , xn) = F (x1, x2, . . . , xn)∧
(x1 ∨ x2 . . . xn). F is uniquely satisfiable if and only if H is unsatisfiable. To prove
Co-NP-hardness, given a formula f(x1, x2, . . . , xn), we construct a formula g such that

g(x1, . . . , xn+1) = [f(x1, x2, . . . , xn) ∧ xn+1]
∨

(x1 ∧ x2 . . . xn+1).

Now using ideas similar to those in the proof of Theorem 3.5, we obtain a planar
formula g1 with the following properties:

(1) g1 is 1-valid.

(2) g1 is uniquely satisfiable if and only if f is unsatisfiable.

Combining our parsimonious planar crossover box for 3Sat and the reductions
to prove Theorem 3.8, we get that exact analogues of Theorems 5.3–5.5 hold for each
of the problems Ex3Sat, 1-3Sat, 1-Ex3Sat, and 1-Ex3MonoSat. Thus, we have
the following corollary.

Corollary 5.7. Let Π be one of the following problems: Ex3Sat, 1-3Sat, 1-
Ex3Sat, or 1-Ex3MonoSat. Then the problem Ambiguous-Pl-Π is NP-complete
and the problem Unique-Pl-Π is DP -complete under randomized polynomial time
reductions.

As a corollary of our parsimonious reductions, the unique versions of many graph
problems are also DP -complete.

Corollary 5.8. Let Π be one of the problems Pl-Partition into Trian-
gles, Partition into Claws, or Bipartite Dominating Set. Then the problem
Ambiguous-Π is NP-complete and the problem Unique-Π is DP -complete under ran-
domized polynomial reductions.

Proof. Given that each reduction in the sequence of reductions 3Sat → Pl-3Sat
→ Pl-Ex1-3Sat → Pl-X3C is parsimonious, that Unique 3Sat is DP -complete,

PLANAR COUNTING 1165

and that the reduction from X3C to each of the problems mentioned above is parsi-
monious, the proof of the corollary is similar to the proof of Theorem 5.4.

5.1. Nonapproximability results for integer linear programming. Next,
we give an application of our result that Ambiguous Pl-3Sat is NP-complete and
prove that it is not possible to approximate the optimal value of the objective function
of an integer linear program.

An instance of an integer linear program consists of a system of linear inequali-
ties and an objective function which is to be maximized (minimized); i.e., maximize
(minimize) cx subject to the constraints Ax ≤ b. The variables x are allowed to take
only integer values. We say that a minimization problem Π is ε-approximable, ε > 1
(or has an ε-approximation) if there is a polynomial time algorithm that, given an
instance I ∈ Π, finds a solution which is within a factor ε of an optimal solution for
I.

Theorem 5.9. Unless P = NP, given an instance of the integer linear program
problem and a feasible solution, the maximum (minimum) value of the objective func-
tion is not polynomial time ε-approximable for any ε > 1, even when the bipartite
graph associated with the set of constraints is planar.

Proof. We prove the theorem for the maximization version of the problem. The
proof for the minimization version is similar and hence omitted.

Step 1. Given a 3Sat formula f(x1, x2, . . . , xn), we construct a formula

g(x1, . . . , xn+1) = [f(x1, x2, . . . , xn) ∧ xn+1] ∨ (x1 ∧ x2 . . . xn+1).

It follows that for any assignment v, v[g(x1, . . . , xn+1)] = 1 if and only if either (i)
v[f(x1, x2, . . . , xn)] = 1 and v[xn+1] = 1, or (ii) v[x1] = v[x2] = · · · v[xn+1] = 0.

Step 2. Starting from g(x1, . . . , xn+1), we construct a Pl-3Sat formula
ĝ(x1, x2, . . . , xn+1, t1, . . . , tm) such that ĝ(x1, x2, . . . , xn+1, t1, . . . , tm) is satisfiable if
and only if g(x1, x2, . . . , xn+1) is satisfiable.

The construction can be carried out as in Step 2 in the proof of Theorem 3.4. We
therefore omit the details here.

Step 3. Let ĝ = G1 ∧ G2 . . . Gr. Construct a new 1-Ex3-MonoSat formula h
from ĝ such that ĝ is satisfiable if and only if h is satisfiable. Let h = C1 ∧ C2 . . . Cp.
Replace each clause Ci = (xi1 + xi2 + xi3) by the inequality (xi1 + xi2 + xi3) ≥ 1.
All the inequalities corresponding to the clauses make up the constraints. We also
add constraints that ∀i, xi ∈ {0, 1}. The objective function is now simply xn+1.
It is easy to verify that the maximum value of the objective function is exactly 1
if f(x1, x2, . . . , xn) is satisfiable and is 0 otherwise. Hence it follows that unless P
= NP the integer linear program problem has no polynomial time ε-approximation
algorithm for any ε > 1.

6. Conclusions and open problems. We showed that for many problems Π
studied in the literature, the problems #Pl-Π, Ambiguous-Pl-Π, and Unique-Pl-
Π are as hard as the respective problems #Π, Ambiguous-Π, and Unique-Π with
respect to polynomial time or random polynomial time reducibilities. We note that
the problem #Pl-Hamiltonian-Cycle was proved to be #P-complete by Provan
[20]. We can give an alternate proof of the #P-hardness of #Pl-Hamiltonian-
Cycle by a reduction from a variant of RED1. The reduction is significantly more
complicated than that in [20]. Consequently, we omit it here.

As corollaries of our results, we have shown that many planar problems are com-
plete for the classes NP, #P, and DP . Our results and their proofs provide the
following general tools for proving hardness results for planar problems.

1166 H. HUNT III, M. MARATHE, V. RADHAKRISHNAN, AND R. STEARNS

1. We have shown how parsimonious and weakly parsimonious crossover boxes
can be used to prove the #P-hardness of many planar counting problems. These ideas
were used to prove the #P-hardness of problem #1-Valid Pl-3Sat.

2. We extended the class of basic planar CNF satisfiability problems that are
known to be NP-complete. Previously, only Pl-3Sat [15] and Pl-1-Ex3Sat [3] were
known to be NP-hard. We expect that the variants of the problem Pl-3Sat shown to
be NP-hard here will be useful in proving hardness results for many additional planar
problems. In particular, we have already shown that the problem Pl-1-3MonoSat
and its variant RED1 are especially useful in proving the #P-hardness of many planar
graph problems.

3. We have shown that the problem Ambiguous-Pl-3Sat can be used to prove
the nonapproximability of linear integer programming. Recently, there has been a lot
of research in the area of approximability of graph and combinatorial problems, and
the tools for showing negative results are few. Our proof of the nonapproximability of
the minimum or maximum objective value of an integer linear program is direct and
significantly different from the proof given in Kann [12] or Zuckerman [28]. Moreover,
in [9], we show how to use the NP-completeness of Ambiguous-Pl-3Sat to show the
nonapproximability of several constrained optimization problems even when restricted
to planar instances. (The results in [12, 28] do not hold for planar instances.)

Finally, the results presented here and their proofs suggest a number of open problems
including the following.

1. Can natural planar problems be found that are complete for additional com-
plexity classes such as PSPACE, #PSPACE, MAX SNP, MAX Π1, etc.? (In recent
papers [8, 9, 17, 10], we partially answer this question by showing that a number of
problems are complete for the classes PSPACE, #PSPACE, MAX-SNP, MAX Π1, even
when restricted to planar instances.)

2. Valiant [25] has shown that the problem #2Sat is #P-complete. How hard
is the problem #Pl-2Sat? We conjecture that the problem is #P-complete, but it
seems to us that different techniques than the ones used here are required to prove
this. Recently Vadhan has affirmatively proved the conjecture [29].

3. We have shown that many unique satisfiability problems are complete for
DP , even when restricted to planar instances. Using our parsimonious reductions, we
then proved the DP -completeness of a number of graph problems for planar graphs.
A number of such problems for planar graphs remain open. For example, how hard
is the problem Unique-Pl-Hamiltonian Circuit?

4. Do results similar to the ones proved in this paper hold for other restricted
classes of graphs, e.g., intersection graphs of unit disks and squares? Such graphs
have been studied extensively by [2, 7, 18] in the context of image processing, VLSI
design, geometric location theory, and network design.

Acknowledgments. We thank the anonymous referee for invaluable sugges-
tions. These suggestions significantly improved the quality of presentation and helped
us in correcting a number of errors in the earlier draft. We thank Salil Vadhan for
providing a draft of his paper [29].

REFERENCES

[1] G. Brightwell and P. Winkler, Counting linear extensions is #P-complete, in Proc. 23rd
Annual ACM Symposium on Theory of Computing, 1991, pp. 175–181.

[2] B.N. Clark, C.J. Colbourn, and D.S. Johnson, Unit disk graphs, Discrete Math., 86 (1990),
pp. 165–177.

[3] M.E. Dyer and A.M. Frieze, Planar 3DM is NP-complete, J. Algorithms, 7 (1986), pp. 174–
184.

PLANAR COUNTING 1167

[4] M.E. Dyer and A.M. Frieze, The complexity of partitioning graphs into connected compo-
nents, Discrete Appl. Math., 10 (1985), pp. 139–153.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, 1979.

[6] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Simplified NP-complete problems, Theoret.
Comput. Sci., 1 (1976), pp. 237–267.

[7] D.S. Hochbaum and W. Maass, Approximation schemes for covering and packing problems
in image processing and VLSI, J. Assoc. Comput. Mach., 32 (1985), pp 130–136.

[8] H. B. Hunt III, R. E. Stearns, and M. V. Marathe, Local Reductions, Generalized Satisfi-
ability, Complexity and Efficient Approximability: I, in preparation. A preliminary version
of the paper appears in Proc. 9th ACM Conference on Structure in Complexity Theory,
1994, pp. 356–366.

[9] H. B. Hunt III, R. E. Stearns, and M. V. Marathe, Local Reductions, Generalized Satisfia-
bility, Complexity and Efficient Approximability: II, in preparation. A preliminary version
of the paper appears in Proc. 9th ACM Conf. on Structure in Complexity Theory, 1994,
pp. 356–366.

[10] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R.E. Stearns, Parallel approximation schemes for planar and near-planar satisfiability
and graph problems, Inform. and Comput., submitted, 1998. A preliminary version appears
in Proc. 14th Foundations of Software Technology and Theoretical Computer Science (FST
& TCS), Lecture Notes in Comp. Sci. 761, Springer-Verlag, New York, 1994, pp. 342–353.
A complete version of the paper appears as Technical Report No. LA-UR-96-2723, Los
Alamos National Laboratory, Los Alamos, NM, 1996.

[11] H.B. Hunt III, V. Radhakrishnan, M.V. Marathe, and R.E. Stearns, On the Complexity
of Planar Graph/Hypergraph Coloring, in preparation, 1997.

[12] V. Kann, Polynomially bounded minimization problems which are hard to approximate, Nordic
J. Comput., 1 (1994), pp. 317–331

[13] R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[14] R. Karp and M. Luby, Monte Carlo algorithms for enumeration and reliability problems, in
Proc. 24th ACM Symp. on Theory of Computing, 1983, pp 54–64. A complete version
appears in J. Complexity, 1 (1985), pp. 45–64.

[15] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput., 11 (1982), pp. 329–343.
[16] N. Linial, Hard enumeration problems in geometry and combinatorics, SIAM J. Algebraic

Discrete Meth., 7 (1986), pp. 331–335.
[17] M.V. Marathe, H.B. Hunt III, R.E. Stearns, and V. Radhakrishnan, Complexity of Hi-

erarchically and 1-Dimensional Periodically Specified Problems, Technical Report No. LA-
UR-95-3348, Los Alamos National Laboratory, Los Alamos, NM, August 1995. Also pre-
sented at the DIMACS Workshop on Satisfiability Problem: Theory and Applications,
March 1996.

[18] N. Meggido and K Supowit, On the complexity of some common geometric location problems,
SIAM J. Comput., 13 (1984), pp. 182–196.

[19] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[20] J.S. Provan, The complexity of reliability computations in planar and acyclic graphs, SIAM

J. Comput., 15 (1986), pp. 694–702.
[21] J.S. Provan and M. O. Ball, On the complexity of counting cuts and of computing the

probability that a graph is connected, SIAM J. Comput., 12 (1983), pp. 777–788.
[22] S. Saluja, K. V. Subramanium, and M. Thakur, Descriptive complexity of #P functions, J.

Comput. System Sci., 50 (1995), pp. 493–505.
[23] J.B. Saxe, Two Papers on Graph Embedding Problems, Technical Report CMU-CS-80-102,

Dept. of Comp. Science, Carnegie Mellon University, 1980.
[24] T.J. Schaefer, The complexity of satisfiability problems, in Proc. 10th ACM Symp. on Theory

of Computing, 1978, pp. 216–226.
[25] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8

(1979), pp. 410–421.
[26] L.G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979),

pp. 189–201.
[27] L. G. Valiant and V. V. Vazirani, NP is as easy as detecting unique solutions, in Proc. 17th

Annual ACM Symp. on Theory of Computing, 1985, pp. 458–463.
[28] D. Zuckerman, NP-complete problems have versions that are hard to approximate, in Proc.

8th Annual ACM Conf. on Structure in Complexity Theory, 1993, pp. 305–312. A complete
version titled On unapproximable versions of NP-complete problems appears in SIAM J.
Comput., 25 (1996), pp. 1293–1304.

[29] S. Vadhan, The Complexity of Counting in Sparse, Regular and Planar Graphs, Technical
Report, MIT, Cambridge, MA, 1997. Also available online from www-math.mit.edu/∼salil.

GUARANTEEING FAIR SERVICE TO PERSISTENT DEPENDENT
TASKS∗

AMOTZ BAR-NOY† , ALAIN MAYER‡ , BARUCH SCHIEBER§ , AND MADHU SUDAN¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1168–1189, August 1998 013

Abstract. We introduce a new scheduling problem that is motivated by applications in the
area of access and flow control in high-speed and wireless networks. An instance of the problem
consists of a set of persistent tasks that have to be scheduled repeatedly. Each task has a demand
to be scheduled “as often as possible.” There is no explicit limit on the number of tasks that can
be scheduled concurrently. However, such limits are imposed implicitly because some tasks may be
in conflict and cannot be scheduled simultaneously. These conflicts are presented in the form of a
conflict graph. We define parameters which quantify the fairness and regularity of a given schedule.
We then proceed to show lower bounds on these parameters and present fair and efficient scheduling
algorithms for the case where the conflict graph is an interval graph. Some of the results presented
here extend to the case of perfect graphs and circular-arc graphs as well.

Key words. fairness, dining philosophers problem, scheduling, interval graphs

AMS subject classifications. 90B35, 68M20, 68Q20, 68Q25

PII. S0097539795282092

1. Introduction. In this paper we consider a new form of a scheduling problem
that is characterized by the following two features.

Persistence. A task does not simply terminate once it is scheduled. Instead, each
task must be scheduled infinitely many times. The goal is to schedule every task as
frequently as possible.

Dependency. Some tasks conflict with each other and hence cannot be scheduled
concurrently. These conflicts are represented by a conflict graph. This graph imposes
constraints on the sets of tasks that may be scheduled concurrently. Note that these
constraints are not based simply on the cardinality of the sets but rather on the
identity of the tasks within the sets.

We consider both the problems of allocation, i.e., how often should a task be
scheduled and regularity, i.e., how evenly spaced are lengths of the intervals between
successive schedulings of a specific task. We present a more formal description of this
problem next and discuss our primary motivation immediately afterward. While all
our definitions are presented for general conflict graphs, our applications, bounds, and
algorithms are for special subclasses—perfect graphs, interval graphs, and circular arc
graphs.

∗Received by the editors February 24, 1995; accepted for publication (in revised form) June 13,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-4/28209.html
†Dept. of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel 69978 (amotz@eng.tau.

ac.il). Part of this work was done while the author was at the IBM T. J. Watson Research Center.
‡Bell Laboratories, Lucent Technologies, 700 Mountain Ave., Murray Hill, NJ 07974 (alain@

research.bell-labs.com). Part of this work was done while the author was at the IBM T. J. Watson
Research Center, and this work was partially supported by an IBM Graduate Fellowship, NSF grant
CCR-93-16209, and CISE Institutional Infrastructure grant CDA-90-24735.

§IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (sbar@
watson.ibm.com).

¶Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square,
Cambridge, MA 02139-3594 (madhu@lcs.mit.edu).

1168

FAIR SERVICE TO PERSISTENT TASKS 1169

Problem statement. An instance of the scheduling problem consists of a conflict
graph G with n vertices. The vertices of G are the tasks to be scheduled, and the edges
of G define pairs of tasks that cannot be scheduled concurrently. The output of the
scheduling algorithm is an infinite sequence of subsets of the vertices, I1, I2, . . ., where
It lists the tasks that are scheduled at time t. Note that It must be an independent
set of G for all t.

In the form above, it is hard to analyze the running time of the scheduling algo-
rithm. We consider instead a finite version of the above problem and use it to analyze
the running time.

Input. A conflict graph G and a time t.

Output. An independent set It denoting the set of tasks scheduled at time unit t.

The objective of the scheduling algorithm is to achieve a fair allocation and a
regular schedule. We next give some motivation and describe the context of our work.
As we will see, none of the existing measures can appropriately capture the “goodness”
of a schedule in our framework. Hence we proceed to introduce measures which allow
a better presentation of our results.

1.1. Motivation.

Session scheduling in high-speed local-area networks. The main motivation for
this work arises from the session scheduling problem on a network called MetaRing.
MetaRing [CO93] is a recent high-speed local-area ring network that allows “spatial
bandwidth reuse”; i.e., in contrast to other ring networks which may only allow one
source destination pair to communicate on the ring at a time, the MetaRing can allow
several such pairs to communicate with each other, provided the pairs do not use the
same link for the communication. This concurrent access and transmission of user
sessions is implemented using only minimal intermediate buffering of packets. A typ-
ical use of the MetaRing network involves several users trying to establish “sessions.”
A session is simply a source destination pair, where the source wishes to send data
over to the destination. The data are generated over time and need to be shipped
over at regular intervals, if not immediately. In the general setting, the set of sessions
can change dynamically. We restrict our attention to the static case. This restriction
is justified by the fact that sessions typically last for a long while. As a result of the
minimal intermediate buffering, a session can send its data over only if it has exclusive
use of all the links in its route. Consequently, sessions whose routes share a link are in
conflict. These conflicts must be regulated by breaking the data sent in a session into
units of quotas that are transmitted according to some schedule. This schedule has
to be efficient and fair. Efficient means that the total number of quotas transmitted
(throughput) is maximized. Fair means that the throughput of each session is maxi-
mized, and that the time between successive activation of a session is minimized, so
that large buffers at the source nodes can be avoided. It has been recognized [CCO93]
that the access and flow control in such a network should depend on locality in the
conflict graph. However, no firm theoretical basis for an algorithmic framework has
been proposed up to now. To express this problem as our scheduling problem we cre-
ate a circular-arc graph, the vertices of which are the sessions, and in which vertices
are adjacent if the corresponding paths associated with the sessions intersect. Since
an independent set in this graph is a collection of mutually nonconflicting sessions,
they can all communicate simultaneously. Thus a schedule is a sequence of indepen-
dent sets in this graph. Our goal will be to produce such a schedule which is efficient
and fair, in a sense to be made precise later.

1170 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

Time sharing in wireless networks. A second naturally occurring scenario where
our model can be applied is in the scheduling of base-station transmissions in a cellu-
lar network. We now describe this setting in detail. Most indoor designs of wireless
networks are based on a cellular architecture with a very small cell size (see, e.g.,
[Goo90].) The cellular architecture comprises two levels—a stationary level and a
mobile level. The stationary level consists of fixed base stations that are intercon-
nected through a backbone network. The mobile level consists of mobile units that
communicate with the base stations via wireless links. The geographic area within
which mobile units can communicate with a particular base station is referred to as
a cell. Neighboring cells overlap with each other, thus ensuring continuity of com-
munications. The mobile units communicate among themselves, as well as with the
fixed information networks, through the base stations and the backbone network. The
continuity of communications is a crucial issue in such networks. A mobile user who
crosses boundaries of cells should be able to continue its communication via the new
base station. To ensure this, base stations periodically need to transmit their iden-
tity using the wireless communication. In some implementations the wireless links
use infrared waves. Therefore, two base stations, the cells of which overlap, are in
conflict and cannot transmit their identity simultaneously. These conflicts have to be
regulated by a time-sharing scheme. This time sharing has to be efficient and fair.
Efficient means that the scheme should accommodate the maximal number of base
stations. Fair means that the time between two consecutive transmissions of the same
base station should be less than the time it takes a user to cross its corresponding
cell. Once again this problem can be posed as our graph scheduling problem in which
the vertices of the graph are the base stations and an edge indicates that the base
stations belong to overlapping cells. Independent sets again represent lack of conflict
and a schedule will thus be a sequence of independent sets.

1.2. Relationship to past work. Previous research on scheduling problems in
our framework considered either persistence of the tasks or dependency among the
tasks but not both.

An early work by Liu and Layland [LL73] considers persistent scheduling of tasks
in a single processor environment. In their problem, tasks have deadlines which specify
a time limit in which the ith scheduling of a given task must have occurred. They
give an algorithm which achieves full processor utilization for this task. More recently,
the problem of scheduling persistent tasks has been studied in the work of Baruah et
al. [BCPV96]. Their setting is closer to ours, and we describe their problem in detail.
They considered the problem of scheduling a set of n tasks with given (arbitrary)
frequencies on m machines. (The case m = 1 is equivalent to an instance of our
problem in which the conflict graph is a clique.) To measure regularity of a schedule
for their problem they introduced the notion of P -fairness. A schedule for this problem
is P -fair (proportionate-fair) if at each time t for each task i the absolute value of the
difference in the number of times i has been scheduled and fit is strictly less than
1, where fi is the frequency of task i. They provided an algorithm for computing
a P -fair solution to their problem. Their problem fails to capture our situation for
two reasons. First, we would like to constrain the sets of tasks that can be scheduled
concurrently according to the topology of the conflict graph and not according to their
cardinality. Moreover, in their problem every feasible frequency requirement can be
scheduled in a P -fair manner. For our scheduling problem, we show that such a P -fair
schedule cannot always be achieved. To deal with feasible frequencies that cannot be
scheduled in a P -fair manner, we define weaker versions of regularity.

FAIR SERVICE TO PERSISTENT TASKS 1171

The dependency property captures most of the work done based on the well-
known “dining philosophers” paradigm (see, for example, [Dijk71], [Lyn80], [CM84],
[AS90], [CS92], and [BP92]). In this setting, Lynch [Lyn80] was the first to explicitly
consider the response time for each task. The goal of successive works was to make the
response time of a node depend only on its local neighborhood in the conflict graph
(see, e.g., [BP92]). While response time in terms of a node’s degree is adequate for
“one-shot” tasks, it does not capture our requirement that a task should be scheduled
in a regular and fair fashion over a period of time.

1.3. Notations and definitions. A schedule S is an infinite sequence of in-
dependent sets I1, I2, . . . , It, Let S(i, t) denote the indicator variable that rep-
resents the schedule; it is 1 if task i is scheduled at time t and 0 otherwise. Let

f
(t)
i (S) =

∑t
τ=1 S(i, τ)/t. We refer to f

(t)
i (S) as the prefix frequency of task i at

time t in schedule S. Let fi(S) = lim inft→∞{f (t)
i (S)}. We refer to fi(S) as the

frequency of task i in schedule S. We say that a schedule S is periodic with period T ,
if Ij = IT+j = I2T+j = · · · for all 1 ≤ j ≤ T . In periodic schedules we will refer to

f
(T)
i (S) as the frequency of task i. (In both f

(t)
i (S) and fi(S) we drop the index S

whenever the identity of the schedule S is clear from the context.)

Definition 1. A vector of frequencies f̂ = (f1, . . . , fn) is feasible if there exists
a schedule S such that the frequency of the ith task in schedule S is at least fi.

Definition 2. A schedule S realizes a vector of frequencies f̂ if the frequency
of the ith task in schedule S is at least fi. A schedule S c-approximates a vector of
frequencies f̂ if the frequency of the ith task in schedule S is at least fi/c.

A measure of fairness. Fairness is determined via a partial order ≺ that we define
on the set of frequency vectors.

Definition 3. Given two frequency vectors f̂ = (f1, . . . , fn) and

ĝ = (g1, . . . , gn), f̂ ≺ ĝ (f̂ is less fair than ĝ) if there exists an index i and a threshold
f such that fi < f ≤ gi, and for all j such that gj ≤ f , fj ≤ gj.

Less formally, if f̂ ≺ ĝ, then ĝ “performs” better for some task i and all tasks
with frequency smaller than the ith task, i.e., those tasks that are least scheduled. It
could be the case that f̂ “performs” better for the other tasks; however, our concern
in fair allocation is with the less frequently scheduled tasks.

In Appendix A we prove that the relation ≺ is indeed a partial order.
Definition 4. A vector of frequencies f̂ is max-min fair if no feasible vector ĝ

satisfies f̂ ≺ ĝ.
Less formally, in a max-min fair frequency vector, one cannot increase the fre-

quency of some task at the expense of less frequently scheduled tasks. This means
that our goal is to let each task i have more of the resource as long as we have to take
the resource away only from tasks which are better off, i.e., those that have more of
the resource than task i.

Measures of regularity. We provide two measures by which one can evaluate a
schedule for its regularity. We call these measures the response time and the drift.

Given a schedule S, the response time for task i, denoted ri, is the largest interval
of time for which task i waits between successive schedulings. More precisely,

ri = max{t2 − t1|0 ≤ t1 < t2 s.t. ∀t1<t<t2S(i, t) = 0}.
For any time t, the number of expected occurrences of task i can be expressed as

fit. But note that if ri is larger than 1/fi, it is possible that, for some period of time,
a schedule allows a task to “drift away” from its expected number of occurrences. In

1172 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

order to capture this, we introduce a second measure for the regularity of a schedule.
We denote by di the drift of a task i. It indicates how much a schedule allows task i
to drift away from its expected number of scheduled units:

di = max
t

{∣∣∣∣∣fi · t−
t∑

r=1

S(i, r)

∣∣∣∣∣
}
.

Note that if a schedule S achieves drift di < 1 for all i, then it is P-fair as defined in
[BCPV96].

A schedule achieves its strongest form of regularity if each task i is scheduled
every 1/fi time units (except for its first appearance). We say that a schedule is rigid
if for each task i there exists a starting point si such that the task is scheduled on
exactly the time units si + j(1/fi) for j ≥ 0.

Graph subclasses. A graph is perfect if for all its induced subgraphs the size of the
maximum clique is equal to the chromatic number (cf. [Gol80]). A graph is an interval
graph (circular-arc graph) if its vertices correspond to intervals on a line (circle), and
two vertices are adjacent if the corresponding intervals intersect (cf. [Tuc71]).

1.4. Results. In section 2 we motivate our definition of max-min fairness and
show several of its properties. First, we provide an equivalent (alternate) definition of
feasibility which shows that deciding feasibility of a frequency vector is computable.
Next, we prove that every graph has a unique max-min fair frequency vector. Then,
we show that the task of even weakly approximating the max-min fair frequencies
on general graphs is NP-hard. As we mentioned above, many practical applications
of this problem arise from simpler networks such as buses and rings (i.e., interval
conflict graphs and circular-arc conflict graphs). For the case of perfect graphs (and
hence for interval graphs), we describe an efficient algorithm for computing max-min
fair frequencies. We prove that the period T of a schedule realizing such frequencies
on a perfect graph satisfies T = 2O(n) and that there exist interval graphs such that
T = 2Ω(n).

The rest of our results deal with the problem of finding the most “regular” sched-
ule that realizes any feasible frequency vector. In section 3 we show the existence
of interval graphs for which there is no P -fair schedule that realizes their max-min
fair frequencies. In section 4 we describe an algorithm for computing a schedule that
realizes any given feasible frequencies on interval graphs. The schedule computed by
the algorithm achieves response time of d4/fie and drift of O(

√
log Tnε). A slight

modification of this algorithm yields a schedule that 2-approximates the given fre-
quencies. The advantage of this schedule is that it achieves a bound of one on the
drift and hence a bound of d2/fie on the response time. In section 5 we present an
algorithm for computing a schedule that 12-approximates any given feasible frequen-
cies on interval graphs and has the advantage of being rigid. All algorithms run in
polynomial time. In section 6 we show how to transform any algorithm for computing
a schedule that c-approximates any given feasible frequencies on interval graphs into
an algorithm for computing a schedule that 2c-approximates any given feasible fre-
quencies on circular-arc graphs. The response time and drift of the resulting schedule
are doubled as well.

Finally, in section 7 we summarize our results, list a number of open problems, and
sketch what additional properties are required to obtain solutions for actual networks.

2. Max-min fair allocation. Our definition for max-min fair allocation is based
on the definition used by Jaffe [Jaf81] and Bertsekas and Gallager [BG87] but differs

FAIR SERVICE TO PERSISTENT TASKS 1173

in one key ingredient, namely, our notion of feasibility. We study some elementary
properties of our definition in this section. In particular, we show that our definition
guarantees a unique max-min fair frequency vector for every conflict graph. We also
show the hardness of computing the frequency vector for general graphs. However,
for the special case of perfect graphs our notion turns out to be the same as that of
[BG87].

The definition of [Jaf81] and [BG87] is considered as the traditional way of mea-
suring throughput fairness in communication networks and is also based on the partial
order ≺ as used in our definition. The primary difference between our definition and
theirs is in the definition of feasibility. Bertsekas and Gallager [BG87] use a definition,
which we call clique feasibility, that is defined as follows:

a vector of frequencies (f1, . . . , fn) is clique feasible for a conflict
graph G, if

∑
i∈C fi ≤ 1 for all cliques C in the graph G.

The notion of max-min fairness of Bertsekas and Gallager [BG87] is now exactly our
notion, with feasibility replaced by clique feasibility.

The definition of [BG87] is useful for capturing the notion of fractional allocation
of a resource such as bandwidth in a communication networks. However, in our appli-
cation we need to capture a notion of integral allocation of resources, and hence their
definition does not suffice for our purposes. By definition, every frequency vector that
is feasible in our sense is clique feasible. However, the converse is not true. Con-
sider the five-cycle conflict graph. For this graph the vector (1/2, 1/2, 1/2, 1/2, 1/2)
is clique feasible, but no schedule can realize this frequency vector.

2.1. An alternate definition of feasibility. Given a conflict graph G, let
I denote the family of all independent sets in G. For I ∈ I, let χ(I) denote the
characteristic vector of I.

Theorem 5. A vector of frequencies f̂ is feasible if and only if f̂ is a convex
combination of the χ(I)’s; that is, there exist weights {αI}I∈I such that

∑
I∈I αI = 1

and
∑

I∈I αIχ(I) = f̂ .

Proof. Claim 6 proves the easier direction. Claim 7 proves the other direction
only for the case when f̂ can be expressed as a rational convex combination of the
independent sets. The proof for the case when f̂ is not a rational convex combination
is given in Appendix B.

Claim 6. If a frequency vector f̂ is feasible then there exists a sequence of weights
{αI}I∈I such that

∑
I αI = 1 and

∑
I αIχ(I) = f̂ .

Proof. To obtain a contradiction assume otherwise. By continuity there exists
an ε > 0, such that the vector (1− ε)f̂ cannot be expressed as a convex combination
of the χ(I)’s. Based on the definition of feasibility, there exists a schedule S which

achieves a frequency of at least f̂ . In particular, there exists a time T = Tε such that

f
(T)
i ≥ fi − ε for all 1 ≤ i ≤ n. Let αI be the frequency of the independent set I in

the first T time units in the schedule S. Then
∑

I αI = 1 and
∑

I αIχ(I) ≥ (1− ε)f̂ ,
contradicting the choice of ε.

Claim 7. If a frequency vector f̂ can be expressed as a rational convex combina-
tion of the independent sets, then f̂ is feasible.

Proof. Suppose that there exist rational weights {αI}I∈I , such that
∑

I∈I αI = 1

and
∑

I∈I αIχ(I) = f̂ . Express αI as pI/qI where pI and qI are integral and let
T = LCM{qI}. Observe that NI ≡ αIT is integral. For each I we schedule NI times
the independent set I over a period of T intervals (in any arbitrary NI units of time).
It is clear that there are enough slots for each independent set to be scheduled NI

times.

1174 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

The main impact of Theorem 5 is that it shows that the space of all feasible
frequencies is well behaved (i.e., it is a closed, connected, compact space). In addition,
it shows that determining whether a frequency vector is feasible is a computable task
(a fact that may not have been easy to see from the earlier definition). We now use
this definition to observe the following interesting connection.

Proposition 8. Given a conflict graph G, the notions of feasibility and clique
feasibility are equivalent if and only if G is perfect.

Proof. The proof follows directly from well-known polyhedral properties of perfect
graphs. (See [GLS87], [Knu94].) In the notation of Knuth [Knu94] the space of all
feasible vectors is the polytope STAB(G), and the space of all clique-feasible vectors is
the polytope QSTAB(G). The result follows from the theorem on page 38 in [Knu94]
which says that a graph G is perfect if and only if STAB(G) = QSTAB(G).

2.2. Uniqueness and computability of max-min fair frequencies. In this
subsection we prove that the max-min fair frequency vector is unique. We also show
that finding this vector (or even approximating it) is computationally hard.

Theorem 9. For any conflict graph there exists a unique max-min fair frequency
vector.

Proof. For a vector f̂ let sortf̂ denote the vector obtained by permuting the vector
f̂ so that its coordinates appear in nondecreasing order. Let the relation ≺lex on the
feasible frequency vectors be the lexicographic ordering on sortf̂ . More precisely,
f̂ ≺lex ĝ if either sortf̂ = sortĝ or there exists an index i ≥ 1 such that sortf̂i < sortĝi
and sortf̂j = sortĝj for all 1 ≤ j < i. (Note that ≺lex is not a partial order since it

is not antisymmetric.) It is easy to verify that if f̂ ≺lex ĝ, and sortf̂ 6= sortĝ then

f ≺ g. Let the vector f̂ be a max-min fair vector. (Such a vector exists in the space of

feasible vectors, since this space is compact.) The vector f̂ is also larger according to

the ordering ≺lex than any vector ĝ such that sortf̂ 6= sortĝ. We now show that there
is no vector ĝ such that sortf̂ = sortĝ. This implies that it is the unique max-min
fair frequency vector.

To obtain a contradiction, suppose that there exists a vector ĝ such that sortf̂ =
sortĝ. First observe that the vector ĥ = (f̂ + ĝ)/2 is feasible. This is true because f̂

and ĝ can be expressed as a convex combination of the independent sets and ĥ is a
convex combination of f̂ and ĝ. Thus ĥ is a convex combination of the independent
sets. Now assume without loss of generality that the indices of the vectors are arranged
in increasing order of fi + gi. Let j be the smallest index such that fj 6= gj . Say fj
is the smaller of the two. Then ((f̂ + ĝ)/2)j is greater than fj and for all vertices i

with smaller frequencies, fi = ((f̂ + ĝ)/2)i. This implies that f̂ ≺lex (f̂ + ĝ)/2, which
is a contradiction.

We now turn to the issue of the computability of the max-min fair frequencies.
While we do not know the exact complexity of computing max-min fair frequencies (in
particular, we do not know if deciding whether a frequency vector is feasible is in NP
∪ coNP), it does seem to be very hard in general. Here, we consider the subproblem
of computing the smallest frequency assigned to any vertex by a max-min allocation
and show the following theorem.

Theorem 10. There exists an ε > 0 such that given a conflict graph on n
vertices, approximating the smallest frequency assigned to any vertex in a max-min
fair allocation to within a factor of nε is NP-hard.

Proof. We relate the computation of max-min fair frequencies in a general graph
to the computation of the fractional chromatic number of a graph. We then use the

FAIR SERVICE TO PERSISTENT TASKS 1175

recent hardness result for approximating the (fractional) chromatic number due to
Lund and Yannakakis [LY93] to show that computing max-min fair frequencies in
general graphs is very hard.

The fractional chromatic number problem (cf. [LY93]) is defined as follows.
To each independent set I in the graph, assign a weight wI , so as to
minimize the quantity

∑
I wI , subject to the constraint that for every

vertex v in the graph the quantity
∑

I3v wI is at least 1. The quantity∑
I wI is called the fractional chromatic number of the graph.

Observe that if the wI ’s are forced to be integral, then the fractional chromatic number
is the chromatic number of the graph.

The following claim shows a relationship between the fractional chromatic number
and the assignment of feasible max-min fair frequencies.

Claim 11. Let (f1, f2, . . . , fn) be a feasible assignment of frequencies to the
vertices in a graph G. Then 1/(mini fi) is an upper bound on the fractional chromatic
number of the graph. Conversely, if k is the fractional chromatic number of a graph,
then a schedule that sets the frequency of every vertex to be 1/k is feasible.

The proof of the above claim is straightforward given the definitions of fractional
chromatic number and feasibility. We now show how to use the claim to prove the
theorem.

The above claim, combined with the hardness of computing the fractional chro-
matic number [LY93], suffices to show the NP-hardness of deciding whether a given
assignment of frequencies is feasible for a given graph. To show that the claim also
implies the hardness of approximating the smallest frequency in the max-min fair fre-
quency vector we inspect the Lund–Yannakakis construction a bit more closely. Their
construction yields a graph in which every vertex participates in a clique of size k
such that deciding if the (fractional) chromatic number is k or knε is NP-hard. In the
former case, the max-min fair frequency assignment to every vertex is at least 1/k.
In the latter case at least some vertex will have frequency smaller that 1/(knε). Thus
this implies that approximating the smallest frequency in the max-min fair frequencies
to within a factor of nε is NP-hard.

2.3. Max-min fair frequencies on perfect graphs. We now consider perfect
graphs. We show how to compute in polynomial time max-min fair frequencies for this
class of graphs and give bounds on the period of a schedule realizing such frequencies.
As our main focus of the subsequent sections will be interval graphs, we will give our
algorithms and bounds first in terms of this subclass and then show how to generalize
the results to perfect graphs.

We start by describing an algorithm for computing max-min fair frequencies on
interval graphs. As we know that clique feasibility equals feasibility (by Proposition 8),
we can use an adaptation of [BG87].

Algorithm 1. Let C be the collection of maximal cliques in the interval graph.
(Notice that C has at most n elements and can be computed in polynomial time.)
For each clique C ∈ C the algorithm maintains a residual capacity which is initially
1. To each vertex the algorithm associates a label assigned/unassigned. All vertices
are initially unassigned. Dividing the residual capacity of a clique by the number of
unassigned vertices in this clique yields the relative residual capacity. Iteratively, we
consider the clique with the smallest current relative residual capacity and assign to
each of the clique’s unassigned vertices this capacity as its frequency. For each such
vertex in the clique we mark it assigned and subtract its frequency from the residual

1176 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

Fig. 1. An interval graph with n = 23 intervals for which T = LCMn
i=1{qi} ≥ 2

n+2
5

−1.

capacity of every clique that contains it. We repeat the process till every vertex has
been assigned some frequency.

It is not hard to see that Algorithm 1 correctly computes max-min fair frequencies
in polynomial time. We now use its behavior to prove a tight bound on the period of
a schedule for an interval graph. The following theorem establishes this bound.

Theorem 12. Let fi = pi/qi be the frequencies in a max-min fair schedule for
an interval graph G, where pi and qi are relatively prime. Then, the period for the
schedule T = LCMn

i=1{qi} satisfies, T = 2O(n). Furthermore, there exist interval
graphs for which T = 2Ω(n).

We prove this theorem with the help of the following two lemmas.

Lemma 13. LCMn
i=1{qi} ≤ 2n/2.

Proof. Let nj denote the number of intervals that are assigned frequency
pj
qj

in iteration j. That is,
pj
qj

is the minimum relative residual capacity at iteration j.

From the way the relative residual capacities are updated, it follows that qi divides∏i
j=1 nj for all 1 ≤ i ≤ n. The lemma follows since assuming there were ` iterations,

qi divides
∏`

j=1 nj , and
∏`

j=1 nj attains its maximum when ` = n/2 and ni = 2 for
all 1 ≤ i ≤ `.

Lemma 14. There exists an interval graph for which LCMn
i=1{qi} ≥ 2

n+2
5 −1.

Proof. We show an interval graph in which maxni=1{qi} ≥ 2
n+2

5 −1; the lemma
follows since trivially LCMn

i=1{qi} ≥ maxni=1{qi}. For simplicity we assume that 5
divides n + 2. The reader may find it easier to follow the construction for n = 23

depicted in Figure 1. Let x = 3(n+2)
5 and y = n+2

5 −1. In the construction x intervals
start at 0 (the top 15 intervals in Figure 1), and two intervals start at i for all 1 ≤ i ≤ y
(the bottom 8 intervals in Figure 1). Note that indeed 2y + x = n. Out of the first
x intervals, three intervals terminate at i for each 1 ≤ i ≤ y + 1. Note that indeed
3(y + 1) = x. For 1 ≤ i ≤ y, out of the two intervals starting at i, one interval
terminates at i+ 1 and one continues until y + 1.

Now, since at 0 the size of the clique is x and at i the size of the clique is
x − 3i + (i − 1) + 2 = x − 2i + 1, it follows that the algorithm for the frequency
assignment handles the cliques from left to right and there are y + 1 different values
for frequencies denoted by w0, . . . , wy. We get

FAIR SERVICE TO PERSISTENT TASKS 1177

w0 =
1

x
,

w1 =
3w0

2
=

3

2x
,

w2 =
3w0 + w1

2
=

9

4x
.

In general, by induction we prove that wi = 3
x · 2i−1

2i for 1 ≤ i ≤ y.

wi+1 =
3w0 + wi

2
=

3

2x
+

3

x
· 2i − 1

2i+1
=

3

x
· 1

2
+

2i − 1

2i+1
=

3

x
· 2i+1 − 1

2i+1
.

Since the denominator of wy is greater than or equal to 2y and neither 3 nor 2y − 1

has a common divisor with 2y, it follows that maxni=1{qi} ≥ 2
n+2

5 −1.
Algorithm 1 works for all graphs where clique feasibility determines feasibility,

i.e., perfect graphs. However, the algorithm does not remain computationally efficient
since it involves scanning all the cliques in the graph. Still, Theorem 12 can be directly
extended to the class of perfect graphs. We now use this fact to describe a polynomial-
time algorithm for assigning max-min fair frequencies to perfect graphs.

Algorithm 2. This algorithm maintains the labelling procedure assigned/
unassigned of Algorithm 1. At each phase, the algorithm starts with a set of as-
signed frequencies and tries to find the largest f such that all unassigned vertices can
be assigned the frequency f . To compute f in polynomial time, the algorithm uses
the fact that deciding if a given set of frequencies is feasible is reducible to the task
of computing the size of the largest weighted clique in a graph with weights on ver-
tices. The latter task is well known to be computable in polynomial time for perfect
graphs. Using this decision procedure the algorithm performs a binary search to find
the largest achievable f . (The binary search does not have to be too refined due to the
upper bound on the denominators of the frequencies given in Theorem 12.) Having
found the largest f , the algorithm finds a set of vertices which are saturated under f
as follows: let ε be some small number, with the property that the difference between
any two distinct assigned frequencies is more than ε. By Theorem 12, ε = 2−n

2

is
sufficient. Now the algorithm raises, one at a time, the frequency of each unassigned
vertex to f + ε, while maintaining the other unassigned frequencies at f . If the so
obtained set of frequencies is not feasible, then it marks the vertex as assigned and its
frequency is assigned to be f . The algorithm now repeats the phase until all vertices
have been assigned some frequency.

3. Nonexistence of P -fair allocations. We show that a P -fair scheduling
under max-min fair frequencies need not exist for every interval graph.

Theorem 15. There exist interval graphs G for which there is no P-fair schedule
that realizes their max-min frequency assignment.

Proof. In order to prove the theorem we produce a counterexample as follows.
We choose a parameter k and for every permutation π of the elements {1, . . . , k}, we
define an interval graph Gπ. We show a necessary condition that π must satisfy if Gπ

has a P -fair schedule. Last, we show that there exists a permutation π of 12 elements
which does not satisfy this condition.

Given a permutation π on k elements, Gπ consists of 3k intervals. For 1 ≤ 1 ≤ k,
define the intervals A(i) = (i−1, i], B(i) = (i, k+π(i)+1] and C(i) = (k+i+1, k+i+2].
Observe that the max-min frequency assignment to Gπ is the following: all the tasks
B(1), . . . , B(k) have frequency 1/k; task A(i) has frequency (k−i+1)/k for 1 ≤ i ≤ k;
and task C(i) has frequency i/k for 1 ≤ i ≤ k. (See Figure 2.)

1178 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

A(1)

A(2)

A(3)

A(4)

C(1)

C(2)

C(3)

C(4)

B(1)

B(2)

B(3)

B(4)

Fig. 2. The graph Gπ for π = (3, 1, 2, 4).

We now observe the properties of a P -fair schedule for the tasks in Gπ. (i) The
time period is k. (ii) The schedule is entirely specified by the schedule for the tasks
B(i). (iii) This schedule is a permutation σ of k elements, where σ(i) is the time
unit for which B(i) is scheduled. To see what kind of permutations σ constitute P -
fair schedules of Gπ we define the notion of when a permutation is fair for another
permutation.

Definition 16. A permutation σ1 is fair for a permutation σ2 if for all 1 ≤
i, j ≤ k, σ1 and σ2 satisfy the conditions condij defined as follows:

ij

k
− 1 < |{` : σ1(`) ≤ j and σ2(`) ≤ i}| < ij

k
+ 1 .

Claim 17. If a permutation σ is a P-fair schedule for Gπ then σ is fair for the
identity permutation and permutation π.

Proof. For fixed i, we claim that the conditions condij for σ1 = σ and σ2 being
the identity permutation are exactly the conditions for a P -fair allocation of A(i+1).
Similarly, the conditions condij for σ1 = σ and σ2 = π are the conditions for a P -fair
allocation of C(k − i). Thus, a permutation σ represents a P -fair schedule for Gπ if
and only if σ is fair for both π and the identity permutation.

We now show why the conditions condij for σ1 = σ and σ2 being the identity
permutation are exactly the conditions for a P -fair allocation of A(i+ 1). The claim
about the conditions condij for σ1 = σ and σ2 = π is analogous. Recall that the
frequency of task A(i+ 1) is (k − i)/k and that A(i+ 1) can be scheduled only when
tasks B(`), for 1 ≤ ` ≤ i, are not scheduled. Consider the schedule up to time
j ≤ k. In order for the schedule to be P -fair, the number of occurrences of tasks

B(`), for 1 ≤ ` ≤ `, up to this time must be between j − (k−i)j
k − 1 = ij

k − 1 and

j− (k−i)j
k +1 = ij

k +1. Note that the number of times these tasks are scheduled is the
cardinality of the set {` : σ1(`) ≤ j and ` ≤ i}, which translates to condij for σ1 = σ
and σ2 being the identity permutation.

Let π = (1, 3, 4, 7, 8, 9, 11, 5, 12, 10, 2, 6) be a permutation on 12 elements. The fol-
lowing arguments show that no permutation σ is fair to both the identity permutation
and the permutation π.

1. We define a block as any contiguous set of elements in the range 1 to 12. We
say that σ places an element i in the block [j, `].

2. Without loss of generality assume that σ places the element 1 in the block
[1, 6].

3. Consider the elements in the following six pairs {1, 2}, {3, 4}, {5, 6}, {7, 8},
{9, 10}, and {11, 12}. If the permutation σ is fair for the identity permutation,
then it must place exactly one element of each pair in the block [1, 6]. To
see this, note that if σ places both elements 1 and 2 in the block [1, 6], then
|{` : σ(`) ≤ 6 and ` ≤ 2}| = 2, violating cond2,6. Thus only element 1 is in

FAIR SERVICE TO PERSISTENT TASKS 1179

block [1, 6]. Inductively, it can be shown that if σ places both elements 2i− 1
and 2i for 1 < i ≤ 6 in the block [1, 6], then cond2i,6 is violated.

4. A similar argument applied to π implies that σ must place exactly one element
of each of the six pairs {1, 3}, {4, 7}, {8, 9}, {11, 5}, {12, 10}, and {2, 6} in
the block [1, 6] if σ is fair for π.

5. Arguments 2, 3, and 4 imply that the first half of σ consists of the elements
{1, 4, 8, 10, 11, 6} and the second half consists of the elements {3, 7, 9, 12, 5, 2}.

6. Again, since σ is fair for the identity permutation, σ must place exactly one
of the elements of each of the triplets {1, 2, 3}, {4, 5, 6}, and {7, 8, 9} in each
of the blocks [1, 4], [5, 8], and [9, 12] in order not to violate conditions cond3,4,
cond3,8, and cond3,12.

7. Similarly, since σ is fair for π, σ must place exactly one of the elements of the
triplet {π(7), π(8), π(9)} = {11, 5, 12} in each of the blocks [1, 4], [5, 8], and
[9, 12].

8. Since 1 appears in the block [1, 6] and both 2 and 3 appear in the block [7, 12],
it follows from Argument 6 that exactly one of the elements 2 and 3 is placed
in the block [7, 8] by σ.

9. A similar argument applied to the triplet {7, 8, 9} implies that exactly one of
7 and 9 is placed in the block [7, 8] by σ.

10. Last, we examine the triplet {π(7), π(8), π(9)} = {11, 5, 12}. It follows from
Argument 7 that one of 5 and 12 must appear in the block [7, 8].

Since σ cannot place three elements in a block of size two, we obtain the contradiction.
The proof of Theorem 15 follows.

4. Realizing frequencies exactly. In this section we first show how to con-
struct a schedule which realizes any feasible set of frequencies (and hence in particular
max-min frequencies) exactly on an interval graph. We prove its correctness and give
a bound of d4/fie on the response time for each interval i. We then proceed to in-

troduce a potential function which can be used to yield a bound of O(n
1
2+ε) on the

drift for every interval. An easy consequence of our algorithm is for the special case
in which the frequencies are of the form 1/2i, the drift can be bounded by 1 and thus
the waiting time can be bounded by d2/fie. This yields a 2-approximation algorithm
with high regularity.

Input to the algorithm a unit of time t and a conflict graph G which is an interval
graph. The graph G is represented by a set I = {I1, . . . , In} of intervals on the unit
interval [0, 1] of the x-coordinate, where Ii = [i.s, i.e] for 1 ≤ i ≤ n. Every interval
Ii has a frequency fi = pi/qi with the following constraint:

∑
Ii3x fi ≤ 1 for all

0 ≤ x ≤ 1. For simplicity, we assume from now on that these constraints on the
frequencies are met with equality and that t ≤ T = LCM{qi}.

Output of the algorithm an independent set It defining the set of tasks scheduled
for time t such that the scheduled S, given by {It}Tt=1 realizes frequencies fi.

The algorithm is recursive. Let si denote the number of times a task i has to
appear in T time units, i.e., si = Tpi/qi. The algorithm has log T levels of recursion.
In the first level we decide on the occurrences of the tasks in each half of the period.
That is, for each task we decide how many of its occurrences appear in the first half
of the period and how many in the second half. This yields a problem of a recursive
nature in the two halves. In order to find the schedule at time t, it suffices to solve the
problem recursively in the half which contains t. (Note that in case T is odd one of the
halves is longer than the other.) Clearly, if a task has an even number of occurrences
in T it would appear the same number of times in each half in order to minimize the

1180 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

drift. The problem is with tasks that have an odd number of occurrences si. Clearly,
each half should have at least bsic of the occurrences. The additional occurrence has
to be assigned to one of the halves in a way that both resulting subproblems would
still be feasible. This is the main difficulty of the assignment and is solved in the
procedure sweep.

Procedure sweep. In this procedure we compute the assignment of the additional
occurrence for all tasks that have an odd number of occurrences. The input to this
procedure is a set of intervals I1, . . . , Im (those having odd si’s) with the restriction
that each clique in the resulting interval subgraph is of even size. (Later, we show how
to overcome this restriction.) The output is a partition of these intervals into two sets
such that each clique is equally divided among the sets. This is done by a sweep along
the x-coordinate of the intervals. During the sweep every interval will be assigned a
variable which at the end is set to 0 or 1 (i.e., first half of the period or second half
of the period). Suppose that we sweep point x. We say that an interval Ii is active
while we sweep point x if x ∈ Ii. The assignment rules are stated in Algorithm 3.

Algorithm 3. For each interval Ii that starts at x:

If the current number of active intervals is even:
A new variable is assigned to Ii (Ii is unpaired).

Otherwise; the current number of active intervals is odd:
Ii is paired to the currently unpaired interval Ij, and it is assigned the negation
of Ij’s variable.
Comment: No matter what value is later assigned to this variable, Ii and Ij
will end up in opposite halves.

Algorithm 4. For each interval Ii that ends at x:

If the current number of active intervals is even:
Nothing is done.

Otherwise; the current number of active intervals is odd:
If Ii is paired with Ij:

Ij is now paired with the currently unpaired interval Ik. Also, Ij’s variable is
matched with the negation of Ik’s variable.
Comment: This will ensure that Ij and Ik are put in opposite halves, or
equivalently, Ii and Ik are put in the same halves.

If Ii is unpaired:
Assign arbitrarily 0 or 1 to Ii’s variable.

It will be proven later that these rules ensure that whenever the number of active
intervals is even, then exactly half of the intervals will be assigned 0 and half will be
assigned 1. We note that since the conflict graph is an interval graph we are assured
that when we apply the above rules pairing up arbitrary intervals will not result in a
circular dependency of the variables (e.g., x = y = x̄).

Recall that we assumed that the size of each clique is even. To overcome this
restriction we need the following simple lemma. For x ∈ [0, 1], denote by Cx the set
of all the input intervals (with odd and even si’s) that contain x; Cx will be referred
to as a clique.

Lemma 18. The period T is even if and only if |{i : Ii ∈ C ∧ si is odd}| is even
for every clique C.

Proof. Note that

∑
Ii∈C

fi = 1 ⇒
∑
Ii∈C

si = T ⇒
∑

Ii∈C, si is odd

si +
∑

Ii∈C, si is even

si = T.

FAIR SERVICE TO PERSISTENT TASKS 1181

Since the second summand is always even, T is even if and only if the first summand
is also even.

This lemma implies that if T is even then the size of each clique in the input
to procedure Sweep is indeed even. If T is odd, then a dummy interval In+1 which
extends over all other intervals and which has exactly one occurrence is added to the
set I before calling sweep. Again, by Lemma 18, we are sure that in this modified set I
the size of each clique is even. This would increase the period by one. The additional
time unit will be allotted only to the dummy interval and thus can be ignored. We
note that to produce the schedule at time t we just have to follow the recursive calls
that include t in their period.

Applying this algorithm to the max-min frequencies yields a polynomial in n
algorithm. This is true because there are no more than log T such calls and because
T = 2O(n) for max-min fair frequencies.

Lemma 19. The algorithm produces a correct schedule for every feasible set of
frequencies.

Proof. We need to prove that feasibility is maintained with every recursive step.
We show that the following invariant is maintained by sweep.

For every x for which the number of active intervals in Cx is even,
exactly half of the intervals will be assigned 0 and half will be assigned
1.

This invariant is easily maintained when a new interval starts: if the current number
of intervals is odd, then the new interval is paired up with the currently unpaired
interval and thus will be scheduled in the opposite half of its partner. The invariant
holds also when an interval ends since by our rules whenever an interval ends any two
unpaired intervals are immediately paired up.

Now, if T is odd, then a dummy interval is added and hence sweep produces
a feasible solution for T + 1. In this case the algorithm assigns the “smaller” half
of T to the half to which sweep assigned the dummy interval and feasibility is
maintained.

Lemma 20. If the set of frequencies is of the form 1/2i then the resulting schedule
is P-fair (i.e., the drift can be bounded by 1) and the response time is bounded by
d2/fie.

Proof. Since our algorithm always divides even si into equal halves, the following
invariant is maintained: in recursion level j, if si > 1 then si is even. Also note that
T = 2k, where mini fi = 1/2k and thus each si is of the form 2ψi−k. Now, following
the algorithm, it can be easily shown that there is at least one occurrence of task i in
each time interval of size 2k−ψi . This implies that b t

2k−ψi c ≤
∑t

r=1 S(i, r) ≤ d t
2k−ψi e

and thus P -fairness follows. Since the drift is bounded by one the response time is
bounded by d2/fie.

Lemma 21. The response time for every interval Ii is bounded by d4/fie.
Proof. Lemma 20 implies the case in which the frequencies are powers of two.

Moreover, in case the frequencies are not powers of two, we can virtually partition
each task into two tasks with frequencies ai and bi, respectively, so that fi = ai + bi,
ai is a power of two, and bi < ai. Then, the schedule of the task with frequency ai
has drift 1. This implies that its response time is at most d2/aie ≤ d4/fie.

Remark. It can be shown that the bound of the above lemma is tight for our
algorithm.

We summarize the results in this section in the following theorem.

1182 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

Theorem 22. Given an arbitrary interval graph as a conflict graph, the algorithm
exactly realizes any feasible frequency vector and guarantees that the response time is
at most d4/fie.

4.1. Bounding the drift. Since the algorithm has O(log T) levels of recursion
and each level may increase the drift by one, it follows that the maximum drift is
bounded by O(log T). In this section we prove that we can decrease the maximum
drift to be O(

√
log Tnε) for any fixed ε, where n is the number of tasks. By Lemma 13

this implies that in the worst case the drift for max-min fair frequencies is bounded
by O(n

1
2+ε).

Our method to get a better drift is based on the following observation: at each
recursive step of the algorithm two sets of tasks are produced such that each set has
to be placed in a different half of the time interval currently considered. However,
we are free to choose which set goes to which half. We use this degree of freedom to
decrease the bound on the drift. To make the presentation clearer we assume that T
is a power of two and that the time units are 0, . . . , T − 1. The arguments can be
modified to hold in the general case.

Consider a subinterval of size T/2j starting after time t` = i ·T/2j−1 and ending
at tr = (i+ 1) · T/2j − 1 for 0 ≤ i ≤ 2j − 1. In the first j recursion levels we already
fixed the number of occurrences of each task up to t`. Given this number, the drift
d` at time t` is fixed. Similarly, the drift dr at time tr is also fixed. At the next
recursion level we split the occurrences assigned to the interval [t` + 1, tr], thus fixing
the drift dm at time tm = (t`+tr)/2. Optimally, we would like the drifts after the next
recursion level at each time unit t ∈ [t`+1, tr] to be the weighted average of the drifts
d` and dr. In other words, let α = (t−t`)/(tr−t`); then we would like the drift at time
t to be αdr + (1−α)d`. In particular, we would like the drift at tm to be (d` + dr)/2.
This drift can be achieved for tm only if the occurrences in the interval [t` + 1, tr] can
be split equally. However, in case we have an odd number of occurrences to split, the
drift at tm is (d` + dr)/2 ± 1/2, depending on our decision in which half interval to
put the extra occurrence. Note that the weighted average of the drifts of all other
points changes accordingly. That is, if the new dm is (d` + dr)/2+x, for x ∈ {±1/2},
then the weighted average in t ∈ [t` + 1, (tr + t`)/2] is αdr + (1− α)d` + 2αx, where
α = (t − t`)/(tr − t`) ≤ 1/2, and the weighted average in t ∈ [(tr + t`)/2 + 1, tr] is
αdr + (1− α)d` + 2(1− α)x, where α = (t− t`)/(tr − t`) > 1/2.

Consider now the two sets of tasks S1 and S2 that we have to assign to the two
subintervals (of the same size) at level k of the recursion. For each of the possible two
assignments, we compute a “potential” based on the resulting drifts at time tm. For a
given possibility let D[tm, i, k] denote the resulting drift of task i at tm after k recursion
levels. Define the potential of tm after k levels as POT (tm, k) =

∑n
i=1 D(tm, i, j)

φ for
some fixed even constant φ. We choose the possibility with the lowest potential. We
now prove that using this policy the drift of any task after logT steps is bounded by

O(
√

log T · n 1
φ).

Consider a time t and a task i. The drift of task i at t is the outcome of at most
log T recursion levels. Define the drift of task i at t after k levels, denoted D(t, i, k),
as the weighted average drift at t given the fixed drifts after k levels. It is easy to see
that the initial drift is zero, and the final weighted average drift is the actual drift at
t. Also, in each level the drift may either stay the same (in case we have to split an
even number of occurrences of task i) or is changed by ±x where 0 ≤ x ≤ 1/2. Note
that x is positive if and only if the change in the drift at the current median point
closest to t is +1/2. We extend the definition of potentials to all time points t in the

FAIR SERVICE TO PERSISTENT TASKS 1183

obvious way; that is, POT (t, k) =
∑n

i=1 D(t, i, k)φ. We show that the potential after
log T levels is bounded by O(Tφ/2 · n). This implies the desired bound on the drift of
each task at t since the potential is the sum of the drifts to the power of φ.

Lemma 23. For all 0 ≤ t ≤ T − 1, and all 1 ≤ k ≤ log T ,

POT (t, k) ≤ POT (t, k − 1) + c ·
n∑
i=1

D(t, i, k − 1)φ−2

for some constant c.
Proof. The increment of the potential at time t at the kth level is bounded by

the maximum over all disjoint sets S1, S2 ⊂ {1, . . . , n} such that |S1| = |S2| of

min
S1,S2

{∑
i∈S1

[D(t, i, k − 1) + x]φ +
∑
i∈S2

[D(t, i, k − 1)− x]φ,

∑
i∈S2

[D(t, i, k − 1) + x]φ +
∑
i∈S1

[D(t, i, k − 1)− x]φ

}

−
∑

i∈S1∪S2

[D(t, i, k − 1)]φ

for some 0 ≤ x ≤ 1/2. Since the minimum is always bounded by the average, the
change is bounded by

1

2

{ ∑
i∈S1∪S2

[D(t, i, k − 1) + x]φ + [D(t, i, k − 1)− x]φ − 2[D(t, i, k − 1)]φ

}
.

Finally, the maximum over all disjoint sets S1, S2 ⊂ {1, . . . , n} such that |S1| = |S2|
is achieved for S1 ∪ S2 = {1, . . . , n}, and it is O(

∑n
i=1[D(t, i, k − 1) + x]φ−2).

Lemma 24. For all 0 ≤ t ≤ T − 1, and all 0 ≤ k ≤ log T ,

n∑
i=1

[D(t, i, k)]φ−2 ≤ (c · log T)
φ
2−1 · n,

where c is the constant of Lemma 23.
Proof. To obtain a contradiction assume that there exists 0 ≤ t ≤ T − 1 and

0 < k ≤ log T for which the bound does not hold. Consider the minimum such k.
By Lemma 23 and the minimality of k, we get that POT (t, k) ≤ POT (t, k − 1) +
c ·∑n

i=1 D(t, i, k − 1)φ−2. Reapplying Lemma 23 and since the function D(t, i, k)
is increasing in k we get POT (t, k) ≤ kc ·∑n

i=1 D(t, i, k − 1)φ−2. Finally by the

minimality of k, POT (t, k) ≤ kc · (c · log T)
φ
2−1 · n = c

φ
2 · (log T)

φ
2−1 · n · k. By our

definition POT (t, k) =
∑n

i=1 D(t, i, k)φ. By Hölder inequality

n∑
i=1

D(t, i, k)φ ≥ n

(∑n
i=1 D(t, i, k)φ−2

n

) φ
φ−2

.

However, by our assumption

n

(∑n
i=1 D(t, i, k)φ−2

n

) φ
φ−2

> n

(
(c · log T)

φ
2−1n

n

) φ
φ−2

= (c · log T)
φ
2 · n.

1184 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

Combining the two inequalities we get

(log T)
φ
2 < (log T)

φ
2−1 · k.

But this inequality implies that k > log T , which is a contradiction.
Theorem 25. The maximum drift is bounded by O(

√
log T · nε) for any fixed ε.

Proof. By Lemmas 23 and 24, the potential POT (t, log T) for all 1 ≤ t ≤ T is

bounded by log T · O((log T)
φ
2−1 · n) = O((log T)

φ
2 · n). This implies the bound on

each drift, since the potential is the sum of the drifts to the power of φ. The constant
ε is chosen to be 1

φ .

5. Realizing frequencies rigidly. In this section we show how to construct
a schedule that 12-approximates any feasible frequency vector in a rigid fashion on
an interval graph. We reduce our rigid schedule problem to the dynamic storage
allocation problem. The dynamic storage allocation problem is defined as follows.
We are given objects to be stored in a computer memory. Each object has two
parameters: (i) its size, that is, the number of cells needed to store it, and (ii) the
time interval in which it should be stored. Each object must be stored in adjacent
cells. The problem is to find the minimal size memory that can accommodate at any
given time all of the objects that are needed to be stored at that time. The dynamic
storage allocation problem is a special case of the multicoloring problem on interval
graphs defined below.

A multicoloring of a weighted graph G with the weight function w : V → N is a
function F : V → 2N such that (i) for all v ∈ V the size of F (v) is w(v), and (ii) if
(v, u) ∈ E then F (v)∩F (u) = ∅. The multicoloring problem is to find a multicoloring
with minimal number of colors. This problem is known to be an NP-Hard problem
[GJ79].

Two interesting special cases of the multicoloring problem are when the colors of
a vertex must be either contiguous or “spread well” among all colors. We call the
first case the cont-MC problem and the second case the spread-MC problem. More
formally, in a solution to cont-MC if F (u) = {x1 < · · · < xk}, then xi+1 = xi + 1
for all 1 ≤ i < k. Whereas in a solution to spread-MC that uses T colors, if F (u) =
{x1 < · · · < xk} then (i) k divides T and (ii) xi+1 = xi + T/k, for all 1 ≤ i < k, and
xk + T/k − T = x1.

It is not hard to verify that for interval graphs the cont-MC problem is equivalent
to the dynamic storage allocation problem described above. Simply associate each
object with a vertex in the graph and give it a weight equal to the number of cells
it requires. Put an edge between two vertices if their time intervals intersect. The
colors assigned to a vertex are interpreted as the cells in which the object is stored.

On the other hand, the spread-MC problem corresponds to the rigid schedule
problem as follows. First, we replace the frequency f(v) by a weight w(v). Let
k(v) = d− log2 f(v)e, and let k = maxv∈V {k(v)}; then w(v) = 2k−k(v). Clearly,
f(v)/2 ≤ w(v)/2k ≤ f(v). Now, assume that the output for the spread-MC problem
uses T colors, and let the colors of v be {x1 < · · · < xk} where x2 − x1 = ∆. We
interpret this as follows: v is scheduled in times x1 + i∆ for all i ≥ 0. It is not
difficult to verify that the resulting schedule is rigid and it 2-approximates the given
frequencies.

Although the dynamic storage allocation problem is a special case of the multi-
coloring problem it is still known to be an NP-Hard problem [GJ79]. Using similar
arguments it can be shown that the rigid scheduling problem is also NP-Hard. There-
fore, we are looking for an approximation algorithm. In what follows we present an

FAIR SERVICE TO PERSISTENT TASKS 1185

approximation algorithm that produces a rigid scheduling that 12-approximates the
given frequencies. For this we consider instances of the cont-MC and spread-MC
problems in which the input weights are powers of two.

Definition 26. A solution for an instance of cont-MC is both aligned and
contiguous if for all v ∈ V , F (v) = {j · w(v), . . . , (j + 1) · w(v)− 1} for some j ≥ 0.

In [Kie91], Kierstead presents an algorithm for cont-MC that has an approxima-
tion factor 3. A careful inspection of this algorithm shows that it produces solutions
that are both aligned and contiguous for all instances in which the weights are powers
of two.

We show how to translate a solution for such an instance of the cont-MC problem
that is both aligned and contiguous into a solution for an instance of the spread-MC
problem with the same input weights.

For 0 ≤ x < 2k, let π(x) be the k-bit number the binary representation of which
is the inverse of the binary representation of x.

Proposition 27. For 1 ≤ i ≤ k and 0 ≤ j < 2k−i = ∆, {π(j2i), . . . , π(j2i +
2i − 1)} = {π(j2i), π(j2i) + ∆, . . . , π(j2i) + (2i − 1)∆}.

This proposition says that an output of cont-MC that uses c colors can be trans-
formed into an output of spread-MC that uses at most 2c colors.

Consider an instance of the spread-MC problem in which all the input weights are
powers of two. Apply the solution of Kierstead [Kie91] to solve the cont-MC instance
with the same input. This solution is both aligned and contiguous and uses at most
3T ′ colors where T ′ is the number of colors needed by an optimal coloring. Let T ≥ 3T ′

be the smallest power of 2 that is greater than T ′. It follows that T ≤ 6T ′. Applying
the transformation of Proposition 27 on the output of the solution to cont-MC yields
a solution to spread-MC with at most T colors. This in turn yields an approximation
factor of at most 12 for the rigid scheduling problem, since w(v)/T ≥ f(v)/2.

Theorem 28. The above algorithm computes a rigid schedule that 12-approxi-
mates any feasible frequency vector on an interval graph.

6. Circular-arc graphs. In this section we show how to transform any algo-
rithm A for computing a schedule that c-approximates any given feasible frequency
vector on interval graphs into an algorithm A′ for computing a schedule that 2c-
approximates any given feasible frequencies on circular-arc graphs.

Let f̂ be a feasible frequency vector on a circular-arc graph G.

Step 1. Find the maximum clique C in G.

Let G′ = G−C. Note that G′ is an interval graph. Let ĝ1 and ĝ2 be the frequency
vectors resulting from restricting f̂ to the vertices of G′ and C, respectively. Note
that ĝ1 and ĝ2 are feasible on G′ and C, respectively.

Step 2. Using A, find schedules S1 and S2 that c-approximate ĝ1 and ĝ2 on G′

and C, respectively.

Step 3. Interleave S1 and S2.

Clearly, the resulting schedule 2c-approximates f̂ on the circular-arc graph G.
Note also that all the three steps can be computed in polynomial time.

7. Conclusions and future research. In this paper we have introduced a new
scheduling problem. It is characterized by the persistence and interdependency of
the tasks involved. We have developed new measures that quantify the fairness and
regularity of a schedule. We have shown that every conflict graph has a unique max-
min fair frequency assignment and that, in general, this assignment is hard even to
approximate. However, for perfect graphs, it turns out that max-min fair frequencies

1186 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

are easy to compute and we have given an algorithm for this purpose. The scheduling
algorithms described in this paper exhibit a tradeoff between the accuracy with which
given frequencies are realized and their regularity. Furthermore, we have shown that a
drift of one (i.e., P -fairness) is not achievable even for simple interval conflict graphs.
This can be viewed as an indication that the problem in this paper is inherently more
complex than the one considered in [BCPV96].

Many open problems remain. The exact complexity of computing a max-min fair
frequency assignment in general graphs is not known, and there is no characterization
of when such an assignment is easy to compute. All the scheduling algorithms in
the paper use the inherent linearity of interval or circular-arc graphs. It would be
interesting to find scheduling algorithms for the wider class of perfect graphs. The
algorithm for interval graphs that realizes frequencies exactly exhibits a considerable
gap in its drift. It is not clear from which direction this gap can be closed.

Our algorithms assume a central scheduler that makes all the decisions. Both from
a theoretical and practical point of view it is important to design scheduling algorithms
working in more realistic environments such as high-speed local-area networks and
wireless networks (as mentioned in section 1.1). The distinguishing requirements
in such an environment include a distributed implementation via a local signaling
scheme, a conflict graph which may change with time, and restrictions on space per
node and size of a signal. The performance measures and general setting, however,
remain the same. A first step toward such algorithms has been recently carried out
by Mayer, Ofek, and Yung in [MOY96].

Appendix A. The partial order≺. In this appendix we prove that the relation
≺ is a partial order. We first observe that the definition can be restated as f̂ ≺ ĝ if
there exists an index i and a threshold f such that fi < f ≤ gi (the index property),
and for all 1 ≤ j ≤ n, gj ≥ min{f, fj} (the threshold property). The following two
claims establish that ≺ is a partial order.

Claim 29. The relation ≺ is antisymmetric.
Proof. To obtain a contradiction assume that there exist two vectors f̂ and ĝ

such that f̂ ≺ ĝ and ĝ ≺ f̂ . This implies that there exist two indices i and ` and two
thresholds f and g such that

1. fi < f ≤ gi, and for all 1 ≤ j ≤ n, gj ≥ min{f, fj};
2. g` < g ≤ f`, and for all 1 ≤ j ≤ n, fj ≥ min{g, gj}.

Since g` ≥ min{f, f`}, f` > g`, and g > g`, it follows that g > f . Similarly,
since fi ≥ min{g, gi}, gi > fi, and f > fi, it follows that f > g. We get the
contradiction.

Claim 30. The relation ≺ is transitive.
Proof. Suppose that f̂ ≺ ĝ and ĝ ≺ ĥ. We show that f̂ ≺ ĥ. Since f̂ ≺ ĝ and

ĝ ≺ ĥ there exist two indices i and ` and two thresholds f and g such that
1. fi < f ≤ gi, and for all 1 ≤ j ≤ n, gj ≥ min{f, fj};
2. g` < g ≤ h`, and for all 1 ≤ j ≤ n, hj ≥ min{g, gj}.

We choose h = min{f, g} as the threshold for f̂ ≺ ĥ. Now, for all 1 ≤ j ≤ n,

hj ≥ min{g, gj} ≥ min{g,min{f, fj}} ≥ min{min{f, g}, fj} ≥ min{h, fj} .

We still have to prove that there exists an index with the desired property. Assume
first that h = f ≤ g; then we choose i as the index and we need to show that
fi < h ≤ hi. Since h = f it follows that fi < h. Since hi ≥ min{gi, g}, h ≤ g, and
gi ≥ f = h, it follows that hi ≥ h. Now assume that h = g < f ; then we choose `

FAIR SERVICE TO PERSISTENT TASKS 1187

as the index. Here we need to show that f` < h ≤ h`. Since g ≤ h` it follows that
h ≤ h`. Since g` ≥ min{f, f`}, g > g`, and h = g < f , it follows that h > f`.

Appendix B. The complete proof of Theorem 5. We complete the proof
of Theorem 5 for the case when f̂ is not a rational convex combination.

Claim 31. If a frequency vector f̂ can be expressed as a convex combination of
the independent sets, then f̂ is feasible.

Proof. Suppose that there exist weights {αI}I∈I such that
∑

I∈I αI = 1 and∑
I∈I αIχ(I) = f̂ . We show how to obtain a schedule S that realizes the frequency

vector f̂ . For every k < ∞, we pick g
(k)
i to be a rational number between fi − 2−k

and fi and apply Claim 7 to construct a schedule Ak of finite length, denoted T (Ak),

that realizes the frequency vector ˆg(k).
We go on to construct schedules S1, S2, . . . , Sk with the following properties.
Property 1. Schedule Sk has finite length T (Sk).
Property 2. For each task 1 ≤ i ≤ n, schedule Sk achieves a frequency of at least

fi − 2−(k−1) for task i.
Property 3. Schedule Sk−1 is a prefix of schedule Sk.
Property 4. In the infinite schedule SkSkSk · · · (i.e., the schedule given by con-

catenating the schedule Sk infinitely many times), for any task 1 ≤ i ≤ n and time

t > T (Sk), f
(t)
i (SkSkSk · · ·) ≥ fi−2−(k−2). (Recall that f

(t)
i (S) is the prefix frequency

of task i at time t in schedule S.)

Property 5. For any task 1 ≤ i ≤ n and time t > T (Sk−1), f
(t)
i (Sk) ≥ fi−2−(k−3).

We construct the Sk’s inductively. The base case S1 exists trivially (every non-
empty schedule satisfies the required properties). Assume the schedules S1, . . . , Sk−1

exist. Schedule Sk is given by the concatenation of n1 schedulings of Sk−1 followed
by n2 schedulings of Ak. We now show that under an appropriate choice of n1 and
n2, the schedule Sk satisfies the above properties. Let Di be the maximum among
the drift of task i in the schedule Sk−1 and the drift of task i in the schedule Ak. Let
D = maxi{Di}. Let

n1 =

⌈
2kD

4T (Sk−1)

⌉
and n2 =

⌈
2n1T (Sk−1)

T (Ak)

⌉
.

Property 1. The period of Sk is

T (Sk) = n1T (Sk−1) + n2T (Ak)

which is finite since n1 and n2 are finite.
Property 2. The frequency of task i in Sk is at least

n1T (Sk−1)(fi − 2−(k−2)) + n2T (Ak)(fi − 2−k)
n1T (Sk−1) + n2T (Ak)

= fi − 2−(k−1) − n1T (Sk−1)2
−(k−1) − n2T (Ak)2

−k

n1T (Sk−1) + n2T (Ak)
.

We wish to show that the above quantity is at least fi − 2−(k−1). This simplifies to

n2 ≥ 2n1T (Sk−1)

T (Sk)
,

1188 BAR-NOY, MAYER, SCHIEBER, AND SUDAN

a condition which is satisfied by our choice of n1 and n2.
Property 3. Since n1 ≥ 1, it follows that Sk−1 is a prefix of Sk.
Property 4. Since Sk−1 is a prefix of Sk it follows that in the infinite schedule

SkSkSk . . ., for any task 1 ≤ i ≤ n and time t > T (Sk),

f
(t)
i (SkSkSk · · ·) = (fi − 2−(k−1))T (Sk) + (fi − 2−(k−2))[t− T (Sk)]−Di

= (fi − 2−(k−2))t+ 2−(k−1)T (Sk)−Di.

We wish to show that this is at least t(fi − 2−(k−2)). This condition simplifies to

2k−1Di ≤ T (Sk) = n1T (Sk−1) + n2T (Sk).

Once again, the choice of n1 and n2 satisfies this condition.
Property 5. For any task 1 ≤ i ≤ n and time T (Sk−1) < t ≤ n1T (Sk−1),

Property 4 of schedule Sk−1 guarantees that f
(t)
i (Sk) ≥ fi − 2−(k−3). Now, consider

t > n1T (Sk−1). The number of times a task i is scheduled in Sk by time t is at least

(f − 2−(k−2))n1T (Sk−1) + (f − 2−k)(t− n1T (Sk−1))−Di

= (f − 2−(k−3))t+ 2−(k−2)n1T (Sk−1) + 7 · 2−k(t− n1T (Sk−1))−Di.

We wish to show that this quantity is at least t(f−2−(k−3)). This inequality is implied
by the condition 4n1T (Sk−1) ≥ 2kDi, which is satisfied by the choice of n1.

We use the sequences S1, . . . , Sk, . . . to define an infinite sequence S (which is es-
sentially the limiting element of the sequence {Si}). To determine which independent
set to schedule at time t in S, we let k be the smallest index such that T (Sk) ≥ t. We
schedule the independent set scheduled by Sk at time t.

To see that S realizes the desired frequency vector f̂ , we prove that for every ε > 0

there exists T <∞ such that for all t ≥ T and for all tasks 1 ≤ i ≤ n, f
(t)
i (S) ≥ fi−ε.

Given ε > 0, let k be the minimum integer such that 2−(k−2) ≤ ε and let T =
T (Sk) + 1. Given t ≥ T , let k′ be the largest index such that t > T (Sk′). Clearly,
k′ ≥ k. Observe that for any j <∞, Sj is a prefix of S. Thus, the prefix of schedule S

up to time t is a prefix of Sk′+1. By Property 5 of Sk′+1, f
(t)
i (Sk′+1) ≥ fi−2−(k′−2) ≥

fi − 2−(k−2) ≥ fi − ε.

Acknowledgment. We would like to thank Don Coppersmith and Moti Yung
for many useful discussions.

REFERENCES

[AS90] B. Awerbuch and M. Saks, A dining philosophers algorithm with polynomial response time,
in Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990, pp. 65–75.

[BCPV96] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, Proportionate progress: A notion
of fairness in resource allocation, Algorithmica, 15 (1996), pp. 600–625.

[BG87] D. Bertsekas and R. Gallager, Data Networks, Prentice–Hall, Englewood Cliffs, NJ,
1987.

[BP92] J. Bar-Ilan and D. Peleg, Distributed resource allocation algorithms, in Proc. 6th Inter-
national Workshop on Distributed Algorithms, 1992, pp. 277–291.

[CCO93] J. Chen, I. Cidon, and Y. Ofek, A local fairness algorithm for Gigabit LANs/MANs
with spatial reuse, IEEE J. on Selected Areas in Communication, 11 (1993), pp. 1183–1192.

[CM84] K. Chandy and J. Misra, The drinking philosophers problem, ACM Trans. on Program-
ming Languages and Systems, 6 (1984), pp. 632–646.

FAIR SERVICE TO PERSISTENT TASKS 1189

[CO93] I. Cidon and Y. Ofek, MetaRing – A full-duplex ring with fairness and spatial reuse, IEEE
Trans. on Communications, 41 (1993), pp. 110–120.

[CS92] M. Choy and A. Singh, Efficient fault tolerant algorithms for resource allocation in dis-
tributed system, in Proc. 24th ACM Symp. on Theory of Computing (1992), pp. 593–602.

[Dijk71] E. W. Dijkstra, Hierarchical ordering of sequential processes, Acta Informatica, 1 (1971),
pp. 115–138.

[GJ79] M. Garey and D. Johnson, Computers and Intractability, a Guide to the Theory of Np-
completeness, W. H. Freeman, San Francisco, 1979.

[Gol80] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[GLS87] M. Grötschel, L. Lóvasz, and A.Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1987.

[Goo90] D. J. Goodman, Cellular packet communications, IEEE Trans. on Communications, 38
(1990), pp. 1272–1280.

[Jaf81] J. Jaffe, Bottleneck flow control, IEEE Trans. on Communications, 29 (1981), pp. 954–962.
[Kie91] H. A. Kierstead, A polynomial time approximation algorithm for dynamic storage alloca-

tion, Discrete Math., 88 (1991), pp. 231–237.
[Knu94] D. E. Knuth, The sandwich theorem, Electron. J. Combin., 1 (1994), pp. 1–48.
[LL73] C. L. Liu and J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-

time environment, J. Assoc. Comput. Mach., 20 (1973), pp. 46–61.
[LY93] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,

in Proc. 25th ACM Symp. on Theory of Computing, 1993, pp. 286–293.
[Lyn80] N. Lynch, Fast allocation of nearby resources in a distributed system, in Proc. 12th ACM

Symp. on Theory of Computing, 1980, pp. 70–81.
[MOY96] A. Mayer, Y. Ofek, and M. Yung, Local scheduling with partial state information for

approximate max-min fair rates, in Proc. IEEE INFOCOM’96, 1996.
[Tuc71] A. Tucker, Matrix characterizations of circular-arc graphs, Pacific J. Math., 39 (1971),

pp. 535–545.

TIME–SPACE LOWER BOUNDS FOR DIRECTED
st-CONNECTIVITY ON GRAPH AUTOMATA MODELS∗

GREG BARNES† AND JEFF A. EDMONDS‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1190–1202, August 1998 014

Abstract. Directed st-connectivity is the problem of detecting whether there is a path from a
distinguished vertex s to a distinguished vertex t in a directed graph. We prove time–space lower

bounds of ST = Ω(n2 logn
log(n logn/S)

) and S
1
2 T = Ω(m(n logn)

1
2) for directed st-connectivity on Cook

and Rackoff’s jumping automaton for graphs (JAG) model [SIAM J. Comput., 9(1980), pp. 636–652],
where n is the number of vertices and m the number of edges in the input graph, S is the space, and
T the time used by the JAG. These lower bounds are simple and elegant, they approach the known
upper bound of T = O(m) when S approaches Θ(n logn), and they are the first time–space tradeoffs
for JAGs with an unrestricted number of jumping pebbles.

Key words. time–space tradeoffs, lower bounds, JAG graph st-connectivity

AMS subject classifications. 68Q05, 68Q15, 68Q25

PII. S0097539795294402

1. Introduction. The st-connectivity problem is a fundamental one in compu-
tational complexity theory. The st-connectivity problem for directed graphs (stcon)
is the prototypical complete problem for nondeterministic logarithmic space [20]. Both
stcon and the corresponding problem for undirected graphs, ustcon, are DLOG-
hard—any problem solvable deterministically in logarithmic space can be reduced to
either problem [16, 20]. Understanding the complexity of st-connectivity is, therefore,
a key to understanding the relationship between deterministic and nondeterministic
space bounded complexity classes. For example, showing that there is no determin-
istic logarithmic space algorithm for directed connectivity would separate the classes
DSPACE(logn) and NSPACE(logn), while devising such an algorithm would prove
that DSPACE(f(n)) = NSPACE(f(n)) for any constructible f(n) = Ω(log(n)) [20].
Unfortunately, determining the complexity of stcon remains a difficult open problem.
In this paper we devise time–space tradeoffs for stcon, that is, bounds on the simul-
taneous time and space requirements of algorithms for directed connectivity. Such
tradeoffs are an important step toward solving the complexity of stcon. Time–space
tradeoffs are also important in their own right, since they give more insight into the
resource requirements of a problem or class of problems than a bound on time or
space alone.

Proving lower bounds on the time or space requirements of stcon for a general
model of computation, such as a Turing machine, is beyond the reach of current tech-
niques. Thus, it is natural to consider a structured model [9] whose basic operations
are based on the structure of the graph, as opposed to being based on the bits in the

∗Received by the editors October 30, 1995; accepted for publication (in revised form) June 13,
1996; published electronically May 19, 1998. A preliminary version of this paper appeared as J.
Edmonds’s Ph.D. thesis, Time–Space Lower Bounds for Undirected and Directed st-Connectivity on
JAG Models, University of Toronto, 1993.

http://www.siam.org/journals/sicomp/27-4/29440.html
†Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(gsbarnes@plg.uwaterloo.ca). Portions of this work were performed while the author was at the
Max-Planck-Institut für Informatik, Saarbrücken, Germany.

‡Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3
(jeff@cs.yorku.ca, http://www.cs.yorku.ca/jeff). Portions of this work were performed while the
author was at the University of Toronto, Canada.

1190

TIME–SPACE LOWER BOUNDS 1191

graph’s encoding. A natural structured model for the problem of st-connectivity is
the jumping automaton for graphs, or JAG, introduced by Cook and Rackoff [11]. A
JAG moves a set of pebbles on the graph. There are two basic operations—moving
a pebble along a directed edge in the graph and jumping a pebble from its current
location to the vertex occupied by another pebble. Although the JAG model is struc-
tured, it is not weak. In particular, it is general enough that most known deterministic
algorithms for graph connectivity can be implemented on it. Poon [18] introduces the
more powerful node-named JAG (NNJAG), an extension of the JAG model where the
computation is allowed to depend on the names of the nodes on which the pebbles
are located.

Cook and Rackoff [11] prove a lower bound of Ω(log2 n/ log log n) on the space re-
quired for a JAG to compute directed st-connectivity (stcon). Berman and Simon [8]
extend this result to randomized JAGs, and Poon [18] extends it to a probabilistic
version of the NNJAG. Tompa [23] shows lower bounds on the product of the time
and space needed when using certain natural approaches to solve stcon. Many
time–space lower bounds have been proved for undirected st-connectivity (ustcon)
on various weak versions of the JAG model [7, 10, 11]. Edmonds was the first to prove
a time–space lower bound for ustcon on the unrestricted JAG model [13].

The standard algorithms for stcon, breadth- and depth-first search, run in op-
timal time Θ(m + n) and use Θ(n log n) space. At the other extreme, Savitch’s
theorem [20] provides a small space (Θ(log2 n)) algorithm that requires time ex-
ponential in its space bound (i.e., time nΘ(log n)). Barnes et al. [3] show the first
sublinear space, polynomial time algorithm for stcon. The algorithm runs in time
2O(log2(n/S)) · n3 given space S. All of these algorithms can be implemented on the
standard JAG [11, 19]. Using the NNJAG’s ability to access the names of the nodes
in the graph, Poon [18] shows how to implement Immerman’s and Szelepcsényi’s non-
deterministic O(log n)-space algorithm for directed st-nonconnectivity [15, 22] on a
nondeterministic NNJAG. It is not clear that this algorithm can be implemented on
a standard nondeterministic JAG.

The paper proves lower bounds of ST = Ω(n2 logn
log(n logn/S)) and S

1
2T = Ω(m(n log n)

1
2)

for stcon on the JAG model, where S ≤ 2n log n is the space and T the time used
by a JAG. The first bound is proved on directed graphs with outdegree at most
three. Neither bound puts a restriction on the number of states used by the JAG.
These lower bounds approach the known upper bound of T = O(m) when S ap-
proaches Θ(n log n) and are the first time–space tradeoffs for JAGs with an unre-
stricted number of jumping pebbles. An earlier version of this paper [4] proved a

bound of S
1
3T = Ω(m

2
3n

2
3) on the more powerful NNJAG model. This bound has

since been improved to T = 2Ω(log2(n/S)) for most S by Achlioptas, Edmonds, and
Poon [1] and Edmonds and Poon [14], matching the previously mentioned upper
bound of Barnes et al. [3]. Even though the bounds of the current paper are weaker
than those in Edmonds and Poon, the results are still worth studying, because they
apply to JAGs with an infinite number of states, because it is more likely they can
be extended to the ustcon problem and because they are simple and elegant. In
addition, this paper strengthens the model in two ways. Hence, technically speaking,
the results here are not subsumed by the results of Edmonds and Poon.

In the following section, we formally define the JAG model. In section 3, we
describe the families of layered and comb graphs, the graphs we use to prove our lower

bounds. In section 4 we prove the ST = Ω(n2 logn
log(n logn/S)) and S

1
2T = Ω(m(n log n)

1
2)

1192 GREG BARNES AND JEFF A. EDMONDS

lower bounds for the JAG model. Finally, section 5 presents some notes and a dis-
cussion of future work.

For a survey of the graph connectivity problem, see Wigderson [24].

2. Definitions. A JAG [11] is a finite automaton with p distinguishable pebbles
and q states. The input to a JAG is an instance of stcon 〈G, s, t〉, where G is
a directed graph on n vertices with maximum outdegree d, and s and t are two
distinguished nodes in the graph. For each node in the input graph, the outgoing
edges are given a unique label in {1, . . . , d}. The JAG begins its computation in state
Q0, with one of the pebbles on the distinguished node t and the other p− 1 on s.

The program of the JAG may depend nonuniformly on n and on the degree d of
the graph. What the JAG does each time step depends on the current state, the list
of the pebbles that are on the distinguished vertices s and t, and the partition of the
pebbles not on s and t, according to which pebbles are on the same vertices. Based
on this information, the automaton changes state and either walks or jumps a pebble.
Walking a pebble consists of selecting a pebble P ∈ {1, . . . , p} at some vertex v and
some label l ∈ {1, . . . , d} and moving P along the edge out of v with label l. If there
is no edge out of v with that label, the pebble stays at v. Jumping a pebble consists
of selecting two pebbles P, P ′ ∈ {1, . . . , p} and moving P to the node occupied by P ′.
A JAG that solves stcon enters an accepting state if and only if there is a path from
s to t in the input graph.

The space used by a JAG is defined to be S = p log2 n + log2 q, where p is the
number of pebbles and q is the number of states. This corresponds to the log2 n bits
needed to store which of the n nodes a pebble is on and the log2 q bits needed to
record the current state.

This paper strengthens the definition of the JAG. First, it does not count the
number of states as part of the space and hence applies even when the JAG has an
arbitrarily large number of states. Second, it allows the pebbles to back up opposite
the direction of the directed edge to the node that it came from. This is done by
keeping on a stack the path of nodes taken from the source node s to its current
position. We will refer to such a JAG as a many states, stack JAG.

This new JAG model is provably stronger than the original model. To begin, it
is surprising that one can prove lower bounds when the number of states is allowed
to be arbitrarily large. These states can be used to remember everything the JAG
ever learns about the input graph. Previous study had indicated that as the number
of states increases, the time to compute stcon on a JAG becomes linear. Evidently,
this is not the case.

In addition, one complaint about JAGs is that they cannot traverse directed
trees easily. Cook and Rackoff prove an Ω(log2 n/ log log n) space for trees. However,
a general model of computation is able to traverse trees easily in O(log n) space by
means of depth first search. The JAG is unable to do this because it is unable to
move a pebble to the parent of its current location as this would involve walking along
the edge in the backward direction. Clearly, the many states, stack JAG is able to do
this.

3. Comb and layered graphs. We prove the ST = Ω(n2 log n
log(n logn/S)) lower

bound on a class of graphs known as layered graphs. A layered graph consists of l lay-
ers (later set to log(n

p log(n/p))) of vertices, plus the extra distinguished vertex t. The

number of vertices in layer i is χi and they are denoted v〈i,1〉, v〈i,2〉, . . . , v〈i,χi〉. The
first layer is special: it contains χ1 = cn vertices for some constant c; these vertices are

TIME–SPACE LOWER BOUNDS 1193

χ
i

s

t

l

Fig. 1. A layered graph.

s

n

n

χ

χ

m

t

Fig. 2. A comb graph.

connected into a directed path using the crossedges, (v〈1,1〉, v〈1,2〉), (v〈1,2〉, v〈1,3〉), . . . ,
(v〈1,χ−1〉, v〈1,χ1〉); and the distinguished vertex s is the first vertex v〈1,1〉 in this layer.
Adjacent layers are connected as follows. Every vertex in layers 1 through l − 1 has
two downedges connecting it to two vertices on the next layer. We allow double edges,
so it is of no concern if some vertex’s two downedges go to the same vertex. Finally,
there may or may not be an edge from a vertex on layer l to the distinguished vertex
t. The edges are labeled in a straightforward way, say with 1 and 2 for the downedges
of each node and 3 for the crossedges. See Figure 1 for an example of a layered graph.
Note that no vertex in a layered graph has outdegree more than three, so the lower
bound does not depend on the graph having a large number of edges.

We prove the S
1
2T = Ω(m(n log n)

1
2) lower bound on a different class of graphs

known as comb graphs. A comb graph, illustrated in Figure 2, is composed of a back,
χ teeth, and the distinguished node t. The back of the comb consists of a directed
path of n nodes v1, . . . , vn. The first node v1 is the distinguished node s. The rth
tooth consists of the directed path u〈r,1〉, . . . , u〈r,l〉. The length of each tooth will be
l = n

χ so that the total number of nodes in a comb graph is 2n+ 1.

There are m (≥ n) directed connecting edges e1, . . . , em each going from a back
node vi to the top of one of the teeth in such a way that the outdegree of any two
back nodes can differ by at most 1. The outdegree of the graph is then

⌈
m
n

⌉
+1. More

formally, for j ∈ {1, . . . ,m}, the connecting edge ej is the d jneth edge emanating

from back node v1+(j−1) mod n and has label d jne. We allow double edges, so it is of
no concern if two edges from a back node go to the same tooth. If there is to be a
directed path from s to t, then the node t is attached to the bottom of at least one of
the teeth.

1194 GREG BARNES AND JEFF A. EDMONDS

4. Lower bounds for JAGs. Intuitively, solving stcon for layered graphs is
difficult because there are cn · 2l possible paths from s to vertices on layer l. The
JAG must potentially check each such path before it can be sure whether t is not
connected to s. Of course, these paths will overlap in many places, but because the
model is allocated a bounded amount of space, it is difficult for it to “remember” which
subpaths have been traversed already. Therefore, many subpaths must be traversed
many times before the JAG is sure they have all been traversed. Similarly, it is
difficult for a JAG to “remember” which teeth in a comb graph have been traversed,
so some teeth may get traversed many times before the JAG is sure that they all have
been traversed.

There are two basic approaches to computing stcon on layered graphs. The first
is the brute force approach. For each path from s to layer l, the JAG walks a pebble
down the path. This requires at least cn · 2l time steps.

The second approach is to learn enough about the downedges between the various
layers, so that the subpaths starting at a vertex on layer i, for i ∈ {2, . . . , l− 1}, need
to be traversed only once. For example, the JAG could move two pebbles to layer i−1
and then move the pebbles down two downedges, e and e′, to layer i. If the pebbles
collide, then e and e′ point to the same vertex on layer i. With this knowledge, the
JAG can avoid traversing all subpaths that begin with e′, as long as it traverses all
subpaths that begin with e. We show below that this strategy is not effective unless
the JAG computes for at least (χi − 1)2/(p − 1) steps. In particular, if less time is
used, there is a layered graph such that whenever the JAG moves two pebbles down
two different edges to some layer, the pebbles never collide.

Theorem 1. Any many states, stack JAG that solves stcon on graphs with n

vertices using p pebbles requires time Ω(n2

p log(n/p)) (where the log on the bottom is at

least 1).

Since the space S used by a JAG is defined to be at least p log n, the time–space

tradeoff ST = Ω(n2 logn
log(n logn/S)) follows. Note that the theorem sets no limit on the

number of states in the JAG.

Proof. We will show that to solve stcon on layered graphs of size n, a JAG

requires time Min(cn · 2l, c′ n2

pl) for any 1 ≤ l ≤ c′′n for some constants c, c′, and c′′.

Putting l = log(n
p log(n/p)), we have T = Ω(n2

p log(n/p)).

Suppose by way of contradiction that there is a JAG J that solves stcon on
graphs of size n using p pebbles and using less time than the given bound. In order
to bound how quickly the JAG can gain information, we will run J for this amount
of time on graphs that have many more than n vertices. J is only supposed to run
on graphs of size n, but because all the vertices in the input graph except s and t are
indistinguishable during the computation of J , it is well defined how the computation
would proceed if J were given a larger graph. We cannot expect J to solve stcon on
this large graph, but we can run it for T time steps and see what happens.

More formally, the next move taken by a JAG is specified by the transition func-
tion. The input to this function is the following information: the current state, the
list of the pebbles that are on the distinguished vertices s and t, and the partition of
the pebbles not on s and t, according to which pebbles are on the same vertices. Call
this information the current configuration of a JAG. A computation on an input graph
is formally defined to be a sequence of such configurations. Given this definition, we
can say that J ’s computation on two different graphs is identical, even if the graphs
have a different number of vertices.

TIME–SPACE LOWER BOUNDS 1195

We run J on a set of larger graphs referred to as k-tree graphs, one k-tree graph
for each k ∈ {1, . . . , l}. A k-tree graph consists of a layered graph with k layers with
the addition that each vertex v〈k,i〉 on the kth layer is the root of a directed binary tree
of depth l−k+1, with edges directed down from the root. As with the layered graph,
the downedges are labeled 1 and 2 and the crossedges are labeled 3. In addition, each
k-tree graph has an isolated vertex t. The distinguished vertex s is defined to be v〈1,1〉
for every k-tree graph.

We prove by induction that for every k ∈ {1, . . . , l}, there exists a k-tree Gk and
a leaf vertex v∗ of this graph such that during the computation of the JAG J on Gk,
there is never a pebble on the vertex v∗. At the end of the proof, we need to find a
graph with n vertices on which the JAG J gives the incorrect answer. We use the
k-tree Gl, which is also a layered graph with n vertices, to find such a graph.

For the base case of the induction, k = 1, there is only one graph G1 in the class
of 1-trees, consisting of χ1 = cn binary trees of depth l. This graph has cn · 2l leaf
vertices. Because JAG J uses fewer than cn · 2l time steps, there must be some leaf
vertex v∗ that is never accessed in J ’s computation on G1.

We are now ready to fix the number of vertices on each level of the k-tree graphs
to be χi = Min(2χi−1,

√
2(p− 1)Ti+1), where Ti is the number of time steps J walks

a pebble from layer i− 1 to layer i during this computation on the 1-tree. For each k,
we will find a k tree on which the computation for J is identical as that on the 1-tree.
Hence, Ti will be the number of time steps J walks a pebble from layer i− 1 to layer
i in each of these graphs.

For the inductive step, assume there is a (k−1)-tree, Gk−1, and a leaf v∗ in Gk−1

such that the computation of the JAG J on Gk−1 never places a pebble on v∗. If χi is
set to be 2χi−1, then we are done with the induction step, because Gk−1 is already a k-
tree with χi vertices at level i. Therefore, assume that χi =

√
2(p− 1)Ti+1 < 2χi−1.

Think of Gk−1 as follows. It has k − 1 layers of a layered graph. Layer k has
2χi−1 vertices, the vertices in the second level of the binary trees rooted at layer k−1.
Each of these vertices is the root of a directed binary tree of depth l− k + 1. Denote
these 2χi−1 disjoint binary trees by T1, . . . , T2χi−1

. Denote the downedges going from
layer k − 1 to the roots of these trees by e1, . . . , e2χi−1

.

The goal of the inductive step is to produce a k-tree Gk. Think of Gk as follows.
Like Gk−1, it has k−1 layers of a layered graph. We will choose Gk so that Gk−1 and
Gk are identical on the first k − 1 layers. Like Gk−1, Gk will have 2χi−1 downedges
e1, . . . , e2χi−1 going from layer k − 1 to layer k. Layer k of the k-tree, however, has
only χi vertices, which are the roots of χi directed binary tree of depth l − k + 1.
Denote these χi binary trees by T ′

1 , . . . , T ′
χi . What remains to be chosen in order to

specify Gk are the connections between the downedges e1, . . . , e2χi−1
, and the trees

T ′
1 , . . . , T ′

χi . These connections can be specified by choosing a partition of the trees
T1, . . . , T2χi−1 into χi groups, S1, . . . ,Sχi ⊆ {T1, . . . , T2χi−1}. For i ∈ {1, . . . , 2χi−1}
and h ∈ {1, . . . , χi}, if Ti ∈ Sh, then the downedge ei is connected to the root of the
tree T ′

h in the graph Gk. This can be thought of as collapsing the trees in the group
Sh into the one tree T ′

h. See Figure 3.

We want to find a partition S1, . . . ,Sχi with the property that the computation
on the corresponding graph Gk is identical to that on Gk−1. Below, we show how to
find a partition with the following property: for any two trees Ti and Tj , if there is
ever a time in the computation of J on Gk−1 when one pebble is in Ti and another
pebble is in Tj , then these two trees will be in different groups in the partition. If
this property is preserved, we can show that the sequence of configurations in the

1196 GREG BARNES AND JEFF A. EDMONDS

Gk-1

v
* t

s

v
* t

Gk

s

k-1
k

Fig. 3. Collapsing the trees in Gk−1 to form Gk.

computation of J on Gk−1 is the same as the sequence in the computation of J on a
graph Gk. One difference between Gk−1 and Gk is that in Gk−1 the vertices in layer
k all have indegree one. But the JAG model is defined so that it has no access to
the indegree of a vertex. It is not hard to see that if the two computations were to
deviate, the first deviation would occur because two pebbles collide in Gk that do not
collide in Gk−1. To be more precise, if the two computations were to deviate, in the
computation on Gk, one pebble must enter a tree T ′

h via the downedge ei, another
pebble must enter the same tree via a different downedge ej , and within this tree the
two pebbles must meet. In the computation on Gk−1, which is the same up to this
point, one pebble would enter the tree Ti via the downedge ei, the other pebble would
enter a different tree Tj via the downedge ej , and clearly, these pebbles would not
meet. Hence, the partition of the pebbles according to which pebbles are on the same
vertices becomes different for the two computations. However, if we find a partition of
the trees S1, . . . ,Sχi with the desired property, such an event is not possible. It would
mean that at some point during the computation on Gk−1, there is a pebble in the
tree Ti and at the same time there is a pebble in the tree Tj . By the property of the
partition, these trees would be in different groups, ei and ej would be connected to
different trees in Gk, and the pebbles entering these trees would not meet. It follows
that the two sequences of configurations are the same.

The next step is to explain how a partition S1, . . . ,Sχi ⊆ {T1, . . . , T2χi−1} with
this property is found. Run the JAG J on the graph Gk−1, while maintaining an
undirected graph H with vertex set {T1, . . . , T2χi−1

}. The undirected edge {Ti, Tj} is
added to H if there is ever a time during the computation when one pebble is in the
tree Ti and another pebble is in the tree Tj .

We claim that H will contain at most (p− 1)Ti edges. A new edge can only be
added to H if a pebble moves into some tree Ti, i.e., a pebble is moved from layer
i− 1 to layer i. By definition, Ti is the number of such moves. During such a move,
only one pebble is allowed to move. There are only p− 1 other pebbles, so there are
at most p− 1 trees Tj already containing pebbles. Therefore, at most p− 1 edges can
be added to H at this step, one edge for each possible pair {Ti, Tj}. The following
lemma shows that the chromatic number of H is then at most χi − 1.

Lemma 1. Every undirected graph with no more than E edges has chromatic
number at most

√
2E.

H has at most (p− 1)Ti edges. Hence, by the lemma, it has chromatic number
at most

√
2(p− 1)Ti = χi − 1.

TIME–SPACE LOWER BOUNDS 1197

Proof. Fix a graph. At most
√

2E vertices have degree at least
√

2E. Give each
of them its own color. The remaining vertices can be colored with the same

√
2E

colors—each vertex in turn is given a color that has not been assigned to one of its
fewer than

√
2E neighbors.

BecauseH has chromatic number no more than χi−1, the vertices {T1, . . . , T2χi−1
}

can be partitioned into χi − 1 groups S1, . . . ,Sχi−1 such that no edge of H has both
ends in the same group. It follows that this partition has the required property.

To complete the induction step, we must find a leaf vertex of the k-tree that is
never visited during the computation by J on the graph. Let T∗ be the tree of Gk−1

containing the leaf vertex v∗. Delete T∗ from the group Sh that contains T∗ and form a
new group Sχi containing only T∗. This new partition also has the required property.
Consider the leaf vertex of T ′

∗ corresponding to the leaf vertex v∗ of T∗. The k-tree
Gk defined by this new partition has the property that the only way to get from s to
this leaf vertex is to traverse the downedge e∗ and then to follow the path through
the tree to the leaf. We can prove inductively that this path is unique and is defined
by the same sequence of labeled edges in both Gk−1 and Gk. Hence, it is reasonable
to denote both the leaf vertex of Gk−1 and this leaf vertex of Gk by v∗.

By the induction hypothesis, the computation of J on Gk−1 never reaches the
vertex v∗. By the stated property of the partition, the computation on Gk is identical
to that on Gk−1. The same sequence of labels that must be traversed to reach v∗ in
Gk must be traversed to reach v∗ in Gk−1. It follows that the computation on Gk

never reaches the vertex v∗. This completes the inductive step.

After collapsing the k-tree graphs at each layer, we obtain a layered graph Gl.
We claim that this graph contains at most n vertices. The number of vertices is

N =
∑

i=1..l χi ≤ cn +
∑

i=2..l

√
2(p− 1)Ti + 1, where

∑
i=2..l Ti = T ≤ c′ n

2

pl is the

total number of time steps. N is maximized when all the Ti’s are equal to T
l−1 . This

gives N ≤ cn+
∑

k=2..l

√
2(p− 1)c′ n2

pl(l−1) + 1 ≤ cn+
√

2c′n+ l− 1, which is at most

n for the appropriate choice of c, c′, and c′′.
By the induction proof, we know that there is a leaf vertex v∗ in Gl that never

contains a pebble during the computation of J . Let G′
l be the same graph as Gl

except that there is a directed edge from the leaf v∗ to the distinguished vertex t.
Because J never places a pebble on vertex v∗, it can never detect whether there is an
outgoing edge from v∗ to t. Therefore, J ’s computation is the same on both Gl and
G′
l, and hence J gives an incorrect answer for one of the graphs. Note that pebbles

located on vertex t do not give the JAG any information about incoming edges. In
fact, because t has no outgoing edges, pebbles on t can only move by jumping.

We now prove the second bound of S
1
2T = Ω(m(n log n)

1
2) for JAGs, using the

comb graphs defined in section 3. Again, there are two basic approaches to computing
stcon on comb graphs. One is the brute force approach. For each connecting edge,
the JAG walks a pebble to the bottom of the tooth attached to it. This requires
m× l time steps and two pebbles. The other approach is to learn enough about
which connecting edges are attached to the same teeth, so that no tooth needs to be
traversed more than once. The second approach requires Ω(χmp) time steps. This is
proved by reducing the following partition game to the problem.

The partition game is parameterized by m, χ, and µ. The input consists of
a partition of the edges e1, . . . , em into χ nonempty groups. The player is able to
specify two edges and query whether they are in the same group in the partition. The
game is over when the player has determined a set C of µ or fewer edges that covers

1198 GREG BARNES AND JEFF A. EDMONDS

the χ groups of the input partition; i.e., for each group, there is an edge in the group
that is included in C.

Lemma 2. There are partitions for which the partition game requires at least
1
2 (χ− 1)(m− µ) queries.

An upper bound of χm is easy for completely determining the partition. Query
for each edge ei whether e1 and ei are in the same group. These m queries determine
all the edges that are in e1’s group in the partition. Delete these edges and repeat
the process with the next edge, and so on.

Proof. The proof is by Impagliazzo [25]. The proof uses an adversary. The
adversary maintains disjoint groups P1, . . . , Pχ−1 ⊆ {e1, . . . , em} and an undirected
graph H with m nodes, each node representing one of the connecting edges ei, 1 ≤ i ≤
m. (In the proof below, we refer to the connecting edges as nodes to avoid confusing
them with the edges of H.) The adversary adds a node to the group Pr when it fixes
the node to be in the rth group of the input partition, and it adds an edge {ei, ej}
to H when it reveals to the player that these nodes are in different groups. The
adversary maintains the properties that two adjacent nodes in H are not in the same
group and that the degree of every node in H that is not in one of the groups Pr is
at most χ− 2.

When the player asks a question {ei, ej} for the first time, the adversary does the
following. For each of ei and ej , if it is not in some group Pr and has degree χ − 2
in H, then it is added to one of the groups that contains none of its neighbors in
H. There are χ − 1 groups, so by the pigeonhole principle such a group exists. If ei
and ej are both added to groups, it does not matter if they go into the same group.
Now the adversary responds to the question. If ei and ej are in the same group, the
adversary reveals this information. Otherwise, the adversary answers that ei and ej
are in different groups and adds the edge {ei, ej} to H.

A node is not added to a group until χ− 1 questions are asked about it. A single
query involves two nodes, so 1

2 (χ − 1)m′ queries are required to place m′ nodes in
groups. Therefore, after 1

2 (χ − 1)(m − µ) − 1 queries, there are at least µ + 1 nodes
not contained in any group Pr.

Assume the player completes the game with 1
2 (χ−1)(m−µ)−1 or fewer queries.

At the end of the game, the player must specify a set C of µ nodes that covers each
of the χ groups of the input partition. By the pigeonhole principle, there must be
a node e∗ that is among the µ + 1 nodes not contained in any group Pr and is not
among the µ nodes in C specified by the player. The adversary then fixes the χth
group Pχ to be a singleton group containing only e∗. Each of the nodes that has not
yet been added to a group is added to one of the first χ−1 groups that contains none
of its neighbors in H (again, since these nodes have χ − 2 or fewer neighbors in H,
such a group must exist). This defines a partition P1, . . . , Pχ that is consistent with
all the answers given by the adversary. The player’s set of nodes C must cover the χ
groups, but it does not, since e∗, the only node in Pχ, is not in C.

Theorem 2. Any many states, stack JAG that solves stcon on graphs with n
vertices and m edges using p pebbles requires time Ω(mn

1
2 /p

1
2). We allow multiple

edges. Hence, there is no restriction on m at all.

As noted before, the space S used by a JAG is defined to be at least p log n, so
the time–space tradeoff S

1
2T = Ω(m(n log n)

1
2) follows.

Proof. We will show that to solve stcon on all comb graphs with n back nodes

and m connecting edges requires time at least Min(m2 × l, (χ−1)(m/2)
2(p−1)). If a JAG has

TIME–SPACE LOWER BOUNDS 1199

p pebbles, then setting χ to n
1
2 p

1
2 gives the required bound T = Ω(mn

1
2 /p

1
2), since

in a comb graph, l = n
χ .

The proof reduces the above partition game to the stcon problem on comb
graphs, where the parameter m in the game is the number of connecting edges in
the comb graph, the parameter χ is the number of teeth in the comb graph, and the
parameter µ is m

2 . Suppose by way of contradiction that there is a JAG, J , that solves
stcon on comb graphs with n back nodes and m connecting edges using p pebbles
and in less than the stated time. Given J , we show that a player in the partition
game can always beat the bound given in Lemma 2, a contradiction.

The game player beats the bound by simulating the execution of the JAG J on a
comb graph G and using this simulation to construct its set C for the game. The graph
G corresponds to the input partition in the game by partitioning the connecting edges
into χ nonempty groups according to which edges point to which of the χ teeth. Note
that the JAG cannot differentiate between the teeth. Hence, there is no particular
order on the parts of the partition.

Initially, the game player knows neither the input partition nor the graph G.
The player builds G “on the fly” in order to determine the information needed to
simulate J ’s computation. This is done by repeatedly querying the input partition
of the game and using the results of these queries to determine the structure of G
and hence determine the next steps J will take. As J ’s computation proceeds, the
player associates each pebble that is in a tooth with the connecting edge ei through
which it entered the tooth. If the pebble jumped into the tooth to pebble pi, then it
is associated with the connecting edge ei that the pebble pi was associated with when
the jump occurred. Whenever there is one pebble associated with the connecting edge
ei and another pebble associated with ej at the same time, J might learn whether ei
and ej are connected to the same tooth. When this first happens, the game player
queries {ei, ej} and learns whether they are in the same group. If they are, the player
implicitly connects the two connecting edges to the same tooth in the input graph,
and if not, it implicitly connects them to two different teeth.

At any time t in the computation, G could be any graph in the set Gt of comb
graphs that are consistent with the information revealed so far by the queries. The
game player is able to continue this simulation on the incompletely specified G because
J ’s computation is the same for every graph in Gt. This follows from the following two
observations. First, although the indegree of the nodes at the top of the teeth may be
different for different graphs in Gt, J has no access to the indegree of nodes. Second,
when two pebbles enter teeth via two different connecting edges ei and ej , the answers
to the queries ensure that they are either in the same tooth for every graph in Gt or
in different teeth for every graph. Thus two pebbles meet during the computation on
one of the graphs in Gt if and only if they meet during the computation on all such
graphs.

The goal of the player is to construct the set C that covers the χ groups of the
game’s partition. Whenever there is a pebble associated with the connecting edge ei
that traverses down to the bottom of the tooth connected to ei, the game player adds
ei to the set C. Intuitively, J must traverse all the teeth to be sure the input graph
is not s-t connected, so the constructed set C must cover all the groups in the input
partition to the game.

We now prove that given the JAG J , the player will never make more than
1
2 (χ − 1)(m2) − 1 queries during the computation and will add at most m

2 edges to
C and that these edges will cover all groups in the game’s input partition, which

1200 GREG BARNES AND JEFF A. EDMONDS

will lead to a contradiction. First, at each step of J ’s computation only one pebble is
allowed to move. This step causes the game player to make a query only if this pebble
moves into the tooth attached to some edge ei while there is another pebble already
in a tooth attached to some other edge ej . There are only p − 1 other pebbles, so a
step causes the game player to make at most p−1 queries. Since J uses no more than
(χ−1)(m2)

2(p−1) − 1 steps, no more than 1
2 (χ− 1)(m2)− 1 queries will be made.

Second, the game player will add at most m
2 connecting edges to the set C. The

number of JAG computation steps required to move a pebble into a tooth via a
connecting edge and then to the bottom of the tooth is at least l, the length of the
tooth. J ’s computation proceeds for fewer than (m2)l steps, so this is done for at most
m
2 connecting edges.

Finally, for every game input partition, the set C constructed by the player will
cover all of the groups in the partition. By way of contradiction, suppose that for some
partition there is a group Pr in the partition that is disjoint from C, and let the rth
tooth be the one whose edges correspond to the group Pr. During the computation
of J on G, a pebble can never traverse to the bottom of the rth tooth. If a pebble
did, it must have entered the tooth via some connecting edge, and that edge must be
in both C and Pr. It follows that a pebble is never on the bottom node u〈r,l〉 of this
tooth.

Let G′ be the same graph as G except that the node t is attached to the bottom
of the rth tooth. J ’s computation is identical on the graphs G and G′, because J
must have a pebble on node u〈r,l〉 in order to know whether there is an outgoing edge
from it to t (as noted in the proof of Theorem 1, pebbles located on node t do not
give J any information about incoming edges). Because the computation is the same
on G and G′, the JAG J must give an incorrect answer for one of the graphs. But
we assumed that J correctly solves stcon for all these graphs. Therefore, the set C
will cover all the groups in the game’s input partition. But this contradicts Lemma 2,
since then the game player always finishes the game with fewer than the required
number of queries.

5. Open problems. The obvious open problems presented by this work are to
improve the stcon lower bounds for the JAG and NNJAG. Subsequent to this work,
Achlioptas, Edmonds, and Poon [1] and Edmonds and Poon [14] have shown a lower

bound of time T = 2Ω(log2(n/S)) given space S ≤ n1−Ω(1) for the probabilistic NNJAG

(or T = 2Ω(log2(n/S)/ log log n) × (nS/ log n)
1
2 otherwise). Not only does this greatly

improve the current bounds, it shows that the upper bound of Barnes et al. [3] of

time 2O(log2(n/S)) × nO(1) is optimal NNJAG.

There are a few directions in which these results could be extended. First, the
small gap of log logn between Barnes et al.’s upper bound and Edmonds and Poon’s
lower bound at the lower end of the space spectrum could be eliminated. Second, the
lower or upper bounds for stcon could be improved at the higher end of the space
spectrum.

Finally, better lower bounds are needed for the undirected version of s-t connec-
tivity. There is a probabilistic upper bound of S ·T ∈ m1.5n.5 logO(1) n [5] that can be
run on a JAG. It is interesting how close our lower bounds are to this upper bound.
The current JAG lower bounds for ustcon are weak and only allow a small number
of pebbles [13]. Our hope is that the techniques used in this paper can be applied to
the undirected version of s-t connectivity. [12] discusses some ideas and difficulties in
doing this.

TIME–SPACE LOWER BOUNDS 1201

Ultimately, one would like to prove lower bounds for stcon on a general model of
computation. Any nontrivial bounds for general models would be a step in this direc-
tion. A more modest goal would be to add features to the JAG or NNJAG to make
it more general (as Poon added node names to the JAG to devise the NNJAG [18])
and to prove the same bounds on these more general models.

Acknowledgments. We would like to thank Faith Fich for her extensive support
and Paul Beame, Al Borodin, Russell Impagliazzo, and Hisao Tamaki for their helpful
comments and suggestions. We would also like to thank a referee for adding another
factor of logn to the first lower bound by having a different number of nodes χi on
each level.

REFERENCES

[1] D. Achlioptas, J. Edmonds, and C. K. Poon, Tight lower bounds for st-connectivity on
NNJAGs, SIAM J. Comput., to appear.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. W. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in 20th Annual Sym-
posium on Foundations of Computer Science, IEEE, San Juan, Puerto Rico, Oct. 1979,
pp. 218–223.

[3] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s-t connectivity, in Proc., Structure in Complexity Theory, Seventh
Annual Conference, IEEE, Boston, MA, June 1992, pp. 27–33; SIAM J. Comput., to
appear.

[4] G. Barnes and J. A. Edmonds, Time-space lower bounds for directed s-t connectivity on JAG
models, in Proc. 34th Annual Symposium on Foundations of Computer Science, IEEE, Palo
Alto, CA, Nov. 1993, pp. 228–237.

[5] G. Barnes and U. Feige, Short random walks on graphs, in Proc. 25th Annual ACM Sympo-
sium on Theory of Computing, San Diego, CA, May 1993, pp. 728–737.

[6] G. Barnes and W. L. Ruzzo, Deterministic algorithms for undirected s-t connectivity using
polynomial time and sublinear space, in Proc. 23rd Annual ACM Symposium on Theory
of Computing, New Orleans, LA, May 1991, pp. 43–53; Department of Computer Science
and Engineering, University of Washington Tech. report 91-06-02; Comput. Complexity 6
(1996–97), pp. 1–28.

[7] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space tradeoffs
for undirected graph traversal by graph automata, Inform. Comput., 130 (1996), pp. 101–
129.

[8] P. Berman and J. Simon, Lower bounds on graph threading by probabilistic machines, in Proc.
24th Annual Symposium on Foundations of Computer Science, IEEE, Tucson, AZ, Nov.
1983, pp. 304–311.

[9] A. Borodin, Structured vs. general models in computational complexity, L’Enseignement
Mathématique, 28 (1982).

[10] A. Borodin, W. L. Ruzzo, and M. Tompa, Lower bounds on the length of universal traversal
sequences, J. Comput. System Sci., 45 (1992), pp. 180–203.

[11] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

[12] J. A. Edmonds, Time-Space Lower Bounds for Undirected and Directed ST -Connectivity on
JAG Models, Ph.D. thesis, Department of Computer Science, University of Toronto, Aug.
1993.

[13] J. A. Edmonds, Time-space trade-offs for undirected st-connectivity on a JAG, in Proc. 25th
Annual ACM Symposium on Theory of Computing, San Diego, CA, May 1993, pp. 718–
727; SIAM J. Comput., to appear.

[14] J. Edmonds and C. K. Poon, A nearly optimal time-space lower bound for graph connec-
tivity problem on NNJAG model, in Proc. 27th Annual ACM Symposium on Theory of
Computing, 1995, pp. 147–156.

[15] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput.,
17 (1988), pp. 935–938.

[16] H. R. Lewis and C. H. Papadimitriou, Symmetric space-bounded computation, Theoret. Com-
put. Sci., 19 (1982), pp. 161–187.

1202 GREG BARNES AND JEFF A. EDMONDS

[17] N. Nisan, E. Szemerédi, and A. Wigderson, Undirected connectivity in O(log1.5 n) space,
in Proc. 33rd Annual Symposium on Foundations of Computer Science, IEEE, Pittsburgh,
PA, Oct. 1992, pp. 24–29.

[18] C. K. Poon, Space bounds for graph connectivity problems on node-named JAGs and node-
oriented JAGs, in Proc. 34th Annual Symposium on Foundations of Computer Science,
IEEE, Palo Alto, CA, Nov. 1993.

[19] C. K. Poon, A Sublinear Space, Polynomial Time Algorithm for Directed ST -Connectivity on
the JAG Model, Ph.D. thesis, University of Toronto, 1995.

[20] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,
J. Comput. System Sci., 4 (1970), pp. 177–192.

[21] W. J. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput.
System Sci., 7 (1973), pp. 389–403.

[22] R. Szelepcsényi, The method of forcing for nondeterministic automata, Acta Inform., 26
(1988), pp. 279–284.

[23] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial time, sub-
linear space implementations, SIAM J. Comput., 11 (1982), pp. 130–137.

[24] A. Wigderson, The complexity of graph connectivity, in Mathematical Foundations of Com-
puter Science 1992: Proceedings, 17th Symposium, I. M. Havel and V. Koubek, eds.,
Lecture Notes in Computer Science 629, Springer-Verlag, Prague, Czechoslovakia, Aug.
1992, pp. 112–132.

[25] R. Impagliazzo, personal communication, 1993.

A CHERNOFF BOUND FOR RANDOM WALKS ON EXPANDER
GRAPHS∗

DAVID GILLMAN†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1203–1220, August 1998 015

Abstract. We consider a finite random walk on a weighted graph G; we show that the fraction of
time spent in a set of vertices A converges to the stationary probability π(A) with error probability
exponentially small in the length of the random walk and the square of the size of the deviation
from π(A). The exponential bound is in terms of the expansion of G and improves previous results
of [D. Aldous, Probab. Engrg. Inform. Sci., 1 (1987), pp. 33–46], [L. Lovász and M. Simonovits,
Random Structures Algorithms, 4 (1993), pp. 359–412], [M. Ajtai, J. Komlós, and E. Szemerédi,
Deterministic simulation of logspace, in Proc. 19th ACM Symp. on Theory of Computing, 1987].

We show that taking the sample average from one trajectory gives a more efficient estimate of
π(A) than the standard method of generating independent sample points from several trajectories.
Using this more efficient sampling method, we improve the algorithms of Jerrum and Sinclair for
approximating the number of perfect matchings in a dense graph and for approximating the partition
function of a ferromagnetic Ising system, and we give an efficient algorithm to estimate the entropy
of a random walk on an unweighted graph.

Key words. random walk, graph, eigenvalue, expander, large deviations, approximate counting,
matching, Ising system, partition function, Markov source, entropy

AMS subject classifications. 60F10, 60J10, 62M05, 68Q25, 94A29

PII. S0097539794268765

1. Introduction. Let G be a connected undirected graph with positive weights
on the edges. We consider the random walk on G, which at each time step chooses
an edge leaving the current vertex with probability proportional to the weight on the
edge. The random walk converges to a limiting distribution π on the vertices of G.1

This model is equivalent to a finite reversible Markov chain.

Let A be a subset of vertices of G. We consider the amount of time tn the
random walk spends in A during the first n steps. It is well known that for almost
every trajectory of the random walk, the fraction of time spent in A, tn/n, converges
to the limiting probability of A, π(A) [Do, Theorem 6.1].

We quantify this rate of convergence. We are concerned with the probability
that for a given n-step trajectory of the random walk, tn/n will deviate by some
specified amount from π(A) (the deviation probability). Theorem 2.1 shows that this
probability decays exponentially in the square of the amount of deviation, as a multiple
of 1/

√
n. This bound is of a similar form to that given by Chernoff [Ch] for the case

of independent random variables (a very special case of random walk).

The exponent in the bound of Theorem 2.1 is proportional to the eigenvalue gap
of the transition matrix of the random walk, which is directly related to the expansion
of G [AM, Ta, Alo, SJ]. The bound also depends on the starting distribution of the
random walk, which may introduce a factor of |G|. In this case O(log |G|) random

∗Received by the editors June 1, 1994; accepted for publication (in revised form) June 17, 1996;
published electronically May 19, 1998. The research and writing of this paper were supported by
NSF grant 9212184-CCR and DARPA contract N00014-92-J-1799.

http://www.siam.org/journals/sicomp/27-4/26876.html
†Iterated Systems, Inc., 3525 Piedmont Road, Building 7, Suite 600, Atlanta, GA 30305 (dgill-

man@iterated.com).
1We are interested in convergence in the following weak sense: let P (k) be the distribution of the

random walk after k steps. Then 1
n

∑n

k=1
P (k) → π. This holds even when G is bipartite.

1203

1204 DAVID GILLMAN

walk steps suffice to get a good estimate of π(A). When the random walk starts close
to the stationary distribution the bound does not depend on |G|.

Theorem 2.1 is the first exponential bound on the deviation probability in terms
of a computable quantity (in this case the eigenvalue gap). This result implies bounds
on all higher moments of the fraction of time spent in A, and it quantifies the rate of
convergence to π(A) in each Lp norm, 1 ≤ p <∞ [Kah]. It also sharpens a theorem of
Ajtai, Komlós, and Szemerédi [AKS] (see also [CW] and [IZ]), which showed that the
probability of a deviation of constant size decays exponentially in n. Aldous [Ald87]
bounded the variance of the fraction of time spent in A in terms of the eigenvalue gap.
Lovász and Simonovits [LS] gave a similar result for arbitrary measure spaces. Those
results give quadratic bounds on the deviation probability via Chebyshev’s inequality.
Goldreich et al. [G∗] have given a bound on the probability of not hitting A in n steps
which decays exponentially in nπ(A).

Theorem 2.1 applies more generally to estimating the expectation of a nonnegative
function on the vertices of G. π(A) is the expectation of χA, the indicator function of
A, and Theorem 2.1 states that the fraction of time spent in A is a good estimate of
this expectation. We establish the analogous result for estimating the expectation Ef
of an arbitrary nonnegative function f on the vertices of G. In this case the bound
depends on maxx |f(x)| as well as on the eigenvalue gap.

Approximation algorithms. Estimating π(A) (or in some applications, Ef) is
a fundamental problem for approximation algorithms in which A and G are exponen-
tially large combinatorial sets such as sets of matchings of a graph [JS89]. The basic
strategy is to generate random sample points in G and compute the fraction that are
in A. The standard procedure is to use the rapid mixing property of the random walk
on G to generate a single nearly random sample point from π. The random walk
is repeated to generate the number of independent sample points Chernoff’s bound
requires [DFK, JS89, LS]. We compare this with the alternative procedure analyzed
by Aldous in [Ald87], which was the first to generate a nearly random point in G and
then to continue the random walk from that point, sampling every subsequent vertex.
This procedure is commonly used in statistical biology and physics, usually without
rigorous analysis of its reliability; for convenience we will refer to it as “Aldous’s
procedure” (AP).

We show in this paper that AP (sometimes in a modified form) requires fewer
random walk steps than the standard procedure to ensure the same confidence in the
resulting estimate of π(A). A little intuition here will show why one would expect
this to be the case. Let τ be the “relaxation time” of the random walk, which is the
number of steps required to generate a single random point. The standard procedure
picks up l sample points by taking τ l random walk steps. We may as well assume that
these sample points come from a single long random walk on the graph which visits the
vertices x1, x2, Then the sample points are xτ , x2τ , . . . , xlτ . Now consider using
AP on the same random walk. The estimate it gives is an average from the (highly
dependent) sample points xτ+1, xτ+2, . . . , xlτ . But this estimate is just an average
of τ different estimates, each using the standard procedure with l − 1 samples: for
each fixed i ≤ τ the ith estimate uses the sample points xτ+i, x2τ+i, . . . , x(l−1)τ+i.
It should not hurt each estimate much that it only samples l − 1 points instead of l,
whereas it should help that τ different (admittedly dependent) estimates are being
averaged.

Stating the results more quantitatively, we analyze these procedures within the
framework of (β, δ)-approximation algorithms; i.e., algorithms with input parameters

CHERNOFF BOUND FOR RANDOM WALKS 1205

β and δ that with probability 1 − δ output an approximation of π(A) with relative
error β [KL]. We assume throughout that we can efficiently find one point s ∈ G from
which to start a random walk.

The main consequence of Theorem 2.1 for (β, δ)-approximation algorithms is that
AP requires O(log(1/π(s)) + log(1/δ)/β2) random walk steps. The first term is the
relaxation time. The standard procedure (SP) requires O(log(1/π(s)) log(1/δ)/β2).
The constants in both cases depend on the eigenvalue gap and π(A).

Unfortunately, the dependence on π(A) favors the standard procedure when π(A)
is small (often in practice π(A) is O(1/n)). This is because the bound in Theorem
2.1 is not optimal for small π(A) in comparison with either the Chernoff bound for
independent random variables or the variance bound of Aldous for Markov chains.
For this reason the best procedure when π(A) is small is to use AP with δ replaced
by a constant, say 1/4, to repeat this estimate log(1/δ) times, and to take the median
of the answers. The technique of using the median of several estimates is well known
and was introduced by Jerrum, Valiant, and Vazirani in [JVV]. Our analysis of this
modified procedure depends on an extension of the variance bound of Aldous.

We present a modified version of an approximation algorithm, due to Jerrum and
Sinclair, for evaluating the partition function of a ferromagnetic Ising system. Our new
version of the algorithm improves the running time from O(|E|3m7) to O(|E|2m6),
where m is the number of vertices and E is the edge set of the system [JS91]. This
algorithm makes calls to a (β, δ)-approximation routine for Ef for different functions
f . Part of the improved running time of the algorithm comes from replacing the
standard sampling procedure by AP. The rest of the improvement comes from the
observation that the errors from the different calls to the (β, δ)-approximation routine
are independent and cancel one another out to some extent. Dyer and Frieze used
the same observation in their algorithm for computing the volume of a convex body
in Euclidean n-space [DF].

We are also able to improve an approximation algorithm, due to Jerrum and
Sinclair, for counting the number of perfect matchings in a graph. Suppose the graph
H = (V,E) has 2m vertices. Our new version of the algorithm improves the running
time from O(q3m6|E| log2m) to O(q2m5|E| logm), where q is an a priori upper bound
on the ratio of the number of matchings with m−1 edges to the number of perfect (m-
edge) matchings [JS89]. Polynomial bounds on q are known for large classes of graphs;
for example, q(m) = m2 for dense bipartite graphs and for regular periodic lattices
[JS89, KRS]. Part of the improved running time of our new version of the algorithm
comes from implementing AP. The algorithm makes calls to a (β,O(1))-approximation
routine for different sets A. In addition, the new algorithm introduces a strategy of
selecting only those sets A for which π(A) is not too small. The importance of this
is that the running time of the (β,O(1))-approximation routine depends inversely on
π(A).

Entropy estimation. In the special case where the edges of G are not weighted,
Theorem 2.1 shows that one can compute the entropy of the random walk accurately
from a very short realization of it. We view the random walk on G as an information
source whose alphabet is the vertex set of G. It is convenient to state the result in this
form, although it applies to any labelling of the vertices such that the Markov chain
is unifilar. (A unifilar Markov chain is one in which each state has nonzero transition
probability to at most one state of each label.) If G has constant eigenvalue gap and
bounded degree then a good entropy estimate requires only O(log |G|) steps of the
random walk.

1206 DAVID GILLMAN

This result quantifies the rate of convergence of the classical Shannon–McMillan
asymptotic equipartition property [Ash]. The classical result assumes an ergodic
information source with entropy H. It says, intuitively, that for large n, roughly 2Hn

of the n-bit strings each have probability roughly 2−Hn. For purposes of encoding
n-bit blocks of output from the source into blocks of some fixed shorter length greater
than Hn, we give a bound on the exponent of the error probability. This is the
first bound on the error exponent for fixed-length noiseless source coding in terms
of a computable property of the underlying Markov chain. Previous bounds on the
error exponent have been based on divergence and retain an asymptotic flavor. Large
deviation methods for the source coding problem were used in [Nat, An].

Methods. The proof of Theorem 2.1 begins with Theorem 2.2, due to Höglund,
which follows the method of Cramér [Cr] and Chernoff [Ch] of estimating the devia-
tion probability in terms of the moment generating function of the number of visits to
A [H, Theorem 5.5] (see also Nagaev [Nag, Theorem 6]). Höglund writes the moment
generating function as an expression involving the largest eigenvalue of a perturbation
of the transition matrix for the random walk. How hard it is to find a quantitative
bound for this expression can depend on the transition matrix. Generally, the eigen-
values of a matrix may vary wildly under small perturbations of the matrix [SS, p.
166]. Höglund was able to use his method to derive a bound similar to Chernoff’s for
the case of Bernoulli trials (in which the transition matrix has identical rows).

Theorem 2.1 demonstrates the applicability of Höglund’s approach to random
walks on weighted graphs, where the transition matrix is similar to a symmetric
matrix. We first bound the logarithm of the largest eigenvalue of a perturbation of
the transition matrix by estimating its second derivative with respect to a perturbation
parameter r. This bound uses Cauchy’s estimate and the observation that the largest
eigenvalue is an analytic function of r [Ahl, Kat]. The first bound leads to a bound
on the probability of deviation in terms of r, and Theorem 2.1 follows by optimizing
over r.

Overview. In section 2 we state and prove our main theorem. At the end of
the section we compare similar recent results due to Kahale [Kah] and Dinwoodie
[Di95a, Di95b]. In section 3 we give a general comparison of sampling procedures.
There we prove an extension of the variance bound of Aldous (Proposition 3.2). In
section 4 we describe an improved version of an approximation algorithm for the
partition function of an Ising system, and we summarize our improvements to an
algorithm for counting perfect matchings in a graph. Finally, in section 5 we discuss
the use of random walks to estimate entropy of an information source generated by a
random walk.

2. The main theorem. Let G = (V,E) be a connected undirected graph. Let
each edge {x, y} in the edge set E be assigned a positive weight wxy. We define the
weight wx of the vertex x by the formula wx =

∑
{x,y}∈E wxy.

A random walk on such a weighted graph is equivalent to a time-reversible finite
Markov chain. The states of the Markov chain are the vertices of the graph. The
Markov chain is defined by its transition matrix P = (pxy); pxy is the probability
(independent of time) of moving to state y after entering state x, given by

pxy =

{ wxy
wx

if {x, y} ∈ E,
0 if not.

By the classical theory of nonnegative matrices, the eigenvalues of P are 1 = λ1 >

CHERNOFF BOUND FOR RANDOM WALKS 1207

λ2 ≥ · · · ≥ λ|V | ≥ −1, and λ|V | = −1 if and only if G is bipartite [Se]. The strict
separation of λ1 and λ2 follows from the connectedness of G. Let π denote the unique
left eigenvector with eigenvalue 1. Properly normalized, π(x) = wx/

∑
y∈V wy for all

x ∈ V , and π is a probability distribution. We refer to π as the stationary distribution.
For all probability distributions d on V , limn→∞ 1

n

∑n−1
k=0 P

kd = π. (When G is not
bipartite, we have the stronger property that Pnd → π for all d.) Let ε := 1 − λ2

denote the eigenvalue gap of P . The eigenvalue gap is directly related to the expansion
of G [AM, Ta, Alo, SJ]. In particular, if G is an expander ε will be large.

Let x0, x1, . . . be the sequence of vertices visited by the random walk on G, where
x0 is chosen according to some distribution q on the vertices. Let A ⊆ V . Let χA
denote the indicator function χA(x) = 1 if x ∈ A, and 0 otherwise. Let tn :=
χA(x1) + · · ·+ χA(xn), the number of visits to A in n random walk steps.

We introduce some special notation. Let q√
π

denote the vector with entries
q√
π

(x) = q(x)√
π(x)

, and let Nq = ‖ q√
π
‖2. Let 1 = (11 · · · 1) be the vector of all 1’s.

Logarithms are in base e unless otherwise subscripted.
We now state our main result, a large deviation bound for a random walk on a

weighted graph, in terms of the eigenvalue gap.
Theorem 2.1. Consider the random walk on a weighted graph G = (V,E) with

initial distribution q. Let A ⊆ V . Let tn be the number of visits to A in n steps. For
any γ ≥ 0,

Pr[tn − nπ(A) ≥ γ] ≤ (1 + γε/10n)Nqe
−γ2ε/20n.(2.1)

Remarks. (i) We may write EπχA for π(A) in Theorem 2.1. As we will see, the
proof of this theorem uses only that χA is a nonnegative function on the vertices of
G such that ‖χA‖∞ ≤ 1. For an arbitrary nonnegative function f on the vertices of
G, we may substitute f for χA in the definition of tn. Equation (2.1) becomes

Pr[tn − nEπf ≥ γ] ≤ (1 + γε/10n)Nqe
−(γ/‖f‖∞)2ε/20n.(2.2)

(ii) Applying the theorem to G \A gives the same bound on Pr[tn−nπ(A) ≤ −γ].
Before proving Theorem 2.1, we lay the groundwork for our proof with Theorem

2.2, a simplified version of a result of Höglund [H, Theorem 5.5]. This result follows
the strategy of Cramér [Cr] and Chernoff [Ch], which is to estimate the deviation
probability in terms of the moment generating function m(r) = Eertn , evaluated at
some r > 0. We will see that this strategy reduces the problem of estimating the left-
hand side of (2.1) to a problem of analyzing a perturbation of the transition matrix
P .

Let P (r) = PEr, where Er = diag(erχA) and r is any complex number (we will
often restrict r to the nonnegative real line). P (r) is equal to P except that for j ∈ A
the jth column vector of P is multiplied by er.

P and P (r) are similar to symmetric matrices. Let M be the (symmetric)
weighted adjacency matrix of G: the ijth entry of M is wij if {i, j} ∈ E and 0
otherwise. Let D = diag(1/wi). Then

P =
√
DS
√
D−1, and

P (r) =
√
DE−1

r S(r)
√
ErD−1 ,(2.3)

where S :=
√
DM
√
D and S(r) :=

√
DErM

√
DEr are symmetric. By (2.3) the

eigenvalues of P (r) are real for r ≥ 0, and they are equal to the eigenvalues of S(r);

1208 DAVID GILLMAN

in this case let λ(r) and λ2(r) denote the largest and second largest eigenvalues of
P (r), respectively. Note that P (0) = P , λ(0) = 1 (with left eigenvector πT and right
eigenvector 1), and λ2(0) = λ2. For r ≥ 0, let the eigenvalue gap of P (r) be denoted
by εr = λ(r) − λ2(r).

Theorem 2.2. Consider the random walk on a weighted graph G = (V,E) with
initial distribution q. Let A ⊆ V . Let tn be the number of visits to A in n steps. For
any γ ≥ 0 and r ≥ 0,

Pr[tn − nπ(A) ≥ γ] ≤ e−r(nπ(A)+γ) +n log λ(r) (qP (r)n 1)/λ(r)n .(2.4)

Proof. By Markov’s inequality,

Pr[tn ≥ nπ(A) + γ] = Pr[ertn ≥ er(nπ(A)+γ)]

≤ e−r(nπ(A)+γ)Eqe
rtn ,(2.5)

where Eq denotes the expectation given that x0 is chosen according to q. This ex-
pectation can be evaluated by summing over all possible trajectories x0, x1, . . . , xn
(where tn is understood to be a function of the trajectory):

Eqe
rtn =

∑
x0,...,xn

ertnq(x0)

n∏
i=1

pxi−1xi = qP (r)n 1 .(2.6)

Combining (2.6) with inequality (2.5) we obtain

Pr[tn ≥ nπ(A) + γ] = e−r(nπ(A)+γ) +n log λ(r) (qP (r)n 1)/λ(r)n.(2.7)

Here are the reasons that this theorem is useful.
1. For matrices P (r) satisfying (2.3), the fraction (qP (r)n 1)/λ(r)n on the right-

hand side of (2.4) is close to 1. In fact, this fraction turns out to measure how close
the starting distribution q is to the stationary distribution π. We have the following
lemma.

Lemma 2.3. For 0 ≤ r ≤ 1, (qP (r)n 1)/λ(r)n ≤ (1 + r)Nq .
2. The exponent −r(nπ(A) + γ) + n log λ(r) in the right-hand side of (2.4) is

negative for small r because, as we show below, d log λ
dr |r=0 = π(A), and because

log λ(0) = 0. Our goal then is to bound this exponent away from zero for some r in
order that a meaningful bound on Pr[tn − nπ(A) ≥ γ] will follow from Theorem 2.2.
This is accomplished by Lemma 2.4.

Lemma 2.4. If r is a real number such that 0 ≤ er − 1 ≤ ε/4, then

log λ(r) ≤ rπ(A) + 5r2/ε .

Proof of Theorem 2.1. We combine (2.4), Lemma 2.3, and Lemma 2.4 to get

Pr[tn − nπ(A) ≥ γ] ≤ (1 + r)Nq e
−n(rγ/n−5r2/ε) .(2.8)

The expression rγ/n−5r2/ε is quadratic in r and is maximized when r = γε/10n ,
which satisfies the condition of Lemma 2.4 that er − 1 ≤ ε/4 (we can assume γ < n,
because otherwise Theorem 2.1 is trivially true). The maximum value is γ2ε/20n2.
Substituting into (2.8),

Pr[tn − nπ(A) ≥ γ] ≤ (1 + γε/10n)Nq e
−γ2ε/20n.

CHERNOFF BOUND FOR RANDOM WALKS 1209

This completes the proof.
Proof of Lemma 2.3. Since the matrix S(r) of (2.3) is symmetric, ‖S(r)‖2 = λ(r).

We have

(qP (r)n 1)/λ(r)n = (q
√
DE−1

r S(r)
n√

ErD−1 1)/λ(r)n

≤ er/2 (‖ q√
π
‖2 ‖S(r)

n‖2 ‖
√
π‖2)/λ(r)n

≤ er/2Nq

≤ (1 + r)Nq .

In the remainder of this section we prove Lemma 2.4. For each r ≥ 0 we define
the matrix B(r) = 1

e−1 (S(r+1)−S(r)). B(r) ≤ S(r) in each entry. Also, (B(r))i,j =
(S(r))i,j whenever i ∈ A and j ∈ A, and (B(r))i,j = 0 whenever i /∈ A and j /∈ A.
Fix r, 0 ≤ er − 1 ≤ ε/4. We may expand the function log λ(y) in a Taylor series of
the following form about the point y = r (see [W]):

log λ(y) = log λ(r) +mr(y − r) + (y − r)2

∫ 1

0

(1− t)Vr+(y−r)tdt ,(2.9)

where mz and Vz are the first and second derivatives, respectively, of log λ(y) at the
point y = z. m0 is equal to

√
πB(0)

√
π = π(A), the limit of the mean of tn/n

as n → ∞. This follows from letting 1(r) be the right eigenvector of P (r) with
eigenvalue λ(r) and equating coefficients in the power series expansions of both sides
of P (r)1(r) = λ(r)1(r) [W, p. 69]. V0 is the limit of the variance of tn/n as n → ∞
[Nag, equation (2.5)].

The lemma follows from (2.9) and the second part of the following.
Claim 1. If 0 ≤ er − 1 ≤ ε/4, then
(i) εr ≥ 3ε/4,
(ii) Vr ≤ 10/ε.
Proof. For part (i), it is enough to show that εr ≥ ε − (er − 1). Note that for

r ≥ 0, the matrices P (r) and S(r) have the same eigenvalues, S(r) is nonnegative,
and S(r) ≥ S in each entry. By the Perron–Frobenius theorem, λ(r) ≥ 1 [Se]. Let
µ < λ(r) be any other eigenvalue of S(r). It will suffice to show that µ ≤ λ2 + er − 1.

The matrix S is diagonalizable; there exist a unitary matrix U and diagonal
matrices D′ and DA such that

B(0) = 1/2(SDA + DAS) ,

D′ = UTSU, and

‖D′‖2 = ‖DA‖2 = 1 .

If µ ≤ λ2 we are done. If not, the matrix product UT (S + (er − 1)B(0) − µI)U ,
which is equal to (D′−µI)[I + (D′−µI)−11/2(er − 1)(D′UTDAU +UTDAUD

′)] , is
singular. Therefore,

1 ≤ 1/2‖(D′ − µI)−1(er − 1)D′UTDAU‖2
+ 1/2‖(D′ − µI)−1(er − 1)UTDAUD

′‖2
≤ (er − 1)/(µ− λ2) .

(The first inequality uses the continuity of the function λ2(·).) This proves part (i).
Our strategy for part (ii) is to use Cauchy’s estimate from complex analysis to

bound Vr in terms of the maximum value attained by λ(z) in a complex neighborhood

1210 DAVID GILLMAN

of r [Ahl]. We bound this maximum value indirectly: the convergence of a certain
loop integral will imply that λ(z) lies inside the loop.

For z in a small complex neighborhood of r we may write S(z) = S(r) + (ez−r −
1)B(r). A fundamental theorem of perturbation theory says that the matrix for
the projection onto the eigenspace for λ(z) is given by the operator-valued complex
integral

− 1
2πi

∫
Γ

(S(z)− ζI)−1 dζ ,

where Γ is any circle with λ(r), and no other eigenvalues of S(r), in its interior [Kat,
section II.1.4]. The important fact for us is that if λ(z) ∈ Γ then the integrand will
have a singularity at λ(z). To avoid this we choose Γ to have center λ(r) and radius
εr/2. The norm of the integrand is finite on Γ as long as the following holds [Kat,
section II.3.1]:

|ez−r − 1| < ‖B(r)(S(r)− (λ(r)− εr/2)I)−1‖−1
2

≤ 2/εr .(2.10)

For the range of r we are interested in, in order for (2.10) to hold it is enough that

|z − r| < 3εr/8 .(2.11)

Whenever (2.11) holds λ(z) does not lie on Γ. But by continuity of λ(z), (2.11)
must imply that λ(z) lies inside Γ, and therefore |λ(z) − λ(r)| ≤ εr

2 . Comparing

Taylor series for λ(z) and log λ(z), we see that Vr ≤ 2 d2λ
dz2 |z=r. Cauchy’s estimate

says that d2λ
dz2 |z=r is at most (max{λ(z) : |z − r| < ρ})/ρ2. If we let ρ = 3εr

8 then

Vr ≤ 2 εr2 /(
3εr
8)2 = 64/9εr. By part (i), Vr ≤ 10/ε, and this completes the proof of

Claim 1.
Recent work of Dinwoodie [Di95a, Di95b] has improved the exponent in the bound

of Theorem 2.1 by a factor of 20/π(A) for γ/n less than a small constant and has
extended it to nonreversible Markov chains for γ/n dependent on the eigenvalue gap.
This resolves an open question in the earlier version of this paper [G93b]. These
results use perturbation theory and power series expansions of the perturbed matrix
P (r), eigenvalue λ(r), and eigenvector 1(r). These results also extend to estimates of
Ef for real-valued functions f on V . In [Kah], Kahale has also improved the exponent
in the bound of Theorem 2.1. The exponent in the bound in [Kah] is given as the
largest zero of a polynomial in λ2, γ/n, and π(A) and is shown to be optimal on two-
state Markov chains for each triple of values of λ2, γ/n, and π(A). This result uses
perturbation theory and a proof that a certain two-state Markov chain is extremal
for the deviation probability being estimated.

3. (β, δ)-approximation algorithms for π(A). In this section we compare
different (β, δ)-approximation algorithms for π(A) that use random walks to generate
sample points from G. Formally, the output t of a (β, δ)-approximation algorithm for
π(A) must satisfy, with probability at least 1−δ, π(A)(1−β) ≤ t ≤ π(A)(1+β). The
cost of an algorithm will be the total number of random walk steps taken (see the
discussion of measures of cost at the end of the section). We assume we can efficiently
find one point s in G from which to start a random walk.

Below we define SP, AP, and a modified Aldous’s procedure (APm). We analyze
the efficiency of AP in Proposition 3.1. APm uses a technique for increasing the

CHERNOFF BOUND FOR RANDOM WALKS 1211

confidence of estimates introduced by Jerrum, Valiant, and Vazirani in [JVV, Lemma
6.1]. This technique, the so-called “median trick,” improves an arbitrary (β, 1/4)-
approximation algorithm to a (β, δ)-approximation algorithm by taking 12 log(1/δ)
independent estimates and using the median of the estimates. We use Proposition 3.2
and Lemma 6.1 of [JVV] to analyze APm.
Standard procedure (SP). Start the random walk at s and simulate it for k′ steps,

so that the final state is distributed according to q’. Take the final state as a
sample point. Repeat this l′ times by choosing the same starting point s and
taking a walk of length k′ each time. Let tl′ be the number of sample points
in A, and let t = tl′/l

′.
Aldous’s procedure (AP). Choose positive integers k and l. Start the random

walk at s and simulate it for k steps (the “delay”), so that the final state x0

is distributed according to q. Starting from x0, continue the random walk
l more steps taking each subsequent point as a sample point. Let tl be the
number of sample points in A, and let t = tl/l.

Aldous’s procedure, modified (APm). Choose k and l and follow AP to get an
estimate of π(A). Repeat 12 log(1/δ) times and let t be the median of the
estimates.

For a distribution d on the vertices of G, let the chi-square distance from π be

defined by χ2
d =

∑
x π(x)(d(x)

π(x) − 1)2. Let χ2
s denote the chi-square distance from π of

the initial distribution concentrated at s.
Proposition 3.1. The cost of estimating π(A) to within βπ(A) with probability

1− δ using AP is at most

log(1/π(s)) / ε + 20 log(8/δ) / (εβ2π(A)2) .

Proof. Let k = log(1/π(s)) / ε and l = 20 log(8/δ) / (εβ2π(A)2). In the notation
of Theorem 2.1, Nq = 1 + χ2

q. According to a result of Fill [Fi, equation (2.11)],

χ2
q ≤ χ2

s(1− ε)k. Therefore, Nq ≤ 1 + χ2
s(1− ε)k ≤ e−εk/π(s) ≤ 2.2 By Theorem

2.1 and the ensuing remark (ii),

Pr[|tl/l − π(A)| ≥ βπ(A)] ≤ 4Nqe
−β2π(A)2εl/20 ≤ δ.

Let πmin = minx π(x). Proposition 4.2 of Aldous [Ald87] and Lemma 6.1 of Jer-
rum, Valiant, and Vazirani [JVV] show that the cost of AP, modified, isO[(log(1/δ) / ε)
(log(1/πmin) + 1 / (β2π(A)))]. The following proposition and its corollary serve to re-
place πmin by π(s). This will be useful in the applications of the next section.

Proposition 3.2. Let β > 0 and α ≤ β2. Let AP be used with parameters
k = log(20/(π(s)απ(A)2))/ε and l = 10/(εβ2π(A)) to generate an estimate t. Then

|E[t− π(A)]| ≤ απ(A)2/20

and

E(t− π(A))2 ≤ β2π(A)2/4 .

2Fill’s result actually depends on the larger of λ2 and |λ|V ||, but it is possible to modify any
random walk so that in fact λ2 is the larger of the two. One converts it to a so-called “lazy” random
walk which with probability 1/2 stays put at each step [LS]. The values of k and l increase by at
most a factor of 2. The same remark applies to the application of [JS91, Theorem 6.1] below.

1212 DAVID GILLMAN

Table 3.1
Costs of procedures for estimating π(A).

Algorithm Cost

SP 1
ε

log 1
δ

log 1
π(s)

1
β2π(A)

AP 1
ε

(log 1
π(s)

+ log 1
δ

1
β2π(A)2

)

APm 1
ε

log 1
δ

(log 1
π(s)

+ 1
β2π(A)

)

Proof. Let ‖q− π‖ denote the total variation distance between q and π. Citing,
for example, [JS91, Theorem 6], we have that ‖q − π‖ < 1

20απ(A)2. Let x1, . . . , xl
be the random vertices of G sampled. Each xi is distributed according to some qi,
which also satisfies ‖qi − π‖ < 1

20απ(A)2. By linearity of expectations,

|E[tl/l − π(A)]| ≤ 1
l

l∑
i=1

|qi(A)− π(A)| ≤ 1
20απ(A)2.

Now define a vector b by letting bj = E[(tl/l − π(A))2 |x0 = j]. Observe that
‖b‖∞ ≤ 1; therefore, by Proposition 4.1 of [Ald87], Eπb ≤ 2π(A)/(εl). We have

E(t− π(A))2 ≤ Eqb

≤ [Eπb + |Eqb − Eπb|]
≤ [2π(A)/(εl) + απ(A)2/20]

≤ β2π(A)2/4 .

Corollary 3.3. The cost of estimating π(A) to within βπ(A) with probability
1− δ using APm is at most

12 log(1/δ)[log(20/(π(s)απ(A)2))/ε + 10/(εβ2π(A))] .

Proof. Set k and l as in Proposition 3.2 with α = β2. By Chebyshev’s inequality,

Pr[|t− π(A)| ≥ βπ(A)] ≤ (E(t− π(A))2)/(β2π(A)2)

≤ 1/4.

The corollary follows from Lemma 6.1 of [JVV].
The standard procedure can be used to estimate π(A) to within βπ(A) with prob-

ability 1 − δ by choosing k′ = O((log(1/πmin)) / ε) and l′ = O(log(1/δ) / (β2π(A))).
This value of k′ comes from the analysis of Sinclair and Jerrum in [SJ], and the value
of l′ comes from Chernoff’s bound. The method used in Lemma 3 of [JS91] is easily
seen to be generally applicable; this improves the πmin to π(s) in the expression for
k′.

The costs of the three procedures disregarding constants are shown in Table 3.1.
APm improves SP by a factor of min(log(1/π(s)), 1/(β2π(A))). AP is within a factor
of O(1/π(A)) of APm. APm incurs extra cost by repeating the initial stage of finding
a nearly random starting point; therefore, AP becomes better for small δ when β and
A are such that 1/(β2π(A)2) < log(1/π(s)).

CHERNOFF BOUND FOR RANDOM WALKS 1213

Remarks. (i) The recent work of Dinwoodie [Di95b] has improved the exponent
in the bound of Theorem 2.1 by a factor of 20/π(A) for γ/n less than some small
constant. This makes the cost of AP proportional to 1/π(A) and not 1/π(A)2, for β
less than some small constant.

(ii) The results of this section all have analogues for estimating the expectation
Ef of a nonnegative function f on the vertices of G. Corresponding to Proposition
3.2 is the following, which we state without proof.

Proposition 3.4. Let β > 0 and α ≤ β2. Let k = log(20/(απ(s)(Ef)2))/ε and
l = 10Var(f)/(εβ2(Ef)2) . Take a random walk on G starting in s, and let xi, i ≥ 1,
stand for the (i + k)th vertex of the random walk. Let t = 1

l (f(x1) + · · · + f(xl)).
Then

|E[t− Ef]| ≤ α(Ef)2/20

and

E(t− Ef)2 ≤ β2(Ef)2/4 .

The running time for AP is proportional to ‖f‖∞/(Ef)2 instead of 1/π(A)2, and
the running time of SP has the same dependence as APm on Var(f) and (Ef)2 [JS91,
Lemma 3].

(iii) Measures of cost. It can be argued that SP has the advantage of taking only
a small fraction (around ε) of the number of sample points of either AP or APm. We
have not considered the number of sample points in our measure of cost because in the
cases we know of the cost of sampling a point is dominated by the cost of taking one
step of the random walk. For example, in the case of the random walk on matchings
treated below, to determine the transition probability from one matching to another
it is necessary to know whether the number of edges is going up or down by one, or
staying the same. Therefore, it adds only a constant cost to keep track of the size of
the current matching (see [JS89]). The same sort of justification holds for the case of
the Ising model considered below. Computing the value of f at a vertex is no more
difficult than computing the next transition probability (see [JS91]). Situations may
yet arise of having to estimate Ef for complicated f , where the number of sample
points will be an important part of the cost of an algorithm.

(iv) Nondelayed samples. Suppose instead of generating a random initial point we
had begun sampling immediately from s. The question is raised in [Ald87, Example
4.2] whether such nondelayed samples give good estimates in polynomial time. Setting
k = 0 in Proposition 3.1 yields l = 20(log(1/π(s)) + log(1/δ))/(εβ2π(A)2). An upper
bound on log(1/π(s)) is log |G|+log maxx,y(π(x)/π(y)), which is typically polynomial
in the data. This shows that nondelayed samples give good estimates in polynomial
time, as long as π(A) is not too small. It is not hard to see that the most efficient
estimate, using our analysis, comes from letting k be equal to the relaxation time as
in the proof of Proposition 3.1.

4. Applications: Two approximation algorithms.

The subgraphs random walk for the Ising model. In this section we give
a modified version of an algorithm, due to Jerrum and Sinclair, for computing the
partition function Z of a ferromagnetic Ising system I on m points (definitions below).
Our new version of the algorithm improves the running time from O(|E|3m7) to
O(|E|2m6), where m is the number of vertices and E is the edge set of the system
[JS91].

1214 DAVID GILLMAN

Our algorithm is a fully polynomial randomized approximation scheme (fpras) as
described in [KL] and in subsequent work on approximation algorithms. That is, on
input I and a real number a > 0 it runs in time polynomial in m and 1/a and outputs
a number that with probability at least 3/4 approximates Z with relative error of a.
The algorithm of Jerrum and Sinclair was the first fpras for this problem.

Consider a graph I = ([m], E), [m] = {1, 2, . . . ,m}, with a positive interaction
energy Vij associated to each edge {i, j} ∈ E. A configuration σ = {σi}mi=1 is an
assignment of positive (σi = +1) or negative (σi = −1) spin to each site i ∈ [m]. The
energy of a configuration is given by the Hamiltonian

H(σ) = −
∑
{i,j}∈E

Vijσiσj −B
∑
k∈[m]

σk,

where B is an external field.
This is a ferromagnetic Ising system; the positivity constraint on the Vij models

the behavior of a ferromagnet. A central problem for Bayesian inference in statistical
physics is to compute a probability normalizing constant called the partition function:

Z = Z(Vij , B, βT) :=
∑

σ∈{−1,+1}m
e−βTH(σ) ,

where βT is related to the temperature. For further motivation we refer to [JS91] and
the references therein.

Physicists have long used random walks on the set of spin configurations to es-
timate Z, but these random walks are not rapidly mixing for certain values of βT .
However, the partition function has an alternate characterization. Consider the set of
all subsets X of the edge set E. Each subset X can be identified with a subgraph of I
(which may contain isolated vertices). Let odd(X) stand for the set of all odd-degree
vertices in the subgraph identified with X. Let λij = tanhβTVij and µ = tanhβTB.
The weight of X is defined by

w(X) = µ|odd(X)| ∏
{i,j}∈X

λij .(4.1)

The “subgraphs-world” partition function is

Z ′ =
∑
X⊆E

w(X).(4.2)

The two partition functions are related by the formula

Z = AZ ′ ,(4.3)

where A = (2 coshβTB)m
∏
{ij}∈E coshβTVij (see [NM]).

Although the subgraphs have no physical meaning, it is natural in light of (4.3)
to compute Z indirectly by computing Z ′. We define a random walk on the set G of
all subsets X ⊆ E. Fix µ = µ(βT). For each X the transition probabilities out of
X are given by the following rules [JS91, p. 16]: pick an edge e ∈ E uniformly at
random, and then

1. set Y = X⊕e (the symmetric difference of X and e);
2. if w(Y) ≥ w(X) then move to Y with probability 1;

CHERNOFF BOUND FOR RANDOM WALKS 1215

(1) A := (2 coshβTB)m
∏
{ij}∈E coshβTVij ; and Z ′(1) :=

∏
{i,j}∈E(1 + λij); Π :=

A× Z ′(1);
(2) r := the natural number satisfying m−r

m > tanhβTB ≥ m−r−1
m ;

(3) µ0 := 1; for j = 0, 1, . . . , r, do begin
(4) if j ≤ r, then µj+1 := m−j

m ; else µj+1 := tanhβTB;
(5) Make a call to AP with parameters k and l and t as in Proposition 3.4:

let α = a2/2m2 and β = a/
√

2m, and assume a lower bound of 1/10
on Ef . Use the random walk on G with parameter µj , and obtain an
estimate t for Eµjf ;

(6) Π := Π× t;
end;

(7) halt with output Π;

Fig. 4.1. Algorithm for computing the partition function.

3. if w(Y) < w(X) then move to Y with probability w(Y)/w(X), and stay at
X otherwise.

It is easy to see that G is connected by the transitions that have positive proba-
bility. It is not hard to check that the unique stationary distribution π = πµ is given
by π(X) = w(X)/Z ′ (the transition probabilities were chosen with this goal in mind,
according to the well-known Metropolis rule).

We adhere to the strategy of Jerrum and Sinclair for computing Z ′ = Z ′(µ).
This is to notice that Z ′(1) =

∏
{i,j}∈E(1 + λij), which is easy to compute. Then

for a general µ ∈ [0, 1], one bootstraps from Z ′(1) down to Z ′(µ) by computing
successive ratios Z ′(µ′)/Z ′(µ) as follows. Let Eµf be the expectation under πµ. For
0 ≤ µ1 < µ0 ≤ 1 define the function f(X) = (µ1/µ0)|odd(X)| . The expectation of f
satisfies Eµ0f = Z ′(µ1)/Z ′(µ0) [JS91, p. 11]. Furthemore, Lemma 4 of [JS91] says
that if µ0 ≤ µ1 + 1/m, then Eµ0f ≥ 1/10.

Our (a, 1/4) approximation scheme for computing the partition function is shown
in Fig. 4.1. We let step (5) assume a lower bound of ε ≥ (2m4|E|2)−1, as given by
Sinclair in [Si]. This algorithm differs from the algorithm of Jerrum and Sinclair [JS89,
p. 12] in two ways. First, we use AP rather than SP in step (5). Second, we choose
β = θ(a/

√
m) instead of β = θ(a/m) in step (5) and we observe that the accumulated

errors in Π tend to cancel one another out. This observation has been used before by
Dyer and Frieze. We formalize it in the following lemma, which essentially appears
in [DF, page 10].

Lemma 4.1. Let z1, . . . , zm be independent nonnegative random variables with
Ezi ≤ η/2m2 for some η ≤ 1, and Ez2

i ≤ ν/m for some ν ≤ 1. Let Y =
∏m
i=1(1 + zi).

Then E(Y − 1)2 ≤ η/m+ ν + (η/m+ ν)2.
Proof. Since Y ≥ 1, E(Y − 1)2 = E[Y 2 − 2Y + 1] ≤ EY 2 − 1. Therefore,

E(Y − 1)2 ≤ E[
∏
i(1 + zi)

2] − 1

=
∏
i(1 + 2Ezi + Ez2

i) − 1

≤ (1 + η/m2 + ν/m)m − 1

≤ eη/m+ν − 1

≤ η/m+ ν + (η/m+ ν)2.

Theorem 4.2. Let a ∈ (0, 1). The output Π of our algorithm satisfies Π(1−a) <
Z < Π(1+a) with probability at least 3/4. The running time is at most 500m6|E|2/a2

random walk steps.

1216 DAVID GILLMAN

Remark. Theorem 2, Lemmas 3 and 4, and the remark at the end of section 4
of [JS91] give a bound of O(m7|E|3/a2) random walk steps to estimate Z with the
algorithm of Jerrum and Sinclair.

Proof. Let tj be the estimate of Eµjf from the jth iteration of the do loop. Let
zj = tj/Ef − 1. Let Y =

∏
j(1 + zj) = Π/Z. By Proposition 3.4,

|Eµjzj | ≤ a2/40m2

and

Eµjz
2
j ≤ a2/8m.

Assuming in the worst case that r = m, the zj satisfy the assumptions of Lemma 4.1
with η = a2/20 and ν = a2/8. By Chebyshev’s inequality, Pr[|(Π/Z) − 1| ≥ a] ≤
E(Y − 1)2/a2; so by the lemma,

Pr[|(Π/Z)− 1| ≥ a] ≤ [a2/20 + a2/8 + (a2/20 + a2/8)2]/a2 ≤ 1/4 .

Perfect matchings. In this subsection we summarize the improvements we have
made to an approximation algorithm, due to Jerrum and Sinclair, for counting the
number of perfect matchings in a graph H = (V,E) on 2m vertices. A matching is a
subset of E such that no two edges share a common endpoint. A perfect matching is
a matching that contains m edges. Let Mj denote the set of matchings of size j in H.

In [Br] Broder gave the first fpras for counting perfect matchings in dense graphs.
A full proof of the correctness of this algorithm awaited Jerrum and Sinclair, who also
gave a faster algorithm in [JS89].

An upper bound q(m) > |Mm−1|/max(1, |Mm|) is assumed to be known for some
fixed polynomial q. Thus H is said to be q-amenable. Jerrum and Sinclair have shown
that all dense graphs are m2-amenable and almost every random bipartite graph is
m10-amenable in the B(n, p) model for any density p above the threshold for the
existence of a perfect matching [JS89]. Kenyon, Randall, and Sinclair have shown
that all bipartite Cayley graphs and all regular periodic lattices of any dimension are
O(m2)-amenable [KRS]. In general, q(m) ≥ m.

Jerrum and Sinclair define a random walk on a weighted graph G whose vertex
set is all matchings of H:

⋃
1≤j≤mMj . The transition probabilities depend upon a

certain real parameter c which varies at different stages in the algorithm. In each stage
the transition probabilities are chosen according to the Metropolis rule to ensure that
the stationary probabilities π(Mj) are proportional to cj |Mj | for all j. See [JS89] for
more details.

Our modified version of the algorithm of [JS89] also uses a random walk on G,
and like the original algorithm, our version proceeds in m − 1 stages, each using a
different value c(j) for c. Stage j ≥ 1 calculates the ratio |Mj+1|/|Mj |. The algorithm
multiplies the ratios together to obtain an estimate of |Mm| (|M1| is simply the number
of edges of H). Since each of these ratios satisfies |Mj+1|/|Mj | = cπ(Mj+1)/π(Mj),
the essential step of the algorithm is to estimate π(Mj+1) and π(Mj).

Our version modifies the algorithm of Jerrum and Sinclair [JS89, Figure 2] in two
ways. First, we use APm in our random walk calls to estimate the π(Mj)’s, instead
of SP. Second, we introduce a new strategy for choosing the values of c which allows
the algorithm to assume that both π(Mj+1) and π(Mj) are Ω(1/m).

The idea behind the new strategy is as follows. By Theorem 5.1 of [JS89], the se-
quence |M1|, |M2|, . . . , |Mm| is log-concave. This means that log |E|−1 = log(|M0|/|M1|)

CHERNOFF BOUND FOR RANDOM WALKS 1217

≤ log(|M1|/|M2|) ≤ · · · ≤ log(|Mm−1|/|Mm|) ≤ log q(m). Put cj = |Mj−1|/|Mj | for
each j, and cm+1 = q(m). Whenever c ∈ [cj , cj+1], π(Mj) ≥ π(Mi) for all i. In
particular, when c = cj+1, π(Mj) and π(Mj+1) are each at least 1/m. Since all of
our sampling procedures are more efficient when sampling large sets, we would like
to choose c = cj+1 at stage j of the algorithm. What our algorithm does is to in-
crease c by a constant factor at each stage, so that log c is incremented through the
range [log |E|−1, log q(m)] in constant-size steps. However, the algorithm also detects
those areas of this range where the log(π(Mj)/π(Mj+1))’s are clumped together, and
in those areas it takes smaller steps. In the end the algorithm needs to try only
m + O(logm) different values of c to ensure that each cj+1 is approximated well by
one of them.

Theorem 4.3. Let a ∈ (0, 1/2]. If H is q-amenable then the output Π of our
algorithm satisfies Π(1 − a) < Mm < Π(1 + a) with probability at least 3/4. Our
algorithm uses O(q2m5|E| logm/a2) random walk steps.

Remarks. (i) The algorithm of Jerrum and Sinclair uses O(q3m6|E| log2m/a2)
random walk steps, assuming the lower bound on the eigenvalue gap given later by
Sinclair in [Si].

(ii) We have tried to reduce the running time of our algorithm by another factor of
O(m) using Lemma 4.1. The problem we face is that we need very reliable estimates
of each c(j) (as did Jerrum and Sinclair) to make sure that Mj and Mj+1 would be
large enough sets (in stationary probability) to sample from. The cost of these reliable
estimates dominates the cost of each stage of the algorithm.

5. Entropy of sources. We now consider the special case of a random walk
on an unweighted undirected graph G. We view the random walk as an information
source whose alphabet is the vertex set V of G. Theorem 2.1 enables us to quantify
the rate of convergence of the classical Shannon–McMillan asymptotic equipartition
property for this information source. We will then be able to estimate the entropy
of the source very quickly, in O(log |G|) steps when G has constant expansion and
constant nonuniformity (defined below). For purposes of fixed-length noiseless coding
of the source, this result will imply a bound on the error exponent in terms of the
expansion of G.

Let G have eigenvalue gap ε. Define the nonuniformity ν of G by

ν = max
x,y

π(x)/π(y).

Let M be twice the number of edges of G. Let P = (pij) be the transition matrix
for the random walk on G. For all i, j, pij = 1/di, where di is the degree of vertex
i. π(i) = di/

∑
j dj = di/M ; therefore, M ≥ maxi 1/π(i) ≥ ν. Let x0, x1, . . . be

a random walk on G starting from the stationary distribution. Consider the random
sequence X = x1, x2, . . . an information source.

The random walk as an information source. In general, the entropy H(Y)
of an information source Y = y1, y2, . . . is defined in terms of the ordinary Shannon
entropy: H(Y) = limn→∞ EH[yn|y1, . . . , yn−1]. In our case, in which there is an
underlying stationary random walk on an unweighted graph, there is a simple formula:

H(X) = EH(x1|x0) = −E log2 px0x1

= Eπ log2 dx0 .(5.1)

The Shannon–McMillan theorem [Ash, Theorem 6.6.1] states that under an ergod-
icity assumption which is satisfied here, an information source Y has the asymp-

1218 DAVID GILLMAN

totic equipartition property (AEP): for a fixed length n of source sequences, there are
asymptotically 2nH(Y) source sequences each of asymptotic probability 2−nH(Y), and
the probability of the “bad” set of remaining sequences tends to zero as n tends to
infinity. The next theorem establishes an upper bound on the probability of the “bad”
set.

Consider the particular information source X and a finite sequence x1, . . . , xn,
generated by X. Define the empirical entropy Vn of this finite sequence by Vn = − 1

n
log2 Pr[x1, . . . , xn].

Theorem 5.1. Let X be the information source generated by the random walk
on G. Let x1, . . . , xn be a finite sequence generated by X, with empirical entropy Vn.
Then

Pr[|Vn −H(X)| ≥ γ]

≤ 4e−(γ−(log2 M)/n)2nε/20log2
2ν .(5.2)

Proof. Define a nonnegative function g on the vertices of G by g(x) = log2 dx. Set
f(x) = g(x)−miny g(y). Then ‖f‖∞ = log2 ν and by (5.1), Eπf = H(X)−miny g(y).
Let tn = f(x1) + · · · + f(xn). Then Vn − miny g(y) = tn/n + (log2 1/π(x1))/n −
(log2 dxn)/n. Using (2.2) and remark (i) following Theorem 2.1,

Pr[Vn −H(X) ≥ γ]

= Pr[tn/n− (H(X)−min
y
g(y))

≥ γ − (log2 1/π(x1))/n+ (log2 dxn)/n]

≤ 2 exp

[
−
(
γ − (log2M)/n

(log2 ν)/n

)2

ε/20n

]
≤ 2e−(γ−(log2 M)/n)2nε/20log2

2ν .

The inequality in the other direction is similar.

Unifilar sources. Let χ : V (G) → {0, 1, . . . , k − 1} be any labelling of the
vertices of G such that the random walk on G is unifilar; that is, no vertex G is
adjacent to two or more vertices of the same label. Let Y = y1, y2, . . . be the sequence
of labels: yi = χ(xi). Then the entropy of the information source Y still satisfies (5.1):
H(Y) = Eπ log2 dx0

. The definition of empirical entropy for Y is also the same, and
we immediately have the following generalization.

Corollary 5.2. Let Vn denote the empirical entropy of y1, . . . , yn. Then

Pr[|Vn −H(Y)| ≥ γ]

≤ 4e−(γ−(log2 k|G|)/n)2nε/20log2
2k .(5.3)

Remarks. (i) The logarithm of the right-hand side of (5.3) gives an upper bound
on the error exponent for fixed-length coding of the source Y . This appears to be
the first such bound which applies for all n and is given in terms of a computable
quantity (the eigenvalue gap). Large deviation methods were used in [Nat, An], giving
asymptotic estimates of the error exponent.

(ii) Corollary 5.2 can be restated as follows: to estimate H(Y) to within an
additive error γ with probability at least 1 − δ requires a random walk of length
O(log2 k log(1/δ) log k|G|/εγ2). When the number of labels k is constant and G has
constant expansion, this simplifies to O(log(1/δ) log |G|/γ2).

CHERNOFF BOUND FOR RANDOM WALKS 1219

6. Further work. The main open problem is to give a lower bound on the
probability of deviation estimated in Theorem 2.1. A lower bound must depend on
the set A and not only on π(A). For example, in the usual barbell graph, if A is all
on one side of the “handle,” the deviation probability will actually be larger than if
A is equally distributed between the two sides of the graph [G93a, pp. 56–57].

It would be nice to be able to estimate the entropy of a random walk on a
weighted graph. In [G93a], the author has shown that such a generalization would
have applications to the problem of discriminating two hidden Markov chains from
their output. The immediate difficulty is not the lack of a nice formula for entropy
in this case, but the problem of estimating the expected value of a function on the
edges of G. The random walk on G induces a Markov chain on the edges of G. The
induced Markov chain is not time-reversible, so the Chernoff bound does not apply
as it stands.

Ultimately it would be nice to be able to estimate the entropy of a 0-1 source
generated by a (possibly nonunifilar) Markov chain whose states are labelled 0 and 1.

Acknowledgments. My advisor Mike Sipser helped to formulate the problem
of a central limit theorem for expander graphs and continually discussed the issues
of this paper with me while my work progressed. Johan H̊astad drew my attention
to the paper of T. Höglund. László Lovász pointed out the potential application of
a Chernoff bound to approximation algorithms. Nabil Kahale, Miklos Simonovits,
Alistair Sinclair, and David Zuckerman, and Svante Janson made helpful comments.
It is my pleasure to thank these people.

REFERENCES

[Ahl] L. Ahlfors, Complex Analysis, 2nd ed., McGraw-Hill, New York, 1966.
[AKS] M. Ajtai, J. Komlós, and E. Szemerédi, Deterministic simulation of logspace, in Proc.

19th ACM Symp. on Theory of Computing, 1987.
[Ald87] D. Aldous, On the Markov chain simulation method for uniform combinatorial distribu-

tions and simulated annealing, Probab. Engrg. Inform. Sci., 1 (1987), pp. 33–46.
[Alo] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986), pp. 83–96.
[AM] N. Alon and V. D. Milman, λ1, isoperimetric inequalities for graphs, and superconcen-

trators, J. Combin. Theory B, 38 (1985), pp. 73–88.
[An] V. Anantharam, A large deviation approach to error exponents in source coding and

hypothesis testing, IEEE Trans. Inform. Theory, 36 (1990), pp. 938–943.
[Ash] R. Ash, Information Theory, Interscience, New York, 1965.
[Br] A. Z. Broder, How hard is it to marry at random? (on the approximation of the perma-

nent), in Proc. 18th ACM Symp. on Theory of Computing, 1986, pp. 50–58.
[Ch] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the

sum of observations, Ann. Math. Statist., 23 (1952), pp. 493–507.
[Cr] H. Cramér, Sur un nouveau théorème de la théorie des probabilités, Actualités Scien-

tifiques et Industrielles, 736 (1938).
[CW] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random

sources, in Proc. 30th IEEE Symp. on Foundations of Computer Science, 1989.
[Di95a] I. H. Dinwoodie, A probability inequality for the occupation measure of a reversible

Markov chain, Ann. Appl. Probab., 5 (1995), pp. 37–43.
[Di95b] I. H. Dinwoodie, Expectations for Nonreversible Markov Chains, preprint, 1995.
[Do] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.
[DF] M. Dyer and A. Frieze, Computing the volume of convex bodies: A case where ran-

domness provably helps, in Proc. AMS Symp. on Probabilisitc Combinatorics and Its
Application, 1991, pp. 123–170.

[DFK] M. Dyer, A. Frieze, and R. Kannan, A random polynomial time algorithm for approx-
imating the volume of convex bodies, in Proc. 21st Annual ACM Symp. on Theory of
Computing, 1989, pp. 375–381.

1220 DAVID GILLMAN

[Fi] J. A. Fill, Eigenvalue bounds on convergence to stationarity for nonreversible Markov
chains, with an application to the exclusion process, Ann. Appl. Probab., 1 (1991),
pp. 62–87.

[G93a] D. Gillman, Hidden Markov Chains: Convergence Rates and the Complexity of Inference,
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1993.

[G93b] D. Gillman, A Chernoff bound for random walks on expander graphs, in Proc. 34th IEEE
Symp. on Foundations of Computer Science, 1993, pp. 680–691.

[G∗] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman, Security
preserving amplification of hardness, in Proc. 31st IEEE Symp. on Foundations of
Computer Science, 1990, pp. 318–326.

[H] T. Höglund, Central limit theorems and statistical inference for finite Markov chains, Z.
Wahr. Gebiete, 29 (1974), pp. 123–151.

[IZ] R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, in Proc. 30th IEEE
Symp. on Foundations of Computer Science, 1989.

[JS89] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM J. Comput., 18 (1989),
pp. 1149–1178.

[JS91] M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising
model, SIAM J. Comput., 22 (1993), pp. 1087–1116.

[JVV] M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial struc-
tures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[Kah] N. Kahale, Large Deviation Bounds for Markov Chains, DIMACS Technical Report,
DIMACS, Rutgers University, New Brunswick, NJ, 1994, pp. 94–39.

[KL] R. Karp and M. Luby, Monte Carlo algorithms for enumeration and reliablity problems,
in Proc. 15th ACM Symp. on Theory of Computing, 1983.

[Kat] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-
Verlag, New York, 1982.

[KRS] C. Kenyon, D. Randall, and A. Sinclair, Matchings in lattice graphs, in Proc. 25th
ACM Symp. on Theory of Computing, 1993, pp. 738–746.

[LS] L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume
algorithm, Random Structures Algorithms, 4 (1993), pp. 359–412.

[Nat] S. Natarajan, Large deviations, hypothesis testing, and source coding for finite Markov
chains, IEEE Trans. Inform. Theory, 31 (1985), pp. 360–365.

[Nag] S. V. Nagaev, More exact statements of limit theorems for homogeneous Markov chains,
Theory Probab. Appl., 6 (1961), pp. 62–81.

[NM] G. F. Newell and E. W. Montroll, On the theory of the Ising model of ferromagnetism,
Rev. Modern Phys., 25 (1953), pp. 353–389.

[Se] E. Seneta, Nonnegative Matrices, Wiley, New York, 1973.
[Si] A. Sinclair, Improved Bounds for Mixing Rates of Markov Chains and Multicommodity

Flow, Technical Report ECS-LFCS-91-178, Department of Computer Science, Univer-
sity of Edinburgh, Scotland, October 1991.

[SJ] A. Sinclair and M. Jerrum, Approximate counting, uniform generation, and rapidly
mixing Markov chains, Inform. and Comput., 82 (1989), pp. 93–113.

[SS] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[Ta] R. M. Tanner, Explicit construction of concentrators from generalized n-gons, SIAM J.
Algebraic Discrete Meth., 5 (1984), pp. 287–294.

[W] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK, 1965.

PROCESSOR-RING COMMUNICATION: A TIGHT ASYMPTOTIC
BOUND ON PACKET WAITING TIMES∗

E. G. COFFMAN, JR.† , NABIL KAHALE‡ , AND F. T. LEIGHTON§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1221–1236, October 1998 001

Abstract. We consider N processors communicating unidirectionally over a closed transmission
channel, or ring. Each message is assembled into a fixed-length packet. Packets to be sent are
generated at random times by the processors, and the transit times spent by packets on the ring
are also random. Packets being forwarded, i.e., packets already on the ring, have priority over
waiting packets. The objective of this paper is to analyze packet waiting times under a greedy
policy within a discrete Markov model that retains the overall structure of a practical system but
is simple enough so that explicit results can be proved. Independent, identical Bernoulli processes
model message generation at the processors, and independently and identically distributed (i.i.d.)
geometric random variables model the transit times. Our emphasis is on asymptotic behavior for
large ring sizes, N , when the respective rate parameters have the scaling λ/N and µ/N . Our main
result shows that, if the traffic intensity is fixed at ρ = λ/µ < 1, then as N →∞ the expected time a
message waits to be put on the ring is bounded by a constant. This result verifies that the expected
waiting time under the greedy policy is within a constant factor of that under an optimal policy.

Key words. processor rings, processor interconnection networks, queuing networks, asymptotic
analysis, routing algorithm analysis

AMS subject classifications. 68M20, 68R05, 90B12, 90B35

PII. S0097539794268637

1. Introduction. Communication amongN processors takes place counterclock-
wise along a slotted circular transmission channel, or ring. A processor generates
messages, receives messages, and forwards messages between other processors. Each
message is a packet of fixed duration. One time unit is required for a packet to be
sent or forwarded from one processor to its counterclockwise neighbor. Packets are
generated randomly at the processors according to i.i.d. arrival processes. The integer
times spent by packets on the ring, packet transit times, are i.i.d. random variables.
Packets being forwarded on the ring have priority; while a processor has a packet to
be forwarded, it cannot place one of its own waiting packets on the ring. A packet
waiting for transmission is held in a queue at the processor where it was generated.

The details defining a practical implementation of a processor ring are many and
varied. Indeed, the applications and analysis of communication rings form a rather
large and growing literature; see van Arem and van Doorn (1990), Barroso and Dubois
(1993), and Georgiadis, Szpankowski, and Tassiulas (1997) for brief surveys and many
references. As a concession to mathematical tractability, we adopt here the simple
discrete Markov model in Fig. 1, where the ring is partitioned into cells, each capable
of holding a single packet. The cells rotate counterclockwise past the processors in
discrete steps, one step per unit of time. Packets are generated at each of the N

∗Received by the editors May 19, 1994; accepted for publication (in revised form) June 17, 1996;
published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/26863.html
†Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (egc@bell-labs.com).
‡AT&T Research Laboratories, Florham Park, NJ 07932 (kahale@research.att.com). This re-

search was partially supported by NSF contract STC-91-19999 and by the New Jersey Commission
on Science and Technology while the author visited DIMACS, Rutgers University, New Brunswick,
NJ.

§Deptartment of Mathematics and Laboratory for Computer Science, MIT, Cambridge, MA 02139
(ftl@math.mit.edu).

1221

1222 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

processors by a Bernoulli process at rate λ/N , 0 < λ < N , per time unit (step); the
total arrival rate is then λ. The packet transit times are geometrically distributed
with rate parameter µ/N , N > µ > λ. Thus, at any given step, a packet on the ring
departs with probability µ/N and stays for at least one more step with probability
1 − µ/N , independent of how long the packet has already been on the ring. We will
explain shortly the reason for the scaling of arrival and transit-time parameters by
the ring size.

i

1

2

N

Fig. 1. The rotating ring model.

In each step, the ring system undergoes a transition according to the following
sequence.

(i) The ring rotates one position while processor queues accept new arrivals, if
any (at most one per queue in each step).

(ii) Packets on the ring that have completed their transit times are delivered, i.e.,
removed from their cells.

PROCESSOR RING 1223

(iii) Each processor with a nonempty queue opposite an empty cell then puts a
waiting packet into this cell.

This gives the nonblocking model; reversing (ii) and (iii) would give the blocking
model: a departing packet can not be replaced in the same time step by a waiting
packet. As we shall see, our asymptotic results apply to both models. The above
sequence gives the greedy cell admission policy, placing waiting packets on the ring as
soon as empty cells are available.

As discussed in Coffman et al. (1995), the greedy policy has the undesirable effect
of occasionally “freezing out” certain processor queues for long periods of time; long
trains of occupied cells pass by such processors, denying them access to the ring. The
results of this paper will show that, for large rings within our probability model, the
greedy rule is remarkably efficient, and that in fact, the above behavior is quite rare.

Our specific objective is to analyze packet waiting times under the greedy policy.
(Hereafter, unless noted otherwise, waiting times always refer to times spent waiting
in processor queues.) To prepare for the statement of our main theorem on waiting
times, we need a little more notation. For a given admission policy, we denote the
joint queue length at integer time t by Q(t) = (Q1(t), . . . , QN (t)), where Qi(t) is
the number in the ith processor queue at time t. The phrase “at time t” means
at an instant just after t so that events, if any, occurring at t have already taken
place. Define the N -bit vector R(t) whose ith bit is 1 if and only if a packet is in
the ith cell at time t. Hereafter, the term state refers to a pair Q(t),R(t) at some
time t. It follows from the geometric law for transit times that the ring process
{(Q(t),R(t)), t = 0, 1, . . .} is a Markov chain. It was shown by Coffman et al. (1995)
that, if λ < µ, then the ring process under the greedy rule is ergodic. Unfortunately,
an exact analysis of the stationary behavior of this ring process seems quite difficult.
Indeed, attempts to solve the balance equations have so far failed even for the case
N = 2. Thus, we turn to asymptotic estimates for large ring sizes, N , with λ and µ
fixed and λ < µ. That is why we introduced the scalings λ/N and µ/N ; as we allow
N to increase, the traffic intensity will remain fixed at ρ = λ/µ, the usual product of
arrival rate and average service (transit) time.

With λ < µ, let Q have the stationary distribution common to all queue lengths
Qi(t), and let W be the waiting time of a packet in the stationary regime.

Theorem 1.1. Fix λ and µ with λ < µ. Then, under the greedy policy,

E[Q] = Θ(1/N) .

Thus, by Little’s theorem,

E[W] = Θ(1) .

The lower bounds are easy to see, as follows. Consider the entire ring as an
N -server system with a total arrival rate λ and maximum departure rate µ. Then,
by Little’s theorem, the arrival rate λ times the average time spent on the ring, i.e.,
N/µ, must be equal to the expected number of packets on the ring in the stationary
regime, i.e., ρN . But if a positive fraction ρ > 0 of the ring is occupied on average,
then there must be a positive average waiting time E[W] = Ω(1) to get on the ring
and hence E[Q] = Ω(1/N).

In the usual way, on-line admission policies are those deciding packet admissions
solely on the basis of information currently available about packets already in the
system, waiting or on the ring. Such information can include, for example, queue

1224 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

lengths and the elapsed times already spent in the system by packets. As we will see
later, it is convenient to extend this class of admission policies by allowing decisions
to depend also on the times and queues of future arrivals. Hereafter, unless stated
otherwise, the term policy refers to a policy in this extended class. Note, in particular,
that policies retain the on-line property with respect to transit times on the ring; i.e.,
we do not allow policies that base decisions on prior knowledge of remaining transit
times.

We say that a policy A is optimal if, over any interval [0, T], the sum of waiting
times (in queue) under A is stochastically no larger than that under any other policy
starting in the same initial state. We prove in the next section that the greedy policy
is an optimal policy (the proof will need the geometric law for transit times). In the
proof of Theorem 1.1, this result allows us to analyze a more tractable policy with the
same asymptotic performance as the greedy rule; the more tractable policy exploits
the fact that policies can base decisions on the times and queues of future arrivals.

Coffman et al. (1995) proved in an earlier paper that the growth of the expected
waiting time in our model was sublinear in N , i.e., E[W] = o(N). Our much stronger
result shows that the expected waiting time is in fact bounded by a constant. So, by
Little’s theorem, an important practical implication of our result is that the expected
size of a buffer needed to hold all waiting packets is bounded by a constant uniformly
in N . The proof of Theorem 1.1 requires a much more intricate probabilistic analysis
than the one in Coffman et al. (1995), where the law of large numbers was the basic
tool. Here, we will need more powerful asymptotic bounds (e.g., those of Chernoff
type) on the tail probabilities for sums of independent random variables and the
excursions of Lindley processes (see, e.g., Prabhu (1965), p. 66); these appear as
lemmas in section 3. The proof of the upper bound E[Q] = O(1/N) is given in
sections 4 and 5. The paper concludes in section 6 with a brief discussion of extensions
and open problems.

2. Preliminaries. Consider the packet at the head of any given nonempty
queue. Since transit times are geometrically distributed with parameter µ/N , the
probability that this packet is placed on the ring in the current time step is at least
µ/N ; the conditional probability is precisely µ/N if the cell is occupied on arrival,
and it is trivially 1 if the cell is empty. Thus, one expects that, in statistical equilib-
rium, the ith queue length Qi is bounded stochastically for each i by the length of
a single-server Markov (i.e., M/M/1) queue in discrete time with arrival and service
rate parameters λ/N and µ/N . Moreover, this bound should hold independently for
each queue. Indeed, these observations are but a special case of Theorem 2 in Coffman
et al. (1995). An easy analysis of the discrete-time M/M/1 queue then proves the
following lemma.

Lemma 2.1. For each i independently, Qi is stochastically smaller than a non-
negative integer random variable L with P (L = n) ∼ (1− ρ)ρn as N → ∞ for every
n ≥ 0, and with

P (L > n) = O(e−νn) ,(2.1)

where ν = ln 1/ρ > 0.
Hereafter, we take the equivalent point of view that the queues rotate past the ring

of cells, which remains fixed. As shown in Fig. 2, in any given time interval [0, T],
the ring process can be represented by events on a cylindrical lattice cut at some cell
position and laid out as a rectangle. For simplicity, we assume that the cylinder is
cut between cell N and cell 1. Along the top of the rectangle the Qi(0), 1 ≤ i ≤ N ,

PROCESSOR RING 1225

give the initial state of the queues, and the bullets (•’s) indicate the initial cell states:
a cell with a • at time 0 is empty; otherwise, it is occupied. Again, for simplicity, we
assume queue 1 is at cell 1 at time 0. Within the rectangle, circles (◦’s) and bullets
give a random sample of arrivals and departures, respectively. A • and ◦ can appear
at the same lattice point. The probability of such an event is O(1/N2), and hence
relatively low; for simplicity, the figures in this paper do not show samples where such
coincidences occur.

Fig. 2. Greedy assignment.

The greedy policy is represented by a suitable assignment of cells to circles (new
arrivals) and to packets in the initial state. An example is shown in Fig. 2. The
motion lines drawn between packets and assigned cells describe the trajectories of the
packets in time and space; their vertical components correspond to waiting times. A
motion line is broken into two pieces when it extends past cell N , one ending at the
right boundary and one beginning at the same time at the left boundary.

1226 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

To ensure that an assignment of circles and initial packets to cells is valid, one
must check to see that the cell, say c, at which a motion line terminates, at time t
say, is indeed empty at time t. Thus, if t′, 0 ≤ t′ < t, is the time of the last departure
(bullet) in cell c, then no other motion lines can terminate at cell c in the interval
[t′, t].

We conclude this section with a proof that greedy is optimal in that it minimizes
stochastically the sum S of waiting times over any given interval [0, T]. The proof
uses the following simple relation between S and the queue lengths Qi(t) during [0, T]:

S =

T∑
t=0

N∑
i=1

Qi(t) .(2.2)

Theorem 2.1. The greedy rule is an optimal admission policy.
Proof. Consider ring operation over an interval [0, T], and let A be an arbitrary

policy. To compare total waiting times in [0, T] under A and greedy, both starting
in the same initial state, we compare both to an intermediate algorithm A∗, which is
artificial in that it sometimes returns packets to queues before they have completed
their transit times. Under A∗ an occupied queue places a packet into the first available
empty cell, just as with the greedy policy. But suppose that, under A∗ at some time
t, a cell c occupied by packet ϕ is in front of a queue having a packet ϕ′ that, under
A, would have been in c at time t. Then at time t, ϕ and ϕ′ change places under A∗;
ϕ joins the queue and ϕ′ enters the cell.

At any given queue, the admissions under A∗ and greedy implement the same
deterministic rule except at times when A∗ exchanges a packet in the queue with the
packet in the cell in front of the queue. But such an exchange does not change the
state (any queue length or the state of any cell) of the ring process; from the point of
view of the ring process, the exchange has the effect of doing nothing, which is just
what the greedy rule would do in the same circumstances. Thus, if A∗ and greedy
start in the same initial state, then the joint queue-length process over [0, T], and
hence by (2.2) the sum of waiting times over [0, T], is stochastically the same under
A∗ and greedy.

It remains to show that the sum of waiting times over [0, T] under A is at least
as large stochastically as it is under A∗. In fact, we prove the stronger deterministic
result: for a given initial state, a given sequence of arrivals over [0, T], and a given
sample of the remaining transit times of all packets in the system during [0, T], the
sum of waiting times under A is at least that under A∗. To see this, note first that,
although A∗ may put a packet ϕ on and off the ring several times, eventually one of
three events will occur: ϕ will depart, T steps will have been taken, or ϕ will be in a
queue when the cell assigned to it under A catches up to it. In the last case, A∗ places
ϕ on the ring making an exchange, if needed, and leaves it there until it departs or
T steps have been made. Thus, every packet during [0, T] has moved along the ring
under A∗ at least as far as it has moved under A, and so the sum of waiting times
under A∗ is deterministically at most the sum under A.

3. Probability bounds. The reader may wish to skip this section at first read-
ing, referring back to it as needed while reading section 5. We begin with a useful
Chernoff bound that combines Theorems A.12 and A.13 of Alon and Spencer (1991),
pp. 237–238.

Lemma 3.1. Let Z = Z1 + · · · + Zn, where the Zi are independent Bernoulli
random variables with P (Zi = 1) = pi, P (Zi = 0) = 1− pi. Then for any ε > 0, there
exists a β > 0 such that

PROCESSOR RING 1227

P ((1− ε)E[Z] < Z < (1 + ε)E[Z]) = 1−O(e−βE[Z]) .(3.1)

Next, we consider a Lindley process, starting at the origin and defined by (x+

denotes the positive part of x)

ζ0 = 0, ζi = (ζi−1 + Ui)
+,(3.2)

with Ui = Xi − Yi, where {Xi} and {Yi} are independent sequences of i.i.d. random
variables. In our application, Yi is an integer in {0, . . . ,K} with K a given integer
constant independent of N , and Xi is the number of arrivals of a rate-aλ/N Bernoulli
process in bN time steps, where a and b are constants independent of N . Thus, for
large N , Xi is approximately Poisson distributed with mean abλ. It is easy to check
that Xi and hence Ui has an exponential tail probability; i.e., there exists a κ > 0
such that

P (Ui > x) ≤ P (Xi > x) = O(e−κx) .(3.3)

The process {ζi} is said to have negative drift if E[Yi] > E[Xi] and hence E[Ui] <
0. The next result follows from standard theory (e.g., see Asmussen (1987)). Let the
Xi and Ui be distributed as X and U , respectively.

Lemma 3.2. If E[U] < 0, then E[ζi] is bounded by a constant uniformly in i ≥ 0.
The distributions of the ζi converge in total variation to the distribution of a random
variable ζ with moments of all orders.

In addition to Lemma 3.2, we will need certain probability bounds on excursions
of {ζi}. These will be derived in terms of corresponding bounds for the unrestricted
process

ξi = ξi−1 + Ui, i ≥ 1 ,(3.4)

with the Ui defined as before, and with a given initial state ξ0. Hereafter, we assume
a negative drift E[U] < 0.

The probability bound on excursions of {ξi} that we will use in the analysis of
{ζi} is developed as follows. Since E[U] < 0 and P (U > 0) > 0, there exists an α0 > 0
such that E[eα0U] = 1. Define the process ξ∗i = eα0ξi , i ≥ 0, with the property

E[ξ∗i+1 | ξ∗i] = E[eαoUiξ∗i | ξ∗i] = ξ∗i E[eα0U] = ξ∗i .

Together with our assumptions on U , this shows that {ξ∗i } is a uniformly integrable
martingale, so we have

P

(
sup
i≥0

ξi ≥ x

)
= P

(
sup
i≥0

ξ∗i ≥ eα0x

)

≤ e−α0xE[ξ∗0] = E[e−α0(x−ξ0)] ,(3.5)

where the inequality follows from Doob’s martingale inequality (see, for example,
section 35 in Billingsley (1986)).

We now use (3.5) to get similar bounds for the busy periods of {ζi}. In analogy
with queueing applications, we say that steps i1 through i2, i2 > i1, comprise a busy
period if {ζi} moves away from the origin at step i1 ≥ 1 and makes its first subsequent
return to the origin at step i2, i.e., ζi1−1 = 0, ζj > 0, i1 ≤ j < i2, and ζi2 = 0. The
process is idle while it resides at the origin. We want a probability bound on the

1228 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

maximum value of the process during a busy period B. For this purpose, we make
use of the fact that, away from the origin, {ζi} behaves as an unrestricted random
walk. In particular, the conditional probability that, given the first jump Ui1 > 0,
{ζi} exceeds level x before its next return to the origin is the same as the probability
that, starting in state Ui1 , the unrestricted version {ξi} exceeds level x before its first
passage to a point at or below the origin. As an easy consequence of (3.3) and (3.5),
we have that, for a randomly chosen busy period B of {ζi},

P

(
sup
i∈B

ζi > x

)
≤ E[e−α0(x−U)|U > 0] ≤ e−α0xE[eα0X |X > K] = O(e−α0x),(3.6)

since X ≥ U ≥ X −K and X is a binomial random variable with a mean bounded
independently of N .

Our primary interest is in the behavior of {ζi} over a finite (and large) number of
steps. It is convenient to let N denote the number of steps, since in later applications
of the results below, N will also denote the ring size. For example, a bound on
P (sup1≤i≤N ζi > α lnN), α > 0, will be useful. To get such a bound, note that there
are at most N/2 busy periods in the first N steps of {ζi}. Then, by (3.6),

P

(
sup

1≤i≤N
ζi > x

)
≤ N

2
P

(
sup
i∈B

ζi > x

)
= O(e−α0x+lnN) .

Thus, for any γ > 0, we can choose x = x(N) = α lnN with α = α(γ) sufficiently
large that

P

(
sup

1≤i≤N
ζi > α lnN

)
= O(e−γ lnN) = O(N−γ) .(3.7)

Consider next the duration D of busy period B.
Lemma 3.3. There exists an η0 > 0 such that

P (D > y) = O(e−η0y) .

Proof. Let {Ui} be the common sequence generating both {ζi} and {ξi}, ζ0 =
ξ0 = 0, and suppose the first busy period B1 of {ζi} begins at step ` ≥ 1. Let D1

be the duration of B1. It is easy to check that, for any integer y ≥ 1, the event
{ζi > 0 for all i, ` ≤ i ≤ `+ y} implies the event {ξ`+y ≥ ξ`}. Busy periods are i.i.d.
and P (ξ`+y ≥ ξ`) does not depend on `, so

P (D > y) = P (D1 > y) ≤ P (ξ`+y ≥ ξ`)

≤ P (ξy ≥ 0).
(3.8)

By Lemma 3.1, we obtain that, for any ε > 0, there exists an α > 0 such that

P (ξy > (1− ε)E[ξy]) = O(eαE[ξy]) ,(3.9)

with E[ξy] = yE[U] < 0. To see this, we need only observe that the Ui and hence ξy
can be expressed as sums of independent 0-1 random variables. Put ε = 1 in (3.9)
and conclude that, for some α1 > 0,

P (ξy ≥ 0) = O(eα1yE[U]) .(3.10)

Together with (3.8), this proves the lemma.

PROCESSOR RING 1229

4. Admission policy. The proof of Theorem 1.1 will use the admission policy
of this section. Before presenting the policy, however, we will briefly review how it is
applied in the general argument.

The proof of Theorem 1.1 estimates the expected value of the sum S ≡ S(N,T) of
waiting times under the greedy policy in an interval of length T = Θ(N3), assuming
that the state of the queues at the beginning of the interval is a sample from the
stationary distribution. For convenience, we take [0, T] as the interval. To make use
of the estimate, observe that in the stationary regime, E[Qi(t)] = E[Q], so by (2.2)
E[S] = NTE[Q] and

E[Q] =
E[S]

NT
.(4.1)

We will prove that, under the admission policy defined below, the sum S̃ of waiting
times over [0, T] satisfies E[S̃] = O(N3). By Theorem 2.1, E[S] ≤ E[S̃], so substi-
tution into (4.1) proves E[Q] = O(1/N), since T = Θ(N3). Then Theorem 1.1 is
proved.

We now discuss the admission policy, Algorithm A, shown in Fig. 3, previewing as
we go along the properties of the algorithm that must be proved in the probabilistic
analysis of the next section. The algorithm is based on various constants and struc-
tures determined by λ and µ, which we describe first. The algorithm takes as input
an ε > 0 such that µ(1− 2ε) > λ, and reserves a sequence of 2εN cells of the ring as
nearly equally spaced as possible. (The lengths of adjacent intervals between reserved
cells differ by at most 1.) Call the odd-numbered cells of this sequence initialization
(I) cells, and the even-numbered cells clean-up (CU) cells. Regular cells are those that
are neither I nor CU cells.

To avoid trivialities and to simplify notation, we assume in what follows that
(2ε)−1 and εN are integers. The reserved (I and CU) cells partition the (1 − 2ε)N
regular cells into 2εN groups Cj , with (2ε)−1 − 1 cells per group. We also define a
partition of the queues into 2εN groups Gj , 1 ≤ j ≤ 2εN , with (2ε)−1 per group. The
index j is taken mod 2εN if j > 2εN .

Algorithm A determines the schedule over the time interval [0, N + bN3], which
is partitioned into an initial block B0 of N steps followed by N2 blocks B1, . . . , BN2

of bN steps each. The parameter b must be chosen sufficiently small; the probabilistic
analysis of section 5 will give an upper bound in terms of µ and λ.

The algorithm is preceded by the following process: independently, at every cell
and time step a mark (×) is placed with probability µ/N ; these marks are superposed
on the input arrival pattern. If, by Algorithm A, a packet ϕ is placed in cell j at time
t, then the first × after time t in column j signals the departure of ϕ from the ring
(these particular ×’s correspond to bullets in Fig. 2). By the memoryless property
of the geometric distribution of the times between successive ×’s in any column, this
rule for determining departures yields geometric transit times on the ring, as desired.

With this set-up, the algorithm is as follows (see Fig. 3). First, the interval [0, N]
of B0 is devoted solely to the accumulation of empty CU cells, to be used as described
later, starting at time N . No admissions to the ring are scheduled during [0, N]. This
is for convenience only; our asymptotic results would not change if such scheduling
were allowed.

At time N , the algorithm partitions the empty CU cells into sequences σk, 1 ≤
k ≤ a lnN , as nearly equal in length as possible (see step 1 in Fig. 3), for a constant
a sufficiently large to be determined by the probabilistic analysis. Apart from their

1230 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

size and number, the sequences σk can be chosen arbitrarily from among the empty
CU cells.

The remainder of step 1 assigns I cells starting at time N to just those packets
in the initial state plus those that arrived in [0, N]. The jth I cell admits the packets
in the ε−1 queues of G2j−1 ∪G2j at time N ; it serves these queues in a round-robin
sequence; i.e., a (k+ 1)st packet from one of the queues is not admitted until at least
k visits have been made to the other queues (admitting a packet at each visit if one
is there).

Note that the I cells work in parallel with the other cells that serve the arrivals
in B1, . . . , BN2 . The probabilistic analysis will use elementary bounds to show that
the expected total waiting time of packets served by I cells is negligible, i.e., o(N3).

Almost all of the arriving packets in the Bi, 1 ≤ i ≤ N2, are assigned by the
iterations of step 2 to regular cells during the interval [N,N + bN3] (see Fig. 3).
Arrivals in Bi are assigned to cells at time N + (i − 1)bN , 1 ≤ i ≤ N2. At this
time, a regular cell is called available if its column segment in Bi−1 has at least one
×, its column segments in Bi−2 and Bi−3 have no ×, and the cell has not already
been assigned to an arrival in Bi (if i = 2, then the reference to Bi−3 is omitted, and
if i = 1, the references to both Bi−2 and Bi−3 are omitted). Examples are given in
Fig. 4, which are referenced again at the end of this section. Step 2 scans the groups
Gj in left-to-right order beginning with G1. Assume for simplicity that the cell group
Cj is lined up in front of the queues in Gj so that the last cell of Cj is in front of the
last queue in Gj (recall that Cj has one fewer cell than Gj has queues). This is the
alignment assumed in step 2 of Fig. 3.

For j = 1, . . . , 2εN , the arrivals as yet unassigned to G1, . . . , Gj are assigned in
any order to the available cells of Cj+1 until either the former or latter set is empty,
whichever occurs first. At the end of this process, there may still be unassigned arrivals
in Bi; these are called leftover packets. Also, there may have been instances where an
arrival was assigned to a cell more than bN cells (time units) away. These assignments
are discarded and the corresponding packets are left unassigned throughout [0, N +
bN3]. The restriction to cells that are both available (in the above limited sense) and
not too far from the arrivals assigned to them guarantees that Algorithm A makes
valid assignments. We will verify this fact after we describe the remainder of the
algorithm.

The probabilistic analysis will show that, for each block Bi, the number of avail-
able cells in the Cj ’s is sufficiently large to ensure an O(N) expected total waiting
time for the arrivals assigned in step 2. Then, for all N2 blocks, the total waiting time
is O(N3), as desired. The analysis will then show that the assignment of an arrival
to a cell more than bN columns away is so rare that its effect on total waiting time is
negligible.

Finally, step 3 of the algorithm takes care of leftover packets by assigning them
to the cells of the sequences σk. These assignments are organized so that, for each
k = 1, . . . , a lnN , the leftover packets of Bk, Bk+a lnN , Bk+2a lnN , . . . are all as-
signed to cells in the same sequence σk. Thus, for r ≥ 0, the leftover packets in
Bk+ra lnN , . . . , Bk+(r+1)a lnN−1 are served in parallel by disjoint regions of the ring.

The probabilistic analysis will show that, except for a negligible fraction of the
leftover packets, all of those admitted by the cells of σk from Bk+ra lnN for any r ≥ 0
will have departed when it is time to start admitting the arrivals in Bk+(r+1)a lnN

into the cells of σk. In addition, the analysis will show that the expected total wait
of the leftover packets in Bi is O(N), and hence the expected total wait for leftovers
from all N2 blocks is O(N3), as desired.

PROCESSOR RING 1231

Algorithm A

Input: N, a, b, ε, an initial state and sets of arrivals and marks (×’s) over [0, N + bN3]

1. (i) At time N , the empty CU cells are partitioned into sequences σk, 1 ≤ k ≤ a lnN , whose
lengths differ by at most 1.

(ii) For j = 1, . . . , εN , the jth I cell admits just those packets appearing in the ε−1 queues of
G2j−1 ∪G2j at time N . For each j, these queues are served by a round-robin starting at
time N .

For i = 1, . . . , N2, the following two steps are performed.

2. (i) Assume that the queues in Gj are aligned with the cells of Cj , at the time Bi begins. For
j = 1, . . . , 2εN , the as yet unassigned arrivals in the queues of G1, . . . , Gj are assigned to
the available cells in Cj+1 until the former or the latter are exhausted, whichever occurs
first (C2εN+1 ≡ C1).

(ii) Assignments just made that match an arrival to a cell more than bN columns (cells) away
are removed.

3. Let integer k satisfy 1 ≤ k ≤ a and i = ma + k for some integer m ≥ 0. Then the leftover
packets, if any, of Bi are admitted according to the greedy rule by the empty CU cells of σk;
admissions stop when there are no more leftovers to admit or when the empty cells of σk have been
exhausted, whichever occurs first.

Fig. 3. An admission algorithm.

It is easy to see that, if Algorithm A always makes valid assignments (loads packets
into empty cells), then it is indeed a valid admission policy; the (future) arrivals in
Bi are known when assignments are made at the beginning of Bi, but knowledge of
future departure times is not used at any point. (This is obvious for steps 1 and 3; it
is clear for step 2 as well, since cell availability at the beginning of Bi depends only
on departures times in B1 ∪ · · · ∪Bi−1.)

It remains to verify that, under Algorithm A, whenever an arrival reaches the
cell to which it is assigned by the algorithm, the cell is empty. But suppose that
cell j is the available cell assigned by step 2(i) to arrival ϕ in Bi and that it remains
assigned to cell j after step 2(ii). (See Fig. 4 for examples.) Then the earliest that
cell j can again become available occurs when assigning arrivals in Bi+3; no arrival
of Bi+1 or Bi+2 can be assigned to cell j by the definition of cell availability and the
fact that Bi−1 has a × in column j. If cell j is indeed available during the scan of
Bi+3, then there must be a × in Bi+2. This × must come after the admission of ϕ
to cell j; otherwise the motion line of ϕ would span more than bN columns, and this
would contradict step 2(ii), where such assignments are removed. Thus, this × in
Bi+2 guarantees that any packet already in cell j will have departed before cell j is
re-used for an arrival in Bi+3 or some later block.

5. Proof of Theorem 1.1. Recall the general approach outlined at the begin-
ning of the previous section: we prove that E[S̃] = O(N3), where S̃ is the sum of the
waiting times in [0, N + bN3] under Algorithm A. It is enough to show, as is done
below, that the O(N3) bound holds for the packets considered by each of the three
steps individually.

In what follows, when we say that an event occurs with high probability, we mean
that it occurs with probability 1−O(N−γ), where γ can be made as large as desired
by a suitable choice of (usually hidden) constants. For example, by the geometric law
for transit times V , we have

P (V ≤ dN logN) = 1− (1− µ/N)dN logN ,

1232 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

and so P (V ≤ dN logN) ∼ 1−N−µd as N →∞. Thus, we can say that transit times
are O(N logN) with high probability; γ = µd can be made as large as desired by
increasing d. Note that m high-probability events occur jointly with high probability
if m is at most some polynomial in N .

Step 1. Consider the ith queue length Qi(N) at time N and recall that Qi(0) has
the stationary distribution. Algorithm A admits no packets to the ring in [0, N], so
Qi(N) is Qi(0) plus the number of arrivals in [0, N] at queue i. At time N , Q∗i (N)
counts the packets waiting at time N in queue i plus the packet, if any, in the I
cell that serves queue i in step 1. We have Q∗i (N) ≤ Qi(N) + 1, so by Lemma
2.1 and the geometric law of interarrival times, there exists an η > 0 such that
P (Q∗i (N) ≥ k + 1) ≤ P (Qi(N) ≥ k) = O(e−ηk) independently for all queues. Let

S̃
(1)
i be the total waiting time of the packets counted by Qi(N), and let C be the joint

event in which (i) for some c > 0 the first Qi(N) ∧ c lnN packets waiting in queue i
at time N have O(N logN) transit times, and (ii) at time N the packet, if any, in the
I cell serving queue i has O(N logN) remaining transit time. By the geometric law
for transit times, C has high probability.

Since each I cell serves a constant number of queues in a round-robin sequence,
the kth packet in any queue must wait k ·O(N logN) time if C holds and k ≤ c lnN .
Since no packet can wait more than bN3 +N time, we obtain the bound

E[S̃
(1)
i |C] =

∑
1≤k≤c lnN

k ·O(N logN) + O(N3) · E(Qi(N)− c lnN)+

= O(N log3 N) +O(N−ηc) ·O(N3)

= O(N log3 N)

by choosing c large enough. If C does not hold, we use the O(N3) trivial bound for

all packets to obtain E[S̃
(1)
i |C] = O(N3), since E[Qi(N)] = O(1). But C has low

probability, so E[S̃
(1)
i] = O(N log3 N). Since C holds simultaneously for all i with

high probability, we can conclude that

E[S̃(1)] = NE[S̃
(1)
i] = O(N2 log3 N) = O(N3),

as desired.
Step 2. We analyze the left-to-right scan of the sets Gj in Bi and Cj in Bi−1, and

bound first the expected total waiting time of the packets that are assigned in step
2(i). Define the Lindley process

ζ0 = 0, ζj = (ζj−1 + Uj)
+, j = 1, . . . , εN,

where Uj = Xj − Yj , Xj is the number of arrivals in Gj and Yj is the number of
available columns in Cj+1 at the start of the jth iteration in step 2. It is easy to see
that, among the arrivals already scanned in G1, . . . , Gj , ζj gives the number as yet
unassigned at the start of the (j + 1)st iteration. Thus, (2ε)−1(ζ1 + · · ·+ ζ2εN) is the

cumulative waiting time S̃
(2)
i of the arrivals assigned in Bi, not counting the times

spent waiting by these arrivals in their initial and final blocks. The latter times are
bounded by 2(2ε)−1 = ε−1, so

S̃
(2)
i ≤ (2ε)−1(ζ1 + · · ·+ ζ2εN) + ε−1(X1 + · · ·+X2εN).

But E[Xj] = λb(2ε)−1, and if E[Uj] < 0 then E[ζj] = O(1), by Lemma 3.2, so that

E[S̃
(2)
i] = O(N) and hence the expected total wait of assigned packets summed over

all i is O(N3), as desired. Thus, it remains to prove that E[Uj] < 0.

PROCESSOR RING 1233

I III CU CUCUCU

0

herewere an

at time N+(i+1)bN
not be available

CELLS

1 2 3 4 5 6 7 8 9 ..N

even if there

this cell would

bN

N+(i+1)bN

N+ibN

bN bN

N+(i+2)bN

N+(i-1)bN

time N+(i+2)bN
available at

-1)ε(2

3C

2

cell will be

2
C

1G G

B

i-1B

iB

B

i+1

i+3B

i+2

Fig. 4. Admission algorithm.

1234 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

We need to verify that P (Ak) > λb/(1 − 2ε), where Ak is the event in which
column k is available when assignments to arrivals in Bi begin; for then, since there
are (2ε)−1 − 1 columns in the Cj ,

E[Yj] >
λb

1− 2ε
[(2ε)−1 − 1] = (2ε)−1λb = E[Xj],

and hence E[Uj] < 0. We consider Bi for i ≥ 4; the cases i = 1, 2, 3 are similar. We
need only observe that Ak holds if there is at least one × in a column of Bi−1 and
none in Bi−2 and Bi−3, so

P (Ak) = [1− (1− µ/N)bN](1− µ/N)2bN ∼ (1− e−µb)e−2µb

as N →∞. Then for all N sufficiently large,

b <
1

5

µ(1− 2ε)− λ

(1− 2ε)µ2

is enough to ensure that P (Ak) > λb/(1− 2ε).
It remains to estimate the added total waiting time of the packets that were

assigned but then unassigned in step 2. But by Lemma 3.3 the probability that a
packet is assigned to a × at least bN columns (and hence Ω(N) groups Cj) away is
exponentially small in N . It follows that the expected added total waiting time of
such packets is o(1), since the number and maximum wait of such packets are both
bounded by polynomials in N . Thus, the expected total wait of all packets examined
in step 2 is E[S̃(2)] = O(N3), as desired.

Step 3. Let ki = (i − 1) mod (a lnN) + 1, and note that, by step 3, the leftover
packets of Bi should go into the cells of σki .

We argue first that, by an application of Lemma 3.1, at time N there are at
least ε

2 (1 − e−µ)N empty CU cells with very high probability (i.e., with probability

1 − O(e−Ω(N))); thus, with very high probability, any existing leftover packets are
assigned to the a logN sequences σk, which have Ω(Nβ) cells each for every β, 0 <
β < 1.

For definiteness, choose β = 1/2 and let Ei be the event in which the leftover
packets of Bi number fewer than N1/2 and each has a transit time at most bN ·
a lnN −N . In this event, the waiting time of each leftover packet is at most N and
the leftover packets of Bi leave the CU cells of σki empty by the time the next set of
leftover packets (those in Bi+a lnN) have to be scheduled in the cells of σki . By (3.7)
and the geometric law for transit times, Ei holds with high probability for all a large

enough. There are only N2 such events, so the combined event E =
⋂N2

i=0 Ei also holds
with high probability, where E0 is the event in which there exist at least ε

2 (1− e−µ)N
empty CU cells at time N .

Now suppose E holds. Then, since a leftover packet waits at most N and there are
N2 blocks, the conditional expected total waiting time is O(N3) times the conditional
expected number of leftover packets per block Bi, i.e., O(N3) · E[ζN |E]. But

E[ζN |E] = E[ζN |ζN ≤ N1/2] ≤ E[ζN] = O(1),

by Lemma 3.2, so the expected total waiting time of leftover packets is O(N3) when
E holds.

PROCESSOR RING 1235

Given that E does not hold, we use the trivial polynomial bounds O(N4) and
O(N3) on the total number of leftover packets and the waiting time of each. Since E
fails with low probability, a can be chosen large enough so that P (E) = 1−O(N−4).
Thus, the expected total waiting time of leftover packets is

O(N3) + (1− P (E))O(N7) = O(N3)

and the theorem is proved.

6. Final remarks. A close look at the analysis in section 5 shows that it is
possible to prove a stronger version of Theorem 1.1 in which the dependence of the
hidden multiplicative constant on λ and µ is specified: there exists a universal constant
α such that, for N sufficiently large,

E[W] ≤ α

(1− ρ)2
.(6.1)

The details of a proof of this result have been omitted because no new ideas are
needed, and because the added clutter makes the proof significantly harder to follow.
In broad outline, a proof can begin with the observation that if (6.1) can be proved
for the expected waiting time E[W (2)] of packets assigned in step 2, then changing
only the constant α, it must also hold for E[W]. This is not difficult to verify using
the probability bounds of sections 2 and 3, and the arguments in section 5.

It is then not difficult to verify that, within a constant factor independent of λ
and µ, E[W (2)] is the expected waiting time in a G/G/1 queue with arrivals in each
time slot having a binomial distribution with mean λb and service times having a
geometric distribution with rate parameter µ′ ≈ (1−2ε)(1−e−µb)e−2µb. For large N ,
the queue is asymptotically an M/G/1 queue, so by classical results, we get (Kleinrock
(1975), section 5.7)

E[W (2)] = O

(
1

(1− ρ′)µ′

)
,

where ρ′ = λ′/µ′ and λ′ = λb.
As in the analysis of Step 2 in section 5, we again choose b = Θ(µ−λµ2), and so

1− ρ′ = Ω(1− ρ) and µ′ = Ω(µb) = Ω(1− ρ). Thus, E[W (2)] and hence E[W] has a
bound of the form (6.1).

Asymptotics in N pose intriguing open problems for transit-time distributions
other than the geometric. The uniform distribution on {1, . . . , N − 1} is of particular
interest; extensive simulations by Coffman et al. (1995) give convincing evidence that
the bounds in Theorem 1.1 hold for this case as well, but no proof has yet been found.

Finally, in keeping with our Markov arrival and transit-time assumptions, it would
be interesting to study asymptotic behavior in the generalization of rings to toroidal
arrays of processors (see Leighton (1990, 1992)). Much is known about regular (open)
arrays, as can be seen from the recent work of Mitzenmacher (1994) and Kahale and
Leighton (1995), who give references to the earlier work on this problem. But the
analysis of toroidal arrays seems to require different methods.

Acknowledgment. We are grateful to M. Harchol-Balter for improvements to
an early version of this paper, and to I. Telatar and A. Weiss for helpful discussions.
The second author also thanks DIMACS for its hospitality.

1236 E. COFFMAN, JR., N. KAHALE, AND F. LEIGHTON

REFERENCES

N. Alon and J. H. Spencer (1991), The Probabilistic Method, John Wiley, New York.
S. Asmussen (1987), Applied Probability and Queues, John Wiley, New York.
L. A. Barroso and M. Dubois (1992), The performance of Cache-Coherent ring-based multipro-

cessors, in Proc. 20th Ann. Internat. ACM Symp. Comp. Arch., ACM, New York, pp. 268–277.
P. Billingsley (1986), Probability and Measure, 2nd ed., John Wiley, New York.
E. G. Coffman, Jr., E. N. Gilbert, A. G. Greenberg, F. T. Leighton, P. Robert, and A. L.

Stolyar (1995), Queues served by a rotating ring, Stochastic Models, 11, pp. 371–394.
L. Georgiadis, W. Szpankowski, and L. Tassiulas (1997), Stability analysis of quota allocation

access protocols in ring networks with spatial reuse, IEEE Trans. Inform. Theory, 43, pp. 923–
937.

N. Kahale and F. T. Leighton (1995), Greedy dynamic routing on arrays, in Proc. 6th Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, pp. 558–566.

L. Kleinrock (1975), Queueing Systems, Vol. I, John Wiley, New York.
F. T. Leighton (1990), Average case analysis of greedy routing algorithms on arrays, in Proc. 2nd

Ann. ACM Symp. Parallel Algs. Arch., ACM, New York, pp. 2–10.
F. T. Leighton (1992), Introduction To Parallel Algorithms and Architectures: Arrays, Trees, Hy-

percubes, Morgan Kaufmann, San Mateo, CA.
M. Mitzenmacher (1994), Bounds on the greedy algorithm for array networks, in Proc. 6th Ann.

ACM Symp. Parallel Alg. Arch., ACM, New York, pp. 346–353.
N. U. Prabhu (1965), Stochastic Processes, Macmillan, New York.
B. Van Arem and E. A. Van Doorn (1990), Analysis of a queueing model for slotted ring networks,

Comput. Networks ISDN Systems, 20, pp. 309–314.

APPROXIMATION ALGORITHMS FOR PSPACE-HARD
HIERARCHICALLY AND PERIODICALLY SPECIFIED PROBLEMS∗

MADHAV V. MARATHE† , HARRY B. HUNT III‡ , RICHARD E. STEARNS‡ , AND

VENKATESH RADHAKRISHNAN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1237–1261, October 1998 002

Abstract. We study the efficient approximability of basic graph and logic problems in the
literature when instances are specified hierarchically as in [T. Lengauer, J. Assoc. Comput. Mach.,
36(1989), pp. 474–509] or are specified by one-dimensional finite narrow periodic specifications as in
[E. Wanke, Paths and cycles in finite periodic graphs, in Lecture Notes in Comp. Sci. 711, Springer-
Verlag, New York, 1993, pp. 751–760]. We show that, for most of the problems Π considered when
specified using k-level-restricted hierarchical specifications or k-narrow periodic specifications, the
following hold.

(i) Let ρ be any performance guarantee of a polynomial time approximation algorithm for
Π, when instances are specified using standard specifications. Then ∀ε > 0, Π has a polynomial time
approximation algorithm with performance guarantee (1 + ε)ρ.

(ii) Π has a polynomial time approximation scheme when restricted to planar instances.
These are the first polynomial time approximation schemes for PSPACE-hard hierarchically

or periodically specified problems. Since several of the problems considered are PSPACE-hard,
our results provide the first examples of natural PSPACE-hard optimization problems that have
polynomial time approximation schemes. This answers an open question in Condon et al. [Chicago
J. Theoret. Comput. Sci., 1995, Article 4].

Key words. hierarchical specifications, periodic specifications, PSPACE-hardness, approxima-
tion algorithms, computational complexity, CAD systems, VLSI design

AMS subject classifications. 68R10, 68Q15, 68Q25, 05C40

PII. S0097539795285254

1. Introduction and motivation. Many practical applications of graph the-
ory and combinatorial optimization in CAD systems, mechanical engineering, VLSI
design, and software engineering involve processing large objects constructed in a sys-
tematic manner from smaller and more manageable components [13]. An important
example of this occurs in VLSI technology. Currently, VLSI circuits can consist of
millions of transistors. But such large circuits usually have a highly regular design
and consequently are defined systematically, in terms of smaller circuits. As a result,
the graphs that abstract the structure and operation of the underlying circuits (de-
signs) also have a regular structure and are defined systematically in terms of smaller
graphs. Methods for describing large but regular objects by small descriptions are
referred to as succinct specifications. Over the last 20 years several theoretical models
have been put forward to succinctly represent objects such as graphs and circuits.

∗Received by the editors April 20, 1995; accepted for publication (in revised form) June 21, 1996;
published electronically May 19, 1998. A preliminary version of this paper appeared in Proc. 26th
ACM Ann. Symp. on Theory of Computing, 1994, pp. 468–477.

http://www.siam.org/journals/sicomp/27-5/28525.html
†Los Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos, NM 87545 (marathe@

lanl.gov). Part of this research was done when the author was at SUNY-Albany and was supported
by NSF grant CCR 94-06611. This work was supported by Department of Energy contract W-7405-
ENG-36.

‡Department of Computer Science, State University of New York (SUNY) at Albany, Albany, NY
12222 (hunt@cs.albany.edu, res@cs.albany.edu). This research was supported by NSF grants CCR
89-03319 and CCR 94-06611.

§Mailstop 47LA-2, Hewlett-Packard Company, 19447 Pruneridge Avenue, Cupertino, CA 95014-
9913 (rven@cup.hp.com). Part of the research was done when the author was at SUNY-Albany, and
was supported by NSF grant CCR 89-03319.

1237

1238 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

(See, for example, [5, 6, 11, 19, 23, 26, 27, 34, 48, 50, 52, 57].) Here, we study two
kinds of succinct specifications, namely, hierarchical and periodic specifications.

Hierarchical specifications allow the overall design of an object to be partitioned
into the design of a collection of modules, which is a much more manageable task than
producing a complete design in one step. Such a top down (or hierarchical design)
approach also facilitates the development of CAD systems, since low-level objects
can be incorporated into libraries and can thus be made available as submodules to
designers of large scale objects. Other areas where hierarchical specifications have
found applications are VLSI design and layout [18, 19, 47, 55], finite element analysis,
software engineering [13], and datalog queries (see [18, 29, 43] and the references
therein). Periodic specifications can also be used to define large scale systems with
highly regular structures. Using periodic specifications, large objects are described
as repetitive connections of a basic module. Frequently, the modules are connected
in a linear fashion, but the basic modules can also be repeated in two- or higher
dimensional patterns. Periodic specifications are also used to model time variant
problems, where the constraints or demands for any one period are the same as those
for preceding or succeeding periods. Periodic specifications have applications in such
diverse areas as operations/management [46], transportation planning [18, 43, 48],
parallel programming [18, 26], and VLSI design [23, 24].

Typically, the kinds of hierarchical and periodic specifications studied in the lit-
erature are generalizations of standard specifications used to describe objects. An
important feature of both these kinds of specifications is that they can be much more
concise in describing objects than standard specifications. In particular, the size of
an object can be exponential in the size of its periodic or hierarchical specifications.
As a result of this, problems for hierarchically and periodically specified inputs often
become PSPACE-hard, NEXPTIME-hard, etc.

In this paper, we concentrate our attention on

1. the hierarchical specifications of Lengauer [31, 34, 35] (referred to as L-
specifications) and

2. the one-dimensional finite periodic specifications of Gale and Wanke [10, 58]
(referred to as 1-FPN-specifications).

Both of these specifications have been used to model problems in areas such as CAD
systems and VLSI design [35, 32, 36], transportation planning [10], parallel program-
ming [58], etc. We give formal definitions of these specifications in sections 4 and
5.

Let Π be a problem posed for instances specified using standard specifications.
For example, if Π is a satisfiability problem for CNF formulas, the standard specifica-
tion is sets of clauses, with each clause being a set of literals. Similarly, if Π is a graph
problem, the adjacency matrix representation or the adjacency list representation of
the edges in the graph are standard specifications. For the rest of the paper, we use

1. l-Π to denote the problem Π, when instances are specified using the hierar-
chical specifications of Lengauer [35] (see Definition 4.1), and

2. 1-fpn-Π to denote the problem Π, when instances are specified using the
one-dimensional finite periodic specifications of Wanke [58] (see Definition 5.1).

Thus for example, l-3sat denotes the problem 3sat when instances are specified
using L-specifications, and 1-fpn-3sat denotes the problem 3sat when instances are
specified using 1-FPN-specifications. For the rest of this paper, we use the term
succinct specifications to mean both L-specifications and 1-FPN-specifications.

APPROXIMATION ALGORITHMS 1239

2. Summary of results. In this paper, we discuss a natural syntactic restriction
on the L-specifications and call the resulting specifications level-restricted specifica-
tions. (For 1-FPN-specifications our notion of level-restricted specifications closely
coincides with Orlin’s notion of narrow specifications [48].) Most of the problems
considered in this paper are PSPACE-hard even for level-restricted specifications (see
[37, 44, 48]). Consequently, we focus our attention on devising polynomial time ap-
proximation algorithms for level-restricted L- or 1-FPN-specified problems. Recall
that an approximation algorithm for a minimization problem1 Π provides a perfor-
mance guarantee of ρ if for every instance I of Π, the solution value returned by the
approximation algorithm is within a factor ρ of the optimal value for I. A polynomial
time approximation scheme (PTAS) for problem Π is a family of algorithms such that,
given an instance I of Π, ∀ε > 0, there is a polynomial time algorithm in the family
that returns a solution which is within a factor (1+ ε) of the optimal value for I. The
main contributions of this paper include the following.

(i) We design polynomial time approximation algorithms (for arbitrary in-
stances) and approximation schemes (for planar instances) for a variety of natural
PSPACE-hard problems specified using level-restricted L- or 1-FPN-specifications.
These are the first PTASs in the literature for “hard” problems specified using either
L- or 1-FPN-specifications. To obtain our results we devise a new technique called the
partial expansion. The technique has two desirable features. First, it works for a large
class of problems and second, it works well for both L-specified and 1-FPN-specified
problems.

(ii) For problems specified using level-restricted L- or 1-FPN-specifications, we
devise polynomial time approximation algorithms with performance guarantees that
are asymptotically equal to the best possible performance guarantees for the corre-
sponding problems specified using standard specifications.

(iii) The results presented in this paper are a step towards finding sufficient
syntactic restrictions on the L- or 1-FPN-specifications that allow us to specify a
number of realistic designs in a succinct manner while making them amenable for
rapid processing.

Our results provide the first examples of natural PSPACE-complete problems
whose optimization versions have PTASs. Thus they affirmatively answer the question
posed by Condon et al. [8] of whether there exist natural classes of PSPACE-hard
optimization problems that have PTASs.

2.1. The meaning of approximation algorithms for succinctly specified
problems. When objects are represented using L- or 1-FPN-specifications, there are
several possible ways of defining what it means to “design a polynomial time approxi-
mation algorithm.” Corresponding to each decision problem Π, specified using either
L- or 1-FPN-specifications, we consider four variants of the corresponding optimiza-
tion problem. We illustrate this with an example.

Example 1. Consider the minimum vertex cover problem, where the input is an
L-specification of a graph G. We provide efficient algorithms for the following versions
of the problem.

1. The construction problem: Output an L-specification of the set of vertices in
the approximate vertex cover C.

2. The size problem: Compute the size of the approximate vertex cover C for G.

1A similar definition can be given for maximization problems.

1240 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

3. The query problem: Given any vertex v of G and the path from the root to
the node in the hierarchy tree (see section 2 for the definition of hierarchy tree) in
which v occurs, determine whether v belongs to the vertex cover C.

4. The output problem: Output the approximate vertex cover C.

Note that our algorithms for the four variants of the problem apply to the same
vertex cover C. Our algorithms for (1), (2), and (3) above run in time polynomial in the
size of the L-specification rather than the size of the graph obtained by expanding the
L-specification. Our algorithm for (4) runs in time linear in the size of the expanded
graph but uses space which is only polynomial in the size of the L-specification.

Analogous variants of approximation algorithms can be defined for problems spec-
ified using 1-FPN-specifications. Therefore, we omit this discussion.

These variants are natural extensions of the definition of approximation algo-
rithms for problems specified using standard specifications. This can be seen as
follows: when instances are specified using standard specifications, the number of
vertices is polynomial in the size of the description. Given this, any polynomial time
algorithm to determine if a vertex v of G is in the approximate minimum vertex cover
can be easily modified to obtain a polynomial time algorithm that lists all the vertices
of G in the approximate minimum vertex cover. Thus, in the case when inputs are
specified using standard specifications, (3) can be used to solve (2) and (4) in poly-
nomial time. The above discussion also shows that given an optimization problem
specified using standard specifications, variants (1), (3), and (4) discussed above are
polynomial time interreducible.

The approximation algorithms given in this paper have another desirable feature.
For an optimization problem or a query problem, our algorithms use space and time,
which is a low level polynomial in the size of the hierarchical or the periodic specifica-
tion. This implies that for graphs of size N , which are specified using specifications of
size O(polylogN), the time and space required to solve problems is only O(polylogN).
Moreover, when we need to output the subset of vertices, subset of edges, etc. corre-
sponding to a vertex cover, maximum cut, etc., in the expanded graph, our algorithms
take essentially the same time but substantially less (often logarithmically less) space
than algorithms that work directly on the expanded graph. The graphs obtained by
expanding hierarchical or periodic descriptions are frequently too large to fit into the
main memory of a computer [31]. This is another reason for designing algorithms
which exploit the regular structure of the underlying graphs. Indeed, most of the
standard algorithms in the literature assume that the input completely resides in the
main memory. As a result, even the most efficient algorithms incur a large number of
page faults while executing on the graphs obtained by expanding the hierarchical or
periodic specifications. Hence, algorithms designed for solving problems for graphs or
circuits represented in a standard fashion are often impractical for succinctly specified
graphs. We refer the reader to [31, 36] for more details on this topic.

The rest of the paper is organized as follows. Section 3 contains discussion of
related research. In sections 4, 5, and 6 we give the basic definitions and preliminaries.
In section 7 we discuss our approximation algorithms for L-specified problems and
1-FPN-specified problems. Finally, in section 8, we give concluding remarks and
directions for future research.

3. Related research. In the past, much work has been done on characterizing
the complexity of various problems when instances are specified using L- or 1-FPN-
specifications. For periodically specified graphs, several researchers [6, 7, 19, 26, 27,
29, 49, 50] have given efficient algorithms for solving problems such as determining

APPROXIMATION ALGORITHMS 1241

strongly connected components, testing for existence of cycles, find-
ing minimum cost paths between a pair of vertices, bipartiteness, pla-
narity, and minimum cost spanning forests. Orlin [50] and Wanke [58] discuss
NP- and PSPACE-hardness results for infinite and finite periodically specified graphs.

For L-specified graphs, Lengauer and Wanke [32, 34, 35] and Williams [59] have
given efficient algorithms to solve several graph-theoretic problems including
2-coloring, minimum spanning forests, and planarity testing. Lengauer
and Wagner [37] show that the following problems are PSPACE-hard when graphs
are L-specified: 3-coloring, Hamiltonian circuit and path, monotone cir-
cuit value problem, network flow, alternating graph accessibility, and
maximum independent set. In [38], Lengauer and Wanke consider a more general
hierarchical specification of graphs based on graph grammars and give efficient al-
gorithms for several basic graph-theoretic problems specified using this specification.
We refer the reader to [18, 43] for a detailed survey of the work done in the area of
hierarchical and periodic specifications.

A substantial amount of research has been done on finding polynomial time ap-
proximation algorithms with provable worst case guarantees for NP-hard problems.
In contrast, until recently little work has been done towards investigating the exis-
tence of polynomial time approximation algorithms for PSPACE-hard problems. As a
step in this direction, in [40, 41] we have investigated the existence and nonexistence
of polynomial time approximations for several PSPACE-hard problems for L-specified
graphs. In [20], we considered geometric intersection graphs defined using the hierar-
chical specifications (HIL) of Bentley, Ottmann, and Widmayer [5]. There, we devised
efficient PTASs for a number of problems for geometric intersection graphs specified
using a restricted form of HIL.

Condon et al. [8, 9] also studied the approximability of several PSPACE-hard op-
timization problems. They characterize PSPACE in terms of probabilistically check-
able debate systems and use this characterization to investigate the existence and
nonexistence of polynomial time approximation algorithms for a number of basic
PSPACE-hard optimization problems.

4. The L-specifications. This section discusses the L-specifications. The fol-
lowing two definitions are essentially from Lengauer [32, 35, 37].

Definition 4.1. An L-specification Γ = (G1, . . . , Gn) of a graph is a sequence
of labeled undirected simple graphs Gi called cells. The graph Gi has mi edges and
ni vertices. pi of the vertices are called pins. The other (ni − pi) vertices are called
inner vertices. ri of the inner vertices are called nonterminals. The (ni − ri) vertices
are called terminals. The remaining ni − pi − ri vertices of Gi that are neither pins
nor nonterminals are called explicit vertices.

Each pin of Gi has a unique label, its name. The pins are assumed to be numbered
from 1 to pi. Each nonterminal in Gi has two labels (v, t), a name, and a type. The
type t of a nonterminal in Gi is a symbol from G1, . . . , Gi−1. The neighbors of a
nonterminal vertex must be terminals. If a nonterminal vertex v is of the type Gj in
Gi, then v has degree pj and each terminal vertex that is a neighbor of v has a distinct
label (v, l) such that 1 ≤ l ≤ pj. We say that the neighbor of v labeled (v, l) matches
the lth pin of Gj.

Note that a terminal vertex may be a neighbor of several nonterminal vertices.
Given an L-specification Γ, N =

∑
1≤i≤n ni denotes the vertex number, and M =∑

1≤i≤nmi denotes the edge number of Γ. The size of Γ, denoted by size(Γ), is
N +M .

1242 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

Definition 4.2. Let Γ = (G1, . . . , Gn) be an L-specification of a graph E(Γ) and
let Γi = (G1, . . . , Gi) . The expanded graph E(Γ) (i.e., the graph associated with Γ)
is obtained as follows.

k = 1: E(Γ) = G1.

k > 1: Repeat the following step for each nonterminal v of Gk, say of the type
Gj: delete v and the edges incident on v. Insert a copy of E(Γj) by identifying the
lth pin of E(Γj) with the node in Gk that is labeled (v, l). The inserted copy of E(Γj)
is called a subcell of Gk.

Observe that the expanded graph can have multiple edges although none of the
Gi have multiple edges. Here, however, we only consider simple graphs; i.e., there is
at most one edge between a pair of vertices. This means that multi-edges are treated
simply as single edges. We assume that Γ is not redundant in the sense that for each
j, 1 ≤ j ≤ n, there is a nonterminal v of type Gi in the definition of Gj , j > i.

The expansion E(Γ) is the graph associated with the L-specification Γ with vertex
number N . For 1 ≤ i ≤ n, Γi = (G1, . . . , Gi) is the L-specification of the graph
E(Γi). Note that the total number of nodes in E(Γ) can be 2Ω(N). (For example,
a complete binary tree with 2Ω(N) nodes can be specified using an L-specification
of size O(N).) To each L-specification Γ = (G1, . . . , Gn), n ≥ 1, we associate a
labeled rooted unoriented tree HT (Γ) depicting the insertions of the copies of the
graphs E(Γj) (1 ≤ j ≤ n − 1), made during the construction of E(Γ) as follows (see
Figure 4.1).

Definition 4.3. Let Γ = (G1, . . . , Gn), n ≥ 1, be an L-specification of the graph
E(Γ). The hierarchy tree of Γ, denoted by HT (Γ), is the labeled rooted unordered tree
defined as follows.

1. Let r be the root of HT (Γ). The label of r is Gn. The children of r in HT (Γ)
are in one-to-one correspondence with the nonterminal vertices of Gn as follows. The
label of the child s of r in HT (Γ) corresponding to the nonterminal vertex (v,Gj) of
Gn is (v,Gj).

2. For all other vertices s of HT (Γ) and letting the label of s = (v,Gj), the
children of s in HT (Γ) are in one-to-one correspondence with the nonterminal ver-
tices of Gj as follows. The label of the child t of s in HT (Γ) corresponding to the
nonterminal vertex (w,Gl) of Gj is (w,Gl).

Given the above definition, we can naturally associate a hierarchy tree corre-
sponding to each Γi, 1 ≤ i ≤ n. We denote this tree by HT (Γi). Note that each
vertex v of E(Γ) is either an explicit vertex of Gn or the copy of some explicit vertex
v′ of Gj (1 ≤ j ≤ n) in exactly one copy Cv

j of the graph E(Γj) inserted during the
construction of E(Γ). This enables us to assign v of E(Γ) to the unique vertex nv of
the HT (Γ) given by

1. if v is a terminal vertex of Gn, then nv is the root of HT (Γ), and
2. otherwise, v belongs to the node nv that is the root of the hierarchy tree

HT (Γj), corresponding to Cv
j .

Given HT (Γ), the level number of a node in HT (Γ) is defined as the length of
the path from the node to the root of the tree.

As noted in [35], L-specifications have the property that for each copy (instance)
of a nonterminal, a complete boundary description has to be given. Thus if a non-
terminal has a lot of pins, copying it is costly. Another property of the definition of
L-specifications is that nonterminals are adjacent only to terminals. These properties
ensure that the size of the “frontier” (or the number of neighbors) of any nonter-
minal is polynomial in the size of the specification. These properties weaken the

APPROXIMATION ALGORITHMS 1243

L-specifications with respect to other notions of hierarchy involving a substitution
mechanism that entails implicit connections to pins at a cell boundary [11, 57]. As a
result, regular structures such as grids cannot be specified using small L-specifications
(see [32]). In contrast, the graph glueing model of Galperin [11] allows a hierarchical
description of pins; thus the size of the frontier can be exponentially large. As a result,
graphs such as grids can be represented using descriptions of logarithmic size. How-
ever, as demonstrated in [11, 32, 34, 35, 57], these properties seem to be a prerequisite
for the construction of efficient exact algorithms for L-specified problems. As subse-
quent sections show, these restrictions are also necessary in part for devising efficient
approximation algorithms for L-specified problems. The size of the frontier also has
a significant impact on the complexity of several basic succinctly specified problems.
For example, several basic NP-hard problems become PSPACE-hard when specified
using L-specifications (see [37, 44]). In contrast, in a recent paper we show that these
problems typically become NEXPTIME-hard when specified using the graph glueing
specifications of [11] (see [45]).

By noting Definition 4.1, it follows that an L-specification is a restricted form of
a context-free graph grammar. The substitution mechanism glues the pins of cells to
neighbors of nonterminals representing these cells, as described in Definition 4.2. Such
graph grammars are known as hyperedge replacement systems [15] or cellular graph
grammars [38]. Two additional restrictions are imposed on cellular graph grammars
to obtain L-specified graphs. First, for each nonterminal there is only one cell that
can be substituted. Thus there are no alternatives for substitution. Second, the
index of the substituted cell has to be smaller than the index of the cell in which
the nonterminal occurs. The acyclicity condition together with the “no alternatives”
condition implies that an L-specification defines a unique finite graph. We observe
that HT (Γ) is the parse tree of the unique graph generated by the context-free graph
grammar Γ.

Example 2. Figure 4.1 depicts the L-specification G = (G1, G2, G3) and the
associate hierarchy tree HT (G). Figure 4.2 depicts the graph E(G) specified by G.
The correspondence between pins of Gj and neighbors of Gj in Gi, j < i, is clear by
the positions of the vertices and the pins.

4.1. Level-restricted specifications. We discuss level-restricted L-specifications
now. This is also discussed in [40, 41].

Definition 4.4. An L-specification Γ = (G1, . . . , Gn), n ≥ 1, of a graph G is
1-level-restricted if for all edges (u, v)of E(Γ), either

1. nu and nv are the same vertex of HT (Γ), or
2. one of nu or nv is the parent of the other in HT (Γ).
Extending the above definition we can define k-level-restricted specifications. An

L-specification Γ = (G1, . . . , Gn), n ≥ 1, of a graph E(Γ) is k-level-restricted, if for
all edges (u, v) of E(Γ), either

1. nu and nv are the same vertex of HT (Γ) or
2. one of nu or nv is an ancestor of the other in HT (Γ) and the length of the

path between nu and nv in HT (Γ) is no more than k.
We note that for any fixed k ≥ 1, k-level-restricted L-specifications can still lead

to graphs that are exponentially large in the sizes of their specifications. Moreover,
L-specifications (see [30, 31, 32]) for several practical designs are k-level-restricted for
small values of k. (For example, it is easy to define a complete binary tree with
2Ω(N) nodes by a 1-level-restricted L-specification of size O(N). Note however, that
the specification depicted in Figure 4.1 is not 1-level-restricted.) For the rest of the

1244 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

α

β

γ
1

2 3 4

5

1 G2G

G1 G1

G G1 2 e

a b c d

G3

G

G G

G G1 1

1 2

3

Hierarchy Tree

explicit vertices pins nonterminals

Fig. 4.1. An L-specification G of a graph E(G) and the associated hierarchy tree HT (G). The
mapping between the pins and its neighbors is clear by the relative positions of the pins and its
neighbors.

paper, given a problem Π specified using standard specifications, we use 1-l-Π to
denote the problem specified using 1-level-restricted L-specifications and k-l-Π to
denote the problem specified using k-level-restricted L-specifications.

5. 1-FPN-specifications. Next, we give the definition of one-dimensional pe-
riodic specifications due to Orlin [48], Wanke [58], and Höfting and Wanke [19]. For
the rest of the paper N and Z denote the set of nonnegative integers and integers,
respectively.

Definition 5.1. Let G(V,E) (referred to as a static graph) be a finite directed
graph such that each edge (u, v) has an associated nonnegative integral weight tu,v.
The undirected one-way infinite graph G∞(V ′, E′) is defined as follows:

1. V ′ = {v(p) | v ∈ V and p ∈ N},
2. E′ = {(u(p), v(p + tu,v)) | (u, v) ∈ E, tu,v is the weight associated with the

edge (u, v) and p ∈ N}.
A one-dimensional periodic specification Γ (referred to as 1-P-specification) is given
by Γ = (G(V,E)) and specifies the graph G∞(V ′, E′) (referred to as a 1-P-specified
graph).

A 1-P-specification Γ is said to be narrow or 1-level-restricted if ∀(u, v) ∈ E,
tu,v ∈ {0, 1}. This implies that ∀(u(p), v(q)) ∈ E′, |p − q| ≤ 1. Similarly, a 1-P-
specification is k-narrow or k-level-restricted if ∀(u, v) ∈ E, tu,v ∈ {0, 1, . . . , k}.

APPROXIMATION ALGORITHMS 1245

1 5

2 3 4

1 5

2 3 4

1 5

2 3 4
α β

γ

a b c

d

e

Fig. 4.2. The graph E(G) represented by G specified in Figure 4.1.

G 4

u u u

x x x x

0 1 2 3

3210

u u

x

4

4

G

1

1

1

v

w

1

x

u

Fig. 4.3. A static graph G, and the graph G4 specified by the 1-FPN-specification Γ = (G, 4).

We note that if we replace N by Z in Definition 5.1, we obtain a two-way infinite
periodically specified graph defined in Orlin [48]. It is sometimes useful to imagine
a narrow periodically specified graph G∞ as being obtained by placing a copy of the
vertex set V at each integral point (also referred to as lattice point) on the X-axis (or
the time line) and joining vertices placed on neighboring lattice points in the manner
specified by the edges in E.

Gm is the subgraph of the infinite periodic graph G∞ induced by the vertices
associated with nonnegative lattice points less than or equal to m. Formally, we have
the following definition.

1246 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

Definition 5.2. Let G(V,E) denote a static graph. Let G∞(V ′, E′) denote
the one-way infinite 1-PN-specified graph as in Definition 5.1. Let m ≥ 0 be an
integer specified using binary numerals. Let Gm(V m, Em) be a subgraph of G∞(V ′, E′)
induced by the vertices V m = {v(p)|v ∈ V and 0 ≤ p ≤ m}. A 1-FPN-specification is
given by Γ = (G(V,E),m) and specifies the graph Gm (referred to as a 1-FPN-specified
graph).

An example of a 1-FPN-specified graph appears in Figure 4.3. In [48], Orlin
defined the concept of two-way infinite one-dimensional periodically specified 3CNF
formulas and the associated 3sat problem [12]. It is straightforward to restrict Or-
lin’s definition along the lines of Definition 5.1 to define 1-FPN-specified satisfiability
problems. As a consequence, we omit the definition here. (See [44, 48, 54] for formal
definitions of periodically specified satisfiability problems.) We only give an example
of a 1-FPN-specified 3CNF formula to illustrate the concept.

Example 3. Let U = {x1, x2, x3} be a set of static variables. Let C be a set of
static clauses given by (x1(0) + x2(0) + x3(0)) ∧ (x1(1) + x3(0)) ∧ (x3(1) + x2(0)).
Let F = (U,C, 3) be a 1-FPN-specification. Then F specifies the 3CNF formula
F 3(U3, C3) given by

(x1(0) + x2(0) + x3(0)) ∧ (x1(1) + x3(0)) ∧ (x3(1) + x2(0))
∧

(x1(1) + x2(1) + x3(1)) ∧ (x1(2) + x3(1)) ∧ (x3(2) + x2(1))
∧

(x1(2) + x2(2) + x3(2)) ∧ (x1(3) + x3(2)) ∧ (x3(3) + x2(2))
∧

(x1(3) + x2(3) + x3(3)).

6. Other preliminaries. Recall that a graph is said to be planar if it can be laid
out in the plane in such a way that there are no crossovers of edges. For the rest of the
paper, we use l-pl-Π, 1-l-pl-Π, and 1-fpn-pl-Π to denote the problem Π restricted
to L-specified planar instances, 1-level-restricted L-specified planar instances, and 1-
FPN-specified planar instances, respectively. As shown in Lengauer [35], given an
L-specification Γ, there is a polynomial time algorithm to determine if E(Γ) is planar.
Similarly, as pointed out in [18], given a 1-FPN-specification Γ, there is a polynomial
time algorithm to determine if E(Γ) is planar. Thus for solving L- or 1-FPN-specified
problems restricted to planar instances, we can assume without loss of generality that
the inputs to our algorithms consist of planar instances.

Next, we define the problems max sat(S). The definition is essentially an exten-
sion of the definition of sat(S) given in Schaefer [56].

Definition 6.1 (Schaefer [56]). Let S = {R1, R2, . . . , Rm} be a finite set of finite
arity Boolean relations. (A Boolean relation is defined to be any subset of {0, 1}p for
some integer p ≥ 1. The integer p is called the arity of the relation.) An S-formula is
a conjunction of clauses, each of the form R̂i(ξ1, ξ2, . . .), where ξ1, ξ2, . . . are distinct,
unnegated variables whose number matches the arity of Ri, i ∈ {1, . . . ,m}, and R̂i is
the relation symbol representing the relation Ri. The S-satisfiability problem is the
problem of deciding whether a given S-formula is satisfiable. Given an S-formula
F , the problem max sat(S) is to determine the maximum number of simultaneously
satisfiable clauses in F .

APPROXIMATION ALGORITHMS 1247

As in Schaefer [56], given S, Rep(S) is the set of relations that are representable
by existentially quantified S-formulas with constants.

Recall from [39] that an S-formula f is said to be planar if its associated bipartite
graph is planar. The problem pl-3sat [39] is the problem of determining if a given
planar 3CNF formula is satisfiable. Lichtenstein [39] showed that the problem pl-
3sat is NP-complete.

Next, we define L-specified S-formulas. Such formulas are built by defining larger
S-formulas in terms of smaller S-formulas. Just as L-specifications of graphs can repre-
sent graphs that are exponentially larger than the specification, L-specified S-formulas
can specify formulas that are exponentially larger than the size of the specification.

Definition 6.2. An instance F = (F1(X
1), . . . , Fn−1(X

n−1), Fn(Xn)) of l-
sat(S) is of the form

Fi(X
i) =

 ∧

1≤j≤li
Fij (X

i
j , Z

i
j)

∧ fi(X

i, Zi)

for 1 ≤ i ≤ n, where fi are S-formulas, Xn = φ, Xi, Xi
j , Z

i, Zi
j , 1 ≤ i ≤ n − 1, are

vectors of Boolean variables such that Xi
j ⊆ Xi, Zi

j ⊆ Zi, 0 ≤ ij < i. Thus, F1 is
just an S-formula. An instance of l-sat(S) specifies an S-formula E(F), which is
obtained by expanding the Fj, 2 ≤ j ≤ n, where the set of variables Z’s introduced in
any expansion are considered distinct. The problem l-sat(S) is to decide whether the
formula E(F) specified by F is satisfiable. The corresponding optimization problem
denoted by l-max-sat(S) is to find the maximum number of simultaneously satisfiable
clauses in E(F).

Let ni be the total number of variables used in Fi (i.e., |Xi| + |Zi|) and let mi

be the total number of clauses in Fi. The size of F , denoted by size(F), is equal to∑
1≤i≤n(mini). Given a formula E(F) specified by an L-specification F , BG(E(F))

denotes the bipartite graph associated with E(F). We useH[BG(E(F))] to denote the
L-specification of BG(E(F)). It is easy to define level-restricted l-sat(S) formulas
along the lines of Definition 4.4. Hence we omit this definition here.

Example 4. Let F = (F1(x1, x2), F2(x3, x4), F3) be an instance of l-3sat where
each Fi is defined as follows:

F1(x1, x2) = (x1 + x2 + z1) ∧ (z2 + z3),

F2(x3, x4) = F1(x3, z4) ∧ F1(z4, z5) ∧ (z4 + z5 + x4),

F3 = F1(z7, z6) ∧ F2(z8, z7).

The formula E(F) denoted by F is (z7 +z6 +z1
1)∧(z1

2 +z1
3)∧(z8 +z4 +z2

1)∧(z2
2 +z2

3)∧
(z4 + z5 + z3

1) ∧ (z3
2 + z3

3) ∧ (z4 + z5 + z7).
We now extend the definition of pl-3sat given in [39] to define the l-pl-3sat.
Definition 6.3. The problem l-pl-3sat is to decide whether the planar 3CNF

formula E(F) specified by an L-specification F is satisfiable. The corresponding op-
timization problem denoted by l-pl-max-3sat is to find the maximum number of
simultaneously satisfiable clauses in E(F).

Extensions of the above definition to 1-l-pl-3sat,1-l-pl-max-3sat, l-pl-sat(S),
l-pl-max-sat(S), 1-l-pl-sat(S), 1-l-pl-max-sat(S), 1-fpn-pl-sat(S), and 1-fpn-
pl-max-sat(S) are straightforward and are omitted.

1248 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

Finally we state the following PSPACE-completeness results proved in a sequel
paper [44]. The definitions of the problems mentioned in the following theorems can
be found in [12].

Theorem 6.4. The following problems are PSPACE-complete for 1-level-restricted
L-specified planar instances: independent set, vertex cover, partition into
triangles, and sat(S) such that Rep(S) is the set of all finite arity Boolean rela-
tions.

Theorem 6.5. The following problems are PSPACE-complete for 1-FPN-specified
planar instances: independent set, vertex cover, partition into triangles,
and sat(S) such that Rep(S) is the set of all finite arity Boolean relations.

7. Approximation algorithms. The hardness results in Theorems 6.4 and 6.5
motivate the study of polynomial time approximation algorithms with good perfor-
mance guarantees for these problems. We show that several basic combinatorial prob-
lems (including the ones in Theorems 6.4 and 6.5) have approximation algorithms with
performance guarantees asymptotically equal to the best known performance guar-
antees, when instances are specified using standard specifications. As an immediate
corollary, most of the problems shown to have PTASs in [3, 21] when instances are
represented using standard specifications have PTASs when instances are specified by
either k-level-restricted L-specifications or 1-FPN-specifications.

7.1. The basic technique: Partial expansion. We outline the basic tech-
nique behind the approximation algorithms for the 1-level-restricted L-specified prob-
lems. Consider one of the maximization problems Π in this paper. Let A be an
approximation algorithm with performance guarantee FBEST for Π when specified
using standard specifications. Also, let T (N) denote an increasing function that is an
upper bound on the running time of A used to solve Π specified using standard specifi-
cations of size O(N). Then, given a fixed l ≥ 1, our approximation algorithm for 1-l-Π
takes time O(N ·T (N l+1)) and has a performance guarantee of (l+1

l) ·FBEST . Infor-
mally, the algorithm consists of (l+ 1) iterations. During an iteration i we delete2 all
the explicit vertices which belong to nonterminals defined at level j, j = i mod (l+1).
This breaks up the given hierarchy tree into a collection of disjoint trees. The algo-
rithm finds a near-optimal solution for the vertex-induced subgraph3 defined by each
small tree and outputs the union of all these solutions as the solution for the problem
Π. It is important to observe that the hierarchy tree can have an exponential number
of nodes. Hence the deletion of nonterminals and the determination of near-optimal
solutions for each subtree has to be done in such a manner that the whole process
takes only polynomial time. This is achieved by observing that the subtrees can be
divided into n distinct equivalence classes and that the number of subtrees in each
equivalence class can be counted in polynomial time in the size of the specification.

We remark that our idea of dividing the graph into vertex (edge) disjoint sub-
graphs is similar to the technique used by Baker [3] for obtaining approximation
schemes for planar graph problems.

7.2. Maximum independent set problem for 1-level-restricted L-specified
planar graphs. We illustrate the technique by giving a PTAS for the maximum
independent set problem for 1-level-restricted L-specified planar graphs. The in-
dependent set problem is defined as follows. Given a graph G = (V,E) and a

2For the minimization problem, instead of deleting the vertices in the level, we consider the
vertices as a part of both the subtrees.

3For a fixed l, the size of each subgraph is polynomial in the size of the specification.

APPROXIMATION ALGORITHMS 1249

positive integer K ≤ |V |, is there an independent of size K or more for G, i.e., a
subset V ′ ⊆ V with |V ′| ≥ K such that for each u, v ∈ V ′ (u, v) 6∈ E ? The opti-
mization problem called the maximum independent set problem (mis) requires
one to find an independent set of maximum size. In [40], we showed that given an
L-specification that has edges between pins in the same cell, there is a polynomial
time algorithm to construct a new L-specification such that there is no edge between
pins in the same cell. Consequently, we assume without loss of generality that in the
given L-specification there is no edge between two pins in the same nonterminal.

In the following description, we use HIS(Gi) to denote the approximate indepen-
dent set for the graph E(Γi) obtained by our algorithm H-MIS. We also use F-MIS
to denote the algorithm of Baker [3] for finding an approximate independent set in a
planar graph specified using a standard specification. Before we discuss the details of
the heuristic we define the concept of partial expansion of an L-specification. Recall
that, for each nonterminal Gi there is a unique hierarchy tree HT (Gi) rooted at Gi.

Definition 7.1. Let Γ = (G1, . . . , Gn) be an L-specification of a graph E(Γ).
The partial expansion PE(Gj

i) of the nonterminal Gi is constructed as follows:

j = 0: PE(Gj
i) = Gi− {all the explicit vertices defined in Gi}. (Thus the defi-

nition of PE(Gj
i) now consists of a collection of the nonterminals and pins called in

the definition of Gi.)

j ≥ 1: Repeat the following step for each nonterminal Gr called by Gi: Insert a
copy of PE(Gj−1

r) by identifying the lth pin of PE(Gj−1
r) with the node in Gi that is

labeled (v, l). (Observe that the definition of PE(Gj
i) consists of (i) explicit vertices

defined in all the nonterminals at depth r, 0 ≤ r ≤ j − 1, in HT (Gi) and (ii) a
multiset of nonterminals Gk, such that the nonterminal Gk occurs at depth j + 1 in
the hierarchy tree HT (Gi).)

Let Ex(PE(Gj
i)) denote the subgraph induced by the set of explicit vertices in

the definition of PE(Gj
i). Also let V (E(Γi)) denote the set of vertices in E(Γi).

Heuristic H-MIS

• Input: A 1-level-restricted L-specification Γ = (G1, . . . , Gn) of a planar
graph G and an integer l ≥ 1.

• Output: An L-specification of an independent set for E(Γ) whose size is at
least (l

l+1)2 times the size of an optimal independent set in E(Γ).
• 1. For each 1 ≤ i ≤ l, find a near-optimal independent set in E(Γi) using

F-MIS.
2. For each l + 1 ≤ i ≤ n− 1

(a) Compute the partial expansion PE(Gl
i) of Gi.

(b) Find an independent set in the subgraph Ex(PE(Gl
i)) using heuris-

tic F-MIS. Denote this by Al
i.

(c) Let Gi1 , . . . , Gip denote the multiset of nonterminals in PE(Gl
i).

Then the independent set for the whole graph for the iteration i
denoted by HIS(Gi) is given by

HIS(Gi) = Al
i ∪

⋃
1≤r≤p

HIS(Gir).

Remark. The explicit vertices in PE(Gl
i) do not have an edge to

any of the nonterminals Gi1 , . . . , Gip . From this observation and the

1250 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

definition of hierarchical specification, the independent set HIS(Gi)
can now be calculated as follows.

(d)

|HIS(Gi)| = |Al
i|+

∑
1≤r≤p

|HIS(Gir)|.

3. For each 0 ≤ i ≤ l
(a) Compute the partial expansion PE(Gi

n) of Gn.
(b) Find a near-optimal independent set of all the explicit vertices in

PE(Gi
n) using F-MIS. Denote this by Ai

n.
(c) Let Gn1

, . . . , Gnp denote the multiset of nonterminals in PE(Gi
n).

The independent set for the whole graph for the iteration i, denoted
by HISi(Gn), is given by

HISi(Gn) = Ai
n ∪

⋃
1≤r≤p

HIS(Gnr).

Remark. By a remark similar to the one in step 2(c) of the algorithm,
we have the following.

(d)

|HISi(Gn)| = |Ai
n|+

∑
1≤r≤p

|HIS(Gnr)|.

4. The independent set HIS(G) is the largest among all the independent
sets HISi(Gn) computed in step 3(c).

5. |HIS(G)| = max0≤i≤l |HISi(Gn)|.
7.3. Analysis and performance guarantee. The correctness of H-MIS and

the proof of its performance guarantee is based on the following intermediate results.
Lemma 7.2. The set HIS(G) computed by the algorithm H-MIS in step 4 is an

independent set.
Proof. We first prove that the set for 1 ≤ i ≤ n− 1, HIS(Gi), is an independent

set. The proof is by induction on the depth of the hierarchy tree HT (Γ).
Basis: If the depth is ≤ l, the proof follows by the correctness of algorithm F-MIS.
Induction: Assume that the lemma holds for all hierarchy trees of depth at most
m > l. Consider a hierarchy tree of depth m+1. Step 2(c) of the algorithm computes
a partial expansion PE(Gl

i). This implies that the explicit vertices in PE(Gl
i) do not

have edges incident on the nonterminals in PE(Gl
i). Thus, by the definition of 1-level-

restricted L-specifications and partial expansion, it follows that the independent sets
Al
i and the sets HIS(Gir), 1 ≤ r ≤ p, computed in steps 2(b) and 2(c) are disjoint.

Also, the nonterminals in PE(Gl
i) are at level l+1 in HT (Gi) and have an associated

hierarchy tree of depth ≤ m. Thus, by the induction hypothesis and the above stated
observations, it follows that HIS(Gm) computed in step 2(c) is an independent set.
This completes the proof that 1 ≤ i ≤ n− 1, and HIS(Gi) is an independent set.

A similar inductive argument proves that the set HISi(Gn) computed in each
iteration of step 3(c) is also an independent set. By step 4, we have that HIS(G) is
an independent set.

Lemma 7.3.
1. In each iteration i, l + 1 ≤ i ≤ n − 1, of step 2 of algorithm H-MIS, all

the explicit vertices in nonterminals at levels j = l mod (l + 1) in the hierarchy tree
HT (Gi) are deleted.

APPROXIMATION ALGORITHMS 1251

2. In each iteration i of step 3 of algorithm H-MIS, all the explicit vertices in
nonterminals at levels j = i mod (l + 1) in the hierarchy tree HT (Gn) are deleted.

Proof of Part 1. Induction on the depth of the hierarchy tree associated with Gi.
Basis: If the depth is l + 1, the proof follows directly by step 1 and the definition of
partial expansion.
Induction: Assume that the lemma holds for all hierarchy trees of depth at most
m > (l + 1). Consider a hierarchy tree of depth m + 1. Step 2(c) of the algorithm
computes the partial expansion PE(Gl

i). This implies that all the explicit vertices at
level l in the hierarchy tree HT (Gi) were deleted. Each nonterminal occurring in the
definition of PE(Gl

i) is at level l+ 1 in HT (Gi) and has an associated hierarchy tree
of depth ≤ m. The proof now follows by the induction hypothesis.

Proof of Part 2. Consider a hierarchy tree HT (Gn). In iteration i of step 3 we
compute PE(Gi

n). This removes all the explicit vertices defined in nonterminals at
level i. Also, by the definition of partial expansion it follows that all explicit vertices
defined in nonterminals at levels 1 to i appear explicitly in the partially expanded
graph. Therefore, the partially expanded graph now has nonterminals defined at level
i+1 in the hierarchy tree HT (Gn). The proof now follows as a consequence of part 1
of the lemma.

Given the decomposition of E(Γ) into a forest (as a result of removing explicit
vertices in nonterminals at levels j = i mod (l + 1) in the hierarchy tree HT (Gn))
we can associate a hierarchy tree with each of the subgraphs in the forest. Each such
tree is a subtree of the original hierarchy tree HT (Γ). Label each subtree by the type
of nonterminal that is the root of the subtree. The proof of the following lemma is
straightforward.

Lemma 7.4.
1. During each iteration i of step 3 of the algorithm H-MIS, the root of each

subtree is labeled by one of the elements of the set {G1, . . . , Gn−1}.
2. For 1 ≤ i ≤ n, let Hi

1, . . . , H
i
ri be the set of graphs corresponding to the

subtrees labeled Gi. Then for each i the graphs Hi
1, . . . , H

i
ri are isomorphic.

7.3.1. At least one good iteration exists. Next we prove that at least one it-
eration of step 3 has the property that the number of nodes of an optimal independent
set that are deleted is a small fraction of the optimal independent set.

Let Fi denote the set of vertices obtained by deleting the explicit nodes in iteration
i in step 3 of algorithm H-MIS. By Lemma 7.3 it follows that for each iteration i we
did not consider the explicit vertices in levels ji1 , ji2 , . . . , jip such that 1 ≤ ip ≤ n and
jiq = i mod (l+ 1), 1 ≤ q ≤ p. Let Si, 0 ≤ i ≤ l, be the set of vertices not considered
in iteration i of step 3. Let IS(Gn) denote an optimum independent set in the graph
E(Γ). Let ISopt(Si) denote the nodes in Si included in the maximum independent
set IS(Gn).

Lemma 7.5.

max
0≤i≤l

|IS(Fi)| ≥ l

(l + 1)
|IS(Gn)|.

Proof. By Lemma 7.3 and the algorithm H-MIS, it follows that

Si ∩ Sj = φ, ∪t=l
t=0 St = V (E(Γ)), and

|ISopt(S0)|+ |ISopt(S1)|+ · · ·+ |ISopt(Sl)| = |IS(Gn)|.

1252 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

Therefore,

min
0≤i≤l

|ISopt(Si)| ≤ |IS(Gn)|/(l + 1),

max
0≤i≤l

|IS(Fi)| ≥ |IS(Gn)| − min
0≤i≤l

|ISopt(Si)| ≥ l

(l + 1)
|IS(Gn)|.

7.3.2. Performance guarantee and running time. We now prove that the
above algorithm computes a near-optimal independent set. Given any ε > 0, for some
choice of positive integer l such that (l

l+1)2 ≥ (1− ε), we show that algorithm H-MIS
computes an independent set whose size is at least (1− ε) times the size of an optimal
independent set. We first recall a similar lemma in [3] for planar graphs specified
using standard specifications.

Theorem 7.6 (see [3]). For all fixed l ≥ 1, given a planar graph G there is a
linear time algorithm that computes an independent set FIS(G) such that |FIS(G)| ≥
(l
l+1) · |IS(G)|, where IS(G) denotes a maximum independent set in G.

Lemma 7.7. |HISi(Gn)| ≥ (l
l+1) · |IS(Fi)|.

Proof (induction on the number of nonterminals in the definition of Γ). The base
case is fairly straightforward. Consider the induction step. By the definition of partial
expansion it follows that

|IS(Fi)| = |IS(Ex(PE(Gi
n)))|+

∑
1≤r≤p

|IS(PE(Gnr))|.

From step 3(c) of the algorithm H-MIS we also know that

|HISi(Gn)| = |Ai
n|+

∑
1≤r≤p

|HIS(Gnr)|.

From the induction hypothesis and Theorem 7.6 it follows that

Ai
n| ≥

(
l

l + 1

)
· |IS(Ex(PE(Gi

n)))| and

|HIS(Gnr)| ≥
(

l

l + 1

)
· |IS(PE(Gnr))|.

The lemma now follows.
Theorem 7.8. |HIS(G)| ≥ (l

l+1)2 · |IS(G)|.
Proof. The proof follows from Lemma 7.5 and repeated application of Lemma

7.7.
Theorem 7.9. Let Γ be an L-specification with vertex number N . Given any

ε > 0, let l ≥ 1 be an integer such that (l
l+1)2 ≥ (1 − ε). Then the approximation

algorithm H-MIS runs in time O(N l+2) and finds an independent set in E(Γ) that is
at least (l

l+1)2 times the size of an optimal independent set in E(Γ).
Proof. The performance guarantee follows by Theorem 7.8. Therefore, we only

prove the claimed time bounds.
First consider step 1. Note that by Euler’s formula, the number of edges in a

planar graph with O(N l) vertices is also O(N l). Thus, the size of the graphs E(Γi),
1 ≤ i ≤ l, is O(N l). Hence the time required to compute the partial expansion is

APPROXIMATION ALGORITHMS 1253

O(N l). By Theorem 7.6, the time needed to compute an independent set in E(Γi) is
O(N l). Thus the total running time of step 1 is O(N l).

Next consider each iteration of step 2 of the algorithm H-MIS. Step 2(a) takes
time O(N l+1) since the size of the graph PE(Gl

i) can be O(N l+1). By Theorem
7.6, the time needed for executing step 2(b) is O(N l), since the number of nodes
in Ex(PE(Gl

i)) can be O(N l). By Lemma 7.4, steps 2(c) and 2(d) together take
time O(N). Therefore, the total running time for executing one iteration of step 2 is
O(N l+1). Thus the total running time of step 2 is nO(N l+1) = O(N l+2).

A similar calculation shows that the total time needed to execute one iteration of
step 3 is O(N l+1). Thus the total time needed to execute step 3 is (l+ 1)O(N l+1) =
O(N l+1).

Thus the total running time of the algorithm is O(N l+2).

7.4. L-specification of the solution and the query problem. In section 7.3,
we showed how to solve the size problem for 1-l-mis. We now discuss the construction
problem. As noted in section 2.1 our algorithms for the four variants of the problem
apply to the same independent set HIS(G).

The L-specification of the solution can be easily constructed by slightly modify-
ing the algorithm H-MIS as follows. Consider the iteration i of step 3 which gives
the maximum independent set. Denote the iteration by i∗. The L-specification H
of the solution consists of nonterminals H1, . . . , Hn. For 1 ≤ j ≤ n the explicit ver-
tices of Hj are the explicit vertices in PE(Gi

j) that are in the independent set. If

PE(Gl
j) calls nonterminals Gj1 , . . . , Gjm , then the nonterminal Hj calls the nonter-

minals Hj1 , . . . , Hjm . Observe that some of the nonterminals Hi may be redundant
and these can be removed from the final specification. Given the L-specification of
the solution, the query problem can be easily solved by examining if the given vertex
occurs in the set of nodes specified by the L-specification of the solution. Given an L-
specification of the solution, we can solve the output problem as follows. We traverse
the hierarchy tree associated with H in a depth-first manner and output the vertices
in the nonterminals visited during the traversal.

Observe that the only place we used planarity was to obtain a near-optimal so-
lution for the maximum independent set problem for each partially expanded graph.
In section 7.7 we use this observation to compute near-optimal solutions for problems
for arbitrary 1-level-restricted L-specified graphs.

7.5. Other L-specified planar problems. Our technique can be applied to
obtain efficient approximation algorithms for the following additional optimization
problems: minimum vertex cover, maximum partition into triangles, mini-
mum edge dominating set, maximum cut, and max sat(S) for any finite set of
finite arity Boolean relations S. The basic idea behind devising approximation schemes
for these problems is similar to the ideas used to solve the maximum independent
set problem. Therefore, we only briefly discuss the method for minimum vertex
cover and max sat(S).

(1) minimum vertex cover. Given a graph G = (V,E) and a positive integer
K ≤ |V |, is there a vertex cover of size K or less for G, i.e., a subset V ′ ⊆ V with
|V ′| ≤ K such that for each edge (u, v) ∈ E either u or v belongs to V ′? The
optimization problem requires one to find a vertex cover of minimum size.

In order to approximate the 1-l-pl-minimum vertex cover problem we do the
following. Given an ε, we choose an l such that (l+1

l)2 ≤ (1+ ε). Next, we modify the
definition of partial expansion so that instead of deleting the explicit vertices at levels

1254 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

(l+ 1) apart, we consider them in both sides of the partition. For each 0 ≤ i < l, the
algorithm finds a near-optimal solution for the overlapping planar graphs induced by
explicit vertices in levels (jl + i) to ((j + 1)l + i) for j ≥ 0. The algorithm picks the
best among all the vertex covers obtained for the different values of i. Let OPT (G)
denote an optimal vertex cover for G. The following lemma points out that the
solution obtained is at most (l+1

l)2 times the optimal vertex cover. The proof of the
lemma follows the same general argument given for the maximum independent set
problem.

Lemma 7.10. The size of the vertex cover obtained is no more than

(
l + 1

l

)2

|OPT (G)|.

Proof. Consider an optimal solution OPT (G) to the vertex cover problem. Then
for some 0 ≤ t < l, at most |OPT (G)|/l nodes in OPT (G) are in levels congruent to
t mod (l). Consider the iteration when the planar graphs are obtained by overlapping
at levels congruent to t mod (l). Hence the size of an optimal vertex cover in this iter-
ation is (|OPT (G)|+ |OPT (G)|/l). Now applying the known approximation scheme
[3] for computing a near-optimal vertex cover for each of smaller subgraphs, we obtain
a near-optimal vertex cover for the whole graph for iteration t. The size of the vertex
cover obtained in this iteration is no more than (|OPT (G)| + |OPT (G)|/l) l+1

l . The
reason is that the explicit vertices in the overlapping levels are counted twice, and
the near-optimal vertex cover heuristic yields a vertex cover of size (l + 1)/l times
the optimal vertex cover for each subgraph. Since the heuristic picks the minimum
vertex over all values of i, it follows that the size of the vertex cover produced by the
heuristic is no more than (l+1

l)2|OPT (G)|.
(2) max sat(S). In the following, we will assume that an instance F of 1-l-

pl-max-sat(S) is specified by H[BG(E(F))] (i.e., the specification of the associated
bipartite graph). The basic idea behind the approximation schemes for 1-l-max-
pl-sat(S) is as follows. For each i, 0 ≤ i ≤ 2l, in increments of 2, we remove the
explicitly defined clauses which are in levels j and j + 1, such that j = i mod (l+ 1).
This breaks the bipartite graph into a number of smaller bipartite graphs such that
the formulas they denote do not share any variables or clauses. It is not difficult
to modify the definition of partial expansion to obtain a decomposition as described
above. Figure 7.1 shows how the variables in levels j and j + 1 are redistributed. As
in the case of the maximum independent set problem, it is easy to see that there
exists an iteration t, 0 ≤ t ≤ 2l, such that at most OPT

(l+1) clauses in OPT are deleted.

Next, by the results in [21] the problem can be solved near-optimally for each smaller
subformula. The union of the clauses satisfied for each small formula constitutes a
solution for a given value of i. We pick the best solution for different values of i. This
ensures that the best assignment to the variables over all values of i is at least (l

l+1)2

of an optimal assignment to the variables of the 1-l-pl-max-sat(S) instance.

7.6. Extension to k-level-restricted instances. The technique used to solve
various problems for 1-level-restricted L-specifications can be generalized to solve
problems specified using k-level-restricted L-specifications. We only point out the
essential differences. Again, for the purposes of illustration consider the problem k-l-
pl-mis. First note that we need to extend the definition of partial expansion so that
we delete the explicit vertices in nonterminals at k consecutive levels. This implies
that the time to compute PE(Gl

i), 1 ≤ i ≤ n − 1, is O(N l+k). The rest of the

APPROXIMATION ALGORITHMS 1255

Level j

Level (j+1)

Clauses removed

Variables in level j included in this
subgraph

Variables in level (j+1)
included in this subgraph

Fig. 7.1. Basic idea behind the approximation algorithm for 1-l-max-pl-sat(S). The black dots
represent variables and the ellipses denote clauses. The figure depicts the set of clauses to be deleted
and the redistribution of the variables.

algorithm follows the same outline as that of H-MIS. The proof of correctness and the
performance guarantee also follow similar arguments as in section 7.3. Thus the total
running time of the algorithm is O(Nk+l+1) and its performance guarantee is (l+1

l)2.
Hence we have the following theorem.

Theorem 7.11. For any fixed k ≥ 1, there are PTASs for the problems maximum
independent set, minimum vertex cover, minimum edge dominating set,
maximum partition into triangles and maximum cut, and max sat(S) for
each finite set of finite arity Boolean relations S, when restricted to planar instances
specified using k-level-restricted L-specifications.

7.7. Extension to level-restricted arbitrary instances. Our results in sec-
tions 7.2–7.6 can be extended for problems on arbitrary graphs specified using k-level-
restricted L-specifications. To do this, observe that to obtain the results in sections
7.2–7.6 we used planarity only to obtain approximation schemes for smaller subgraphs
(formulas) obtained as a result of partial expansion. If the graphs were not planar
we could use the best known approximation algorithms for solving the problem near-
optimally and in turn get a performance guarantee which reflects this bound. For
example, consider the problem 1-l-max-2sat. Let ε > 0 be the required perfor-
mance guarantee. l ≥ 1 is an integer satisfying the inequality l

l+1 ≥ (1 − ε). For
the problem max-2sat, the recent work of Goemans and Williamson [14] provides
an approximation algorithm with performance guarantee of 1.137. Using their algo-
rithm as a subroutine to solve the small max-2sat instances obtained as a result of
partial expansion, we can devise an approximation algorithm for 1-l-max-2sat with
performance guarantee

(
l+1
l

)
1.137. A similar idea applies to other optimization

problems considered. Again, it is easy to generalize our results for k-level-restricted
L-specifications. Thus we have the following theorem.

1256 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

Let Π be one of the following problems: maximum independent set, minimum
vertex cover, minimum edge dominating set, maximum partition into tri-
angles, maximum cut, and max-sat(S) for finite set of Boolean relations S, such
that Rep(S) is the set of all finite arity Boolean relations.4

Theorem 7.12. For all fixed k ≥ 1, ε > 0 and for all of the problems Π,
there are polynomial time approximation algorithms with performance guarantee5 (1+
ε) · FBESTΠ for problems Π, when specified using k-level-restricted L-specifications.
Here FBESTΠ denotes the best known performance guarantee of an algorithm for the
problem Π for instances specified using standard specifications.

Using the results of Arora et al. [2], Bellare, Goldreich, and Sudan [4] and Hunt,
Marathe, and Stearns [22] we get the following theorem.

Theorem 7.13. Unless P = NP, the problems Π, when specified using k-level-
restricted L-specifications, do not have PTASs.

7.8. Approximation algorithms for 1-FPN-specified problems. Next, we
briefly discuss how to extend our ideas developed in sections 7.2–7.7 in order to
devise approximation schemes for several PSPACE-hard problems for 1-FPN-specified
instances.

The basic idea is simple. Once again, we illustrate our ideas by describing our
approximation algorithm for the problem 1-fpn-pl-mis. Given a 1-FPN-specification
Γ = (G(V,E),m) of a planar graph Gm and an ε > 0, we find the corresponding
integer l that satisfies the inequality (l

l+1)2 ≥ (1 − ε). For 0 ≤ i ≤ l, we remove the
vertices placed at the lattice points j such that j = i mod(l+ 1). This partitions the
graph Gm into a number of smaller disjoint subgraphs, each induced by l consecutive
lattice points.

Specifically, for a given i, let lip = max{0, (p − 1)(l + 1) + (i + 1)} and rip =

min{m, p(l + 1) + (i− 1)}, where 0 ≤ p ≤ ti. Here ti = dm−(i−1)
(l+1) e. Let the subgraph

induced by vertices v(jp), where lip ≤ jp ≤ rip, be denoted by H(lip, r
i
p). For a given

ε > 0, the graphs H(lip, r
i
p) are linear in the size of Γ. Figure 7.2 shows a schematic

diagram of the vertices removed in a given iteration i. Next, we solve the mis problem
near-optimally on each of the subgraphs. This can be done by using the linear time
algorithm stated in Theorem 7.6. The union of these independent sets is the indepen-
dent set obtained in iteration i. The heuristic simply picks up the largest independent
set obtained over all l + 1 iterations. By arguments similar to the ones we presented
for approximating 1-l-pl-mis (sections 7.2–7.4), it follows that the approximation
algorithm has a performance guarantee of (l+1

l)2.
We note the following important point. If a near-optimal independent set were

to be obtained for each subgraph H(lip, r
i
p), we would take an exponential amount

of time in each iteration i. This is because p = O(m). Hence we cannot afford to
solve the problem explicitly for each subgraph. But observe that in each iteration i the

subgraphs H(lip, r
i
p), 1 ≤ p ≤ dm−(i−1)

(l+1) e−1 are isomorphic. Hence we need to solve the

mis problem for the graphs H(li0, r
i
0), H(li1, r

i
1), and H(liti , r

i
ti), where ti = dm−(i−1)

(l+1) e.
Let IS(H(lip, r

i
p)) denote the independent set obtained by the heuristic for the graph

H(lip, r
i
p). Furthermore, let the approximate maximum independent set for the whole

graph for a given iteration i be denoted by IS(Gm(i)). Then the size of IS(Gm(i))
is given by the following equation:

4Actually, our easiness results hold for all finite set of finite arity Boolean relations S.
5For the sake of uniformity we assume that the performance guarantee is ≥ 1.

APPROXIMATION ALGORITHMS 1257

V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) V(9)

H(l H(l H(lr) r)3
0 r)3 3 3 3 3

0 1 1 2 2

Fig. 7.2. A schematic diagram showing the vertices to be removed in each iteration i while
computing a near-optimal independent set for 1-FPN-specified planar graphs. In our example i = 3,
l + 1 = 4, and m = 9. Each box represents a copy of the vertices in the original static graph. The
shaded area represents the vertices that are removed.

|IS(Gm(i))| = |IS(H(li0, r
i
0))|+

⌊
m− (i− 1)

(l + 1)

⌋
|IS(H(li1, r

i
1))|+ |IS(H(liti , r

i
ti))|.

This completes the discussion of the approximation algorithm for 1-fpn-pl-mis.
By combining the above arguments along with those in sections 7.2–7.7, we can show
that several other optimization problems can be approximated in a similar fashion.
Again, it is easy to see that the technique extends to problems for arbitrary instances
and also to problems for instances specified using k-narrow 1-FPN-specifications.
Thus we have the following theorem.

Theorem 7.14. For all fixed k ≥ 1, ε > 0 and for all of the problems Π stated
in section 7.7, there are polynomial time approximation algorithms with performance
guarantee6 (1+ε) ·FBESTΠ for problems Π, when specified using k-level-restricted 1-
FPN-specifications. Here FBESTΠ denotes the best known performance guarantee of
an algorithm for the problem Π for instances specified using standard specifications.

Observe that the technique used to devise approximation algorithms for problems
restricted to k-narrow 1-FPN-specified instances is very similar to the technique used
to devise approximation algorithms for k-level-restricted L-specified problems. But
there are two important differences in the details of the algorithms.

1. In the case of algorithms for L-specified problems, the number of equivalence
classes is O(n), where n is the number of nonterminals. In contrast, the number
of equivalence classes in the case of algorithms for 1-FPN-specified problems is only
O(1).

2. The size of the subgraphs for which the problem is solved near-optimally
also differs significantly. Specifically, the number of explicit vertices in PE(Gl

i) can
be O(N l). Moreover, the time required to compute PE(Gl

i) can be O(N l+k). In
contrast, the number of explicit vertices in each H(lip, r

i
p) is only O(N) and the time

required to construct each H(lip, r
i
p) is only O(N). In both cases we use N to be the

vertex number of the respective specifications Γ (N can be O(size(Γ))).
These important differences allow us to devise linear time approximation schemes

for 1-FPN-specified problems.

8. Conclusions.

8.1. Summary. We have investigated the polynomial time approximability of
several PSPACE-hard optimization problems for both L- and 1-FPN-specified in-
stances. A general approach was given to obtain PTASs for several PSPACE-hard
optimization problems for planar graphs specified using k-level-restricted L- or 1-FPN-
specifications. We believe that the partial expansion technique can be used to obtain

6For the sake of uniformity we assume that the performance guarantee is ≥ 1.

1258 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

efficient approximations for other problems specified using L- or 1-FPN-specifications
as well as for problems specified using other succinct specifications.

In a companion paper [44], we investigate the decision complexity of various
combinatorial problems specified using various kinds of L-specifications and 1-FPN-
specifications. There we give a general method to obtain PSPACE-hard lower bounds
for such problems, including the ones discussed here.

8.2. Open problems. We conclude with a list of open problems for future
research.

1. Can we use the concept of probabilistically checkable debate systems [8, 9]
to prove nonapproximability results for problems specified using arbitrary (not level-
restricted) L-specifications?

Recently, Agarwal and Condon [1] have partially answered this question by show-
ing that unless P = PSPACE, there is no PTAS for the problem l-max-3sat. The
result was proved by using the characterization of PSPACE in terms of random debate
systems. In [22], we extended their result to hold for any l-max-sat(S) such that
Rep(S) denotes the set of all finite arity Boolean relations.

2. Recently, several researchers have considered logical definability of a number
of optimization problems and defined appropriate classes such as MAX SNP, MAX Π1,
MAX NP, and MAX #P (cf. [25, 28, 51, 53]). All these researchers have assumed that
the input is specified using standard specifications. What happens if the instances
(finite or infinite) are specified succinctly ?

Some work has been done along these lines by Hirst and Harel [17]. Specifically,
they considered infinite recursive versions of several NP optimization problems. They
prove that some problems become highly undecidable (in terms of Turing degrees),
while others remain on low levels of arithmetic hierarchy. As a corollary of their results
they provide a method for proving (finitary) problems to be outside the syntactic class
MAX NP and hence outside MAX SNP.

Acknowledgments. We thank the referees for invaluable comments that greatly
improved the presentation. We also thank Anne Condon, Ashish Naik, Egon Wanke,
Joan Feigenbaum, R. Ravi, S. S. Ravi, and Thomas Lengauer for many helpful con-
versations during the course of writing this paper.

REFERENCES

[1] S. Agarwal and A. Condon, On approximation algorithms for hierarchical MAX-SAT, in
Proc. 10th Annual IEEE Conference on Structure in Complexity Theory, June 1995,
pp. 181–190.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M Szegedy, Proof verification and hardness
of approximation problems, in Proc. 33rd IEEE Symposium on Foundations of Computer
Science (FOCS), 1992, pp. 14–23.

[3] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. Assoc.
Comput. Mach., 41 (1994), pp. 153–180.

[4] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-approximability –
towards tight results, in Proc. 36rd IEEE Symposium on Foundations of Computer Science
(FOCS’95), Oct. 1995, pp. 422–431.

[5] J.L. Bentley, T. Ottmann and P. Widmayer, The complexity of manipulating hierarchically
defined sets of rectangles, in Advances in Computing Research 1, F.P. Preparata, ed., 1983,
pp. 127–158.

[6] E. Cohen and N. Megiddo, Recognizing properties of periodic graphs, in Applied Geometry
and Discrete Mathematics 4, The Victor Klee Festschrift, P. Gritzmann and B. Sturmfels,
eds., ACM, New York, 1991, pp. 135–146.

APPROXIMATION ALGORITHMS 1259

[7] E. Cohen and N. Megiddo, Strongly polynomial-time and NC algorithms for detecting cycles
in dynamic graphs, J. Assoc. Comput. Mach., 40 (1993), pp. 791–830.

[8] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Probabilistically checkable debate sys-
tems and approximation algorithms for PSPACE-hard functions, Chicago J. Theoret. Com-
put. Sci., 1995, Article 4 (http://www.cs.uchicago.edu/publications/cjtcs/articles/1995/4/
contents.html). A preliminary version of the paper appears in Proc. 25th ACM Symposium
on Theory of Computing (STOC), 1993, pp. 305–313.

[9] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Random debaters and the hardness of
approximating stochastic functions, SIAM J. Comput., 26 (1997), pp. 369–400. A prelim-
inary version of the paper appears in Proc. 9th IEEE Annual Conference on Structure in
Complexity Theory, June 1994, pp. 280–293.

[10] D. Gale, Transient flows in networks, Michigan Math. J., 6 (1959), pp. 59–63.
[11] H. Galperin, Succinct Representation of Graphs, Ph.D. Thesis, Princeton University, Prince-

ton, NJ, 1982.
[12] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of

NP-Completeness, Freeman, San Francisco, CA, 1979.
[13] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering, Prentice-

Hall, Englewood Cliffs, NJ, 1991.
[14] M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42
(1995), pp. 1115–1145. A preliminary version appeared as .878 approximation algorithms
for MAX CUT and MAX 2SAT, in Proc. 26th Annual ACM Symposium on Theory of
Computing (STOC), 1994, pp. 422-431.

[15] A. Habel and H.J. Kreowski, May we introduce to you: Hypergraph languages generated by
hyperedge replacement, in Proc. 13th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’87), Lecture Notes in Comput. Sci. 291, Springer-Verlag, New
York, 1987, pp. 15–26.

[16] F.O. Hadlock, Finding a maximum cut in a planar graph in polynomial time, SIAM J. Com-
put., 4 (1975), pp. 221–225.

[17] T. Hirst and D. Harel, Taking it to the limit: On infinite variants of NP-complete problems,
J. Comput. System Sci., 53 (1996), pp. 180–193.

[18] F. Höfting, T. Lengauer, and E. Wanke, Processing of hierarchically defined graphs and
graph families, in Data Structures and Efficient Algorithms (Final Report on the DFG
Special Joint Initiative), Lecture Notes in Comput. Sci. 594, Springer-Verlag, New York,
1992, pp. 44–69.

[19] F. Höfting and E. Wanke, Minimum cost paths in periodic graphs, SIAM J. Comput., 24
(1995), pp. 1051–1067.

[20] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns, A unified approach to approximation schemes for NP- and PSPACE-hard
problems for geometric graphs, in Proc. 2nd Annual European Symposium on Algorithms
(ESA’94), 1994, pp. 424–435; J. Algorithms, 1998, to appear.

[21] H.B. Hunt III, M.V. Marathe, V. Radhakrishnan, D.J. Rosenkrantz, and R.E. Stearns,
Designing approximation schemes using L-reductions, in Proc. 14th Annual Foundations
of Software Technology and Theoretical Computer Science (FST &TCS), Madras, India,
December 1994, pp. 342–353. A complete version of the paper titled Parallel Approximation
Schemes for Planar and Near-Planar Satisfiability and Graph Problems is available as
Technical Report No. LA-UR-96-2723, Los Alamos National Laboratory, Los Alamos, NM,
1996.

[22] H.B. Hunt III, M.V. Marathe, and R.E. Stearns, Generalized CNF satisfiability problems
and non-efficient approximability, in Proc. 9th IEEE Conf. on Structure in Complexity
Theory, 1994, pp. 356–366. A detailed version of the paper appears as SUNY-Albany
Technical Report TR-95-27, Albany, NY, May 1995.

[23] K. Iwano and K. Steiglitz, Testing for cycles in infinite graphs with periodic structure, in
Proc. 19th Annual ACM Symposium on Theory of Computing (STOC), 1987, pp. 46–53.

[24] K. Iwano and K. Steiglitz, Planarity testing of doubly connected periodic infinite graphs,
Networks, 18 (1988), pp. 205–222.

[25] V. Kann, On the Approximability of NP-Complete Optimization Problems, Ph.D. Thesis, Dept.
of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm,
Sweden, May 1992.

[26] R.M. Karp, R.E. Miller, and S. Winograd, The organization of computations for uniform
recurrence equations, J. Assoc. Comput. Mach., 14 (1967), pp. 563–590.

http://epubs.siam.org/sam-bin/jvip.pl?journal=SICOMP&vol=26&iss=2&pg=369

1260 M. MARATHE, H. HUNT III, R. STEARNS, AND V. RADHAKRISHNAN

[27] M. Kodialam and J.B. Orlin, Recognizing strong connectivity in periodic graphs and its rela-
tion to integer programming, in Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, Philadelphia, PA, 1991, pp. 131–135.

[28] P. G. Kolaitis and M.N. Thakur, Logical definability of NP optimization problems, Inform.
and Comput., 115 (1994), pp. 321–353.

[29] K. R. Kosaraju and G.F. Sullivan, Detecting cycles in dynamic graphs in polynomial time, in
Proc. 29th IEEE Symposium on Foundations of Computer Science (FOCS), 1988, pp. 398–
406.

[30] T. Lengauer, The complexity of compacting hierarchically specified layouts of integrated cir-
cuits, in Proc. 23rd IEEE Symposium on Foundations of Computer Science (FOCS), 1982,
pp. 358–368.

[31] T. Lengauer, Exploiting hierarchy in VLSI design, in Proc. AWOC ’86, Lecture Notes in
Comput. Sci. 227, Springer-Verlag, New York, 1986, pp. 180–193.

[32] T. Lengauer and E. Wanke, Efficient solutions for connectivity problems for hierarchically
defined graphs, SIAM J. Comput., 17 (1988), pp. 1063–1080.

[33] T. Lengauer and C. Weiner, Efficient solutions for hierarchical systems of linear equations,
Computing, 39 (1987), pp. 111–132.

[34] T. Lengauer, Efficient algorithms for finding minimum spanning forests of hierarchically
defined graphs, J. Algorithms, 8 (1987), pp. 260–284.

[35] T. Lengauer, Hierarchical planarity testing, J. Assoc. Comput. Mach., 36 (1989), pp. 474–509.
[36] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley, New York,

1990.
[37] T. Lengauer and K.W. Wagner, The correlation between the complexities of non-hierarchical

and hierarchical versions of graph problems, J. Comput. System Sci., 44 (1992), pp. 63–93.
[38] T. Lengauer and E. Wanke, Efficient decision procedures for graph properties on context-free

graph languages, J. Assoc. Comput. Mach., 40 (1993), pp. 368–393.
[39] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput., 11 (1982), pp. 329–343.
[40] M.V. Marathe H.B. Hunt III, and S.S. Ravi, The complexity of approximating PSPACE-

complete problems for hierarchical specifications, Nordic J. Comput., 1 (1994), pp. 275–316.
[41] M.V. Marathe, V. Radhakrishnan, H.B. Hunt III, and S.S. Ravi, Hierarchical specified

unit disk graphs, Theoret. Comput. Sci. 174 (1997), pp. 23–65. A preliminary version of
the paper appears in Proc. 19th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG ’93), June 1993, pp. 21–32.

[42] M.V. Marathe, H.B. Hunt III, R.E. Stearns, and V. Radhakrishnan, Approximation
schemes for PSPACE-complete problems for succinct specifications, in Proc. 26th Annual
ACM Symposium on Theory of Computing (STOC), 1994, pp. 468–477.

[43] M.V. Marathe, Complexity and Approximability of NP- and PSPACE-Hard Optimization
Problems, Ph.D. Thesis, Department of Computer Science, SUNY-Albany, Albany, NY,
August 1994.

[44] M.V. Marathe, H.B. Hunt III, R.E. Stearns, and V. Radhakrishnan, Complexity of hier-
archically and 1-dimensional periodically specified problems, in Proc. DIMACS Workshop
on Satisfiability Problem: Theory and Applications, 1996. Also available as Technical Re-
port LAUR-93-3348, Los Alamos National Laboratory, Los Alamos, NM, August, 1995.

[45] M.V. Marathe, H.B. Hunt III, D.E. Rosenkrantz, and R.E. Stearns, Theory of Period-
ically Specified Problems: Complexity & Approximability, Tech. Report LA-UR-96-1466,
Los Alamos National Laboratory, Los Alamos, NM, 1996.

[46] J.O. McClain, L.J. Thomas, and J.B. Mazzola, Operations Management, Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[47] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.
[48] J.B. Orlin, The Complexity of Dynamic/Periodic Languages and Optimization Problems,

Sloan Working Paper No. 1679-86, July 1985, Alfred P. Sloan School of Management,
MIT, Cambridge, MA. A Preliminary version of the paper appears in Proc. 13th Annual
ACM Symposium on Theory of Computing (STOC), 1981, pp. 218–227.

[49] J.B. Orlin, Maximum convex cost dynamic network flows, Math. Oper. Res., 9 (1984), pp. 190–
206.

[50] J.B. Orlin, Some problems on dynamic/periodic graphs, in Progress in Combinatorial Opti-
mization, Academic Press, New York, 1984, pp. 273–293.

[51] A. Panconesi and D. Ranjan, Quantifiers and approximations, Theoret. Comput. Sci., 107
(1993), pp. 145–163.

[52] C. Papadimitriou and M. Yannakakis, A note on succinct representation of graphs, Inform.
and Comput., 71 (1986), pp. 181–185.

APPROXIMATION ALGORITHMS 1261

[53] C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes,
J. Comput. System Sci., 43 (1991), pp. 425–440.

[54] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[55] D.J. Rosenkrantz and H.B. Hunt III, The complexity of processing hierarchical specifica-

tions, SIAM J. Comput., 22 (1993), pp. 627–649.
[56] T. Schaefer, The complexity of satisfiability problems, in Proc. 10th ACM Symposium on

Theory of Computing (STOC), 1978, pp. 216–226.
[57] K.W. Wagner, The complexity of problems concerning graphs with regularities, in Proc. 11th

Symposium on Math. Foundations of Computer Science (MFCS), Lecture Notes in Comput.
Sci. 176, Springer-Verlag, New York, 1984, pp. 544–552.

[58] E. Wanke, Paths and cycles in finite periodic graphs, in Proc. 20th Symposium on Math.
Foundations of Computer Science (MFCS), Lecture Notes in Comput. Sci. 711, Springer-
Verlag, New York, 1993, pp. 751–760.

[59] M. Williams, Efficient Processing of Hierarchical Graphs, Tech. Report 90-06, Dept. of Com-
puter Science, Iowa Sate University, Ames, IA. (Parts of the report appeared in WADS’89,
pp. 563–576 and SWAT’90, pp. 320–331 coauthored with Fernandez-Baca.)

[60] M. Yannakakis, On the approximation of maximum satisfiability, J. Algorithms, 17 (1994),
pp. 475–502.

APPROXIMATELY COUNTING HAMILTON PATHS AND CYCLES
IN DENSE GRAPHS∗

MARTIN DYER† , ALAN FRIEZE‡ , AND MARK JERRUM§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1262–1272, October 1998 003

Abstract. We describe fully polynomial randomized approximation schemes for the problems
of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree
(1
2

+ α)n, for any fixed α > 0. We show that the exact counting problems are #P-complete. We
also describe fully polynomial randomized approximation schemes for counting paths and cycles of
all sizes in such graphs.

Key words. Hamilton cycles, fpras, dense

AMS subject classification. 68Q25

PII. S009753979426112X

1. Introduction. Combinatorial counting problems have a long history, even
from the computational viewpoint. For example, the classical matrix-tree theorem
provides a good algorithm for determining the number of trees in a graph. However, it
seems that few interesting combinatorial structures possess good counting algorithms.
This intuition was made precise by Valiant [21] using the class #P. He showed
that many problems for which the decision counterpart is easy were nevertheless
complete for this class. Since it is unlikely that #P = P, exact counting is apparently
intractable for many natural problems. For example, Valiant [20] showed that 0-1
permanent evaluation and counting the number of bases of a (suitably presented)
matroid [21] were #P-complete. Many other problems have since been added to this
list, for example, volume computation for polyhedra [6], counting linear extensions of
a partial order [3], and counting Eulerian orientations of a graph [17].

The hardness of most counting problems has led to an interest in approximate
counting. The most fruitful approach in this respect has been randomized approxi-
mation. This is based on the idea of a fully polynomial randomized approximation
scheme (fpras) due to Karp and Luby [15]. Thus, if N is the true value, we must

determine an estimate N̂ such that for given ε, δ > 0

Pr
(
1/(1 + ε) < N̂/N < (1 + ε)

)
> 1− δ,

in time polynomial in the size of the input, ε−1 and log(δ−1). Examples of problems
amenable to this type of approximation are dense 0-1 permanent evaluation [4, 12],
matchings [12], volume computation [7], counting Eulerian orientations [17], counting
linear extensions of a partial order [16], and computing the partition function for the
ferromagnetic Ising model [13]. The algorithms in the papers cited use a random

∗ Received by the editors January 3, 1994; accepted for publication (in revised form) July 17,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/26112.html
† School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK (dyer@dcs.leeds.ac.uk).

This research was supported in part by Esprit Working Group “RAND.”
‡ Mathematics Department, Carnegie Mellon University, Pittsburgh, PA 15213 (af1p@euler.math.

cmu.edu). This research was supported in part by NSF grant 9002435.
§ Department of Computer Science, University of Edinburgh, The King’s Buildings, Edinburgh

EH9 3JZ, UK (mrj@dcs.ed.ac.uk). This research was supported in part by grant GR/F 90363 of
the UK Science and Engineering Research Council and Esprit Working Group “RAND”; part of this
work was done while the author was visiting the NEC Research Institute, Princeton, NJ.

1262

COUNTING HAMILTONIAN CYCLES 1263

walk to generate an almost uniform random solution to the problem (e.g., a random
matching), and then apply multistage statistical sampling methods to obtain the
desired estimate.

One obvious requirement for such approximate counting to be possible is that the
associated decision problem be easy. In fact, it appears from experience that it must
be “very easy” in order to have a realistic hope that a randomized approximation
scheme can be found.

In this paper, we add further entries to the small but growing list of randomly
approximable hard counting problems: that of counting the number of Hamilton paths
and cycles in “dense” graphs. Let G = (V,E) be a graph, where V = {v1, v2, . . . , vn}.
Denote the degree of vertex vi by di, for i = 1, 2, . . . , n. We will say that G is dense if
mini di ≥ (1

2 + α)n, where 0 < α ≤ 1
2 is a fixed constant. Under these circumstances

it is known [5] that G must contain a Hamilton cycle. Moreover, the proof of this fact
is easily modified to give a simple polynomial-time algorithm for constructing such
a Hamilton cycle. This algorithm, which uses edges whose existence is guaranteed
by the pigeonhole principle to “patch together” disjoint cycles, provides the required
easy decision procedure.

We consider here the natural but more difficult problems of counting the number
of Hamilton paths and cycles in such graphs. We show in section 4 that these problems
are in fact #P-complete, so exact counting is presumably intractable. More positively,
our main results in sections 2 and 3 establish the existence of fpras’s for these counting
problems when α > 0. We may observe that if the degree condition is relaxed to
mini di ≥ (1

2 − αn)n with αn = Ω(nκ−1) for any fixed κ > 0, then the question of
the existence of any Hamilton path or cycle becomes NP-complete,1 and approximate
counting is NP-hard. Thus our results establish quite precisely the difficulty of the
counting problem except in the region where α is close to zero. Section 5 extends
the positive results of the earlier sections to cover self-avoiding paths and cycles of all
lengths.

The natural approach given previous successes in this area is to try to find a
rapidly mixing Markov chain with state space the set of Hamilton cycles of a given
dense graph, and possibly its Hamilton paths as well. Earlier attempts with this
approach have proved fruitless. Somewhat surprisingly, the key lies in the fact that
in dense graphs, Hamilton cycles form a substantial fraction of the set of 2-factors,
a 2-factor being defined as a set of vertex-disjoint cycles which together contain all
vertices of G. This is not obvious a priori and the main technical difficulty in the
approach lies in obtaining a good upper bound on the ratio of 2-factors to Hamilton
cycles in a dense graph. A direct attack—relating the number of 2-factors with k cycles
to the number with k+1 cycles—appears unworkable. Instead, we introduce a weight
function on 2-factors that allows us to argue about the distribution of total weight
as a function of the number of cycles. By a rather delicate analysis, we are able to
show that the Hamilton cycles carry sufficient weight for our purpose. In summary,
we prove the following theorem.

Theorem 1.1. If G is dense then there are fpras’s for

(a) approximating its number of Hamilton cycles,

1 This is true even if we insist on G being k-connected for any k = o(n). The construction is
from Bollobás [2]. Start with an arbitrary graph G and add a clique C of size m = n1/κ and an
independent set I of size m − 1, and then join every vertex in C to every other vertex, to produce
a graph Γ. Then G has a Hamilton path if and only if Γ has a Hamilton cycle. Also, Γ contains a
Hamilton path if and only if G contains two vertex-disjoint paths that cover all its vertices.

1264 MARTIN DYER, ALAN FRIEZE, AND MARK JERRUM

(b) approximating its number of Hamilton paths,
(c) approximating its number of cycles of all sizes,
(d) approximating its number of paths of all sizes.

2. Outline approach. Our approach to constructing an fpras for Hamilton cy-
cles in a dense graph G is via a randomized reduction to sampling and estimating
2-factors in G. An almost uniform sampler for 2-factors in a graph is a randomized
algorithm that takes as input a graph G and δ > 0 and as output a 2-factor Z (a
random variable) such that

1/(1 + δ)N ≤ Pr(Z = F) ≤ (1 + δ)/N,

where F is any 2-factor in G and N is the total number of 2-factors. The sampler is
said to be fully polynomial if it runs in time polynomial in the size of G and log δ−1.
Using known techniques, 2-factors in a dense graph G may be efficiently sampled, and
their number estimated.

Theorem 2.1. There exist both a fully polynomial randomized approximation
scheme and a fully polynomial almost uniform sampler for the set of 2-factors in a
dense graph.

This result follows immediately from Corollary 4.2 of Jerrum and Sinclair [14], as
will become clear once the notation used there has been explained. For convenience,
the corollary in question is repeated below as Proposition 2.2.

Proposition 2.2. There exists a fully polynomial almost uniform sampler for
G(d, X) and a fully polynomial randomized approximation scheme for |G(d, X)|, pro-
vided the pair (d, X) satisfies e(d) > dmax(dmax + xmax − 1).

In Proposition 2.2, d = (d1, . . . , dn) stands for a degree sequence on V = {v1, v2,
. . . , vn}, and X ⊆ V (2) for the edge set of an “excluded” graph on vertex set V .
The notation G(d, X) stands for the set of graphs on vertex set V that have degree
sequence d and avoid all edges in X. Finally, e(d) is the number of edges in any
graph with d as degree sequence, dmax is the largest component of d, and xmax is the
largest degree of any vertex in the excluded graph (V,X).

Proof of Proposition 2.2 (sketch). Our aim here is merely to indicate the algo-
rithmic techniques used to sample from, and estimate the size of, G(d, X). For a full
proof, the reader is directed to [14].

Using a reduction due to Tutte [19], a graph Γ is constructed whose perfect
matchings are in (constant) many-one correspondence with elements of G(d, X). An
algorithm of Jerrum and Sinclair [12], based on the simulation of a rapidly mixing
Markov chain, is then used to sample or estimate the number of perfect matchings
in Γ, as required. For this algorithm to be applicable, we require that Γ satisfy a
certain condition; it is this condition, translated back through the reduction to the
pair (d, X), that gives rise to the condition e(d) > dmax(dmax + xmax − 1).

Proof of Theorem 2.1. The set of 2-factors in a graph G = (V,E) is equal to
G(d, X), where d = (2, 2, . . . , 2), and X = V (2) − E is the complementary edge
set to E. The result now follows from Proposition 2.2, since, for a dense G and n
sufficiently large, dmax = 2, xmax <

1
2n − 1, and dmax(dmax + xmax − 1) < n = e(d).

Given Theorem 2.1, the reduction from Hamilton cycles to perfect matchings
is easy to describe. We estimate first the number of 2-factors in G, and then the
number of Hamilton cycles by standard sampling methods as a proportion of the
number of 2-factors. Both counting and sampling phases run in polynomial time, by
Theorem 2.1, provided only that G is dense. For the sampling phase to produce an

COUNTING HAMILTONIAN CYCLES 1265

accurate estimate, it is necessary that the ratio of 2-factors to Hamilton cycles in G
not be too large. This will be established in section 3.

We remark that it would be sufficient to be able to generate a random Hamilton
cycle. We could then proceed alternatively by adding one edge at a time, giving a
sequence of M = O(n2) graphs G = G0, G1, . . . , GM = Kn. We could then estimate
the ratio of the number of Hamilton cycles in Gi−1 to those in Gi for i = 1, 2, . . . ,M .
The degree conditions can be used to show that each of these ratios is not too small
and hence can be estimated efficiently. (This is similar to an idea in [4].)

The method of using random 2-factors to generate random Hamilton cycles was
previously used by Frieze and Suen [9] in the context of random digraphs and more
recently by Frieze, Jerrum, and Molloy [8] with regard to random regular graphs. It is
interesting that the same method should be successful here also. It raises the intriguing
possibility of using existing approaches to other random graph problems to guide
the design of new randomized algorithms for restricted versions of the corresponding
deterministic problem.

3. Many 2-factors are Hamiltonian. Let n be a natural number and β =
10/α2. Let k0 = bβ lnnc, and for 1 ≤ k ≤ n, define g(k) = nβk!(β lnn)−k, and

f(k) =

{
g(k), if k ≤ k0,
g(k0), otherwise.

Lemma 3.1. Let f be the function defined above. Then
(a) f is nonincreasing and satisfies

min{f(k − 1), f(k − 2)} = f(k − 1) ≥ (β lnn)k−1f(k);

(b) f(k) ≥ 1, for all k.
Proof. Observe that g is unimodal and that k0 is the value of k minimiz-

ing g(k); it follows that f is nonincreasing. When k ≤ k0, we have f(k − 1) =
g(k − 1) = (β lnn)k−1g(k) = (β lnn)k−1f(k); otherwise, f(k − 1) = g(k0) = f(k) ≥
(β lnn)k−1f(k). In either case, the inequality in part (a) of the lemma holds.

Part (b) of the lemma follows from the chain of inequalities

1

f(k)
≤ 1

g(k0)
≤ (β lnn)k0

nβk0!
≤ n−β

∞∑
k=0

(β lnn)k

k!
= n−β exp(β lnn) = 1.

Lemma 3.2. Suppose α is constant greater than 0. Let G = (V,E) be an undi-
rected graph of order n and minimum degree (1

2 + α)n. Then the number of 2-factors
in G exceeds the number of Hamilton cycles by at most a polynomial (in n) factor,
the degree of the polynomial depending only on α.

Proof. For 1 ≤ k ≤ bn/3c, let Φk be the set of all 2-factors in G containing exactly
k cycles, and let Φ = ∪kΦk be the set of all 2-factors. Define

Ψ =
{
(F, F ′) : F ∈ Φk, F

′ ∈ Φk′ , k
′ < k,

and F ⊕ F ′ ∼= C6

}
,

where ⊕ denotes symmetric difference and C6 is the cycle on six vertices. Observe
that (Φ,Ψ) is an acyclic directed graph; let us agree to call its component parts nodes
and arcs to avoid confusion with the vertices and edges of G. Observe also that if
(F, F ′) ∈ Ψ is an arc, then F ′ can be obtained from F by deleting three edges and

1266 MARTIN DYER, ALAN FRIEZE, AND MARK JERRUM

adding three others, and that this operation can decrease the number of cycles by at
most two. Thus every arc (F, F ′) ∈ Ψ is directed from a node F in some Φk to a
node F ′ in Φk−1 or Φk−2.

Our proof strategy is to define a positive weight function on the arc set Ψ such
that the total weight of arcs leaving each node (2-factor) F ∈ Φ \ Φ1 is at least one
greater than the total weight of arcs entering F . This will imply that the total weight
of arcs entering Φ1 is an upper bound on the number of non-Hamilton 2-factors in G,
and that the maximum total weight of arcs entering a single node in Φ1 is an upper
bound on the ratio |Φ \ Φ1|/|Φ1|.

The weight function w : Ψ → R
+ we employ is defined as follows. For any arc

(F, F ′) with F ′ ∈ Φk: if the 2-factor F ′ is obtained from F by coalescing two cycles of
lengths l1 and l2 into a single cycle of length l1 + l2, then w(F, F ′) = (l−1

1 + l−1
2)f(k);

if F ′ results from coalescing three cycles of length l1, l2, and l3 into a single one of
length l1 + l2 + l3, then w(F, F ′) = (l−1

1 + l−1
2 + l−1

3)f(k).

Let F ∈ Φk be a 2-factor with k > 1 cycles γ1, γ2, . . . , γk, of lengths n1, n2, . . . , nk.
We proceed to bound from below the total weight of arcs leaving F . For this purpose
imagine that the cycles γ1, γ2, . . . , γk are oriented in some way, so that we can speak of
each oriented edge (u, u′) in some cycle γi as being “forward” or “backward.” Since we
are interested in obtaining a lower bound, it is enough to consider only arcs (F, F+)
from F of a certain kind: namely, those for which the 6-cycle γ = F ⊕ F+ is of the
form γ = (x, x′, y, y′, z, z′), where (x, x′) ∈ F is a forward cycle edge, (y, y′) ∈ F is
a forward edge in a cycle distinct from the first, and (z, z′) ∈ F is a backward cycle
edge. The edge (z, z′) may be in the same cycle as either (x, x′) or (y, y′), or in a third
cycle. Observe that (x′, y), (y′, z), and (z′, x) must necessarily be edges of F+. It is
routine to check that any cycle γ = (x, x′, y, y′, z, z′) satisfying the above constraints
does correspond to a valid arc from F . The fact that (z, z′) is oriented in the opposite
sense to (x, x′) and (y, y′) plays a crucial role in ensuring that the number of cycles
decreases in the passage to F+ when only two cycles are involved.

First, we estimate the number of cycles γ for which (x, x′) is contained in a
particular cycle γi of F . We might say that γ is rooted at γi. Assume, for a moment,
that the vertices x, x′, y, y′ have already been chosen. There are at least (1

2 +α)n− 5
ways to extend the path (x, x′, y, y′), first to z and then to z′, which are consistent
with the rules given above; let Z ′ be the set of all vertices z′ so reachable. Denote by
G(x) the set of vertices adjacent to x. The number of ways of completing the path
(x, x′, y, y′) to a valid 6-cycle is at least

|G(x) ∩ Z ′| ≥ |G(x)|+ |Z ′| − n

≥ (1
2 + α)n+ [(1

2 + α)n− 5]− n

= 2αn− 5

≥ αn,

for n sufficiently large. A lower bound on the number of 6-cycles γ rooted at γi now
follows easily: there are ni choices for (x, x′); then at least (1

2 + α)n− ni choices for
(y, y′); and finally—as we have just argued—at least αn ways to complete the cycle.
Thus the total number of 6-cycles rooted at γi is at least αnni[(

1
2 + α)n− ni].

We are now poised to bound the total weight of arcs leaving F . Each arc (F, F+)
defined by a cycle γ rooted at γi has weight at least n−1

i min{f(k−1), f(k−2)}, which,
by Lemma 3.1, is bounded below by (β lnn)(kni)

−1f(k). Thus the total weight of

COUNTING HAMILTONIAN CYCLES 1267

arcs leaving F is bounded as follows:

∑
F+:(F,F+)∈Ψ

w(F, F+) ≥
k∑
i=1

αnni[(
1
2 + α)n− ni]

(β lnn)f(k)

kni
(1)

= αn2[(1
2 + α)k − 1]

(β lnn)f(k)

k

≥ α2β f(k)n2 lnn

≥ 10f(k)n2 lnn,(2)

where we have used the fact that k ≥ 2. Note that the presence of a unique backward
edge, namely (z, z′), ensures that each cycle γ has a distinguishable root, and hence
that the arcs (F, F+) were not overcounted in summation (1).

We now turn to the corresponding upper bound on the total weight of arcs
(F−, F) ∈ Ψ entering F . It is straightforward to verify that the cycle γ = (x, x′, y, y′,
z, z′) = F− ⊕ F must contain three edges—(x, x′), (y, y′) and (z, z′)—from a single
cycle γi of F , the remaining edges coming from F−. The labeling of vertices in γ can
be made canonical in the following way: assume an ordering on vertices in V , and
assign label x to the smallest vertex. The condition (x, x′) ∈ F uniquely identifies
vertex x′, and the labeling of the other vertices in the cycle γ follows.

Removing the three edges (x, x′), (y, y′), and (z, z′) from γi leaves a triple of
simple paths of lengths (say) a− 1, b− 1, and c− 1: these lengths correspond (resp.)
to the segment containing x, the segment containing x′, and the remaining segment.
Going round the cycle γi, starting at x′ and ending at x, the vertices x, x′, y, y′, z, z′

may appear in one of eight possible sequences:
x′, y′, y, z′, z, x;
x′, z, z′, y, y′, x;
x′, z, z′, y′, y, x;
x′, z′, z, y, y′, x;
x′, y′, y, z, z′, x;
x′, y, y′, z′, z, x;
x′, z′, z, y′, y, x;
x′, y, y′, z, z′, x.

For a given triple of lengths (a, b, c), each of the above sequences corresponds to at
most ni possible choices for the edges (x, x′), (y, y′), and (z, z′), yielding a maximum
of 8ni in total. To see this, observe that the edge (x, x′) may be chosen in ni ways
(minimality of x fixes the orientation of the edge), and that the choice of (x, x′)
combined with the information provided by the sequence completely determines the
triple of edges.

The eight sequences divide into five possible cases, as the first four sequences lead
to equivalent outcomes (covered by case 1 below). Taken in order, the five cases are:

1. for at most 4ni of the choices for the edges (x, x′), (y, y′), and (z, z′), γi ⊕ γ
is a single cycle;

2. for at most ni choices, γi ⊕ γ is a pair of cycles of lengths a and b+ c;
3. for at most ni choices, γi ⊕ γ is a pair of cycles of lengths b and a+ c;
4. for at most ni choices, γi ⊕ γ is a pair of cycles of lengths c and a+ b;
5. for at most ni choices, γi ⊕ γ is a triple of cycles of lengths a, b, and c.

The first case does not yield an arc (F−, F), since the number of cycles does not
decrease when passing from F− = F ⊕ γ to F , but the other four cases do have to be
reckoned with.

1268 MARTIN DYER, ALAN FRIEZE, AND MARK JERRUM

The total weight of arcs entering F can be bounded above as follows:

∑
F−:(F−,F)∈Ψ

w(F−, F) ≤
k∑
i=1

nif(k)
∑

a,b,c≥1
a+b+c=ni

[(
1

a
+

1

b
+

1

c

)
+

(
1

a
+

1

b+ c

)
+

(
1

b
+

1

a+ c

)
+

(
1

c
+

1

a+ b

)]

=
k∑
i=1

nif(k)
∑

a,b,c≥1
a+b+c=ni

[
6

a
+

3

b+ c

]

≤
k∑
i=1

nif(k)n

ni−1∑
a=1

[
6

a
+

3

ni − a

]

≤ 9f(k)n2Hn,(3)

where Hn =
∑n

i=1 i
−1 ≤ lnn + 1 is the nth harmonic number [10, eq. (6.60)]. Com-

bining inequalities (2) and (3), we have∑
F+:(F,F+)∈Ψ

w(F, F+) −
∑

F−:(F−,F)∈Ψ

w(F−, F) ≥ 10f(k)n2 lnn− 9f(k)n2Hn

≥ f(k)n2(lnn− 9)

≥ n2(lnn− 9),

where the final inequality is by Lemma 3.1. Thus the total weight of arcs leaving F
exceeds the total weight of arcs entering by at least 1, provided n is sufficiently large.
The number of non-Hamilton 2-factors |Φ\Φ1| is bounded above by the total weight of
arcs entering Φ1, which in turn is bounded—see inequality (3)—by |Φ1|×9f(1)n2Hn =
|Φ1| ×O(n2+β). This establishes the lemma.

4. Exact counting is #P-complete. Let #HC (resp., #HP) be the problem
of counting the number of Hamilton cycles (resp., paths) in an undirected graph. It is
known [21, 18] that #HC is #P-complete, and it follows, by an easy reduction, that
#HP is also #P-complete.

Theorem 4.1. Both #HC and #HP are #P-complete when restricted to graphs
G of minimum degree at least (1− α)n, where n is the number of vertices in G, and
α > 0.

Proof. We first present a Turing reduction from #HP to #HP such that all
the target instances of #HP satisfy the required minimum degree condition. Let
G = (V,E) be an undirected graph of order n with vertex set V and edge set E,
considered as an instance of #HP. A typical target instance of #HP is a graph Gt

constructed from G by forming the disjoint union of G with the complete graph Kt

on t ≥ n vertices, and connecting every vertex in G with every vertex in Kt.
Assume t ≥ 3. For 1 ≤ k ≤ n, denote by Pk the set of all covers of G by k

vertex-disjoint oriented paths, where paths of length 0 are allowed. Each oriented
Hamilton path P in Gt induces an element of ∪kPk by restriction to G. Conversely,
each element of Pk may be extended in precisely t!

(
t+1
k

)
k! = (t+1)!

(
t

k−1

)
(k−1)! ways

to an oriented Hamilton path in Gt: the vertices in Kt may be visited in t! orders;
there are

(
t+1
k

)
ways to choose k positions in that order during which excursions to G

can be made, including the two positions prior to and following the order, and k! ways

COUNTING HAMILTONIAN CYCLES 1269

to match those positions to the k oriented paths covering G. Thus the number pt of
oriented Hamilton paths in Gt can be expressed as the sum

pt =
n∑

k=1

(t+ 1)!

(
t

k − 1

)
(k − 1)!|Pk|.

Note that pt may be evaluated by one call to an oracle for #HP, since the number
of oriented Hamilton paths is twice the number of unoriented paths. Using n such
calls we may evaluate pt for t = t0 + j and j = 1, 2, . . . , n, where t0 = dα−1ne is
chosen sufficiently large that every graph Gt with t > t0 satisfies the minimum degree
constraint. Recovering the values {(k−1)!|Pk| : 1 ≤ k ≤ n} from {pt0+j/(t0 + j+1)! :
1 ≤ j ≤ n} amounts to inverting the matrix

A = (Ajk) =

((
t0 + j

k − 1

)
: 1 ≤ j, k ≤ n

)
,

which may be expressed as the product A = LU of a lower triangular matrix L = (Ljh)
and upper triangular matrix U = (Uhk) defined as follows:

Ljh =

(
j − 1

h− 1

)
and Uhk =

(
t0 + 1

k − h

)
.

The equality A = LU is a direct consequence of the “Vandermonde convolution”
formula [10, eq. (5.22)]

n∑
h=1

(
j − 1

h− 1

)(
t0 + 1

k − h

)
=

(
t0 + j

k − 1

)
.

Both L and U have unit diagonals and are hence nonsingular: indeed, their inverses
have the following simple explicit forms, as can be verified by direct multiplica-
tion using standard identities involving sums of products of binomial coefficients [10,
eqs (5.24), (5.25)]:

(L−1)hk = (−1)h+k

(
h− 1

k − 1

)
and

(U−1)jh = (−1)j+h

(
t0 + h− j

t0 + 1

)
.

Since A−1 = U−1L−1, the values {|Pk| : 1 ≤ k ≤ n} may be computed in polynomial
time using two matrix multiplications involving integers of O(n log n) bits. Observe
that 1

2 |P1| gives the number of (unoriented) Hamilton paths in G.
The hardness of #HC is now simple to verify. Given a graph G = (V,E) with

the minimum degree condition we add a new vertex x and edges (x, v) for all v ∈ V
to create G′. Note that G′ satisfies the minimum degree condition as well. Removing
x from a Hamilton cycle in G′ creates a Hamilton path in G. This defines a bijection
from the set of Hamilton cycles in G′ to the set of Hamilton paths in G.

5. Counting the number of cycles of all sizes. We will first consider ap-
proximating the total number of cycles in graphs with minimum degree (1

2 + α)n.
We first note that if we add a loop to each vertex and extend the definition of

2-factor to include loops as cycles of length one, then the argument of [14] may be

1270 MARTIN DYER, ALAN FRIEZE, AND MARK JERRUM

extended to this case (note that we still forbid cycles of length 2, i.e., double edges).
Thus there exists both a fully polynomial randomized approximation scheme and a
fully polynomial almost uniform sampler for the set of partial 2-factors in a dense
graph. Let a partial 2-factor be cyclic if it consists of a single cycle of length at least
three and a collection of loops. Clearly, the number of cyclic partial 2-factors is the
same as the number of cycles.

The procedure for approximating the number of cycles of all sizes is as follows:
we estimate first the number of partial 2-factors in G, and then the number of cyclic
partial 2-factors by standard sampling methods as a proportion of the number of
partial 2-factors. To produce an accurate estimate in polynomial time it is only
necessary to show that the ratio of partial 2-factors to cyclic partial 2-factors is not
too large. Let

F` = {partial 2-factors with ` loops} and f` = |F`|.
For a given F ∈ F` let L = {loops of F}, which we will now identify with the corre-
sponding set of vertices. For v ∈ L let dv denote the number of neighbors of v in L
and D =

∑
v∈L dv.

If v ∈ L then there are at least 2αn− 2dv ways of adding v to a cycle C of F by
deleting an edge (a, b) of C and adding edges (a, v), (v, b). Indeed, we go round each
cycle C of F ; if the successor b of a vertex a neighboring v is also a neighbor of v,
then it forms an (a, b, v) triangle. The number of such triangles is at least 2αn− 2dv.

So in total there are at least∑
v∈L

(2αn− 2dv) = 2`αn− 2D(4)

≥ 2`(αn− (`− 1))(5)

such augmentations.
Suppose first that ` ≤ `1 = bαn/2c. Then (5) gives at least `αn augmentations

of F ∈ F` to an F ′ ∈ F`−1. Each F ′ ∈ F`−1 arises in at most n ways and so

f`−1

f`
≥ α`.

Putting `0 = d2/αe we see that

f`1 + f`1−1 + · · ·+ f`0+1 ≤ f`0 ≤ f`0 + f`0−1 + · · ·+ f0.(6)

Suppose next that ` > `1. Note first that since a graph with r vertices and s edges
contains at least r − s+ 1 distinct cycles, we see that L contains at least

D

2
− `+ 1(7)

distinct cycles.
Adding a cycle C contained in L to F and removing |C| loops gives us a 2-factor

in F`′ where `′ < `. From (4) and (7) we see that there are at least2(
2`αn− 2D

4

)+

+

(
D

2
− `

)+

≥ `
(αn

2
− 1

)
(8)

≥ `αn

3
(9)

2 x+ = max{0, x}.

COUNTING HAMILTONIAN CYCLES 1271

augmentations of either sort from F . Each F ′ ∈ F<` arises in at most n + n ways
(accounting for both ways of reducing L), and so

f` ≤ 6

α`
(f`−1 + f`−2 + · · ·+ f0)

≤ θ(f`−1 + f`−2 + · · ·+ f0),

where θ = 12/(α2n), assuming ` > `1.
Thus

f` + f`−1 + · · ·+ f0

f`−1 + f`−2 + · · ·+ f0
≤ 1 + θ,

and so

f` + f`−1 + · · ·+ f0 ≤ (1 + θ)`−`1Σ1,(10)

where Σ1 = f`1 + f`1−1 + · · ·+ f0. We weaken (10) to

f`1+k ≤ (1 + θ)kΣ1

≤ e12α
−2

Σ1.(11)

It follows from (6) and (11) that

f0 + f1 + · · ·+ fn
f0 + f1 + · · ·+ f`0

≤ 2 + 2ne12α
−2

.(12)

Now take an F ∈ F` where ` ≤ `0 and fix its set of loops L. The number of partial
2-factors with this same L is at most a polynomial factor, p(n) say, of the number
of cycles of size n − ` through V \ L, by the results of section 3. (It is clear that
because ` is small here, the required degree conditions are satisfied.) Thus, by (12),
the ratio of partial 2-factors to cyclic partial 2-factors is O(np(n)) and we have proved
the existence of an fpras for the number of cycles.

6. Paths and Hamilton paths. We obtain an fpras for counting the number
of Hamilton paths in the following way. We add a vertex v0 and join it by an edge to
every vertex of G. Call this new graph G∗. The number of Hamilton cycles in G∗ is
equal to the number of Hamilton paths in G. Since G∗ is dense we can approximate
the latter quantity by approximating the former.

Similarly, to estimate the number of paths of all lengths, we compute an estimate
c∗ for the number of cycles in G∗ and an estimate ρ∗ for the proportion ρ of cycles
which contain v0. Since the number of cycles containing v0 is the number of paths in
G, this provides an estimate ρ∗c∗ for the number of paths. Also, this will give us an
fpras provided ρ is not too small. But clearly, ρ ≥ 3/4 and we are done.

7. Concluding remarks. We remark that it is not difficult to adapt the above
methods to the corresponding directed case. Here we will have both minimum indegree
and outdegree at each vertex guaranteed to be at least (1

2+α)n. Also, we may similarly
count the number of connected k-factors in G for any k = o(n). (Hamilton cycles are,
of course, connected 2-factors.)

We leave open the following questions. First, is it possible to count approximately
as α→ 0 in any fashion? Second, is there a random walk on Hamilton cycles and (in
some sense) “near-Hamilton cycles” which is rapidly mixing? In other words, can we
avoid the Tutte construction and the need for 2-factors with many cycles?

1272 MARTIN DYER, ALAN FRIEZE, AND MARK JERRUM

Finally, are there other interesting counting problems which are tractable on such
dense graphs? Note that Annan [1] has recently found an fpras for the number of
spanning forests in a dense graph. This can easily be modified to approximate the
total number of (not necessarily spanning) trees in a dense graph. On the other hand,
Jerrum [11] has recently shown that the problem of computing this number for a
general graph is #P-complete.

Acknowledgment. We thank Alistair Sinclair for his comments on an earlier
draft.

REFERENCES

[1] J. D. Annan, A randomised approximation algorithm for counting the number of forests in
dense graphs, Combin. Probab. Comput., 3 (1994), pp. 273–284.

[2] B. Bollobás, Extremal Graph Theory, Academic Press, Boston, 1978.
[3] G. R. Brightwell and P. M. Winkler, Counting linear extensions, Order, 8 (1991), pp. 225–

242.
[4] A. Z. Broder, How hard is it to marry at random? (On the approximation of the permanent),

in Proc. 18th ACM Symposium on Theory of Computing, 1986, pp. 50–58. Erratum in
Proceedings of the 20th ACM Symposium on Theory of Computing, 1988, p. 551.

[5] G. A. Dirac, Some theorems on abstract graphs, in Proc. London Math. Soc., 2 (1952), pp. 69–
81.

[6] M. E. Dyer and A. M. Frieze, On the complexity of computing the volume of a polyhedron,
SIAM J. Comput., 17 (1988), pp. 967–974.

[7] M. E. Dyer, A. M. Frieze, and R. Kannan, A random polynomial time algorithm for ap-
proximating the volume of convex bodies, J. ACM, 38 (1991), pp. 1–17.

[8] A. M. Frieze, M. R. Jerrum, M. Molloy, R. Robinson, and N. Wormald, Generating
and Counting Hamilton Cycles in Random Regular Graphs, Report ECS-LFCS-94-313,
Department of Computer Science, University of Edinburgh, Scotland, December 1994.

[9] A. M. Frieze and S. Suen, Counting Hamilton cycles in random directed graphs, Random
Structures Algorithms, 3 (1992), pp. 235–242.

[10] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for
Computer Science, Addison-Wesley, Reading MA, 1989.

[11] M. R. Jerrum, Counting trees in a graph is #P-Complete, Inform. Process. Lett., 51 (1994),
pp. 111–116.

[12] M. R. Jerrum and A. J. Sinclair, Approximating the permanent, SIAM J. Comput., 18
(1989), pp. 1149–1178.

[13] M. R. Jerrum and A. J. Sinclair, Polynomial-time approximation algorithms for the Ising
model, SIAM J. Comput., 22 (1993), pp. 1087–1116.

[14] M. Jerrum and A. Sinclair, Fast uniform generation of regular graphs, Theoret. Comput.
Sci., 73 (1990), pp. 91–100.

[15] R. M. Karp and M. Luby, Monte-Carlo algorithms for enumeration and reliability problems,
in Proc. 24th IEEE Symposium on Foundations of Computer Science, 1983, pp. 56–64.

[16] A. Karzanov and L. G. Khachiyan, On the Conductance of Order Markov Chains, Technical
Report DCS TR 268, Rutgers University, New Brunswick, NJ, 1990.

[17] M. Mihail and P. Winkler, On the number of Euler orientations of a graph, in Proc. 3rd
Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 138–145.

[18] J. Simon, On the difference between one and many, in Proc. 4th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science 52, Springer-
Verlag, Berlin, 1977, pp. 480–491.

[19] W. T. Tutte, A short proof of the factor theorem for finite graphs, Canad. J. Math., 6 (1954),
pp. 347–352.

[20] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979),
pp. 189–201.

[21] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput., 8
(1979), pp. 410–421.

A SUBLINEAR SPACE, POLYNOMIAL TIME ALGORITHM FOR
DIRECTED s-t CONNECTIVITY∗

GREG BARNES† , JONATHAN F. BUSS‡ , WALTER L. RUZZO§ , AND

BARUCH SCHIEBER¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1273–1282, October 1998 004

Abstract. Directed s-t connectivity is the problem of detecting whether there is a path from
vertex s to vertex t in a directed graph. We present the first known deterministic sublinear space,
polynomial time algorithm for directed s-t connectivity. For n-vertex graphs, our algorithm can use

as little as n/2Θ(
√

logn) space while still running in polynomial time.

Key words. graph connectivity, s-t connectivity, graph reachability, time-space tradeoff, JAG,
NNJAG, NL

AMS subject classifications. 05C40, 05C85, 68Q05, 68Q10, 68Q15, 68Q20, 68Q25

PII. S0097539793283151

1. Introduction. The s-t connectivity problem, detecting whether there is a
path from a distinguished vertex s to a distinguished vertex t in a directed graph, is
a fundamental one, since it is the natural abstraction of many computational search
processes, and a basic building block for more complex graph algorithms. In com-
putational complexity theory, it has an additional significance: understanding its
complexity is a key to understanding the relationship between deterministic and non-
deterministic space-bounded complexity classes. In particular, the s-t connectivity
problem for directed graphs (stcon) is the prototypical complete problem for non-
deterministic logarithmic space [12]. Both stcon and the undirected version of the
problem, ustcon, are DLOG-hard—any problem solvable deterministically in loga-
rithmic space can be reduced to either problem [7, 12].

Establishing the deterministic space complexity of stcon would tell us a
great deal about the relationship between deterministic and nondeterministic space-
bounded complexity classes. For example, showing a deterministic logarithmic
space algorithm for directed connectivity would prove that DSPACE(f(n)) =
NSPACE(f(n)) for any constructible f(n) = Ω(log(n)) [12]. Unfortunately, this re-
mains a difficult open problem. A fruitful intermediate step is to explore time-space
tradeoffs for stcon, that is, the simultaneous time and space requirements of algo-
rithms for directed connectivity. No nontrivial lower bounds are known for general
models of computation (such as Turing machines) on either the space or the simul-
taneous space and time required to solve stcon, although Cook and Rackoff [5] and
Tompa [13] have obtained lower bounds for restricted models. This paper presents
new upper bounds for the problem.

∗Received by the editors May 11, 1993; accepted for publication (in revised form) July 18, 1996;
published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/28315.html
†Computing and Communications, University of Washington, Box 354843, Seattle, WA 98195–

4843 (gsbarnes@u.washington.edu). This research was supported by NSF grant CCR-9002891.
‡Department of Computer Science, University of Waterloo, Waterloo, ON, Canada N2L 3G1

(jfbuss@math.uwaterloo.ca). This research was supported in part by a grant from NSERC.
§Computer Science and Engineering, University of Washington, Box 352350, Seattle, WA 98195–

2350 (ruzzo@cs.washington.edu). This research was supported by NSF grant CCR-9002891.
¶IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY

10598 (sbar@watson.ibm.com).

1273

1274 G. BARNES, J. BUSS, W. RUZZO, AND B. SCHIEBER

The standard algorithms for connectivity, breadth- and depth-first search, run in
optimal time Θ(m+n) and use Θ(n log n) space. At the other extreme, Savitch’s the-
orem [12] provides a small space (Θ(log2 n)) algorithm that requires time exponential
in its space bound (i.e., time nΘ(log n)). Cook and Rackoff show an algorithm for their
more restricted “JAG” model that is similar to, but more subtle than, Savitch’s; it
has essentially the same time and space performance.

Recent progress has been made on the time-space complexity of ustcon. Barnes
and Ruzzo [3] show the first sublinear space, polynomial time algorithms for undi-
rected connectivity. Nisan [8] shows that O(log2 n) space and polynomial time suffice.
Nisan, Szemerédi, and Wigderson [9] show the first ustcon algorithm that uses less
space than Savitch’s algorithm (O(log1.5 n) versus Θ(log2 n)).

Prior to the present paper, there was no corresponding sublinear space, polyno-
mial time algorithm known for stcon, and there was some evidence suggesting that
none was possible. It has been conjectured [4] that no deterministic stcon algorithm
can run in simultaneous polynomial time and polylogarithmic space. Tompa [13]
shows that certain natural approaches to solving stcon admit no such solution. In-
deed, he shows that for these approaches, performance degrades sharply with decreas-
ing space. Space o(n) implies superpolynomial time, and space n1−ε for fixed ε > 0
implies time nΩ(log n), essentially as slow as Savitch’s algorithm.

The main result of our paper is a new deterministic algorithm for directed s-t con-
nectivity that achieves polynomial time and sublinear space simultaneously. While
not disproving the conjecture of [4], it shows that the behavior elicited from cer-
tain algorithms by Tompa is not intrinsic to the problem. Our algorithm can use

as little as n/2Θ(
√

logn) space while still running in polynomial time. As part of
this algorithm, we present an algorithm that finds short paths in a directed graph
in polynomial time and sublinear space. The short paths problem is a special case of
stcon that retains many of the difficulties of the general problem and seems partic-
ularly central to designing small space algorithms for stcon. We are not aware of
any previous algorithms that solve this problem in sublinear space and polynomial
time. Interestingly, our algorithm for the short paths problem is a generalization of
two well-known algorithms for stcon. In one extreme it reduces to a variant of the
linear time breadth-first search algorithm, and in the other extreme it reduces to the
O(log2 n) space, superpolynomial time algorithm of Savitch.

Subsequent to the appearance of a preliminary version of this paper [1], Poon [11,
Chap. 4] has shown an algorithm for the JAG model that is similar to this algorithm
and achieves similar performance. In addition, Barnes and Edmonds [2] and Edmonds
and Poon [6] have given improved lower bounds for stcon on the JAG model and
the stronger Node-Named JAG (NNJAG) model of Poon [10]. Edmonds and Poon’s
lower bound is particularly strong, since it nearly matches the upper bounds in this

paper when the machine uses space n/2O(
√

logn) or less, and thus suggests that the
algorithm in this paper could provide an optimal time-space tradeoff for stcon.

Our algorithm to solve stcon in polynomial time and sublinear space is con-
structed from two algorithms with different time-space tradeoffs. The first performs a
modified breadth-first search of the graph, while the second finds short paths. Alone,
neither algorithm can solve stcon in simultaneous polynomial time and sublinear
space. In the following two sections, we present the breadth-first search algorithm
and the short paths algorithm. Section 4 shows how the two algorithms can be
combined to yield the desired result. Section 5 presents some notes and concluding
remarks.

SUBLINEAR SPACE, POLYNOMIAL TIME DIRECTED s-t CONNECTIVITY 1275

For more information on graph connectivity, see the survey paper by Wigder-
son [15].

2. The breadth-first search tradeoff. Consider the tree constructed by a
breadth-first search beginning at s. The tree can contain n vertices and thus requires
O(n log n) space to store. Instead of constructing the entire tree, our modified breadth-
first search generates a fraction of the tree.

Suppose we want our modified tree to contain at most n/λ vertices. We can do
this by only storing (the vertices in) every λth level of the tree. Number the levels of
the tree 0, 1, . . . , n−1, where a vertex v is on level l if the shortest path from s to v is
of length l. Divide the levels into equivalence classes C0, C1, . . . , Cλ−1 based on their
number mod λ. Besides s, the algorithm stores only the vertices in one equivalence
class Cj , where j is the smallest value for which Cj has no more than the average
number of vertices, n/λ.

The algorithm constructs this partial tree one level at a time. It begins with level
0, which consists of s only, and generates levels j, j + λ, j + 2λ, . . . , j + λ · bn/λc.
Given a set, S, of vertices, we can find all vertices within distance λ of S in time
nO(λ) and space O(λ log n) by enumerating all possible paths of length at most λ and
checking which paths exist in G. This can be used to generate the levels of the partial
tree. Let Vi be the vertices in levels 0, j, j+λ, . . . , j+iλ. Consider the set of vertices,
U , that are within distance λ of a vertex in Vi. Clearly, U contains all the vertices
in level j + (i+ 1)λ. However, U may also contain vertices in lower numbered levels.
The vertices in level j + (i+ 1)λ are those vertices in U that are not within distance
λ − 1 of a vertex in Vi. Thus, to get Vi+1 we add to Vi all vertices that are within
distance λ but not λ− 1 of Vi.

Pseudocode for the algorithm appears in Figure 2.1. Note that to find an equiv-
alence class with at most n/λ vertices, the algorithm just tries all classes in order,
discarding a class if it generates too many vertices.

Referring to Figure 2.1, the algorithm’s space bound is dominated by the number
of vertices in S and S′, and the space needed to test whether a vertex is within
distance λ of a vertex in S. There are never more than n/λ+ 1 vertices in S and S′,
so the algorithm uses O((n log n)/λ) space to store these vertices. The time bound
is dominated by repeatedly testing whether a vertex is within distance λ of a vertex
in S. This test is performed O(n3/λ) times—the innermost loop to find the vertices
on the next level of the tree makes O(n · n/λ) such tests (testing for a path from the
O(n/λ) vertices in S to all other O(n) vertices), and is executed O(λ · n/λ) times.

In summary, we have shown the following.
Theorem 2.1. For any n-vertex directed graph and any integer λ, 1 ≤ λ ≤

n, the breadth-first search algorithm presented above solves s-t connectivity in space
O((n log n)/λ + SPATH (λ, n)) and time O((n3/λ) · TPATH (λ, n)), where SPATH (λ, n)
and TPATH (λ, n) denote the space and time bounds, respectively, of the algorithm used
to test for a path of length at most λ between two vertices in an n-vertex graph.

Note that we assume that testing for a path of length at most j, j − 1, or λ− 1
will not take asymptotically more time or space than testing for a path of length at
most λ. This is because the first three problems are easily reduced to the latter. To
test for a path of length at most λ′, λ′ < λ, from some vertex in a set S to some vertex
v, connect λ − λ′ new vertices, v1, v2, . . . , vλ−λ′ , in a chain to v by adding the edges
(v, v1), (v1, v2), (v2, v3), . . . , (vλ−λ′−1, vλ−λ′). There will be a path in the new graph
from some vertex u ∈ S to vλ−λ′ of length at most λ if and only if there was a path
in the original graph from u to v of length at most λ′.

1276 G. BARNES, J. BUSS, W. RUZZO, AND B. SCHIEBER

Algorithm Bfs (integer: λ);
{remember every λth level of the breadth-first search tree}

for j = 0 to λ− 1 do begin {first level to remember, apart from level 0}
S = {s}.
for all vertices, v do begin {Find vertices on the first level}

if v within distance j of s and
v not within distance j − 1 of s then

if |S| > n/λ then try next j. {Don’t store more than n/λ vertices, + vertex s}
else add v to S.

end;
for i = 1 to bn/λc do begin

S′ = ∅.
for all vertices, v do begin {Find vertices on the next level. ?}

if v within distance λ of some vertex in S and
v not within distance λ− 1 of any vertex in S then

if |S| + |S′| > n/λ then try next j.
else add v to S′.

end;
S = S ∪ S′.

end;
if t within distance λ of a vertex in S then return (Connected);
else return (Not Connected);

end;
end Bfs.

Fig. 2.1. Details of the breadth-first search algorithm.

Using a straightforward enumeration of all paths, testing whether a vertex is
within distance λ requires nO(λ) time and O(λ log n) space. This algorithm is not
sufficient for our purposes. In particular, if λ is asymptotically greater than a constant,
the algorithm uses superpolynomial time. If we restrict our input to graphs with
bounded degree, there is a slight improvement. In a graph where the outdegree is
bounded by d, the number of paths of length λ from a vertex is at most dλ. For these
graphs, λ can be O(log n) and the algorithm will run in polynomial time. Note that
the overall algorithm still does not use sublinear space in this case, even though the
subroutine for finding paths of length λ does.

The problem with this algorithm is its method of finding vertices within distance
λ. Explicitly enumerating all paths is not very clever, and uses too much time. There
is hope for improvement, though, since this method uses only O(λ log n) space, much
less than the O(nλ log n) used by the rest of the algorithm. Indeed, in the next section
we give an algorithm that uses more space but runs much faster.

3. The short paths tradeoff. Consider the bounded s-t connectivity problem
(bounded stcon).

Definition 3.1. For any real-valued function f(n), the f(n)-bounded s-t con-
nectivity problem is, given an n-vertex directed graph G and two distinguished vertices
s and t, to determine whether there is a path in G from s to t of length less than or
equal to f(n).

Solving bounded stcon for general f(n) is at least as hard as solving stcon. We
are interested in the short paths problem, informally defined as the bounded stcon
problem where f(n) is small. The short paths problem is a special case of stcon

SUBLINEAR SPACE, POLYNOMIAL TIME DIRECTED s-t CONNECTIVITY 1277

that seems to retain many of the difficulties of the general problem. It is particularly
interesting given the breadth-first search algorithm above, because a more efficient
method of finding short paths would clearly lead to an improvement in that algorithm’s
time bound.

Our second tradeoff is an algorithm that solves the short paths problem for many
f(n) in sublinear space and polynomial time. As will become clear, we will eventually

want f(n) = 2Θ(
√

logn), but to simplify the following discussion, we begin with the
more modest goal of finding a sublinear space, polynomial time algorithm for the
short paths problem with f(n) = logc n, for some integer constant c ≥ 1.

As noted before, we already have a sublinear space, polynomial time algorithm
that searches to distance log n on bounded degree graphs; because there are a constant
number of ways to leave each vertex, we can enumerate and test all paths of length
log n in polynomial time. In a general graph, this approach will not work, because
there can be up to n−1 possible edges from each vertex, and explicit enumeration can
yield a superpolynomial number of paths of length logn. We can avoid this problem
by using a labeling scheme that limits the number of possible choices at each step of
the path.

Suppose we divide the vertices into k sets, according to their vertex number mod
k. Then, every path of length L (L = f(n)) can be mapped to an (L+1)-digit number
in base k, where digit i has value j if and only if the ith vertex in the path is in set
j. Conversely, each such number defines a set of possible paths of length L.

Given this mapping, our algorithm is straightforward: generate all possible (L+1)-
digit k-ary numbers, and check for each number whether there is a path in the graph
that matches it. For a given k-ary number, the algorithm uses approximately 2n/k
space to test for the existence of a matching path in the graph, as follows. Suppose
we are looking for a path from s to t and want to test the (L + 1)-digit number
〈s mod k, d1, d2, . . . , dL−1, t mod k〉. We begin with a bit vector of size dn/ke, which
corresponds to the vertex set d1. Zero the vector, and then examine the outedges of
s, marking any vertex v in set d1 (by setting the corresponding bit in the vector) if
we find an edge from s to v. When we are finished, the marked vertices in the vector
are the vertices in d1 that have a path from s that maps to the first two digits of
the number. Using this vector, we can run a similar process to find the vertices in d2

that have a path from s that maps to the first three digits of the number, and store
them in a second vector of size dn/ke. In general, given a bit vector of length dn/ke
representing the vertices in di with a path from s that maps to the first i+1 digits of
the number, we use the other vector to store the vertices in di+1 with a path from s
that maps to the first i+2 digits. Pseudocode for the algorithm appears in Figure 3.1.
Notice that the algorithm as given does not solve the short paths problem, as it tests
for the existence of a path from s to t of length exactly L, not at most L. Any such
algorithm can easily be converted into an algorithm for the short paths problem by
adding a self-loop to s. For simplicity, we omit this detail from our algorithms.

The algorithm uses space O(n/k) to store the vectors, and O(L log k) to write
down the path to be tested. Let D be the maximum number of edges from one set
of vertices di to another set of vertices dj (i and j can be the same). For all steps in
each path, we do at most O(n/k + D) work zeroing the vector and testing for edges
from di−1 to di. Since D = O(n2/k2), the algorithm uses O(kLL · n2/k2) = O(kLn3)
time to test all L steps on each of the kL paths.

Unfortunately, this does not reach our goal of polynomial time and sublinear
space when L = logc n. With a distance as small as log n, kL is only polynomial if k

1278 G. BARNES, J. BUSS, W. RUZZO, AND B. SCHIEBER

Algorithm SP (integer: k, L; vertex s, t);
{Test for a path of length L between s and t using space O(n/k)}

Create V0 and V1, two dn/ke bit vectors.
for all (L + 1)-digit numbers in base k,

〈d0 = s mod k, d1, . . . , dL−1, dL = t mod k〉 do begin
Set all bits in V0 to zero, and mark s (set the corresponding bit to 1).
for i = 1 to L do begin

Set all bits in Vi mod 2 to zero.
{Find edges from di−1 to di}

for all u in di−1 marked in V(i−1) mod 2 and all v in di do begin
if (u, v) is an edge then

mark v in Vi mod 2.
end;

end;
if t is marked in VL mod 2 then return (Connected);

end;
return (Not Connected);

end SP.

Fig. 3.1. Details of the short paths algorithm.

is constant, and if k is constant, the algorithm does not use sublinear space. We can
achieve polynomial time and sublinear space by reducing the distance the algorithm
searches. For example, if L = log n/ log log n, k can be logc n for any constant c, and
the algorithm will run in O(n/ logc n) space and O((log n)c logn/ log log nn3) = O(nc+3)
time.

The algorithm can be improved by invoking it recursively. Consider the loop in
the algorithm that tests for edges between one set of vertices and the next. This loop,
in effect, finds paths of length one from marked vertices in the first set to vertices in
the second set. Instead of finding paths of length one, we can use the short paths
algorithm to find paths of length L, yielding an algorithm that uses twice as much
space, but finds paths of length L2. In general, using r ≥ 1 levels of recursion, the
improved algorithm can find paths of length Lr using O(r(n/k + L log k)) space. If
we make a recursive call for every possible pair of vertices in di−1 × di, we get a
time bound of O((kLL · n2/k2)r) = O(n2r+1krL), since Lr = O(n). In Figure 3.2,
we present the pseudocode for our recursive algorithm. This algorithm uses a further
refinement to improve the time bound—one recursive call is used to find all vertices
in di reachable from any reachable vertex in di−1.

Given the discussion above, the time used by the recursive algorithm is bounded
by the following recurrence relation, where T (j) is the time used by the algorithm
with j levels of recursion. For an appropriately chosen constant c,

T (j) =

{
O(n2/k2) if j = 0,
kLL(T (j − 1) + cn/k) if j > 0.

In the base case, the algorithm does O(n2/k2) work. At other levels, the algorithm
makes kLL recursive calls to itself, as well as doing some auxiliary work, such as
setting all vector entries to zero. Solving the recurrence relation for j = r gives time
O((kLL)r · n2/k2) = O(n3krL).

In summary, we have shown the following.

SUBLINEAR SPACE, POLYNOMIAL TIME DIRECTED s-t CONNECTIVITY 1279

Algorithm SPR (integer: k, L, r, ds, dt; vector Vs): vector;
{Return the vector of vertices in set dt that are reachable by paths

of length Lr from vertices in set ds that are marked in vector Vs}
Create V0, V1, and Vt, three dn/ke-bit vectors. Set all bits in Vt to zero.
if r = 0 then {base case}

for all u in ds marked in Vs and all v in dt do begin
if (u, v) is an edge then

mark v in Vt.
end;

else
for all (L + 1)-digit numbers in base k,

〈d0 = ds, d1, . . . , dL−1, dL = dt〉 do begin
V0 = Vs.
for i = 1 to L do begin {Find paths from di−1 to di}

Vi mod 2 = SPR(k, L, r − 1, di−1, di, V(i−1) mod 2).
end;
Set all bits in Vt that are set in VL mod 2.

end;
return (Vt);

end SPR.

Fig. 3.2. Details of the recursive short paths algorithm.

Theorem 3.2. For arbitrary integers r, k, and L, such that r ≥ 1, L ≥ 1, n ≥
k ≥ 1, and Lr ≤ n, the recursive short paths algorithm, presented above, can search to
distance Lr in time O(krLLr · n2/k2) (= O(n3krL)) and space O(r(n/k + L log k)).

We will close this section with a few notes on the algorithm. This recursive
algorithm meets our goal of finding a sublinear space, polynomial time algorithm
that detects paths of polylogarithmic length. For example, for L = log n/ log log n,
k = logr n, and constant r ≥ 2, the algorithm searches to distance Lr = ω(logr−1 n)

in time O(n3krL) = O(nr
2+3) and space O(rn/ logr n). However, as mentioned in the

introduction, this algorithm does not by itself give a polynomial time, sublinear space
algorithm for stcon. The algorithm searches to distance Lr by testing krL numbers.
If Lr = n, then krL is polynomial only if k = O(1). But if k = O(1), the algorithm
does not use sublinear space.

The algorithm, which was designed to solve the short paths problem, actually
solves bounded stcon, and is thus a general algorithm for s-t connectivity. In fact,
given the appropriate parameters, the algorithm exhibits behavior and performance
similar to the best-known previous algorithms for stcon. If we let k = 1, L = n, and
r = 1, the algorithm is a somewhat inefficient variant of breadth-first search that uses
O(n) space and O(n(n+m)) time: the algorithm first finds all vertices at distance 1
from s, then distance 2, etc., until it has searched to distance n. At the other end of
the time-space spectrum, Savitch’s algorithm is just the special case of this algorithm
where k = n, L = 2, and r = dlog ne—this is also the minimum space bound for the
algorithm.

4. Combining the two algorithms. As an immediate consequence of the pre-
vious two sections, we have an algorithm for stcon using sublinear space and poly-
nomial time: use the modified breadth-first search algorithm to find every (logc n)th
level of the tree (for integer constant c ≥ 2), with the recursive short paths algorithm

1280 G. BARNES, J. BUSS, W. RUZZO, AND B. SCHIEBER

{S is the set of vertices on previous tree levels. S′ (initially
the empty set) will be the set of vertices on the next level}

for i1 = 0 to k − 1 do begin
Si1 = {all vertices whose vertex number mod k = i1}.
P = ∅. {P will be all vertices in Si1 on the next tree level}
for i2 = 0 to k − 1 do begin

Si2 = {all vertices whose vertex number mod k = i2}.
Q = S ∩ Si2 . {Q is all vertices in Si2 on previous tree levels}
A = {all vertices in Si1 within distance Lr of a vertex in Q}.
B = {all vertices in Si1 within distance Lr − 1 of a vertex in Q}.
P = P ∪ (A−B).

end;
if |S| + |S′ ∪ P | > n/Lr then try next j.
else S′ = S′ ∪ P .

end;

Fig. 4.1. Combining the two algorithms efficiently.

(the version that checks for paths of length up to Lr) as a subroutine to find the
paths between levels. With careful choices of the parameters k, L, and r, however,
the algorithm can use even less space while still maintaining polynomial time.

In general, if we set λ in the breadth-first search algorithm to be Lr, the breadth-
first search algorithm finds every (Lr)th level of the tree, and the short paths algorithm
searches to distance Lr. Substituting the space bound for the short paths algorithm
(see Theorem 3.2) for the term SPATH (λ, n) in the breadth-first search algorithm (see
Theorem 2.1), we get a space bound for this algorithm of

O((n log n)/Lr + r(n/k + L log k)),(4.1)

where the first term corresponds to the space used by the partial breadth-first tree,
and the second to the space used to find short paths. Substituting the short paths
time bound for the term TPATH (λ, n) in the breadth-first search time bound gives a
time bound of

O((n3/Lr) · krLLr · n2/k2) = O(n5krL−2).

The above time bound applies when we call the short paths algorithm every time
the breadth-first search algorithm needs to know whether one vertex is within distance
Lr of another. The two algorithms can be combined more efficiently by noticing that
the short paths algorithm can answer many short paths queries in one call; for any
pair of sets, (Q, R), such that R is one of the k sets of vertices in the short paths
algorithm and Q is a subset of one of the k sets, one call to the short paths algorithm
can be used to find all vertices in R within distance Lr of a vertex in Q. Thus, the
short paths algorithm only needs to be called 2k2 times to generate the next level
of the tree, twice for each possible pair of the k sets in the short paths algorithm.
Figure 4.1 gives the code that should be used in place of the loop in Figure 2.1 (marked
with a ?) that finds vertices on the next level of the breadth-first search tree. Similar
code should replace the earlier loop in Figure 2.1 that finds the vertices on the first
level.

SUBLINEAR SPACE, POLYNOMIAL TIME DIRECTED s-t CONNECTIVITY 1281

The improved version makes a total of O(k2n/Lr) calls to the short paths algo-
rithm, for a time bound of

O((k2n/Lr) · krLLr · n2/k2) = O(n3krL).(4.2)

We want to find the minimum amount of space the algorithm can use while still
maintaining a polynomial running time. To maintain polynomial time, we must have,
for some constant a,

krL = na.(4.3)

For simplicity, we bound expression (4.1) from below by

Ω(n/Lr + n/k).(4.4)

(That is, we omit the log n factor in the first summand and the r factor in the second
summand, and leave out the third summand altogether.) The minimum value of
the bound (4.4) is reached when the denominators are equal. For any given k, the
product rL is fixed; thus the quantity Lr reaches its maximum, and the bound reaches
its minimum, when L is a constant. Substituting Lr for k in (4.3) and solving for r

yields r =
√

(a/L) logLn = Θ(
√

log n), and thus k = 2Θ(
√

log n).

Substituting these values,
√

log n for r, 2Θ(
√

logn) for k, and a constant for L,

into the simplified space bound expression (4.4) gives a bound of n/2Θ(
√

logn). Sub-
stituting these same values into the actual space bound expression (4.1) yields the

same asymptotic space bound, n/2Θ(
√

logn). Since this matches the minimum for the
simplified expression, which was a lower bound for this expression, we cannot do any
better, and this must be the minimum space bound for the algorithm when using
polynomial time.

The results of this section are summarized in the following theorem and its corol-
lary.

Theorem 4.1. The combined algorithm, described above, solves stcon in space
O((n log n)/Lr + r(n/k + L log k)) and time O(n3krL), for any integers r, k, and L
that satisfy n ≥ k ≥ 1, r ≥ 1, L ≥ 1, and Lr ≤ n.

Corollary 4.2. The combined algorithm can solve stcon in time nO(1) and

space n/2Θ(
√

logn).

Proof. Choose r =
√

log n, k = 2Θ(
√

log n), and L = 2 in Theorem 4.1. As
discussed above, these choices minimize space while retaining polynomial time.

5. Conclusions and future work. Letting L = 2 and k = 2r, we obtain the
following corollary.

Corollary 5.1. The combined algorithm of section 4 can solve stcon using
time 2O(log2(n/S)) · n3 given space S.

The recent lower bound of Edmonds and Poon [6] shows that no algorithm that

runs on an NNJAG can do better than time 2Ω((log2(n/S))/ log log n) given space S.
Ignoring the log logn factor in the lower bound, the two bounds therefore match when

S = n/2O(
√

logn). For higher space bounds, Edmonds and Poon’s bound does not
improve the JAG lower bound in Barnes and Edmonds [2] of ST = Ω(n2/ log(n/S))
(where T is the time used by the JAG).

Note that only the log logn factor separates the lower bound from the upper
bound when small space is used. When the space used is larger, there is still a

1282 G. BARNES, J. BUSS, W. RUZZO, AND B. SCHIEBER

significant gap between the upper and lower bounds (although the gap is not as large
as Theorem 4.1 indicates, since the time bound in (4.2) is an overestimate). It is
possible that the combined algorithm above is optimal for the NNJAG model, but to
prove it, these gaps must be eliminated.

Given that the upper and lower bounds for the problem are now close for the
JAG and NNJAG models, we should consider more general models of computation.
To improve this algorithm, it seems likely that we must use methods for exploring a
graph that cannot be mimicked by an NNJAG. On the other hand, finding a lower
bound similar to Barnes and Edmonds’s [2] or Edmonds and Poon’s [6] on a more
general model of computation would be a breakthrough and would help decide the
question of the complexity of DL versus NL.

Acknowledgments. Allan Borodin pointed us toward the short paths problem.
Uri Feige helped find the minimum space bound.

REFERENCES

[1] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s-t connectivity, in Proc. 7th Annual IEEE Conference on Structure
in Complexity Theory, Boston, MA, 1992, pp. 27–33.

[2] G. Barnes and J. A. Edmonds, Time-space lower bounds for directed s-t connectivity on JAG
models, in Proc. 34th Annual IEEE Symposium on Foundations of Computer Science, Palo
Alto, CA, 1993, pp. 228–237.

[3] G. Barnes and W. L. Ruzzo, Undirected s-t connectivity in polynomial time and sublinear
space, Comput. Complexity, 6 (1996–1997), pp. 1–28.

[4] S. A. Cook, Deterministic CFL’s are accepted simultaneously in polynomial time and log
squared space, in Conference Record of the 11th Annual ACM Symposium on Theory of
Computing, Atlanta, GA, 1979, pp. 338–345. See also [14].

[5] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

[6] J. A. Edmonds and C. K. Poon, A nearly optimal time-space lower bound for directed st-
connectivity on the NNJAG model, in Proc. 27th Annual ACM Symposium on Theory of
Computing, Las Vegas, NV, 1995, pp. 147–156.

[7] H. R. Lewis and C. H. Papadimitriou, Symmetric space-bounded computation, Theoret. Com-
put. Sci., 19 (1982), pp. 161–187.

[8] N. Nisan, RL ⊆ SC, Comput. Complexity, 4 (1994), pp. 1–11.
[9] N. Nisan, E. Szemerédi, and A. Wigderson, Undirected connectivity in O(log1.5 n) space,

in Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh,
PA, 1992, pp. 24–29.

[10] C. K. Poon, Space bounds for graph connectivity problems on node-named JAGs and node-
oriented JAGs, in Proc. 34th Annual IEEE Symposium on Foundations of Computer Sci-
ence, Palo Alto, CA, 1993, pp. 218–227.

[11] C. K. Poon, On the Complexity of the st-Connectivity Problem, Ph.D. Thesis, University of
Toronto, 1996.

[12] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,
J. Comput. System Sci., 4 (1970), pp. 177–192.

[13] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial time, sub-
linear space implementations, SIAM J. Comput., 11 (1982), pp. 130–137.

[14] B. von Braunmühl, S. A. Cook, K. Mehlhorn, and R. Verbeek, The recognition of deter-
ministic CFL’s in small time and space, Inform. and Control, 56 (1983), pp. 34–51.

[15] A. Wigderson, The complexity of graph connectivity, in Proc. 17th Symposium on Mathemat-
ical Foundations of Computer Science, I. M. Havel and V. Koubek, eds., Lecture Notes in
Comput. Sci. 629, Springer-Verlag, New York, 1992, pp. 112–132.

MONOTONE CIRCUITS FOR CONNECTIVITY HAVE DEPTH
(logn)2−o(1)∗

MIKAEL GOLDMANN† AND JOHAN HÅSTAD‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1283–1294, October 1998 005

Abstract. We prove that a monotone circuit of size nd recognizing connectivity must have
depth Ω((log n)2/ log d). For formulas this implies depth Ω((log n)2/ log logn). For polynomial-size
circuits the bound becomes Ω((log n)2) which is optimal up to a constant.

Key words. monotone circuits, circuit complexity, connectivity, lower bounds

AMS subject classification. 68Q15

PII. S0097539795285631

1. Introduction.

1.1. Graph connectivity. Connectivity is the problem of determining if an
undirected graph G is connected or not. This is a natural and fundamental problem
which has been studied in numerous contexts. We refer the reader to Wigderson’s
survey of connectivity and its importance in complexity theory [9]. We consider the
complexity of computing connectivity using monotone circuits with AND-gates and
OR-gates of fan-in two. Typically, an n-node graph is encoded by

(
n
2

)
variables xi,j

that indicate whether {i, j} is an edge in G or not. In [4] Karchmer and Wigderson
proved that monotone circuits for the related problem (s, t)-connectivity (determining
if there is an s, t-path in G) must have depth Ω((logn)2).1 This is well known to be
optimal. In spite of the two problems being very similar in nature, attempts to prove
nontrivial bounds for connectivity were fruitless until Yao recently proved a lower
bound of Ω((logn)3/2/ log log n) [10].

While Karchmer and Wigderson used a top-down approach exploiting an equiv-
alence between circuit depth and communication complexity (see [3]), Yao uses a
bottom-up approach. In this article we modify his method to prove a lower bound of
Ω((log n)2/ log log n), and in the case of polynomial-size circuits the bound improves
to optimal Ω((logn)2).

1.2. The method of approximation. The tool used by Yao in [10] is a mod-
ification of the method of approximation, originally designed by Razborov [7, 6] to
prove lower bounds on the size of monotone circuits (also used in [1, 2]). The method
is roughly as follows. One considers some subset of the inputs, called test inputs.
Given some monotone circuit C one replaces each gate g by an approximator g̃ yield-
ing a function C̃ that approximates the function that C computes. In order to prove
a lower bound on the size of C one needs to show two things:

∗Received by the editors May 8, 1995; accepted for publication (in revised form) July 18, 1996;
published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/28563.html
†Department of Numerical Analysis and Computing Science, KTH-NADA, 100 44 Stockholm,

Sweden (migo@nada.kth.se). Research funded by post-doctoral fellowship from Swedish Research
Council for Engineering Sciences. Research done as postdoc at the Laboratory for Computer Science,
MIT.

‡Department of Numerical Analysis and Computing Science, KTH-NADA, 100 44 Stockholm,
Sweden (ohanh@nada.kth.se). Research done as postdoc at the Laboratory for Computer Science,
MIT. Research done while visiting Laboratory for Computer Science, MIT.

1All logarithms in this paper are to the base 2 unless we explicitly state otherwise.

1283

1284 MIKAEL GOLDMANN AND JOHAN HÅSTAD

1. g and g̃ agree on all but a tiny fraction of the test inputs,
2. C and C̃ disagree on a large fraction of the test inputs.

Since local errors are small but the total error is large, there must be many local
errors; that is, C must have many gates.

Yao adapted the method of approximation to prove lower bounds on circuit depth.
The key is to allow more and more powerful functions as approximators as one goes
up the circuit. This way one can get good approximating functions at each level of
the circuit. On the other hand, if there are not too many levels in the circuit, then
the approximator one gets is still not powerful enough to agree with connectivity on
most inputs.

Remark. The idea of having more powerful approximators as one goes up the
circuit is also present in [5] and [8]. These papers prove lower bounds on the size of
nonmonotone constant-depth circuits.

1.3. An overview of the paper. Recall the standard way to compute connec-
tivity with O(log2 n)-depth monotone circuits. Let AG be an n× n adjacency matrix
of the undirected graph G and let I be the n×n identity matrix. Then G is connected
if and only if (AG + I)n (computed over the Boolean semiring 〈{0, 1},∧,∨〉) is the

all-one matrix. It is sufficient to look at (AG + I)2
dlogne

which can be computed by
dlog ne squarings. Each squaring can be carried out by a O(log n)-depth monotone
circuit. If we look at an intermediate result, say (AG + I)j , then the u, v entry in
this matrix tells us whether u and v are within distance 2j in G or not. The intuition
behind the proof is that this is more or less what a shallow monotone circuit can know
about G: that some “small” sets of vertices are “close” to each other in G.

The basic approximators used have a parameter j that is coupled to the depth
of the circuit that is to be approximated. A basic approximator checks if for some
small subsets of the vertices all the vertices in each subset are within distance Kj in G
(where K is a fixed parameter in the proof). For j = 0 the basic approximators are just
checking edges in G, that is, looking at the inputs. Notice that the basic approximators
correspond closely to the functions computed at the gates of the standard circuit
above. The real approximators we use are disjunctions of basic approximators.

We wish to prove that some arbitrary shallow circuit C does not compute con-
nectivity. Thus, we want to find an approximator that approximates C well. The
proof proceeds in stages. At stage j we find approximators (with parameter j) for all
the subfunctions computed by gates on level jε log n in C. As long as the circuit has
depth lε log n where l is smaller than, say, (logK n)/10, the resulting approximator
for the circuit only looks at local connectivity problems (checks if certain vertices are
within distance n1/10 in G) and therefore is poor at checking connectivity “globally.”

In section 2 we present the approximators and prove some preliminary results
about how they behave on certain “test inputs.” We also prove some preliminary
combinatorial lemmas.

In section 3 it is shown that monotone circuits of size nd (where d = o(log n))
for connectivity must have depth Ω((logn)2/ log d). By modifying the proof of this
result we show in section 4 that monotone formulas for connectivity must have depth
Ω((log n)2/ log log n).

Finally, section 5 discusses the most obvious open problem: to show that comput-
ing connectivity with monotone formulas requires depth Ω((logn)2). We give some
reasons why minor modifications to the method used in this paper probably will not
be sufficient to prove this. In particular it is shown that there exists a circuit of depth
O((log2 n)/ log log n) that when the method of approximation is applied to it, the

MONOTONE CONNECTIVITY REQUIRES DEPTH (logn)2−o(1) 1285

resulting function approximates connectivity well.

2. Test inputs and our approximating functions. As in Yao’s paper we
concentrate on two types of inputs:

1. Hamiltonian paths,
2. two disjoint cliques.

We use the abbreviation HP for the first type and 2C for the second. The goal
is to show that an approximator for a shallow circuit either outputs 0 for a large
fraction of HP or outputs 1 for a large fraction of 2C. We are interested in random
instances of the two types and for HP we take the uniform distribution. A random
instance of 2C is obtained by randomly and independently giving the labels 0 and
1 (each with probability 1/2) to each node. We then connect nodes with the same
label. Thus, a random instance of HP is always connected while the probability that
a random instance of 2C is connected is 21−n which for all practical purposes can be
approximated with 0.

As mentioned in the introduction, we use approximations that are similar to
Yao’s. In other words, our method is bottom-up and starts with the inputs. We
let the circuit do computation for ε log n levels, and then we replace the functions
computed by a nearby function. The information we concentrate on is the fact that
certain subsets of vertices are known to be close to each other. The simplest case of
this is an edge which is just saying that two vertices are at distance 1. To be able to
formulate the general concept we need a little bit of notation.

Definition 2.1. Let V = {1, . . . , n}. A partitioned subset of V is a set A =
{A1, . . . , Ak} of disjoint subsets of V .

Let e (A) = A1 ∪ · · · ∪Ak, and let the size of A be |e (A) |.
Let s(A) be the number of sets in A; i.e., s(A) = k in the given notation.
A partitioned set A = {A1, . . . , Ak} is a subset of another partitioned set B =

{B1, . . . , Bl} (written A ⊆ B) if k ≤ l and (possibly after renumbering the parts of
B) Ai ⊆ Bi for i = 1, 2, . . . , k.

A partitioned set A is finer than a partitioned set B if for each Ai ∈ A there is
a Bj ∈ B such that Ai ⊆ Bj. Conversely, we say that B is coarser than A.

It will be useful to have an estimate of the number of small partitioned subsets.
Lemma 2.2. Let V = {1, . . . , n} and k be an integer. Then there are at most

(en)k partitioned subsets of V of size at most k.
Proof. We count by first picking a subset of V and then partitioning it. A set of

size s ≤ k can clearly be partitioned in at most ss ≤ kk ways. Therefore, kk
∑k

s=0

(
n
s

)
is an upper bound on the number of partitioned subsets of V . However,

k∑
s=0

(
n

s

)
≤
(n
k

)k n∑
s=0

(
n

s

)(
k

n

)s
=
(n
k

)k (
1 +

k

n

)n
≤
(n
k

)k
ek,

which completes the proof.
We will always have |Ai| ≥ 2 and hence |e(A)| ≥ 2s(A).
The partitioned sets will play the role of minterms in our approximating functions.

For a partitioned set A and integer r define the following function on graphs:

frA(G) = 1 ⇔
s(A)∧
i=1

 ∧

a,b∈Ai

dG(a, b) ≤ r

 ,

where dG(a, b) is the length of the shortest path in G between the nodes a and b. If
a and b are not connected we define dG(a, b) = ∞.

1286 MIKAEL GOLDMANN AND JOHAN HÅSTAD

Our general approximating functions will be disjunctions of frA for various A and
r. Let A = {A1, . . . ,At} be a collection of partitioned sets. Then we define

frA =
t∨

i=1

frAi .

Also, for the empty set ∅ we define

fr∅ ≡ 1.

Boolean operations on functions frA can almost be performed in the natural way.
frA ∨ frB is of course frA∪B so that is no problem. However, frA ∧ frB is a little bit
more complicated. By using the distributive law we need only to consider frAi ∧ frBj .
If e(Ai) and e(Bj) are disjoint, this is just frAi∪Bj , while if the two partitioned sets
are not disjoint the resulting function might not be exactly representable and we
can only find an approximation in our set of functions. Essentially we use fr′C where
e(C) = e(Ai) ∪ e(Bj) and the partition of C is the finest partition that is coarser
than both Ai and Bj and r′ is a suitable multiple of r. The fact that we are forced
to increase r is one of the key reasons that we need to consider ε log n levels at the
time.

We start with an easy observation.
Lemma 2.3. frA(G) = f1

A(G) for all A and all r ≥ 1 and all graphs from 2C.
This is obvious since any two connected nodes are at distance 1.
In our arguments we want to keep our collections of partitioned sets small. One

mechanism for doing this is to throw away any large partitioned set, and we need the
following lemma.

Lemma 2.4. The probability that frA(G) = 1 for a random graph G from HP is
at most (

2r

n− |e(A)|
)|e(A)|/2

.

Proof. Let A = {A1, . . . , Ak} and ai = |Ai|. Define the notation A(i) =
{A1, . . . , Ai} (this means that A(0) = ∅). We have

Pr[frA(G) = 1] =
k∏
i=1

Pr[fr{Ai}(G) = 1 | frA(i−1)(G) = 1].

To estimate Pr[fr{Ai}(G) = 1 | frA(i−1)(G) = 1] let us assume that a random HP
is found by randomly picking the places of all vertices one by one. We can pick the
place for the first vertex in Ai in an arbitrary way, but for every other element of Ai

there are at most 2r possible places which will satisfy the requirement. Since there
are at least n− e(A) remaining slots we get the bound

Pr[frA(G) = 1] ≤
k∏
i=1

(
2r

n− |e(A)|
)ai−1

=

(
2r

n− |e(A)|
)∑k

i=1
(ai−1)

≤
(

2r

n− |e(A)|
)|e(A)|/2

.

MONOTONE CONNECTIVITY REQUIRES DEPTH (logn)2−o(1) 1287

The last inequality follows because |e(A)| ≥ 2k.
We will need a slightly more general statement of the lemma, and let us state this

explicitly.
Lemma 2.5. Let Ai, i = 1, . . . , d, be a set of not necessarily disjoint partitioned

sets and let m = |⋃ e(Ai)|. The probability that ∧di=1f
r
Ai(G) = 1 for a random graph

G from HP is at most

(
2r

n−m

)m/2

.

Proof. The proof is almost identical to the proof of the previous lemma. Place
the elements of

⋃
e(Ai) on the HP in random places. To satisfy that ∧di=1f

r
Ai(G) = 1

at least half the elements will have at most 2r possible places to go. The lemma now
follows.

To avoid having too many large partitioned sets we will replace some collections by
smaller collections and the concept of a sunflower is of central importance. Remember
that the containment relation for partitioned sets respects the partition.

Definition 2.6. Let A1, . . . ,At be distinct partitioned sets. They form a t-
sunflower with core C = {C1, . . . , Ck} if the following two conditions hold:

1. C ⊆ Ai for 1 ≤ i ≤ t,
2. e(Ai) ∩ e(Aj) = e(C) for 1 ≤ i < j ≤ t.

The petals of a sunflower are the partitioned sets Ai \C =
{
A \ e (C) | A ∈ Ai

}
.

Given a collection of partitioned sets that contain a sunflower with certain param-
eters, we will replace all the partitioned sets in the sunflower by the core. First note
that this might create partitions with |Ci| = 1. These sets will simply be dropped
when forming frC. We might also get an empty core and in such a case remember that
fr∅ ≡ 1.

Replacing a t-sunflower by its core makes the corresponding function accept more
inputs. We will not care that more HPs are accepted (they are actually quite a
number). The reason is that we only worry about approximation errors that make
the circuit accept less HP-inputs or more 2C-inputs. Thus, we need to check how
many 2C-inputs get added by this procedure.

Lemma 2.7. Let A1, . . . ,At be partitioned sets which form a sunflower with core
C. Suppose that maximum of |e(Ai)| − |e(C)| is bounded by u; then the probability
that a random element G of 2C satisfies frC(G) while frAi(G) = 0 for all i is bounded

by e−t2
−u

.
The process of replacing sunflowers by their core will be denoted plucking.
Proof of Lemma 2.7. We want to estimate the probability Pr[∨ti=1f

1
Ai(G) =

0 | f1
C(G) = 1]. However, when G is drawn randomly under the condition that

f1
C(G) = 1, then the events f1

Ai(G) = 0 are independent since e(Ai) \ e(C) is disjoint
from e(Aj) \ e(C) when i 6= j.

Pr[∨ti=1f
1
Ai(G) = 0 | f1

C(G) = 1]

=
t∏

i=1

Pr[f1
Ai(G) = 0 | f1

C(G) = 1]

≤ (1− 2−u)t

≤ e−t2
−u

.

We need some information on the existence of sunflowers.

1288 MIKAEL GOLDMANN AND JOHAN HÅSTAD

Lemma 2.8. We are given A1, . . . ,Am that are distinct partitioned sets of size at
most a, an integer t, and a partitioned set B of size b such that B ⊆ Ai for 1 ≤ i ≤ m.
If m ≥ ta−b(a− b)!a!/b!, then there is a C ⊇ B such that there is a t-sunflower with
core C.

Proof. The proof is by induction on a−b. Since A1, . . . ,Am are distinct we know
that a− b ≥ 1.

Base case (a− b = 1). The following greedy approach produces a t-sunflower.
Pick an arbitrary partitioned set Ai and remove all sets Aj that intersect it outside
B. At first it might not seem like there can be any such Aj . It is possible, however,
that e(Aj) = e(Ai), but the partitions are different. Since the partitions induced on
B are the same, there may only be ≤ b = a − 1 such sets. Since the total number
of sets was at least ta we can repeat this t − 1 more times to get a t-sunflower with
core B.

Induction step (a− b = i).
Case 1. There is an element x 6∈ B appearing in at least ta−b−1(a − b − 1)!a!/b!

of the sets. There are at most (b+ 1) ways to extend B by adding x to it, and there
is at least one of these extensions, B′, that is a subset of ta−b−1(a− b− 1)!a!/(b+ 1)!
of the Ai. Since a− |e(B′)| = i− 1 one can use induction to find a t-sunflower among
them with some core C, where B ⊆ B′ ⊆ C.

Case 2. No element appears in more than ta−b−1(a− b− 1)!a!/b! of the sets. Like
in the base case we can pick a t-sunflower with B as its core in a greedy fashion. Each
petal picked reduces the number of sets by at most ta−b−1(a − b)!a!/b! and thus we
can pick t sets.

Having established the basic preliminaries, let us repeat the outline of the proofs.
We approximate the gates computed at levels iε log n by a function fK

i

A where K will
be a suitable number and A is a collection of partitioned sets of size < K and which
does not contain any sunflowers of certain parameters. For i = 0 there is no problem
since the input xi,j is just f1

A where A is just one partitioned set which contains the
only set {i, j}. Let us now dive into the details and we start first with the case of
when the circuits are of small size.

3. Polynomial size implies depth Ω((logn)2). The purpose of this section
is to prove the following theorem.

Theorem 3.1. Given a monotone circuit of size nd that computes connectivity,
then the depth of this circuit is at least

c(log n)2

log d

for some universal constant c and sufficiently large n. Here d might be a function of
n provided that it satisfies d ∈ o((log n)1/2).

In particular, the theorem implies that if the circuit is of polynomial size, then
the depth is Ω((logn)2) and as is well known; this is tight.

To follow the general outline we just need to specify a couple of parameters. Set
ε < 1/40 such that ε log n is an integer. The functions approximating the gates at

level iε log n are functions fK
i

A , where
1. K = 10d;
2. A only contains partitioned sets of size at most K, and every sunflower has

fewer than 2K2K log n petals.
Note that by Lemma 2.8 this implies that no collection of partitioned sets contains

more than (2K2K log n)K(K!)2 ≤ nε partitioned sets (for n sufficiently large).

MONOTONE CONNECTIVITY REQUIRES DEPTH (logn)2−o(1) 1289

Assume now that there is a circuit of size nd and depth at most ε(log n)2/(4 logK)
that computes connectivity. As described before, we will derive a contradiction by
successively finding functions frA that approximate the functions computed by gates
in the circuit. The functions at the inputs (i = 0) are approximated perfectly, and
the key is to go from i to i + 1. Each gate at level (i + 1)ε log n is given by a circuit
of depth ε log n of gates at level iε log n. There are at most nd such gates and we
approximate each gate separately.

Let us fix a gate at level (i+1)ε log n and consider its ε log n depth-defining circuit.

The jth input is given by fK
i

Aj . We can convert the circuit to a depth-two circuit which

is an ∨ of ∧’s and such that the top fan-in is bounded by 2n
ε

and bottom fan-in is
bounded by nε.

Since each fK
i

Aj is conveniently represented as an ∨ of ∧ we can just use the
distributive law and compute each ∧. This will produce a disjunction of functions
gα of the type ∧(j,k)∈αfK

i

Aj,k where the Aj,k are partitioned sets which might not be
disjoint and α is a set of index pairs. We now proceed as follows.

1. Let Sα =
⋃

(j,k)∈α e(A
j,k).

2. Drop each gα where |Sα| ≥ K.
3. Let Bα be the finest partitioning of the set Sα that is coarser than Aj,k for

all (j, k) ∈ α.

4. Pluck the collection of Bα’s to form fK
i+1

B .

Let us look more closely at the approximations made. Dropping gα with Sα large
decreases the number of inputs that is accepted. We need to analyze the number of
HPs dropped this way. This is done in Lemma 3.2.

When forming Bα and increasing the value of allowable distances we accept more
HPs. To see this, note that each set in Bα is the union of at most K − 1 sets Aj,k.
We must prove that any graph G that satisfies ∧(j,k)∈αfK

i

Aj,k(G) = 1 also satisfies

fK
i+1

Bα
(G) = 1. But for any pair {s, t} of elements which are in the same set of Bα

there are elements v1 . . . vl with l ≤ K−1 such that if we set s = v0 and t = vl+1 then
for r = 0, . . . , l − 1 vr and vr+1 are in the same set of Aj,k for some (j, k) ∈ α. Since

∧(j,k)∈αfK
i

Aj,k(G) = 1 we have dG(vi, vi+1) ≤ Ki and hence dG(s, t) ≤ Ki+1. Since s

and t were arbitrary, we conclude that fK
i+1

Bα
(G) = 1. By Lemma 2.3 we know that

the subset of inputs from 2C that is accepted does not change when forming Bα.

Finally, plucking implies that we accept more inputs, and how many more inputs
that are accepted from 2C is analyzed in Lemma 3.3.

We now prove the relevant lemmas.

Lemma 3.2. For sufficiently large n, the fraction of HP that satisfies any term
dropped during step 2 of the construction is at most n−2d.

Proof. We find a small collection of functions hβ similar to gα such that for any
gα dropped there is an hβ that covers gα; that is, gα(G) = 1 ⇒ hβ(G) = 1 for some
β.

For any dropped gα find a minimal subset β of α such |⋃(j,k)∈β e(A
j,k)| ≥ K.

Clearly there is such a β of size at most K. Let

hβ =
∧

(j,k)∈β
fK

i

Aj,k .

Then it clearly satisfies the property outlined above. Now we claim that

1. there are at most 2
(
n2ε

K

)
different hβ ;

1290 MIKAEL GOLDMANN AND JOHAN HÅSTAD

2. the probability that hβ(G) = 1 for a random HP G is at most n−K/4 for
sufficiently large n.

The first claim follows from the fact that each Aj contains at most nε partitioned
sets and we need to choose at most K partitioned sets. The second claim follows from
Lemma 2.5 (note that r ≤ Kj ≤ K logn/(4 logK) ≤ n1/4). The lemma now follows
since

2

(
n2ε

K

)
n−K/4 ≤ n−2d

for ε < 1/40 and sufficiently large n.
Let us next estimate the number of inputs from 2C added under plucking.
Lemma 3.3. The fraction of 2C added in the above process is bounded by (e/n)K .
Proof. By Lemma 2.7, each time we replace a sunflower by its core we add a

fraction n−2K of 2C. This operation decreases the number of partitioned sets by at
least one, and by Lemma 2.2 there are at most (en)K to begin with. The lemma now
follows.

Let us now finish the proof of the theorem. The output gate corresponds to

i = log n/(4 logK) and hence it is approximated by a function fn
1/4

A . We have two
cases

Case 1. We have the identically 0 function. In order for this to happen we must
have lost all of HP. However, given that the circuit has size ≤ nd and using Lemma 3.2,
the fraction of HP lost is at most nd · n−2d = n−d, which contradicts the assumption
that all of HP has been lost.

Case 2. We get some function f which is not identically 0. There is a partitioned

set A such that |e(A)| ≤ K and fn
1/4

A implies f . However, it is easy to see that the

fraction of 2C accepted by fn
1/4

A , and thus by f is at least 2−K = 2−10d. However, the
total fraction of 2C added by the approximations is at most nd(e/n)K = e10dn−9d.
For n sufficiently large, e10dn−9d < 2−10d and we have a contradiction.

4. Formulas require depth Ω((logn)2/ log logn). The purpose of this sec-
tion is to prove the following theorem.

Theorem 4.1. The depth of a monotone formula that computes connectivity is
at least

Ω

(
(log n)2

log log n

)
.

The outline is the same as in the other proof but we need to be more careful. In
the sunflowers we remove, the number of petals we need is dependent on their sizes.

Definition 4.2. Let A1, . . . ,At be a sunflower with core C, and say that the
petal size |e(Ai)| − |e(C)| is at most u. We say that this is a good sunflower if
t ≥ 2u(log n)2.

Use the same ε as before. This time we use functions fK
i

A , where
1. K = blog n/(18 log logn)c,
2. A only contains partitioned sets of size at most K and no good sunflower.

Assume now that there is a circuit that has depth at most ε(log n)2/(4 logK) that
computes connectivity. We proceed exactly as in the previous proof. In particular,
the process of forming our approximations level by level is the same; i.e.,

1. let Sα =
⋃

(j,k)∈α e(A
j,k),

MONOTONE CONNECTIVITY REQUIRES DEPTH (logn)2−o(1) 1291

2. drop each gα where |Sα| ≥ K,
3. let Bα be the finest partition of the set Sα that is coarser than Aj,k for all

(j, k) ∈ α,

4. pluck the collection of Bα’s to form fK
i+1

B .
The crucial difference from the previous proof is that we need to work harder to

estimate the number of HPs dropped at the first step. The crucial lemma follows.
Lemma 4.3. The fraction of HP dropped at a single gate is bounded by n−K/8

for sufficiently large n.
Proof. Again we form a small set of functions H that dominate the set of lost

inputs.
Let γ ⊂ {1, . . . , nε}, and |γ| = l ≤ K. Let gγ = ∧j∈γfKi

Aj and using the distribu-
tive law we can write

gγ =
∨
δ

∧
(j,k)∈δ

fK
i

Aj,k ,

where δ ranges over all possible ways to pick Aj,k from Aj for each j ∈ γ. Call the
term corresponding to δ hδ and let Hγ be the set of terms in gγ . We say that the
weight of hδ is | ∪(j,k)∈δ e(Aj,k)|. We call hδ heavy if its weight is at least K and let

Hh
γ be the set of heavy terms in Hγ . Finally, let H = ∪|γ|≤KHh

γ . Now, H covers all
sets dropped in step 2 for the following reason. For any α with |Sα| ≥ K pick a subset
β of size at most K such that |⋃(j,k)∈β e(A

j,k)| ≥ K. The term that corresponds to

α is covered by the term hβ = ∧(j,k)∈βfK
i

Aj,k . Let γ be the projection of β on the first

coordinate. Clearly, hβ ∈ Hh
γ ⊆ H.

It remains to analyze the fraction of HP that is accepted by any of the functions
in H. For any h ∈ H let s be its weight. By definition s ≥ K, and since we only
consider |γ| ≤ K we have s ≤ K2. First note that by Lemma 2.5 the fraction of HP
that satisfies a term hδ of weight s is at most n−s/3 for n sufficiently large. Now we
need the following lemma.

Lemma 4.4. Given γ, |γ| = l ≤ K. The number of h in Hγ of weight s is at
most

F (s, l) = 2Ks+2s log log n+2s log s+l(s log s+s+1).

Before we prove Lemma 4.4, let us just see how to complete the proof of Lemma 4.3.

For a fixed γ we drop at most a fraction
∑K2

s=K F (s,K)n−s/2 of HP. For n sufficiently
large this quantity is bounded by

K2 · 23K2 log log n−(K/3) log n = K2 · n−K/6.

There are fewer than nεK sets γ, and for n sufficiently large, we have that K2 ·
n(ε−1/6)K < n−K/8.

Let us now prove Lemma 4.4.
Proof. We need the following useful technical lemma.
Lemma 4.5. We are given A1, . . . ,Am that are distinct partitioned sets, a set R

of size r such that |R ∪ e(Ai)| ≤ s for 1 ≤ i ≤ m, and an integer t.
If m ≥ (r+1)rts−r(s− r)!s!/r!, then there is a C such that there is a t-sunflower

with core C, and for each Ai in the sunflower, |e(Ai) \ e(C)| ≤ s− r.
Proof. We will find a subset of R and partition it to get a partitioned set Q such

that for many of the sets Q ⊆ Ai and |e(Ai)\e(Q)| ≤ s−r, and then use Lemma 2.8.

1292 MIKAEL GOLDMANN AND JOHAN HÅSTAD

Let Ri = R ∩Ai, and let Ri be the partitioned set that Ai induces on Ri. Since
|Ri| ≤ r, (r+1)r is an upper bound on the number of distinct Ri that can be obtained.
Therefore at least m′ = ts−r(s−r)!s!/r! of the Ai must give the same partitioned set.
Call this partitioned set Q and let q = |e(Q)|.

Without loss of generality A1, . . . ,Am′
all give Q. Since for these, Q ⊆ Ai and

|e(Ai)| ≤ s− r + q, we can apply Lemma 2.8 with a = s− r + q, b = q, and B = Q.
Provided that m′ ≥ ts−r(s−r)!(s−r+q)!/q! we are done. The right-hand side of this
expression grows with q, so m′ ≥ ts−r(s− r)!s!/r! suffices, and we have completed the
proof.

Now we can establish Lemma 4.4 by induction on l. We want to show that the
number of terms of size s of Hγ is bounded by F (s, l). The base case l = 1 follows
from Lemma 2.8 with B being the empty set. Obviously there are no terms of weight
s ≥ K. For weight s < K we just need to observe that

(2s(log n)2)ss! ≤ 2Ks+2s log log n+s log s ≤ F (s, 1).

For the induction step consider γ = {γ1, . . . , γl}, and let γ′ = {γ1, . . . , γl−1}.
To do the induction we need to analyze how many terms of size s in Hγ can be
formed from a single term of size r ≤ s in Hγ′ . Since Aγl does not contain any good
sunflowers, by Lemma 4.5 with parameter t = 2s−r(log n)2 we conclude that each
term of size r in Hγ′ can give at most

(r + 1)r(2s−r(log n)2)s−r(s− r)!s!/r!

≤ 2(s−r)2+2(s−r) log log n+2(s−r) log s+r log r+r

different terms of size s in Hγ . The inequality is immediate except for (s− r)!s!/r! ≤
22(s−r) log s, but this follows because the left-hand side has 2(s − r) factors that are
all at most s. Also, note that a term of size r cannot give any terms of size s > r+K
since all A ∈ Aγl have size at most K.

To get the total number of terms of size s we just use the inductive hypothesis to
bound the number of terms of size r in Hγ′ and sum over r ≥ s−K. Through simple
calculation,

s∑
r=max(0,s−K)

F (r, l − 1) · 2(s−r)2+2(s−r) log log n+2(s−r) log s+r log r+r

≤ F (s, l).

The fraction of 2C lost by plucking is easy to estimate.
Lemma 4.6. The fraction of 2C inputs added at a single gate is bounded by

n− logn for sufficiently large n.
Proof. By Lemma 2.7 and the definition of good sunflowers we know that plucking

a single good sunflower adds a fraction at most e−(log n)2 of 2C. Each time we pick a
sunflower the number of partitioned sets decreases, and by Lemma 2.2 there are at
most (en)K partitioned sets of size ≤ K before plucking starts. Thus, the fraction of

2C that gets added at a single gate is less than e−(log n)2+K logn+O(K), which is less
than n− logn for sufficiently large n.

The proof of Theorem 4.1 is now completed in exactly the same way as Theo-
rem 3.1 by using Lemmas 4.3 and 4.6 instead of Lemmas 3.2 and 3.3 and the fact
that the size of the formula is at most nε log n/(4 logK). For n sufficiently large there
are less than nlogn/(150 log log n) gates, and at each gate the error on HP is at most
n−K/8 ≤ n− logn/(145 log log n) and the error on 2C at each gate is at most n− logn.

MONOTONE CONNECTIVITY REQUIRES DEPTH (logn)2−o(1) 1293

5. Conclusion and open problems. Combining the results of the previous
two sections shows that a monotone circuit of size nd for connectivity must be of
depth Ω((logn)2/ log d). Of course one would like to get Ω((logn)2) lower bounds for
the depth even for formulas. We do believe that this is the correct answer, but we
believe that it is hard to find a more or less straightforward extension of the current
method. The following intuitive argument explains the problem.

An approximation argument seems to require partitioned sets2 of size Ω(log n).
The reason is that if we drop a single partitioned set of size K then the fraction of
HPs dropped is at least n−K . Since we are discussing circuits of size nc logn we cannot
afford this if K = o(log n). Now suppose we are using some type of sunflowers and
plucking. Consider a program that computes a predicate D(s, t, i) recursively where
s and t are vertices and i is a parameter. It sets D(s, t, 0) to true iff (s, t) is an edge.
To compute D(s, t, i) set s = v0, t = vl and try n2 ways of picking v1 . . . vl−1 and
set D(s, t, i) to true if for some attempt D(vi, vi+1, i) are true for i = 0, 1, . . . , i − 1.
D(s, t, i) should be thought of as a crude approximation that s and t are within
distance li. This is not really true since we do not try all the values of the l − 1
intermediate points. However, in an approximation scheme such as ours D(s, t, i) is
converted into the function dG(s, t) ≤ li by plucking (this argument is inductive on
i). If we choose l =

√
log n then D(s, t, i) can be computed in depth about O(i log n)

and for i = i0 = 2 log n/ log log n the approximation of D(s, t, i) is whether s and t
are connected and hence ∧nt=2D(1, t, i0) is approximated by connectivity.

The problem arises because the plucking operation causes a significant increase
in the fraction of HPs accepted. In our opinion, a major idea or a totally different
approach seems to be needed to eliminate the log log n factor.

Acknowledgment. The results described were obtained while visiting the Lab
for Computer Science at MIT. We thank the LCS and in particular Mike Sipser for
this opportunity. We are also grateful to the referees for careful reading and helpful
suggestions.

REFERENCES

[1] N. Alon and R. B. Boppana, The monotone circuit complexity of boolean functions, Combi-
natorica, 7 (1987), pp. 1–22.

[2] A. E. Andreev, On a method for obtaining lower bounds for the complexity of individual
monotone functions, Dokl. Akad. Nauk SSSR, 282 (1985), pp. 1033–1037 (in Russian);
Soviet Math. Dokl., 31 (1985), pp. 530–534 (in English).

[3] M. Karchmer, Communication Complexity: A New Approach to Circuit Depth, The MIT
Press, Cambridge, MA, 1989.

[4] M. Karchmer and A. Wigderson, Monotone circuits for connectivity require super-
logarithmic depth, SIAM J. Discrete Math., 3 (1990), pp. 255–265.

[5] A. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis
with logical addition, Mat. Zametki, 41 (1987), pp. 598–607 (in Russian); Math. Notes of
the Academy of Sciences of the USSR, 41 (1987), pp. 333–338 (in English).

[6] A. A. Razborov, Lower bounds on the monotone complexity of some boolean functions, Dokl.
Akad. Nauk SSSR, 281 (1985), pp. 798–801 (in Russian); Soviet Math. Dokl., 31 (1985),
pp. 354–357 (in English).

[7] A. A. Razborov, A lower bound on the monotone network complexity of the logical permanent,
Mat. Zametki, 37 (1985), pp. 887–900 (in Russian); Math. Notes of the Academy of Sciences
of the USSR, 37 (1985) pp. 485–493 (in English).

2Of course, we might use something different than partitioned sets, for instance the same graphs
as Yao did. This, however, does not matter greatly for this argument.

1294 MIKAEL GOLDMANN AND JOHAN HÅSTAD

[8] R. Smolensky, Algebraic methods in the theory of lower bounds for boolean circuit complexity,
in Proc. 19th ACM Symposium on Theory of Computing, New York, 1987, pp. 77–82.

[9] A. Wigderson, The complexity of graph connectivity, in Mathematical Foundations of Com-
puter Science, I. Havel and V. Koubek, eds., Lecture Notes in Computer Science 629,
Springer-Verlag, Berlin, Heidelberg, 1992, pp. 112–132.

[10] A. C. Yao, A lower bound for the monotone depth of connectivity, in Proc. 35th IEEE Sym-
posium on Foundations of Computer Science, Sante Fe, NM, 1994, pp. 302–308.

COMPLEXITY ANALYSIS OF A PARALLEL LATTICE BASIS
REDUCTION ALGORITHM∗

C. HECKLER† AND L. THIELE‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1295–1302, October 1998 006

Abstract. Lattice basis reduction is an important problem in geometry of numbers with applica-
tions in combinatorial optimization, computer algebra, and cryptography. The well-known sequential
LLL algorithm finds a short vector in O(n4 logB) arithmetic operations on integers having binary
length O(n logB), where n denotes the dimension of the lattice and B denotes the maximum L2

norm of the initial basis vectors. In this paper a new analysis of the parallel algorithm of Roch and
Villard is presented. It is shown that on an n × n mesh it needs O(n2 logB) arithmetic operations
on integers having binary length O(n logB). This improves the previous analysis and shows that an
asymptotical speedup of n2 is possible using n2 processors.

Key words. lattice basis reduction, parallel algorithms, parallel computational complexity, size
of the numbers

AMS subject classifications. 11H06, 11Y16, 68Q22

PII. S0097539795295626

1. Introduction. Lattice basis reduction, the problem of finding a basis of a
lattice with “short” vectors, is an important problem in geometry of numbers with
applications in combinatorial optimization, computer algebra, and cryptography (see,
for example, [8, 7, 6]). In the field of basis reduction a major advance was reached in
1982 when A.K. Lenstra, H.W. Lenstra Jr., and L. Lovasz [7] developed the so-called
LLL algorithm, which is a polynomial-time algorithm finding a “good” basis (“re-
duced basis”) in O(n4 logB) arithmetic operations on integers having binary length
O(n logB), where n denotes the dimension of the lattice and B denotes the maxi-
mum L2-norm of the initial basis vectors. Subsequently various variants have been
developed; see, for example, [10, 11]. In 1992 Roch and Villard [9, 13] developed a
parallel algorithm for n2 processors, but the efficiency of that algorithm could not be
proved. Moreover, larger numbers than in the sequential LLL algorithm can occur
in this parallel algorithm. They show the bound O(n2 logB) for the binary length
of the integers. In this paper a new analysis of the parallel algorithm is presented.
It is shown that on an n × n mesh it needs O(n2 logB) arithmetic operations and
communication steps on integers having binary length O(n logB). Thus, using n2

processors an optimal speedup can be reached.
This paper is organized as follows: the next section gives a brief survey of the

notation used in the paper. In section 3 the parallel algorithm is reviewed. The
complexity in terms of the number of arithmetic operations is studied in section 4.
Finally, in section 5 the size of the numbers of the serial and parallel algorithms and
the binary complexity are considered.

∗Received by the editors December 1, 1995; accepted for publication (in revised form) July 19,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/29562.html
†Universität-GH Paderborn, Fachbereich 17, Automath, Warburgerstr. 100, D-33098 Paderborn,

Germany (chh@uni-paderborn.de). The research of this author was done at the Universität des
Saarlandes, Lehrstuhl für Mikroelektronik, Postfach 151150, D-66041 Saarbrücken and was supported
by the Deutsche Forschungsgemeinschaft, SFB 124.

‡ETH Zürich, Technische Informatik und Kommunikation, ETH-Zentrum, CH-8092 Zürich,
Switzerland (thiele@tik.ee.ethz.ch). This research was done while this author was at the Univer-
sität des Saarlandes, Saarbrücken, Germany.

1295

1296 C. HECKLER AND L. THIELE

A more practical algorithm using fast floating point arithmetic can be found in
[3]. Implementation details and practical results of different parallel algorithms are
given in [2].

2. Basic notation. We assume that the reader is familiar with the foundations
of lattice basis reduction as described in section 1 of [7] (also see, for example, [11, 12]).
Here we only describe our basic notation.

An n-dimensional lattice is a discrete subgroup of Rn.
Definition 2.1. Let b1, b2, . . . , bn ∈ Rn be n linearly independent vectors. Then

L = L(b1, . . . , bn) = {∑n
i=1 λibi|λi ∈ Z, i = 1, . . . , n} is called a lattice with basis

(b1, . . . , bn).
Let us recall the Gram–Schmidt orthogonalization process. Let ‖ · ‖ denote the

L2-norm of a vector and let (b1, b2, . . . , bn) be a basis, then the Gram–Schmidt or-
thogonalization (b∗1, b

∗
2, . . . , b

∗
n) of mutually orthogonal vectors can be computed by

b∗1 = b1 and b∗i = bi−
∑i−1

j=1 µi,jb
∗
j for i = 2, . . . , n, where µi,j =

bTi b
∗
j

||b∗
j
||2 . Let be µi,i = 1

and µi,j = 0 for i < j, and let M = (µi,j)1≤i,j≤n be the matrix of the Gram–Schmidt
coefficients. Then M is a lower triangular matrix where all elements of the main
diagonal are equal to 1 and the above equations can be expressed as (b1, . . . , bn) =
(b∗1, . . . , b

∗
n)MT .

The following procedure (designated “size reduction”) is used to obtain a basis of
the lattice with small Gram–Schmidt coefficients |µi,j | ≤ 0.5.

Algorithm 2.2.
Size reduction of the basis (b1, . . . , bn) [7]

for i = 2 to n do
reduce size of column i of the basis and of MT:

for j = i− 1 downto 1 do
reduce size of coefficient µi,j of column i:

let dµi,jc be the nearest integer to µi,j
and let µj denote the column j of MT:
bi ← bi − dµi,jcbj ; µi ← µi − dµi,jcµj

od
od

For technical reasons we use the following definition of a reduced basis (due to
[12]) which is almost the same as the original one given in [7].

Definition 2.3 (reduced basis [7, 12]). A lattice basis (b1, . . . , bn) is called
reduced if both of the following conditions are fulfilled:

• |µi,j | ≤ 1
2 for all 1 ≤ j < i ≤ n,

• ||b∗i−1||2 ≤ 2||b∗i ||2 for all 1 < i ≤ n.
The idea of the LLL lattice basis reduction algorithm of [7] consists in iteratively

computing the size reduction of one basis vector bi and swapping bi and bi−1 if the
second condition of the above definition is not valid. The complexity of the LLL
algorithm is given in the next theorem.

Theorem 2.4 (sequential complexity [7]). Let B = maxi=1,...,n ||bi||2 be the
square of the length of the longest vector of the original basis. Given a basis (b1, . . . , bn)
of a lattice with bi ∈ Zn for all 1 ≤ i ≤ n, the sequential LLL algorithm of [7] computes
a reduced basis of the same lattice in O(n4 logB) arithmetic operations on integers
having binary length O(n logB).

3. The parallel algorithm. The main idea of the parallel algorithm of [9, 13]
is to perform all possible swaps in one phase (see also [3, 4]) and to compute the size

COMPLEXITY OF PARALLEL LATTICE BASIS REDUCTION 1297

reduction of the whole matrix. Strictly speaking, bi and bi+1 are swapped for all odd
indices i with ||b∗i ||2 > 2||b∗i+1||2 in one phase of the algorithm and for all even indices
i in the next phase of the algorithm (see Algorithm 3.1). The concatenation of an
odd and an even phase is called an “all swap phase.”

Algorithm 3.1.
All-Swap Lattice Basis Reduction Algorithm [3, 4, 9, 13]
input: b1, b2, . . . , bn a lattice basis
output: b1, b2, . . . , bn a reduced basis
method:

Compute the Gram–Schmidt orthogonalization of
the basis, i.e. M and ‖b∗i ‖2, i = 1, . . . , n;
ordering ← odd;
while (any swap is possible) do

Compute the size reduction of the basis (b1, . . . , bn) and
the Gram–Schmidt coefficients M ;
if (ordering = odd) then

swap bi and bi+1 for every odd index i with
||b∗i ||2 > 2||b∗i+1||2;
ordering ← even;

else
swap bi and bi+1 for every even index i with
||b∗i ||2 > 2||b∗i+1||2;
ordering ← odd;

fi;
Repair the Gram–Schmidt orthogonalization

od.

In the serial case, O(n3) arithmetic operations are required for one phase. How-
ever, the two major steps of the algorithm, that is the orthogonalization of the basis
(respectively, the repair of the orthogonalization) and the size reduction of the whole
matrix, are well suited for parallelization. Thus, the following theorem holds.

Theorem 3.2 (see [3, 4, 9, 13]). An all-swap phase can be done in O(n) parallel
steps (according to the number of arithmetic operations and the number of communi-
cations of numbers) on a mesh-connected network of n2 processors.

4. Parallel complexity. In order to achieve a speedup of n2 using n2 processors
in comparison with the LLL algorithm, it must be shown that a short vector can be
found after at most n logB all-swap phases. The following analysis is taken from [3].

Theorem 4.1 (parallel time complexity). After at most n logB all-swap phases1

the following situation holds for all i with 1 ≤ i ≤ n:

||b∗1||2 · ||b∗2||2 · · · ||b∗i ||2 ≤ 4
3 · c

i(n−i)
2 · (detL)

2i
n

with c = 32
9 .

Proof. Consider the ratios

||b∗1||2
c
n−1

2 (detL)
2
n

· ||b∗2||2
c
n−3

2 (detL)
2
n

· · · ||b∗i ||2
c
n−2i+1

2 (detL)
2
n

=

∏i
j=1 ||b∗j ||2

c
i(n−i)

2 (detL)
2i
n

=: v(i).(1)

1In the following log denotes the logarithm with basis 4
3
.

1298 C. HECKLER AND L. THIELE

We are finished when all these ratios v(i), 1 ≤ i ≤ n, are less than 4
3 . Let max be the

maximum of all these ratios, that is max = max{v(i)|1 ≤ i ≤ n}, and let max′ be
the maximum after one further all-swap phase.

It will be shown that every all-swap phase decreases the value of max by a factor
less than 3

4 , that is max′ ≤ 3
4max, if max > 4

3 . In the beginning, max ≤ Bn since
||b∗i ||2 ≤ B holds for all 1 ≤ i ≤ n. Therefore, all ratios are less than 4

3 after at most
n logB all-swap phases.

Proposition 4.2. If max > 4
3 and v(i) > 3

4max, the product ||b∗1||2·||b∗2||2 · · · ||b∗i ||2
and thereby v(i) is decreased by a factor less than 3

4 in one all-swap phase. All other
ratios remain unchanged or decrease.

Proof of the proposition. If two vectors bj and bj+1 are swapped, the product
||b∗1||2 · ||b∗2||2 · · · ||b∗j ||2 is decreased by a factor less than 3

4 ; all other products remain

unchanged. See [7] for these facts. Thus, we have to show that max ≤ 4
3 or bi and bi+1

are swapped for all i with v(i) > 3
4max in one all-swap phase; that is, if v(i) > 3

4max,
then ||b∗i ||2 > 2||b∗i+1||2. If this swap condition holds for an even index i, it is also
valid after one odd swapping phase.

If v(n) > 3
4max, then max < 4

3 since v(n) = 1.
Therefore, consider an index i, 1 ≤ i ≤ n− 1, with v(i) > 3

4max. We show in the
following that the vectors bi and bi+1 are swapped in this case.

If v(i) > 3
4max, then v(i) > 3

4v(i+ 1). Using (1) we obtain

4
3 (detL)

2
n c

n−2i−1
2

||b∗i ||2
>
||b∗i+1||2
||b∗i ||2

.(2)

In the same way, if v(i) > 3
4max and i > 1, then v(i) > 3

4v(i − 1) holds and
therefore

||b∗i ||2 >
3

4
c
n−2i+1

2 (detL)
2
n .(3)

This relation is also valid for i = 1 if max ≥ 1 and v(1) > 3
4max.

However, it follows from (2), (3), and the choice of c that

(
4
3

)2
c

=
1

2
>
||b∗i+1||2
||b∗i ||2

,(4)

and therefore the swap condition is satisfied.
Thus, the proposition and the theorem have been proven.
In particular, we have found a short vector as shown in the following corollary.
Corollary 4.3. After at most n logB all-swap phases, the vector b1 of the

resulting lattice basis satisfies

||b1|| ≤ 4
3c

n−1
4 (detL)

1
n .

Proof. Use Theorem 4.1 with i = 1 and b1 = b∗1.
Corollary 4.4. A short vector of a lattice can be found in O(n2 logB) parallel

steps using a network of n2 processors. Thus, an asymptotical2 optimal speedup of n2

can be achieved in comparison with the serial LLL algorithm.
Proof. See Corollary 4.3 and Theorems 3.2 and 2.4.

2I.e., this holds for n→∞.

COMPLEXITY OF PARALLEL LATTICE BASIS REDUCTION 1299

5. Size of the numbers and binary complexity. The time for one operation
depends on the size of the numbers. If we start with an integral basis, that is bi ∈ Zn

for all 1 ≤ i ≤ n, all numbers occurring throughout the algorithm are rational with
denominators less than Bn [7]. See [7, 5] for an analysis of the sizes of the numbers
of the LLL algorithm. The bounds are summarized in Table 1. The known analysis
of the parallel algorithm is reviewed in the next section. Then a new result for the
parallel case is given.

5.1. Known analysis of the parallel case. In the parallel case the Gram–
Schmidt orthogonalization is computed for the whole matrix whereby bigger numbers
than in the serial case can occur where the orthogonalization is only computed for
the reduced part of the basis.

Theorem 5.1 (see [7]). After the computation (or repair) of the Gram–Schmidt
orthogonalization we have µ2

i,j ≤ iBn.

In the parallel algorithm the size reduction is computed simultaneously for all
columns. Therefore, the size reduction of each column is performed using nonreduced
columns of the basis. This leads to the following theorem.

Theorem 5.2. Let µ2
i,j ≤ M for all 1 ≤ j < i ≤ n before the size reduction.

Then the following inequalities are valid during the size reduction phase of the parallel
algorithm (see also [4, 13]):

µ2
i,j ≤ 4nMn for 1 ≤ j < i ≤ n,(5)

‖bi‖2 ≤ nB4nMn for 1 ≤ i ≤ n.(6)

Proof. Consider the size reduction of column k. During the reduction of the
element µk,k−1 the computation µk,i ← µk,i − dµk,k−1cµk−1,i for i = 1, . . . , k − 1
is performed. In the case of a parallel execution, column k − 1 is not size reduced.
Therefore, only the estimation |µk−1,i| ≤

√
M is possible. Thus, the new value of

|µk,i| satisfies |µk,i| ≤ 2M . The proposition follows by induction and with ‖bi‖2 =∑i
j=1 µ

2
i,j‖b∗j‖2.

Using Theorems 5.1 and 5.2 the following result about the size of the numbers of
the parallel lattice basis reduction algorithm can be derived.

Corollary 5.3. During the parallel lattice basis reduction the following inequal-
ities hold for all values of ‖bi‖2 and µ2

i,j (see also [13]):

µ2
i,j ≤ (4nBn)n for 1 ≤ j < i ≤ n,(7)

‖bi‖2 ≤ nB(4nBn)n for 1 ≤ i ≤ n.(8)

5.2. New results. Two examples for Theorems 5.1 and 5.2 are presented where
large numbers do in fact occur. However, both situations never occur simultaneously.
Therefore, a better analysis of the size of the numbers can be derived than the one
given in Corollary 5.3. This new result is given in Theorem 5.7.

Theorem 5.4. The bound given in Theorem 5.1 is asymptotically tight.

1300 C. HECKLER AND L. THIELE

Proof. Consider the following n× n basis for some D > 1 ∈ Z:

D D + 1 · · · · · · D + 1 0
0 D D + 1 · · · D + 1 0
...

. . .
. . .

. . .
...

...
0 · · · 0 D D + 1 0
1 · · · 1 1 1 1
0 · · · · · · 0 0 1

.

For the Gram–Schmidt orthogonalization of that basis we have

µn,n−1 = (−1)n−2Dn−2.

The proof can be carried out by induction over n using “Givens” rotations for the
computation of the Gram–Schmidt orthogonalization (see, for example, [1] for Givens
rotations and [3] for the computation of the Gram–Schmidt orthogonalization via
Givens rotations).

Theorem 5.5. The bound for µ2
i,j given in Theorem 5.2 is asymptotically tight.

Proof. Consider the following n× n basis for some D > 1 ∈ Z:

(b1, . . . , bn) =

1 D · · · D

0 1
. . .

...
...

. . .
. . . D

0 · · · 0 1

.

For the matrix of the Gram–Schmidt coefficients of the basis above we have that
MT = (b1, . . . , bn). By induction it can easily be shown that coefficients of the size
Dn−1 occur during the size reduction of column n.

In order to prove that both cases given above cannot occur simultaneously, we
use the following lemma.

Lemma 5.6. Consider the size reduction of column k, 2 ≤ k ≤ n, that is of
the elements µk,k−1, . . . , µk,1. After the size reduction of the element µk,k−i with
1 ≤ i ≤ k − 2, 2i − 1 products of Gram–Schmidt coefficients were subtracted from
each coefficient µk,k−j, j > i. Each product only consists of (rounded) coefficients of
different rows of the matrix MT and only of coefficients of the rows k−1, k−2, . . . , k−i
and k − j.

Proof. The proof is done by induction over i.

Let µ
(0)
x,y denote µx,y before the size reduction of column k, and let µ

(i)
x,y denote

µx,y after the size reduction of µk,k−i.
i = 1: After the size reduction of µk,k−1 the following is valid for j > 1:

µ
(1)
k,k−j = µ

(0)
k,k−j − dµ(0)

k,k−1cµ(0)
k−1,k−j .

Thus, the proposition is true for i = 1.
After the size reduction of µk,k−i−1 the following holds for j > 1:

µ
(i+1)
k,k−j = µ

(i)
k,k−j − dµ(i)

k,k−i−1cµ(0)
k−i−1,k−j .

Now, the proposition for i + 1 follows with the induction hypothesis for µ
(i)
k,k−j and

µ
(i)
k,k−i−1.

COMPLEXITY OF PARALLEL LATTICE BASIS REDUCTION 1301

Now the following theorem about the size of the numbers of the parallel lattice
basis reduction can be shown.

Theorem 5.7. During the parallel size reduction phase the following inequalities
hold:

µ2
i,j ≤ nn(2B)2n for 1 ≤ j < i ≤ n,(9)

‖bi‖2 ≤ nBnn(2B)2n for 1 ≤ i ≤ n.(10)

Proof. During the size reduction only sums with at most 2n terms occur. Each

term is a product of coefficients of different rows. With µ2
i,j ≤ ‖bi‖2

‖b∗
j
‖2 [7] we have

∏
µ2
i,j ≤

∏ ‖bi‖2

‖b∗j‖2
.

With ‖bi‖2 ≤ nB [7] it follows that

∏
‖bi‖2 ≤ (nB)n.

As ‖b∗1‖2 · · · ‖b∗n‖2 ≥ 1 and ‖b∗i ‖2 ≤ B for all 1 ≤ i ≤ n (see [7]) and because in each
product only different b∗j ’s occur we obtain

∏
‖b∗j‖2 ≥ 1

Bn
,

and therefore for each product the following inequalities are valid

∏
µ2
i,j ≤ nnB2n,

∣∣∣
∏

µi,j

∣∣∣ ≤ nn/2Bn.

Each sum consists of at most 2n products. Therefore we obtain for all values

|µ| ≤ nn/2(2B)n,

µ2 ≤ nn(2B)2n.

Again, the proposition for the values of bi follows with ‖bi‖2 =
∑i

j=1 µ
2
i,j‖b∗j‖2.

Table 1 summarizes the results with respect to the sizes of the numbers.

Table 1
Comparison of the sizes of the numbers.

LLL [7, 5] Parallel (old analysis) Parallel (new analysis)

µ2
i,j after Gram–Schmidt n2nB nBn nBn

‖bi‖2 after Gram–Schmidt nB nB nB

µ2
i,j during size reduction n23nB (4nBn)n nn(2B)2n

‖bi‖2 during size reduction n223nB2 nB(4nBn)n nBnn(2B)2n

1302 C. HECKLER AND L. THIELE

5.3. Further remarks. There is a special class of lattices (which are constructed
for the solution of the subset sum problem) for which a better analysis of the size of
the numbers in the parallel case is possible [13].

Joux [4] has presented a method for avoiding big numbers during the parallel size
reduction. But also with that method a better analysis than the one given in Theorem
5.7 is not possible.

In practical experiments for the parallel algorithm of [13] and [2, 3] larger numbers
than in the serial algorithm do not occur.

5.4. Binary complexity. The estimation of the sizes of the numbers and a
detailed analysis by Kaltofen [5] lead to the following binary complexity of the LLL
algorithm using standard arithmetic.

Theorem 5.8 (see [5]). The LLL algorithm has binary complexity O(n5(logB)3+
n6(logB)2).

The binary parallel complexity is given by the following theorem.
Theorem 5.9. The binary complexity of parallel lattice basis reduction using n2

processors is O(n4(logB)3).
Proof. The size of all numbers (numerators and denominators) is bounded

by O(n logB). Thus the time for one arithmetic operation is at most O(n2(logB)2)
using standard arithmetic. At most O(n2 logB) arithmetic operations must be
performed.

Acknowledgments. The authors would like to thank the two unnamed referees
for their helpful remarks and suggestions.

REFERENCES

[1] G. Golub and C. van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1983.

[2] C. Heckler, Automatische Parallelisierung und parallele Gitterbasisreduktion, dissertation,
Institut für Mikroelektronik, Universität des Saarlandes, Saarbrücken, Germany, March
1995.

[3] C. Heckler and L. Thiele, A parallel lattice basis reduction for mesh-connected processor ar-
rays and parallel complexity, in Proc. SPDP’93, Dallas, TX, December 1–4, 1993, pp. 400–
407.

[4] A. Joux, A fast parallel lattice reduction algorithm, in Proc. Second Gauss Symposium, Munich,
1993.

[5] E. Kaltofen, On the complexity of finding short vectors in integer lattices, in Proc. EURO-
CAL83, London, LNCS 162, Springer-Verlag, Berlin, New York, 1983, pp. 236–244.

[6] R. Kannan, Algorithmic geometry of numbers, Ann. Rev. Comput. Sci., 16 (1987), pp. 231–267.
[7] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials with rational

coefficients, Math. Ann., 261 (1982), pp. 515–534.
[8] H. W. Lenstra Jr., Integer programming with a fixed number of variables, Math. Oper. Res.,

8 (1983), pp. 538–548.
[9] J. Roch and G. Villard, Parallel gcd and lattice basis reduction, in Proc. CONPAR92, Lyon,

LNCS 632, Springer-Verlag, Berlin, New York, 1992, pp. 557–564.
[10] C. Schnorr, A more efficient algorithm for lattice basis reduction, J. Algorithms, 9 (1988),

pp. 47–62.
[11] C. Schnorr and M. Euchner, Lattice basis reduction: Improved practical algorithms and

solving subset sum problems, in Proc. FCT’91, Gosen, Germany, LNCS 529, Springer-
Verlag, Berlin, New York, 1991, pp. 68–85.

[12] A. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, New York,
1986.

[13] G. Villard, Parallel lattice basis reduction, in Proc. International Symposium on Symbolic
and Algebraic Computation, Berkeley, CA, ACM Press, New York, 1992, pp. 269–277.

ON THE FAULT TOLERANCE OF SOME POPULAR
BOUNDED-DEGREE NETWORKS∗

F. THOMSON LEIGHTON† , BRUCE M. MAGGS‡ , AND RAMESH K. SITARAMAN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1303–1333, October 1998 007

Abstract. In this paper, we analyze the fault tolerance of several bounded-degree networks
that are commonly used for parallel computation. Among other things, we show that an N -node
butterfly network containing N1−ε worst-case faults (for any constant ε > 0) can emulate a fault-free
butterfly of the same size with only constant slowdown. The same result is proved for the shuffle-
exchange network. Hence, these networks become the first connected bounded-degree networks
known to be able to sustain more than a constant number of worst-case faults without suffering more
than a constant-factor slowdown in performance. We also show that an N -node butterfly whose
nodes fail with some constant probability p can emulate a fault-free network of the same type and
size with a slowdown of 2O(log∗ N). These emulation schemes combine the technique of redundant
computation with new algorithms for routing packets around faults in hypercubic networks. We also
present techniques for tolerating faults that do not rely on redundant computation. These techniques
tolerate fewer faults but are more widely applicable because they can be used with other networks
such as binary trees and meshes of trees.

Key words. fault tolerance, network emulation, butterfly network

AMS subject classifications. 68M07, 68M10, 68M15, 68Q68

PII. S0097539793255163

1. Introduction. In this paper, we analyze the effect of faults on the computa-
tional power of bounded-degree networks such as the butterfly network, the shuffle-
exchange network, and the mesh of trees. The main objective of our work is to devise
methods for circumventing faults in these networks using as little overhead as possible
and to prove lower bounds on the effectiveness of optimal methods. We consider both
worst-case and random fault patterns, and we always assume that faulty components
are totally disabled (e.g., a faulty node cannot be used to transport a packet of data
through the network). We also assume that the faults in a network are static and
detectable and that information concerning the location of faults can be used when
reconfiguring the network to circumvent the faults. For simplicity, we restrict our
attention to node faults since an edge fault can always be simulated by disabling the
node at each end of the edge.

There are several ways to measure the effect of faults on a network. In this
paper, we are primarily concerned with the amount by which a collection of faults
can slow down some computation on the network. For example, if a butterfly network

∗ Received by the editors September 9, 1993; accepted for publication (in revised form) July 20,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/25516.html
† Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139 (ftl@math.mit.edu). This author was supported in part by Army
contract DAAH04-95-0607 and by ARPA contract N00014-95-1-1246.

‡ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (bmm@cs.
cmu.edu). This author was supported in part by the Air Force Material Command (AFMC) and
ARPA under contract F196828-93-C-0193, by ARPA contracts F33615-93-1-1330 and N00014-95-
1-1246, and by an NSF National Young Investigator Award, CCR-94-57766, with matching funds
provided by NEC Research Institute. This research of this author was conducted while the author
was employed at NEC Research Institute.

§ Department of Computer Science, University of Massachusetts, Amherst, MA 01003 (ramesh@
cs.umass.edu). This author was supported in part by NSF grant CCR–94–10077. The research of
this author was conducted while the author was a student at Princeton University.

1303

1304 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

containing some faults is to be used for packet routing, we are concerned with how
many nodes can send and receive packets, and how much longer it takes the faulty
butterfly to deliver all of the packets than it takes a fault-free butterfly to perform the
same task. More generally, we are interested in the length of time it takes an impaired
network to emulate a single step of a fault-free network of the same type and size. In
particular, we define the slowdown caused by a set of faults in a network G to be the
minimum value of S such that any computation that takes T steps on G when there
are no faults can be performed in at most S · T steps on G when faults are present.
One of our main goals is to understand the relationship between slowdown and the
number of faults for commonly used networks. In particular, we prove bounds on the
number of faults that can be tolerated without losing more than a constant factor in
speed.

We have two approaches for emulating a fault-free network G on an isomorphic
faulty network H. The first approach is to find an embedding of G into H that avoids
the faults in H. The second approach uses redundant computation; i.e., we allow
H to emulate some of the nodes of G in more than one place. At first glance this
approach seems disadvantageous, since H ends up performing more work. As we shall
see, however, the freedom to emulate a node of G in more than once place allows H
to have results ready where and when they are needed and can greatly reduce the
slowdown of the emulation.

1.1. Emulations based on embeddings. An embedding maps the nodes of
G to nonfaulty nodes of H and the edges of G to nonfaulty paths in H. A good
embedding is one with minimum load, congestion, and dilation, where the load of
an embedding is the maximum number of nodes of G that are mapped to any single
node of H, the congestion of an embedding is the maximum number of paths that
pass through any edge e of H, and the dilation of an embedding is the length of the
longest path. The load, congestion, and dilation of the embedding determine the time
required to emulate each step of G on H. In particular, Leighton, Maggs, and Rao
have shown [30] that if there is an embedding of G in H with load l, congestion c, and
dilation d, then H can emulate any computation on G with slowdown O(l + c+ d).

In this paper, we are most interested in embeddings for which the load, congestion,
and dilation are all constant (independent of the size of the network). In particular,
we show in section 2 how to embed a fault-free N -input butterfly into an N -input
butterfly containing logO(1) N worst-case faults using constant load, congestion, and
dilation. A similar result is also proved for the N -node mesh of trees. Hence, these
networks can tolerate logO(1) N worst-case faults with constant slowdown.

Previously, no connected bounded-degree networks were known to be able to
tolerate more than a constant number of worst-case faults without suffering more
than a constant-factor loss in performance. Indeed, it was only known that

1. any embedding of an N -node (two- or three-dimensional) array into an array
of the same size containing more than a constant number of worst-case faults
must have more than constant load, congestion, or dilation [22, 25, 31], and

2. the N -node hypercube can be reconfigured around logO(1) N worst-case faults
with constant load, congestion, and dilation [2, 12].

The embeddings that we use in section 2 are level preserving; i.e., nodes in a
particular level of the fault-free network are mapped to nodes on the same level of the
faulty network. We take a significant step toward proving the limitation of embedding
techniques for the emulation of these networks by showing that no level-preserving
embedding strategy with constant load, congestion, and dilation can tolerate more

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1305

than logO(1) N worst-case faults. Whether or not there is a natural low-degree N -
node network (the hypercube included) that can be reconfigured around more than

logO(1) N faults with constant load, congestion, and dilation using (not necessarily
level-preserving) embedding techniques remains an interesting open question.

1.2. Fault-tolerant routing algorithms. In section 3, we shift our attention
to the routing capabilities of hypercubic networks containing faults. The algorithms
developed in this section are later used by the emulation schemes based on redundant
computation. First we prove in section 3.1 that an N -input butterfly with f worst-
case faults can support an O(logN)-step randomized packet routing algorithm for the
nodes in N − 6f rows of the butterfly. The ability of the butterfly to withstand faults
in this context is important because butterflies are often used solely for their routing
abilities. Previously, it was known that expander-based multibutterfly networks can
tolerate large numbers of worst-case faults without losing their routing powers [6,
28], but no such results were known for butterflies or other hypercubic networks.
A corollary of this result is that an N -input butterfly with N/12 worst-case faults
can support an O(logN)-step randomized routing algorithm for a majority of its
nodes. Note that the number of faults is optimal to within a constant factor, since
it is possible to partition an N -input butterfly into connected components of size
O(
√
N logN) with N faults. In section 3.2 we show that butterflies with faults can

also be used for circuit switching. In particular, we show that even if a 2N -input
O(1)-dilated Beneš network contains N1−ε worst-case faults (for any ε > 0), there is
still a set of 2N − o(N) inputs I and a set of 2N − o(N) outputs O such that for
any one-to-one mapping φ : I 7→ O it is possible to route edge-disjoint paths from i
to φ(i) for all i ∈ I. This result substantially improves upon previous algorithms for
fault-tolerant circuit switching in Beneš networks [41, 49], which dealt with a constant
number of faults by adding an extra stage to the network.

1.3. Emulations using redundant computation. In section 4, we use the
fault-tolerant routing algorithm from section 3.2 to show that an N -input butterfly
with N1−ε worst-case faults (for any constant ε > 0) can emulate a fault-free butterfly
of the same size with only constant slowdown. A similar result is proved for the shuffle-
exchange network. These results are stronger than the reconfiguration results proved
in section 2 because the number of faults tolerated is much larger. The approach
used in section 4 differs from the embedding-based approaches in section 2 in that a
single node of the fault-free butterfly is emulated by (possibly) several nodes in the
faulty butterfly. Allowing redundant computation provides greater flexibility when
embedding one network in another (thereby attaining greater fault tolerance) but also
adds the complication of ensuring that replicated computations stay consistent (and
accurate) over time. This technique was previously used in the context of (fault-free)
work-preserving emulations of one network by another [19, 26, 38, 39, 40, 47].

The techniques developed in section 4 also have applications for hypercubes. For
example, in section 4.4, we use them to show than an N -node hypercube with N1−ε

worst-case faults can emulate T steps of any normal algorithm [27] in O(T + logN)
time. (The set of normal algorithms include FFT, bitonic sort, and other important
ascend–descend algorithms.) Previously, such results were known only for hypercubes

containing logO(1) N faults [2, 12, 13]. Whether or not an N -node hypercube can

tolerate more than logO(1) N faults with constant slowdown for general computations
remains an important unresolved question.

In section 5, we show that even if each node in an N -input butterfly fails indepen-

1306 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

dently with probability p = 1/ log(k) N , where log(k) denotes the logarithm function
iterated k times, the faulty butterfly can still emulate a fault-free N -input butter-
fly with slowdown 2O(k), with high probability. For k = O(log∗N) the node failure
probability is constant, and the slowdown is 2O(log∗N), which grows very slowly with
N . Whether or not this result can be improved remains an interesting open question.
Until recently, no results along these lines were known for the butterfly, unless routing
is allowed through faulty nodes [5], which simplifies matters substantially. Tamaki
[51] has recently discovered an emulation scheme with slowdown O((log logN)8.2). He
also introduced a class of bounded-degree networks called cube-connected arrays [52]
and showed that an N -node network in this class with constant-probability random
faults can emulate itself with expected slowdown approximately log logN . These net-
works can also tolerate up to logO(1) N worst-case faults with approximately log logN
slowdown.

1.4. Additional previous work. There is a substantial body of literature con-
cerning the fault tolerance of communication networks. We do not have the space to
review all of this literature here, but we would like to cite the papers that are most
relevant. In particular, [2, 5, 9, 14, 23, 24, 25, 35, 44, 52] show how to reconfigure
a network with faults so that it can emulate a fault-free network of the same type
and size. A fault-tolerant area-universal network is presented in [53]. References
[4, 10, 11, 16, 17] show how to design a network H that contains G as a subnetwork
even if H contains some faults. Algorithms for routing messages around faults appear
in [1, 6, 8, 15, 24, 25, 28, 34, 36, 41, 43, 44, 49]. The fault-tolerance of sorting networks
is studied in [7, 32]. Finally, [12, 56, 57] show how to perform certain computations
in hypercubes containing faults.

1.5. Network definitions. In this section, we review the structure of some of
the networks that we study in this paper. In all of these networks, the edges are
assumed to be undirected (or bidirectional).

An N -input (logN)-dimensional butterfly network has N(logN + 1) nodes ar-
ranged in (logN) + 1 levels.1 An 8-input butterfly is shown in Figure 1.1. Each
node in the butterfly has a distinct label (w, i), where i is the level of the node
(0 ≤ i ≤ logN) and w is a (logN)-bit binary number that denotes the row of the
node. All edges connect pairs of nodes on adjacent levels. Each node (w, i) is con-
nected by a straight edge to node (w, i + 1), provided that i < logN . In the figure,
straight edges are drawn horizontally. Each node (w, i) is also connected by a cross
edge to node (w′, i+ 1), where w and w′ differ only in the bit in position i, provided
that i < logN . (The most significant bit is in position 0, and the least significant is
in position (logN) − 1.) In the figure, cross edges are drawn diagonally. The nodes
in level 0 are called the inputs of the butterfly, and those in level logN are called
the outputs. Sometimes the input and output nodes in each row are assumed to be
the same node. In this case, the butterfly has only N logN nodes. Our results hold
whether or not the butterfly wraps around in this way.

In an N -node hypercube, each node is labeled with a distinct (logN)-bit binary
number. Two nodes in the hypercube are connected by an edge if and only if their
labels differ in exactly one bit. The hypercube is the only network considered in this
paper in which the degree of each node is not constant.

As in the N -node hypercube, each node in an N -node shuffle-exchange network
is labeled with a distinct (logN)-bit binary number. An 8-node shuffle-exchange

1 Throughout this paper, log denotes the base-2 logarithm function, log2.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1307

000

001

010

011

100

101

110

111

0 1 2 3

row

level

Fig. 1.1. An 8-input butterfly network.

000 111

100

010

101

110

011

001

Fig. 1.2. An 8-node shuffle-exchange network.

network is shown in Figure 1.2. In the shuffle-exchange network, a node labeled u is
connected by an exchange edge to the node labeled u′, where u and u′ differ only in
the bit in the least significant position (position (logN)−1). Node u is also connected
by shuffle edges to the nodes labeled ul and ur, where ul and ur are the one-bit left
and right cyclic shifts of u. (If ul = ur then there is only one shuffle edge.) In the
figure exchange edges are dotted and shuffle edges are solid.

An N ×N mesh of trees network [27] is formed by first arranging N2 nodes (but
no edges) in a grid of N rows and N columns. Then for each row, an N -leaf complete
binary tree, called a row tree, is added. The leaves of the row tree are the nodes of the
corresponding row. Similarly, for each column an N -leaf column tree is added. The
leaves of the column tree are the nodes of the column. Hence, the node at position
(i, j) in the grid is a leaf of the ith row tree and jth column tree for 0 ≤ i, j ≤ N − 1.

A circuit-switching network is used to establish edge-disjoint paths (called cir-
cuits) between its inputs and outputs. We call the nodes in a circuit-switching net-
work switches to signify that they are used only for routing and not for performing
computation. Each switch in a circuit-switching network has a set of incoming edges
and a set of outgoing edges. Inside the switch, the incoming edges can be connected
to the outgoing edges in any one-to-one fashion. The switches at the first level of the
network are called the input switches. The switches at the last level are called the

1308 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

0

OUTPUT NODESINPUT NODES

OUTPUTSINPUTS

7

6
5

4

3

2

1

0

7

6

5

4

3

2

1

Fig. 1.3. An 8-input (two-dimensional) Beneš network.

output switches. The edges into each input switch are called input edges, or inputs.
The edges out of each output switch are called output edges, or outputs. (Note, how-
ever, that in a butterfly network, we use the terms “inputs” and “outputs” to refer
to nodes, not edges.) By setting the connections inside the switches, each input edge
can be connected to an output edge via a path through the network.

A circuit-switching network with N inputs and N outputs is said to be rearrange-
able if for any one-to-one mapping φ from the inputs to the outputs it is possible to
construct edge-disjoint paths in the network connecting the ith input to the φ(i)th
output for 0 ≤ i ≤ N − 1.

The Beneš network is a classic example of a rearrangeable network. A (logN)-
dimensional Beneš network has 2N inputs and 2N outputs. Its switches are arranged
in 2 logN + 1 levels of N switches each. The first and last logN + 1 levels each form
a (logN)-dimensional butterfly. Hence a Beneš network consists of two back-to-back
butterflies sharing level logN . We refer to the switches in levels 0, logN , and, 2 logN
as the input switches, middle switches, and output switches, respectively. Figure 1.3
shows an 8-input Beneš network in which the inputs are connected to the outputs
according to the following mapping φ: φ(0) = 3, φ(1) = 1, φ(2) = 2, φ(3) = 6,
φ(4) = 0, φ(5) = 5, φ(6) = 4, φ(7) = 7.

2. Emulation by embedding. In this section, we show how to embed a fault-
free binary tree, butterfly, or mesh of trees into a faulty network of the same type
and size with constant load, congestion, and dilation. As noted in the introduction,
finding a constant load, congestion, and dilation embedding is the simplest way of
emulating arbitrary computations of a fault-free network on a faulty network of the
same type and size with only constant slowdown. We first consider embedding a
complete binary tree in a complete binary tree with faults only at its leaves. This
result also holds for fat-trees [21, 33] with faults at the leaves. We use this result to

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1309

find reconfigurations of butterflies and meshes of trees in which faults may occur at
any node. The main result of this section is a proof that an N -node butterfly or mesh
of trees network can tolerate logO(1) N worst-case faults and still emulate a fault-free
network of the same type and size with only constant slowdown.

2.1. The binary tree. In Theorem 2.1.2, we show that a fault-free 2n-leaf com-
plete binary tree can be embedded in another 2n-leaf complete binary tree containing
S(n, b) or fewer faults at its leaves with load and congestion at most 2b and dilation
1, where S(n, b) is defined for n ≥ b ≥ 0 by the recurrence

S(n, b) = S(n− 1, b) + S(n− 1, b− 1) + 1

for n > b > 0, with boundary conditions S(n, 0) = 0 and S(n, n) = 2n − 1 for n ≥ 0.
The following lemma provides a useful bound on the growth of S(n, b).

Lemma 2.1.1. For all n ≥ b ≥ 1,
(
n
b

) ≤ S(n, b) ≤ (n+b
b

)
.

Proof. The proof is by induction on n. For n = 1, the only possible value of b
is 1. In this case, S(1, 1) = 1 and

(
1
1

)
= 1 <

(
2
1

)
. For n > 1, there are three cases

to consider. First, for b = 1, S(n, 1) = n, and
(
n
1

)
= n <

(
n+1

1

)
. Second, for n = b,

S(n, n) = 2n − 1 and
(
n
n

) ≤ 2n − 1 <
(
2n
n

)
. Finally, for n > b > 1, the inequalities

are proved inductively using the fact that
(
x
y

)
=
(
x−1
y

)
+
(
x−1
y−1

)
, for all x > y > 0, and(

x
y

)
+ 1 ≤ (x+1

y

)
for x ≥ y > 0.

Using the inequalities (x/y)y ≤ (xy) ≤ (xe/y)y for x ≥ y > 0, we see that for any

constant b > 0, S(n, b) = Θ(nb).

Theorem 2.1.2. Given a 2n-leaf complete binary tree T with a set of at most
S(n, b) worst-case faults at the leaves, where n ≥ b ≥ 0, it is possible to embed a
fault-free 2n-leaf complete binary tree T ′ in T so that

1. nodes on level i of T ′ are mapped to nonfaulty nodes on level i of T , for
0 ≤ i ≤ n;

2. the congestion and the load of the embedding are at most 2b; and
3. the dilation of the embedding is 1.

Proof. The proof is by induction on n. For n = 0, the only possible value of b is 0
and S(0, 0) = 0. In this case T is a single fault-free node and T ′ can be embedded in T
with load 1, congestion 0, and dilation 0. For n > 0, there are three cases to consider.
First, for b = 0, S(n, 0) = 0, so T has no faults. In this case, T ′ can be embedded
in T with load 1, congestion 1, and dilation 1. Second, for b = n, S(n, n) = 2n − 1,
so there is a single nonfaulty leaf l in T . In this case, all of the 2n leaves of T ′ are
mapped to l, and the rest of the tree is mapped to the path from the root of T to
l. The embedding has load 2n, congestion 2n, and dilation 1. Finally, suppose that
n > b > 0. If both 2n−1-leaf subtrees of T have at most S(n− 1, b) faulty leaves, then
we use the result inductively in both subtrees. Otherwise, if one 2n−1-leaf subtree
(say the left subtree) has S(n − 1, b) + 1 or more faults, then by the definition of
S(n, b) the other subtree (the right subtree) has at most S(n− 1, b− 1) faulty leaves.
Hence we can use induction to embed a 2n−1-leaf complete binary tree on the right
subtree with dilation 1 and load and congestion 2b−1. By doubling the congestion
and the load, we can embed two 2n−1-leaf complete binary trees in the right subtree.
This means that we can embed T ′ in T with dilation 1 and load and congestion 2b

using only the root and the right subtree of T .

Rewriting the number of leaves as N = 2n, we see that for any constant b >
0, it is possible to embed a fault-free N -leaf complete binary tree T ′ in an N -leaf

1310 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

m = 2

channel

Fig. 2.1. A 4-ary fat-tree network with depth m = 2 in which r0 = 4, r1 = 2, and r2 = 1.

complete binary tree T containing S(logN, b) = Θ(logbN) faults with constant load,
congestion, and dilation.

This result can be extended to a class of networks called fat-trees. A fat-tree of
depth m is specified by a sequence of numbers r0, r1, . . . , rm, where rm = 1. (Typically
r0 ≥ r1 ≥ · · · ≥ rm.) A fat-tree of depth 0 is a single node, which is both the root
node and the leaf node of the tree. A fat-tree of depth m is constructed as follows.
At the root of the fat-tree there is a set of r0 nodes. The subtrees of the root are
identical and are constructed recursively. Each is a fat-tree of depth m − 1 with
number sequence r1, . . . , rm. The r0 root nodes of the fat-tree are connected to the
r1 root nodes of each subtree by a channel of edges. There may be any number of
edges in the channel, and they may form any pattern of connections, but the channels
to each subtree must be isomorphic. Figure 2.1 shows a fat-tree in which r0 = 4,
r1 = 2, and r2 = 1. In this figure, the root has four subtrees, as do the roots of these
subtrees. Hence the figure shows a 4-ary fat-tree. This fat-tree was chosen for the
figure because a fat-tree of this form has been shown to be area universal [33, 21, 30].
Corollary 2.1.3 is stated for binary fat-trees (i.e., fat-trees in which the root has two
subtrees), but similar results can be proven for 4-ary fat-trees.

Corollary 2.1.3. A (logN)-depth binary fat-tree can be embedded in a level-
preserving fashion in an isomorphic fat-tree with S(logN, b) worst-case faults at its
leaves with load and congestion 2b and dilation 1.

Proof. Associate the nodes of the fat-tree with the nodes of an N -node complete
binary tree as follows. Associate all root nodes of the fat-tree with the root of the
complete binary tree. Recursively associate the nodes of the left (right) subtree of the
fat-tree with the nodes of the left (right) subtree of the complete binary tree. Note
that every leaf of the fat-tree is associated with a distinct leaf of the complete binary
tree. Given a fat-tree F with some faulty leaves, let T be a complete binary tree whose
leaf is faulty if and only if the corresponding leaf in F is faulty. A fault-free complete
binary tree T ′ can be embedded in T by embedding subtrees of T ′ into subtrees of
T using the procedure given in Theorem 2.1.2. The same embedding can be used to
embed a fault-free fat-tree F ′ in F by embedding the corresponding subtrees of F ′

into the corresponding subtrees of F . The dilation and load are the same as that of
the complete binary tree embedding.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1311

Corollary 2.1.4. A (logN)-dimensional butterfly can be embedded in a level-
preserving fashion in an isomorphic butterfly with S(logN, b) worst-case faults at level
logN with load and congestion 2b and dilation 1.

Proof. A (logN)-dimensional butterfly is a binary fat-tree of depth logN
with ri = 2logN−i. The leaves of the fat-tree are the nodes in level logN of the
butterfly.

2.2. The mesh of trees and the butterfly. We can use Theorem 2.1.2 to
show that the mesh of trees and the butterfly network can tolerate logO(1) N worst-
case faults with constant slowdown, even when a fault can occur at any node of the
network. The proof uses the fact that both the mesh of trees and the butterfly can be
viewed as a special kind of product graph, which we call an external product graph.

As external product graph is defined as follows. Let G be a graph in which some
set of N nodes have been labeled as external nodes. For example, if G is a tree, the
leaves could be the external nodes, or, if G is a butterfly, the nodes on level logN (the
outputs) could be the external nodes. Given a graph G with N external nodes, the
external product graph of G (denoted PG) is constructed as follows. Make 2N copies
of G, Gi,j for i = 1, 2 and 0 ≤ j ≤ N − 1. Number the external nodes of each copy
from 0 to N − 1. Now identify the kth external node in G1,j with the jth external
node in G2,k for all 0 ≤ j, k ≤ N − 1. (By “identify” we mean make them the same
node of the graph PG.) The resulting graph is the external product graph of G. As
an example, when the graph G is a tree and its leaves are the external nodes, the
graph PG is a mesh of trees network. As another example, when G is a butterfly and
its outputs are external nodes, PG is a butterfly with twice the dimension.

We now show that if G can tolerate faults in its external nodes, then PG can
tolerate faults at any of its nodes.

Theorem 2.2.1. If a graph G′ can be embedded in a level-preserving fashion with
load l, congestion c, and dilation d in an isomorphic graph G with f worst-case faults
located in its external nodes, then it is possible to embed the product graph PG′ in a
level-preserving fashion with load l2, congestion lc, and dilation d in an isomorphic
graph PG with f/2 worst-case faults located in any of its nodes.

Proof. Let PG and PG′ be made up of graphs isomorphic to G called Gi,j and
G′i,j , respectively, for i = 1, 2 and 1 ≤ j ≤ N . Let CG and CG′ also be graphs
isomorphic to G. The jth external node of CG is declared to be faulty if and only
if either G1,j or G2,j contains a fault. If PG has f/2 faults, then CG has at most f
faults (since an external node of PG can appear both as the kth leaf of G1,j and as
the jth leaf of G2,k). Let Φ be a level-preserving embedding of the fault-free graph
CG′ into CG with load l, congestion c, and dilation d and define φ so that Φ maps
the jth external node of CG′ to the φ(j)th external node of CG. We embed PG′ into
PG by mapping G′i,j to Gi,φ(j) using Φ to map the individual nodes of G′i,j to Gi,φ(j)

for i = 1, 2 and 0 ≤ j ≤ N − 1. (Hence, the mapping Φ is used twice.) It follows
from the definition of faults in CG that Gi,φ(j) is fault-free. Therefore, no nodes of
PG′ are mapped to faulty nodes of PG. We need to verify that our mapping is well
defined, i.e., that it doesn’t map an external node of PG′ to more than one node of
PG. The kth external node of G′1,j is the same as the jth external node of G′2,k. The
former is mapped to the φ(k)th external node of G1,φ(j) and the latter to the φ(j)th
external node of G2,φ(k). These nodes are the same node of PG. Hence, the mapping
is well defined. The dilation of the mapping is d. The number of copies G′i,j of PG′

mapped to any particular Gi,φ(j) is at most l. Each copy can map l nodes onto any
particular node of Gi,φ(j). Therefore, the load is at most l2, and the congestion is at
most lc.

1312 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Theorem 2.2.1 is readily applied to the butterfly and mesh of trees networks.
For simplicity, we state the result for a two-dimensional mesh of trees. The same
techniques, however, can be used to show that any constant-dimension mesh of trees
can tolerate logΘ(1) N worst-case faults with only constant slowdown.

Theorem 2.2.2. A 2 logN -dimensional butterfly can be embedded in a level-
preserving fashion in a 2 logN -dimensional butterfly containing S(logN, b) = Θ(logbN)
worst-case faults with load and congestion 22b and dilation 1.

Proof. The proof follows from Corollary 2.1.4 and Theorem 2.2.1.
Theorem 2.2.3. An N ×N mesh of trees can be embedded in a level-preserving

fashion in an N × N mesh of trees containing S(logN, b) = Θ(logbN) worst-case
faults with load and congestion 22b and dilation 1.

Proof. The proof follows from Theorems 2.1.2 and 2.2.1.
The results of this subsection can also be shown by using the fact that the butterfly

and the mesh of trees can be expressed as the layered cross product [18] of two
complete binary trees (or variations thereof) [3] and proving a theorem analogous to
Theorem 2.2.1 for layered cross product graphs.

2.3. Limitations of level-preserving embeddings. We do not know whether
Theorems 2.1.2, 2.2.2, and 2.2.3 can be improved if the level-preserving constraint
is removed. However, we can show that the bounds in Theorems 2.1.2, 2.2.2, and
2.2.3 are tight if the embedding is forced to be level preserving. The proof uses a
construction called an arrow diagram.

Given an N -leaf binary tree T with faults at its leaves, an arrow diagram has
arrows drawn from some nodes of T to their siblings, with no pairs of antiparallel
arrows allowed. We define a b-legal arrow diagram as follows.

1. On any path from the root to a faulty leaf, there is an arrow from a node on
the path to a node not on the path (called an outgoing arrow).

2. On any path with no outgoing arrow, there can be at most b incoming arrows.
An arrow diagram is called legal if it is b-legal for any 0 ≤ b ≤ n.

Suppose that an adversary is allowed to place faults at the leaves of a 2n-leaf
complete binary tree. Let T (n, b) + 1 be the minimum number of faults needed by
the adversary to make it impossible to construct a b-legal arrow diagram for the tree.
Note that if a diagram is illegal for some set of faults then it cannot be made legal
by adding another fault. Hence allowing more faults only makes the adversary more
powerful. We bound the value of T (n, b) as follows.

Lemma 2.3.1. For n ≥ b ≥ 0,

T (n, b) ≤

0 for b = 0,
T (n− 1, b) + T (n− 1, b− 1) + 1 for 0 < b < n,
2n − 1 for b = n.

Proof. First, suppose that b = 0. If the tree has one or more faults, then any
legal arrow diagram must have at least one arrow. If the diagram has at least one
arrow, then there must be a path from the root of the tree to a leaf having at least one
incoming arrow and no outgoing arrow. Such a path can be recursively constructed
as follows. Choose the arrow that is closest to the root of the tree, and let this arrow
be directed from a node m′ to its sibling m. The constructed path is the path from
the root of the tree to m concatenated with the path constructed recursively in the
subtree rooted at m. (If there is no arrow in the subtree rooted at m a path from m
to any leaf of the subtree suffices.) Thus, a tree with a fault cannot have a 0-legal
arrow diagram. Thus T (n, 0) ≤ 0.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1313

Next, let n = b. If there are 2n faults, then every leaf is faulty, and it is not
possible to draw an arrow diagram with an outgoing arrow on the path from the root
to every faulty leaf. Thus, T (n, n) ≤ 2n − 1.

Finally, suppose that 0 < b < n. We show that there is a way of placing T (n −
1, b) + T (n − 1, b − 1) + 2 faults at the leaves such that in any legal arrow diagram
either there must be at least b+1 incoming arrows on some path without any outgoing
arrow or there must be a faulty leaf with no outgoing arrow in its path. We place
T (n− 1, b) + 1 worst-case faults in the left subtree and T (n− 1, b− 1) + 1 worst-case
faults in the right subtree. Assume that it is possible to place arrows in the tree such
that every path to a faulty leaf has an outgoing arrow and every path from the root
to a leaf that has no outgoing arrows has at most b incoming arrows. We look at
the placement of arrows in the left subtree. Since there are more than T (n − 1, b)
faults, there must be a path from the root of this subtree to a leaf that has b + 1
incoming arrows and no outgoing arrows or there must be path from the root of this
subtree to a fault with no outgoing arrow. Either of these cases imply that the root
of the left subtree must have an arrow from itself to its sibling. Now look at the right
subtree. It cannot be the case that there is a path from the root of the right subtree
to a faulty leaf with no outgoing arrow, since then there would be no outgoing arrow
for the path from the root of T to this fault. Further, no path from the root of the
right subtree to a leaf of the right subtree can have more than b− 1 incoming arrows
without having an outgoing arrow, since otherwise there would be a path from the
root of the tree to that leaf with more than b incoming arrows without an outgoing
arrow. Thus the right subtree must be (b − 1)-legal. However, the right subtree has
more than T (n− 1, b− 1) worst-case faults. This is a contradiction.

Corollary 2.3.2. For all n ≥ b ≥ 1, T (n, b) = O(nb).

Proof. The recurrence for T (n, b) is bounded from above by the recurrence that
we had for S(n, b) in section 2.1 and hence T (n, b) = O(S(n, b)). Using Lemma 2.1.1,
T (n, b) is O(nb).

Theorem 2.3.3. For any constants l and d, there is a constant k = d+(l− 1)2d

such that there is a way of placing O(logkN) faults in the leaves of an N -leaf complete
binary tree T such that there is no level-preserving embedding of an N -leaf fault-free
complete binary tree T ′ in T with load l and dilation d.

Proof. We begin by placing a set of faults of cardinality O(logkN) at the leaves
of T such that this fault pattern has no k-legal arrow diagram, where k = d+(l−1)2d

and N = 2n. This is possible because T (n, k) + 1 is O(logkN). Now suppose for the
sake of contradiction that there is an embedding of T ′ into T with load l and dilation
d with the property that nodes on level i of T ′ are mapped to nodes on level i of T
and no nodes of T ′ are mapped to faulty nodes of T . Annotate the tree T with arrows
as follows. For any two siblings in the tree, draw an arrow from the sibling whose
subtree has a smaller number of leaves of T ′ mapped to it to the sibling that has a
larger number of leaves mapped to it. If the number of leaves mapped to each of the
two subtrees is equal then no arrow is drawn.

We now show that the annotated tree is b-legal for some b ≤ k, which is a
contradiction. The path from the root of a tree to any faulty leaf must have an
outgoing arrow, since no node of T ′ is mapped to a faulty leaf. Hence, the first
criterion in the definition of a b-legal tree is satisfied. Let b be the maximum number
of incoming arrows on a path without an outgoing arrow. We ignore the last d levels
of the tree. Therefore, there is a path in T , m0,m1, . . . ,mn−d, where m0 is the root
and mi is a node in level i of the tree, that has at least b−d incoming arrows without

1314 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

any outgoing arrows. Let li, 0 ≤ i ≤ n− d, denote the average number of leaves of T ′

that are embedded into each leaf of the subtree of T rooted at node mi. Clearly, l0
is 1. If there is no incoming arrow into node mi, then the split of leaves of T ′ is even
and hence li = li−1. Suppose there is an incoming arrow into node mi from its sibling
m′
i. Then li > li−1. Further, li ≥ li−1 + 2−d. To see why, consider the subtrees of

T ′ rooted at level i+ d. The nodes in each of these subtrees can be mapped entirely
within either the subtree rooted at mi or entirely within the subtree rooted at m′

i but
never to the nodes in both. To see why, note that if a node in one of these subtrees
that was mapped to the subtree rooted at mi and a neighbor at an adjacent level
was mapped to the subtree rooted at m′

i, then the dilation of the edge between them
would be more than d. (In fact, the dilation would have to be at least 2d + 3, since
the subtrees are separated by a distance of 2d + 2, and any two nodes connected by
an edge in T ′ must be mapped to different levels in T .) Thus, the subtree rooted at
mi must have at least 2n−i−d more leaves of T ′ mapped to it than the subtree rooted
at m′

i. Hence, li ≥ li−1 + (2n−i−d/2n−i) = li−1 + 2−d. Since there are at least b − d
incoming arrows on the path, ln−d ≥ 1 + (b − d)2−d. Note that there is at least one
leaf in the subtree rooted at mn−d that has load at least ln−d. Therefore, l ≥ ln−d.
This implies that b ≤ d+ (l− 1)2d = k. But there can be no k-legal arrow placement
for the fault pattern chosen for T . This is a contradiction.

Theorem 2.3.4. For any constants l and d, there is a constant k = d+(l− 1)2d

such that there is a way of choosing Θ(logkN) faults in an N -input butterfly B such
that there is no level-preserving embedding of an N -input butterfly B′ in B with load
l and dilation d.

Proof. The proof is similar to that of Theorem 2.3.3. Let B be a butterfly with
faults and let B′ be the fault-free version of B. We can associate a tree T with B
as follows: the root of T represents the entire butterfly B. Its children represent the
two subbutterflies of dimension logN − 1 (between levels 1 and logN). Each child is
subdivided recursively until each leaf of the tree T represents a distinct node in level
logN of the butterfly B. We choose the same set of worst-case faults in the leaves
of T as in Theorem 2.3.3. The faulty nodes of B are the nodes in level logN of B
that correspond to the faulty leaves of T . Given a level-preserving embedding of B′

into B with load l and dilation d, we can produce a b-legal placement of arrows in
T in a manner similar to the previous proof. Given two siblings m and m′, draw an
arrow from m′ to m if the there are more nodes in level logN of B′ mapped to the
subbutterfly of B represented by tree node m than the subbutterfly represented by tree
node m′. Let m and m′ be on level j of T . As before, due to dilation considerations,
the smaller subbutterflies of B′ spanning levels j + d to n must be mapped entirely
within the subbutterfly of B represented by m or within the subbutterfly represented
by m′ but never to both. The rest of the proof is similar to Theorem 2.3.3.

The following theorem is stated for two-dimensional meshes of trees. An analogous
theorem can be proved for any constant-dimension mesh of trees.

Theorem 2.3.5. For any constants l and d, there is a constant k = d+(l− 1)2d

such that there is a way of choosing Θ(logkN) faults in a
√
N × √

N mesh of trees
M such that there is no level-preserving embedding of a

√
N ×√

N mesh of trees M ′

in M with load l and dilation d.

Proof. The proof is similar to that of Theorem 2.3.4. Let M be a mesh of trees
with faults and let M ′ be the fault-free version of M . The nodes in level logN of M
and M ′ are arranged in the form of a two-dimensional

√
N ×√

N mesh. We refer to
these nodes as the mesh nodes. We can associate a tree T with the mesh nodes of M

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1315

as follows: the root of T represents the entire mesh. Divide the mesh vertically into
two equal parts and let each child represent one of the halves. At the next level of the
tree divide each of the halves horizontally into two equal parts. Divide alternately,
either vertically or horizontally, until reaching individual mesh nodes, which are each
represented by a distinct leaf of the tree. We choose the same set of worst-case faults
in the leaves of T as in Theorem 2.3.3. The faulty nodes of M are the mesh nodes of
M that correspond to the faulty leaves of T . Given a level-preserving embedding of
M ′ into M with load l and dilation d, we can produce a b-legal placement of arrows
in T in a manner similar to the previous proofs. Given two siblings m and m′, draw
an arrow from m′ to m if there are more mesh nodes of M ′ mapped to the submesh
of M represented by tree node m than the submesh represented by tree node m′. As
before, due to dilation considerations, the smaller submeshes of M ′ must be mapped
entirely within the submesh of B represented by m or within the submesh represented
by m′ but never to both. The rest of the proof is similar to Theorem 2.3.3.

3. Fault-tolerant routing. In this section, we present algorithms for routing
around faults in hypercubic networks. Section 3.1 presents algorithms for routing
packets in a butterfly network with faulty nodes, while section 3.2 presents algorithms
for establishing edge-disjoint paths between the inputs and outputs of an O(1)-dilated
Beneš network with faulty switches.

3.1. Fault-tolerant packet routing. In this section we show how to route
packets in an N -input butterfly network with f worst-case faults. In particular, we
focus on the problem of routing packets between the nodes of the network in a one-
to-one fashion. This type of routing is also called permutation routing. (See [37] for
references to permutation routing algorithms.) In a permutation routing problem,
every node is the origin of at most one packet and the destination of at most one
packet. We show that there is some set of N − 6f rows (where 0 ≤ f ≤ N/6)
such that it is possible to route any permutation between the nodes in these rows
in O(logN) steps using constant-size queues, with high probability. The same result
(without the high probability caveat) was previously shown for the expander-based
multibutterfly network [28]. A special case of this result is that when f ≤ N/12
we can route arbitrary permutations between a majority of nodes in the butterfly.
Note that this is optimal to within constant factors since N faults on level (logN)/2
partitions the butterfly into many disjoint small connected components.

It will be convenient for us to view the packets as being routed on a larger network
with 4 logN+1 levels andN rows. The network consists of four stages. Stage i consists
of those nodes in levels i logN through (i + 1) logN for 0 ≤ i ≤ 3. Note that each
pair of consecutive stages shares a level of nodes. The nodes in stages 0 and 3 are
connected by straight edges only. Stages 1 and 2 consist of a pair of back-to-back
butterflies isomorphic to the Beneš network. In analogy with the Beneš network,
the nodes in levels logN , 2 logN , and 3 logN are called input nodes, middle nodes,
and output nodes, respectively. Note that this larger network can be embedded in
a butterfly network so that the jth row of the larger network is mapped to the jth
row of the butterfly, and at most one node from each stage of the larger network is
mapped to each node of the butterfly. The embedding has load 4, congestion 4, and
dilation 1.

We start by describing Valiant’s algorithm [54] for permutation routing on a
butterfly without faults. Each node in stage 0 is the source of at most one packet, and
each node in stage 3 is the destination of at most one packet. (Thus in the underlying
butterfly, each node is both the source and destination of at most one packet.) In

1316 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

stage 0, a packet travels along its row to the input node in that row (say, m). In
stage 1, the packet goes from m to a random middle node (say, m′′). In stage 2, the
packet goes from m′′ to the output node m′ in the row of its destination. In stage 3,
the packet travels along the row of m′ until it reaches its destination. Valiant showed
that these paths, which have length at most 4 logN , also have congestion O(logN)
with high probability. In networks such as the butterfly with O(logN) levels, as long
as the (leveled) paths of the packets have congestion O(logN), a Ranade-type queuing
protocol can be used to route the packets in O(logN) steps using constant-size queues,
with high probability [29]. Therefore, it is sufficient to derive high-probability bounds
on the congestion of the paths in a routing scheme.

Our goal is to identify a large set of “good” nodes in a faulty butterfly between
which we can route permutations using an algorithm like Valiant’s. A node in the
four-stage network is faulty if the corresponding node in the underlying butterfly is
faulty. Since stages 0 and 3 require a fault-free row, any node in a row with a fault is
declared to be bad . Furthermore, in stage 1, every packet needs a sufficient number of
random choices of middle nodes. For every input node m, let REACH(m) be defined
to be the set of middle nodes reachable from m using fault-free paths of length logN
from level logN to level 2 logN . Also, for every output node m′, let REACH(m′) be
the set of middle nodes reachable using fault-free paths from level 3 logN back to level
2 logN . Note that ifm andm′ lie in the same row, thenREACH(m) = REACH(m′),
because the fault pattern in stage 2 is the mirror image of the fault pattern in stage 1.
If |REACH(m)| < 4N/5 for any input node m, then we declare m and all other nodes
in its row to be bad. Any node not declared bad is considered good. Note that there
are no faults in rows containing good nodes, and every good input or output node
can reach at least 4N/5 middle nodes via fault-free paths. A row in the underlying
butterfly is good if the corresponding row in the four-stage network is good.

We now show that only 6f rows contain bad nodes. This follows from the fact
that only f rows can contain faults and from the fact that |REACH(m)| ≥ 4N/5
for all but 5f input nodes m. The latter fact is proved by setting t = N/5 in the
following lemma, which will also be used in section 3.2.

Lemma 3.1.1. In an N -input butterfly with f worst-case faults, at least N−fN/t
input nodes (nodes in level 0) can each reach at least N − t output nodes (nodes in
level logN) via fault-free paths of length logN for any t ≤ N .

Proof. For each input node i, let ni represent the number of output nodes in level
logN that i cannot reach. If the lemma were false, then we would have

N−1∑
i=0

ni ≥
(
fN

t
+ 1

)
(t+ 1).

A fault at any level of the butterfly lies on precisely N paths from input nodes to
output nodes. Hence

∑N−1
0=1 ni = fN. Combining the equation with the inequality

yields fN ≥ (fN/t + 1)(t + 1), which is a contradiction. Hence the lemma must be
true.

In order to route any permutation between the good nodes, we use Valiant’s
algorithm except that in stage 1, in order to route a packet from input m to output
m′, we randomly select a middle node m′′ from REACH(m) ∩ REACH(m′). (One
way to do this is to store at each input m a table containing information about
REACH(m) ∩ REACH(m′) for each output m′.) Since m and m′ are good input
and output nodes |REACH(m)∩REACH(m′)| is at least 3N/5. We now prove that
the paths selected in this manner have congestion O(logN) with high probability.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1317

Lemma 3.1.2. For any constant k > 0, the randomly selected paths have conges-
tion O(logN) with probability at least 1− 1/Nk. Furthermore, these paths are leveled
and have length at most 4 logN .

Proof. The lengths of the paths are clearly at most 4 logN since the paths traverse
the butterfly four times, once in each stage. We bound the congestion as follows. Every
good node sends and receives one packet. Thus, the congestion of any node in stages
0 and 3 is trivially at most (logN + 1). Consider a node s in level l of the butterfly
in stage 1. There are 2l(logN + 1) packets that could pass through this node. A
packet passes through this node if and only if it selects as a random middle node one
of the 2logN−l middle nodes reachable from this node. Note that the set of possible
choices of middle nodes for any input node m and output node m′ is REACH(m) ∩
REACH(m′). Since both m and m′ are good nodes, |REACH(m)| ≥ 4N/5 and
|REACH(m′)| ≥ 4N/5. This implies that |REACH(m) ∩ REACH(m′)| ≥ 3N/5.
Thus the probability that the packet chooses a middle node that is reachable from s
is at most 2logN−l/(3N/5). Therefore, the expected number of packets that passes
through a node in stage 1 is at most (2l(logN+1))(2logN−l)/(3N/5) = 5(logN+1)/3.
We can use Chernoff-type bounds [46] to show that the number of packets that pass
through s in stage 1 is O(logN) with probability at least 1− 1/2Nk for any constant
k. The calculation for a node in stage 2 is exactly analogous. Thus the congestion is
O(logN) with probability at least 1− 1/Nk.

The following theorem summarizes the result presented in this section.
Theorem 3.1.3. In an N -input butterfly network with f worst-case faults, where

0 ≤ f ≤ N/6, there is some set of N − 6f “good” rows whose nodes can serve as the
origins and destinations of any permutation routing problem. Furthermore, there is a
routing algorithm such that, for any constant k > 0, there is a constant C > 0 such
that the algorithm routes all the packets in any permutation (using routing tables) in
at most in C logN steps using constant-size queues, with probability at least 1−1/Nk.

Proof. Lemma 3.1.1 shows how to identify the N − 6f rows that are to serve
as the sources and destinations of the packets. The lemma is applied for the case
t = N/5. To route from an input node m to an output node m′, a packet must select
a random intermediate destination m′′ that can be reached from both m and m′. The
choice is made by consulting a table of all such m′′. Lemma 3.1.2 shows that, with
high probability, these paths have congestion O(logN). Finally, once the paths are
selected, the algorithm for routing on leveled networks [29] can be applied to deliver
the packets in O(logN) steps, with high probability using constant-size queues.

3.1.1. Packet routing without routing tables. In the previous algorithm,
every good input node m was required to store a table containing information about
REACH(m) ∩ REACH(m′) for every good output node m′. In this section, we
show that is possible to route packets in a faulty butterfly without using such routing
tables. The information about the placement of the faults is used only during the
reconfiguration when the good and bad nodes are identified. This information is not
needed for the routing itself. We assume that any packet that attempts to go through
a fault is simply lost. We further assume that a node that receives a packet sends
back an acknowledgement message (ACK) to the sender. Each ACK message follows
the path of the corresponding packet in reverse. An ACK is generally smaller than
a message and requires at most O(logN) bits to specify its path and the identity of
the message that it is acknowledging. The algorithm for routing proceeds in rounds.
There are a total of (A log logN) + 1 rounds (for some constant A). Each round
consists of the following steps (R takes values from 0 to A log logN and denotes the
round number).

1318 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

SEND-PACKET: In stage 0, if packet p has not yet been delivered to its
destination, send 2R identical copies of p to the input node m in its row. In
stage 1, send each copy of the packet independently to a random middle node.
In stage 2, send each copy to the appropriate output node m′. In stage 3,
send each copy to the appropriate destination node in that row.

RECEIVE-PACKET: If a packet is received send an ACK along the same
path that the packet came through but in reverse.

WAIT: Wait B logN steps before starting the next round.

Theorem 3.1.4. For any constant k > 0, there are constants A and B such that
the algorithm routes any permutation on the nodes of the N − 6f good rows of an
N -input butterfly with f faults in O(logN log logN) steps using constant-size queues,
with probability at least 1− 1

Nk , without using routing tables.

Proof. First we show that there is very little probability that a packet survives
A log logN rounds without reaching its destination, where A is an appropriately cho-
sen constant. A packet can never encounter a fault in stages 0 and 3 since its source
and destination rows are fault-free. Let m and m′ denote the input and output nodes
that the packet passes through, respectively. In stage 1, if the packet chooses any
middle node in REACH(m)∩REACH(m′) then it succeeds in reaching its destina-
tion. Since |REACH(m)∩REACH(m′)| ≥ 3N/5 the probability of this happening is
at least 3/5. Suppose the packet did not get through after A log logN rounds. Then
2A log logN = logAN copies of the packet are transmitted in the last round. Note
that the probability of each copy surviving is independent of the others. Hence the

probability that none of these copies reach their destination is at most (1−3/5)log
AN ,

which is at most 1/Nk+3, for any constant k > 0 and for an appropriate choice of the
constant A. Thus, the probability that some packet does not reach its destination is
at most N logN/Nk+3, which is less than 1/Nk+1.

Next we show that each round takes O(logN) time with high probability. We
assume inductively that at the beginning of round i the total number of packets
(counting each copy once) to be transmitted from any row in stage 0 of the algorithm
or received by any row in stage 3 of the algorithm is at most q logN for some constant
q > 1. Clearly the basis of the induction is true at the beginning of the first round
since there are exactly logN packets sent by each row in stage 0 and received by each
row in stage 3. The expected number of copies that are sent from a row in stage 0 or
that are destined for a row in stage 4 that do not get through is at most 2q logN/5.
The value of q is chosen such that the probability that more than q logN/2 copies
do not get through in any row can be shown to be small, i.e., at most 1/ANk+2, for
any constants A and k, using Chernoff-type bounds. At the beginning of the next
stage, each unsent copy is duplicated and hence, with high probability, the number of
packets in any row in the next round is at most q logN . Since there are (A log logN)+1
rounds, the probability that the inductive hypothesis does not hold in the beginning
of any one round is at most ((A log logN) + 1)/ANk+2, which is less than 1/Nk+1.

Now we assume that the inductive hypothesis is true and show that each round
takes only B logN steps, for some constant B, with high probability. Consider any
round i. From the inductive hypothesis, the congestion of any node in stage 0 or
3 is at most q logN which is O(logN). In stage 1, a node at level l can receive
packets from any one of 2l input nodes, each packet with probability 2−l. The total
number of packets that pass through an input node is at most q logN by our inductive
hypothesis. Therefore, the expected number of packets that pass through a node at
level l is q logN2l2−l = q logN . The value of q is chosen so that the probability that

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1319

any node gets more than 2q logN packets can be shown to be at most 1/ANk+2, using
Chernoff-type bounds. The analysis for stage 2 is similar. Thus we have shown that
if the inductive hypothesis is true, the congestion of any node is O(logN) with high
probability. Therefore, using the algorithm for routing on leveled networks [29] to
schedule the packets, the routing completes in C logN steps with probability at least
1−2/ANk+2 for an appropriate constant C. The ACKs follow the paths of the packets
in the reverse direction. Therefore, the congestion in any node due to ACKs can be
no larger than the congestion due to packets and is also therefore O(logN). Since we
are using the algorithm for routing on leveled networks to schedule the packets, the
probability that some ACK does not reach its destination in D logN time is also at
most 2/ANk+2 for some suitably large constant D. We choose the constant B in the
algorithm to be at least C +D so that the algorithm waits long enough for both the
packet routing and the routing of ACKs to finish before starting the next round of
routing. The probability that either the packet routing or the ACK routing fails to
complete in some round is at most 4A log logN/ANk+2, which is less than 1/Nk+1.

The probability that either some packet remains untransmitted after the last
round or that the inductive hypothesis does not hold for some round or that some
round fails to complete in B logN steps is at most 3/Nk+1, which is less than
1/Nk. Thus, the algorithm successfully routes every packet to its destination in
O(logN log logN) steps with probability at least 1− 1/Nk.

If the number of worst-case faults is smaller then there is a simpler way of routing
in O(logN) steps without using routing tables or creating duplicate packets.

Theorem 3.1.5. Given an N -input butterfly with N1−ε worst-case faults (for
any constant ε > 0), it is possible to identify N −o(N) good rows in the butterfly such
that any permutation routing problem on the good nodes can be routed in O(logN)
steps using constant-size queues with probability greater than 1− 1/Nk, for any fixed
constant k, without using routing tables.

Proof. We define the “good” nodes in the butterfly as follows. A row is good
if it contains no faults and the input in that row can reach all but N1−ε/2 middle
nodes. (Previously a good input was required to reach all but N/5 middle nodes.)
Using Lemma 3.1.1 with f = N1−ε and t = N1−ε/2, we see that the number of good
rows is least N −N1−ε/2. The algorithm is the same as the previous algorithm except
that we don’t create any duplicate packets and we now need only a constant number
of routing rounds with high probability. This is because each unsent packet at each
round has probability at most Θ(1/N ε/2) of hitting a fault. Therefore, it is sufficient
to have Θ(k/ε) rounds (a constant) before every packet is delivered, with probability
at least 1− 1/Nk.

3.2. Fault-tolerant circuit switching. In this section, we examine the ability
of the Beneš network to establish disjoint paths between its inputs and outputs when
some of its switches fail. We assume that no path can pass through a faulty switch.
The main result of this section is a proof that for arbitrarily small positive constants
ε and δ, there is a constant b such that given a b-dilated (logN)-dimensional Beneš
network with f = N1−ε worst-case switch failures, we can identify a set of N−4N1−δ

input and output switches such that it is possible to route edge-disjoint paths in any
permutation between the corresponding input and output edges. (A b-dilated Beneš
network is one in which each edge is replaced by b parallel edges, and each 2×2 switch
is replaced by a 2b × 2b switch.) At each input switch, two of the b incoming edges
are used as inputs, and at each output switch, two of the b outgoing edges are used
as outputs.

1320 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

In a (logN)-dimensional Beneš network, levels 1 through 2 logN−1 can be decom-
posed into two disjoint sub-Beneš networks of dimension logN − 1, a top sub-Beneš
network, and a bottom sub-Beneš network. Note that the two paths that originate
from input edges that share an input switch cannot use the same sub-Beneš network.
The same is true for paths that end on output edges that share the same output
switch. A full permutation consists of a set of 2N input–output pairs to be connected
by edge-disjoint paths. The standard algorithm for setting the switches in a Beneš
network, due to Waksman [55], uses bipartite graph matching to split the set of 2N
pairs into two sets of N pairs which are then each routed recursively in one of the
smaller sub-Beneš networks.

We now present Waksman’s algorithm with a twist. We call this algorithm RAND-
SET (for RANDom switch SETting). The way RANDSET differs from Waksman’s
algorithm is that it randomly chooses which of the two sets of N pairs to route through
the top (and bottom) sub-Beneš network. The input to RANDSET is a permutation
φ represented as a 2N × 2N bipartite graph. The nodes of the graph represent the
2N input edges and the 2N output edges of the network. An edge in the bipartite
graph from input i to output φ(i) indicates that a path must be routed from i to
φ(i) in the network. The first step is to merge pairs of nodes in the bipartite graph
that correspond to input edges (or output edges) that share the same input switch
(or output switch). The result is a 2-regular N ×N bipartite graph. The second step
is to split the edges of this graph into two perfect matchings, M0 and M1. (See [42]
for a nice proof that such a split is possible.) Next, we pick a binary value for random
variable X at random. If X = 0 then we recursively route the paths in matching M0

through the top sub-Beneš network and those in M1 through the bottom sub-Beneš
network. If X = 1 we do the opposite. The following lemma shows that RANDSET
chooses the path from i to φ(i) uniformly from among all possible paths.

Lemma 3.2.1. For any i, the path chosen by algorithm RANDSET between input
i and output φ(i) in a 2N -input Beneš network passes through any of the N middle
switches (switches in level logN) with equal probability (1/N).

Proof. At the first stage, the path from i to φ(i) goes to the top or the bottom sub-
Beneš network with probability 1/2 depending on whether the matching that contains
the edge corresponding to this input–output pair is chosen to be routed through the
top or the bottom. The decisions made at the succeeding levels of the recursion are
similar and independent of all other decisions.

It is important to remember that given a permutation, the paths themselves could
be highly correlated and determining one path gives some information about the others.

We classify the input and output switches of the Beneš network as either good
or bad depending on whether they can reach a sufficiently large number of middle
switches. In a fault-free Beneš network, there is a path from each input (and output)
switch to each of the N middle switches. The middle switches in fact form the leaves
of a complete binary tree with the input (or output) switch as the root. The faults
could make some of these paths unusable. We declare an input (or output) switch
bad if the number of middle switches that it cannot reach exceeds a certain threshold.
The threshold is chosen so that it is possible to establish edge-disjoint paths between
the good (i.e., not bad) inputs and outputs in any permutation. (The two inputs
coming into an input (or output) switch are good or bad depending on whether the
corresponding input (or output) switch is good or bad.)

Let BAD(t) be the set of input and output switches for which more than t middle
switches are unreachable. The first and last logN+1 levels of the Beneš network each

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1321

form a logN -dimensional butterfly. Applying Lemma 3.1.1 to each of these butterflies
separately, we know that |BAD(t)| < 2fN/t. (Note that these butterflies share the
middle level of switches and hence might share some faults.)

Theorem 3.2.2. For any constants 0 < δ < ε ≤ 1, there exists a constant
b = d1 + (2− ε)/(ε− δ)e such that a 2N -input b-dilated Beneš network with N1−ε

worst-case switch faults has a set of N − 4N1−δ input switches and output switches
between whose input and output edges it is possible to route any permutation using
edge-disjoint paths.

Proof. We declare any input or output switch in BAD(N1+δ−ε/2) to be bad.
Since we need the number of good input switches and good output switches to be
equal we may have to declare some extra input switches or output switches to be bad.
From Lemma 3.1.1, we know that |BAD(N1+δ−ε/2)| ≤ 4N1−δ. Thus, the number of
good input switches (or output switches) is at least N − 4N1−δ.

We now prove that we can route any permutation between the good inputs and
good outputs using edge-disjoint paths. In this proof, we simply show that for every
permutation such a set of paths exists, without showing how to compute these paths
efficiently. Later, we give an efficient procedure for computing these paths.

Given a permutation φ on the good inputs and outputs, we select paths using
RANDSET in b rounds. In the first round, we route all the paths using RAND-
SET. Some of these paths pass through faults in the network. The number of paths
that pass through faults is at most 2N1−ε, since each fault appears on at most two
paths. These paths are not permissible and must be rerouted in the second round
using RANDSET. Note that every good input switch (or output switch) has at most
N1+δ−ε/2 unreachable middle switches. Thus, from Lemma 3.2.1, the probability
that any one of the paths hits a fault in the first logN+1 levels is at most N−(ε−δ)/2.
The probability that it hits a fault in the second logN + 1 levels is also at most
N−(ε−δ)/2. The net probability that the path hits a fault is at most N−(ε−δ). Even
though the probabilities that any two paths hit a fault is correlated, the expected
number of paths that hit faults in the second round is at most 2N1−εN−(ε−δ). This
implies that with nonzero probability RANDSET finds a set of paths such that at
most 2N1−ε−(ε−δ) paths hit faults. Note that this also means that there exists a way
of selecting the paths so that at most 2N1−ε−(ε−δ) paths hit faults. We select paths
such that this criterion is satisfied and route the paths that hit faults again using
RANDSET. We continue to do the rerouting until the expected number of paths that
hit faults drops below 1. At this point, with nonzero probability RANDSET routes all
of the paths without hitting any faults. In particular, such a set of paths exists. The
expected number of paths that hit faults in the ith round is 2N1−ε−(i−1)(ε−δ). Thus,
for b = d1 + (2− ε)/(ε− δ)e the number of paths that hit faults at the end of the
bth round is less than 1. Therefore, all paths are routed by the end of the bth round.
Since we use at most b rounds of routing and since each edge of the Beneš network has
been replaced by b edges, we obtain edge-disjoint paths for the permutation.

3.2.1. Derandomizing RANDSET. In the proof of Theorem 3.2.2, we show
the existence of edge-disjoint paths by using the fact that algorithm RANDSET finds
them with nonzero probability. In this section we construct a deterministic algorithm
that finds these paths using the technique due to Raghavan [45] and Spencer [50] to
remove the randomness. Like Waksman’s algorithm for finding the switch settings in
a fault-free Beneš network with N input switches, the algorithm runs in O(N logN)
time.

Let P be the random variable that denotes the number of paths that go through

1322 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

faults at some round of rerouting. Let X be the binary random variable used by
RANDSET to make its random decision to select which matching is to be routed
through which sub-Beneš network. Let us further define two random variables Pl and
Pr to denote the number of paths that RANDSET routes through faults in the left
butterfly and the right butterfly, respectively. Let U(P) be an upper bound on E(P)
that is defined as U(P) = E(Pl) + E(Pr). In the proof of Theorem 3.2.2, we used
the fact that with nonzero probability RANDSET finds a set of paths in which at
most U(P) paths hit faults. We define an algorithm DSET (for deterministic switch
SETting) that deterministically finds such a set of paths. Algorithm DSET is the
same as RANDSET except that instead of selecting a random value for X, we select
the “better” choice for X as follows. We compute U(P |(X = i)) = E(Pl|(X =
i)) +E(Pr|(X = i)) for i = {0, 1}. We then choose X to be the value of i that yields
the minimum of the two values computed above.

Theorem 3.2.3. Given a (partial) permutation φ to be routed, algorithm DSET
deterministically computes paths such that at most U(P) paths hit faults, and DSET
has the same asymptotic running time as RANDSET.

Proof. We prove the theorem by induction on the size of the Beneš network.
The base case is trivial. Now consider a 2N -input Beneš network with a (partial)
permutation φ to route. Let Pf and Pe denote the number of paths that hit faults in
the first and last levels of the Beneš network, respectively. Also, let Pt and Pb denote
the number of paths that hit faults in the top and bottom sub-Beneš networks (but
not in the first or last levels of the Beneš network), let Pt,l and Pt,r denote the number
of paths that hit faults in the left and right halves of the top sub-Beneš network, and
let Pb,l and Pb,r denote the number of paths that hit faults in the left and right halves
of the bottom sub-Beneš network. Finally, let i be the value chosen for X in step 2
of DSET. The total number of paths that hit faults P is bounded as follows:

P ≤ Pf + U(Pt|(X = i)) + U(Pb|(X = i)) + Pe(3.1)

= Pf + E(Pt,l|(X = i)) + E(Pt,r|(X = i))(3.2)

+ E(Pb,l|(X = i)) + E(Pb,r|(X = i)) + Pe

= E(Pl|(X = i)) + E(Pr|(X = i))(3.3)

= U(P |(X = i))(3.4)

≤ U(P).(3.5)

These inequalities have the following explanation. Independent of the choice of i, Pf
paths are blocked at the first level and Pe are blocked at the last. Once i is chosen, we
know by induction that at most U(Pt|(X = i)) paths are blocked in the top sub-Beneš
network and at most U(Pb|(X = i)) are blocked in the bottom sub-Beneš network.
Hence inequality (3.1) holds. Equation (3.2) is derived by substituting the definitions
of U(Pt|(X = i)) and U(Pb|(X = i)). Equation (3.3) is derived by observing that

E(Pl|(X = i)) = Pf + E(Pt,l|(X = i)) + E(Pb,l|(X = i))

and

E(Pr|(X = i)) = Pe + E(Pt,r|(X = i)) + E(Pb,r|(X = i)).

Equation (3.4) follows from the definition of U(P |(X = i)). Finally, (3.5) holds by
the choice of i.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1323

Now we deal with the question of how fast U(P |(X = i)) can be calculated in step
2 of DSET for i ∈ {0, 1}. For every switch m in the Beneš network, let REACH(m)
be the set of middle switches reachable from switch m using fault-free paths. We
can precompute |REACH(m)| as follows. The value for the middle switches are
trivially known. We then compute the values for levels on both sides adjacent to levels
where the values are known and continue in this manner. This takes only O(N logN)
steps of precomputation and does not affect the asymptotic time complexity of the
algorithm. Given the values of |REACH(m)|, the values of U(P |(X = i)) can be
easily calculated by summing up the appropriate values of |REACH(m)|. This is an
O(N) time computation. Since step 1 of the algorithm takes N time just to set N
switches in the first level, this does not affect the asymptotic time complexity. Hence
using DSET yields the same asymptotic time complexity as RANDSET and takes
time linear in the size of the Beneš network.

4. Emulations on faulty butterflies. In this section, we show that for any
constant ε > 0, a (logN)-dimensional butterfly with N1−ε worst-case faults (the host
H) can emulate any computation of a fault-free (logN)-dimensional butterfly (the
guest G) with only constant slowdown. We assume that a faulty node cannot perform
computations and that packets cannot route through faulty nodes. For simplicity we
assume that both the guest and host butterflies wrap around; i.e., the nodes of level
0 are identified with the nodes of level logN .

We model the emulation of G by H as a pebbling process. There are two kinds
of pebbles. With every node v of G and every time step t, we associate a state pebble
(s-pebble) 〈v, t〉 that contains the entire state of the computation performed at node v
at time t. The s-pebble contains local memory values, registers, stacks, and anything
else that is required to continue the computation at v. We view G as a directed graph
by replacing each undirected edge between nodes u and v by two directed edges: one
from u to v and the other from v to u. With each directed edge e and every time
step t, we associate a communication pebble (c-pebble) [e, t] that contains the message
transmitted along edge e at time step t.

The host H emulates each step t of G by creating an s-pebble 〈v, t〉 for each node
v of G and a c-pebble [e, t] for each edge e of G. A node of H can create an s-pebble
〈v, t〉 only if contains s-pebble 〈v, t−1〉 and all of the c-pebbles [e, t−1], where e is an
edge into v. It can create a c-pebble [g, t] for an edge g out of v only if it contains an
s-pebble 〈v, t〉. A node of H can also transmit a c-pebble to a neighboring node of H
in unit time. A node of H is not permitted to transmit an s-pebble since an s-pebble
may contain a lot of information. Note that H can create more than one copy of an
s-pebble or c-pebble. The ability of H to create redundant pebbles is crucial to our
emulation schemes. In our emulations, each node of H is assigned a fixed set of nodes
of G to emulate and creates s-pebbles for them for each time step.

4.1. Assignment of nodes of G to nodes of H. We now show how to map
the computation of G to the faulty butterfly H. The host H has N1−ε arbitrarily
distributed faults. We first divide H into subbutterflies of dimension (ε logN)/2
spanning levels (iε logN)/2 through ((i + 1)ε logN)/2 for integer i = 0 to 2/ε − 1.
(Without loss of generality, we assume that 2/ε and ε logN/4 are integers.) Note
that every input node of a subbutterfly is also an output node of another subbutterfly
and vice versa. Each band of ((ε logN)/2) + 1 levels consists of N1−ε/2 disjoint
subbutterflies. Thus, there are a total of (2/ε)N1−ε/2 subbutterflies. The faults in
the network may make some of these subbutterflies unusable. We identify “good” and
“bad” subbutterflies according to the following rules.

1324 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Rule 1. A subbutterfly that contains a node that lies in a butterfly row in which
there is a fault is a bad subbutterfly (even if the fault lies outside of the subbutterfly).

Rule 2. In order to apply Rule 2, we embed a Beneš network in the butterfly. The
edges of the first stage of the Beneš network traverse the butterfly in increasing order
of dimension and the edges of the second stage in decreasing order of dimension. The
input switches, the middle switches, and the output switches of the Beneš network are
all embedded in level 0 of the butterfly (which is the same as level logN). For δ = 2ε/3,
identify the set of bad inputs/outputs (they are the same set here) according to the
procedure outlined in the proof of Theorem 3.2.2 in section 3.2. Any subbutterfly
that contains a node that has a bad input/output at the end of its butterfly row is a
bad subbutterfly.

Lemma 4.1.1. For any ε > 0, the number of rows in which there is either a fault
or a bad input or output is at most N1−ε + 4N1−2ε/3.

Proof. The number of rows containing a fault is at most N1−ε, since there are
at most N1−ε faults. By Theorem 3.2.2, for δ = 2ε/3, the number of bad inputs and
outputs (they are the same nodes) is at most 4N1−δ = 4N1−2ε/3.

Lemma 4.1.2. For any ε > 0, at least half the subbutterflies of H are good for
sufficiently large N .

Proof. The total number of subbutterflies is (2/ε)N1−ε/2. By Lemma 4.1.1,
the number of rows containing either a fault or a bad input or output is at most
N1−ε + 4N1−2ε/3. Since each bad row passes through 2/ε different subbutterflies,
the total number of subbutterflies identified as bad by Rules 1 and 2 cannot exceed
2(N1−ε+4N1−2ε/3)/ε. Observe that 2(N1−ε+4N1−2ε/3)/ε ≤ N1−ε/2/ε for sufficiently
large N .

Now we divide the guestG into overlapping subbutterflies of dimension (ε logN)/2
and map them to the good subbutterflies of H. For any node v of G, at most three
nodes of H receive the initial state of the computation of node v, i.e., s-pebble 〈v, 0〉.
(A node v of G can appear as an input in one subbutterfly, an output in another,
and a middle node in a third.) These nodes in H create the s-pebbles for v. The
mapping proceeds as follows. Take the guest G and cut it into subbutterflies at levels
iε logN/2 for integers i = 0 to 2/ε− 1. Map each subbutterfly to a good subbutterfly
of H so that each subbutterfly of H gets at most two subbutterflies of G. Now cut
G again, this time at levels (ε/4 + iε/2) logN for integers i = 0 to 2/ε− 1. Map the
subbutterflies to good subbutterflies of H as before. At most eight nodes of G are
mapped to each node of H.

4.2. Building constant congestion paths. We call the nodes v of G belonging
to level iε logN/4, for i = 0 to 4/ε−1, boundary nodes since they lie on the boundary
of some subbutterfly of G. Let the set of boundary nodes of G be denoted by BG .
Similarly we define the nodes in the levels where H was cut to form subbutterflies,
i.e., level iε logN/2 for i = 0 to 2/ε− 1, the boundary nodes of H. Let us denote this
set BH.

Let φ be the function that maps an s-pebble 〈v, t〉 to the node in H that creates it.
The creation of 〈v, t〉 requires that node φ(〈v, t〉) of H gets all the c-pebbles [e, t] from
some other node of H for every edge e into v. Suppose that 〈v, t〉 is mapped to some
node m = φ(〈v, t〉) in the interior (i.e., not on the boundary) of a good subbutterfly
of H. Then the neighbors of m in H also create the s-pebbles of the neighbors of v
in G. In this case m receives the required c-pebbles from its neighbors in H.

On the other hand, if the s-pebble for v is mapped to some node m ∈ BH, the
neighbors of m in H may not create the s-pebbles of the neighbors of v in G. However,

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1325

since every node v of G is mapped to at least two nodes of H, there is another node
m′ of H that also creates an s-pebble for v. In particular, m′ is necessarily a node in
the center of a subbutterfly of H, i.e., in level ε logN/4 of the subbutterfly. Node m′

of H forwards a copy of the c-pebble [e, t] to node m for each of the edges e into v.

To facilitate the transmission of c-pebbles, we use the results of section 3.2 to
establish constant-congestion fault-free paths in H between all pairs of nodes m and
m′ of H that create the s-pebbles for the same node v in BG . The number of paths
originating in a row of H is simply the number of nodes mapped to subbutterfly
boundaries in that row, which is at most 8 · 2/ε = 16/ε, i.e., a constant. Similarly the
number of paths ending in any row is 16/ε. We can divide the paths into 8/ε sets such
that each set has at most two paths originating in a row and two paths ending in a
row. Note that all paths start and end in rows that have good inputs and outputs for
doing Beneš-type routing. Therefore, each set can be routed with dilation 4 logN and
with congestion O(1) using the results of section 3.2. Since there are only a constant
number of such sets the total congestion is also a constant.

4.3. The emulation. We now formally describe the emulation and prove its
properties. Initially, nodes of H contain s-pebbles 〈v, 0〉 for nodes v of G. We say
that H has emulated T steps of the computation of G if and only if for every node v
of G, an s-pebble 〈v, T 〉 has been created somewhere in H. The emulation algorithm
is executed by every node m of H and proceeds as a sequence of macrosteps. Each
macrostep consists of the following four substeps.

1. Computation step. For each node v of G that has been assigned to m, if m
contains an s-pebble 〈v, t− 1〉 and c-pebbles [e, t− 1] for every edge e into v
and m has not already created an s-pebble 〈v, t〉, then it does so.

2. Communication step. For each node v whose s-pebble was updated from
〈v, t − 1〉 to 〈v, t〉 in the computation step and for each edge g from v to
a neighbor u of v, node m sends a c-pebble [g, t] to its neighbor in H that
creates s-pebbles for u (if such a neighbor exists).

3. Routing step. Ifm has any c-pebble that was created on the previous copy step
or that was received on the previous routing step but whose final destination
is not m, then m forwards the c-pebble to the next node on the pebble’s path
to its destination.

4. Copy step. If m is a node in the center level (level ε logN/4 in the subbutter-
fly) and in the communication step m received a c-pebble [e, t] for an edge e
into a node v that has been assigned to m, then m makes two copies of the
c-pebble, one for each of the two nodes m′ and m′′ that also create s-pebbles
for v. On the next routing step, m forwards each copy to the next node on
the path from m to m′ or m′′.

Lemma 4.3.1. Each macrostep takes only a constant number of time steps to
execute.

Proof. At most eight s-pebbles mapped are to each node. Therefore, the compu-
tation step takes constant time. Every s-pebble that is updated can cause at most four
c-pebbles to be sent in the communication step. Therefore, the communication step
takes only constant time. Since only a constant number of paths passes through any
node, only a constant number of c-pebbles enters a particular path at any macrostep,
and every c-pebble that has not yet reached its destination moves in every macrostep,
the number of c-pebbles entering any node during any macrostep is at most a con-
stant. Thus, the routing step and the copy step both take only a constant number of
time steps.

1326 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Theorem 4.3.2. Any computation on a fault-free butterfly G that takes time T
can be emulated in time O(T + logN) by H.

Proof. We show that only O(T + logN) macrosteps are required to emulate a
T -step computation of G. The final result then follows from Lemma 4.3.1.

The dependency tree of an s-pebble represents the functional dependency of this
s-pebble on other s-pebbles and can be defined recursively as follows. As the base
case, if t = 0, the dependency tree of 〈v, t〉 is a single node 〈v, 0〉. If t > 0, the creation
of s-pebble 〈v, t〉 requires s-pebble 〈v, t − 1〉 and a c-pebble [e, t − 1] for each edge e
into node v in G. Each c-pebble is sent by an s-pebble 〈u, t−1〉 where u is a neighbor
of v in G. The dependency tree of 〈v, t〉 is defined recursively as follows. The root
of the tree is 〈v, t〉 and the subtrees of the root are the dependency trees of 〈v, t− 1〉
and all s-pebbles 〈u, t− 1〉.

Let the emulation of T steps of G take T ′ macrosteps on H. Let 〈v, T 〉 be an
s-pebble that was updated in the last macrostep. We now look at the dependency
tree of 〈v, T 〉. We choose a critical path, sT , sT−1, . . . , s0, of tree nodes from the root
to the leaves of the tree as follows. The first node on the path sT is 〈v, T 〉. Let φ
be the function that maps an s-pebble 〈v, t〉 to the node in H that creates it. The
creation of sT requires the s-pebble 〈v, T − 1〉 and c-pebbles [e, T − 1]. If the s-pebble
〈v, T − 1〉 was created after all the c-pebbles were received then choose sT−1 to be
〈v, T − 1〉. Otherwise, choose the s-pebble that sent the c-pebble that arrived last at
node φ(〈v, T 〉). After choosing sT−1, we choose the rest of the sequence recursively
in the subtree with sT−1 as the root. The last s-pebble on the path s0 is one that
was present initially, i.e., at time step 0. We define a quantity li as follows. If φ(si)
and φ(si−1) are the same node or neighbors in H, then li = 1. Otherwise, li is the
length of the path by which a c-pebble generated by si−1 is sent to si. For every tree
node s, we can associate a time (in macrosteps) τ(s) when that s-pebble was created.
From the definition of our critical path and because a c-pebble moves once in every
macrostep, τ(si)− τ(si−1) = li. Thus,

T ′ =
∑

0<i≤T
(τ(si)− τ(si−1)) =

∑
0<i≤T

li.

Now suppose that some li is greater than one. This corresponds to a long path taken
by some c-pebble to go from φ(si−1) in the center level of a subbutterfly of H to φ(si)
in BH. Thus li is the length of one of the constant congestion paths and is at most
(4 logN)+1. (In fact, the paths are somewhat shorter, but (4 logN)+1 is a convenient
quantity to work with.) The key observation is that since φ(si−1) is a node in the
center level, working down the tree from si−1 there can be no long paths until we reach
an s-pebble mapped to the boundary BH; i.e., li−j = 1 for 1 ≤ j ≤ (ε logN)/4 − 1.
Thus, the extra path length of 4 logN can be amortized over (ε logN)/4 s-pebbles.
Hence, T ′ =

∑
0<i≤T li ≤ (16/ε+ 1)T + 4 logN + 1 = O(T + logN).

We can extend these results to the shuffle-exchange network using Schwabe’s proof
[26, 47] that an N -node butterfly can emulate an N -node shuffle-exchange network
with constant slowdown, and vice versa.

Theorem 4.3.3. Any computation on a fault-free N -node shuffle-exchange net-
work G that takes time T can be emulated in O(T +logN) time by an N -node shuffle-
exchange network H with N1−ε worst-case faults for any constant ε > 0.

Proof. Schwabe [26, 47] shows how to emulate any computation of a butter-
fly on a shuffle-exchange network with constant slowdown and vice versa. First we
use Schwabe’s result to map the computation of a butterfly B to the faulty shuffle-
exchange network H. Any node of B that is mapped to a faulty node of H is declared

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1327

faulty. If there are any routing paths required by the emulation that pass through
a faulty node of H, we declare the nodes of B that use this path to be faulty. The
faulty nodes of B do no computation, and H is not required to emulate them. Hence,
the faulty shuffle-exchange network H can emulate the faulty butterfly network B
with constant slowdown. The number of faults in B is only a constant factor larger
than N1−ε, since both the load and the congestion of the paths used in Schwabe’s
emulation are constant. Now we use Theorem 4.3.2 to emulate a fault-free butter-
fly B′ on B. Finally, use Schwabe’s result (in the other direction) to emulate the
fault-free shuffle-exchange network G on the fault-free butterfly B′. Each of these
emulations has constant slowdown. Therefore, the entire emulation of G on H has
constant slowdown.

4.4. Emulating normal algorithms on the hypercube. Many practical com-
putations on the hypercube are structured. The class of algorithms in which every
node of the hypercube uses exactly one edge for communication at every time step
and all of the edges used in a time step belong to the same dimension of the hyper-
cube are called leveled algorithms (also known as regular algorithms [13]). A useful
subclass of leveled algorithms are normal algorithms. A normal algorithm has the
additional restriction that the dimensions used in consecutive time steps are consec-
utive. Many algorithms including bitonic sort, FFT, and tree-based algorithms like
branch-and-bound can be implemented on the hypercube as normal algorithms [27].
An additional property of normal algorithms is that they can be emulated efficiently
by bounded-degree networks such as the shuffle-exchange network and the butterfly.
We state a result due to Schwabe [48] to this effect.

Lemma 4.4.1. An N -node butterfly can emulate any normal algorithm of an
N -node hypercube with constant slowdown.

We also require the following well-known result concerning the embedding of a
butterfly in a hypercube. (See [20] for the stronger result that the butterfly is a
subgraph of the hypercube.)

Lemma 4.4.2. An N -node butterfly can be embedded in an N -node hypercube
with constant load, congestion, and dilation.

Theorem 4.4.3. An N -node hypercube with N1−ε worst-case faults (for any
ε > 0) can emulate T steps of any normal algorithm on an N -node fault-free hypercube
in O(T + logN) steps.

Proof. Let the faulty N -node hypercube be H and the fault-free N -node hyper-
cube be G. H emulates any normal algorithm of G by using a sequence of constant
slowdown emulations. Let an N -node butterfly B be embedded in H in the manner
of Lemma 4.4.2. Any node of B that is mapped to a faulty node of H is considered
faulty. (And H is not required to emulate these faulty nodes.) Since this is a constant
load embedding, the number of faulty nodes in B is O(N1−ε). Clearly, H can emulate
any computation of B with constant slowdown using the constant load, congestion,
and dilation embedding of B in H. Let B′ be a fault-free N -node butterfly. From
Theorem 4.3.2, B can emulate B′ with a constant slowdown. Now, from Lemma 4.4.1,
B′ can emulate any normal algorithm of G with a constant slowdown. Putting all
these emulations together, we obtain a constant slowdown emulation of any normal
algorithm on G on the faulty hypercube H.

5. Random faults. In this section we show that an N -input host butterfly H
can sustain many random faults and still emulate a fault-free N -input guest butterfly
G with little slowdown. In particular, we show that if each node in H fails indepen-
dently with probability p = 1/ log(k) N , where log(k) denotes the logarithm function

1328 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

iterated k times, the slowdown of the emulation is 2O(k), with high probability. For
any constant k this slowdown is constant. Furthermore, for k = O(log∗N) the node
failure probability p is constant, and the slowdown is 2O(log∗N). Previously, the most
efficient self-emulation scheme known for an N -input butterfly required ω(log logN)
slowdown [51].

The proof has the following outline. We begin by showing that the host H can
emulate another N -input butterfly network Bk with constant slowdown. As in H,
some of the nodes in Bk may fail at random (in which case it is not necessary for H
to emulate them), but Bk is likely to contain fewer faults than H. In turn, Bk can
emulate another butterfly Bk−1 with even fewer faults. Continuing in this fashion, we
arrive at B1, which, with high probability, contains so few faults that it can emulate
the guest G with constant slowdown. There are k + 1 emulations, and each incurs a
constant factor slowdown, so the total slowdown is 2O(k).

5.1. Emulating a butterfly with fewer faults. We begin by explaining how
H emulates Bk. The first step is to cover the N -input butterfly Bk with overlapping
(log(k) N)2-input subbutterflies. For ease of notation, let Mk = (log(k) N)2. (For
simplicity, we assume that logMk is an integral multiple of 4.) For each i from 0
to 4(logN/ logMk)− 4, there is a band of disjoint Mk-input subbutterflies spanning
levels (i logMk)/4 through ((i + 4) logMk)/4. We call these subbutterflies the band

i subbutterflies. Note that each band i subbutterfly shares M
3/4
k rows with M

1/4
k

different band i − 1 subbutterflies and M
3/4
k rows with M

1/4
k different band i + 1

subbutterflies.

Each Mk-input subbutterfly in Bk is emulated by the corresponding subbutterfly
in H. We say that an Mk-input subbutterfly in Bk fails if more than α

√
Mk logMk

nodes inside the corresponding Mk-input subbutterfly in H fail, where α is a constant
that will be determined later. If a subbutterfly in Bk fails, then H is not required to
emulate any of the nodes that lie in that subbutterfly. As we shall see, if it does not
fail, then the corresponding subbutterfly in H contains few enough faults that we can
treat them as worst-case faults and apply the technique from section 4 to reconfigure
around them. The following lemma bounds the probability that a subbutterfly in Bk

fails.

Lemma 5.1.1. For α > 4e, an Mk-input subbutterfly in Bk fails with probability
at most 1/ log(k−1) N .

Proof. An Mk-input subbutterfly fails if the corresponding Mk-input subbutterfly
in H contains too many faults. An Mk-input subbutterfly in H contains a total of
Mk(1+logMk) ≤ 4(log(k) N)2(log(k+1) N) nodes, each of which fails with probability

1/ log(k) N = 1/
√
Mk. Thus, the expected number of nodes that fail is at most

2
√
Mk logMk = 4(log(k) N)(log(k+1) N). Since each node fails independently, we can

bound the probability that more than α
√
Mk logMk nodes fail using a Chernoff-type

bound. For α > 4e, the probability that more than α
√
Mk logMk nodes fail is at most

2−α
√
Mk logMk (for a proof, see [46]). Since α

√
Mk logMk > log(k) N , this probability

is at most 2− log(k) N = 1/ log(k−1) N .

The next lemma shows that if a subbutterfly in Bk does not fail, then the corre-
sponding subbutterfly in H can emulate it with constant slowdown.

Lemma 5.1.2. If an Mk-input subbutterfly in Bk does not fail, then the corre-
sponding subbutterfly in H can emulate it with constant slowdown.

Proof. Since the number of faults in an Mk-input subbutterfly that does not fail is
most α

√
Mk logMk, we can treat them as worst-case faults and apply Theorem 4.3.2

with ε ≈ 1/2.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1329

The next lemma shows that the host H can emulate any computation performed
by an N -input butterfly network Bk with constant slowdown. Recall that H is not
required to emulate nodes in Bk that lie in subbutterflies in Bk that have failed.

Lemma 5.1.3. The host H can emulate Bk with constant slowdown.
Proof. By Lemma 5.1.2, each Mk-input subbutterfly in Bk that has not failed

can be emulated by the corresponding subbutterfly in H with constant slowdown
using the technique of section 4. (Note that each node in Bk may be emulated by as
many as four different subbutterflies in H.) In order to emulate the entire network
Bk, it is also necessary to emulate the connections between the subbutterflies. As
in section 4, let M1−ε

k denote the number of faults in an Mk-input subbutterfly of
H. For a subbutterfly that has not failed, ε ≈ 1/2. By Lemma 4.1.1, the number
of rows in the subbutterfly containing either a fault or an input or output that is

bad for Beneš routing is at most M1−ε
k /2+4M

1−2ε/3
k , which is approximately 4M

2/3
k .

Each band i subbutterfly that does not fail shares M
3/4
k rows with each of the band

i − 1 subbutterflies (and band i + 1 subbutterflies) with which it overlaps. Thus,
for each pair of overlapping butterflies that do not fail, most of the shared rows
are both fault-free and good for routing in both subbutterflies. In order to emulate
an Mk-input subbutterfly of H, the emulation strategy of section 4 covers it with

smaller subbutterflies, each having M
ε/2
k inputs. If a smaller subbutterfly is used in

the emulation, then none of the rows that pass through it contain either a fault or a

bad input or output. Thus, the M
3/4
k connections between each pair of overlapping

Mk-input subbutterflies in bands i and i − 1 can be emulated by routing constant
congestion paths of length O(logMk) through the shared rows. The rest of the proof
is similar to that of Theorem 4.3.2.

5.2. Emulating a series of butterflies. So far we have shown that the host
H can emulate an N -input butterfly Bk that contains some faulty nodes. Although
our ultimate goal is to show that H can emulate the guest network G, which contains
no faulty nodes, we have made some progress. In the host network H, each node fails
independently with probability 1/ log(k) N . In Bk, each (log(k) N)2-input subbutterfly

fails with probability 1/ log(k−1) N . A node in Bk fails if it lies in a subbutterfly

that fails. Since each node in Bk lies in at most five (log(k) N)2-input subbutterflies
(once as an input, once as an output, and three times as an interior node), we have

reduced the expected number of faults from (N logN)/ log(k) N in H to fewer than

(5N logN)/ log(k−1) N in Bk.
The next step is to show that butterfly Bk can emulate a butterfly Bk−1 with even

fewer faults. In general, we cover butterfly Bj with (log(j) N)2-input subbutterflies.

For ease of notation, let Mj = (log(j) N)2. We say that an Mj-input subbutterfly
in Bj fails if the corresponding Mj-input subbutterfly in Bj+1 contains more than
α
√
Mj Mj+1-input subbutterflies that have failed. The following three lemmas are

analogous to Lemmas 5.1.1 through 5.1.3.
Lemma 5.2.1. For α > 8e, the probability that an Mj-input subbutterfly in Bj

fails is at most 1/(log(j−1) N).
Proof. The proof is by induction on j, starting with j = k and working backward

to j = 0. The base case is given by Lemma 5.1.1. For each value of i from 0
to 4(logMj/ logMj+1) − 4, there is a band of disjoint Mj+1-input subbutterflies in
Bj+1 that span levels (i logMj+1)/4 through ((i+ 4) logMj+1)/4. These Mj+1-input
subbutterflies can be partitioned into eight classes according to their band numbers.

1330 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Two bands of subbutterflies belong to the same class if their band numbers differ by
a multiple of eight. There are at most

(Mj logMj)/(2Mj+1 logMj+1) = (log(j) N)2/2(log(j+1) N)(log(j+2) N)

subbutterflies in each of these classes, and within a class the subbutterflies are dis-
joint. By induction, each subbutterfly fails with probability at most 1/ log(j) N . Thus,
in any particular class, the expected number of subbutterflies that fail is at most
(log(j) N)/2(log(j+1) N)(log(j+2) N), which is less than log(j) N . Using Chernoff-type

bounds as in Lemma 5.1.1, for α > 16e, the probability that more than (α log(j) N)/8 =

(α
√
Mj)/8 of these subbutterflies fail is at most 2−(α log(j) N)/8, which is less than

1/8 log(j−1) N . Thus, the probability that a total of α log(j) N subbutterflies fail in

the eight classes is at most 1/ log(j−1) N .

Lemma 5.2.2. If an Mj-input subbutterfly in Bj does not fail, then the corre-
sponding Mj-input subbutterfly in Bj+1 can emulate it with constant slowdown.

Proof. If an Mj-input subbutterfly does not fail, then at most α
√
Mj of the over-

lapping Mj+1-input subbutterflies in the corresponding Mj-input subbutterfly in H

fail. Each of these subbutterflies containsMj+1(1+logMj+1) ≤ 4(log(j+1) N)2 log(j+2) N
nodes. Since the total number of nodes in all of these subbutterflies is at most
4α log(j) N(log(j+1) N)2 log(j+2) N , i.e., approximately

√
Mj , we can treat them all

as if they were worst-case faults and apply Theorem 4.3.2 with ε ≈ 1/2.

Lemma 5.2.3. For 1 < j ≤ k + 1, butterfly Bj can emulate Bj−1 with constant
slowdown.

Proof. The proof is similar to the proof of Lemma 5.1.3.

Theorem 5.2.4. For any fixed γ > 0 with probability at least 1 − 1/2N
1−γ

, an

N -input butterfly in which each node fails with probability 1/ log(k) N can emulate a
fault-free N -input butterfly with slowdown 2O(k).

Proof. The host network H = Bk+1 can emulate network B1 with slowdown 2O(k).

In B1, each subbutterfly with (logN)2 inputs fails with probability 1/ log(0) N = 1/N .
Using Chernoff-type bounds as in Lemma 5.1.1, the probability that more than N1−γ

of these subbutterflies fail is at most 1/2N
1−γ

. If fewer than N1−γ of them fail, then we
can treat the nodes contained in these subbutterflies as if they were worst-case faults.
In this case, the total number of worst-case faults is at most 4N1−γ(logN)2 log logN .
Hence, by applying Theorem 4.3.2 with ε ≈ γ, B1 can emulate the guest network G
with constant slowdown.

6. Open problems. Some of the interesting problems left open by this paper
are listed below.

1. Can a butterfly tolerate random faults with constant failure probability and
still emulate a fault-free butterfly of the same size with constant slowdown?

2. Can an N -node butterfly (or any other N -node bounded-degree network)
tolerate more than N1−ε worst-case faults (e.g., N/ logN) and still emulate
a fault-free network of the same type and size with constant slowdown?

3. Can a 2N -input Beneš network tolerate Θ(N) worst-case switch failures and
still route disjoint paths in any permutation between some set of Θ(N) inputs
and outputs?

4. Can an N -input butterfly be embedded with constant load, congestion, and
dilation in an N -input butterfly with more than logO(1) N (e.g., N1−ε) worst-
case faults?

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1331

Acknowledgments. Thanks to Bob Cypher and Joel Friedman for helpful dis-
cussions. We are also grateful to Bill Aiello for suggesting that our butterfly results
imply results in fault-tolerant emulations of normal algorithms. The third author
wishes to thank Bob Tarjan for his support and encouragement.

REFERENCES

[1] G. B. Adams, III and H. J. Siegel, The extra stage cube: A fault-tolerant interconnection
network for supersystems, IEEE Trans. Comput., C–31 (1982), pp. 443–454.

[2] W. Aiello and T. Leighton, Coding theory, hypercube embeddings, and fault tolerance, in
Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, July 1991,
pp. 125–136.

[3] W. A. Aiello, personal communication, July 1992.
[4] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. T. Ho, M. Naor, and E. Szemerédi, Fault

tolerant graphs, perfect hash functions and disjoint paths, in Proc. 33rd Annual Symposium
on Foundations of Computer Science, Oct. 1992, pp. 693–702.

[5] F. Annexstein, Fault tolerance in hypercube-derivative networks, Computer Architecture
News, 19(1)(1991), pp. 25–34.

[6] S. Arora, T. Leighton, and B. Maggs, On-line algorithms for path selection in a non-
blocking network, SIAM J. Comput., 25 (1996), pp. 600–625.

[7] S. Assaf and E. Upfal, Fault-tolerant sorting network, in Proc. 31st Annual Symposium on
Foundations of Computer Science, Oct. 1990, pp. 275–284.

[8] Y. Aumann and M. Ben-Or, Asymptotically optimal PRAM emulation on faulty hypercubes,
in Proc. 32nd Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, Oct. 1991, pp. 440–457.

[9] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Tolerating faults in
synchronization networks, Parallel Processing: CONPAR92-VAPPV, Lyon, France, Lec-
ture Notes in Comput. Sci. 634, Springer, Berlin, 1992, pp. 1–12.

[10] J. Bruck, R. Cypher, and C.-T. Ho, Fault-tolerant meshes with minimal numbers of spares,
IEEE Trans. Comput., 42 (1993), pp. 1089–1104.

[11] J. Bruck, R. Cypher, and C.-T. Ho, Fault-tolerant meshes with small degree, SIAM J.
Comput., 26 (1997), pp. 1764–1784.

[12] J. Bruck, R. Cypher, and D. Soroker, Running algorithms efficiently on faulty hypercubes,
Computer Architecture News, 19(1)(1991), pp. 89–96.

[13] J. Bruck, R. Cypher, and D. Soroker, Tolerating faults in hypercubes using subcube parti-
tioning, IEEE Trans. Comput., 41 (1992), pp. 599–605.

[14] R. Cole, B. Maggs, and R. Sitaraman, Reconfiguring arrays with faults part I: Worst-case
faults, SIAM J. Comput., 26 (1997), pp. 1581–1611.

[15] R. Cole, B. Maggs, and R. Sitaraman, Routing on butterfly networks with random faults, in
Proc. 36th Annual Symposium on Foundations of Computer Science, Oct. 1995, pp. 558–
570.

[16] S. Dutt and J. P. Hayes, On designing and reconfiguring k-fault-tolerant tree architectures,
IEEE Trans. Comput., C–39 (1990), pp. 490–503.

[17] S. Dutt and J. P. Hayes, Designing fault-tolerant systems using automorphisms, J. Parallel
and Distributed Computing, 12 (1991), pp. 249–268.

[18] S. Even and A. Litman, Layered cross product—A technique to construct interconnection
networks, in Proc. 4th Annual ACM Symposium on Parallel Algorithms and Architectures,
July 1992, pp. 60–69.

[19] M. R. Fellows, Encoding Graphs in Graphs, Ph.D. thesis, Department of Computer Science,
University of California, San Diego, CA, 1985.

[20] D. S. Greenberg, L. S. Heath, and A. L. Rosenberg, Optimal embeddings of butterfly-like
graphs in the hypercube, Math. Systems Theory, 23 (1990), pp. 61–77.

[21] R. I. Greenberg and C. E. Leiserson, Randomized routing on fat-trees, in Randomness
and Computation, Advances in Computing Research, Vol. 5, S. Micali, ed., JAI Press,
Greenwich, CT, 1989, pp. 345–374.

[22] J. W. Greene and A. El Gamal, Configuration of VLSI arrays in the presence of defects, J.
Assoc. Comput. Mach., 31 (1984), pp. 694–717.

[23] J. Hastad, T. Leighton, and M. Newman, Reconfiguring a hypercube in the presence of faults,
in Proc. 19th Annual ACM Symposium on Theory of Computing, May 1987, pp. 274–284.

[24] J. Hastad, T. Leighton, and M. Newman, Fast computation using faulty hypercubes, in Proc.
21st Annual ACM Symposium on Theory of Computing, May 1989, pp. 251–263.

http://epubs.siam.org/sam-bin/jvip.pl?journal=SICOMP&vol=26&iss=6&pg=1764
http://epubs.siam.org/jvip.pl?journal=SICOMP&vol=26&iss=6&pg=1581

1332 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

[25] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Raghavan, S. Rao,
C. Thomborson, and A. Tsantilas, Asymptotically tight bounds for computing with faulty
arrays of processors, in Proc. 31st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Piscataway, NJ, Oct. 1990, pp. 285–296.

[26] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, Work-preserving emulations
of fixed-connection networks, J. Assoc. Comput. Mach., 44 (1997), pp. 104–147.

[27] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays • Trees •
Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.

[28] F. T. Leighton and B. M. Maggs, Fast algorithms for routing around faults in multibutterflies
and randomly-wired splitter networks, IEEE Trans. Comput., 41 (1992), pp. 578–587.

[29] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao, Randomized routing and
sorting on fixed-connection networks, J. Algorithms, 17 (1994), pp. 157–205.

[30] F. T. Leighton, B. M. Maggs, and S. B. Rao, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–180.

[31] T. Leighton and C. E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans.
Comput., C–34 (1985), pp. 448–461.

[32] T. Leighton, Y. Ma, and C. G. Plaxton, Breaking the Θ(n log2 n) barrier for sorting with
faults, J. Comput. System Sci., 54 (1997), pp. 265–304.

[33] C. E. Leiserson, Fat-trees: Universal networks for hardware-efficient supercomputing, IEEE
Trans. Comput., C–34 (1985), pp. 892–901.

[34] G. Lin, Fault tolerant planar communication networks, in Proc. 24th Annual ACM Symposium
on the Theory of Computing, May 1992, pp. 133–139.

[35] M. Livingston, Q. Stout, N. Graham, and F. Hararay, Subcube Fault-Tolerance in Hyper-
cubes, Tech. report CRL-TR-12-87, University of Michigan Computing Research Labora-
tory, Ann Arbor, Sept. 1987.

[36] Y.-D. Lyuu, Fast fault-tolerant parallel communication and on-line maintenance using infor-
mation dispersal, Math. Systems Theory, 24 (1991), pp. 273–294.

[37] B. M. Maggs and R. K. Sitaraman, Simple algorithms for routing on butterfly networks with
bounded queues, in Proc. 24th Annual ACM Symposium on the Theory of Computing, May
1992, pp. 150–161; SIAM J. Comput., to appear.

[38] F. Meyer auf der Heide, Efficiency of universal parallel computers, Acta Inform., 19 (1983),
pp. 269–296.

[39] F. Meyer auf der Heide, Efficient simulations among several models of parallel computers,
SIAM J. Comput., 15 (1986), pp. 106–119.

[40] F. Meyer auf der Heide and R. Wanka, Time-optimal simulations of networks by universal
parallel computers, in Proc. 6th Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Comput. Sci. 349, Springer, Berlin, 1989, pp. 120–131.

[41] D. C. Opferman and N. T. Tsao-Wu, On a class of rearrangeable switching networks–part II:
Enumeration studies and fault diagnosis, Bell System Tech. J., 50 (1971), pp. 1601–1618.

[42] N. Pippenger, Telephone switching networks, in Proc. Symposia in Applied Mathematics,
Vol. 26, American Mathematical Society, Providence, RI, 1982, pp. 101–133.

[43] N. Pippenger and G. Lin, Fault-tolerant circuit-switching networks, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992, pp. 229–235.

[44] M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance,
J. Assoc. Comput. Mach., 36 (1989), pp. 335–348.

[45] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximate packing
integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

[46] P. Raghavan, Lecture Notes on Randomized Algorithms, Research Report RC 15340 (#68237),
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY, Jan. 1990.

[47] E. J. Schwabe, On the computational equivalence of hypercube-derived networks, in Proc. 2nd
Annual ACM Symposium on Parallel Algorithms and Architectures, July 1990, pp. 388–
397.

[48] E. J. Schwabe, Efficient Embeddings and Simulations for Hypercubic Networks, Ph.D. thesis,
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, June
1991.

[49] S. Sowrirajan and S. M. Reddy, A design for fault-tolerant full connection networks, in
Proc. International Conference on Science and Systems, IEEE Computer Society Press,
Piscataway, NJ, Mar. 1980, pp. 536–540.

[50] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, PA, 1987.
[51] H. Tamaki, Efficient self-embedding of butterfly networks with random faults, in Proc. 33rd

Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Piscataway, NJ, Oct. 1992, pp. 533–541.

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1333

[52] H. Tamaki, Robust bounded-degree networks with small diameters, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992, pp. 247–256.

[53] S. Toledo, Competitive fault-tolerance in area-universal networks, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992, pp. 236–246.

[54] L. G. Valiant, A scheme for fast parallel communication, SIAM J. Comput., 11 (1982),
pp. 350–361.

[55] A. Waksman, A permutation network, J. Assoc. Comput. Mach., 15 (1968), pp. 159–163.
[56] A. Wang and R. Cypher, Fault-Tolerant Embeddings of Rings, Meshes and Tori in Hyper-

cubes, Tech. report IBM RJ 8569, IBM Almaden Research Center, San Jose, CA, Jan.
1992.

[57] A. Wang, R. Cypher, and E. Mayr, Embedding complete binary trees in faulty hypercubes,
in Proc. 3rd IEEE Symposium on Parallel and Distributed Processing, IEEE Computer
Society Press, Piscataway, NJ, Dec. 1991, pp. 112–119.

ON THE COMPLEXITY OF NEGATION-LIMITED
BOOLEAN NETWORKS∗

ROBERT BEALS† , TETSURO NISHINO‡ , AND KEISUKE TANAKA§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1334–1347, October 1998 008

Abstract. A theorem of Markov precisely determines the number r of NEGATION gates
necessary and sufficient to compute a system of boolean functions F . For a system of boolean
functions on n variables, r ≤ b(n) = dlog2(n + 1)e. We call a circuit using b(n) NEGATION gates
negation-limited . We continue recent investigations into negation-limited circuit complexity, giving
both upper and lower bounds.

A circuit with inputs x1, . . . , xn and outputs ¬x1, . . . ,¬xn is called an inverter , for which r =
dlog2(n + 1)e. Fischer has constructed negation-limited inverters of size O(n2 logn) and depth
O(logn). Recently, Tanaka and Nishino have reduced the circuit size to O(n log2 n) at the expense
of increasing the depth to log2 n. We construct negation-limited inverters of size O(n logn), with
depth only O(logn), and we conjecture that this is optimal. We also improve a technique of Valiant
for constructing monotone circuits for slice functions (introduced by Berkowitz).

Next, we introduce some lower bound techniques for negation-limited circuits. We provide a
5n + 3 log(n + 1) − c lower bound for the size of a negation-limited inverter. In addition, we show
that for two different restricted classes of circuit, negation-limited inverters require superlinear size.

Key words. circuit complexity, negation-limited circuit, upper bounds, lower bounds

AMS subject classifications. 68Q10, 68Q15

PII. S0097539794275136

1. Introduction.

1.1. Background. The theory of monotone boolean circuit complexity has met
with considerable success [15, 3, 19, 7, 14]. Good lower bounds for both size and
depth of monotone circuits (i.e., circuits without NEGATION gates) computing many
explicit functions are now known. However, the theory of general boolean circuits,
with NEGATION gates, is much less well understood. Exponential gaps between
monotone and general circuit complexity are known, for both circuit size [19] and
circuit depth [14]. The effect of NEGATION gates on circuit complexity remains to
a large extent a mystery.

This motivates the study of negation-limited circuit complexity: what is the effect
on circuit complexity of restricting the number of negations available? Markov [11]
gives an explicit formula (see below) for the maximum number r of NEGATION gates
required to compute a system of boolean functions F , without regard to circuit com-
plexity. The maximum value of r for a circuit with n inputs is dlog(n+1)e, the number
of bits in the binary representation of n (all logarithms in this paper are base two).

∗Received by the editors October 3, 1994; accepted for publication (in revised form) July 23, 1996;
published electronically May 19, 1998. These results have been previously announced in Proc. 26th
Annual ACM Symp. on Theory of Computing, 1994, pp. 38–47 and Proc. 27th Annual ACM Symp.
on Theory of Computing, 1995, pp. 585–595.

http://www.siam.org/journals/sicomp/27-5/27513.html
† School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 and DIMACS,

Rutgers University, P.O. Box 1179, Piscataway, NJ 08855 (beals@math.ias.edu). This research was
supported by an NSF Mathematical Sciences Postdoctoral Fellowship and by the Alfred P. Sloan
Foundation.

‡ Department of Communications and Systems Engineering, The University of Electro-
Communications, Chofu-shi, Tokyo 182, Japan (nishino@sw.cas.uec.ac.jp).

§ NTT Information and Communication Systems Laboratories, 1-1 Hikarinooka Yokosuka-shi,
Kanagawa 239, Japan (keisuke@sucaba.isl.ntt.co.jp). This work was done in part at Japan Advanced
Institute of Science and Technology, Tatsunokuchi, Ishikawa, Japan.

1334

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1335

We shall denote this number by b(n). Fischer [8] shows that restricting the number of
negations in a circuit to b(n) entails only a polynomial blowup in circuit size. This is
in sharp contrast to the situation for monotone circuits. É. Tardos [19] has shown that
there is an exponential gap between the general complexity and the monotone com-
plexity of some monotone functions. In related work, Santha and Wilson [16] have
studied the negation-limited complexity of constant depth circuits, obtaining both
upper and lower bounds for the number of NEGATION gates required by circuits of
a given depth.

In a preliminary version of this paper, Tanaka and Nishino [18] have found an
alternative to Fischer’s construction; they decrease the size of the circuits at the
expense of increasing the depth. We further reduce the size, while simultaneously
reducing the depth to that of Fischer. We also exhibit a relationship between the
negation-limited complexity of the inverter (see below) and the monotone complexity
of certain types of monotone functions.

1.2. Definitions and preliminaries. Let F be a collection of boolean func-
tions f1, . . . , fm defined on {0, 1}n. We denote by C(F) or C(f1, . . . , fm) the circuit
complexity of F , i.e., the size (number of gates) of the smallest circuit of AND, OR,
and NEGATION gates with inputs

x1, . . . , xn

and outputs

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn).

We call a circuit with no more than r NEGATION gates an r-circuit. We denote
by Cr(F) or Cr(f1, . . . , fm) the size of the smallest r-circuit computing F . If the
system of functions cannot be computed with only r NEGATION gates, then Cr(F)
is undefined. Similarly, we denote by Dr(F) the minimum depth of an r-circuit
computing F . The inverter is the collection In of functions f1, . . . , fn, where for all
1 ≤ i ≤ n, fi(x1, . . . , xn) = ¬xi. For 0 ≤ k ≤ n, the (k, n)-inverter is the collection
Ikn of functions f1, . . . , fn, where for all 1 ≤ i ≤ n,

fi(x1, . . . , xn) =

0 if
∑n

j=1 xj < k,

¬xi if
∑n

j=1 xj = k,

1 if
∑n

j=1 xj > k.

Let F be a system of n-input boolean functions. A chain C in the boolean lattice
{0, 1}n is an increasing sequence a1 < · · · < ak ∈ {0, 1}n. The decrease of F on
C is the number of i ≤ k such that for some j, fj(a

i−1) > fj(a
i). We define d(F)

to be the maximum decrease of F on any chain C. Note that d(F) ≤ n, and this
is attained for F = In. Markov [11] has shown that b(d(F)) NEGATION gates are
necessary and sufficient to compute any system f1, . . . , fm of functions. Thus, Cr(F)
is always defined for r ≥ b(n). We call Cb(d(F))(F) the negation-limited complexity
of the system of functions F .

1.3. Main results. We give improved upper bounds and lower bounds on the
negation-limited complexity of the inverter.

Theorem 1.1. The negation-limited complexity of the inverter In is O(n log n).
In fact, In may be computed by negation-limited circuits of size O(n log n) and depth
O(log n).

1336 ROBERT BEALS, TETSURO NISHINO, AND KEISUKE TANAKA

This in turn yields upper bounds on Cb(n)(F) for an arbitrary system of functions
F , via the standard technique of using DeMorgan’s laws to push all negations in a
circuit to the inputs.

Corollary 1.2. For any system F of n-input boolean functions,

Cb(n)(F) ≤ 2C(F) +O(n log n).

Currently no superlinear lower bound for the general circuit complexity of an
explicit Boolean function is known. The above theorem and corollary imply that if
we can show an ω(n log n) lower bound on Cb(n)(f) for some explicit Boolean function
f , we also obtain an ω(n log n) lower bound on the general circuit complexity of f .

Markov [11] constructs inverters using monotone functions and b(n) negations,
but he does not consider the complexity of the monotone functions that he uses. Ak-
ers [2] (see [12]) gives the first explicit construction of a negation-limited inverter. His
circuit uses b(n) NEGATION gates and positive weight threshold gates, and has size
O(n) and depth O(log n). For the remainder of this paper, we restrict our attention
to circuits of AND, OR, and NEGATION gates. Fischer [8] gives such a circuit for
In with size O(n2 log2 n) and depth O(log2 n), using only b(n) NEGATION gates.
Sorting networks play a key role in Fischer’s construction (and in all subsequent con-
structions). Using the sorting network of Ajtai, Komlós, and Szemerédi [1] (see [13])
in Fischer’s construction reduces the size to O(n2 log n) and the depth to O(log n).
In a preliminary version of this paper, Tanaka and Nishino [18] have investigated the
negation-limited complexity of the inverter, giving an upper bound of O(n log2 n),
using a construction of depth θ(log2 n).

Our circuit, with sizeO(n log n) and depthO(log n), improves on previous negation-
limited circuits for In by a factor of at least (logn) in size. Note that the only previous
construction with logarithmic depth had superquadratic size.

A circuit with no NEGATION gates is monotone. A monotone function f is a
boolean function which satisfies f(x1, . . . , xn) ≤ f(y1, . . . , yn) whenever xi ≤ yi for
all i. Monotone functions are exactly those computed by monotone circuits. Observe
that the (k, n)-inverter is a system of monotone functions. Berkowitz [6] shows that
the monotone complexity of the (k, n)-inverter is polynomial, with a construction of
size O(n2 log n) and depth O(log n). Valiant [20] constructs monotone (k, n)-inverters
of size O(n log2 n) and depth O(log2 n).

Theorem 1.3. The monotone complexity of the (k, n)-inverter is O(n log n). In
fact, Ikn has monotone circuits of size O(n log n) and depth O(log n).

We also show (see Theorem 4.4) that there is a close relationship between C0(Ikn)
and Cb(n)(In). (For more background on monotone circuits, we refer to section 4 of
Boppana and Sipser’s article [7].)

We also obtain several lower bounds. For arbitrary negation-limited inverters, we
obtain the following theorem.

Theorem 1.4. Let n be one less than a power of 2. Then any negation-limited
circuit for In has size ≥ 5n+ 3 log(n+ 1)− c and depth ≥ 4 log(n+ 1)− c.

In addition, we show that for two different restricted classes of circuits, negation-
limited inverters require size Ω(n log n).

The remainder of this paper is organized as follows. In section 2, we describe
elements of previous constructions of negation-limited inverters which are common to
ours. In section 3, we give the heart of our construction of negation-limited inverters.

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1337

In section 4, we show the relationship between negation-limited inverters and mono-
tone (k, n)-inverters. Section 5 gives the main technical lemma on functions computed
at the NEGATION gates of negation-limited inverters, and proves Theorem 1.4. In
section 6, we prove superlinear bounds for various restricted classes of negation-limited
inverters. We conclude in section 7 by mentioning some open problems.

2. The Fischer and Tanaka–Nishino inverters. We review briefly the cir-
cuits of Fischer [8] and Tanaka and Nishino [18]. These circuits have several elements
in common with each other, and with ours as well. The most important of these is a
sorting network.

A comparator is a circuit element with two inputs and two outputs. The in-
puts are taken from some ordered set U . The first output of the comparator is the
maximum of the two inputs, while the second output is the minimum of the two
inputs. A sorting network is a circuit, with n inputs and n outputs, composed en-
tirely of comparators. For any n-tuple x1, . . . , xn of inputs from U , the n outputs
y1, . . . , yn of the sorting network are a permutation of the xi and are in decreasing
order. Ajtai, Komlós, and Szemerédi [1] (see [13]) have constructed sorting networks
using O(n log n) comparators, organized in O(log n) levels of bn/2c comparators each.
Note that if the set U is {0, 1}, then a comparator can be constructed without nega-
tions. Indeed, for x, y ∈ {0, 1}, min(x, y) = x ∧ y and max(x, y) = x ∨ y. Thus, the
Ajtai–Komlós–Szemerédi result yields a monotone circuit of size O(n log n) and depth
O(log n) for sorting n bits.

Both Fischer and Tanaka and Nishino first sort the n input bits x1, . . . , xn. The
outputs y1, . . . , yn of the sorting network are fed into a subcircuit Mn (due to Fis-
cher [8]) with the following properties.

1. Mn has n binary inputs y1, . . . , yn and n outputs z1, . . . , zn.
2. Mn has size O(n), depth O(log n), and uses b(n) NEGATION gates.
3. If y1 ≥ y2 ≥ · · · ≥ yn then zi = ¬yi for 1 ≤ i ≤ n.

The negations of the xi may now be calculated monotonically from the xi, the yi,
and the zi. Fischer does this using O(n) sorting networks in parallel, resulting in a
circuit of size O(n2 log n) and depth O(log n) if the Ajtai–Komlós–Szemerédi sorting
network is used. Tanaka and Nishino, on the other hand, use the monotone (n, 2n)-
inverter of Valiant [20] which inverts 2n inputs provided that exactly n of them equal
1 (as is the case with x1, . . . , xn, z1, . . . , zn). Valiant’s circuit is monotone, with size
O(n log2 n) and depth O(log2 n).

Note that in both the Fischer and the Tanaka–Nishino constructions, the circuit
is arranged in three phases: the sorting network, the subcircuit Mn, and the top
phase which computes the final answer. (We view circuits as having their inputs
at the bottom and outputs at the top, so the final phase of a circuit with several
phases is the top phase.) The bottom two phases require only size O(n log n) and
depth O(log n) (in fact, the second phase has linear size). Also, both the Fischer
and the Tanaka–Nishino constructions require no more than the xi, the yi, and the
zi as inputs to the top phase. We show that by allowing the top phase access to
intermediate results from the sorting network (first phase), the top phase may be
computed by a size O(n log n), depth O(log n) circuit. Our top phase may be thought
of as an “upside-down” sorting network. We describe this in the next section.

3. Description of the inverter. Our negation-limited circuit for In, like its
predecessors, begins with a sorting network and Fischer’s Mn circuit. We present a
new approach to the third phase, which achieves considerable savings in complexity

1338 ROBERT BEALS, TETSURO NISHINO, AND KEISUKE TANAKA

over previous constructions by means of a novel application of the Ajtai–Komlós–
Szemerédi result.

Before going into the details of the circuit, we briefly describe the intuition. The
differences between the three constructions ([8, 18] and ours) seem to stem from how
one thinks of the outputs of the Mn subcircuit. Of course, in all three constructions,
the outputs of Mn are computing exactly the same system of n functions. Nev-
ertheless, these outputs are treated completely differently by the three approaches.
In Fischer’s original negation-limited inverter [8], the inputs and outputs of Mn are
thought of as the threshold functions (of x1, . . . , xn) and their negations, respectively.
Fischer uses these bits to select the output of an appropriate subcircuit, according to
the number k of ones in the input. There are n + 1 such subcircuits, one for each
0 ≤ k ≤ n. Tanaka and Nishino [18] avoid having to consider (n + 1) different cases
in parallel by noticing that the xi, together with the outputs of Mn, are a string of
2n bits containing exactly n ones (such a string can be inverted monotonically using
Valiant’s monotone (n, 2n)-inverter [20]). In their construction, the outputs of Mn

are thought of as balancing the inputs x1, . . . , xn. We take a different view. We view
the outputs of Mn as being a permutation of the negations of the xi. It is the task of
the third phase to rearrange these bits into their proper position. This rearrangement
essentially undoes the sorting performed by the first phase, one level at a time.

We now present the details. Let ` be the depth of the sorting network used in the
first phase. For each level in the sorting network, the third phase has a corresponding
level, composed of a monotone, linear size, constant depth circuit. The ordering of
the levels, however, is reversed between the first phase and the third phase. That is,
we number the levels in the sorting network from the bottom (numbered 1) to the top
(numbered `), and we number the levels in the third phase from 1 at the top to ` at
the bottom. When numbered in this way, level i of the sorting network corresponds
to level i of the third phase. We will use Si to denote level i of the sorting network,
and Ti to denote level i of the top phase.

For 1 ≤ i ≤ `, let xi1, . . . , x
i
n denote the inputs to Si, and let x`+1

1 , . . . , x`+1
n denote

the outputs of S`. The subcircuit Ti receives 2n input bits: the n input bits xi1, . . . , x
i
n

of Si, and the negations ¬xi+1
1 , . . . ,¬xi+1

n of the n output bits of Si. For 1 ≤ j ≤ n,
¬xi+1

j is computed one level below by Ti+1, or by Mn in the case i = `. Using only

linear size, constant depth, monotone circuitry, Ti outputs the negations ¬xi1, . . . ,¬xin
of the n input bits to Si. If i > 1, these are passed up to the next level, Ti−1. Note
that at the top level, T1 outputs the negations of the inputs to S1, i.e., T1 outputs
¬x1, . . . ,¬xn. The overall structure of the circuit is shown in Figure 1. Note that,
for readability, the wires connecting the outputs of Si−1 to the inputs of Ti are not
shown.

To complete the description of the circuit for In, we need to describe a monotone,
linear size, constant depth circuit for Ti. Since Si is simply bn/2c comparators oper-
ating in parallel, it suffices to give a (constant size and depth) monotone circuit for
each comparator. This we do in the following lemma.

Lemma 3.1. Let x and y be boolean variables, and let u = ¬max(x, y) and
v = ¬min(x, y). Then ¬x and ¬y may be computed monotonically from x, y, u, and
v.

Proof. A quick check shows that ¬x = u ∨ (y ∧ v) and ¬y = u ∨ (x ∧ v).
Suppose that Si has a comparator with inputs xij1 , x

i
j2

and outputs xi+1
k1

, xi+1
k2

.
Then Ti will have a corresponding circuit element with inputs

¬xi+1
k1

,¬xi+1
k2

, xij1 , x
i
j2

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1339

S1

S`

T`

T1

Fischer’s Mn

· · ·

· · ·

...

...

x1
. . . xn

¬x1 . . . ¬xn

AKS
sorting
network.

Each Ti
receives
inputs
from Si−1

(not shown).

x2

¬x2

Fig. 1. Overall structure of the circuit.

and outputs

¬xij1 ,¬xij2 .
By the above lemma, this can be done monotonically. This is illustrated in Figure 2.
As Si is a linear size, depth 1 circuit of comparators, we can construct Ti to be a
monotone, linear size, depth 2 circuit.

We are now ready to prove Theorem 1.1.
Proof. We describe the circuit. As in Fischer [8] and Tanaka and Nishino [18],

the input variables x1, . . . , xn are the inputs of a sorting network with ` levels of
O(n) gates each. By Ajtai, Komlós, and Szemerédi [1], we may assume ` = O(log n).
Still following Fischer and Tanaka and Nishino, the outputs y1, . . . , yn of the sorting
network are the inputs to Fischer’s Mn circuit, which has size O(n) and depth O(log n)

1340 ROBERT BEALS, TETSURO NISHINO, AND KEISUKE TANAKA

��
��

��
��
��
��

��
��

��
��

��
��∨ ∧

∨ ∨

∧ ∧

xij2xij1 ¬xi+1
k1

¬xi+1
k2

xij1 xij2

xi+1
k1

xi+1
k2

¬xij1 ¬xij2

︸ ︷︷ ︸
From Si−1.

︸ ︷︷ ︸
From Ti+1.

︸ ︷︷ ︸
From Si−1.

To Si+1 and
Ti−1.︷ ︸︸ ︷

To Ti−1.︷ ︸︸ ︷

c
cc

#
##

HHH
���

Fig. 2. Corresponding circuit elements of Si (left) and Ti (right).

and uses b(n) NEGATION gates. Since the inputs to Mn are sorted, the outputs
z1, . . . , zn satisfy zi = ¬yi for i = 1, . . . , n.

From the zi, and the inputs to the various levels of the sorting network, the sub-
circuits T`, . . . , T1 described above compute the negations of the inputs to successively
lower levels in the sorting network. It is clear by induction on (`− i) that Ti outputs
the negations ¬xi1, . . . ,¬xin of the inputs to Si. At the top of our circuit, T1 computes
the negations ¬x1, . . . ,¬xn of the input variables.

The circuit has depth 3` + O(log n) = O(log n). As each level of the circuit has
linear size, the total number of gates used is O(n log n). The only NEGATION gates
used are the b(n) NEGATION gates used by Mn, as desired.

4. Monotone (k, n)-inverters. Berkowitz [6] introduces the notion of a slice
function. The boolean function f : {0, 1}n → {0, 1} is a kth slice if

f(x1, . . . , xn) =

{
0 if

∑n
i=1 xi < k,

1 if
∑n

i=1 xi > k.

For input strings containing exactly k ones, the behavior of f is not constrained.
Any slice function is monotone. Note that an alternative, nonconstructive proof of
Lemma 3.1 may be obtained by observing that, of the four bits x, y, u, v, exactly
two are equal to one, so any function of x, y, u, v may be extended to a (monotone)
slice function. The importance of monotone (k, n)-inverters is underscored by the
following.

Proposition 4.1. For any system F of n-input kth slice functions,

C0(F) ≤ 2C(F) + C0(Ikn).

The following allows us to focus on the behavior of our circuit on inputs with
exactly k ones.

Proposition 4.2. Ikn is the unique system of monotone functions which agrees
with In on all inputs with exactly k ones.

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1341

Proof. Suppose that f1, . . . , fn are a system of monotone functions which agree
with In on all inputs with exactly k ones. Suppose that the number of ones in
x1, . . . , xn is strictly greater than k. Let i be any integer between 1 and n. We
must show that fi(x1, . . . , xn) = 1. By the monotonicity of fi, it suffices to exhibit
y1, . . . , yn such that fi(y1, . . . , yn) = 1 and for all 1 ≤ j ≤ n, yj ≤ xj . For this, we
assign the yj in such a way that exactly k of them are one, yi = 0, and each yj ≤ xj
(we obtain the yj by changing some of the xj from one to zero, including xi if it is
nonzero, until exactly k bits are one). The proof for the case that fewer than k of the
xj are one is analogous.

Berkowitz [6] constructs monotone (k, n)-inverters of size O(n2 log n) and depth
O(log n). Valiant [20] gives monotone circuits of size O(n log2 n) and depth O(log2 n)
for the (k, n)-inverter (see also Wegener [21, 22]). Our techniques can be used to
improve on Valiant’s results by a factor of (logn) in size and depth. We present the
proof of Theorem 1.3.

Proof. We use our negation-limited circuit for In, replacing the Mn subcircuit
by a circuit which outputs k zeroes followed by (n − k) ones. Note that the only
negations in our circuit for In occur in the Mn subcircuit. Also, if there are exactly k
ones among the inputs to our negation-limited inverter, then the Mn subcircuit will
output k zeroes followed by (n − k) ones. Therefore, the new circuit will agree with
In (i.e., it will compute the negations of its input bits) whenever there are exactly k
ones in the input. By Proposition 4.2, we are done.

Since the inputs to Mn are sorted, the functions computed by the NEGATION
gates depend only on the number of ones in the input. Therefore, in the above
construction, instead of replacing the outputs of Mn by constants, we could have
replaced the outputs of the NEGATION gates by constants. One might ask whether it
is always possible to obtain a monotone (k, n)-inverter from a negation-limited inverter
by replacing the negation gates with constants. We shall see (perhaps surprisingly)
that something close to this is true. Before formalizing this, we quote the following
lemma of Tanaka and Nishino (see [18, Lemma 4.2]).

Lemma 4.3 (see Tanaka and Nishino). Suppose n+ 1 is a power of 2, and let f
be the function computed by some NEGATION gate of a negation-limited circuit for
In. Then f(x1, . . . , xn) depends only on the number of i such that xi = 1.

We will prove a stronger version of this lemma later (see Lemma 5.1).

Now we can make precise the relationship between negation-limited inverters and
monotone (k, n)-inverters.

Theorem 4.4. Let n be a positive integer. Then C0(Ikn) ≤ Cb(n′)(In′), for some
n′ < 2n. In fact, a monotone (k, n)-inverter can be constructed with the same size
and depth as a negation-limited circuit for In′ .

Proof. Let n′ = 2r − 1, where 2r is the smallest power of 2 greater than n. Note
that 2r is at most 2n. Let ∆ be any negation-limited circuit for In′ . By Lemma 4.3, if
the number of ones in the input is constant, then the NEGATION gates in ∆ compute
constant functions. Replacing these gates by appropriate (according to k) constants
yields a monotone (k, n′)-inverter. To obtain a monotone (k, n)-inverter, we simply
fix the first (n′ − n) input bits to 0 and ignore the first (n′ − n) output bits. This
yields a monotone circuit ∆′ computing Ikn with the same size and depth as ∆.

In fact, all known constructions of monotone (k, n)-inverters may be seen as
negation-limited inverters with the NEGATION gates replaced by constants. This
modification applied to Fischer’s circuit for In (using the Ajtai, Komlós, and Sze-
merédi sorting network [1]) yields Berkowitz’s (k, n)-inverter. There is no previously

1342 ROBERT BEALS, TETSURO NISHINO, AND KEISUKE TANAKA

published negation-limited inverter corresponding to Valiant’s (k, n)-inverter, so we
describe one here. First we give a sketch of Valiant’s construction.

Valiant’s circuit is very similar to ours (with the Mn removed), except that instead
of using comparators, merging networks are used. A merging network takes as inputs
two sorted lists u and v, and outputs the list w = merge(u, v) obtained by sorting the
concatenated list uv. Batcher [4] shows that two lists of m elements can be merged by
a network of O(m logm) comparators. Thus, if u and v are binary strings of length
m, they can be merged by a monotone circuit of size O(m logm) (this circuit has
depth O(logm)). If u is a binary string, we denote by ¬u the string obtained from
u by replacing each symbol by its negation, and we denote by reverse(u) the string
obtained from u by reversing the order of the symbols. Note that if u is in sorted
(i.e., decreasing) order, then so is reverse(¬u).

The bottom half of Valiant’s circuit is a sorting network, built out of logn layers
of merging networks (the ith layer merges pairs of consecutive substrings of length
2i). The top half is analogous to our top phase, with the following taking the place
of Lemma 3.1.

Lemma 4.5 (Valiant). Suppose that the sorted binary strings u of length s and
v of length t, together with the string w = reverse(¬merge(u, v)), are given. Then
reverse(¬u) and reverse(¬v) may be calculated by merging networks.

Proof. By symmetry, we only need to consider reverse(¬u). This is easily seen to
be the middle s bits of merge(v, w).

(Note that the case s = t = 1 of Valiant’s lemma provides yet another proof of
Lemma 3.1.)

Since k is fixed, the negations of the output bits of the top layer of the bottom
half are constants. (Actually, this top layer of the bottom half is superfluous for the
monotone (k, n) inversion problem, and Valiant does without it. We leave it in for
simplicity, and because it is necessary if we are to obtain a negation-limited inverter.)
Successively higher layers of the top half calculate the reverses of the negations of
inputs to merging networks in successively lower layers of the bottom half. At the top
layer of the top half, the negations of the input bits are calculated (reversing a string
of length one has no effect).

To obtain a negation-limited inverter from Valiant’s circuit, we simply feed the
output of the bottom half to Fischer’s Mn circuit, which computes the negation of
the output of the top layer of the bottom half. This is then given as input to the
top half. (The circuit constructed in this way is about half the size of that of Tanaka
and Nishino [18], since we modify Valiant’s (k, n)-inverter instead of using Valiant’s
(n, 2n)-inverter.) Therefore, Valiant’s techniques for constructing monotone (k, n)-
inverters can also be used to construct negation-limited inverters. It is curious that
this is true of all known (k, n)-inverters, since no converse of Theorem 4.4 is known
to hold.

5. The complexity of the inverter: Lower bounds. In this section, we
shall prove a main technical lemma on functions computed at NEGATION gates in
negation-limited inverters. These techniques have recently been generalized to obtain
results for negation-limited circuits computing symmetric functions [5].

For x ∈ {0, 1}n, let |x| denote the number of ones in x. Note that in all known
constructions of negation-limited inverters, the negation gates compute the negations
of the bits of |x|. We shall see that this must always hold.

Lemma 5.1. Let n = 2r−1. Consider any r-circuit ∆ which computes In. Label
the NEGATION gates N1, . . . , Nr in such a way that the input to Ni does not depend

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1343

on the outputs of any of the negation gates Ni+1, . . . , Nr (such a labeling exists since
the circuit is a DAG). Let zi and yi be the functions computed at the input and output
of Ni. Then z1z2 . . . zr is the binary representation of |x|.

Proof. We proceed by induction on r. The lemma is trivially true for r = 0 (i.e.,
the circuit is monotone). We now suppose that the lemma holds for r−1 NEGATION
gates.

Let a ∈ {0, 1}n. We wish first to show that z1(a) is the first (i.e., leftmost) bit
of |a|. We consider the case in which z1(a) = 1 (the proof for the case z1(a) = 0
is analogous), and we wish to show that |a| ≥ (n + 1)/2. Note that simultaneously
permuting the inputs and output of ∆ according to the same permutation yields
another circuit for In, so we may assume that a is of the form 1k0n−k. Also, In−k
is obtained from In, fixing the first k bits to 1 and ignoring the first k output bits.
Since z1(a) = 1, and z1 is monotone, In−k is computed by the circuit ∆k obtained by
fixing the first k inputs of ∆ to 1 and replacing N1 by the constant 0. Note that ∆k is
an (r − 1)-circuit. Therefore, by Markov’s theorem, d(In−k) ≤ 2r−1 − 1 = (n− 1)/2.
However, it is clear that d(In−k) = n− k. Therefore

|a| = k = n− d(In−k) ≥ n− (n− 1)/2 = (n+ 1)/2,

as desired.
Now it remains to show that the functions z2, . . . , zr are as specified. Again, we

restrict our attention to the case z1 = 1, since the case z1 = 0 is handled similarly.
Let a ∈ {0, 1}n such that z1(a) = 1. As above, we assume that a is a string of the
form 1`0n−`. Let k = (n − 1)/2 ≤ `. We apply the r − 1 case of the lemma to the
(n − k)-input/output inverter obtained from ∆ by fixing the first k inputs to 1 and
replacing N1 by the constant 0. The proof is completed by observing that for all
x ∈ {0, 1}n−k, the binary representations of |x| and |1kx| agree in their (r − 1) least
significant bits.

In the sequel, we assume that z1, . . . , zr are as in the lemma. Let Ni be the
NEGATION gate corresponding to zi. We remark that we did not assume that there
exists a path from Ni−1 to Ni for all 2 ≤ i ≤ r. (By path we mean a sequence of gates
G1, . . . , Gp which satisfies the following conditions: G1 = Ni, Gp = Ni+1, and for
any q (1 ≤ q ≤ p− 1), an output of Gq is an input of Gq+1.) However, the existence
of such paths follows at once from the lemma: if for some i, there did not exist a
path from Ni−1 to Ni, then we could interchange the labels of Ni−1 and Ni. This is
impossible, since by the lemma the labeling of a negation gate is determined by what
function is computed at the gate.

Lemma 5.2. For any i, 1 ≤ i ≤ r − 1, in any path from Ni to Ni+1, there exists
at least one AND gate and one OR gate.

Proof. The proof is by contradiction. By Lemma 5.1, all four possible values
for zi and zi+1 are attained for some input x ∈ {0, 1}n. Note that the NEGATION
gates are labeled in such a way that no path from Ni to Ni+1 contains a NEGATION
gate other than Ni and Ni+1. If the internal nodes along a path from Ni to Ni+1

consisted entirely of AND (respectively, OR) gates, then the possibility zi = 1, zi+1 =
1 (respectively, zi = 0, zi+1 = 0) would be ruled out. Therefore, all such paths must
include both an AND gate and an OR gate.

Let Lj (1 ≤ j ≤ n) be a gate computing ¬xj in ∆.
Lemma 5.3. For all 1 ≤ i ≤ r and 1 ≤ j ≤ n, there exists a path from Ni to Lj

which does not include any NEGATION gate except for Ni.
Proof. First, we fix all the outputs of the NEGATION gates N1, . . . , Nr in ∆ to

1344 ROBERT BEALS, TETSURO NISHINO, AND KEISUKE TANAKA

0. Then, we obtain an (n, n)-inverter C from ∆. In this case, C(a) = (0, . . . , 0) for
all a ∈ {0, 1}n. Let us fix all the inputs of the circuit C to 1.

Next, for some 1 ≤ i ≤ r, we change the output of Ni to 1. Then, for some
1 ≤ k ≤ n− 1, we obtain a (k, n)-inverter by the proof of Lemma 4.4. Since we fixed
all the inputs of C to 1, each of the outputs of L1, . . . , Ln in C changes from 0 to
1. Thus, for all 1 ≤ j ≤ n, there exists a path from Ni to Lj , such that the output
of every gate in the path changes from 0 to 1. Since we fixed all the outputs of the
NEGATION gates except for Ni to 0, we can conclude that there is no NEGATION
gate other than Ni in the path.

Lemma 5.4. For all j, 1 ≤ j ≤ n, on any path from Nr to Lj, there exist at least
one AND gate and one OR gate.

Proof. Note that at least one such path exists by the previous lemma. Now we
wish to show that any such path contains an AND gate and an OR gate. As above,
we note that by Lemma 5.1, each of the four possibilities for the values of zi, Lj

are attained for some input x ∈ {0, 1}n. Also, no path from Nr to Lj contains a
NEGATION gate other than Nr. Therefore, as in the previous lemma, we see that
any path from Nr to L must include at least one AND gate and at least one OR gate
(all other possibilities lead to contradictions).

Theorem 5.5. Let n = 2r − 1. Then Cr(In) ≥ 5n+ 3 log(n+ 1)− c.
Proof. By Lemma 5.1, z1 is the majority function, computed by a monotone

subcircuit, so the number of gates required to compute z1 is at least Cm(Tn
(n+1)/2).

Since it is known that Cm(Tn
n/2) ≥ 4n − c where c is a constant (see [10]), we have

Cm(Tn
(n+1)/2) ≥ 4n− c′.

From Lemma 5.2, the length of any path from N1 to Nr is at least 3r − 2. Note
that the gates on such a path are distinct from the gates in the subcircuit computing
z1.

Furthermore, from Lemma 5.3, for all j, 1 ≤ j ≤ n, there exists a path from Nr

to Lj . So, for all j, 1 ≤ j ≤ n, Lj differs from any gate in any path from N1 to
Nr. And the functions computed at L1, . . . , Ln are mutually distinct nonmonotone
functions (i.e., ¬x1, . . . ,¬xn). So L1, . . . , Ln are mutually distinct gates, and none of
them are used to compute z1. Hence, we have

Cr(In) ≥ Cm(Tn
(n+1)/2) + (3r − 2) + n

≥ (4n− c′) + (3 log(n+ 1)− 2) + n

≥ 5n+ 3 log(n+ 1)− c

as desired.
Theorem 5.6. Let n = 2r − 1. Then Dr(In) ≥ 4 log(n+ 1) + c.
Proof. From Lemma 5.1, the number of gates used to compute z1 is at least

Cm(Tn
(n+1)/2). These gates are located below N1; that is, there exists a path from

each of these gates to N1.
From Lemma 5.2, the length of any path from N1 to Nr is at least 3r − 2.

Furthermore, from Lemma 5.4, for all j, 1 ≤ j ≤ n, the length of any path from Nr

to Lj is at least 3. Then, we obtain

Dl(In) ≥ dlog(Cm(Tn
(n+1)/2) + 1)e+ (3r − 2) + 3− 1

≥ dlog(4n− c′ + 1)e+ 3r

≥ log(c′′(n+ 1)) + 3 log(n+ 1)

≥ 4 log(n+ 1) + c

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1345

as desired.

6. Superlinear lower bounds for particular inverters. First, we consider
so-called synchronous circuits which are circuits with the property that all paths from
the inputs to a given gate have the same length (see [17]).

Theorem 6.1. Let n = 2r + 1. Then any synchronous negation-limited circuit
for Vn has at least 4n log(n+ 1) + cn gates.

Proof. From Theorem 5.6, for each i, 1 ≤ i ≤ n, the length of some (and therefore
any) path from an input to Li is at least 4 log(n + 1) + c. In a synchronous circuit
computing In, the outputs of the gates at level m (2 ≤ m ≤ 4 log(n + 1) + c) are
computed using the outputs of the gates at level m− 1.

On the other hand, Vn can compute 2n different values, i.e., all binary vectors of
length n. Hence, the number of gates at level m is at least log 2n = n. This completes
the proof.

Next, we show another instance where the size of the negation-limited inverter has
a superlinear lower bound. For that purpose, we introduce the following restriction.

Restriction A: Any gate G in the inverter In which satisfies the following two
conditions computes some symmetric function:

A1: there exists a path from one of N1, . . . , Nr−1 to G in In,
A2: there exists a path from G to Nr in In.
Theorem 6.2. Let n = 2r − 1. Then any negation-limited inverter ∆ which

satisfies Restriction A has Ω(n log n) gates.
Proof. Label the NEGATION gates of ∆ as in Lemma 5.1. Let zi be the function

which is computed at the input of Ni, for i = 1, . . . , r. By Lemma 5.1, for x ∈ {0, 1}n
the string z1(x)z2(x) . . . zr(x) is the binary representation of |x|. This is an increasing
function which attains all possible values in the range 0, . . . , n.

Let 1 ≤ k ≤ n be arbitrary. We wish to show that there exists a monotone
subcircuit of ∆ computing T k

n . Let w be such that w01r−i is the binary representation
of k − 1, where w is a binary string w1w2 . . . wi of length i for some 0 ≤ i < r. Then
the binary representation of k is w10r−i.

Let ∆′ be a circuit obtained from ∆ by replacing Nj with the constant ¬wj for
each 1 ≤ j ≤ i. For a gate G in ∆, let G′ denote the corresponding gate in ∆′.
Let g and g′ denote the functions computed at gates G and G′, respectively. Let
Ω ⊆ {0, 1}n denote the set of all binary strings with exactly k−1 or k ones. We have:

1. for any gate G in ∆, and for any x ∈ Ω, g(x) = g′(x);
2. if for all j > i, there is no path from Nj to G in ∆, then g′ is computed by a

monotone subcircuit of ∆′;
3. if g is computed by a monotone subcircuit of ∆, then g = g′.

Let G be the gate computing zi+1. Note that by (2), g′ is monotone, and by (1),
g′(x) = g(x) = T q

n(x) for x ∈ Ω. Since T k
n is the unique monotone function which

agrees with T k
n on Ω, we have g′(x) = T k

n (x) for all x ∈ {0, 1}n.
Recall that we are trying to prove that there is a monotone subcircuit of ∆

computing T k
n (from which the theorem follows). So far we have shown the existence

of a gate G in ∆ such that g′ = T k
n . It now suffices to show that for any such gate,

either g is computed by a monotone subcircuit of ∆ (so, by (3), g = g′ and we are
done) or there is a gate lower down in the circuit with the same property.

Suppose that g is not computed by a monotone subcircuit of ∆. Then there is a
path from some negation gate Nj to G in ∆. This is illustrated in Figure 3.

By Restriction A, we know that g is a symmetric function. Let G1 and G2 be
the gates whose outputs are the inputs to G, labeled such that a path from Nj to

1346 ROBERT BEALS, TETSURO NISHINO, AND KEISUKE TANAKA

��
��

��
��

��
��

��
��

 J

J

Nj

G1 G2

G

HH�
��XXs ss

zj

g

Fig. 3. A gate G such that G′ computes Tk
n . One of G1, G2 shares this property.

G passes through G1. Therefore g1 computes a symmetric function. Since g′1 is a
monotone function which agrees with g1 on Ω, either g′1 = T k

n or g′1 is constant on Ω.
In the latter case, since g′ is not constant on Ω, we have that either g′1 is identically
1 on Ω and G is an AND gate, or g′1 is identically 0 on Ω and G is an OR gate. So g′

and g′2 agree on Ω, and g′2 = T k
n . In either case we have found a gate G` below G in

∆ with g′` = T k
n as desired. This can be continued until a monotone subcircuit of ∆

is found which computes T k
n .

Since k above was arbitrary, all threshold functions {T 1
n , T

2
n , . . . , T

n
n } are com-

puted by monotone subcircuits of ∆. Thus, from [9], ∆ has size Ω(n log n).

Note that, if we do not have the condition A2, certain symmetric functions must be
computed at the output gates of ∆n. But this is impossible. Hence, the condition A2
is necessary although it is not used in the proof of Theorem 6.2.

Since the inverter we construct satisfies Restriction A and has size O(n log n),
this theorem is tight to within a constant factor.

7. Conclusion. In this paper, we have presented new upper and lower bounds on
the size of negation-limited inverters. We have also investigated the negation-limited
circuit complexity of some boolean functions and have shown relationships between
combinational complexity and negation-limited complexity of boolean functions.

It should be investigated whether the methods used in this paper to derive lower
bounds on the negation-limited complexity of the inverter can be applied to derive
similar bounds on the negation-limited complexity of one-output boolean functions.
We have made some progress in this regard for symmetric functions [5].

G. Turán posed the following question: is the size of any c log n depth inverter
using c log n NEGATION gates superlinear? Though Turán’s question remains open,
we hope that our work represents a step towards its resolution.

Acknowledgments. The authors would like to express their sincere thanks to
Dr. Jaikumar Radhakrishnan at Tata Institute of Fundamental Research for his de-
tailed comments on the previous version of this paper. They also thank Prof. Magnús
M. Halldórsson at the University of Iceland, Prof. Akihiro Nozaki at Otsuma Women’s
University, and Prof. Shigeki Iwata at the University of Electro-Communications for
their valuable comments.

ON THE COMPLEXITY OF NEGATION-LIMITED NETWORKS 1347

REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi, An O(n logn) sorting network, in Proc. 15th Annual
ACM Symposium on the Theory of Computing, ACM, New York, 1983, pp. 1–9.

[2] S. B. Akers, Jr., On maximum inversion with minimum inverters, IEEE Trans. Comput., 17
(1968), pp. 134–135.

[3] N. Alon and R. B. Boppana, The monotone circuit complexity of Boolean functions, Combi-
natorica, 7 (1987), pp. 1–22.

[4] K. E. Batcher, Sorting networks and their applications, in Proc. 32nd Annual AFIPS Spring
Joint Computer Conference, 1968, pp. 307–314.

[5] R. Beals, T. Nishino, and K. Tanaka, More on the complexity of negation-limited circuits,
in Proc. 27th Annual ACM Symposium on the Theory of Computing, ACM, New York,
1995, pp. 585–595.

[6] S. J. Berkowitz, On Some Relationships between Monotone and Non-Monotone Circuit Com-
plexity, Technical Report, University of Toronto, Ontario, Canada, 1982.

[7] R. B. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical
Computer Science, Vol. A, J. van Leeuwen, ed., North-Holland, Amsterdam, 1990, pp. 757–
804.

[8] M. J. Fischer, The complexity of negation-limited networks–a brief survey, in Lecture Notes
in Computer Science 33, Springer-Verlag, Berlin, 1974, pp. 71–82.

[9] E. A. Lamagna and J. E. Savage, Combinational complexity of some monotone functions, in
Proc. 15th Annual IEEE Symposium on Switching and Automata Theory, IEEE, Piscat-
away, NJ, 1974, pp. 140–144.

[10] D. Long, The Monotone Circuit Complexity of Threshold Functions, unpublished manuscript,
Oxford University, Oxford, UK, 1986.

[11] A. A. Markov, On the inversion complexity of a system of functions, J. Assoc. Comput.
Mach., 5 (1958), pp. 331–334.

[12] S. Muroga, Threshold Logic and Its Applications, Wiley, New York, 1971.
[13] N. J. Pippenger, Communication networks, in Handbook of Theoretical Computer Science,

Vol. A, J. van Leeuwen, ed., North-Holland, Amsterdam, 1990, pp. 805–833.
[14] R. Raz and A. Wigderson, Monotone circuits for matching require linear depth, J. Assoc.

Comput. Mach., 39 (1992), pp. 736–744.
[15] A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions, Soviet

Math. Dokl., 31 (1985), pp. 354–357.
[16] M. Santha and C. Wilson, Limiting negations in constant depth circuits, SIAM J. Comput.,

22 (1993), pp. 294–302.
[17] J. E. Savage, The Complexity of Computing, Wiley, New York, 1976.
[18] K. Tanaka and T. Nishino, On the complexity of negation-limited Boolean networks, in Proc.

26th Annual ACM Symposium on the Theory of Computing, ACM, New York, 1994,
pp. 38–47.

[19] É. Tardos, The gap between monotone and non-monotone circuit complexity is exponential,
Combinatorica, 7 (1987), pp. 141–142.

[20] L. G. Valiant, Negation is powerless for Boolean slice functions, SIAM J. Comput., 15 (1986),
pp. 531–535.

[21] I. Wegener, On the complexity of slice functions, Theoretical Comput. Sci., 38 (1985), pp. 55–
68.

[22] I. Wegener, The Complexity of Boolean Functions, Wiley, New York, 1987.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION∗

JOSEPH GIL† AND YOSSI MATIAS‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1348–1375, October 1998 009

Abstract. A hash table is a representation of a set in a linear size data structure that supports
constant-time membership queries. We show how to construct a hash table for any given set of n
keys in O(lg lg n) parallel time with high probability, using n processors on a weak version of a
concurrent-read concurrent-write parallel random access machine (crcw pram). Our algorithm uses
a novel approach of hashing by “oblivious execution” based on probabilistic analysis. The algorithm
is simple and has the following structure:

1. Partition the input set into buckets by a random polynomial of constant degree.
2. For t := 1 to O(lg lg n) do

(a) Allocate Mt memory blocks, each of size Kt.
(b) Let each bucket select a block at random, and try to injectively map its keys into the

block using a random linear function. Buckets that fail carry on to the next iteration.
The crux of the algorithm is a careful a priori selection of the parameters Mt and Kt. The algorithm
uses only O(lg lg n) random words and can be implemented in a work-efficient manner.

Key words. parallel computation, hashing, data structures, randomization

AMS subject classifications. 68P05, 68P10, 68P15, 68P20, 68Q10, 68Q22

PII. S0097539794291580

1. Introduction. Let S be a set of n keys drawn from a finite universe U . The
hashing problem is to construct a function H : U → [0,m − 1] with the following
attributes:

Injectiveness. No two keys in S are mapped by H to the same value.
Space efficiency. Both m and the space required to represent H are O(n).
Time efficiency. For every x ∈ U , H(x) can be evaluated in O(1) time by a single

processor.
Such a function induces a linear space data structure, a perfect hash table, for

representing S. This data structure supports membership queries in O(1) time.
This paper presents a simple, fast, and efficient parallel algorithm for the hashing

problem. Using n processors, the running time of the algorithm is O(lg lgn) with
overwhelming probability, and it is superior to previously known algorithms in several
respects.

Computational models. As a model of computation we use the concurrent-read
concurrent-write parallel random access machine (crcw pram) family (see, e.g., [34]).
The members of this family differ by the outcome of the event where more than
one processor attempts to write simultaneously into the same shared memory lo-
cation. The main submodels of crcw pram in descending order of power are the

∗Received by the editors April 12, 1994; accepted for publication (in revised form) July 27, 1996;
published electronically May 19, 1998. Parts of this research were presented in preliminary form in
Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, January 1991, and in Proc. 21st
International Colloquium on Automata, Languages and Programming, Lecture Notes in Comput.
Sci. 820, Springer, 1994, pp. 239–250.

http://www.siam.org/journals/sicomp/27-5/29158.html
†Department of Computer Science, The Technion—Israel Institute of Technology, Technion City,

Haifa 32000, Israel (yogi@cs.technion.ac.il). Part of this research was done while the author was at
the Hebrew University and at the University of British Columbia.

‡AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 (matias@
research.att.com). Part of this research was done while the author was at Tel Aviv University and at
the University of Maryland Institute for Advanced Computer Studies, and was partially supported
by NSF grants CCR-9111348 and CCR-8906949.

1348

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1349

Priority [28] in which the lowest-numbered processor succeeds; the Arbitrary [41]
in which one of the processors succeeds, and it is not known in advance which one;
the Collision+ [8] in which if different values are attempted to be written, a special
collision symbol is written in the cell; the Collision [14] in which a special collision
symbol is written in the cell; the Tolerant [31] in which the contents of that cell
do not change; and, finally, the less standard Robust [33] in which if two or more
processors attempt to write into the same cell in a given step, then, after this attempt,
the cell can contain any value.

1.1. Previous work. Hash tables are fundamental data structures with numer-
ous applications in computer science. They were extensively studied in the literature;
see, e.g., [36, 39] for a survey or [40] for a more recent one. Of particular interest are
perfect hash tables, in which every membership query is guaranteed to be completed
in constant time in the worst case. Perfect hash tables are perhaps even more signifi-
cant in the parallel context, since the time for executing a batch of queries in parallel
is determined by the slowest query.

Fredman, Komlós, and Szemerédi [15] were the first to solve the hashing problem
in expected linear time for any universe size and any input set. Their scheme builds a
two-level hash function: a level -one function splits S into subsets (“buckets”) whose
sizes are distributed in a favorable manner. Then, an injective level -two hash function
is built for each subset by allocating a private memory block of an appropriate size.

This two-level scheme formed a basis for algorithms for a dynamic version of the
hashing problem, also called the dictionary problem, in which insertions and deletions
may change S dynamically. Such algorithms were given by Dietzfelbinger, Karlin,
Mehlhorn, Meyer auf der Heide, Rohnert, and Tarjan [11]; Dietzfelbinger and Meyer
auf der Heide [13]; and by Dietzfelbinger, Gil, Matias, and Pippenger [10].

In the parallel setting, Dietzfelbinger and Meyer auf der Heide [12] presented an
algorithm for the dictionary problem. For each fixed ε ≥ 0, n arbitrary dictionary
instructions (insert, delete, or lookup) can be executed in O(nε) expected time on a
n1−ε-processor Priority crcw. Matias and Vishkin [38] presented an algorithm for
the hashing problem that runs in O(lg n) expected time using O(n/ lg n) processors
on an Arbitrary crcw. This was the fastest parallel hashing algorithm previous
to our work. It is based on the two-level scheme and makes extensive use of counting
and sorting procedures.

The only known lower bounds for parallel hashing were given by Gil, Meyer
auf der Heide, and Wigderson [26]. In their (rather general) model of computation,
the required number of parallel steps is Ω(lg∗ n). They also showed that in a more
restricted model, where at most one processor may simultaneously work on a key, par-
allel hashing time is Ω(lg lgn). They also gave an algorithm which yields a matching
upper bound if only function applications are charged and all other operations (e.g.,
counting and sorting) are free. Our algorithm falls within the realm of the above-
mentioned restricted model and matches the Ω(lg lg n) lower bound while charging
for all operations on the concrete pram model.

1.2. Results. Our main result is that a linear static hash table can be con-
structed in O(lg lg n) time with high probability and O(n) space, using n processors
on a crcw pram. Our algorithm has the following properties.

Time optimality. It is the best possible result that does not use processor real-
locations, as shown in [26]. Optimal speedup can be achieved with a small penalty
in execution time. It is a significant improvement over the O(lg n)-time algorithm
of [38].

1350 JOSEPH GIL AND YOSSI MATIAS

1. Partition the input set into buckets by a random polynomial of
constant degree.

2. For t := 1 to O(lg lg n) do
(a) Allocate Mt memory blocks, each of size Kt.
(b) Let each bucket select a block at random, and try to in-

jectively map its keys into the block using a random linear
function; if the same block was selected by another bucket,
or if no injective mapping was found, then the bucket carries
on to the next iteration.

Fig. 1. The template for the hashing algorithm.

Reliability. The time bound O(lg lg n) is obeyed with high probability; in contrast,
the time bound of the algorithm in [38] is guaranteed only with constant probability.

Simplicity. It is arguably simpler than any other hashing algorithm previously
published. (Nevertheless, the analysis is quite involved due to tight tradeoffs between
the probabilities of conflicting events.)

Reduced randomness. It is adapted to consume only O(lg lg n) random words,
compared with Ω(n) random words that were previously used.

Work optimality. A work-optimal implementation is presented, in which the time-
processor product is O(n) and the running time is increased by a factor of O(lg∗ n);
it also requires only O(lg lg n) random words.

Computational model. If we allow the lookup time to be O(lg lgn) as well, then
our algorithm can be implemented on the Robust crcw model.

Our results can be summarized in the following theorem.
Theorem 1.1. Given a set of n keys drawn from a universe U , the hashing prob-

lem can be solved using O(n) space: (i) in O(lg lg n) time with high probability, using n
processors, or (ii) in O(lg lg n lg∗ n) time and O(n) operations with high probability.
The algorithms run on a crcw pram, where no reallocation of processors to keys is
employed, and use O(lg lg |U |+ lg n lg lg n) random bits.

The previous algorithms implementing the two-level scheme, either sequentially
or in parallel, are based on grouping the keys according to the buckets to which they
belong, and require learning the size of each bucket. Each bucket is then allocated a
private memory block whose size is dependent on the bucket size. This approach relies
on techniques related to sorting and counting, which require Ω(lgn/ lg lg n) time to be
solved by a polynomial number of processors, as implied by the lower bound of Beame
and H̊astad [4]. This lower bound holds even for randomized algorithms. (More
recent results have found other, more involved, ways to circumvent these barriers;
cf. [37, 3, 25, 29].)

We circumvent the obstacle of learning buckets sizes for the purpose of appropriate
memory allocation by a technique of oblivious execution sketched by Figure 1.

The crux of the algorithm is a careful a priori selection of the parameters Mt and
Kt. For each iteration t, Mt and Kt depend on the expected number of active buckets
and the expected distribution of bucket sizes at iteration t in a way that makes the
desired progress possible (or rather, likely).

The execution is oblivious in the following sense: all buckets are treated equally,
regardless of their sizes. The algorithm does not make any explicit attempt to estimate
the sizes of individual buckets and to allocate memory to buckets based on their sizes,

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1351

as is the case in the previous implementations of the two-level scheme. Nor does it
attempt to estimate the number of active buckets or the distribution of their sizes.

The selection of the parameters Mt and Kt in iteration t is made according to a
priori estimates of the above random variables. These estimates are based on prop-
erties of the level-one hash function as well as on inductive assumptions about the
behavior of previous iterations.

Remark. The hashing result demonstrates the power of randomness in parallel
computation on crcw machines with memory restricted to linear size. Boppana [6]
considered the problem of element distinctness: given n integers, decide whether or not
they are all distinct. He showed that solving element distinctness on an n-processor
Priority machine with bounded memory requires Ω(lgn/ lg lg n) time. “Bounded
memory” means that the memory size is an arbitrary function of n but not of the
range of the input values. It is easy to see that if the memory size is bounded by Ω(n2)
then element distinctness can be solved in O(1) expected time by using hash functions
(Fact 2.2). This, however, does not hold for linear size memory. Our parallel hashing
algorithm implies that when incorporating randomness, element distinctness can be
solved in expected O(lg lg n) time using n processors on Collision+ (which is weaker
than the Priority model) with linear memory size.

1.3. Applications. The perfect hash table data structure is a useful tool for par-
allel algorithms. Matias and Vishkin [38] proposed using a parallel hashing scheme
for space reduction in algorithms in which a large amount of space is required for
communication between processors. Such algorithms become space efficient and pre-
serve the number of operations. The penalties are in introducing randomization and
in having some increase in time. Using our hashing scheme, the time increase may be
substantially smaller.

There are algorithms for which, by using the scheme of [38], the resulting time
increase is O(lg n). By using the new scheme, the time increase is only O (lg lgn lg∗ n).
This is the case in the construction of suffix trees for strings [2, 16] and in the naming
assignment procedure for substrings over large alphabets [16].

For other algorithms, the time increase in [38] was O(lg lg n) or O
(
(lg lg n)2

)
,

while our algorithm leaves the expected time unchanged. Such is the case in integer
sorting over a polynomial range [32] and over a super-polynomial range [5, 38].

More applications are discussed in the conclusion section.

1.4. Outline. The rest of the paper is organized as follows. Preliminary techni-
calities used in our algorithm and its analysis are given in section 2. The algorithm
template is presented in greater detail in section 3. Two different implementations,
based on different selections of Mt and Kt, are given in the subsequent sections.
Section 4 presents an implementation that does not fully satisfy the statement of
Theorem 1.1 but has a relatively simple analysis. An improved implementation of the
main algorithm, with a more involved analysis, is presented in section 5. In section 6
we show how to reduce the number of random bits. Section 7 explains how the al-
gorithm can be implemented with an optimal number of operations. The model of
computation is discussed in section 8, where we also give a modified algorithm for a
weaker model. Section 9 briefly discusses the extension of the hashing problem, in
which the input may consist of a multiset. Finally, conclusions are given in section 10.

2. Preliminaries. The following inequalities are standard (see, e.g., [1]).

1352 JOSEPH GIL AND YOSSI MATIAS

Markov’s inequality. Let ω be a random variable assuming nonnegative values
only. Then

Prob (ω > T) < E (ω)/T .(1)

Chebyshev’s inequality. Let ω be a random variable. Then, for T > 0,

Prob (|ω −E (ω)| > T) < Var (ω)/T 2.(2)

Chernoff’s inequality. Let ω be a binomial variable. Then, for T > 0,

Prob (|ω −E (ω)| > T) = e−Ω(T 2/E(ω)).(3)

Terminology for probabilities. We say that an event occurs with n-dominant
probability if it occurs with probability 1−n−Ω(1). We use this terminology as follows.
If a polylogarithmic number of events are such that each one of them occurs with n-
dominant probability, then their conjunction occurs with n-dominant probability as
well. We will therefore usually be satisfied by demonstrating that each algorithmic
step succeeds with n-dominant probability.

Fact 2.1. Let ω1, . . . , ωn be pairwise independent binary random variables, and
let ω =

∑
1≤i≤n ωi. Let ε > 0 be constant; let 0 < ξ1 < (1 − ε)E (ω) and ξ2 >

(1 + ε)E (ω). Then
1. ω > ξ1 with ξ1-dominant probability,
2. ω < ξ2 with ξ2-dominant probability, and
3. (1− ε)E (ω) ≤ ω ≤ (1 + ε)E (ω) with E (ω)-dominant probability.

Proof. Recall the well-known fact that

Var (ω) =
∑

1≤i≤n
Var (ωi) since ωi are pairwise independent

≤
∑

E (ωi) since 0 ≤ ωi ≤ 1

= E (ω).

(4)

1. By inequality (2)

Prob (ω > ξ1) ≤ Prob (|ω −E (ω)| > εE (ω)) < 1/ε2E (ω) < 1/ε2ξ1.

2. If ξ2 ≤ E (ω)
2

then by inequality (2)

Prob (ω > ξ2) ≤ Prob (|ω −E (ω)| > εE (ω)) < 1/ε2E (ω) < 1/ε2
√
ξ2.

If ξ2 > E (ω)
2

then by inequality (1)

Prob (ω > ξ2) < E (ω)/ξ2 < 1/
√
ξ2.

3. This follows immediately from the above.
Hash functions. For the remainder of this section, let S ⊆ U be fixed, |S| = n.

A hash function h : U → [0,m − 1] splits the set S into buckets; bucket i is the
subset {x ∈ S |h(x) = i} and its size is si =

∣∣S ∩ h−1(i)
∣∣ for 0 ≤ i < m. An element

x ∈ S collides if its bucket is not a singleton. The function is injective, or perfect , if
no element collides. Let

Br = Br(h) =
∑

0≤i<m

(
si
r

)
.(5)

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1353

A function is injective if and only if B2 = 0, since B2 is the number of collisions
of pairs of keys. More generally, Br is the number of r-tuples of keys that collide
under h.

Polynomial hash functions. Let U = [0, u − 1] where u is prime. The class of
degree-d polynomial hash functions, d ≥ 1, mapping U into [0,m− 1] is

Hd
m :=

{
h

∣∣∣∣ h(x) =

(d∑
i=0

cix
i mod u

)
mod m for some c0, . . . , cd ∈ U

}
.

In the rest of this section we consider the probability space in which h is selected
uniformly at random from Hd

m, d ≥ 1.
The following fact and corollary were shown by Fredman, Komlós, and Sze-

merédi [15] and before that by Carter and Wegman [7]. (The original proof was
only for the case d = 1; however, the generalization for d > 1 is straightforward.)

Fact 2.2. E (B2) ≤ n2/m.
Corollary 2.3. The hash function h is injective on S with probability at least

1− n2/m.
Proof. The function h is injective if and only if B2 = 0. By Fact 2.2 and Markov’s

inequality, the probability that h is not injective is Prob (B2 ≥ 1) ≤ n2/m.
The following was shown in [10].
Fact 2.4. If d ≥ 3 then B2 ≤ 2n2/m with n2/m-dominant probability.
For r ≥ 0, let Br be the random variable which is the rth moment of the sequence

of si’s,

Br = Br(h) =
∑

0≤i<m
sri .(6)

It is easy to see that B0 = m and B1 = n. Further, it can be shown that if n = O(m)
and if h were a completely random function, thenBr is linear in n with high probability
for all fixed r ≥ 2. For polynomial hash functions, Dietzfelbinger et al. [11] proved
the following fact.

Fact 2.5. Let r ≥ 0 and m ≥ n. If d ≥ r then there exists a constant σr > 0,
depending only on r, such that

Prob (Br ≤ 2σr · n) ≥ 1/2.

Tighter estimates on the distribution of Br were given in [10].
Fact 2.6. Let r ≥ 2. If d ≥ r then

E (Br) ≤ n
∑

1≤j≤r

{
r

j

}(
2n

m

)j−1

,

where
{
r
j

}
is the Stirling number of the second kind.1

Fact 2.7. Let ε > 0 be constant. If d ≥ 2r and m ≥ n then Br ≤ (1 + ε)E (Br)
with n-dominant probability.

1For k ≥ j ≥ 0, the Stirling number of the second kind ,
{
k
j

}
= 1

j!

∑k

i=0
(−1)j−i

(
j
i

)
ik, is the

number of ways of partitioning a set of k distinct elements into j nonempty subsets (e.g., [30, Chapter
6]).

1354 JOSEPH GIL AND YOSSI MATIAS

Allocation. The bucket selects at random one of the Mt memory blocks.
If the same block was selected by another bucket, then the bucket remains
active and does not participate in the next step.

Hashing . The bucket selects at random two functions from H1
Kt

and then
tries to hash itself into the block separately by each of these functions.
If either one of the functions is injective, then its description and the
memory address of the block are written in the appropriate cell of array
ptr and the bucket becomes inactive. Otherwise, the bucket remains
active and carries on to the next iteration.

Fig. 2. The two steps of an iteration, based on oblivious execution.

3. A framework for hashing by oblivious execution.

3.1. An algorithm template. The input to the algorithm is a set S of n keys,
given in an array. The hashing algorithm works in two stages, which correspond to
the two-level hashing scheme of Fredman, Komlós, and Szemerédi [15].

In the first stage a level-one hash function f is chosen. This function is selected at
random from the class Hd

m, where d is a sufficiently large constant to be selected in the
analysis, and m = Θ(n). The hash function f partitions the input set into m buckets;
bucket i, i = 0, . . . ,m− 1, is the set S ∩ f−1(i). The first stage is easily implemented
in constant time. The main effort is in the implementation of the second stage, which
is described next.

The second level of the hash table is built in the second stage of the algorithm.
For each bucket a private memory region, called a block , is assigned. The address of
the memory block allocated to bucket i is recorded in cell i of a designated array ptr
of size m. Also, for each bucket, a level-two function is constructed; this function
injectively maps the bucket into its block. The descriptions of the level-two functions
are written in ptr.

Let us call a bucket active if an appropriate level-two function has not yet been
found, and inactive otherwise. At the beginning of the stage all buckets are active,
and the algorithm terminates when all buckets have become inactive. The second
stage consists of O(lg lg n) iterations, each executing in constant time. The iterative
process rapidly reduces the number of active buckets and the number of active keys.

At each iteration t, a new memory segment is used. This segment is partitioned
into Mt blocks of size Kt each, where Mt and Kt will be set in the analysis. Each
bucket and each key is associated with one processor. The operation of each active
bucket in each iteration is given in Figure 2.

In a few of the last iterations, it may become necessary for an iteration to repeat
its body more than once but no more than a constant number of times. The precise
conditions and the number of repetitions are given in section 5.

The hash table constructed by the algorithm supports lookup queries in constant
time. Given a key x, a search for it begins by reading the cell ptr[f(x)]. The contents
of this cell defines the level-two function to be used for x as well as the address of the
memory block in which x is stored. The actual offset in the block in which x is stored
is given by the injective level-two hash function found in the Hashing step above.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1355

3.2. Implementations. The algorithm template described above constitutes a
framework for building parallel hashing algorithms. The execution of these algorithms
is oblivious in the sense that the iterative process of finding level-two hash functions
does not require information about the number or size of active buckets. Successful
termination and performance are dependent on the a priori setting of the parameters
d, Mt, and Kt. The effectiveness of the allocation step relies on having sufficiently
many memory blocks; the effectiveness of the hashing step relies on having sufficiently
large memory blocks. The requirement of keeping the total memory linear imposes a
tradeoff between the two parameters. The challenge is in finding a balance between Mt

and Kt so as to achieve a desired rate of decay in the number of active buckets. The
number of active keys can be deduced from the number of active buckets based on
the characteristics of the level-one hash function as determined by d.

We will show two different implementations of the algorithm template, each lead-
ing to an analysis of a different nature. The first implementation is given in section 4.
There, the parameters are selected in such a way that in each iteration the number of
active buckets is expected to decrease by a constant factor. Although each iteration
may fail with constant probability, there is a geometrically decreasing series which
bounds from above the number of active buckets in each iteration. After O(lg lg n) it-
erations, the expected number of active keys and active buckets becomes n/(lg n)Ω(1).
The remaining keys are hashed in additional constant time using a different approach,
after employing an O(lg lg n)-time load balancing procedure.

From a technical point of view, the analysis of this implementation imposes rel-
atively modest requirements on the level-one hash function, since it only uses first-
moment analysis (i.e., Markov’s inequality). Moreover, it only requires a simpler
version of the hashing step, in which only one hash function from H1

Kt
is being used.

The expected running time is O(lg lg n), but this running time is guaranteed only
with constant probability, which can be made arbitrarily close to 1.

The second implementation is given in section 5. This implementation is charac-
terized by a doubly exponential rate of decrease2 in the number of active buckets and
keys. After O(lg lgn) iterations all keys are hashed without any further processing.
This implementation is superior in several other respects: its time performance is
with high probability, each key is only handled by its original processor, and it forms
a basis for further improvements in reducing the number of random bits.

From a technical point of view, the analysis of this implementation is more sub-
tle and imposes more demanding requirements on the level-one hash function, since
it uses second-moment analysis (i.e., Chebyshev’s inequality). Achieving a doubly
exponential rate of decrease required a more careful selection of parameters.

Together, these implementations demonstrate two different paradigms for fast
parallel randomized algorithms, each involving a different flavor of analysis. In the
first implementation, one only requires an exponential rate of decrease in the problem
size and then relies on reallocation of processors to items. (Subsequent works that
use this paradigm and its extensions are mentioned in section 10.) This paradigm
is relatively easy to understand and not too difficult to analyze using a framework
of probabilistic induction and analysis by expectations. The analysis shows that
each iteration succeeds with constant probability and that this implies an overall
constant success probability. In contrast, the second implementation shows that each
iteration succeeds with n-dominant probability and that this implies an overall n-

2A sequence v0, v1, . . . decreases at an exponential rate if for all t, vt ≤ v0/(1 + ε)t for some

ε > 0; the sequence decreases at a doubly exponential rate if for all t, vt ≤ v0/2(1+ε)t for some ε > 0.

1356 JOSEPH GIL AND YOSSI MATIAS

dominant success probability. The analysis is significantly more subtle and relies on
more powerful techniques of second moment analysis. The second paradigm consists
of a doubly exponential rate of decrease in the problem size and hence does not require
any wrapup step.

4. Obtaining exponential decrease. This section presents our first implemen-
tation of the algorithm template. Using a rather elementary analysis of expectations,
we show that at each iteration the problem size decreases by a constant factor with
(only) constant probability. The general framework described in section 4.1 shows
that this implies that the problem size decreases at an overall exponential rate.

After O(lg lg n) iterations, the number of keys is reduced to n/(lg n)Ω(1). A simple
load balancing algorithm now allocates (lgn)Ω(1) processors to each remaining key.
Using the relatively large number of allocated processors, each key is finally hashed
in constant time.

4.1. Designing by expectation. Consider an iterative randomized algorithm,
in which after each iteration some measure of the problem decreases by a random
amount. In a companion paper [21] we showed that at each iteration one can actually
assume that in previous iterations the algorithm was not too far from its expected
behavior. The paradigm suggested is as follows.

Design an iteration to be “successful” with a constant probability un-
der the assumption that at least a constant fraction of the previous
iterations were “successful.”

It is justified by the following lemma.
Lemma 4.1 (probabilistic induction [21]). Consider an iterative randomized pro-

cess in which, for all t ≥ 0, the following holds: iteration t+1 succeeds with probability
at least 1/2, provided that among the first t iterations at least t/4 were successful.
Then, with probability Ω(1), for every t > 0 the number of successful iterations among
the first t iterations is at least t/4.

4.2. Parameters setting and analysis. Let the level-one function be taken
from H10

m ; i.e. set d = 10. Let

r = 10.(7)

Further, set

m = 4n.(8)

Let

Kt = 24+σ10/5+t/5,(9)

Mt = m 24−t/4,(10)

where σ10 is as in Fact 2.5.
To simplify the analysis, we allow the parameters Kt and Mt to assume non-

integral values. In actual implementation, they must be rounded up to the nearest
integer. This does not increase memory requirements by more than a constant factor;
all other performance measures can only be improved.

Memory usage. The memory space used is∑
t

MtKt = m28+σ10/5
∑
t

2t/5−t/4 = O(n).

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1357

Lemma 4.2. Let vt be the number of active buckets at the beginning of iteration t.
Then,

Prob
(
∀ t ≥ 0 : vt ≤ m2−t/4

)
= Ω(1).

Proof. We assume that the level-one function f satisfies

B10 ≤ 2σ10 ·m.(11)

By Fact 2.5, (11) holds with probability at least 1/2.
The proof is continued by using Lemma 4.1. Iteration t is successful if vt+1 ≤ vt/2.

Thus, the number of active buckets after j successful iterations is at most m2−j .
The probabilistic inductive hypothesis is that among the first t iterations at least

t/4 were successful; that is,

vt ≤ m2−t/4.(12)

The probabilistic inductive step is to show that

Prob (vt+1 ≤ vt/2) ≥ 1/2.

In each iteration the parameters Kt and Mt were chosen so as to achieve constant
deactivation probability for buckets of size at most

βt =
√
Kt/8 = 2(1+σ10/5+t/5)/2.(13)

We distinguish between the following three types of events, “failures,” which may
cause a bucket to remain active at the end of an iteration.

(i) Allocation failure. The bucket may select a memory block which is also selected
by other buckets.

Let ρ1(t) be the probability that a fixed bucket does not successfully reserve a
block in the allocation step. Since there are at most vt buckets, each selecting at
random one of Mt memory blocks, ρ1(t) ≤ vt/Mt. By (12) and (10),

ρ1(t) ≤ m2−t/4/m24−t/4 = 1/16.

(ii) Size failure. The bucket may be too large for the current memory block size.
As a result, the probability for it to find a level-two hash function is not high enough.

Let v′t be the number of buckets at the beginning of iteration t that are larger
than βt. By (11),

v′t · β10
t ≤ B10 ≤ 2σ10m.

Therefore, by (13),

v′t ≤ 2σ10m/β10
t = m2σ10−5(1+σ10/5+t/5) = m2−5−t.(14)

Without loss of generality we assume that if vt+1 ≤ vt/2 then vt+1 = vt/2 (i.e., if
more buckets that are needed become inactive, then some of them are still considered
as active). Thus, for the purpose of analysis,

vt ≥ m2−t.(15)

1358 JOSEPH GIL AND YOSSI MATIAS

We then have

v′t ≤ vt2
−5 < vt/16.

(iii) Hash failure. A bucket may fail to find an injective level-two hash function
even though it is sufficiently small and it has uniquely selected a block.

Let ρ3(t) be the probability that a bucket of size at most βt is not successfully
mapped into a block of size Kt in the hashing step. By Corollary 2.3 and (13)

ρ3(t) ≤ β2
t /Kt = 1/8.

A bucket of size at most βt that successfully reserves a block of size Kt, and
that is successfully mapped into it, becomes inactive. The expected number of active
buckets at the beginning of iteration t+ 1 can therefore be bounded by

E (vt+1) ≤ vtρ1(t) + v′t + vtρ3(t) ≤ vt (1/16 + 1/16 + 1/8) ≤ vt/4.

By Markov’s inequality,

Prob (vt+1 ≤ vt/2) ≥ 1/2,

proving the inductive step. The lemma follows.
Lemma 4.3. Let nt be the number of active keys at the beginning of iteration t.

Then

Prob
(∀ t ≥ 0 : nt ≤ cn2−αt

)
= Ω(1)

for some constants c, α > 0.
Proof. It follows from (11), by using a simple convexity argument, that nt is

maximal when all active buckets at the beginning of iteration t are of the same size qt.
In this case, by (11),

vt · q10
t ≤ 2σ10 ·m

and

nt = vt · qt ≤ vt ·
(

2σ10m

vt

)0.1

= (2σ10m)0.1v0.9
t .

Therefore, by Lemma 4.2, the lemma follows.
By Lemmas 4.2 and 4.3 we have an exponential decrease in the number of active

keys and in the number of active buckets with probability Ω(1). The number of
active keys becomes n/(lg n)c, for any constant c > 0, after O(lg lg n) iterations with
probability Ω(1).

4.3. A final stage. After the execution of the second stage with the parameter
setting as described above, the number of available resources (memory cells and pro-
cessors) is a factor of (lg n)Ω(1) larger than the number of active keys. This resource
redundancy makes it possible to hash the remaining active keys in constant time, as
described in the remainder of this section.

All keys that were not hashed in the iterative process will be hashed into an
auxiliary hash table of size O(n). Consequently, the implementation of a lookup
query will consist of searching the key in both hash tables.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1359

The auxiliary hash table is built using the two-level hashing scheme. A level-one
function maps the set of active keys into an array of size n. This function is selected
at random from a class of hash functions presented by Dietzfelbinger and Meyer auf
der Heide [13, Definition 4.1]. It has the property that with n-dominant probability
each bucket is of size smaller than lg n [13, Theorem 4.6(b’)]. For the remainder of
this section we assume that this event indeed occurs. (Alternatively, we can use the
nε-universal class of hash functions presented by Siegel [42].)

Each active key is allocated 2 lg n processors, and each active bucket is allocated
4(lg n)3 memory. The allocation is done by mapping the active keys injectively into
an array of size O(n/ lg n), and by mapping the indices of buckets injectively into
an array of size O(n/(lg n)3). These mappings can be done in O(lg lg n) time with
n-dominant probability by using the simple renaming algorithm from [19].

The remaining steps take constant time. We independently select two lg n linear
hash functions and store them in a designated array. These hash functions will be
used by all buckets.

The memory allocated to each bucket is partitioned into two lgn memory blocks,
each of size 2 lg2 n. Each bucket is mapped in parallel into its two lgn blocks by the
two lg n selected linear hash functions, and each mapping is tested for injectiveness.
This is carried out by the two lgn processors allocated to each key. For each bucket,
one of the injective mappings is selected as a level-two function. The selection is made
by using the simple “leftmost 1” algorithm of [14].

If for any of the buckets all the mappings are not injective, then the construction
of the auxiliary hash table fails.

Lemma 4.4. Assume that the number of keys that remain active after the iterative
process is at most n/(lg n)3. Then, the construction of the auxiliary hash table succeeds
with n-dominant probability.

Proof. Recall that each bucket is of size at most lg n. A mapping of a bucket
into its memory block of size 2(lg n)2 is injective with probability at least 1/2 by
Corollary 2.3. The probability that a bucket has no injective mapping is therefore at
most 1/n2. With probability at least 1− 1/n, every bucket has at least one injective
mapping.

It is easy to identify failure. If the algorithm fails to terminate within a designated
time, it can be restarted. The hash table will be therefore always constructed. Since
the overall failure probability is constant, the expected running time is O(lg lgn).

5. Obtaining doubly exponential decrease. The implementation of the al-
gorithm template that was presented in the previous section maintains an exponen-
tial decrease in the number of active buckets throughout the iterations. This section
presents the implementation in which the number of active buckets decreases at a
doubly exponential rate.

Intuitively, the stochastic process behind the algorithm template has a poten-
tial for achieving doubly exponential rate: if a memory block is sufficiently large in
comparison with the bucket size, then the probability of the bucket to remain active
is inversely proportional to the size of the memory block (Corollary 2.3). Consider
an idealized situation in which this is the case. If at iteration t there are mt active
buckets, each allocated a memory block of size Kt, then at iteration t + 1 there will
be mt/Kt active buckets, and each of those could be allocated a memory block of
size K2

t ; at iteration t+ 2 there will be mt/K
3
t active buckets, each to be allocated a

memory block of size K4
t , and so on.

In a less idealized setting, some buckets are not deactivated because they are too

1360 JOSEPH GIL AND YOSSI MATIAS

large for the current value of Kt. The number of such buckets can be bounded above
by using properties of the level-one hash function. It must be guaranteed that the
fraction of “large buckets” also decreases at a doubly exponential rate.

The illustrative crude calculation given above assumes that memory can be evenly
distributed among the active buckets. To make the doubly exponential rate possible,
the failure probability of the allocation step, and hence the ratio mt/Mt, must also
decrease at a doubly exponential rate.

Establishing a bound on the number of “large blocks” and showing that a large
fraction of the buckets are allocated memory blocks were also of concern in the pre-
vious section. There, however, it was enough to show constant bounds on the proba-
bilities of allocation failure, size failure, and hash failure.

The parameter setting which establishes the balance required for the doubly ex-
ponential rate is now presented. Following that is the analysis of the algorithm per-
formance.

5.1. Parameters setting. Let the level-one function be taken from H18
m ; i.e.,

set d = 18. Let

r = 9.(16)

Further, set

m = 160n.(17)

Let

Kt = 2aλ
t+b1t+c1 ,(18)

Mt = n 2−aλ
t−b2t+c2 ,(19)

where

λ = 18/13 , a = 8/13 , b1 = 1/5 , b2 = 9/20 , c1 = 73/25 , c2 = 89/20.(20)

5.2. Memory usage.
Proposition 5.1. The total memory used by the algorithm is O(n).
Proof. By (17), the memory used in the first stage is O(n). The memory used in

an iteration t of the second stage is

Mt ·Kt = n 2(b1−b2)t+c1+c2 = n 2−t/4+737/100.(21)

The total memory used by the second stage is therefore at most

∞∑
t=0

n 2−t/4+737/100 =
27.37

1− 1/ 4
√

2
· n = O(n).(22)

5.3. Framework for time performance analysis. Let mt be defined by

mt = n 2−λ
t−b2t+1.(23)

The run-time analysis of the second stage is carried out by showing Lemma 5.2.
Lemma 5.2. With n-dominant probability, the number of active buckets in the

beginning of iteration t is at most mt.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1361

The lemma is proved by induction on t for t ≤ lg lg n/ lg λ. The induction base
follows from m0 = n and the fact that there are at most n active buckets.

In the subsequent subsections, we prove the inductive step by deriving estimates
on the number of failing buckets in iteration t under the assumption that at the
beginning of the iteration there are at most mt active buckets. Specifically, we show
by induction on t that, with n-dominant probability, the number of active buckets at
the end of iteration t is at most

mt+1 = n 2−λ
t+1−b2(t+1)+1.(24)

The bucket may fail to find an injective level-two hash function. In estimating the
number of buckets that fail to find an injective level-two function during an iteration
we assume that the bucket uniquely selected a memory block and that the bucket size
is not too large relatively to the current block size. Accordingly, as in section 4.2, we
distinguish between the following three types of events, “failures,” which may cause
a bucket to remain active at the end of an iteration.

(i) Allocation failure. The bucket may select a memory block that is also selected
by other buckets.

(ii) Size failure. The bucket may be too large for the current memory block size.
As a result, the probability for it to find a level-two hash function is not high enough.

(iii) Hash failure. A bucket may fail to find a level-two hash function even though
it is sufficiently small and it has uniquely selected a block.

We will provide estimates for the number of buckets that remain active due to
either of the above reasons: in Lemma 5.5 for case (i), in Lemma 5.6 for case (ii),
and in Lemmas 5.7 and 5.8 for case (iii). The estimates are all shown to hold with
n-dominant probability. The induction step follows from adding all these estimates.

To wrap up, let t = lg lgn/ lg λ. Then, by (23),

mt = n 2−λ
t−b2t+1 = n 2− lgn−b2t+1 < 1.

We can therefore infer Proposition 5.3.
Proposition 5.3. With n-dominant probability, the number of iterations required

to deactivate all buckets is at most lg lg n/ lg λ.

5.4. Failures in uniquely selecting a block.

Lemma 5.4. Let ε be fixed, 0 < ε < 1/6, and suppose that either mt > M
1/2+ε
t or

mt < M
1/2−ε
t . Let ω be the random variable representing the number of buckets that

fail to uniquely select a block. Then, ω ≤ 2m2
t/Mt, with Mt-dominant probability.

Proof. A bucket has a probability of at most mt/Mt to have other buckets select
the memory block it selected. Therefore,

E (ω) ≤ m2
t/Mt.(25)

Further, ω is stochastically smaller than a binomially distributed random variable $
obtained by performing mt independent trials, each with probability mt/Mt of success.
That is to say, Prob (ω ≥ ω0) ≤ Prob ($ ≥ ω0) for all ω0. Note that E ($) = m2

t/Mt.

If mt > M
1/2+ε
t then

Prob
(
ω > 2m2

t/Mt

) ≤ Prob
(
$ > 2m2

t/Mt

)
by (3)

= e−Ω(E($))

= e−Ω(m2
t/Mt)

= e−Ω(M2ε
t)

= M
−Ω(1)
t .

(26)

1362 JOSEPH GIL AND YOSSI MATIAS

Otherwise, mt < M
1/2−ε
t and we are in the situation where E (ω) � 1. Since ω is

integer valued and 2m2
t > 0,

Prob
(
ω > 2m2

t/Mt

) ≤ Prob (ω ≥ 1)
by (1)

≤ E (ω)
by (25)

≤ m2
t/Mt

< M−2ε
t .

(27)

The setting not covered by the above lemma is M
1/2−ε
t ≤ mt ≤M

1/2+ε
t . This only

occurs in a constant number of iterations throughout the algorithm and requires the
following special treatment. The body of these iterations is repeated, thus providing
a second allocation attempt of buckets that failed to uniquely select a memory block
in the first trial.

Let ω1 and ω2 be the random variables representing the number of buckets that
fail to uniquely select a block in the first and second attempts, respectively,

Prob
(
ω1 > M

1/2−ε
t

) by (1)
< E (ω1)/M

1/2−ε
t

by (25)
= m2

t/MtM
1/2−ε
t

= m2
t/M

3/2−ε
t

≤ M1+2ε
t /M

3/2−ε
t

= M
3ε−1/2
t

= M
−Ω(1)
t .

(28)

Therefore, with Mt-dominant probability the second attempt falls within the condi-
tions of equation 27 and hence ω2 = 0 with Mt-dominant probability.

Lemma 5.5. Let t ≤ lg lg n/ lg λ. The number of buckets that fail to uniquely
select a block is, with n-dominant probability, at most mt+1/4.

Proof. By Lemma 5.4, the number of buckets that fail to uniquely select a memory
block is, with Mt-dominant probability, at most

2m2
t/Mt

by (19),(23)
= 2n2 2−2λt−2b2t+2/n 2−aλ

t−b2t+c2

= n 2(a−2)λt−b2t+3−c2
by (20)

= n 2(8/13−2)λt−b2(t+1)+b2+3−c2

= n 2−(18/13)λt−b2(t+1)+9/20+3−89/20

by (20)
= n 2−λ

t+1−b2(t+1)−1

by (24)
= mt+1/4.

(29)

The above holds also with n-dominant probability since

Mt
by (19)

= n 2−aλ
t−b2t+c2

≥ n 2−a lgn−b2t+c2

= n1−a2−b2 lg lg n/ lg λ+c2

by (20)
= n5/13 lg n−Ω(1).

(30)

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1363

5.5. Failures in hashing. In considering buckets, which uniquely selected a
block which failed to find an injective level-two function, we draw special attention to
buckets of size at most

βt = 4
√
Kt/2.(31)

Lemma 5.6. The number of buckets larger than βt is, with n-dominant probability,
at most mt+1/4.

Proof. Let µ = m/n = 160. By incorporating into Fact 2.6 the appropriate values
for the Stirling numbers of the second kind, we get

E (Br) ≤
(

1 +
510

µ
+

12100

µ2
+

62160

µ3
+

111216

µ4
+

84672

µ5
+

29568

µ6
+

4608

µ7
+

256

µ8

)
n

by (17)

≤ 4.6756 n.

Therefore, by Fact 2.7, with n-dominant probability

Br ≤ 6n.(32)

From the above and (6) it follows that the number of buckets bigger than βt is, with
n-dominant probability, at most

6n/βrt
by (31),(16)

= 6n/(Kt/2)9/4

by (18)
= 6n 2−9(aλt+b1t+c1−1)/4

by (20)
= 6n 2−(18/13)λt−(9/20)t−108/25

by (20)
= 6n 2−λ

t+1−b2(t+1)+b2−108/25

by (20)
= 6n 2−λ

t+1−b2(t+1)+9/20−108/25

= 6n 2−λ
t+1−b2(t+1)−387/100

= n 2−λ
t+1−b2(t+1)+1+(lg 3−387/100)

by (24)
= mt+12

lg 3−387/100

= mt+12
−2.285...

< mt+1/4.

(33)

The analysis of hashing failures of buckets that are small enough is further split
into two cases.

Lemma 5.7. Suppose that mt/2Kt ≥
√
n. Then the number of buckets of size at

most βt that fail in the hashing step of the iteration is, with n-dominant probability,
at most mt+1/4.

Proof. Without loss of generality, we may assume that there are exactly mt active
buckets of size at most βt that participate in the hashing step. When such a bucket
is mapped into a memory block of size Kt, the probability of the mapping being
noninjective is, by Corollary 2.3, at most β2

t /Kt = 1/
√

2Kt. The probability that
the bucket fails in both hashing attempts is therefore at most 1/2Kt. Let m̃t be the
total number of such failing buckets. Then, E (m̃t) ≤ mt/2Kt. By Fact 2.1, with
mt/2Kt-dominant probability,

1364 JOSEPH GIL AND YOSSI MATIAS

m̃t ≤ 2(mt/2Kt)
= mt/Kt

by (18),(23)
= n 2−λ

t−b2t+1−aλt−b1t−c1

= n 2−(1+a)λt−(b2+b1)t+1−c1
by (20)

≤ n 2−(21/13)λt−b2(t+1)+1+b2−c1
by (20)

≤ n 2−λ
t+1−b2(t+1)+1+b2−c1

by (20),(24)
= mt+1 29/20−73/25

< mt+1/4.

(34)

Note that since mt/2Kt ≥
√
n, the above holds with n-dominant probability and we

are done.

Lemma 5.8. Suppose that mt/2Kt <
√
n. Then, by repeating the hashing step of

the iteration a constant number of times, we get m̃t = 0, with n-dominant probability.

Proof. We have

n 2−(1+a)λt−(b2+b1)t−c1 by (18),(23)
= mt/2Kt <

√
n,(35)

and, thus,

2(1+a)λt+(b2+b1)t+c1 >
√
n.(36)

Therefore,

Kt
by (18)

= 2aλ
t+b1t+c1

≥ 2δ((1+a)λ
t+(b2+b1)t+c1)

by (36)
> nδ/2

(37)

for some constant δ > 0. Recall from the proof of Lemma 5.7 that a bucket fails
in the hashing step with probability at most 1/2Kt. By (37), if the iteration body
is repeated d2/δe + 1 times, the failure probability of each bucket becomes at most
(2Kt)

−2/δ−1 < 2−2/δ/2Ktn, and

E (m̃t) < mt2
−2/δ/2Ktn < 2−2/δ

√
n/n = 2−2/δ/

√
n.

The lemma follows by Markov’s inequality.

6. Reducing the number of random bits. In this section we show how to
reduce the number of random bits used by the hashing algorithm.

The algorithm as described in the previous section consumes Θ(n lg u) random
bits, where u = |U |: the first iteration already uses Θ(n lg u) random bits; for each
subsequent iteration, the number of random words from U which are used is by at
most a constant factor larger than the memory used in that iteration, resulting in a
total of Θ(n lg u) random bits.

The sequential hashing algorithm of Fredman, Komlós, and Szemerédi [15] can be
implemented with only O(lg lg u + lg n) random bits [10]. We show how the parallel
hashing algorithm can be implemented with O(lg lg u+ lg n lg lg n) random bits.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1365

We first show how the algorithm can be modified so as to reduce the number of
random bits to O(lg u lg lg n). The first stage requires O(1) random elements from U
for the construction of the level-one function and remains unchanged. An iteration t
of the second stage required O(mt) random elements from U ; it is modified as follows.

Allocation step. If each bucket independently selects a random memory block,
then O(mt lgMt) random bits are consumed. This can be reduced to O(lgm) by
making use of polynomial hash functions.

Lemma 6.1. Using 6 lgm random bits, a set R ⊆ [0,m − 1] of size mt can be
mapped in constant time into an array of size 3Mt such that the number of colliding
elements is at most 2m2

t/Mt, with Mt-dominant probability.
Proof. Let gat ∈ H3

2Mt
and gbt ∈ H1

Mt
be selected at random. Then the image of a

bucket i is defined by

gt(i) =

{
gat (i) if 6 ∃j ∈ R, j 6= i, gat (i) = gat (j),
2Mt + gbt (i) otherwise.

(38)

Algorithmically, gat is first applied to all elements and then gbt is applied to the elements
which collided under gat . The colliding elements of gt are those which collided both
under gat and under gbt .

Let R′ be the set of elements that collide under gat . Clearly, |R′| ≤ 2B2(g
a
t). Let

ε be some constant, 0 < ε < 1/6. Consider the following three cases.

1. mt ≤M
1/2−ε
t .

By Corollary 2.3, Prob (R′ 6= ∅) ≤ m2
t/2Mt ≤M−2ε

t /2.

2. mt ≥M
1/2+ε
t .

It follows from Fact 2.4 that B2 ≤ 2m2
t/2Mt = m2

t/Mt with m2
t/2Mt-

dominant probability. As |R′| ≤ 2B2 and m2
t/2Mt ≥ M2ε

t /2 we have that
|R′| ≤ 2m2

t/Mt with Mt-dominant probability.

3. M
1/2−ε
t < mt < M

1/2+ε
t .

By Fact 2.2, E (B2(g
a
t)) ≤ m2

t/2Mt < M2ε
t /2 and by Markov’s inequality,

Prob
(
B2(g

a
t) > M

1/2−ε
t /2

)
≤M2ε

t /M
1/2−ε
t = M

3ε−1/2
t .

Therefore, with Mt-dominant probability, |R′| ≤ 2B2(g
a
t) ≤M

1/2−ε
t , in which

case, by Corollary 2.3,

Prob
(
gbt is not injective over R′

) ≤ |R′|2/Mt ≤M−2ε
t .

Invoking the above procedure for block allocation does not increase the total
memory consumption of the algorithm by more than a constant factor.

Hashing step. The implementation of the hashing part of the iteration body using
independent hash functions for each of the active buckets consumes O(mt lg u) random
bits. This can be reduced to O(lg u) by using hash functions which are only pairwise
independent . This technique and its application in the context of hash functions are
essentially due to [9, 10].

The modification to the step is as follows. In each hashing attempt executed
during the step, four global parameters a0, a1, b0, b1 ∈ U are selected at random by
the algorithm. The hash function attempted by a bucket i is

hi(x) := ((c0(i) + c1(i)x) mod u) mod Kt,(39)

1366 JOSEPH GIL AND YOSSI MATIAS

where

c0(i) = (ia0 + b0) mod u,

c1(i) = (ia1 + b1) mod u.

All hashing attempts of the same bucket are fully independent. Thus, the proof
of Lemma 5.8 is unaffected by this modification. Recall that Fact 2.1 assumes only
pairwise independence. Since hi, i = 0, . . . ,m−1, are pairwise independent, the proof
of Lemma 5.7 remains valid as well.

The above leads to a reduction in the number of random bits used by the algorithm
to O(lg u lg lg n).

The number of random bits can be further reduced as follows: employ a prepro-
cessing hashing step in which the input set S is injectively mapped into the range
[0, n3 − 1]. This is done by applying a hash function π selected from an appropriate
class to map the universe U into this range. Then the algorithm described above is
used to build a hash table for the set π(S). A lookup of a key x is done by searching
for π(x) in this hash table.

A class of hash functions that is appropriate for this universe reduction application
was described in [10]. This class has the following properties.

1. A selection of a random function π from the class requires O(lg lg u + lg n)
random bits.

2. A selection can be made in constant time by a single processor.
3. The function π is injective over S with n-dominant probability.
4. Computing π(x) for any x ∈ U can be done in constant time.

This preprocessing is tantamount to a reduction in the size of the universe, after which
application of the algorithm requires only O(lg n lg lg n) bits. The total number of
random bits used is therefore

O(lg lg u+ lg n lg lg n).

We note that a lookup step is essentially the same as before, except that when
looking for an element x in bucket i (i.e., i = f(x)), locations gat (i) and gbt (i) should
both be checked.

7. Obtaining optimal speedup. The description of the algorithm in section 3
assumed that the number of processors is n; thus the time-processor product is
O(n lg lg n). Our objective in this section is a work-optimal implementation where
this product is O(n) and p, the number of processors, is maximized.

When p < n, the key array and the bucket array are divided into p sectors, one
per processor. A parallel step of the algorithm is executed by having each processor
traverse its sector and execute the tasks included in it.

A key is active if its bucket is active. Let nt be the number of active keys at
the beginning of iteration t. Assume that the implemented algorithm has reached
the point where nt = O(n/ lg lg n). Further assume that these active elements are
gathered in an array of size O(n/ lg lg n). Then, applying the nonoptimal algorithm
of section 3 with p ≤ n/ lg lg n, and each processor being responsible for n/p lg lg n
problem instances, gives a running time of

O

(
n

p lg lg n
lg lg

(
n

lg lg n

))
= O (n/p) ,

which is work optimal.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1367

We first show that the problem size is reduced sufficiently for the application of
the nonoptimal algorithm after O(lg lg lg lgn) iterations.

Lemma 7.1. There exists t0 = O(lg lg lg lgn) such that nt0 = O(n/ lg lg n) with
n-dominant probability.

Proof. The number of active buckets decreases at a doubly exponential rate as
can be seen from Lemma 5.2. To see that the number of keys decreases at a doubly
exponential rate as well, we show that with n-dominant probability

nt ≤ 1.23n2−2aλt−1−2b1t+8/9.(40)

Inequality (32), Br ≤ 6n, clearly holds when the summation is over active buckets
only. By a convexity argument, the total number of keys in active buckets are max-
imized when all active buckets are of equal size. The number of active buckets are
bounded from above by mt. Therefore,

nt ≤ (6n)1/rm
1−1/r
t .(41)

Inequality (40) is obtained from (41) by substituting the definition (23) of mt in (23)
and then substituting numerical values for the parameters using (16) and (20).

The lemma follows by choosing an appropriate value for t0 with respect to (23)
and (40).

It remains to exhibit a work-efficient implementation of the first t0 steps of the
algorithm. This implementation outputs the active elements gathered in an array
of size O(n/ lg lg n). The rest of this section is dedicated to the description of this
implementation.

As the algorithm progresses, the number of active keys and the number of active
buckets decrease. However, the decrease in the number of active elements in different
sectors is not necessarily identical. The time of implementing one parallel step is
proportional to the number of active elements in the largest sector. It is therefore
crucial to occasionally balance the number of active elements among different sectors
in order to obtain work efficiency.

Let the load of a sector be the number of active elements (tasks) in it. A load
balancing algorithm takes as input a set of tasks arbitrarily distributed among p
sectors; using p processors it redistributes this set so that the load of each sector is
greater than the average load by at most a constant factor. Suppose that we have
a load balancing algorithm whose running time, using p processors, is Tlb(p) with
n-dominant probability. If load balancing is applied after step t, then the size of each
sector is O(nt/p).

We describe a simple work-optimal implementation in which load balancing is
applied after each of the first t0 parallel steps. A parallel step t executes in time
which is in the order of

nt
p

+ Tlb(p).

The total time of this implementation is in the order of

t0∑
t=1

(
nt
p

+ Tlb(p)

)
.

Since nt decreases at least at an exponential rate, the total time is in the order of

n

p
+ t0 Tlb(p),

1368 JOSEPH GIL AND YOSSI MATIAS

which is O(n/p) for

p = O

(
n

Tlb(p) lg lg lg lgn

)
.

Using the load balancing algorithm of [19] which runs in Tlb(p) = O(lg lg p) time, we
conclude that with n-dominant probability the running time on a p-processor machine
is

O(n/p+ lg lg p lg lg lg lgn).

The load balancing algorithm applied consumes O(p lg lg p) random bits. All these
bits are used in a random mapping step which is very similar to the allocation step
of the hashing algorithm. Thus, by an approach similar to the mapping procedure in
Lemma 6.1 it may be established that the number of random bits in the load balancing
algorithm can be reduced to O(lg p lg lg p).

We finally remark that using load balancing in a more efficient way, as described
in [22], yields a faster work-efficient implementation. This simple technique is based on
carefully choosing the appropriate times for invoking the load balancing procedure;
it applies to any algorithm in which the problem size has an exponential rate of
decrease, and it hence applies to the implementation of section 4 as well. In such an
implementation the load balancing algorithm is only used O(lg∗ n) times, resulting in
a parallel hashing algorithm that takes O(n/p + lg lgn lg∗ n) time with n-dominant
probability.

8. Model of computation. In this section we give closer attention to the details
of the implementation on a pram, and we study the type of concurrent memory
access required by our algorithm. We first present an implementation on Collision
and its extension to the weaker Tolerant model. We proceed by presenting an
implementation on the even weaker Robust model. The hash table constructed in
this implementation only supports searches in O(lg lg n) time. Finally, we examine
the concurrent read capability needed by the implementations.

8.1. Implementation on COLLISION and on TOLERANT. We describe an
implementation on Collision. This implementation is also valid for Tolerant, since
each step of Collision can be simulated in constant time on Tolerant provided
that, as it is the case here, only linear memory is used [31].

Initialization. The selection of the level-one hash function is done by a single pro-
cessor. Since the level-one function is a polynomial of a constant degree, its selection
can be done by a single processor and can be read by all processors in constant time,
using a singe memory cell of dmax {lg lg u, lg n}e bits. No concurrent write operation
is required for the implementation of this stage.

Bucket representatives. The algorithm template assumes that each bucket can
act as a single entity for some operations, e.g., selecting a random block and selecting
a random hash function. Since usually several keys belong to the same bucket, it
is necessary to coordinate the actions of the processors allocated to these keys. A
simple way of doing so is based on the fact that there are only linearly many buckets
and that a bucket is uniquely indexed by the value of f , the level-one hash function,
on its members. A processor whose index is determined by the bucket index acts as
the bucket representative and performs the actions prescribed by the algorithm to the
bucket.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1369

Allocation and hashing steps. A processor representing an active bucket selects
a memory block and a level-two hash function and records these selections in a des-
ignated cell. All processors with keys in that bucket then read that cell and use the
selected block in the hashing step. Each participating processor (whose key belongs
in an active bucket) writes its key in the cell determined by its level-two hash func-
tion and examines the cell contents to see if the write operation was successful. A
processor for which the write failed will then attempt to write its key to position i of
array ptr, where i is the number of the bucket this processor belongs to. Processors
belonging to bucket i can then learn if the level-two function selected for their bucket
is injective by reading the content of ptr[i]. A change in value or a collision symbol
indicates noninjectiveness. To complete the process, the array ptr is restored for the
next hashing attempt. This restoration can be done in constant time since this array
is of linear size.

In summary we have Proposition 8.1.
Proposition 8.1. The algorithms of Theorem 1.1 can also be implemented on

the Tolerant model.

8.2. Implementation on ROBUST. We now describe an implementation that,
at the expense of slowing down the lookup operation, makes no assumption about the
result of a concurrent write into a cell. Specifically, we present an implementation on
the Robust model for which a lookup query may take O(lg lgn) time and, for keys
in the table, the expected time is O(1).

The difficulty with the Robust model is in letting all processors in a bucket
know whether the level-two hash function of their bucket is injective or not. The
main idea in the modified implementation is in allowing iterations to proceed without
determining whether level-two hash functions are injective or not; whenever a key is
written into a memory cell in the hashing step it is deactivated, and its bucket size
decreases. The modified algorithm performs at least as well as the implementation in
which a bucket is deactivated only if all of its keys are mapped injectively. The total
memory used by the modified algorithm and the size of the representation of the hash
table do not change.

Allocation step. We first note that the algorithm can be carried out without
using bucket representatives at all. Allocation of memory blocks is done using hash
functions, as in Lemma 6.1; each processor can individually compute the index of its
memory block by evaluating the function gt. This function is selected by a designated
processor and its representation (6 lgm bits) is read in constant time by all processors.

We further modify the algorithm, so that the hashing step is carried out by
all active buckets. That is, even buckets that collided in the allocation step will
participate in the hashing step. This modification can only serve to improve the
performance of the algorithm, since even while sharing a block with another bucket the
probability that a bucket finds an injective function into that block is not zero. This
modification eliminates the concurrent memory access needed for detecting failures in
the allocation step.

Hashing step. The selection of a level-two hash function is done as in the hashing
step described in section 6. As can be seen from (39), only four global parameters
should be selected and made available to all processors; this can be done in constant
time.

It remains to eliminate the concurrent memory access required for determining if
the level-two function of any single bucket was injective. Whenever a key is success-
fully hashed by this function, it is deactivated even if other keys in the same bucket

1370 JOSEPH GIL AND YOSSI MATIAS

Let x be an active key in a bucket i = f(x). The processor assigned to x
executes the following steps.

Allocation. Compute gt(i), the index of the memory block selected for
the bucket containing x, where gt is defined by (38).

Hashing . Determine hi, the level-two hash function selected by the
bucket of x, where hi is defined by (39). Write x into cell hi(x) in
memory block gt(i) and read the contents of that cell; if x was written
then the key x becomes inactive.

Fig. 3. Implementation of iteration t in the hashing algorithm on Robust.

were not successfully hashed. Thus, keys of the same bucket may be stored in the
hash table using different level-two hash functions.

The two steps of an iteration in the hashing algorithm are summarized in Figure 3.
Lookup algorithm. The search for a key x is done as follows. Let i = f(x); for

t = 1, 2, . . . read position hi(x) in the memory block gt(i) in the appropriate array.
(All random bits that were used in the hash table construction algorithm are assumed
to be recorded and available.) The search is terminated when either x is found or
when t exceeds the number of iterations in the construction algorithm.

The lookup algorithm requires O(lg lg n) iterations in the worst case. However,
for any key x ∈ S the expected lookup time (over all the random selections made by
the hashing algorithm) is O(1).

An alternative simplified implementation. Curiously, the sequence of mod-
ifications to the algorithm described in this section has lead to a one-level hashing
scheme, i.e., to the elimination of indirect addressing. To see this, we observe that at
iteration t an active key x is written into a memory cell gt

∗(x), where the function
gt
∗(x) is dependent only on n and on the random selections made by the algorithm,

but not on the input (beyond the slight dependency of gt on detecting collisions in the
input, which does not imply indirect addressing). An even simpler implementation of
a one-level hashing algorithm is outlined next.

At each iteration t, a new array Tt of size 3Mt is used, where Mt is as defined in
(19). In addition, a function gt as defined in (38) is selected at random. A processor
representing an active key x in the iteration tries to write x into Tt[g

a
t (x)] and then

reads this cell. If x is successfully written in Tt[g
a
t (x)] then x is deactivated (and

gt(x) = gat (x)). Otherwise, this processor tries to write x into Tt[g
b
t (x)] and then

reads this cell. If x is successfully written in Tt[2Mt + gbt (x)] then x is deactivated
(and gt(x) = 2Mt+gbt (x)). Otherwise, x remains active and the processor representing
it carries on to the next iteration.

To see that the algorithm terminates in O(lg lg n) iterations with n-dominant
probability, we observe that the operation on keys in each iteration is the same as
the operation on buckets in the allocation step of section 6. Therefore, the analysis
of section 6 can be reused, substituting keys for buckets (and ignoring failures in the
hashing step of the two-level algorithm). The hash table consists of the collection
of the arrays T1, T2, . . . , and, as can be easily verified, is of linear size. A lookup
query for a given key x is executed in O(lg lg n) time by reading Tt[g

a
t (x)] and then

(if necessary) Tt[2Mt + gbt (x)] for t = 1, 2,

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1371

We note that it is difficult to detect termination on the Robust in o(lg n) time.
Therefore, the algorithm described here is of a Monte Carlo type.

8.3. Minimizing concurrent read requirements. The algorithms for con-
struction of the hash table on Tolerant can be modified to use concurrent read
from a single cell only. By allowing a preprocessing stage of O(lg n) time, concur-
rent read can be eliminated, implying that the ercw model is sufficient. With these
modifications, parallel lookups still require concurrent read, and their execution time
increases to O(lg lg n) in the worst case. Nevertheless, the expected time for lookup
of any single key x ∈ S is O(1).

There are two types of concurrent-read operations required by the modified al-
gorithm. First, the sequence of O(lg lg n) functions gt

∗ (or, alternatively, gt in the
simplified implementation) must be agreed upon by all processors. Since each of
these functions is represented by O(lg u) bits, its selection can be broadcasted at the
beginning of the iteration through the concurrent-read cell.

The single cell concurrent-read requirement for broadcasting can be eliminated
by adding an O(lg n)-time preprocessing step for the broadcasting. (This is just a
special case of simulating crcw pram by erew pram.)

The other kind of concurrent-read operation occurs when processors read a mem-
ory cell to verify that their hashing into that cell has succeeded. This operation can
be replaced by the following procedure. For each memory cell, there is a processor
standing by. Whenever a pair 〈x, j〉 is written into a cell, the processor assigned to
that cell sends an acknowledgment to processor j by writing into a memory cell j in
a designated array.

The lookup algorithm requires concurrent-read capabilities. In this sense, the
lookup operation is more demanding than the construction of the hash table. A similar
phenomenon was observed by Karp, Luby, and Meyer auf der Heide [35] in the context
of simulating a random access machine on a distributed memory machine. The main
challenge in the design of their (parallel-hashing-based) simulation algorithm was the
execution of the read step. Congestions during the execution of the write step were
resolved by attempting to write in several locations and using the first location for
which the write succeeded. It is more difficult to resolve read congestions since the
cells in which values were stored are already determined. Indeed, the read operation
constitutes the main run-time bottleneck in their algorithm.

9. Hashing of multisets. We conclude the technical discussion by briefly con-
sidering a variation of the hashing problem in which the input is a multiset rather
than a set of distinct keys. (In this case, the number of keys in the resulting table are
equal to the number of distinct keys in the input.) We first note that the analyses
of the exponential and doubly exponential rate of decrease in the problem size is not
affected by the possibility of multiple occurrences of the same key. This is a result
of relying on estimates of the number of active buckets rather than on the number
of active keys. The number of distinct keys—not the number of keys—determine the
probability of a bucket to find an injective function.

A predictable decrease in the number of active keys is essential for obtaining an
optimal speedup algorithm. Unfortunately, the analysis in section 7 with regard to the
implementation of section 5 does not hold. To understand the difficulty, consider the
case where a substantial fraction of the input consists of copies of the same key. Then
with nonnegligible probability this key may belong to a large bucket. The probability
that this bucket deactivates in the first few iterations, in which the memory blocks
are not sufficiently large, is too small to allow global decrease in the number of keys

1372 JOSEPH GIL AND YOSSI MATIAS

with high probability. Consequently, the rapid decrease in the number of buckets may
not be accompanied by a similar decrease in the number of keys.

In contrast, the nature of the analysis in section 4 makes this analysis susceptible
to an easy extension to multiple keys, which leads to an optimal speedup algorithm,
albeit with expected performance only. Using the probabilistic induction lemma all
that is required is to show that each copy of an active key has a constant positive
probability of deactivation at each iteration. Since the analysis is based on expecta-
tions only, there are no concerns regarding correlations between copies of the same
key or dependencies between different iterations. The details are left to the reader.

We also note that the model of computation required for a multiset is Collision+,
since it must be possible to distinguish between the case of multiple copies of the same
key being written into a memory cell and the case where distinct keys are written.
Also, the extensions of the hashing algorithms which only require concurrent read
from a single memory cell can be used for hashing with multiset input, but then
a Collision+ model, as opposed to Robust, must be assumed.

We finally observe that the hashing problem with a multiset as input can be
reduced into the ordinary hashing problem (in which the input consists of a set) by
a procedure known as leaders election. This procedure selects a single representative
from among all processors which share a value. By using a randomized O(lg lg n)-
time, linear-work leaders election algorithm which runs on Tolerant [23] we have
Theorem 9.1.

Theorem 9.1. Given a multiset of n keys drawn from a universe U , the hashing
problem can be solved using O(n) space: (i) in O(lg lg n) time with high probabil-
ity, using n processors, or (ii) in O(lg lg n lg∗ n) time and O(n) operations with high
probability. The algorithms run on Tolerant.

Conversely, note that any hashing algorithm, when run on Arbitrary, solves
the leaders election problem. In particular, the simple one-level hashing algorithm for
Robust, when implemented on Arbitrary with a multiset as input, gives a simple
leaders election algorithm which uses only O(n) space.

Consider now another variant of the multiset hashing problem in which a data
record is associated with each key. The natural semantics of this problem is that
multiple copies of the same key can be inserted into the hash table only if their data
records are identical. Processors representing copies of a key with conflicting data
records should terminate the computation with an error code. The Collision+ model
makes it easy enough to extend the implementations discussed above to accommodate
this variant.

A more sophisticated semantics, in which the data records should be consolidated,
requires a different treatment, e.g., by applying an integer sorting algorithm on the
hashed keys (see [38]).

10. Conclusions. We presented a novel technique of hashing by oblivious ex-
ecution. By using this technique, algorithms for constructing a perfect hash table
which are fast, simple, and efficient, were made possible. The running time obtained
is best possible in a model in which keys are only handled in their original processors.

The number of random bits consumed by the algorithm is Θ(lg lg u+ lg n lg lg n).
An open question is to close the gap between this number and the Θ(lg lg u + lg n)
random bits that are consumed in the sequential hashing algorithm of [10].

The program executed by each processor is extremely simple. Indeed, the only
coordination between processors is in computing the and function, when testing for
injectiveness. In the implementation on the Robust model, even this coordination is
eliminated.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1373

The large constants hidden under the O-notation in the analysis may render the
described implementations still far from being practical. We believe that the constants
can be substantially improved without compromising the simplicity of the algorithm
by a more careful tuning of the parameters and by tightened analysis. This may be
an interesting subject of a separate research.

The usefulness of the oblivious execution approach presented in this paper is not
limited to the hashing problem alone. We have adopted it in [23] for simulations among
submodels of the crcw pram. As in the hashing algorithm, keys are partitioned into
subsets. However, this partition is arbitrary and given in the input, and for each
subset the maximum key must be computed.

Subsequent work. The oblivious execution technique for hashing from section 3
and its implementation from section 4 were presented in preliminary form in [20].
Subsequently, our oblivious execution technique was used several times to obtain
improvements in running time of parallel hashing algorithms: Matias and Vishkin [37]
gave an O(lg∗ n lg lg∗ n) expected-time algorithm; Gil, Matias, and Vishkin [25] gave
a tighter failure probability analysis for the algorithm in [37], yielding O(lg∗ n) time
with high probability; a similar improvement (from O(lg∗ n lg lg∗ n) expected time
to O(lg∗ n) time with high probability) was described independently by Bast and
Hagerup [3].

An O(lg∗ n)-time hashing algorithm is used as a building block in a parallel dic-
tionary algorithm presented in [25]. (A parallel dictionary algorithm supports in
parallel batches of operations insert , delete, and lookup.) The oblivious execution
technique has an important role in the implementation of insertions into the dictio-
nary. The dictionary algorithm runs in O(lg∗ n) time with high probability, improving
the O(nε)-time dictionary algorithm of Dietzfelbinger and Meyer auf der Heide [12].
The dictionary algorithm can be used to obtain a space-efficient implementation of
any parallel algorithm, at the cost of a slowdown of at most O(lg∗ n) time with high
probability.

The above hashing algorithms use the log-star paradigm of [37], relying extensively
on processor reallocation, and are not as simple as the algorithm presented in this
paper. Moreover, they require a substantially larger number of random bits.

Karp, Luby, and Meyer auf der Heide [35] presented an efficient simulation of a
pram on a distributed memory machine in the doubly logarithmic time level, improv-
ing over previous simulations in the logarithmic time level. The use of a fast parallel
hashing algorithm is essential in their result; the algorithm presented here is sufficient
to obtain it.

Goldberg, Jerrum, Leighton, and Rao [27] used techniques from this paper to
obtain an O(h + lg lgn) randomized algorithm for the h-relation problem on the
optical communication parallel computer model.

Gibbons, Matias, and Ramachandran [17] adapted the algorithm presented here to
obtain a low-contention parallel hashing algorithm for the qrqw pram model [18]; this
implies an efficient hashing algorithm on Valiant’s bsp model and hence on hypercube-
type noncombining networks [43].

Acknowledgments. We thank Martin Dietzfelbinger and Faith E. Fich for pro-
viding helpful comments. We also wish to thank Uzi Vishkin and Avi Wigderson
for early discussions. Part of this research was done during visits of the first author
to AT&T Bell Laboratories, and of the second author to the University of British
Columbia. We would like to thank these institutions for supporting these visits. Many
valuable comments made by two anonymous referees are gratefully acknowledged.

1374 JOSEPH GIL AND YOSSI MATIAS

REFERENCES

[1] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., New York,
1991.

[2] A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin, Parallel con-
struction of a suffix tree, Algorithmica, 3 (1988), pp. 347–365.

[3] H. Bast and T. Hagerup, Fast and reliable parallel hashing, in 3rd Annual ACM Symposium
on Parallel Algorithms and Architectures, July 1991, pp. 50–61.

[4] P. Beame and J. Håstad, Optimal bounds for decision problems on the CRCW PRAM, J. As-
soc. Comput. Mach., 36 (1989), pp. 643–670.

[5] P. C. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik, and S. Saxena, Improved
deterministic parallel integer sorting, Inform. and Comput., 94 (1991), pp. 29–47.

[6] R. B. Boppana, Optimal separations between concurrent-write parallel machines, in Proc. 21st
Annual ACM Symposium on Theory of Computing, 1989, pp. 320–326.

[7] L. J. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput. System
Sci., 18 (1979), pp. 143–154.

[8] B. S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New simulations between CRCW
PRAMs, in Proc. 7th International Conference on Fundamentals of Computation Theory,
Lecture Notes in Comput. Sci. LNCS 380, Springer, New York, 1989, pp. 95–104.

[9] B. Chor and O. Goldreich, On the power of two-point based sampling, J. Complexity, 5
(1989), pp. 96–106.

[10] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, Polynomial hash functions are re-
liable, in Proc. 19th International Colloquium on Automata Languages and Programming,
Lecture Notes in Comput. Sci. 623, Springer, New York, July 1992, pp. 235–246.

[11] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan, Dynamic perfect hashing: Upper and lower bounds, SIAM J. Comput.,
23 (1994), pp. 738–761.

[12] M. Dietzfelbinger and F. Meyer auf der Heide, An optimal parallel dictionary, in 1st
Annual ACM Symposium on Parallel Algorithms and Architectures, 1989, pp. 360–368.

[13] M. Dietzfelbinger and F. Meyer auf der Heide, A new universal class of hash functions
and dynamic hashing in real time, in Proc. 17th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Comput. Sci. 443, Springer, New York,
1990, pp. 6–19.

[14] F. E. Fich, P. L. Ragde, and A. Wigderson, Relations between concurrent-write models of
parallel computation, SIAM J. Comput., 17 (1988), pp. 606–627.

[15] M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with O(1) worst case
access time, J. Assoc. Comput. Mach., 31 (1984), pp. 538–544.

[16] Z. Galil and R. Giancarlo, Data structures and algorithms for approximate string matching,
J. Complexity, 4 (1988), pp. 33–72.

[17] P. B. Gibbons, Y. Matias, and V. L. Ramachandran, Efficient low-contention parallel al-
gorithms, in 6th Annual ACM Symposium on Parallel Algorithms and Architectures, June
1994, pp. 236–247.

[18] P. B. Gibbons, Y. Matias, and V. L. Ramachandran, The QRQW PRAM: Accounting for
contention in parallel algorithms, in Proc. 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, Jan. 1994, pp. 638–648.

[19] J. Gil, Fast load balancing on a PRAM, in Proc. 3rd IEEE Symposium on Parallel and Dis-
tributed Computing, Dec. 1991, pp. 10–17.

[20] J. Gil and Y. Matias, Fast hashing on a PRAM—Designing by expectation, in Proc. 2nd
Annual ACM-SIAM Symposium on Discrete Algorithms, Jan. 1991, pp. 271–280.

[21] J. Gil and Y. Matias, Designing algorithms by expectations, Inform. Process. Lett., 51 (1994),
pp. 31–34.

[22] J. Gil and Y. Matias, An effective load balancing policy for geometric decaying algorithms,
J. Parallel and Distributed Computing, 36 (1996), pp. 185–188.

[23] J. Gil and Y. Matias, Fast and efficient simulations among CRCW PRAMs, J. Parallel and
Distributed Computing, 23 (1994), pp. 135–148.

[24] J. Gil and Y. Matias, Simple fast parallel hashing, in Proc. 21st International Colloquium
on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 820, Springer,
New York, 1994, pp. 239–250.

[25] J. Gil, Y. Matias, and U. Vishkin, Towards a theory of nearly constant time parallel algo-
rithms, in Proc. 32nd IEEE Annual Symposium on Foundation of Computer Science, Oct.
1991, pp. 698–710.

[26] J. Gil, F. Meyer auf der Heide, and A. Wigderson, The tree model for hashing: Lower
and upper bounds, SIAM J. Comput., 25 (1996), pp. 936–955.

SIMPLE FAST PARALLEL HASHING BY OBLIVIOUS EXECUTION 1375

[27] L. A. Goldberg, M. Jerrum, F. T. Leighton, and S. B. Rao, Doubly logarithmic com-
munication algorithms for optical communication parallel computers, in 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1993, pp. 300–309.

[28] L. M. Goldschlager, A universal interconnection pattern for parallel computers, J. Assoc.
Comput. Mach., 29 (1982), pp. 1073–1086.

[29] M. T. Goodrich, Y. Matias, and U. Vishkin, Optimal parallel approximation algorithms for
prefix sums and integer sorting, in Proc. 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, Jan. 1994, pp. 241–250.

[30] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison–Wesley,
Reading, MA, May 1989.

[31] V. Grolmusz and P. L. Ragde, Incomparability in parallel computation, Discrete Appl. Math.,
29 (1990), pp. 63–78.

[32] T. Hagerup, Towards optimal parallel bucket sorting, Inform. and Comput., 75 (1987), pp. 39–
51.

[33] T. Hagerup and T. Radzik, Every robust CRCW PRAM can efficiently simulate a Priority
PRAM, in 2nd Annual ACM Symposium on Parallel Algorithms and Architectures, 1990,
pp. 117–124.

[34] J. JáJá, Introduction to Parallel Algorithms, Addison–Wesley, Reading, MA, 1992.
[35] R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a

distributed memory machine, in Proc. 24th Annual ACM Symposium on Theory of Com-
puting, 1992, pp. 318–326.

[36] D. E. Knuth, Sorting and Searching, vol. 3, Addison–Wesley, Reading, MA, 1973.
[37] Y. Matias and U. Vishkin, Converting high probability into nearly-constant time—with ap-

plications to parallel hashing, in Proc. 23rd Annual ACM Symposium on Theory of Com-
puting, May 1991, pp. 307–316.

[38] Y. Matias and U. Vishkin, On parallel hashing and integer sorting, J. Algorithms, 12 (1991),
pp. 573–606.

[39] K. Mehlhorn, Data Structures and Algorithms I: Sorting and Searching, Springer-Verlag,
Berlin, Heidelberg, 1984.

[40] K. Mehlhorn and A. Tsakalidis, Data structures, in Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., vol. A, North–Holland, Amsterdam, 1990, pp. 301–341.

[41] Y. Shiloach and U. Vishkin, An O(lgn) parallel connectivity algorithm, J. Algorithms, 3
(1982), pp. 57–67.

[42] A. Siegel, On universal classes of fast high performance hash functions, their time-space
tradeoff, and their applications, in Proc. 30th IEEE Annual Symposium on Foundation of
Computer Science, 1989, pp. 20–25.

[43] L. G. Valiant, General purpose parallel architectures, in Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., vol. A, Elsevier Science Publishers B.V., Amsterdam, 1990,
pp. 944–971.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS∗

MARIANGIOLA DEZANI-CIANCAGLINI† , UGO DE’LIGUORO† , AND ADOLFO PIPERNO‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1376–1419, October 1998 010

Abstract. Type-free lazy λ-calculus is enriched with angelic parallelism and demonic nondeter-
minism. Call-by-name and call-by-value abstractions are considered and the operational semantics
is stated in terms of a must convergence predicate. We introduce a type assignment system with
intersection and union types, and we prove that the induced logical semantics is fully abstract.

Key words. λ-calculus, parallelism, nondeterminism, full abstraction, functional programming,
concurrency

AMS subject classifications. 03B15, 03B40, 03G10, 68N15, 68Q10, 68Q42, 68Q55

PII. S0097539794275860

1. Introduction. Powerful computer architectures make parallelism and con-
currency feasible. To exploit these features in existing high-level programming lan-
guages, while retaining abstraction and logical clarity in writing programs, it is natural
to extend those languages by new concepts and constructs. In particular, much work
has been done to accommodate parallel and concurrency primitives inside functional
programming languages like CML [60] and FACILE [28] (see [29] for further work in
the area and for references).

This extension gives rise to the problem of introducing nonfunctional features
in the functional framework. To illustrate this, let us consider parallelism first. If
the parallel construct is a control primitive which allows the programmer to force
the parallel evaluation of two or more arguments to be passed to a function, then
the treatment of divergence (and the value passing mechanism) becomes much more
complex. For example, a binary function may be undefined if both its arguments are
undefined, without being strict in either the first or the second argument. A typical
example is Scott’s parallel-or function (see [62, p. 437]), the binary partial function
of booleans that returns true if at least one of its arguments is defined and equal to
true, and returns false if both arguments are defined and equal to false.

The parallel-or can be further analyzed as an example of parallel composition of
compatible sequential functions. Indeed, let

Lor ≡ λxy. if x then true else y fi, Ror ≡ λxy. if y then true else x fi

be the left-sequential and the right-sequential or, respectively. Then these functions
are compatible, since, in the pointwise ordering induced by the flat domain of booleans,
they have an upper bound (actually a join) which is the parallel-or function itself. On
the other hand, if they can be computed in parallel, returning as soon as either the
computation of Lor or the computation of Ror stops, then we have an implementation
of the parallel-or function.

∗ Received by the editors October 19, 1994; accepted for publication (in revised form) July 31,
1996; published electronically May 19, 1998. This work has been partially supported by grants from
ESPRIT-BRA 7232 GENTZEN and from CNR-GNASAGA. A preliminary version of this paper
appeared in Proceedings of TACS’94, Lecture Notes in Comput. Sci. 789, Springer-Verlag, New
York, 1994, pp. 16–35.

http://www.siam.org/journals/sicomp/27-5/27586.html
† Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy

(dezani@di.unito.it, deligu@di.unito.it).
‡ Dipartimento di Scienze dell’Informazione, Università di Roma “La Sapienza,” Via Salaria 113,

00198 Roma, Italy (piperno@dsi.uniroma1.it).

1376

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1377

If parallel composition is a binary operator that can be applied to any pair of
functions—not necessarily compatible—then the same evaluation mechanism is a non-
deterministic device that can be modeled as a multivalued function. An example is
McCarthy’s amb function [47]. This kind of multivalued function has been widely con-
sidered in the literature. In the folklore this form of nondeterminism is called angelic
nondeterminism (and credited to Hoare) because of its behavior with respect to diver-
gence: a parallel composition is convergent if at least one of its operands converges.
In terms of Dijkstra’s correctness criteria, this corresponds to partial correctness.

Concurrency has been added to functional languages using CCS- or CSP-like
synchronization and communication primitives. In both cases the interaction with the
environment introduces a different form of nondeterminism, as unpredictable events
may affect the behavior of the system. In particular, nondeterminism comes in when
a choice occurs among guarded commands having the same guard (see [38]).

This nondeterminism has been modeled using internal choice operators, which
are correctly considered as abstraction or specification tools. Indeed, no programmer
may wish to use internal choice to control the evaluation of a program; it has to be
thought of instead as a declaration, saying that, whatever the actual alternative will
be, the program still satisfies the correctness requirements. Of course, the criterion
is that of total correctness, so that, with respect to divergence, an internal choice is
divergent as soon as one of its operands diverges. In folkloric terms, this is demonic
nondeterminism. A survey about nondeterminism in functional languages can be
found in [65].

When facing these theoretical problems a primary point is to choose the abstrac-
tion level of the investigation. One may take a very abstract view and consider them
as multifunctions, or, equivalently, functions over powerdomains. This study has been
pioneered by Plotkin in [58] and pursued by several authors (see [66] and, for a sur-
vey, [46]). Here continuity is the only aspect of computation which is retained in the
theory, the main point being the treatment of divergence.

An alternative and quite concrete approach is to model functionality, concur-
rency, and parallelism by syntactical tools. This amounts to design theoretical lan-
guages that formalize essentially all aspects of the computation and interaction, so
that actual programming languages can be seen as sugared syntax of the former ones.
In this case the languages and the related calculi are inspired on one hand by the
λ-calculus, both typed and type-free, and on the other hand by the process calculi
(CCS, CSP, ACP, etc.). In exploiting the “concrete” approach, there are at least two
main streams. Following the first, functions and processes are first-class objects. The
resulting calculus can either be seen as a λ-calculus with processes as possible argu-
ments of functions (as in Nielson’s TPL [53]) or as a process algebra with a special
form of communication, generalizing the β-reduction of the λ-calculus (as in Thom-
sen’s CHOCS [67, 34, 35]). The second stream does not allow processes as arguments
of functions: instead, channels (or port names) have a first-class status and can be
sent as values (see, e.g., [11]). The most radical step in this direction is to think of
processes just as agents that communicate each others’ channel names as values. In
this way processes are virtually passed by sending the name of a (private) channel to
the receiver, thus giving access to the “passed” process: this is Milner’s π-calculus [51].
In the latter case, functions and functional application disappear from the calculus
syntax, and they are simulated in a rather complex way.

In this paper we advocate a third approach to the problem of the mathematical
study of relevant aspects of concurrent functional languages, which, in some sense,

1378 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

sits in between the abstract denotational method and the concrete, direct description
of interaction and communication. In this case one still considers a formal language
together with its operational semantics. The latter gives an essential (and effective)
description of the evaluation of expressions in the language. The main departure from
the concrete approach, however, is the abstraction from communication, concentrating
on a syntax which represents different kinds of nondeterminism by means of different
operators, whose behavior is axiomatically described by the rules of the operational
semantics.

In this perspective the interaction between functionality and nondeterminism has
been studied both in the algebraic framework of rewriting [18, 31, 32, 2], where no
abstraction operator is present, and in the λ-calculus framework, either typed [9, 10,
64] or type-free [19, 45, 25, 56, 26, 8].

1.1. Angelic nondeterminism. Our study confronts various problems that
had their origin in the theory of functional languages and λ-calculus. In [59] Plotkin
showed that Scott continuous functions over domains are overabounding to give mean-
ing to the sequential functional language that has been called PCF (a simply typed
λ-calculus with arithmetical constants, booleans, if-then-else, and fixed-point oper-
ator). To be precise, he considered the following notion of operational equivalence.
Two terms, M and N , of the same type are operationally equivalent if and only if, for
all contexts C[] of ground type such that both C[M] and C[N] are well-typed closed
terms, either the evaluations of C[M] and C[N] do not terminate (converge), or both
terminate and give the same result. It turns out that, if two terms have the same de-
notation in the standard model (in which ground types are flat cpo’s and arrow types
are interpreted as spaces of Scott continuous functions) then they are operationally
equivalent (adequacy theorem); but the converse (full abstraction) does not hold.

In the same paper Plotkin proved that syntax can be reasonably enriched to get
full abstraction, and that this can be achieved by using a suitable kind of parallel
operator or combinator. Milner proved in [49] that this is also a necessary condition:
any model of PCF is fully abstract if and only if all “finite” objects in the model are
definable. Conversely, the standard model becomes fully abstract if we endow the
calculus with operators that reinforce its expressive power such that it satisfies the
Milner definability requirement.

The same incompleteness phenomenon with respect to standard continuous se-
mantics has been found for the lazy λ-calculus in [6]. This is a type-free calculus,
having the same syntax of pure λ-calculus and a reduction relation over closed terms,
with just two rules:

(λx.M)N −→M [N/x] and
M −→M ′

MN −→M ′N
.

The full abstraction problem can be reformulated in this setting, even if we do not
have the notion of ground type. Indeed, Abramsky and Ong [6] define the set Val of
values as the set of abstractions. Then their notion of may convergence is: M may
converge to V , written M ⇓may V , if V is a value and M−→∗V . In [6] the operational
semantics is given by axiomatizing M ⇓may V , instead of giving the reduction relation
as a primitive notion; of course, this is equivalent.

As a matter of fact, the problem of enriching the calculus so that the standard
model is fully abstract can be solved by adding a combinator P testing convergence
in parallel. More precisely, P satisfies

[∃V, M ⇓may V or N ⇓may V] ⇒ PMN ⇓may I,

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1379

where I ≡ λx.x is the identity combinator. This gives a combinator which tests
convergence, i.e., a closed term C such that, for any term M , CM reduces to I if M

reduces to a value and diverges otherwise; just take C
Def
= λx.Pxx.

In [19] a further step is made by Boudol. The combinator P is split into its two
components, namely, parallelism and convergence test. The parallelism implicit in P
is made explicit by adding a binary operator ‖ such that

M‖N ⇓may ⇔ M ⇓may or N ⇓may,

where M ⇓may abbreviates ∃V, M ⇓may V . To have this, with the above definition of
convergence, the following rules suffice:

M −→M ′

M‖N −→M ′‖N and
N −→ N ′

M‖N −→M‖N ′ .

As the intended meaning of a parallel composition is a function, Boudol adds the
following rule:

(M‖N)L −→ (ML)‖(NL).

The internal convergence test is achieved using, besides standard call-by-name
abstraction, call-by-value abstraction, originally considered by Landin [41] and Plotkin
[57]. To see how this works, let us extend the set Val of values inductively so that it
includes all terms of the shape V ‖N or M‖V , where V is a value. We use two sorts of
variables to distinguish between call-by-value and call-by-name abstraction, namely,
v, w, . . . for call-by-value variables and x, y, . . . for call-by-name variables. Then we
add to the lazy λ-calculus and to the rules for ‖, the following rules:

(λv.M)V −→M [V/v] if V ∈ Val,
N −→ N ′

(λv.M)N −→ (λv.M)N ′ if N 6∈ Val.

Now P becomes definable by λxy. (λv.I)(x‖y).
We observe that the combination of parallelism (angelic nondeterminism) and

call-by-value is much more powerful than the use of combinators directly defining a
parallel convergence test. First, the notion of being a value is no more equivalent
to that of being irreducible. Moreover, as remarked in the early paragraphs of this
introduction, M‖N has to be interpreted as a multivalued function, since M and N
are not necessarily interpreted by compatible functions. So the model of [19] is a
solution of the domain equation D = P[([D → D]⊥), where [D → D]⊥ is the lifted
space of continuous functions, and P[is the lower powerdomain functor (also called
Hoare’s powerdomain; see [66] for a definition). Since Boudol works in the category
of prime algebraic lattices, he has this solution for free. In fact, in that category
D ' P[(KP(D)), where KP(D) is the set of compact coprime elements of D. Let
us recall that a complete lattice is a partial order (D,v) such that each subset X
of D has a least upperbound

⊔
X. An element d of a complete lattice is compact if

d v ⊔X implies d v ⊔Y for some finite subset Y of X. An element d ∈ D is coprime
if and only if d v x t y implies d v x or d v y. A complete lattice is prime algebraic
if any element is the join of the compact coprime elements it dominates. See also the
discussion at the beginning of section 4.

1380 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

1.2. Demonic nondeterminism. Serious problems arise when we consider the
full language, modeling also the demonic nondeterminism (see [55, 56]), which is the
central issue of the present paper. Suppose that an internal choice operator + is
added, with the obvious reduction rules

M +N −→M and M +N −→ N.

Then, following ideas explained above (see also [45]), we expect a convergence predi-
cate ⇓ such that

M +N ⇓ ⇔ M ⇓ and N ⇓ .
But this is not true with the present definition of ⇓may.

The convergence predicate considered above (and in [19]) is a may convergence
predicate, to be related to may testing equivalence if convergence is the only observable
property (see [3, 33, 6]). A solution would be to consider a must convergence predicate
as in [45] (see also [35]). An informal definition is the following: M ⇓must if and only
if there is an n such that every reduction out of M reaches a value within a number
of steps bounded by n. Otherwise we write M ⇑must.

Of course, if we have to avoid the collapse of ‖ and + with respect to the predicate
⇓must, something has to be changed in the operational semantics of ‖. In fact, with
the old definition of ‖-reduction rules, if we put, for example, ∆ ≡ λx.xx and we
take the typical divergent combinator Ω ≡ ∆∆, then we have that (II)‖Ω⇑must. The
problem is that nothing prevents the reduction of a parallel composition from being
unfair: there exists a reduction out of (II)‖Ω that contracts Ω infinitely many times
and never reaches the value I‖Ω. Really, we want to identify I‖Ω with I, since ‖ is
intended to take the best of its arguments; notice that the above-mentioned terms are
not equivalent in a standard must semantics (see [24]), when the parallel operator is
asynchronous.

There are many possibilities for changing the reduction rules for ‖ in such a way
that we cannot reduce infinitely many times on one side of a parallel composition,
when the other one is reducible. We take the simplest way to get this kind of fair
reduction and we introduce the rules

M −→M ′ N −→ N ′

M‖N −→M ′‖N ′ ,
M −→M ′ N 6−→

M‖N −→M ′‖N, N‖M −→ N‖M ′

as our actual choice (see [25]), where N 6−→ means that N is irreducible.
This implies that, as in [19], a value of the shape V ‖M is not necessarily a

normal form, as M can be reduced. This fact, together with the presence of the
choice operator, makes the β-rule for call-by-value sensible to the relative speed of
parallel evaluations of its arguments.

To illustrate this, let us consider the context C[] ≡ (λv.vv)[]ΩI and the values
V ≡ I‖(K + O), V ′ ≡ I‖K, and V ′′ ≡ I‖O, where K ≡ λxy.x and O ≡ λxy.y. Then

V −→ V ′ and V −→ V ′′. Now (writing
n−→ for n > 1 reduction steps)

C[V ′] −→ (I‖K)(I‖K)ΩI
3−→ (I(I‖K)ΩI)‖(K(I‖K)ΩI)
−→ ((I‖K)ΩI)‖((λy.(I‖K))ΩI)
−→ ((IΩ‖KΩ)I)‖((I‖K)I)
−→ (IΩI)‖(KΩI)‖(II)‖(KI)
−→ (ΩI)‖((λy.Ω)I)‖I‖(λy.I)
−→ (ΩI)‖Ω‖I‖(λy.I),

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1381

which is a value, and it is not hard to see that this is the only reduction out of C[V ′]
according to the rules defined in Definition 2.2. Similarly,

C[V ′′] −→ (I‖O)(I‖O)ΩI
−→∗ (ΩI)‖I‖(ΩI),

and again this is the only reduction out of C[V ′′]. But now consider the following
reduction of C[V]:

C[V] −→ (I‖(K + O))(I‖(K + O))ΩI
3−→ (I(I‖(K + O))ΩI)‖((K + O)(I‖(K + O))ΩI)
−→ ((I‖(K + O))ΩI)‖(O(I‖(K + O))ΩI) choosing O . . .

2−→ (IΩI)‖((K + O)ΩI)‖(ΩI)
−→ (ΩI)‖(KΩI)‖(ΩI) . . . choosing K
−→ (ΩI)‖Ω‖(ΩI),

and from (ΩI)‖Ω‖(ΩI) we will never reach a value.
This example also shows that there are values V0, V1, and V2 such that V0‖(V1+V2)

and (V0‖V1) + (V0‖V2) would have different behaviors in some context, although this
would be unexpected under any reasonable operational semantics. (λv.vv)(V0‖(V1 +
V2)) can indeed reduce to (V0‖(V1 + V2))(V0‖(V1 + V2)), while (λv.vv)((V0‖V1) +
(V0‖V2)) can reduce either to (V0‖V1)(V0‖V1) or to (V0‖V2)(V0‖V2), but never to
(V0‖(V1 + V2))(V0‖(V1 + V2)). Note that in the present context call-by-name and
call-by-value implement run-time-choice and call-time-choice, respectively (see [45]).

The problem of correcting the β-contraction rule for call-by-value is that, given
a value V , we cannot decide whether it has been computed enough to perform the
reduction step (λv.M)V −→M [V/v], or if it is necessary to reduce V further, before
contracting the outermost β-redex. We cannot reduce V as long as possible, since
this could not terminate. In the meantime, M [V/v] can diverge while M [V ′/v] can
converge for all V ′ which are reducts of V , as shown by the previous example. On the
other hand, any effective description of the operational semantics calls for a definition
of a recursive one-step reduction relation.

Now the solution we propose is to distinguish two cases: if V is an irreducible
value (namely a λ-abstraction or the parallel composition of irreducible values), then
the standard call-by-value β-contraction rule applies. If, instead, V can be reduced
further, to compute (λv.M)V we want to “take the best” between the terms M [V ′/v],
for all V ′ such that V−→∗V ′. We realize this by evaluating in parallel M [V/v] and
(λv.M)V ′ for all V ′ such that V−→V ′. Using the operator ‖, this can be formalized
in our calculus as follows:

V 6−→ V ∈ Val

(λv.M)V −→M [V/v]
,

V −→ V ′ V ∈ Val

(λv.M)V −→M [V/v]‖(λv.M)V ′
.

In other words, the solution we propose is to distinguish between total and partial
values. A total value is an irreducible value, while a partial value is of the form M‖N
in which either M or N is not a total value. So we split the call-by-value β-contraction
in two rules.

To conclude this part of our discussion, let us emphasize the effectiveness of the
evaluation mechanism as a distinguishing feature of our calculus. As is clear from the
previous exposition, the papers closest to the present one are [19] and [55].1 While our

1 Following Ong’s paper we named our calculus concurrent λ-calculus.

1382 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

treatment improves on the former because of the presence in the same calculus of both
angelic and demonic nondeterminism, it improves on the latter since the operational
semantics on which we base our theory is effective. Indeed, the reduction relation
is (as usual) presented by means of a formal system in the sense of Post, and the
convergence predicate is (up to coding) recursively enumerable. This is mandatory
when one expects to capture the intentional aspects of evaluation and justifies our
reduction relation as it will be defined in the technical development of the paper.

1.3. Intersection and union types. The complex operational semantics of the
concurrent λ-calculus asks for an abstract treatment not involving direct reasoning
on possible reducts of a given term. The approach taken in this paper is to use a type
assignment system that sufficiently expresses the operational equivalence of terms.
We expect that M and N have exactly the same types when they have the same
behavior in any context: this is a fully abstract “logical” semantics in the sense of
[63], [16], and [5].

To this aim, we use a system with intersection and union types, dually reflecting
the disjunctive and conjunctive operational semantics of ‖ and +. Types are viewed
as properties of terms concerning their behavior with respect to the convergence pred-
icate and type inclusion as the logical implication. The system has a universal type
ω, the property which always holds; therefore, any type will be less than ω. As usual
with type assignment systems for polymorphic λ-calculi, the arrow type expresses
functionality: M has type σ → τ if, for all N having type σ, MN has type τ . With
respect to the order, the arrow is covariant in the second argument and contravariant
in the first argument. Finally, σ ∧ τ and σ ∨ τ have a conjunctive and disjunctive
meaning, respectively.

The lazy semantics distinguishes between functions (even the everywhere unde-
fined function) and the undefined object, representing divergence. This means that
the interpretation of the term λx.Ω is better than the interpretation of Ω. These
terms, instead, are equated in the theory of solvability of the classical λ-calculus [15].
On the side of types, this distinction is modeled by making the inclusion ω → ω ≤ ω
proper. As a matter of fact, among the axioms in [16] concerning the arrow, we
save σ → ω ≤ ω → ω, which makes ω → ω the type of all functions, but we reject
ω ≤ ω → ω, which would equate the interpretations of the terms Ω and λx.Ω (see
Corollary 5.6(ii)).

We now turn to the typing rules for nondeterministic and parallel operators. We
know that the term M + N can be reduced to both M and N , so that to ensure
correctness we have to prove that both M and N have the same type σ before we
can conclude that M + N has type σ (this is also the choice of [1]). Extending
the disjunctive semantics of the parallel composition from convergence to arbitrary
properties, it follows that one is entitled to type M‖N with σ as soon as M or N
(or both) can be typed with σ (see [19] for further explanations). This suggests the
following typing rules:

Γ `M : σ Γ ` N : σ

Γ `M +N : σ
,

Γ `M : σ

Γ `M‖N : σ
,

Γ ` N : σ

Γ `M‖N : σ
.

The inclusion relation ≤ among types makes ∧ into the meet and ∨ into the join, and
we have both a subtyping and an intersection rule, namely,

Γ `M : σ σ ≤ τ

Γ `M : τ
,

Γ `M : σ Γ `M : τ

Γ `M : σ ∧ τ .

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1383

Therefore, the rules for + and ‖ above are equivalent to

Γ `M : σ Γ ` N : τ

Γ `M +N : σ ∨ τ ,
Γ `M : σ Γ ` N : τ

Γ `M‖N : σ ∧ τ ,

which is our actual choice.
If M has type σ ∨ τ then it can be that M evaluates to both some P and some Q

such that P has type σ and Q has type τ , but neither P has type τ nor Q has type
σ. In this case, M has an essentially disjunctive type, which is possible even if M is
a partial value. But all is determined in the case of total values. So we expect the
system to have the “disjunction property” for total values: if a total value has the
type σ ∨ τ , then either σ or τ can be assigned to it (hence to all its reducts).

Consequently, we distinguish between call-by-name and call-by-value abstraction,
making a substantial use of disjunction. This intuitively explains why the rule

Γ ` λv.M : (σ → ρ) ∧ (τ → ρ)

Γ ` λv.M : σ ∨ τ → ρ

is correct for call-by-value but not for call-by-name abstraction. Observe that this
means that call-by-value abstraction yields a co-additive function (namely, meet pre-
serving), which is the expected semantics of call-by-value in our setting.

As an example, if M ≡ (xIΩ)‖(xΩI), ρ ≡ ω → ω, σ ≡ ρ → ω → ρ, τ ≡ ω →
ρ → ρ, then we have that ` λx.M : (σ → ρ) ∧ (τ → ρ). Moreover, ` K:σ and
` O: τ , so that allowing the rule above for call-by-name abstraction, one could deduce
(λx.M)(K + O): ρ, using the rules for + introduction and → elimination, too. But
this would destroy the subject-reduction property, since (λx.M)(K + O) reduces to
Ω‖Ω, for which only types equivalent to ω can be deduced (see Corollary 5.6(ii)).

The type assignment system implicitly suggests a notion of interpretation in which
each term can be seen as denoting the set of types it can be assigned. Then one can
think of extending the notion of filter models such that they encompass the present
calculus and union types.

Filter models were introduced in [16] for the classical λ-calculus and they were
based on the intersection-type discipline. In that case, however, discovering that filters
of types do actually form a structure (a λ-model) was based on the pre-existing and
independent definition of this kind of mathematical structure (see [37, 48]). Here the
problem is the opposite: given the logical interpretation induced by our system, we
look for a reasonable definition of what is a model of our calculus.

In the extended view of Curry types (see [16, 21]), type theories are an instance
of information systems (see [63, 23]). Taking filters of types, we have a domain that,
seen topologically, is the Stone space generated by the theory of type inclusion (see
[40, 5]). In the present case the domain that is determined by the type theory we
consider is isomorphic to the initial solution of the domain equation D = P]([D →
D]⊥) in the category of continuous lattices, where P] is the upper powerdomain
functor (also called Smyth’s powerdomain; see [66]). This is sound with respect to
the operational semantics since this powerdomain constructor is needed to model
demonic nondeterminism, as angelic nondeterminism is built in, by the fact that we
work with prime algebraic lattices (as remarked at the end of subsection 1.1). This
domain equation, and their relations to Abramsky and Boudol equations [5, 19], will
be discussed further at the beginning of section 4.

We do not carry out the details of the isomorphism between the filter model and
the initial solution of the given domain equation, for which we refer to [7]. Instead, we

1384 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

analyze compositionally the interpretation of terms defined by [[M]] = {σ | ` M : σ}
(where M is closed), and devise a category of objects that embodies the minimum
needed structure to interpret the calculus. We then get a notion of environment
model for the present calculus, in the sense of [37]. The filter model induced by our
type assignment turns out to fit into this notion, a fact that will be used to prove
completeness of type inference.

Our study culminates in the full abstraction theorem, which we will prove by
means of characteristic terms extending [19].

1.4. Summary. In section 2 we formally define the concurrent λ-calculus and
its reduction rules. We consider the reduction trees of terms to introduce conver-
gence. Moreover, we consider another reduction relation, whose main feature is to
characterize convergent terms as those which reduce to a sum of values.

Section 3 deals with types and the type assignment system. The choice of the
preorder on types, which will determine the topological structure of the filter model,
is crucial. The type assignment system turns out to enjoy structural properties which
allow us to prove preservation of type under subject reduction. The main result of
this section is that all convergent terms can be typed by ω → ω.

Section 4 presents the filter model as the initial solution of a suitable domain
equation. Then we introduce the notion of environment model for concurrent λ-
calculus and we prove that the filter model is in fact an environment model. This
allows us to have the completeness of type assignment.

Finally, we prove in section 5 the full abstraction of the filter model. First we
define for each type a test term and a characteristic term. The application of the test
term to an argument M converges only if M has the corresponding type. By means
of a realizability interpretation of types we show that all terms typed by ω → ω
converge. This, together with the main result of section 3, implies that ω → ω
completely characterizes convergence. Then the full abstraction of the model follows
easily.

2. The calculus and its operational semantics. We extend the syntax of
pure λ-calculus with a non-deterministic choice operator + and a parallel operator ‖.
We use two sorts of variables, namely, the set Vn of call-by-name variables, ranged
over by x, y, z, and the set Vv of call-by-value variables, ranged over by v, w. The
symbol χ will range over the set Vn∪Vv. The terms of the concurrent λ-calculus are
defined by the following grammar:

M ::= x | v | (λx.M) | (λv.M) | (MM) | (M +M) | (M‖M).

We call Λ+‖ the set of terms. For any M ∈ Λ+‖, FV (M) denotes the set of free
variables of M and Λ0

+‖ is the set of terms M such that FV (M) = ∅. Moreover, we
shall refer to the following set:

Par = {(M‖N) |M,N ∈ Λ+‖}.

Notation. We use ≡ for syntactical equality up to renaming of bound variables.
As usual for pure λ-calculus, we assume that application associates to the left, and
we write, e.g., MNP instead of ((MN)P). If ~L ≡ L1 . . . Ln is any (possibly empty)

vector of terms, then M~L ≡ ML1 . . . Ln. The expression λχ1 . . . χn.M is short for
(λχ1.(. . . (λχn.M) . . .)).

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1385

We will abbreviate some λ-terms as follows:

I
Def
= λx.x, K

Def
= λxy.x, O

Def
= λxy.y,

∆
Def
= λx.xx, Ω

Def
= ∆∆, Y

Def
= λy.(λx.y(xx))(λx.y(xx)).

Application and abstraction have precedence over + and ‖; e.g., MN + P stands for
((MN) + P), and λx.M + N , for ((λx.M) + N). The operator ‖ takes precedence
over +; for example, M‖P + Q is short for ((M‖P) + Q). External parentheses are
always omitted.

The operators + and ‖ will be written up to associativity. We shall also make
use of the following abbreviation:

n∑
i=1

Mi ≡M1 + · · ·+Mn.

Moreover, if M = {M1, . . . ,Mn} is any finite multiset of terms then

∑
M≡

n∑
i=1

Mi.

Observe that, M being a multiset, it can be the case that Mi ≡ Mj for different i
and j.

As discussed in the introduction, we need to distinguish between partial and total
values; the main difference concerns the parallel operator. In fact, we require both
M and N to be total values to ensure that M‖N is a total value, while in general it
suffices that either M or N be a value for M‖N to be a value. As is clear from the
next definition, a value is either a total or a partial value.

Definition 2.1. We define the set Val of values according to the grammar

V ::= v | λx.M | λv.M | V ‖M |M‖V

and the set TVal of total values as the subset of Val:

W ::= v | λx.M | λv.M |W‖W .

A value V is partial if and only if V 6∈ TVal.

We now introduce a reduction relation which is intended to formalize the expected
behavior of a machine which evaluates parallel compositions in a synchronous way
until a value is produced. Partial values can be further evaluated, and this is essential
in the case of an application of a call-by-value abstraction. Therefore, in some cases
an asynchronous evaluation of parallel composition is permitted.

It follows that the convergence predicate will not be any more coincident with
the property of being (strongly) normalizable (see [19] for a similar proposal, even if
in a may perspective) with respect to the given reduction relation. Observe that in
the lazy λ-calculus of [6], as well as in the present calculus, λχ.M is a normal form,
no matter whether M is reducible or not.

Definition 2.2.

(i) The reduction relation −→ is the least binary relation over Λ0
+‖ such that

1386 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

(β) (λx.M)N −→M [N/x], (βv)
W ∈ TVal

λv.M)W −→M [W/v]
,

(βv‖) V −→ V ′ V ∈ Val

(λv.M)V −→M [V/v]‖(λv.M)V ′
, (µv)

N −→ N ′ N 6∈ Val

(λv.M)N −→ (λv.M)N ′ ,

(ν)
M −→M ′ M 6∈ Val

⋃
Par

MN −→M ′N
, (‖app) (M‖N)L −→ML‖NL,

(‖s) M −→M ′ N −→ N ′

M‖N −→M ′‖N ′ , (‖a) M −→M ′ W ∈TVal

M‖W −→M ′‖W, W‖M −→W‖M ′ ,

(+) M +N −→M, M +N −→ N.

(ii) We denote by −→∗ the reflexive and transitive closure of −→.

Lemma 2.3.

(i) W ∈ Λ0
+‖ is irreducible with respect to −→ if and only if W ∈ TVal;

(ii) If V ∈ Λ0
+‖ ∩ Val, then either V ∈ TVal or V −→ V ′ for some V ′ ∈ Val;

(iii) If W,W1, . . . ,Wn ∈ TVal, N1, . . . , Nm ∈ Λ+‖, then

W [N1/x1, . . . , Nm/xm,W1/v1, . . . ,Wn/vn] ∈ TVal.

Proof. The proof is easy by the definitions.
It is useful to consider reduction trees of terms and their bars.
Definition 2.4. Let M ∈ Λ0

+‖.
(i) tree(M) is the (unordered) reduction tree of M ;

(ii) A bar of tree(M) is a subset of the nodes of tree(M) such that each maximal
path intersects the bar at exactly one node;

(iii) bar(M) is the set of bars of tree(M);

(iv) For b ∈ bar(M) the height of b (notation: height(b)) is the maximum of
the heights of its nodes.

Inspecting the reduction rules, we see that tree(M) is a finitely branching tree
for all M ∈ Λ0

+‖. This implies by König’s lemma that if we cut tree(M) at a fixed
height we obtain a finite tree. Since all nodes belonging to a bar b are in the subtree of
tree(M) obtained by cutting tree(M) at height(b), we have that b ∈ bar(M) is always
a finite set of nodes (see also [17]). This does not contradict the fact that a term may
have infinite reduction paths. For example, let us consider the infinite reduction tree
of YM , where M ≡ λx.(I + x), which is shown in Figure 1. Admittedly, the set of
nodes in tree(YM) which are labeled by I is infinite, but it is not a bar. Indeed, the
infinite path in this tree does not have any node in such a set, and every b ∈ bar(YM)
must contain exactly one node of this path. Whichever node we choose on the infinite
path, we will exclude all nodes with greater height, so that b turns out to be finite.

A bar is always relative to a tree and cannot be identified with the set of the
labels of its nodes. For example, tree(M + IM) has the shape shown in Figure 2.
Now the indicated set of nodes b is a bar whose set of labels is the singleton {M}.
But the set containing a single node labeled by M is not a bar of this tree. Moreover,
the height of the bar b is 2, but if b would be identified with {M}, then height(b)
would be ambiguously 1 or 2.

However, if b ∈ bar(M), then two subtrees rooted in two nodes of b are equal if and
only if their labels are the same. Hence we abuse notation and write b = {M1, . . . ,Mn}
(if M1, . . . ,Mn is the multiset of labels of nodes belonging to b). The abbreviations
M ∈ b and b ⊆ Val will have the obvious meanings.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1387

YM → N →MN → I +N
↗ I

↘
N →MN → I +N

↗ I

↘
N → · · ·

Fig. 1. Reduction tree of YM , where N ≡ (λx.M(xx))(λx.M(xx)).

M + IM

�
�

�
�

A
A
A
A

M IM

�
��

L
LL. . .

M

�
��

L
LL

L
L
L
L
LL

b

. . .

Fig. 2. Reduction tree of M + IM .

We now define the convergence predicate. A term is convergent if and only if all
reduction paths will eventually reach a value. In other words, a term M converges
if and only if there is a bar in tree(M) which is a subset of Val. To formalize this,
it is useful to introduce the bar R(M,k) whose labels are those terms which can be
reached starting from a term M by performing k steps of reduction.

Definition 2.5. Let M ∈ Λ0
+‖; then

(i) R(M,k) ∈ bar(M) is the cut of tree(M) at height k; namely, it is the unique
bar such that

(a) height(R(M,k)) ≤ k;

(b) ∀M ′ ∈ R(M,k), height(M ′) < k ⇒ M ′ ∈ TVal.

(ii) M⇓k ⇔ R(M,k) ⊆ Val.

(iii) M⇓ ⇔ ∃k, M⇓k.
Note that (M + N) ⇓ if and only if both M ⇓ and N ⇓. On the other hand,

(M‖N) ⇓ if and only if either M ⇓ or N ⇓ (or both). So ⇓ coincides with ⇓must as
informally defined in section 1.2. In general, if for some b ∈ bar(M) we have M ′⇓ for
all M ′ ∈ b, then M ⇓. The reverse is obviously true.

We depart from the standard way of defining must semantics using infinite paths
(see [24]). This gives us a different theory of terms; for example, we equate I and I‖Ω.

To study the operational semantics of our calculus it is useful to introduce a
binary relation > whose main features are

• to satisfy the Church–Rosser property,

1388 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

• to simulate the choices performed by rule (+) without losing information
about the discarded parts,

• to characterize the convergent terms as those which reduce to a sum of values.

Moreover, we will consider the equivalence relation ./ generated by >.
Definition 2.6.

(i) Define > as the least binary relation over Λ0
+‖ such that

(β)′ (λx.M)N >M [N/x],

(βv)
′ (λv.M)W >M [W/v], if W ∈ TVal,

(βv‖)′ (λv.M)V >
∑n

i=1(M [V/v]‖(λv.M)Vi) if V ∈ Val−TVal and R(V, 1) =
{V1, . . . , Vn},

(µv)
′ (λv.M)N >

∑n
i=1(λv.M)Ni if N 6∈ Val and R(N, 1) = {N1, . . . , Nn},

(+app)
′ (M +N)L >ML+NL,

(‖app)′ (M‖N)L >ML‖NL,

(‖+)′ (M +N)‖L >M‖L+N‖L,

(ν)′ M >M ′ ⇒MN >M ′N ,

(+)′ M >M ′ ⇒M +N >M ′ +N ,

(‖)′ M >M ′ ⇒M‖N >M ′‖N ,

(+c)
′ M +N >N +M ,

(‖c)′ M‖N >N‖M ,

(+ass)
′ (M +N) + L >M + (N + L) and M + (N + L) > (M +N) + L,

(‖ass)′ (M‖N)‖L >M‖(N‖L) and M‖(N‖L) > (M‖N)‖L.

(ii) >∗ is the reflexive and transitive closure of >.

(iii) ./ is the symmetric closure of >∗, up to associativity and commutativity of
+ and ‖.

Proposition 2.7. The relation > is Church–Rosser ; namely,

∀M,M1,M2 ∈ Λ0
+‖, M >∗M1 & M >∗M2 ⇒ ∃M3, M1 >∗M3 & M2 >∗M3.

Proof. The proof is a variant of the Tait–Martin-Löf proof for classical λ-calculus
(see [15]). We define the following relation on closed terms:

• M ; M ;

• if M >M ′ by any clause among (β)′, (βv)
′, (βv‖)′, and (µv)

′ then M ; M ′;
• if M ; M ′, N ; N ′, and L ; L′ then

—(M‖N)L ; M ′L‖N ′L,

—(M +N)L ; M ′L+N ′L,

—(M +N)‖L ; M ′‖L′ +N ′‖L′,
—MN ; M ′N ,

—M +N ; M ′ +N ′,
—M‖N ; M ′‖N ′,
—M +N ; N ′ +M ′,
—M‖N ; N ′‖M ′,
—(M +N) +L ; M ′ + (N ′ +L′) and M ′ + (N ′ +L′) ; (M ′ +N ′) +L′,
—(M‖N)‖L ; M ′‖(N ′‖L′) and M ′‖(N ′‖L′) ; (M ′‖N ′)‖L′.

By induction on the definition of ; it is routine to check that it satisfies the diamond
property, namely,

∀M,M1,M2 ∈ Λ0
+‖, M ; M1 & M ; M2 ⇒ ∃M3, M1 ; M3 & M2 ; M3;

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1389

hence it is Church–Rosser. Now it is easy to see that ;∗= >∗, from which the thesis
follows.

The relation ./ is weaker than the congruence generated by > but stronger
than its reflexive, symmetric, and transitive closure. For example, II ./ I, but
(λv.v)(II‖I) 6./ (λv.v)(I‖I).

Lemma 2.8.

(i) If M ./ N then for all L, ML ./ NL and M‖L ./ N‖L.

(ii) If M +N ./ P +Q then one of the following alternatives is true:

• M ./ P & N ./ Q or

• M ./ Q & N ./ P or

• ∃M0,M1, N0, N1, M ./ M0+M1 & N ./ N0+N1 & P ./ M0+N0 & Q ./
M1 +N1.

Proof. Part (i) is straightforward by induction on M ./ N .
Part (ii) is a consequence of the Church–Rosser property. Indeed, if M + N ./

P + Q, then there are L and L′ such that M + N >∗ L, P + Q >∗ L′, and L and
L′ are equal up to commutativity and associativity of + and ‖. But any sum of the
shape M +N can be reduced only to a sum M ′ +N ′ where M >∗M ′ and N >∗N ′,
and similarly for P +Q. The thesis then follows.

The next lemma connects the relation > to the reduction trees of terms and
hence to the reduction relation −→.

Notation. From now on we abuse notation, writing just > instead of >∗ (unless
otherwise stated).

Lemma 2.9. Let M ∈ Λ0
+‖. Then

(i) R(M, 1) = {M1, . . . ,Mn} ⇒M >
∑n

i=1 Mi,

(ii) ∀b ∈ bar(M), b = {M1, . . . ,Mn} ⇒M >
∑n

i=1 Mi.

Proof. (i) The proof is by induction on M ∈ Λ0
+‖.

—If M ≡ λχ.M ′ ∈ Λ0
+‖ (that is, FV (M ′) ⊆ {χ}) then M ∈ TVal and

R(M, 1) = {M}.
—If M ≡ PQ then P,Q ∈ Λ0

+‖. We have some subcases. If P ≡ λχ.P ′ and
either χ ≡ x or both χ ≡ v and Q ∈ TVal, then

R(PQ, 1) = {P ′[Q/χ]} and PQ > P ′[Q/χ]

by (β)′ or by (βv)
′.

Suppose that R(Q, 1) = {Q1, . . . , Qk}. If P ≡ λv.P ′ and Q ∈ Val−TVal then

R((λv.P ′)Q, 1) = {P ′[Q/v]‖(λv.P ′)Qi | i ≤ k}
and

(λv.P ′)Q >
k∑
i=1

P ′[Q/v]‖(λv.P ′)Qi

by (βv‖)′. Otherwise, if Q 6∈ Val, then

R((λv.P ′)Q, 1) = {(λv.P ′)Qi | i ≤ k} and (λv.P ′)Q >
k∑
i=1

(λv.P ′)Qi

by (µv)
′.

1390 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

If P ≡ P0‖P1 then

R(PQ, 1) = {P0Q‖P1Q} and PQ > P0Q‖P1Q

by (‖app)′.
In all other subcases, P 6∈ Val ∪ Par. Now let R(P, 1) = {P1, . . . , Ph}; hence

we have P >
∑h

i=1 Pi by induction hypothesis and

PQ >

(
h∑
i=1

Pi

)
Q >

h∑
i=1

(PiQ).

From this the thesis follows since in these cases R(PQ, 1) = {PiQ | i ≤ h}.
—If M ≡ P + Q then P,Q ∈ Λ0

+‖ and the case is trivial since R(P + Q, 1) =

{P,Q}.
—If M ≡ P‖Q then P,Q ∈ Λ0

+‖. Again suppose that R(P, 1) = {P1, . . . , Ph}
and R(Q, 1) = {Q1, . . . , Qk}. Then we have

P‖Q >

(
h∑
i=1

Pi

)
‖

 k∑

j=1

Qj

 >

h∑
i=1

k∑
j=1

(Pi‖Qj)

by induction hypothesis and clauses (‖+)′ and (‖)′. So we are done since
R(PQ, 1) = {Pi‖Qj | i ≤ h, j ≤ k}.

(ii) This proof is by induction on the height h of the bar b. If h = 0 then the thesis
is trivial. Otherwise tree(M) has the root node labeled byM and tree(M1), . . . , tree(Mn)
as its immediate subtrees, where {M1, . . . ,Mn} = R(M, 1). Because of h 6= 0 we have
that the root is not in b (recall that a bar intersects each maximal path of tree(M)
in exactly one node). It follows that for all i ≤ n there exists bi ∈ bar(Mi) such that
b = b1 ∪ · · · ∪ bn. But the height of each bi with respect to tree(Mi) has to be less
than h, so that Mi >

∑{M ′
i |M ′

i ∈ bi} by induction hypothesis. So the thesis follows
from (i) of this lemma.

Part (ii) of Lemma 2.9 implies M >
∑R(M,k) for all k. Moreover, it implies

that if M−→∗N then either M >N or M >N + L for some L.
Observe that the implications in Lemma 2.9 cannot be reversed. This is due to the

more permissive clause (‖)′ of Definition 2.6. Indeed, if, e.g., M ≡ (λx.xxx)(λx.xxx)
then there exists an infinite reduction M ≡ M0 −→ M1 −→ · · · where each Mi is an
application and Mi 6≡ Mi+1 for all i. Now the unique branch of tree(M0‖M1) is the
infinite one: M0‖M1 −→ M1‖M2 −→ · · ·. But M0‖M1 >Mi‖Mi for all i ≥ 1, while
for all b ∈ bar(M), b 6= {Mi‖Mi}.

Corollary 2.10. If N ∈ Λ0
+‖ and N ⇓, then there exist V1, . . . , Vn ∈ Val such

that

(i) N >
∑n

i=1 Vi;

(ii) ∀(λv.M) ∈ Λ0
+‖, (λv.M)N >

∑n
i=1(λv.M)Vi.

Proof. If N ⇓ then there exists a bar of values {V1, . . . , Vn} ∈ bar(N) such that
each Vi is the first value that is met starting from the root through a maximal path
in tree(N). That is, no value occurs in the path from N to Vi. By (ii) of Lemma 2.9
N >

∑n
i=1 Vi. On the other hand {(λv.M)Vi | i ≤ n} ∈ bar((λv.M)N) because of

rule (µv). Then the thesis follows by (ii) of Lemma 2.9.
Lemma 2.11. Let M,N, V ∈ Λ0

+‖.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1391

(i) (λv.M)V ⇓ & V ∈ Val ⇒ ∃V1, . . . , Vn ∈ Val, V >
∑n

i=1 Vi & ∀i ≤
n, M [Vi/v]⇓.

(ii) (λv.M)N ⇓ ⇒ ∃V1, . . . , Vn ∈ Val, N >
∑n

i=1 Vi & ∀i ≤ n, M [Vi/v]⇓.
Proof. (i) If V ∈ TVal then R((λv.M)V, 1) = {M [V/v]}, so the hypothesis implies

that M [V/v]⇓. Otherwise V ∈ Val−TVal. By definition, (λv.M)V ⇓k for some k > 0,
and we make induction on k. Suppose that R(V, 1) = {V1, . . . , Vn}, so that

R((λv.M)V, 1) = {M [V/v]‖(λv.M)Vi | i ≤ n}.

If k = 1 then, since for all i, (λv.M)Vi is an application (that is, it is not a value),
we have M [V/v] ∈ Val, so that M [V/v] ⇓. If k > 1 and M [V/v] ⇑ (otherwise the
thesis is immediate), then for all i ≤ n, (λv.M)Vi ⇓k−1. By induction there are
Vi,1, . . . , Vi,ni ∈ Val such that Vi >

∑ni

j=1 Vi,j and M [Vi,j/v] ⇓ for all i and j. The

thesis now follows since V >
∑n

i=1 Vi by (i) of Lemma 2.9.
(ii) If N ⇑ then for all k ≥ 0 there exists N ′ ∈ R(N, k) such that (λv.M)N ′

∈R((λv.M)N, k) and rules (βv) and (βv‖) cannot be applied to (λv.M)N ′. This
implies that (λv.M)N ⇑. By hypothesis and by contraposition we have that N ⇓. By
Corollary 2.10 there exist values V1, . . . , Vn such that N >

∑n
i=1 Vi and (λv.M)N >∑n

i=1(λv.M)Vi. Moreover, by the proof of the same corollary, {(λv.M)Vi | i ≤ n} ∈
bar((λv.M)N), so that by hypothesis (λv.M)Vi ⇓ for all i ≤ n. Now, by part (i) of
this lemma, for each i there are Vi,1, . . . , Vi,ni ∈ Val such that Vi >

∑ni

j=1 Vi,j and
M [Vi,j/v]⇓, and the thesis follows.

Theorem 2.12. Let M,N ∈ Λ0
+‖. Then

(i) [M >N & N ⇓] ⇒M ⇓;

(ii) M ./ N ⇒ [M ⇓ ⇔ N ⇓].

Proof. (i) In this proof we must distinguish between > and >∗. Clearly, if we
can prove the statement for >, the same thesis holds for >∗. As a matter of fact we
prove, by induction on the definition of >, the stronger statement

M >N ⇒ ∀~L, [N~L⇓ ⇒M~L⇓],

from which the thesis follows, taking the empty vector.

—If M >N thanks to (β)′, (βv)
′, (βv‖)′, (µv)

′, (+app)
′, or (‖app)′ (see Definition

2.6), then M is always an application and N ≡ ∑n
i=1 Mi where R(M, 1) =

{M1, . . . ,Mn} (where the multiset R(M, 1) is ordered in such a way that it
matches the shape of N). By this fact and rules (ν) and (+) we have that

{Mi
~L | 1 ≤ i ≤ n} ∈ bar(N~L) ∩ bar(M~L).

Now N~L⇓ implies that Mi
~L⇓ for all i (1 ≤ i ≤ n), so that M~L⇓ follows.

—Clause (‖+)′. Then M ≡ (P +Q)‖R and N ≡ P‖R +Q‖R. Now

(P‖R +Q‖R)~L⇓ ⇒ (P ~L⇓ & Q~L⇓) or R~L⇓
⇒ (P ~L⇓ or R~L⇓) & (Q~L⇓ or R~L⇓)

⇒ ((P +Q)‖R)~L⇓

by rule (ν) and the remark after Definition 2.5.

—Clause (ν)′. Then M ≡ PQ, N ≡ P ′Q, and P > P ′. In this case P ′Q~L ⇓
implies PQ~L⇓ immediately by induction, taking the vector Q~L.

1392 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

—Clause (+)′. Then M ≡ P +Q, N ≡ P ′ +Q, and P > P ′. Now

(P ′ +Q)~L⇓ ⇒ P ′~L⇓ & Q~L⇓
⇒ P ~L⇓ & Q~L⇓ by induction

⇒ (P +Q)~L⇓ .
—Clause (‖)′. Similar to the case of clause (+)′, where “or” replaces “&.”

—For clauses (+c)
′, (‖c)′, (+ass)

′, and (‖ass)′ the proofs are similar to those of
(+)′ and (‖)′.

(ii) M converging implies that there are values V1, . . . , Vn such that M >
∑n

i=1 Vi
by Corollary 2.10(i). Therefore, N ./

∑n
i=1 Vi. By the Church–Rosser property of >

there is an L such that N > L and
∑n

i=1 Vi > L. But
∑n

i=1 Vi > L implies that L
is a sum of values and therefore L must converge. We conclude that N converges by
(i).

Based on the convergence predicate the following definition adapts to the present
setting the notion of contextual theories. This notion stems from [52] and it is widely
used in, e.g., [15], for the classical theory of solvability and in [6], [19], and [55], where
it is shown to be equivalent to applicative bisimulation.

The idea is that two terms are operationally equivalent if and only if in all con-
texts they exhibit the same behavior with respect to some observable properties.
Here convergence is the only observable property; hence we can make the following
definition.

Definition 2.13. Let M,N ∈ Λ+‖. Then

(i) M vO N ⇔ ∀C[], C[M]⇓ ⇒ C[N]⇓, where C[M], C[N] ∈ Λ0
+‖;

(ii) 'O = vO ∩ wO.

3. A logical presentation. To obtain a logical presentation of the semantics
of the calculus we follow the paradigm of Leibniz which identifies objects with sets of
their properties. This received an elegant mathematical treatment thanks to works like
[63] and [5] and, especially in the case of type-free calculi, it is naturally formalized
in suitable extensions of a Curry-type assignment system like the intersection-type
discipline considered in [16].

In the present case we use a more expressive system which allows for disjunctive
types. We call them union types since they differ from coproducts in Church-typed
λ-calculi in much the same way as intersection differs from cartesian product. See
[14] for a study of this discipline in the case of classical λ-calculus.

3.1. The set of types and its preorder. The type syntax is as follows:

σ ::= ω | σ → σ | σ ∧ σ | σ ∨ σ,
and we call Type the resulting set. In writing types, we assume that ∧ and ∨ take
precedence over →.

The choice of the preorder on types is crucial, since it will be used in a subtyping
rule in subsection 3.2 and it will determine the structure of the set of filters in section
4.

Definition 3.1. Let σ ≤ τ be the smallest preorder over types such that

(i) 〈Type,≤〉 is a distributive lattice, in which ∧ is the meet, ∨ is the join, and
ω is the top;

(ii) the arrow satisfies

(a) σ → ω ≤ ω → ω,

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1393

(b) (σ → ρ) ∧ (σ → τ) ≤ σ → ρ ∧ τ ,
(c) σ ≥ σ′, τ ≤ τ ′ ⇒ σ → τ ≤ σ′ → τ ′.

Following [30], by lattice we mean a poset in which every finite nonempty subset
has a meet and a join. According to this definition, there are lattices without bottom
(like the present one).

We write σ = τ for “σ ≤ τ and τ ≤ σ.” Note that, if σ 6= ω then σ ≤ ω → ω.
Notation 3.2. Let ω0 → ω = ω, ωn+1 → ω = ω → ωn → ω.
The types ωn → ω for suitable n are “better than” all other types, as shown in

the following proposition.
Proposition 3.3. For all σ, there exists n such that ωn → ω ≤ σ,
Proof. By induction on the structure of σ,

σ ≡ ω: This proof is trivial.

σ ≡ σ1 → σ2: By the induction hypothesis, ∃n, ωn → ω ≤ σ2, hence ωn+1 →
ω ≤ σ, by Definition 3.1(ii(c)), using σ1 ≤ ω.

σ ≡ σ1 ∧ σ2: By the induction hypothesis, ∃ni, ωni → ω ≤ σi (i = 1, 2). Let
n = max(n1, n2). Then ωn → ω ≤ σ, since ωn → ω ≤ ωni → ω (i = 1, 2) and
σ1 ∧ σ2 is the meet of σ1 and σ2.

σ ≡ σ1 ∨ σ2: Recall that σ1 ∧ σ2 ≤ σ1 ∨ σ2, and then proceed as in the previous
case.

We need some properties of the ≤ relation, whose proof requires a stratification
of Type.

Definition 3.4 (stratification of Type). Let us define three subsets T0, T1, T2 of
Type recursively:

ω → ω ∈ T0;
ω ∈ T2;
σ ∈ T2, τ ∈ T1 ⇒ σ → τ ∈ T0;
n ≥ 1, σ1, . . . , σn ∈ T0 ⇒ σ1 ∨ · · · ∨ σn ∈ T1;
n ≥ 1, σ1, . . . , σn ∈ T1 ⇒ σ1 ∧ · · · ∧ σn ∈ T2.

To rephrase the previous definition, we consider types in conjunctive normal form,
that is, conjunctions of disjunctions of arrows, ω being the empty conjunction.

Remark 3.5. Notice that the set T2, when restricted to types without ∨ oc-
currences, is similar to the set of normal type schemes of [36] and to the set of strict
types of [12]. The difference is that in those papers types were constructed out of type
variables and the type ω → ω was not allowed. Normal-type schemes were introduced
in [36] as a technical tool to prove properties analogous to those stated in Lemma
3.9. Instead, strict types have been introduced with a different preorder to obtain a
syntax-directed type assignment system [12], [13].

Taking n = 1 in the clauses above, one sees that T0 ⊆ T1 ⊆ T2, and such inclusions
are clearly proper.

Over each of these sets we introduce a preorder.
Definition 3.6. ≤i⊆ Ti × Ti is the least preorder such that

(≤0) : σ ≤0 τ ⇔ τ ≡ ω → ω or σ ≡ σ′ → σ′′, τ ≡ τ ′ → τ ′′ and τ ′ ≤2 σ
′ and

σ′′ ≤1 τ
′′;

(≤1) : σ1 ∨ · · · ∨ σn ≤1 τ1 ∨ · · · ∨ τm ⇔ ∀i ≤ n ∃j ≤ m, σi ≤0 τj ;

(≤2) : σ ≤2 τ ⇔ τ ≡ ω or σ ≡ σ1 ∧ · · · ∧σn, τ ≡ τ1 ∧ · · · ∧ τm and ∀j ≤ m ∃i ≤
n, σi ≤1 τj.

Really, for each type in Type, we can find an equivalent type in T2; therefore, we
introduce a map which associates to each type its equivalent type in T2.

Definition 3.7. Let ∗ : Type→ T2 be defined by

1394 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

ω∗ = ω;

(σ → τ)∗ =

{ ∧
i∈I(σ

∗ → τi) if τ∗ ≡ ∧i∈I τi and τ∗ 6≡ ω,
ω → ω otherwise;

(σ ∨ τ)∗ =

∧
i∈I
∧
j∈J(σi ∨ τj) if σ∗ ≡ ∧i∈I σi, σ

∗ 6≡ ω

and τ∗ ≡ ∧j∈J τj, τ
∗ 6≡ ω,

ω otherwise;

(σ ∧ τ)∗ =

σ∗ if τ∗ ≡ ω,
τ∗ if σ∗ ≡ ω,
σ∗ ∧ τ∗ otherwise.

Proposition 3.8. For all σ, τ ∈ Type,

(i) σ = σ∗;
(ii) σ, τ ∈ Ti, σ ≤i τ ⇒ σ ≤ τ for i = 0, 1, 2;

(iii) σ ≤ τ ⇒ σ∗ ≤2 τ
∗.

Proof. (i) is proved by induction on the definition of the map (·)∗. To see (ii), use
an induction on the definition of ≤i. Finally, to prove (iii), it suffices (by (i)) to show
that σ∗ ≤ τ∗ implies σ∗ ≤2 τ∗, which can be proved by induction on any standard
axiomatic presentation of ≤.

Lemma 3.9.

(i) µ ∧ ν ≤ σ → τ & µ 6= ω & ν 6= ω ⇒ ∃τ1, τ2, τ = τ1 ∧ τ2 & µ ≤ σ →
τ1 & ν ≤ σ → τ2;

(ii)
∧
i∈I(µi → νi) ≤ σ → τ & τ 6= ω ⇒ ∃J ⊆ I, σ ≤ ∧j∈J µj &

∧
j∈J νj ≤ τ .

Proof. (i) Let

(µ ∧ ν)∗ =
∧
i∈I

µi ∧
∧
j∈J

νj and (σ → τ)∗ =
∧
k∈K

(σ∗ → πk),

assuming µ∗ =
∧
i∈I µi, ν

∗ =
∧
j∈J νj and τ∗ =

∧
k∈K πk. Using Proposition 3.8(i),

(ii), (iii) and the definition of ≤2, we have that

∀k, (∃i, µi ≤1 σ
∗ → πk) or (∃j, νj ≤1 σ

∗ → πk).

Therefore we can choose τ1 as the intersection of the πk which satisfy the first in-
equality and τ2 as the intersection of the remaining πk. If one of these intersections
is empty, we choose ω for the corresponding τi (i = 1, 2).

(ii) Let ν∗i =
∧
l∈L νi,l (where L depends on i) and τ∗ =

∧
k∈K τk. Then

∧
i∈I

(µi → νi) ≤ σ → τ ⇒
∧
i∈I

∧
l∈L

(µ∗i → νi,l) ≤2

∧
k∈K

(σ∗ → τk).

It follows that

∀k ∃i, l, µ∗i → νi,l ≤1 σ
∗ → τk,

which in this case is equivalent to

∀k ∃i, l, µ∗i → νi,l ≤0 σ
∗ → τk,

and hence

∀k ∃i, l, σ∗ ≤2 µ
∗
i & νi,l ≤1 τk.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1395

So we can conclude that

∀k ∃i, σ ≤ µi &
∧
l∈L

νi,l ≤ τk.

Taking J as the set of all i which satisfy these inequalities for some k ∈ K, we are
done.

Remark 3.10. Notice that Lemma 3.9 cannot be trivially satisfied by choosing
τ1 = τ2 = τ . In fact, in general, µ ∧ ν ≤ σ → τ does not imply µ ≤ σ → τ . For a
counterexample, take µ = σ = τ = ω → ω and ν = σ → τ .

A type σ is join-irreducible or coprime if and only if

σ ≤ τ ∨ ρ⇒ σ ≤ τ or σ ≤ ρ

for any τ, ρ. Let CType be the set of coprime types different from ω. Observe that,
because of distributivity, coprime types are closed under ∧. Being 〈Type,≤〉, the
free distributive lattice satisfying the arrow axioms, each type is the join of a finite
number of coprime types. To see this, it suffices to define the following mapping
Θ : Type→ P(CType):

Θ(ω) = {ω},
Θ(σ → τ) = {σ → τ},
Θ(σ ∧ τ) = {σ′ ∧ τ ′ | σ′ ∈ Θ(σ) & τ ′ ∈ Θ(τ)},
Θ(σ ∨ τ) = Θ(σ) ∪Θ(τ).

If Θ(σ) = {σ1, . . . , σn}, it is easy to verify that σi is join-irreducible for each i
and σ = σ1 ∨ · · · ∨ σn.

3.2. The type assignment system. In this subsection we introduce our type
assignment system L. We start with the notion of basis. We state that only coprime
types different from ω can be assumed for call-by-value variables. This restriction is
justified by the correspondence between total values and coprime types (see Theorem
3.15(ii)).

Definition 3.11. A basis Γ : (Vn → Type) ∩ (Vv → CType) is a mapping such
that Γ(x) = ω for all x but a finite subset of Vn, and Γ(v) = ω → ω for all v but a
finite subset of Vv.

To each basis Γ we associate the finite set

Dom(Γ) = {x ∈ Vn | Γ(x) 6= ω} ∪ {v ∈ Vv | Γ(v) 6= ω → ω}.

The notation Γ, χ : σ is shorthand for the function Γ′(χ′) = σ if χ′ ≡ χ; Γ(χ′)
otherwise. To meet a common practice we shall sometimes identify Γ with the (finite)
set of judgments {χ:σ | χ ∈ Dom(Γ) & Γ(χ) = σ} and write χ:σ ∈ Γ.

Definition 3.12. The axioms and rules of the assignment system L are as
follows:

1396 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

(Ax) Γ ` χ : Γ(χ), (ω) Γ `M : ω,

(→ In)
Γ, x : σ `M : τ

Γ ` λx.M : σ → τ
, (→ Iv)

Γ, v : σ′ `M : τ ∀σ′ ∈ Θ(σ)

Γ ` λv.M : σ → τ
,

(→ E)
Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ
,

(∧ I)
Γ `M : σ Γ `M : τ

Γ `M : σ ∧ τ , (≤)
Γ `M : σ σ ≤ τ

Γ `M : τ
,

(+ I)
Γ `M : σ Γ ` N : τ

Γ `M +N : σ ∨ τ , (‖ I)
Γ `M : σ Γ ` N : τ

Γ `M‖N : σ ∧ τ .

Γ `L M : σ abbreviates “Γ `M : σ is derivable in L.”
To help the understanding of rule (→ Iv), we consider the following example. Let

W1,W2 be total values such that `L Wi:σi (i = 1, 2) for some coprime types σ1, σ2.
Clearly, this implies `L W1 +W2:σ1 ∨ σ2 by rule (+ I). Consider (λv.M)(W1 +W2):
it reduces to M [W1/v] and M [W2/v]. Therefore v:σi `L M :τ for i = 1, 2 suffices
to assure that (λv.M) has type σ1 ∨ σ2 → τ . The real justification of this rule is
that it implies the completeness of the type assignment (Theorem 4.11) and the full
abstraction of the filter model (Theorem 5.11).

We shall write Γ ≤ Γ′ if, ∀χ, Γ(χ) ≤ Γ′(χ); in this case it is easy to verify that,
if Γ′ `L M : σ, then Γ `L M : σ for any M and σ.

The system L enjoys structural properties which can be shown by simple induc-
tions on derivations.

Theorem 3.13 (derivability properties of system L).

(i) Γ `L χ : τ ⇔ Γ(χ) ≤ τ ;

(ii) Γ `L λχ.M : ρ ⇔
∃n, σ1, . . . , σn, τ1, . . . τn.
(∀i ≤ n, Γ `L λχ.M : σi → τi) &

∧n
i=1(σi → τi) ≤ ρ;

(iii) Γ `L λx.M : σ → τ ⇔ Γ, x : σ `L M : τ ;

(iv) Γ `L λv.M : σ → τ & σ 6= ω ⇔ ∀σ′ ∈ Θ(σ), Γ, v : σ′ `L M : τ ;

(v) Γ `L λv.M : σ → τ & σ = ω ⇒ τ = ω;

(vi) Γ `L MN : τ & τ 6= ω ⇔ ∃σ, Γ `L M : σ → τ & Γ `L N : σ;

(vii) Γ `L M +N : σ ⇔ Γ `L M : σ & Γ `L N : σ;

(viii) Γ `L M‖N : τ ⇔ ∃σ, σ′, Γ `L M : σ & Γ `L N : σ′ & σ ∧ σ′ ≤ τ .

Proof. We consider only the interesting cases.

(ii) Given a derivation of Γ ` λχ.M : ρ, let

Γ ` λχ.M :σ1 → τ1, . . . ,Γ ` λχ.M :σn → τn

be all the statements in this deduction on which Γ ` λχ.M : ρ depends and
which are conclusions of rule (→ In) or of rule (→ Iv). Then

(σ1 → τ1) ∧ · · · ∧ (σn → τn) ≤ ρ.

(iii) If τ = ω it is trivial. Otherwise let σ1, . . . , σn, τ1, . . . , τn be as in the proof
of (ii), where ρ has been replaced by σ → τ . Then

(σ1 → τ1) ∧ · · · ∧ (σn → τn) ≤ σ → τ,

which implies, by Lemma 3.9(ii),

∃J ⊆ {1, . . . , n}, σ ≤
∧
j∈J

σj &
∧
j∈J

τj ≤ τ.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1397

Moreover, Γ, x:σi `L M : τi for 1 ≤ i ≤ n, so that one can conclude Γ, x:σ `L
M : τ .

(iv) Let σ1, . . . , σn, τ1, . . . , τn be as in the proof of (ii), where ρ has been replaced
by σ → τ . As in case (iii) we have

∃J ⊆ {1, . . . , n}, σ ≤
∧
j∈J

σj &
∧
j∈J

τj ≤ τ.

Moreover, Γ, v:σ′i `L M : τi for all σ′i ∈ Θ(σi) and for 1 ≤ i ≤ n. σ ≤ σj
implies, ∀σ′ ∈ Θ(σ), ∃σ′j ∈ Θ(σj) such that σ′ ≤ σ′j by the definition of
coprimality. So we can conclude, ∀σ′ ∈ Θ(σ), Γ, x:σ′ `L M : τ .

(v) We assume ad absurdum that τ 6= ω. Then, if σ1, . . . , σn, τ1, . . . , τn and J
are as in (iv), we would have σj = ω for all j ∈ J , and this is impossible
according to our definition of basis.

(vii) Again, given a deduction of Γ `M +N :σ, let

Γ `M +N :σ1, . . . ,Γ `M +N :σn

be all the statements in this deduction on which Γ `M +N :σ depends and
which are conclusions of rule (+I). Then σ1∧· · ·∧σn ≤ σ and there are µi, νi
such that σi = µi ∨ νi, Γ `L M :µi, Γ `L N : νi, for 1 ≤ i ≤ n. So we can
deduce Γ `M :σ and Γ ` N :σ using (∧ I) and (≤).

(viii) Finally, given a deduction of Γ `M‖N : τ , let

Γ `M‖N :σ1, . . . ,Γ `M‖N :σn

be all the statements in this deduction on which Γ ` M‖N : τ depends and
which are conclusions of rule (‖I). Then σ1 ∧ · · · ∧σn ≤ τ and there are µi, νi
such that σi = µi ∧ νi, Γ `L M :µi, Γ `L N : νi, for 1 ≤ i ≤ n. Then we can
choose σ =

∧
i≤n µi and σ′ =

∧
i≤n νi. In fact, σ ∧ σ′ ≤ τ and we can derive

Γ `L M :σ and Γ ` N :σ′ using (∧ I).

As an immediate consequence of Theorem 3.13(iv) we have the co-additivity of
call-by-value abstraction (i.e., finite meets are preserved).

Corollary 3.14. Γ `L λv.M : (σ → ρ) ∧ (τ → ρ) ⇒ Γ `L λv.M : σ ∨ τ → ρ.
We show how types characterize partial values and total values.
Theorem 3.15 (characterization of values).

(i) V ∈ Val ⇒ `L V : ω → ω;

(ii) W ∈ TVal & Γ `L W : σ ⇒ ∃σ′ ∈ Θ(σ), Γ `L W : σ′.
Proof. (i) The proof is by induction on the definition of values. If V ≡ v ∈ Vv

then Γ(v) = ω → ω, since Dom(Γ) = ∅, and the thesis follows by (Ax). If V ≡ λx.M
then Γ, x : ω ` M : ω is derivable by rule (ω), hence the thesis using (→ In). If
V ≡ λv.M we do the same as before, but assuming v : ω → ω. The thesis follows
using (→ Iv) and (≤). Finally, if V ≡ V ′‖M or M‖V ′ the thesis follows by induction
using (‖) and (≤).

(ii) The proof is by induction on the definition of total values. If W ≡ v then
the thesis follows by Theorem 3.13(i) and the definition of basis. If W ≡ λχ.M then,
noting that each arrow type is coprime, the thesis follows from Theorem 3.13(ii) and
the closure of coprime types under ∧. Finally, if W ≡W ′‖W ′′, by Theorem 3.13(viii)
there exist µ and ν such that Γ `L W ′ : µ, Γ `L W ′′ : ν, and µ ∧ ν ≤ σ; now by
induction there are µ′ ∈ Θ(µ), ν′ ∈ Θ(ν) such that Γ `L W ′ : µ′ and Γ `L W ′′ : ν′.

1398 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

Since coprime types are closed under ∧, µ′ ∧ ν′ ≤ σ implies that there is σ′ ∈ Θ(σ)
such that µ′ ∧ ν′ ≤ σ′.

The following lemma states the substitution properties of terms.
Lemma 3.16.

(i) Γ `L M [N/x] : τ ⇔ ∃σ, Γ, x : σ `L M : τ & Γ `L N : σ;

(ii) Γ `L M [V/v] : τ & V ∈ Val ⇒ ∃σ ∀σ′ ∈ Θ(σ), Γ, v : σ′ `L M : τ & Γ `L
V : σ;

(iii) Γ `L M [W/χ] : τ & W ∈ TVal ⇔ ∃σ ∈ CType, Γ, χ : σ `L M : τ & Γ `L
W : σ.

Proof. (i) (⇒) If x does not occur in M we can choose σ ≡ ω. Otherwise let σ be
the intersection of all predicates of statements with subject N which occur in a given
deduction of Γ `L M [N/x] : τ . The proof of ⇐ is standard.

(ii) If v does not occur in M we can choose σ ≡ ω → ω. Otherwise let ρ be
the intersection of all predicates of statements with subject V which occur in a given
deduction of Γ `L M [V/v] : τ . If ρ 6= ω we can choose σ ≡ ρ; otherwise σ ≡ ω → ω.

(iii)(⇒) If χ does not occur in M we can choose σ ≡ ω → ω. Otherwise let ρ
be the intersection of all predicates of statements with subject W which occur in a
given deduction of Γ `L M [W/χ] : τ . By Theorem 3.15(ii) there is ρ′ ∈ Θ(ρ) such
that Γ `L W : ρ′. If ρ′ 6= ω we can choose σ ≡ ρ′; otherwise σ ≡ ω → ω. The proof
of ⇐ is standard.

Notice that in Lemma 3.16(ii) the “⇒” cannot be replaced by “⇔”. An easy
proof of this uses the characterization of divergent terms by types which will be given
in Corollary 5.6(ii). So we will prove it in Corollary 5.7(i).

As an immediate consequence of Theorem 3.15(ii) and Lemma 3.16(iii), the fol-
lowing rule (∨E) is admissible:

(∨E)
∀σ′ ∈ Θ(σ) Γ, χ : σ′ `M : ρ Γ `W : σ W ∈ TVal

Γ `M [W/χ] : ρ
.

Therefore, the restriction over the basis can be relaxed, allowing Γ(v) to be any
type different from ω. This would have the advantage of having a unique rule for
abstraction, i.e., the standard one, avoiding (→ Iv), which is a rule schema. Of course,
rule (∨E) should be added in this case. The reason why we choose the present less
elegant version is that it greatly simplifies proofs.

3.3. The logic congruence relation. We now introduce the logical equivalence
'L; thereafter, we shall use the properties stated in Theorem 3.13 to establish the
basic (in)equalities holding under this notion of equivalence. The invariance of types
with respect to ./ and to the reduction relation studied in section 2 will follow.

Definition 3.17. Let M,N ∈ Λ+‖; then

(i) M vL N ⇔ ∀Γ, σ, Γ `L M : σ ⇒ Γ `L N : σ;

(ii) 'L = vL ∩ wL.

As a first step in the study of the relation 'L we fix some basic properties of it
with respect to the various kinds of β-contraction present in our calculus. These can
be easily proved using Lemma 3.16.

Lemma 3.18.

(i) (λx.M)N 'L M [N/x];

(ii) M [V/v] vL (λv.M)V if V ∈ Val;

(iii) (λv.M)W 'L M [W/v] if W ∈ TVal.

Proof. The most interesting case is the inclusion from left to right of (iii) when
τ 6= ω.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1399

Γ `L (λv.M)W : τ
⇒ ∃σ, Γ `L λv.M : σ → τ & Γ `L W : σ by Theorem 3.13(vi),
⇒ ∃σ, ∀σ′ ∈ Θ(σ), Γ, v : σ′ `L M : τ & Γ `L W : σ by Theorem 3.13(iv),
⇒ ∃σ′ ∈ CType, Γ, v : σ′ `L M : τ & Γ `L W : σ′ by Theorem 3.15(ii),

since W ∈ TVal,
⇒ Γ `L M [W/v] : τ by Lemma 3.16(iii)(⇐).

Notice that the opposite of Lemma 3.18(ii) does not hold. This will be proved in
Corollary 5.7(ii), since it follows immediately from point (i) of the same corollary.

The following three lemmas are easy consequences of Theorem 3.13. The second
and third lemmas state that nondeterministic choice and parallel composition are
the meet and the join, respectively. Moreover, they illustrate the behaviors of these
operators with respect to application and abstraction.

Lemma 3.19. The relation 'L is a congruence over Λ+‖.
Lemma 3.20.

(i) M +N vL M,N ;

(ii) L vL M,N ⇒ L vL M +N ;

(iii) (M +N)L 'L ML+NL;

(iv) L(M +N) vL LM + LN ;

(v) (λv.M)(N + L) 'L (λv.M)N + (λv.M)L;

(vi) λχ.(M +N) vL λχ.M + λχ.N .

Proof. All inclusions are immediate. The converse of (vi) does not hold. Indeed,
let σ ≡ (ρ → ρ) ∨ (τ → ω2 → ω) where ρ ≡ ω3 → ω and τ ≡ (ω → ω) → ω2 → ω.
Then we have `L I : ρ → ρ and `L ∆ : τ → ω2 → ω, which imply `L I + ∆ : σ,
but 6`L λx.(x + xx) : σ. In fact, by Theorem 3.13(iii) and (vii), if we could derive
λx.(x+xx) : σ, then we would also have x : µ `L x : ν and x : µ `L xx : ν for some µ, ν
such that µ → ν ≤ σ. This implies either µ → ν ≤ ρ → ρ or µ → ν ≤ τ → ω2 → ω
by Definition 3.6 and Proposition 3.8. But it is easy to verify, using Theorem 3.13(i)
and (vi), that x : ρ 6`L xx : ρ and x : τ 6`L x : ω2 → ω.

Lemma 3.21.

(i) M,N vL M‖N ;

(ii) M,N vL L⇒M‖N vL L;

(iii) (M‖N)L 'L ML‖NL;

(iv) LM‖LN vL L(M‖N);

(v) λχ.(M‖N) 'L λχ.M‖λχ.N ;

(vi) (M +N)‖L 'L M‖L+N‖L.

The inequalities of Lemma 3.20(iv) and 3.21(iv) are proper, and this can be proved
using the structural properties of deductions (Theorem 3.13). But an easier proof will
be given in Corollary 5.7(iii) and (iv) using Corollary 5.6(ii).

The following theorem provides the first evidence of the matching between oper-
ational and logic semantics.

Theorem 3.22 (type invariance).

(i) Γ `L M : σ & M ./ N ⇒ Γ `L N : σ;

(ii) Γ `L M : σ & M−→∗N ⇒ Γ `L N : σ.

Proof. (i) is an easy consequence of Lemmas 3.18, 3.19, 3.20, and 3.21.
(ii) If M−→∗N then for some b ∈ bar(M) it is the case that N ∈ b. By Lemma 2.9

(ii) M >
∑{M ′ | M ′ ∈ b}. Being > ⊆./, by part (i) of the present theorem and

Theorem 3.13(vii), we have Γ `L M ′ : σ for all M ′ ∈ b, from which the thesis follows.

1400 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

The subject expansion property fails for
∗−→. For example, `L I : ω → ω but, as

we shall be able to derive from Corollary 5.6(ii), 6`L I + Ω : ω → ω.
The main result of the present section is that convergence implies typability by

ω → ω. We will see in section 5 that the converse is also true. Therefore, this type
will completely characterize terms whose meaning is to eventually be a function, even
if not a unique one.

Theorem 3.23. Let M be a closed term:

M⇓ ⇒ `L M : ω → ω.

Proof.

M⇓ ⇒ ∃V1, . . . , Vn ∈ Val, M >
∑n

i=1 Vi by Corollary 2.10(i),
⇒ `L

∑n
i=1 Vi : ω → ω by Theorem 3.15(i) and rule (+ I),

⇒ `L M : ω → ω by Theorem 3.22(i).

4. Models and completeness. If we want to devise a domain equation for our
concurrent λ-calculus, it is natural to start from the equations in the literature for
similar languages.

Abramsky, in [4], interprets the lazy λ-calculus by means of a Scott domain D
solving the equation

D = [D → D]⊥,

where [D → D] is the space of continuous functions and (·)⊥ is the lifting operator.
Boudol in [19] gives the semantics of the lazy, call-by-name and call-by-value λ-

calculus enriched with a parallel operator using the same equation, but in a different
category. It is easy to see from the asynchronous reduction rules of Boudol’s parallel
operator (shown on p. 1379) that in a “may” perspective ‖ can be interpreted using
the lower powerdomain. Boudol recalls that each prime algebraic lattice D is isomor-
phic to the lower powerdomain of the posets of the compact coprime elements of D.
Therefore it suffices to find a solution of Abramsky’s equation in this category to have
a domain suitable for Boudol’s language. Notice that Boudol interprets M‖N as the
join of the interpretations of M and N .

The reduction rules of the present parallel operator differ from those given in [19].
Really, our ‖ is synchronous. But we are in a different situation: we consider “must”
convergence instead of “may” convergence. Therefore, our parallel operator behaves
exactly like Boudol’s from the viewpoint of convergence. In fact, both operators
converge whenever one of the two arguments does. This is clear when we think of the
correspondence between asynchronicity in a “may” perspective and synchronicity in
a “must” perspective. So we could have used Abramsky’s domain equation again, if
we would not have to also interpret the nondeterministic choice.

The reduction rules of + in a “must” perspective clearly suggest the upper pow-
erdomain for its interpretation. The whole discussion leads to the following domain
equation:

D = P]([D → D]⊥),

where P] is the upper powerdomain functor, in the category of prime algebraic lattices.
It is well known that each prime algebraic lattice can be described by an infor-

mation system [42] and also by means of intersection types [22]. Really, we have

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1401

developed in previous sections a system of intersection and union types; we will use
this system now to build a model, which is actually the initial solution of our domain
equation.

Because of rules (ω), (≤), and (∧ I), the set of types assigned in L to any term
is a filter over Type: let F be the set of all filters. F is a distributive lattice under
subset ordering (distributivity comes as a consequence of the distributivity of Type
itself), with intersection as meet and

F ∪̄F ′ = ↑{σ ∧ τ | σ ∈ F, τ ∈ F ′}
as join (↑ stands as usual for upper closure). The bottom and the top of this lattice
are, respectively, ↑ω and Type, where in general ↑σ is the principal filter generated
by σ. The compact elements are the principal filters. Moreover, this lattice is prime
algebraic, since each filter is the join of the compact coprime filters it dominates.
Notice that a filter F ∈ F is compact coprime if and only if it is a principal filter
generated by a meet irreducible type.2 We refer to [7] for the whole proof that F is
the initial solution of our domain equation.

Among filters assigned as meanings of terms, Theorem 3.15(ii) indicates that
prime filters are the interpretations of terms that are total values. We recall that a
filter F ∈ F is prime if and only if for all σ and τ

σ ∨ τ ∈ F ⇒ σ ∈ F or τ ∈ F.

We write FP to denote the set of prime filters.
In any distributive lattice D the set Pr(D) of prime elements is defined as follows:

d ∈ Pr(D) ⇔ ∀x, y ∈ D, x u y v d⇒ x v d or y v d.

We write Pr(x) =↑x ∩ Pr(D) for x ∈ D. Let us define, for any filter F , the set

Pr(F) = {P ∈ FP | F ⊆ P},
which is called the prime decomposition of F . It is straightforward to see that Pr(F) =
FP and consequently that the previous definition of Pr(F) is consistent with the
notation Pr(x).

From Priestley’s theorem we know that the structure of a distributive lattice is
recoverable from its prime filters (or dually from its prime ideals). The following fact
is at the root of this result (see, e.g., [23, Theorem 10.3]):

(DPI) Let D be a distributive lattice, F a filter, and I an ideal in D such that
F ∩ I = ∅. Then there exists a prime filter P and a prime ideal J (actually,
J is the complement of P in D) such that F ⊆ P , I ⊆ J , and P ∩ J = ∅.

The principle (DPI) implies that each filter is completely determined by its prime
decomposition.

Lemma 4.1. ∀F ∈ F , F =
⋂
P∈Pr(F) P.

Proof. The left to right inclusion is immediate. To see the inverse inclusion let
us suppose in contradiction that there exists some σ ∈ ⋂P∈Pr(F) P such that σ 6∈ F .

This implies that ↓ σ ∩ F = ∅, where ↓ σ is the principal ideal generated by σ; it
follows by (DPI) that for some P ∈ FP we have F ⊆ P and ↓σ ∩ P = ∅.

The last lemma is an instance of a more general fact: let D be a lattice; then
X ⊆ D is order generating if and only if for all x ∈ D, x = u(↑x∩X) (see [30, Ch. 1,

2 A type σ is meet irreducible or prime if and only if τ ∧ ρ ≤ σ ⇒ τ ≤ σ or ρ ≤ σ for any τ, ρ.

1402 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

Definition 3.8]). If D is continuous (i.e., complete and each element is the sup of its
way below elements) then it is distributive if and only if Pr(D) is order generating (see
[30, Ch. 1, Theorem 3.14]). But F is a distributive lattice which is prime algebraic,
so it is a fortiori continuous. Therefore, FP is order generating.

To interpret functional application we turn F into an applicative structure as
follows:

F · F ′ = {τ | ∃σ ∈ F ′, σ → τ ∈ F} ∪ {↑ω}.

Observe that the definition of application is slightly different from that given in [16].
Indeed, we have to add explicitly the principal filter of ω, since in our setting ω 6=
ω → ω; otherwise ↑ω · ↑ω would be the empty set.

Lemma 4.2. The operation of application over F is monotonic in both its argu-
ments; moreover,

(F ∩ F ′) ·G ⊇ (F ·G) ∩ (F ′ ·G) and (F ∪̄F ′) ·G ⊆ (F ·G)∪̄(F ′ ·G)

for all F, F ′, G ∈ F .
The proof is straightforward. Just note that these inclusions are actually equali-

ties, since the opposite inclusions follow from the monotonicity of the application.
The properties of F which have been seen so far suggest the following definition.
Definition 4.3. A premodel of Λ+‖ is a structure D = 〈D,v, ·,u,t〉 where

〈D,v〉 is a distributive continuous lattice and · is a monotonic binary operation on
D such that, for all d, d′, e ∈ D,

(i) (d u d′) · e w (d · e) u (d′ · e),
(ii) (d t d′) · e v (d · e) t (d′ · e).

Total values are associated by system L to prime filters different from ↑ ω. A
call-by-value variable is a total value; hence a correct notion of environment for F is a
mapping η : Vn∪Vv → F such that η(Vv) ⊆ FP −{↑ω}. In general, given a premodel
D, if P = Pr(D)−{⊥}, we define EnvD as the set of mappings η : Vn∪Vv → D such
that η(Vv) ⊆ P.

Now, for any environment η ∈ EnvF and for any basis Γ, we define

Γ |= η ⇔ ∀χ ∈ Vn ∪ Vv, Γ(χ) ∈ η(χ).

We are now set to define the map [[·]]F : Λ+‖ → EnvF → F as follows:

[[M]]Fη = {σ | ∃Γ, Γ |= η & Γ `L M : σ}.

This definition is consistent with the logical inclusion, which is equivalent to subset
inclusion of interpretations.

Proposition 4.4. For all M,N ∈ Λ+‖,

M vL N ⇔ ∀η, [[M]]Fη ⊆ [[N]]Fη .

Proof. (⇒) The proof is immediate. (⇐) Let us define, for any basis Γ, ηΓ(χ) = ↑
Γ(χ) for all variables χ; then ηΓ ∈ EnvF since Γ(v) is coprime for all call-by-value
variables v, and hence ↑ Γ(v) is a prime filter. Now Γ |= ηΓ so that Γ `L M : σ
implies σ ∈ [[M]]FηΓ

. By hypothesis, σ ∈ [[N]]FηΓ
, hence Γ′ `L N : σ for some Γ′ such

that Γ′ |= ηΓ. We conclude that Γ `L N : σ since Γ′ |= ηΓ implies Γ ≤ Γ′.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1403

Corollary 4.5. For all M,N ∈ Λ+‖ and η ∈ EnvF

[[M +N]]Fη = [[M]]Fη ∩ [[N]]Fη and [[M‖N]]Fη = [[M]]Fη ∪̄[[N]]Fη .

Proof. The proof is immediate from Proposition 4.4 and from Lemmas 3.20(i),
(ii) and 3.21(i), (ii).

Elaborating on the definition of λ-model, and also on the notion of λ-lattice
proposed in [25], we fix the following.

Definition 4.6. The structure 〈D, [[·]]D〉 is a model if D = 〈D,v, ·,u,t〉 is a
premodel and [[·]]D : Λ+‖ → EnvD → D satisfies the following conditions:

(i) [[χ]]Dη = η(χ);

(ii) [[MN]]Dη = [[M]]Dη · [[N]]Dη ;

(iii) [[λx.M]]Dη · d = [[M]]Dη[x7→d];

(iv) [[λv.M]]Dη · d =

{ ⊥ if d = ⊥,
ue∈Pr(d)[[M]]Dη[v 7→e] otherwise;

(v) (∀χ ∈ FV(M), η(χ) = η′(χ)) ⇒ [[M]]Dη = [[M]]Dη′ ;

(vi) [[λχ.M]]Dη = [[λχ′.M [χ′/χ]]]Dη if χ′ 6∈ FV(M) and either χ, χ′ ∈ Vn or χ, χ′ ∈
Vv;

(vii) (∀d ∈ D, [[M]]Dη[x7→d] = [[N]]Dη[x7→d]) ⇒ [[λx.M]]Dη = [[λx.N]]Dη ;

(viii) (∀e ∈ P, [[M]]Dη[v 7→e] = [[N]]Dη[v 7→e]) ⇒ [[λv.M]]Dη = [[λv.N]]Dη ;

(ix) [[M +N]]Dη = [[M]]Dη u [[N]]Dη ;

(x) [[M‖N]]Dη = [[M]]Dη t [[N]]Dη ;

(xi) W ∈ TVal ⇒ [[W]]Dη ∈ P,

where P = Pr(D)− {⊥}.
With respect to the classical definition of (syntactical) λ-models, the novelties are

in clauses (iv) and (viii)–(x). Clause (xi) reflects the intended meaning of total values,
which essentially are not sums. Clause (viii) takes into account that by definition,
η(Vv) ⊆ P. The last two clauses are suggested by Corollary 4.5. Clause (iv) is more
demanding; indeed, from Corollary 3.14 and Proposition 4.4 we can argue that a call-
by-value abstraction defines a co-additive function, but this does not suffice to show
that it is completely co-additive (i.e., preserving arbitrary meets). This is, however,
true in the filter model, and finely fits into the fact that prime elements are order
generating in continuous distributive lattices. To show this, or equivalently that the
premodel F can be turned into a model using [[·]]F , we need a couple of lemmas.

Lemma 4.7. For all M,N ∈ Λ+‖ and η ∈ EnvF ,

[[MN]]Fη = [[M]]Fη · [[N]]Fη .

Proof. To prove [[MN]]Fη ⊆ [[M]]Fη · [[N]]Fη , let σ ∈ [[MN]]Fη and σ 6= ω; then for
some basis Γ we have Γ |= η and Γ `L MN : σ. By Theorem 3.13(vi), there exists
some τ such that

Γ `L M : τ → σ & Γ `L N : τ.

It follows that τ → σ ∈ [[M]]Fη and τ ∈ [[N]]Fη , so the thesis follows.

1404 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

To see that [[M]]Fη · [[N]]Fη ⊆ [[MN]]Fη we reason as in [16]; namely, if for some

τ ∈ [[N]]Fη it is the case that τ → σ ∈ [[M]]Fη , then there are two bases, Γ0,Γ1, such
that Γi |= η for i = 0, 1, and

Γ0 `L N : τ & Γ1 `L M : τ → σ.

Now, taking Γ2 such that Γ2(χ) = Γ0(χ) ∧ Γ1(χ) for all χ, it is easy to see that

Γ2 |= η & Γ2 `L N : τ & Γ2 `L M : τ → σ,

from which we get Γ2 `L MN : σ; that is, σ ∈ [[MN]]Fη .
Lemma 4.8. Let Σ = {σi}i∈N be a chain such that for all i, σi ≤ σi+1, and let

F ∈ F . Then

∀P ∈ Pr(F), P ∩ Σ 6= ∅ ⇒ F ∩ Σ 6= ∅.

Proof. Let I be the downward closure of Σ; then

ρ0, ρ1 ∈ I ⇒ ∃σi, σj ∈ Σ, ρ0 ≤ σi & ρ1 ≤ σj
⇒ ∃σi, σj ∈ Σ, ρ0 ∨ ρ1 ≤ σi ∨ σj = σmax{i,j} ∈ Σ
⇒ ρ0 ∨ ρ1 ∈ I,

so I is an ideal. If F ∩ Σ = ∅, then F ∩ I = ∅, F being an upward closed set. By
(DPI) there exists P ∈ Pr(F) such that P ∩ I = ∅ and consequently P ∩ Σ = ∅, so
that the thesis follows by contraposition.

Theorem 4.9. The structure 〈〈F ,⊆, ·,∩, ∪̄〉, [[·]]F 〉 is a model.
Proof. Because of Proposition 4.4 and Lemmas 3.18, 3.20, 3.21, and 4.7 the only

relevant remaining point is to show that F satisfies clause (iv) of Definition 4.6. Recall
that the bottom in F is ↑ω; then this amounts to showing that

[[λv.M]]Fη · F =

{ ↑ω if F ≡↑ω,⋂
P∈Pr(F)[[M]]Fη[v 7→P] otherwise.

Now, if F ≡↑ω, then

σ ∈ [[λv.M]]Fη · ↑ω ⇔ ω → σ ∈ [[λv.M]]Fη
⇔ ∃Γ |= η, Γ `L λv.M : ω → σ
⇒ σ = ω by Theorem 3.13(v).

If F 6≡↑ω, let us suppose that σ 6= ω (otherwise the thesis is trivial). Then

σ ∈ [[λv.M]]Fη · F ⇔ ∃τ ∈ F, τ → σ ∈ [[λv.M]]Fη
⇔ ∃τ ∈ F, ∃Γ |= η, Γ `L λv.M : τ → σ
⇔ ∃τ ∈ F, ∃Γ |= η, ∀τ ′ ∈ Θ(τ), Γ, v : τ ′ `L M : σ

by Theorem 3.13(iv), since σ 6= ω ⇒ τ 6= ω
by Theorem 3.13(v).

Now F =
⋂
P∈Pr(F) P implies that, for all P ∈ Pr(F), τ ∈ P , and hence τ ′ ∈ P

for some τ ′ ∈ Θ(τ) by definition of prime filter (notice that τ ′ depends on P). This
implies Γ, v : τ ′ |= η[v 7→ P] for some τ ′ ∈ Θ(τ), so that σ ∈ [[M]]Fη[v 7→P]. It follows
that

[[λv.M]]Fη · F ⊆
⋂

P∈Pr(F)

[[M]]Fη[v 7→P].

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1405

To see the opposite inclusion, let G = [[λv.M]]Fη ; we first show that, if P ∈ FP and
P 6=↑ ω, then G · P = [[M]]η[v 7→P]. Indeed, let w ∈ Vv − FV (M) and η ∈ EnvF be
such that η(w) = P ; then, by Lemmas 4.7 and 3.18(iii), we have

G · P = [[λv.M]]Fη · [[w]]Fη = [[(λv.M)w]]Fη = [[M [w/v]]]Fη = [[M]]Fη[v 7→P].

From F 6=↑ω it follows that ↑ω 6∈ Pr(F), so that the equality above implies⋂
P∈Pr(F)

G · P =
⋂

P∈Pr(F)

[[M]]Fη[v 7→P].

Suppose that σ ∈ ⋂P∈Pr(F) G · P . Let us define

Π = {π ∈ Type | ∃P ∈ Pr(F), π ∈ P & π → σ ∈ G}.
This set is nonempty by hypothesis and it is countable, being a subset of the denu-
merable set Type. Let us suppose that an enumeration of Π has been fixed; then we
put

Σ = {τn}n∈N where τn =

n∨
i=0

πi.

By construction, Σ is a chain such that, ∀P ∈ Pr(F), P ∩ Σ 6= ∅, so that by Lemma
4.8, there exists an m such that τm ∈ F . Since G is the interpretation of a call-by-
value abstraction, a simple induction using Corollary 3.14 shows that τn → σ ∈ G for
all n: we conclude that σ ∈ G · F .

So far, terms have been interpreted as collections of their properties, namely, of
their types. We now provide an interpretation of types as subsets of the domains of
models. The domains have an order whose meaning is “to be better behaved” and
more defined. We do not want more defined objects to have fewer properties than
their minors, hence the subsets interpreting types have to be upward closed; more
precisely, they will be filters of the domain itself.

Definition 4.10. Let D = 〈D,v, ·,u,t〉 be a premodel, and define for X,Y ⊆ D:

X ⇒ Y = {d ∈ D | d 6= ⊥ & ∀e ∈ X, d · e ∈ Y },
X∪̄Y =↑ {d u d′ | d ∈ X, d′ ∈ Y },

where we overload ∪̄. Then a type structure over D is a sublattice T of the lattice of
filters over D, such that D ∈ T and T is closed under ⇒,∩, and ∪̄.
The map [[·]]T : Type→ T is inductively defined as follows:

(i) [[ω]]T = D;

(ii) [[σ → τ]]T = [[σ]]T ⇒ [[τ]]T ;

(iii) [[σ ∧ τ]]T = [[σ]]T ∩ [[τ]]T ;

(iv) [[σ ∨ τ]]T = [[σ]]T ∪̄[[τ]]T .

Finally, given a model 〈D, [[·]]D〉, we define

(v) Γ |=D M : σ ⇔ (∀η ∈ EnvD, Γ |= η ⇒ [[M]]Dη ∈ [[σ]]T);

(vi) Γ |= M : σ ⇔ ∀D, Γ |=D M : σ.

In the definition of X ⇒ Y we make the condition d 6= ⊥ since we are modeling
a lazy calculus; this means that the bottom cannot be interpreted as a function.
Consequently we exclude ⊥ from X ⇒ Y , whose intended meaning is the set of

1406 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

representatives of functions which, when restricted to X, have ranges included in Y .
Observe that X ⇒ Y is a filter in D if both X and Y are.

We end this section by stating and proving a completeness theorem.
Theorem 4.11 (completeness).

Γ `L M : σ ⇔ Γ |= M : σ.

Proof. (⇒) The proof is by induction on derivations in L.
(⇐) First define Xσ = {F ∈ F | σ ∈ F} as usual, so that it is easily checked that

T = {Xσ}σ∈Type is a type structure over F . More precisely, Xω = F , Xσ→τ = Xσ ⇒
Xτ , Xσ∧τ = Xσ ∩Xτ , and Xσ∨τ = Xσ∪̄Xτ . This implies, by a simple induction on
types, that [[σ]]T = Xσ. Suppose Γ |= M : σ; hence, in particular, Γ |=F M : σ,
since by Theorem 4.9, F is a model. Put ηΓ(χ) =↑ Γ(χ). Now Γ |= ηΓ implies
[[M]]FηΓ

∈ Xσ, that is, σ ∈ [[M]]FηΓ
. It follows that, for some Γ′ such that Γ′ |= ηΓ, we

have Γ′ `L M : σ. We conclude that Γ `L M : σ since Γ′ |= ηΓ implies Γ ≤ Γ′.

5. Full abstraction. In this section we will prove that the filter model exactly
mirrors the operational semantics; i.e., it is fully abstract. This means that

• the filter model is adequate; that is, it does not equate operationally distinct
programs

M vL N ⇒M vO N ;

• the filter model reflects the operational distinctions

M vO N ⇒M vL N.

The key property on which the proof of full abstraction relies is that any compact
element of F , which is of the shape ↑σ, is λ-definable, since for all types σ there exists
a characteristic (closed) term Rσ such that

`L Rσ : τ ⇔ σ ≤ τ ;

that is, [[Rσ]]F = ↑σ.
Such terms are constructed inductively together with test terms. To each type σ

we associate a test term Tσ such that for all closed terms M :

TσM⇓ ⇔ `L M : σ.

The definition of characteristic and test terms finely reflects the duality between ‖
and +, as well as their correspondence with ∧ and ∨, respectively.

A further step in the full abstraction proof consists in giving a “realizability
interpretation” of types as sets of closed terms. This is sound since each type is
inhabited by some closed term (at least its characteristic term).

The main result we obtain is the converse of Theorem 3.23, namely,

(∗) `L M : ω → ω ⇒M⇓
for all closed terms M .

The full abstraction theorem then follows. Indeed, adequacy is a consequence of
(∗) and of the fact that 'L is a congruence. For the converse it suffices to observe that
test terms discriminate internally, that is, with respect to the convergence predicate,
terms having different interpretations in the filter model.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1407

5.1. Characteristic terms. We define two families of terms {Rσ}σ∈Type and
{Tσ}σ∈Type starting from Ω . We can safely replace Ω by any unsolvable term of
degree 0.

Definition 5.1. The characteristic terms Rσ and the test terms Tσ are defined
by simultaneous induction on σ:

Rω ≡ Ω, Tω ≡ λxy.y,
Rσ→τ ≡ λx.(Tσx) Rτ , Tσ→τ ≡ λv.Tτ (v Rσ),
Rσ∧τ ≡ Rσ‖Rτ , Tσ∧τ ≡ λx.(Tσ x+ Tτ x),
Rσ∨τ ≡ Rσ + Rτ , Tσ∨τ ≡ λv.(Tσ v ‖Tτ v) where σ ∨ τ 6= ω.

Notice the different use of call-by-value variables in the definitions of Tσ→τ and
Tσ∨τ : Tσ→τ must check that its argument has type σ → τ which, by (∗) above,
implies that it has to be convergent. On the other hand, the argument of Tσ∨τ may
reduce to a sum P + Q having type σ ∨ τ because P has type σ and Q has type τ
but neither σ nor τ can be deduced for P + Q. Therefore, it is essential that it is
evaluated before the application in parallel of Tσ and Tτ .

The types which can be deduced for Rσ and Tσ are meaningful for their opera-
tional behavior. In fact,

• Rσ has exactly the types greater than or equal to σ;

• Tσ has type τ → ρ→ ρ only if τ ≤ σ.

This means that Rσ is “the worst” term of type σ and that TσM reduces to a value if
and only if we can deduce the type σ for M (and this value behaves like the identity
combinator).

Lemma 5.2.

(i) `L Rσ : τ ⇔ σ ≤ τ ;

(ii) `L Tσ : τ → γ → δ ⇔ τ ≤ σ & γ ≤ δ.

Proof. We prove (i) and (ii) simultaneously by induction on σ. We consider only
the interesting cases.

σ ≡ µ→ ν:

(i) Rµ→ν ≡ λx.(Tµx) Rν and assume `L Rµ→ν : τ . Then we proceed
by a subordinate induction on the structure of τ , the base case being
τ ≡ α → β since Rµ→ν is an abstraction (see Theorem 3.13(ii)). Now,
by Theorem 3.13(iii) and (vi), we have x : α `L Tµ : γ → δ → β,
x : α `L x : γ, and x : α `L Rν : δ for some γ and δ. By induction and
Theorem 3.13(i) this implies γ ≤ µ, δ ≤ β, α ≤ γ, and ν ≤ δ; that is,
α ≤ µ and ν ≤ β. We conclude that µ→ ν ≤ α→ β.
When τ ≡ α ∨ β the thesis follows from the subordinate induction
hypothesis. In fact, Theorem 3.15(ii) implies that `L Rµ→ν : α or
`L Rµ→ν : β, Rµ→ν being a total value.
The case τ ≡ α∧ β follows immediately from the subordinate induction
hypothesis.

(ii) Tµ→ν ≡ λv.Tν(vRµ) and suppose that `L Tµ→ν : τ → γ → δ. Then
we have

1408 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

∀τ ′ ∈ Θ(τ), v : τ ′ `L Tν(vRµ) : γ → δ by Theorem 3.13(iv),
⇒ ∀τ ′ ∈ Θ(τ) ∃α, v : τ ′ `L Tν : α→ γ → δ & v : τ ′ `L vRµ : α

by Theorem 3.13(vi),
⇒ ∀τ ′ ∈ Θ(τ) ∃α, α ≤ ν & γ ≤ δ & τ ′ ≤ µ→ α

by induction and Theorem 3.13(i), (vi),
⇒ ∀τ ′ ∈ Θ(τ), τ ′ ≤ µ→ ν & γ ≤ δ,
⇒ τ ≤ µ→ ν & γ ≤ δ.

σ ≡ µ ∨ ν:
(ii) Tµ∨ν ≡ λv.(Tµv‖Tνv) and suppose that `L Tµ∨ν : τ → γ → δ. Then

we have

∀τ ′ ∈ Θ(τ), v : τ ′ `L (Tµv‖Tνv) : γ → δ by Theorem 3.13(iv),
⇒ ∀τ ′ ∈ Θ(τ) ∃ρ1, ρ2, v : τ ′ `L Tµv : ρ1 & v : τ ′ `L Tν : ρ2 &

ρ1 ∧ ρ2 ≤ γ → δ by Theorem 3.13(viii).

We assume ρ1 6= ω and ρ2 6= ω. ρ1∧ρ2 ≤ γ → δ implies by Lemma 3.9(i)
that there are δ1, δ2 such that

δ1 ∧ δ2 = δ & ρ1 ≤ γ → δ1 & ρ2 ≤ γ → δ2.

v : τ ′ `L Tµv : ρ1,
⇒ ∃α, v : τ ′ `L v : α & `L Tµ : α→ ρ1 by Theorem 3.13(vi),
⇒ `L Tµ : τ ′ → ρ1 by Theorem 3.13(i)

and rule(≤),
⇒ `L Tµ : τ ′ → γ → δ1 by above and rule (≤),
⇒ τ ′ ≤ µ & γ ≤ δ1 by induction.

Analogously, from v : τ ′ `L Tνv : ρ2 we deduce τ ′ ≤ ν and γ ≤ δ2. So
we can conclude τ ≤ µ ∨ ν and γ ≤ δ1 ∧ δ2.
The case in which one of ρi (i = 1, 2) is equal to ω is similar and simpler.
In fact, if ρ2 = ω we have ρ1 ≤ γ → δ. This allows us to prove τ ′ ≤ µ
and γ ≤ δ from v : τ ′ `L Tµv : ρ1. So we can conclude once more that
τ ≤ µ ∨ ν and γ ≤ δ.

5.2. Realizability. The aim of this subsection is to prove that

`L M : ω → ω ⇒ M⇓

for all closed terms M . As an immediate consequence we have that only types equiv-
alent to ω can be derived for divergent terms.

The proof of this fact requires a double induction, on types and deductions. Fol-
lowing a standard methodology, we split this induction by introducing a “realizability
interpretation” of types as sets of closed terms.

Definition 5.3. We define the mapping [[·]] : Type→ P(Λ0
+‖) by induction.

(i) (a) [[ω]] = Λ0
+‖ ;

(b) [[σ → τ]] = {M ∈ Λ0
+‖ |M ⇓ & ∀N ∈ [[σ]] ⇒MN ∈ [[τ]]};

(c) [[σ ∧ τ]] = {M ∈ Λ0
+‖ |M ∈ [[σ]] and M ∈ [[τ]]};

(d) [[σ ∨ τ]] = {M ∈ Λ0
+‖ |M ∈ [[σ]] or M ∈ [[τ]] or ∃N ∈ [[σ]], L ∈ [[τ]], M ./

N + L}.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1409

(ii) If M is open, let FV (M) = {x1, . . . , xm, v1, . . . , vn}, and Γ(xi) = µi (1 ≤ i ≤
m), Γ(vj) = νj (1 ≤ j ≤ n); then

Γ |=r M : σ ⇔M [N1/x1, . . . , Nm/xm, L1/v1, . . . , Ln/vn] ∈ [[σ]]

for all Ni ∈ [[µi]] and Lj ∈ [[νj]] (1 ≤ i ≤ m and 1 ≤ j ≤ n).

The correctness of this definition is due to the fact that all types are inhabited
by some closed term; in fact, Theorem 5.5 will imply that |=r Rσ : σ for all types σ.

The following lemma states some key properties of our realizability interpretation.
Lemma 5.4. Let M,N,W ∈ Λ0

+‖. Then

(i) M ∈ [[σ]] & M ./ N ⇒ N ∈ [[σ]];

(ii) M ∈ [[σ]] ⇒M‖N ∈ [[σ]];

(iii) M ∈ [[σ]] & N ∈ [[σ]] ⇔M +N ∈ [[σ]];

(iv) W ∈ [[σ ∨ τ]] & W ∈ TVal ⇒W ∈ [[σ]] or W ∈ [[τ]];

(v) M ∈ [[σ]] & σ ≤ τ ⇒M ∈ [[τ]];

(vi) M ∈ [[σ]] & σ 6= ω ⇒M⇓.
Proof. We prove points (i)–(iii) of this lemma by induction on σ. The case σ ≡ ω

is always trivial. The cases σ ≡ τ ∧ρ and σ ≡ τ ∨ρ with M ∈ [[τ]]∪ [[ρ]] (N ∈ [[τ]]∪ [[ρ]])
immediately follow from the induction hypothesis. Therefore, the proofs of these cases
are omitted.

(i) Case σ ≡ τ → ρ. M⇓ implies N⇓ by Theorem 2.12(ii); moreover,

M ∈ [[σ]]
⇒ ∀L ∈ [[τ]], ML ∈ [[ρ]] by definition,
⇒ ∀L ∈ [[τ]], NL ∈ [[ρ]] by induction since ML ./ NL by Lemma 2.8(i),
⇒ N ∈ [[σ]] by definition.

Case σ ≡ τ ∨ ρ and M ./ P + Q for some P ∈ [[τ]] and Q ∈ [[ρ]]. Therefore,
N ./ P +Q and we are done.

(ii) Case σ ≡ τ → ρ. M⇓ implies M‖N⇓; moreover,

M ∈ [[σ]]
⇒ ∀L ∈ [[τ]], ML ∈ [[ρ]] by definition,
⇒ ∀L ∈ [[τ]], N ∈ Λ0

+‖, ML‖NL ∈ [[ρ]] by induction,

⇒ ∀L ∈ [[τ]], N ∈ Λ0
+‖, (M‖N)L ∈ [[ρ]] by (i) since (M‖N)L >ML‖NL

by rule (‖app)′,
⇒ ∀N ∈ Λ0

+‖,M‖N ∈ [[σ]] by definition.

Case σ ≡ τ ∨ ρ and M ./ P +Q for some P ∈ [[τ]] and Q ∈ [[ρ]]. M ./ P +Q
implies M‖N ./ (P +Q)‖N by Lemma 2.8(i) and (P +Q)‖N >P‖N +Q‖N
by rule (+‖)′ for all N ∈ Λ0

+‖. By induction, P‖N ∈ [[τ]] and Q‖N ∈ [[ρ]], so

we conclude that M‖N ∈ [[σ]] for all N ∈ Λ0
+‖.

(iii) (⇒).
Case σ ≡ τ → ρ.

M,N ∈ [[σ]]
⇒ ∀L ∈ [[τ]], ML,NL ∈ [[ρ]] by definition,
⇒ ∀L ∈ [[τ]], ML+NL ∈ [[ρ]] by induction,
⇒ ∀L ∈ [[τ]], (M +N)L ∈ [[ρ]] by (i) since (M +N)L >ML+NL

by rule (+app)
′,

⇒ M +N ∈ [[σ]] by definition.

1410 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

Case σ ≡ τ ∨ ρ and M ./ M0 +M1, N ./ N0 +N1 for some M0, N0 ∈ [[τ]] and
M1, N1 ∈ [[ρ]]. From the induction hypothesis M0 +N0 ∈ [[τ]] and M1 +N1 ∈
[[ρ]]; therefore,

M +N ./ (M0 +N0) + (M1 +N1) ∈ [[τ ∨ ρ]].
(⇐) Case σ ≡ τ → ρ.

M +N ∈ [[σ]]
⇒ ∀L ∈ [[τ]], (M +N)L ∈ [[ρ]] by definition,
⇒ ∀L ∈ [[τ]], ML+NL ∈ [[ρ]] by (i) since (M +N)L >ML+NL

by rule (+app)
′,

⇒ ∀L ∈ [[τ]], ML,NL ∈ [[ρ]] by induction
⇒ M,N ∈ [[σ]] by definition.

Case σ ≡ τ ∨ρ and M +N ./ P +Q for some P ∈ [[τ]] and Q ∈ [[ρ]]. If M ./ P
and N ./ Q (or vice versa) the thesis follows from (i). Otherwise, by Lemma
2.8(ii) there exist M0,M1, N0, N1 such that M ./ M0+M1 , N ./ N0+N1 and
P ./ M0 +N0 , Q ./ M1 +N1. By induction, M0, N0 ∈ [[τ]] and M1, N1 ∈ [[ρ]].
So we conclude that M ∈ [[τ ∨ ρ]] and N ∈ [[τ ∨ ρ]] by definition.

(iv) It suffices to observe that W ∈ TVal implies that W ./ M +N is impossible
for any M,N .

(v) This proof is by induction on the definition of ≤. In the case σ ∨ σ ≤ σ, use
(iii)(⇒).

We consider the case (σ∨τ)∧ρ ≤ (σ∧ρ)∨(τ ∧ρ) when M ./ P +Q, P ∈ [[σ]], Q ∈
[[τ]], and M ∈ [[ρ]]. M ∈ [[ρ]] implies P ∈ [[ρ]] and Q ∈ [[ρ]] by (i) and (iii)(⇐). Therefore,
we have P ∈ [[σ ∧ ρ]] and Q ∈ [[τ ∧ ρ]], so we can conclude M ∈ [[(σ ∧ ρ) ∨ (τ ∧ ρ)]].

(vi) This proof is by induction on σ, taking into account that σ ≡ τ ∨ρ and σ 6= ω
imply τ 6= ω and ρ 6= ω.

As expected, realizability coincides with derivability in `L, and this implies in
turn that we can assure convergence for all closed terms typable by ω → ω.

Theorem 5.5 (realizability theorem).

∀Γ, σ,M, Γ |=r M : σ ⇔ Γ `L M : σ.

Proof. Let FV (M) = {x1, . . . , xm, v1, . . . , vn} and Γ = {x1:µ1, . . . , xm:µm,
v1:ν1, . . . , vn:νn}. Let us choose N1, . . . , Nm and L1, . . . , Ln as in Definition 5.3(ii)
and put

U∗ ≡ U [N1/x1, . . . , Nm/xm, L1/v1, . . . , Ln/vn].

It suffices to show that M∗ ∈ [[σ]] if and only if Γ `L M : σ.
(⇐) The proof is by induction on deductions. We consider only the interesting

cases.

Case (→ Iv). Then M ≡ λv.P for some P , σ ≡ τ → ρ and Γ, v : τ ′ `
P : ρ has been derived for all τ ′ ∈ Θ(τ). Let L ∈ [[τ ′]] for some τ ′ ∈
Θ(τ). L ∈ [[τ ′]] implies L ⇓ by Lemma 5.4(vi) since τ ′ 6= ω. Therefore,

by Corollary 2.10, there are V1, . . . , Vk ∈ Val such that L >
∑k

i=1 Vi and

(λv.P)L >
∑k

i=1(λv.P)Vi. Notice that by Lemma 5.4(i) and (iii), ∀i ≤ k, Vi ∈
[[τ ′]].

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1411

From the induction hypothesis for all i ≤ n, P [Vi/v]
∗ ∈ [[ρ]]; there is no loss

of generality in supposing that v does not occur in N1, . . . , Nm, L1, . . . , Ln
so that (P [Vi/v])

∗ ≡ P ∗[Vi/v]. We have (λv.P)∗Vi ≡ (λv.P ∗)Vi. Now

(λv.P ∗)Vi >P ∗[Vi/v] if Vi ∈ TVal and (λv.P ∗)Vi >
∑h

j=1(P
∗[Vi/v]‖(λv.P ∗)V ′j),

where R(Vi, 1) = {V ′1 , . . . , V ′h} otherwise. In both cases it follows that
(λv.P)∗Vi ∈ [[ρ]] by Lemma 5.4(i), (ii), (iii).

∀i ≤ k, M∗Vi ∈ [[ρ]] ⇒ ∑k
i=1 M

∗Vi ∈ [[ρ]] by Lemma 5.4(iii),
⇒ M∗L ∈ [[ρ]] by Lemma 5.4(i)

since M∗L >
∑k

i=1 M
∗Vi

by construction.

So we conclude M∗ ∈ [[σ]] by the arbitrariness of the computable term L.

Case (‖ I). Then M ≡ P‖Q for some P , Q, σ ≡ τ ∧ρ and, say, Γ ` P : τ and
Γ ` Q : ρ have been derived. From the induction hypothesis, P ∗ ∈ [[τ]] and
Q∗ ∈ [[ρ]], so that by Lemma 5.4(ii), P ∗‖Q∗ ∈ [[τ]] and P ∗‖Q∗ ∈ [[ρ]], which
imply by definition (P‖Q)∗ ∈ [[σ]].

(⇒) This proof is by induction on σ. The only interesting case is when σ ≡ τ → ρ.

M∗ ∈ [[σ]] ⇒ ∀N ∈ [[τ]], M∗N ∈ [[ρ]] by definition,
⇒ M∗Rτ ≡ (MRτ)

∗ ∈ [[ρ]] since Rτ ∈ [[τ]] by (⇐)
⇒ Γ `L MRτ : ρ by induction
⇒ Γ `L M : τ → ρ by Theorem 3.13(vi) and

Lemma 5.2(i).

The main result of this subsection is the characterization of convergent terms by
the type ω → ω (see also Theorem 3.23).

Corollary 5.6.

(i) ∀M ∈ Λ0
+‖, `L M : ω → ω ⇒M⇓ .

(ii) ∀M ∈ Λ0
+‖, M⇑ & `L M : σ ⇒ σ = ω.

As already stated, the characterization of types which can be deduced for diver-
gent terms given in Corollary 5.6(ii) allows us to prove that some inclusions in the
model are proper.

Corollary 5.7.

(i) ∃M ∈ Λ+‖, V ∈ Val, σ such that [∀σ′ ∈ Θ(σ), v : σ′ `L M : τ] & `L V : σ
but 6`L M [V/v] : τ ;

(ii) ∃M ∈ Λ+‖, V ∈ Val, τ such that `L (λv.M)V : τ but 6`L M [V/v] : τ ;

(iii) ∃L,M,N ∈ Λ+‖ such that L(M +N) @L LM + LN ;

(iv) ∃L,M,N ∈ Λ+‖ such that LM‖LN @L L(M‖N).

Proof.

(i) An example is M ≡ vI∆∆‖v∆I∆, V ≡ ∆‖(K+O), and σ = σ1∨σ2, where
σ1 ≡ ρ→ ω → ρ, σ2 ≡ ω → ρ→ ρ, ρ ≡ τ → τ , and τ ≡ (ω2 → ω) → ω → ω.
We can easily check that (1) `L I : ρ, (2) `L ∆ : τ , (3) `L K : σ1, and
(4) `L O : σ2. From (1) and (2) we obtain (5) v : σ1 `L vI∆∆ : τ and
(6) v : σ2 `L v∆I∆ : τ , which imply, respectively, v : σ1 `L M : τ and
v : σ2 `L M : τ . Using (3) and (4) we derive `L K + O : σ1 ∨ σ2, which
implies `L V : σ1 ∨ σ2. But type τ cannot be deduced for M [V/v]. In fact,
it is easy to verify that M [V/v] diverges, since it reduces to Ω‖Ω‖ΩI∆‖Ω.
Therefore, by Corollary 5.6(ii) M [V/v] has only types equivalent to ω.

1412 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

(ii) This proof is immediate from (i).

(iii) An example is L ≡ λx.(xI∆∆‖x∆I∆), M ≡ K, and N ≡ O. Analogously
to (5) and (6) (in the proof of (i)) we have (7) x : σ1 `L xI∆∆ : τ and (8)
x : σ2 `L x∆I∆ : τ , which imply (9) `L L : σ1 → τ and (10) `L L : σ2 → τ .
Then from (3), (4), (9), and (10) we conclude `L LM +LN : τ , but this type
cannot be deduced for L(M +N). Really, L(K + O) reduces to Ω‖Ω, which
being divergent has only types equivalent to ω.

(iv) We choose L ≡ λx.(xI∆∆ + x∆I∆), M ≡ K, and N ≡ O. Using (7) and
(8) (from the proof of (iii)) we have `L L : σ1∧σ2 → τ . (3) and (4) (from the
proof of (i)) imply `L K‖O : σ1 ∧ σ2. Then `L L(M‖N) : τ , but this type
cannot be deduced for LM‖LN . The reason is again that this term diverges,
since it reduces to Ω‖Ω.

Notice that Corollary 5.7(i) says that we cannot relax the condition on the
premises of rule (∨E) (discussed on p. 1398), allowing W to be a partial value. This
does not mean that our calculus distinguishes internally between partial and total
values. In fact, we do not have a type (and therefore a test term by the following full
abstraction theorem) that characterizes all total values, as type ω → ω characterizes
all convergent terms. The best we can do is the statement of Theorem 3.15(ii).

As suggested by one of the referees, some further remarks are in order about the
theory of the model. In fact, equivalence classes of terms with respect to 'L build
a distributive lattice in which + is the meet and ‖ is the join. Moreover, Ω and
all divergent terms are the bottom, since only types equivalent to ω can be deduced
for them. Finally, the lattice has a top, namely, the equivalence class of the term
(λxy.xx)(λxy.xx) (usually called the “ogre”). We recall that (λxy.xx)(λxy.xx) is
convertible to the fixed-point of K, i.e., to YK, using the standard β-rule. Moreover,
it is unsolvable of infinite order, since it reduces to λz1 . . . zn.(λxy.xx)(λxy.xx) for
any n ≥ 0 using the standard β-rule. To prove that Type is the interpretation of the
“ogre,” in the remaining part of this section we will show that `L (λxy.xx)(λxy.xx) : σ
for all types σ.

Define, for every n ≥ 1, the following types;

σ1 ≡ ω,
σn+1 ≡ τn ∧ σn, τn ≡ σn → ωn → ω.

Lemma 5.8.

(i) For every n ≥ 1, `L λxy.xx: τn.

(ii) For every n ≥ 1, `L λxy.xx:σn.

Proof.

(i) We distinguish two cases.
Case n = 1.

` xx:ω
` λy.xx:ω → ω

(→ In),

` λxy.xx:ω → ω → ω
(→ In).

Case n > 1.

x:σn ` x: τn−1 ∧ σn−1

x:σn ` x: τn−1
(≤)

x:σn ` x: τn−1 ∧ σn−1

x:σn ` x:σn−1
(≤),

x:σn ` xx:ωn−1 → ω
(→ E),

x:σn ` λy.xx:ωn → ω
(→ In),

` λxy.xx:σn → ωn → ω
(→ In).

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1413

(ii) The case n = 1 is trivial. If n > 1, then σn =
∧n−1
i=1 τi, so the thesis follows

immediately from (i).

Theorem 5.9.

(i) For every n ≥ 1, `L (λxy.xx)(λxy.xx) : ωn → ω.

(ii) For all types σ, `L (λxy.xx)(λxy.xx) : σ.

Proof.

(i) Just consider the derivations, for n ≥ 1,

(by Lemma 5.8(i))

` λxy.xx: τn

(by Lemma 5.8(ii))

` λxy.xx:σn
,

` (λxy.xx)(λxy.xx):ωn → ω
(→ E),

since τn ≡ σn → ωn → ω.

(ii) This proof is immediate from (i) and 3.3.

5.3. Full abstraction. To establish the main result of this paper we use the
discriminability power of test terms.

Theorem 5.10. Let M be a closed term. Then TσM⇓ ⇔ `L M : σ.
Proof. If TσM⇓ then, by Theorem 3.23, `L TσM : ω → ω. By Theorem 3.13(vi)

it follows that Tσ : ρ → ω → ω for some ρ such that `L M : ρ. By Lemma 5.2(ii) it
has to be true that ρ ≤ σ, so that `L M : σ using rule (≤). Vice versa, `L M : σ
implies `L TσM : ω → ω by Lemma 5.2(ii), so we conclude TσM ⇓ by Corollary
5.6(i).

Theorem 5.11 (full abstraction).

M vL N ⇔M vO N.

Proof. (⇒) (adequacy) Since vL is a precongruence, M vL N implies that, for
any context C[] closing both M and N , if `L C[M] : ω → ω then `L C[N] : ω → ω.
It follows that

C[M]⇓ ⇒ `L C[M] : ω → ω by Theorem 3.23

⇒ `L C[N] : ω → ω ⇒ C[N]⇓ by Corollary 5.6(i).

(⇐) (completeness) M 6vL N ⇒ ∃Γ, σ, Γ `L M : σ & Γ 6`L N : σ. Let
FV (MN) = {χi | 1 ≤ i ≤ n}, Γ = {χi : τi | 1 ≤ i ≤ n}, and τ = τ1 → · · · →
τn → σ; then `L λχ1 . . . χn.M : τ and 6`L λχ1 . . . χn.N : τ by Theorem 3.13(iii), (iv).
Therefore, choosing C[] = Tτ (λχ1 . . . χn.[]), we have by Theorem 5.10 that C[M]⇓
and C[N]⇑, which imply M 6vO N .

A natural question, posed by one of the referees, is whether 'L on the sub-
calculus without + coincides with Boudol’s equivalence [19]. The answer is negative,
since our calculus is more discriminating also for pure λ-terms. For example, Boudol
equates λx.xx and its η-expansion λx.x(λy.xy); this is proved in [61]. Instead, in
our calculus with +, λx.xx is strictly better than λx.x(λy.xy). This is shown by the
fact that `L λx.xx : σ ∧ (σ → τ) → τ , while λx.x(λy.xy) does not have this type,
where σ ≡ (µ → ω → µ) ∨ (ω → µ → µ), τ ≡ ω → µ, and µ ≡ ω → ω. This
can be checked by verifying that the test term corresponding to σ ∧ (σ → τ) → τ
converges when applied to λx.xx and diverges when applied to λx.x(λy.xy). Another
way of showing this is to consider the application of these terms to P + Q, where
P ≡ λv.v(vO) and Q ≡ λyx.xΩ. In fact, we have that (λx.xx)(P + Q) converges,

1414 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

while (λx.x(λy.xy))(P + Q) diverges. In Figure 3 we show the whole reduction tree
of (λx.xx)(P +Q) and an infinite reduction path out of (λx.x(λy.xy))(P +Q).

(λx.xx)(P +Q)
↓

(P +Q)(P +Q)
↙ ↘

P (P +Q) Q(P +Q)
↙ ↘ ↓

PP PQ
↓ ↓

P (PO) Q(QO)
↓ ↓

P (O(OO)) λx.xΩ
↓
P I
↓

I(IO)
↓

IO
↓
O

(a)

λx.xΩ

(λx.x(λy.xy))(P +Q)
↓

(P +Q)(λy.(P +Q)y)
↓

P (λy.(P +Q)y)
↓

(λy.(P +Q)y)((λy.(P +Q)y)O)
↓

(P +Q)((λy.(P +Q)y)O)
↓

P ((λy.(P +Q)y)O)
↓

P ((P +Q)O)
↓

P (QO)
↓

P (λx.xΩ)
↓

(λx.xΩ)((λx.xΩ)O)
↓

(λx.xΩ)OΩ
↓

OΩΩ
↓
Ω
↓
...

(b)

Fig. 3. (a) The reduction tree of (λx.xx)(P + Q). (b) An infinite reduction path out of
(λx.x(λy.xy))(P +Q).

Really, we strongly conjecture that the restriction of 'L to the pure λ-calculus
coincides with the equality of Lévy–Longo trees associated with λ-terms. This equiv-
alence relation between λ-terms, which we denote by 'T , was defined in [44].

From one side, Sangiorgi in [61] proves that using a set of well-formed operators
and comparing terms through bisimulation, one always obtains an equivalence relation
(we call 'OP) which includes 'T . Indeed, we have that M 'T N implies M 'OP N
for all λ-terms M,N . Now our concurrent λ-calculus respects the conditions on well-
formed operators of [61]. Moreover, we compare terms through contexts, which equate
in our case more than bisimulation. For example, we equate I + Ω and Ω, which are
not bisimilar. Then we conclude that M 'T N implies M 'L N for all λ-terms
M,N .

From the other side, given two different Lévy–Longo trees, we believe that there
is always a type which can be deduced only for one of the corresponding terms. Note

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1415

that we cannot use Sangiorgi’s result that the nondeterministic choice is sufficient
to obtain the discriminating power of Lévy–Longo trees, since we compare terms by
means of contexts instead of using bisimulation.

The coincidence of L and T would be another argument showing the robustness
of the theory induced by 'T . In fact, the same theory is also induced by:

• the encoding of λ-calculus into π-calculus [61];

• Plotkin–Scott–Engeler models [54];

• contexts with multiplicities [20].

Lastly, we want to discuss the negative results of [64]. In that paper, Sieber con-
siders a call-by-value version of PCF enriched with a nondeterministic choice operator
(he calls this language PCFnv). He proves that for this language the full abstraction
of the Smyth powerdomain semantics fails in an irreparable way. Indeed, there is
no extension of PCFnv by computable operators, for which this semantics is fully
abstract.

Notice that PCFnv is a typed language, while our concurrent λ-calculus is type-
free and we use types only to describe its semantics. Indeed, it is not surprising that
an untyped calculus has a stronger power in discriminating internally between terms
than a typed one. In particular, Böhm’s theorem [15] (10.4) does not hold for the
simply typed λ-calculus.

The same phenomenon happens here, since one can easily discriminate the terms
which are at the basis of Sieber’s proof. Omitting types, these terms are

M1 = λf. if f(λx.0) then f(λx.Ω) else Ω fi,
M2 = λf. if f(λx.0) and f(λx.Ω) then 0 else Ω fi,

where 0 is interpreted as “true” and all other integers as “false.” We can encode this
example in the pure λ-calculus with the η-reduction rule using Church’s numerals.
Recall that O represents Church’s zero and that I is η-convertible to Church’s one.
If we denote this translation by ()†, it is easy to check that a correct choice is the
following:

(if A then B else C fi)† = A†O(KB†)C†, (A andB)† = A†OB†,

since for Church’s numerals it holds that (n + 1)O
∗−→ O. Therefore we have

M†
1 = λf.f(λx.O)O(K(f(λx.Ω)))Ω,

M†
2 = λf.f(λx.O)O(f(λx.Ω))O(KO)Ω.

Now the pure λ-calculus easily semi-separates these terms. It suffices to choose F ≡
λx1 . . . x6.x6, since M†

1F
∗−→ O and M†

2F
∗−→ Ω. It is clear that PCFnv does not

allow us to define a well-typed operator which behaves like F . Really, F applied to
any term returns λx1 . . . x5.x5, which does not have the type of integers.

6. Related work and conclusions. The literature related to the present work
has mostly been quoted in the introduction. A research direction, which has not yet
been mentioned, is that initiated by Milner in [50], and developed by Sangiorgi in
[61]. The idea is to consider the π-calculus as the basic model, and to study lazy λ-
calculus via encodings into the π-calculus itself. A comparative study and a survey of
these investigations is [43]. Although related, this approach seems orthogonal to that
which is developed in the present paper, where the nondeterministic lazy λ-calculus is
studied with respect to a denotational model via a type assignment system. In spite

1416 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

of this, as remarked on p. 1415, we conjecture that the theory of this encoding and
that of our model coincide.

It is interesting to compare our full abstraction result with the negative results
of [39] and [64]. Both papers deal with typed λ-calculus (actually PCF).

Jim and Meyer show in [39] that any denotational semantics which is adequate for
PCF, and in which a certain simple boolean functional exists, cannot be fully abstract
for extensions of PCF satisfying the context lemma. This boolean functional is not
Scott’s continuous, but it is stably continuous. So it follows that there is no extension
of PCF satisfying the context lemma for which the stable domains are fully abstract.
Actually, we consider Scott’s continuous functions and moreover our calculus does not
satisfy the context lemma. For example, we distinguish between I+∆ and λx.(x+xx),
which clearly have the same applicative behavior.

Sieber [64] adds call-by-value and nondeterminism to PCF. He explains why the
nondeterministic extensions of call-by-name λ-calculus studied in [9, 10] need the
powerdomain functors only at ground types. Instead, call-by-value and nondetermin-
ism also require powerdomains for function types. Moreover, Sieber shows that no
fully abstract model of demonic nondeterminism and call-by-value can be given in
the typed case. The counterexample he considers, however, has no counterpart in the
type-free setting (see the discussion at the end of section 5).

A further point concerns previous work by the present authors. In [45] the op-
erational and denotational semantics of a call-by-name classical λ-calculus enriched
with erratic choice is studied introducing an extension of the notion of Böhm tree.

In [25] classical λ-calculus is extended with both a nondeterministic choice oper-
ator and a parallel operator. A type assignment system using intersection and union
types and denotational models of this calculus are investigated. In particular, the
local structure of the resulting filter model is studied against a Morris-style (see [52])
operational semantics. The main differences with the present work are the classical
operational semantics (that is, evaluation under abstraction is allowed) and the ab-
sence of call-by-value abstraction. Notably, full abstraction is a distinctive feature of
the present calculus with respect to that studied in [25].

Pursuing further the study of concurrent λ-calculus, in [8] we present an opera-
tional semantics in which the parallel operator still retains an angelic behavior, while
the nondeterministic operator has a finer semantics than the demonic one. The sys-
tem admits a model which involves a new powerdomain operator close to the convex
powerdomain functor, but staying inside the category of distributive prime algebraic
lattices.

Finally, in [27], ideas coming from the present paper are used to define a calculus
of higher-order processes including communication primitives. For this calculus a
program logic in the form of a type assignment system is introduced. The induced
filter model turns out to be fully abstract with respect to the operational preorder.
This is closely related, and should be compared, to [35].

Summarizing, the main achievement of the present study is the definition of an
operational semantics which assesses in a correct and effective way features like paral-
lelism, nondeterminism, and call-by-value which have not received, to the knowledge
of the authors, a convincing treatment within a unique comprehensive system.

Moreover, the abstract description of operational semantics by means of the logic
equivalence, which is guaranteed by the full abstraction theorem, shows that an ele-
gant correspondence between the operators in the term syntax and the logical con-
nectives is at the basis of the whole construction.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1417

The logical model is a simple distributive lattice enriched with an operation which
interprets functional application. The simplicity of this structure and the correspon-
dence between (total) values and prime elements of the lattice are also remarkable.

Acknowledgments. The present version of this paper has been deeply influ-
enced by comments and remarks of two anonymous referees. In particular, the addi-
tion of discussions about motivations, comparisons with the existing literature, jus-
tifications of the choices made, and the addition of meaningful examples improved
the presentation of the paper. Therefore, the authors feel strongly indebted to the
referees.

REFERENCES

[1] M. Abadi, A semantics for static type inference in a nondeterministic language, Inform. and
Comput., 109 (1994), pp. 300–306.

[2] S. Abramsky, On semantic foundations for applicative multiprogramming, in Lecture Notes
in Comput. Sci. 154, Springer-Verlag, New York, 1983, pp. 1–14.

[3] S. Abramsky, Observation equivalence as testing equivalence, Theoret. Comput. Sci., 53 (1987),
pp. 225–241.

[4] S. Abramsky, The Lazy Lambda Calculus, Research Topics in Functional Programming, D.
Turner, ed., Addison-Wesley, Reading, MA, 1989, pp. 65–116.

[5] S. Abramsky, Domain theory in logical form, Ann. Pure Appl. Logic, 51 (1991), pp. 1–77.

[6] S. Abramsky and C.-H.L. Ong, Full abstraction in the lazy lambda calculus, Inform. and
Comput., 105 (1993), pp. 159–267.

[7] F. Alessi, Type preorders, in Lecture Notes in Comput. Sci. 787, Springer-Verlag, New York,
1994, pp. 37–51.

[8] F. Alessi, M. Dezani-Ciancaglini, and U. de’Liguoro, May and must convergency in con-
current λ-calculus, in Lecture Notes in Comput. Sci. 841, Springer-Verlag, New York, 1994,
pp. 211–220.

[9] E. A. Ashcroft and M. C. B. Hennessy, A mathematical semantics for a non-deterministic
typed lambda calculus, Theoret. Comput. Sci., 11 (1980), pp. 227–245.

[10] E. Astesiano and G. Costa, Non-determinism and fully abstract models, RAIRO. Inform.
Theor. Appl., 14 (1980), pp. 323–347.

[11] E. Astesiano and E. Zucca, Parametric channels via label expressions in CCS, Theoret.
Comput. Sci., 33 (1984), pp. 45–63.

[12] S. van Bakel, Complete restrictions of the intersection type discipline, Theoret. Comput. Sci.,
102 (1992), pp. 135–163.

[13] S. van Bakel, Intersection type assignment systems, Theoret. Comput. Sci., 151 (1995),
pp. 385–436.

[14] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro, Intersection and union types:
Syntax and semantics, Inform. and Comput., 119 (1995), pp. 202–230.

[15] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, 2nd ed., North-Holland,
Amsterdam, 1984.

[16] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini, A filter lambda model and the
completeness of type assignment, J. Symbol. Logic, 48 (1983), pp. 931–940.

[17] E. W. Beth, The Foundation of Mathematics, 2nd ed., North-Holland, Amsterdam, 1965.

[18] G. Boudol, Semantique Operationelle at Algebrique des Programmes Recursifs Non-
Deterministes, Thèse d’Etat, Université de Paris VII, 1980.

[19] G. Boudol, A lambda calculus for (strict) parallel functions, Inform. and Comput., 108 (1994),
pp. 51–127.

[20] G. Boudol and C. Laneve, The discriminating power of multiplicities in the λ-calculus,
Inform. and Comput., 126 (1996), pp. 83–102.

[21] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, and G. Longo, Extended type structures
and filter λ-models, in Logic Colloquium ’82, G. Lolli, G. Longo, and A. Marcja, eds.,
North-Holland, Amsterdam, 1984, pp. 241–262.

[22] M. Coppo, M. Dezani-Ciancaglini, and G. Longo, Applicative information systems, in Lec-
ture Notes in Comput. Sci. 159, Springer-Verlag, New York, 1983, pp. 35–64.

1418 DEZANI-CIANCAGLINI, DE’LIGUORO, AND PIPERNO

[23] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University
Press, Cambridge, UK, 1990.

[24] R. De Nicola and M. Hennessy, Testing equivalence for proceses, Theoret. Comput. Sci., 34
(1984), pp. 82–113.

[25] M. Dezani-Ciancaglini, U. de’Liguoro, and A. Piperno, Filter models for conjunctive-
disjunctive λ-calculi, Theoret. Comput. Sci., 170 (1996), pp. 83–128.

[26] M. Dezani-Ciancaglini, U. de’Liguoro, and A. Piperno, Fully abstract semantics for con-
current λ-calculus, Lecture Notes in Comput. Sci. 789, Springer-Verlag, New York, 1994,
pp. 16–35.

[27] M. Dezani-Ciancaglini, U. de’Liguoro, and P. van Rossum, A Type Assignment System
for Higher-Order Communicating Processes, Internal Report, Università di Torino, Italy,
1994.

[28] A. Giacalone, P. Mishra, and S. Prasad, FACILE: A symmetric integration of concurrent
and functional programming, in Lecture Notes in Comput. Sci. 352, Springer-Verlag, New
York, 1989, pp. 184–201.

[29] A. Giacalone, P. Mishra, and S. Prasad, Operational and algebraic semantics for FACILE:
A symmetric integration of concurrent and functional programming, in Lecture Notes in
Comput. Sci. 443, Springer-Verlag, New York, 1990, pp. 765–779.

[30] G. K. Gierz, K. H. Hoffmann, K. Keimel, J. D. Mislove, and D. S. Scott, A Compendium
of Continuous Lattices, Springer-Verlag, Berlin, 1980.

[31] M. C. B. Hennessy, The semantics of Call-by-value and call-by-name in a nondeterministic
environment, SIAM J. Comput., 9 (1980), pp. 67–84.

[32] M. C. B. Hennessy, Powerdomains and non-deterministic recursive definitions, in Lecture
Notes in Comput. Sci. 137, Springer-Verlag, New York, 1982, pp. 178–193.

[33] M. C. B. Hennessy, Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.

[34] M. C. B. Hennessy, A fully abstract denotational model for higher-order processes, Inform.
and Comput., 112 (1994), pp. 55–95.

[35] M. C. B. Hennessy, Higher-order processes and their models, in Lecture Notes in Comput.
Sci. 820, Springer-Verlag, New York, 1994, pp. 286–303.

[36] J. R. Hindley, The simple semantics for Coppo-Dezani-Sallé type assignment, in Lecture
Notes in Comput. Sci. 137, Springer-Verlag, New York, 1982, pp. 212–226.

[37] J. R. Hindley and G. Longo, Lambda-calculus models and extensionality, Z. Math. Logik, 26
(1980), pp. 289–310.

[38] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, NJ,
1985.

[39] T. Jim and A. R. Meyer, Full abstraction and the context lemma, SIAM J. Comput., 25
(1996), pp. 663–696.

[40] P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.

[41] P. J. Landin, The mechanical evaluation of expressions, Comput. J., 6 (1964), pp. 308–320.

[42] K. G. Larsen and G. Winskell, Using information systems to solve recursive domain equa-
tions effectively, in Lecture Notes in Comput. Sci. 173, Springer-Verlag, New York, 1984,
pp. 109–130.

[43] C. Lavatelli, Non-Deterministic Lazy λ-Calculus versus π-Calculus, LIENS Internal Report
15, Laboratoire d’Informatique de l’Ecole Normale Supérieure, Paris, 1993.

[44] G. Longo, Set theoretical models of lambda calculus: Theory, expansions and isomorphisms,
Ann. Pure Appl. Logic, 24 (1983), pp. 153–188.

[45] U. de’ Liguoro and A. Piperno, Non-deterministic extensions of untyped λ-calculus, Inform.
and Comput., 122(1995), pp. 149–177.

[46] M. G. Main, A powerdomain primer, Bull. EATCS, 33 (1987), pp. 115–147.

[47] J. McCarthy, A basis for a mathematical theory of computation, in Computer Programming
and Formal Systems, P. Brafford and D. Hirshberg, eds., North-Holland, Amsterdam, 1963,
pp. 33–70.

[48] A. Meyer, What is a model of the lambda calculus?, Inform. and Comput., 52 (1982), pp. 87–
122.

[49] R. Milner, Fully abstract models of typed λ-calculi, Theoret. Comput. Sci., 4 (1977), pp. 1–22.

[50] R. Milner, Function as processes, J. Math. Struct. Comput. Sci., 2 (1992), pp. 119–141.

[51] R. Milner, J. G. Parrow, and D. J. Walker, A calculus of mobile processes, Parts I and
II, Inform. and Comput., 100 (1992), pp. 1–40, 41–77.

A FILTER MODEL FOR CONCURRENT λ-CALCULUS 1419

[52] J. H. Morris, Lambda Calculus Models of Programming Languages, Ph.d. Thesis, MIT, Cam-
bridge, MA, 1968.

[53] F. Nielson, The typed λ-calculus with first-class processes, in Lecture Notes in Comput. Sci.
366, Springer-Verlag, New York, 1989, pp. 357–369.

[54] C.-H.L. Ong, The Lazy λ-Calculus: An Investigation into the Foundations of Functional
Programming, Ph.D. Thesis, University of London, 1988; also Prize Fellowship Dissertation,
Trinity College, Cambridge University, Cambridge, UK.

[55] C.-H.L. Ong, Concurrent Lambda Calculus and a General Precongruence Theorem for Ap-
plicative Bisimulations, Draft, Cambridge University, Cambridge, UK, 1992.

[56] C.-H.L. Ong, Non-determinism in a functional setting, in LICS ’93, IEEE Comp. Soc. Press,
Los Alamitos, CA, 1993, pp. 275–286.

[57] G. D. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theoret. Comput. Sci., 1
(1975), pp. 125–159.

[58] G. D. Plotkin, A powerdomain construction, SIAM J. Comput., 5 (1976), pp. 457–487.

[59] G. D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci., 5 (1977),
pp. 223–256.

[60] J. H. Reppy, Concurrent ML: Design, application and semantics, in Lecture Notes in Comput.
Sci. 693, Springer-Verlag, New York, 1993, pp. 165–198.

[61] D. Sangiorgi, The lazy λ-calculus in a concurrency scenario, Inform. and Comput., 111 (1994),
pp. 120–153.

[62] D. Scott, A type theoretical alternative to ISWIM, CUCH, OWHY, Theoret. Comput. Sci.,
121 (1993), pp. 411–440.

[63] D. Scott, Domains for denotational semantics, in Lecture Notes in Comput. Sci. 140, Springer-
Verlag, New York, 1982, pp. 577–613.

[64] K. Sieber, Call-by-value and non-determinism, Lecture Notes in Comput. Sci. 664, Springer-
Verlag, Berlin, 1993, pp. 376–390.

[65] H. Soendergaard and P. Sestoft, Non-determinism in functional languages, Comput. J.,
35 (1992), pp. 514–523.

[66] M. B. Smyth, Power Domains, J. Comput. System. Sci., 16 (1978), pp. 23–36.

[67] B. Thomsen, A calculus of higher-order communicating Systems, in POPL’89, ACM Press,
New York, 1989, pp. 142–154.

DOWNWARD SEPARATION FAILS CATASTROPHICALLY FOR
LIMITED NONDETERMINISM CLASSES∗

R. BEIGEL† AND J. GOLDSMITH‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1420–1429, October 1998 011

Abstract. The β hierarchy consists of classes βk = NP[logk n] ⊆ NP. Unlike collapses in the
polynomial hierarchy and the Boolean hierarchy, collapses in the β hierarchy do not seem to translate
up, nor does closure under complement seem to cause the hierarchy to collapse. For any consistent
set of collapses and separations of levels of the hierarchy that respects P = β1 ⊆ β2 ⊆ · · · ⊆ NP, we
can construct an oracle relative to which those collapses and separations hold; at the same time we
can make distinct levels of the hierarchy closed under computation or not, as we wish. To give two
relatively tame examples: for any k ≥ 1, we construct an oracle relative to which

P = βk 6= βk+1 6= βk+2 6= · · ·
and another oracle relative to which

P = βk 6= βk+1 = PSPACE.

We also construct an oracle relative to which β2k = β2k+1 6= β2k+2 for all k.

Key words. structural complexity theory, limited nondeterminism, hierarchies, oracles

AMS subject classification. 68Q15

PII. S0097539794277421

1. Introduction. Although standard nondeterministic algorithms solve many
NP-complete problems with O(n) nondeterministic moves, there are other problems
that seem to require very different amounts of nondeterminism. For instance, clique
can be solved with only O(

√
n) nondeterministic moves, and Pratt’s algorithm [16]

solves primality, which is not believed to be NP-complete, with O(n2) nondeterminis-
tic moves. Motivated by the different amounts of nondeterminism apparently needed
to solve problems in NP, Kintala and Fischer [9, 10, 11] defined limited nondeter-
minism classes within NP, including the classes we now call the β hierarchy. The
structural properties of the β classes were studied further by Àlvarez, Dı́az, and Torán
[1, 6]. These classes arose yet again in the work of Papadimitriou and Yannakakis [15]
on particular problems inside NP (e.g., quasi-group isomorphism can be solved with
O(log2 n) nondeterministic moves).

Kintala and Fischer [11] defined Pf(n) to be the class of languages accepted by
a nondeterministic polynomial-time bounded Turing machine that makes at most
f(n) c-ary nondeterministic moves (equivalently, O(f(n)) binary nondeterministic
moves) on inputs of length n. Being mostly interested in polylogarithmic amounts of
nondeterminism, they defined PLk = Plogk n.

Dı́az and Torán [6] wrote βf(n) to denote Kintala and Fischer’s Pf(n), and βk
to denote PLk. Papadimitriou and Yannakakis [15] wrote NP[f(n)] to denote Pf(n).

∗Received by the editors November 3, 1994; accepted for publication (in revised form) July 31,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/27742.html
†Department of Electrical Engineering and Computer Science, 19 Memorial Drive West, Lehigh

University, Packard Laboratory, Bethlehem, PA 18015 (beigel@eecs.lehigh.edu). This research was
supported in part by the United States National Science Foundation under grant CCR-8958528
while the author was at Yale University, and by the Netherlands Organization for Scientific Research
(NWO) under Visitors Grant B 62-403.

‡University of Kentucky, Department of Computer Science, Lexington, KY 40506
(goldsmit@cs.engr.uky.edu). This research was supported in part by the National Science Foun-
dation under grant CCR-9315354.

1420

DOWNWARD SEPARATION FAILS FOR β HIERARCHY 1421

(Their work is surveyed in [7].) We will adopt the NP[f(n)] notation of Papadimitriou
and Yannakakis, as well as the βk notation of Dı́az and Torán. To reiterate, we offer
the following definition.

Definition 1.1.
• A language L belongs to NP[f(n)] if there exists a polynomial-time bounded

nondeterministic Turing machine (NTM) that accepts L and makes O(f(n)) nonde-
terministic choices on inputs of length n. (Note. NP[f(n)] ⊆ DTIME(2O(f(n))).)

• βk = NP[logk n].
• The β hierarchy consists of β1, β2,
• β =

⋃
k βk.

Kintala and Fischer [11] constructed oracles that make the β hierarchy collapse
to any desired level. That is, there is an oracle relative to which

β1 6= β2 6= · · ·

and, for every k ≥ 1, there is an oracle relative to which

β1 6= β2 6= · · · 6= βk = NP.

Oracles can also make the polynomial hierarchy and the Boolean hierarchy col-
lapse to any desired level [12, 4]. The polynomial and Boolean hierarchies have a very
nice property: collapses translate upward. That is, if the kth and (k + 1)st levels are
equal, then all levels are contained in the kth [5, 4]. This is also reflected in the non-
determinism hierarchy, now known as the b hierarchy, studied by Buss and Goldsmith
[3]. The classes in the b hierarchy are defined by two parameters: the exponent of the
polynomial-time bound (ignoring log factors), and the constant factor for k log n bits
of nondeterminism. This hierarchy exhibits upward collapse for both time and k. All
attempts to prove an analogous translational property for the β hierarchy have failed.
In fact, the obvious technique extends a collapse by only a constant factor in the
number of nondeterministic bits, giving one of the aforementioned upward collapses
of the b hierarchy.

Hemachandra and Jha [8] attempted to explain this failure by examining the
tally sets in the β hierarchy. For each k, they constructed an oracle that makes βj ∩
TALLY = βj+1∩TALLY if and only if j ≤ k. We find this explanation unsatisfactory
because it considers only tally sets.

The known behavior of relativized β hierarchies is that βA0 = βA1 and that βAi ⊆
βAj for all i < j and all oracles A. A collapse is a statement of the form βAi = βAj . A

separation is a statement of the form βAi 6= βAj . A closure is a statement of the form

βAi = co-βAi . A nonclosure is a statement of the form βAi 6= co-βAi . A requirement is a
collapse, separation, closure, or nonclosure. We call a set of requirements consistent if
it is consistent with the known behavior of relativized β hierarchies, as stated above,
and the standard axioms for = and ⊆.

Given a set S of requirements, let X be the union of [0, 1] and all intervals [i, j]
such that i < j and the collapse βAi = βAj belongs to S. It is easy to see that S
is consistent if and only if the following conditions hold for all a and b such that
[a, b] ⊆ X or [b, a] ⊆ X: (1) the separation βAa 6= βAb does not belong to S; (2) the
closure βAa = co-βAa and the nonclosure βAb 6= co-βAb do not both belong to S.

For any consistent set of requirements, we construct an oracle A such that the
β hierarchy relative to A satisfies them. For example, for each k ≥ 0, there is an
oracle that makes βj = βj+1 if and only if j ≤ k. Another oracle makes βj = βj+1 if

1422 R. BEIGEL AND J. GOLDSMITH

and only if j = 0 or j is prime. We can also make distinct levels in the hierarchy be
closed under complementation or not, as long as this is consistent with the collapses
(if βAi = βAj , then we cannot have βAi = co-βAi and βAj 6= co-βAj).

We prove two initial results for every k.
• There is an oracle that makes the first k levels of the β hierarchy coincide,

but makes the remaining levels all distinct (Theorem 2.3).
• There is an oracle that makes the first k levels of the β hierarchy coincide,

the (k + 1)st level different from the kth, and the remaining levels all equal
(Theorem 2.5).

The techniques from these two constructions can be combined to get any con-
sistent finite or infinite set of collapses and separations. To collapse βk into βj (for
k > j), we code a complete set for βk into βj . The same coding techniques can also
code co-βi into βi, for any i’s we wish, as long as this doesn’t violate any collapses. (If
βk is collapsed to βj , then either both or neither will be closed under complement.)
Finally, in section 3, we extend our results to βr for real r ≥ 0.

One theme in complexity theory is to ask whether NP−P contains any easy sets
(assuming P 6= NP). The answer to the question above depends on the definition of
“easy.” Ladner [14] showed that if P 6= NP then NP− P contains an incomplete set.
On the other hand, there are oracles relative to which P 6= NP, but NP− P contains
(a) no tally sets [13] or (b) no sets in co-NP [2]. It is unknown whether the assumption
P 6= NP implies that NP − P contains a set in DTIME(npolylog); a positive answer
would improve many constructions in the literature. As a step toward understanding
that question, we construct an oracle relative to which P 6= NP but NP− P contains
no set in the β hierarchy (Corollary 2.2).

2. Limited nondeterminism hierarchies. The construction below gives al-
most all the techniques used in subsequent theorems.

Theorem 2.1. Let g0 and g1 be polynomial-time computable monotone increasing
functions such that log n ∈ o(g1(n)) and g0(n) ∈ nO(1). If g0(n

O(1)) ⊆ o(g1(n)), then
there exists an oracle A such that PA = (NP[g0(n)])A 6= (NP[g1(n)])A (and in fact
there is a tally set in (NP[g1(n)])A − (NP[g0(n)])A).

Proof. Let CA = {(e, x, 0s) : oracle NTM e accepts x within s steps with oracle
A, making at most g0(|x|) nondeterministic choices}. Then CA is ≤p

m-complete for
(NP[g0(n)])A for every A. Let p(n) be the polynomial-time bound for some NP[g0(n)]
oracle Turing machine recognizing C().

Let DA = {x ∈ 1∗ : ∃y[|y| = g1(|x|) ∧ 0xy ∈ A]}. Note that DA ∈ NP[g1(n)]A.
The construction consists of coding CA into A in a polynomial-time recoverable

manner, making (NP[g0(n)])A ⊆ PA, while diagonalizing, i.e., guaranteeing that no
PA machine recognizes the set DA, so PA 6= (NP[g1(n)])A.

At the end of the construction, we will have

w ∈ CA ⇐⇒ 1p(|w|)
2

0w ∈ A.

We refer to all strings beginning with 1 as coding strings. We refer to all strings
beginning with 0 as diagonalizing strings.

Assume that P() is enumerated by deterministic Turing machines (DTMs) P
()
1 ,

P
()
2 , . . . so that for all i, P

()
i runs in time bounded by ni for sufficiently large n.

The construction proceeds in stages. At the end of stage s, A is decided for all
strings of length up to ns, and DA is extended so that PA

s does not recognize DA. The
stage consists of one diagonalization, which determines ns, and continued encoding of
CA.

DOWNWARD SEPARATION FAILS FOR β HIERARCHY 1423

At stage s, choose n > ns−1 such that n is a power of 2, the running time of

P
()
s on inputs of length n is at most ns, and n satisfies an inequality that is to be

specified below and that is true for almost all n. Let x = 1n. The value of DA(1n)
depends only on oracle strings of length ` = 1 + n + g1(n). Code CA for all coding
strings of length ≤ ` − 1 (i.e., for all w such that p(|w|)2 + 1 + |w| ≤ ` − 1, let

1p(|w|)
2

0w ∈ A ⇐⇒ w ∈ CA) and freeze A up to length `− 1.
In order to diagonalize, PA

s (x) must be calculated. But that computation may
query coding strings that code computations of CA that are not yet decided, because
those computations in turn rely on strings for whichA is not yet decided. Those strings
in turn may depend on other coding strings. Any diagonalizing strings that do not
already belong to A and are queried by PA

s (x), or by the computation corresponding
to a coding string that PA

s (x) queries, or in the computation corresponding to a coding
string that one of those computations queries, or so on, are restrained from A. We
claim that there are more potential witnesses for x to be in DA than there are possible
queries in such a cascade of queries, so deciding PA

s (x) does not restrict our decision
about DA(x).

Because of the encoding of CA, a coding string z codes a computation that de-
pends only on strings of length bounded by

√|z|. CA(w) directly depends on at most
p(|w|)2g0(|w|) of these shorter strings.

A computation of PA
s (x) may query no more than ns strings, each of length

bounded by ns. Each of these strings may code a computation on a string of length

at most ns/2. Each of these computations depends on at most p(ns/2)2g0(n
s/2) strings,

each of which depends on at most p(ns/4)2g0(n
s/4) strings, etc.

This recursion can be cut off at strings of length ` − 1, because A is already
determined up to that length. The total number of queries needed to decide PA

s (x) is

bounded by ns times the product of all the terms above of the form p(ns/2
i

)2g0(n
s/2i).

There are at most log log ns− log log (`− 1) ≤ log log ns− log log n = log s such terms,
and each of them is bounded by p(ns)2g0(n

s) = 2O(g0(n
s)). Therefore, the total number

of queries on which PA
s (x) depends is ns2O(log(s)g0(n

s)), which is less than 2g1(n) for
sufficiently large n. (The inequality that n must satisfy is ns(p(ns)2g0(n

s))log(s) <
2g1(n).)

Thus there remains an unrestrained diagonalizing string of length `, which we put
into A if PA

s (x) rejects x. That is, we set DA(x) = 1 − PA
s (x), adding a string 0xy

to A if necessary. Thus, for each s, we can guarantee that PA
s does not accept DA,

so DA /∈ PA. Since DA ∈ (NP[g1(n)])A, this shows that (NP[g1(n)])A 6= PA. Since
CA ∈ PA is complete for (NP[g0(n)])A, this shows that (NP[g0(n)])A ⊆ PA.

We complete stage s by letting ns = max(`, ns) and finishing the coding of any
CA(w) that was begun or queried in this stage.

The preceding theorem is tight because if P = NP[g0(n)] then P = NP[g0(n
O(1))]

(even if we restrict to binary nondeterministic moves) via a relativizable proof. (Pre-
viously, Sanchis [17] had observed that if P = NP[nε] for some ε > 0, then P = NP.)

Because the classes are separated by tally sets, we also separate the exponential-
time versions of these classes (see [8] for an elaboration of this).

Corollary 2.2. There is an oracle relative to which P = β 6= NP.
Proof. Let g0(n) = 2(log log n)2 and g1(n) = n in the previous theorem. Then, for

all k, βAk ⊆ (NP[2(log log n)2])A = PA 6= NPA.
Theorem 2.3. Let g(·, ·) be a polynomial-time computable, monotone increasing

(in both variables) function with log n ∈ o(g(n, i)) and g(n, i) ∈ nO(1) for all i ≥ 0.
If g(nO(1), 2i) ⊆ o(g(n, 2i + 1)) for all i ≥ 1, then there exists an oracle A such that

1424 R. BEIGEL AND J. GOLDSMITH

PA = (NP[g(n, 0)])A and (NP[g(n, 2i)])A 6= (NP[g(n, 2i + 1)])A for all i ≥ 0 (and in
fact there is a tally set in (NP[g(n, 2i+ 1)])A − (NP[g(n, 2i)])A for each i).

(In this theorem, we ignore the relationship between NP[g(n, 2i − 1)] and
NP[g(n, 2i)]. We will take that up in the next theorem.) The only difference be-
tween this construction and the previous one is that there are infinitely many diag-
onalizations going on. At stage s = 〈e, i〉, we guarantee that the eth machine for
(NP[g(n, 2i)])A does not accept the diagonal set DA

i ∈ (NP[g(n, 2i + 1)])A. Thus,
(NP[g(n, 2i + 1)])A 6= (NP[g(n, 2i)])A. The counting argument for this construction
is identical to that in the proof of Theorem 2.1.

Corollary 2.4. For any k, there is an oracle relative to which

P = βk 6= βk+1 6= βk+2 6= · · · .

Proof. Let g(n, i) = logk+bi/2c n in the preceding theorem.
Theorem 2.5. Let g0 and g1 be polynomial-time computable, monotone increas-

ing functions such that log n ∈ o(g1(n)) and g0(n) ∈ nO(1). If g0(n
O(1)) ⊆ o(g1(n))

then there exists an oracle A such that

PA = (NP[g0(n)])A 6= (NP[g1(n)])A = PSPACEA

(and in fact there is a tally set in (NP[g1(n)])A − (NP[g0(n)])A).
Sketch. In this construction, we do two encodings and one diagonalization. In ad-

dition to coding CA
k into P, we also code EA, a generic ≤p

m-complete set for PSPACE,
into A. (EA = {(e, x, 0s) : oracle DTM e accepts x using at most s tape squares with
oracle A}, where we also count the space used on the oracle tape.) At the end of the
construction, we have

x ∈ EA ⇐⇒ (∃y)[|y| = g1(n) ∧ 2xy ∈ A].

(If one prefers binary oracles, one may code 0, 1, and 2 as 00, 01, and 10.) When we
are doing a diagonalization to make PA

s (x) 6= DA(x), if a coding string for CA
k (w) is

queried, we proceed as before; if a coding string for EA(w) is queried, where |w| ≥ |x|,
then we simply restrain that coding string from the oracle. This will not restrain all
the coding strings for EA(w), since there are 2g1(|w|) coding strings for EA(w); if
|w| ≥ |x|, then 2g1(|w|) > (p(|x|s)2g0(|x|s))log(s), where (p(|x|s)2g0(|x|s))log(s) is the
upper bound on the total number of queries generated by the computation of PA

s (x),
as in the proof of Theorem 2.1. Therefore, restraining any such coding strings queried
in the computation of PA

s (x) or in its cascade of queries cannot restrain all such
coding strings, and thus cannot decide EA(w). At the end of each stage, we complete
all codings begun or queried in that stage, so that it will not be changed in any
subsequent stage.

Corollary 2.6. For every k, there is an oracle relative to which

P = βk 6= βk+1 = PSPACE.

With only a slight modification of this technique, we get far more bizarre collapses.
Theorem 2.7. Let g(·, ·) be a polynomial-time computable, monotone increasing

(in both variables) function with log n ∈ o(g(n, i)) and g(n, i) ∈ nO(1) for all i ≥ 1.
If g(nO(1), 2i) ⊆ o(g(n, 2i + 1)) for all i ≥ 1, then there exists an oracle A such that

DOWNWARD SEPARATION FAILS FOR β HIERARCHY 1425

PA = (NP[g(n, 0)])A and (NP[g(n, 2i)])A 6= (NP[g(n, 2i+ 1)])A = (NP[g(n, 2i+ 2)])A

for all i ≥ 0 (and in fact there is a tally set in (NP[g(n, 2i + 1)])A − (NP[g(n, 2i)])A

for each i).

We include the full proof of this result, although it uses techniques mentioned
before, since this shows how all the pieces fit together.

Proof. Let CA
i = {(e, x, 0s) : oracle NTM e accepts x within s steps with oracle

A, making at most g(|x|, i) nondeterministic choices}. Then CA
i is ≤p

m-complete for
(NP[g(n, i)])A for any A. Let p(n, i) be the nondeterministic time bound for some

NP[g(n, i)] oracle Turing machine recognizing C
()
i . Without loss of generality, assume

that for all i and almost all n, p(n, i) ≤ p(n, i+ 1).

Let DA
i = {x : ∃y[|y| = g(|x|, i) ∧ 0xy ∈ A]}.

For convenience, define g(n,−1) = 0 for all n.

The construction consists of coding CA
2i into (NP[g(n, 2i − 1)])A, for each i ≥ 0,

so (NP[g(n, 0)])A ⊆ PA and (NP[g(n, 2i + 2)])A ⊆ (NP[g(n, 2i + 1)])A for all i, and
diagonalizing, i.e., guaranteeing that no (NP[g(n, 2i)])A machine recognizes the set
DA

2i+1, for any i, so (NP[g(n, 2i+ 1)])A 6⊆ (NP[g(n, 2i)])A for any i.

At the end of the construction, we will have x ∈ CA
2i ⇐⇒ ∃y[|y| = g(|x|, 2i− 1)∧

102i1p(|x|,2i−1)20xy ∈ A].

Assume that (NP[g(n, i)])A is enumerated by oracle NTMs M1,i,M2,i, . . ., where
Me,i runs in time bounded by ne for sufficiently large n.

The construction proceeds in stages. Stage s = 〈e, i〉 consists of some encodings
and one diagonalization, which determines ns. At the end of stage s, A is decided for
all strings of length ≤ ns (and some further coding strings), and A has been extended
so that MA

e,2i does not recognize DA
2i+1.

At stage s, let 〈e, i〉 = s, and then choose n > ns−1 such that n is a power of 2,
Me,2i runs in time bounded by ne on inputs of length n, and n satisfies an inequality
to be specified below that is true for almost all n. Let ns = n. Let x = 0n. The value
of DA

2i+1(x) depends only on strings of length ` = 1 + n+ g(n, 2i+ 1). Do all coding
involving witnesses of length less than `, and then freeze A through length `− 1.

As before, in order to diagonalize we will need to calculate MA
e,2i(x) which may

generate a cascade of queries. Any diagonalizing strings that do not already belong
to A and are queried in this cascade are restrained from A. But coding strings may
be queried as well. (Because we are coding nondeterministically, coding strings can
be thought of as potential witnesses to membership.) If MA

e,2i(x) queries a potential

witness that w ∈ CA
2j , where 2j > 2i and CA

2j(w) has not yet been decided, that

potential witness is restrained from A. If 2j ≤ 2i and CA
2j(w) has not yet been

decided, then we compute CA
2j(w) recursively. We will show below that the number

of queries generated by such a cascade of queries is smaller than both of the following
bounds: (1) the number of potential witnesses for w ∈ CA

2j , (2) the number of potential

witnesses for x ∈ DA
2i+1. In fact, bound (1) implies bound (2) as follows. The number

of witnesses for DA
2i+1(x) is 2g(|x|,2i+1), and the number of witnesses for CA

2j(w) is

2g(|w|,2j−1). If a witness of CA
2j(w) is restrained, then |w| ≥ |x| and 2j > 2i. Thus

2j−1 ≥ 2i+1, so, by monotonicity of g, g(|w|, 2j−1) ≥ g(|x|, 2j−1) ≥ g(|x|, 2i+1).

Thus, restraining potential witnesses as described does not impede any encodings
or restrict our decisions about D2i+1(x) or those CA

2j(w) for which we restrict coding
strings. (We don’t have to worry about what happens to potential witnesses for
w ∈ CA

2j at a later stage, because any affected codings, e.g., CA
2j(w), will be completed

at this stage; later diagonalizations will not affect them.)

1426 R. BEIGEL AND J. GOLDSMITH

Now we show that there are more potential witnesses for x ∈ DA
2i+1 than there are

possible queries in such a cascade of queries. Because of how we encode CA
k , a coding

string z codes a computation that depends on strings of length bounded by
√|z|. For

k ≤ 2i + 1, CA
k (w) depends on at most p(|w|, k)2g(|w|,k) ≤ p(|w|, 2i + 1)2g(|w|,2i+1) of

these shorter strings.

MA
e,2i(x) has at most 2g(n,2i) computations, and each of those computations may

query no more than ne strings, each of length bounded by ne. Each such string may
code a computation CA

2j(w) where |w| ≤ √
ne, but we only need to expand that compu-

tation if 2j ≤ 2i. Each of these computations depends on at most p(ne/2, 2i)2g(n
e/2,2i)

strings, each of which depends on at most p(ne/4, 2i)2g(n
e/4,2i) strings, etc. As be-

fore, the total number of queries needed to decide MA
e,i(x) is bounded by the product

of log e ≤ log s terms, each of which is 2o(g(n,2i+1)). Therefore the total number of
queries on which MA

e,2i(x) depends is 2o(g(n,2i+1)), which is less than 2g(n,2i+1) for
sufficiently large n.

Thus there remains an unrestrained diagonalizing string of length `, which we
put into A if and only if MA

e,2i(x) rejects x. That is, we set DA
2i+1(x) = 1−MA

e,2i(x),

adding a string 0xy to A if necessary. Thus, for each s, we can guarantee that MA
e,2i

does not accept DA
2i+1, so DA

2i+1 /∈ (NP[g(n, 2i)])A. Since DA
i ∈ (NP[g(n, 2i + 1)])A,

this shows that (NP[g(n, 2i+ 1)])A 6⊆ (NP[g(n, 2i)])A for all i ≥ 0.

Since CA
2i is complete for (NP[g(n, 2i)])A, our encoding guarantees that

(NP[g(n, 2i)])A ⊆ (NP[g(n, 2i− 1)])A for all i ≥ 0.

Corollary 2.8. There is an oracle relative to which, for each k, β2k = β2k+1 6=
β2k+2.

Corollary 2.9. For any consistent pattern of collapses and separations of the
βk’s, there is an oracle relative to which that pattern holds.

Notice that if the set of collapses is not recursive, then the oracle will also be
nonrecursive.

In addition to collapsing or separating βj and βk, we can code co-βk into βk—or
separate the two. This involves some additional argument.

Theorem 2.10. Let g(·, ·) be a polynomial-time computable, monotone increas-
ing (in both variables) function with log n ∈ o(g(n, i)) and g(n, i) ∈ nO(1) for all
i ≥ 1. If g(nO(1), 2i) ⊆ o(g(n, 2i + 1)) for all i ≥ 1, then there exists an ora-
cle A such that PA = (NP[g(n, 0)])A and (NP[g(n, 2i)])A 6= (NP[g(n, 2i + 1)])A =
(NP[g(n, 2i + 2)])A 6= (co-NP[g(n, 2i + 2)])A for all i ≥ 0 (and in fact there
are tally sets in (NP[g(n, 2i+ 1)])A − (NP[g(n, 2i)])A and in (NP[g(n, 2i+ 2)])A −
(co-NP[g(n, 2i+ 2)])A for each i).

Sketch. We will separate (NP[g(n, 2i + 1)])A from (co-NP[g(n, 2i+ 1)])A rather
than (NP[g(n, 2i+2)])A from (co-NP[g(n, 2i+2)])A; given the other requirements, this
is equivalent. In order to separate (NP[g(n, 2i+1)])A from (co-NP[g(n, 2i+1)])A, we
use the set DA

2i+1 in (NP[g(n, 2i+ 1)])A and guarantee that DA
2i+1 /∈ (co-NP[g(n, 2i+

1)])A. Most of this construction is identical to that of Theorem 2.7, except that we
interleave an extra diagonalization into the construction; the codings and diagonaliza-
tions are analogous to earlier constructions, and the counting argument is identical.

We code complete sets CA
2i for (NP[g(n, 2i)])A into (NP[g(n, 2i− 1)])A, and diag-

onalize so that no (NP[g(n, 2i)])A machine recognizes DA
2i+1 ∈ (NP[g(n, 2i+ 1)])A.

(Thus DA
2i+1 does double duty: during even stages, it diagonalizes against

(NP[g(n, 2i+ 2)])A, and during odd stages, against (co-NP[g(n, 2i+ 1)])A.)

To guarantee that DA
2i+1 is not in (co-NP[g(n, 2i + 1)])A, we make sure that, for

DOWNWARD SEPARATION FAILS FOR β HIERARCHY 1427

each e, the eth machine for (NP[g(n, 2i+ 1)])A does not recognize DA
2i+1. This holds

if and only if there is some x such that DA
2i+1(x) = MA

e,2i+1(x). This diagonalization

differs from earlier ones only when MA
e,2i+1(x) queries a witness for x ∈ DA

2i+1. As

before, if MA
e,2i+1(x) queries a coding string for some computation of CA

2j(w) where
2j > 2i or 2j = 2i and w 6= x, then we can safely restrain the coding string. (If
2j = 2i and w 6= x, this may exclude w from DA

2i+1, but that doesn’t matter. As
long as DA

2i+1(x) = MA
e,2i+1(x), we don’t care what happens to DA

2i+1 for other strings
of lengths between ns−1 and ns, where s = 〈e, i〉.) If 2j < 2i, then we retrace the
computation, as before.

If MA
e,2i+1(x) queries a witness for x ∈ DA

2i+1, we first restrain all such wit-

nesses and continue. If this leads to a rejecting computation of MA
e,2i+1(x), then

MA
e,2i+1(x) = DA

2i+1(x), and the diagonalization is successful. If it leads to an
accepting computation, we preserve the lexicographically least accepting path for
that computation, and all of its cascade of queries. As before, the computation of
MA

e,2i+1(x) restrains at most 2o(g(n,2i+1)) strings, so this will not restrain all the wit-

nesses for x ∈ DA
2i+1. Thus we can find an unrestrained witness and add it to A, so

DA
2i+1(x) = MA

e,2i+1(x), as desired.
Therefore, this additional set of diagonalization requirements can be interleaved

with the previously described diagonalizations and collapses.
Theorem 2.11. Let g(·, ·) be a polynomial-time computable, monotone increas-

ing (in both variables) function with log n ∈ o(g(n, i)) and g(n, i) ∈ nO(1) for all
i ≥ 1. If g(nO(1), 2i) ⊆ o(g(n, 2i + 1)) for all i ≥ 1, then there exists an ora-
cle A such that PA = (NP[g(n, 0)])A and (NP[g(n, 2i)])A 6= (NP[g(n, 2i + 1)])A =
(NP[g(n, 2i + 2)])A = (co-NP[g(n, 2i + 2)])A for all i ≥ 0 (and in fact there are tally
sets in (NP[g(n, 2i+ 1)])A − (NP[g(n, 2i)])A for each i).

Sketch. As before, we construct A so that no (NP[g(n, 2i)])A machine recognizes
the set DA

2i+1, and so that CA
2i+2 ∈ (NP[g(n, 2i+ 1)])A. In addition, in order to make

(NP[g(n, 2i + 1)])A = (co-NP[g(n, 2i + 1)])A, we code CA
2i+1 into (NP[g(n, 2i + 1)])A

as follows: x /∈ CA
2i+1 ⇐⇒ ∃y[|y| = g(|x|, 2i+ 1) ∧ 21p(|x|,2i+1)20x ∈ A].

For each i, let NA
i be an (NP[g(n, i)])A machine recognizing CA

i in nondetermin-
istic time bounded by p(n, i) (regardless of the oracle). By the form of the encoding,

NA
i (x) cannot query any of its own coding strings. If a witness string for CA

2j+1(x)

is queried in the course of a diagonalization (NP[g(n, 2i)])A 6= (NP[g(n, 2i + 1)])A,
and 2j + 1 < 2i + 1, then we can retrace the computation. If 2j + 1 ≥ 2i + 1, then
we can restrain the queried witness string (for |x| sufficiently large) without deciding

CA
2j+1(x), by the same counting argument as in previous proofs.

Thus, we can add this extra encoding, without interfering with the other collapses
and codings.

This gives us the following stronger version of Hemachandra and Jha’s oracle [8].
Corollary 2.12. For each k, there is an oracle relative to which for all j,

βj = co-βj, and

P = βk 6= βk+1 6= βk+2 6= · · ·
(and the separations are witnessed by tally sets).

Combining the results (and techniques) of Theorems 2.7, 2.10, and 2.11, we get
the following very strong result.

Corollary 2.13. For any consistent set of requirements, there is an oracle
relative to which the β hierarchy satisfies those requirements.

1428 R. BEIGEL AND J. GOLDSMITH

In constructing such an oracle, one must be careful in closing classes under com-
plement. In particular, if we close one class under complement and separate another
from its complement, we cannot then make the two classes equal.

Corollary 2.9 implies that there are uncountably many different patterns of col-
lapse that can be realized in relativized worlds. If the set of requirements is recursive,
then the oracle can be made recursive, but certainly some of those patterns are realized
by only nonrecursive oracles.

3. Dense β hierarchies. Previously we considered βr only when r is a natural
number. But the class (NP[logr n])A is meaningful whenever r is a nonnegative real
number (regardless of whether r is computable). Even when we allow r to be real, we
can make the β hierarchy obey any consistent set of requirements. For example, we
can make the β hierarchy look like a Cantor set.

Theorem 3.1. Let X be any subset of [1,∞). There exists an oracle A such
that, for all s, t ≥ 1, βAs = βAt if and only if [s, t] ⊆ X.

Note that there may be uncountably many distinct βt’s. Because there are two
rationals between any two reals, we need only separate the distinct βq’s where q is
rational.

Proof. Without loss of generality, assume that X is a union of intervals, each con-
taining more than one point. Every interval in X contains a rational point; therefore
X contains countably many intervals.

We will satisfy the following requirements for each maximal interval in X, de-
pending on its type:
[s, t] : NP[logs n] = NP[logt n],
[s, t) : NP[logs n] = NP[logt n/ log log n],
(s, t] : NP[logs n log log n] = NP[logt n],
(s, t) : NP[logs n log log n] = NP[logt n/ log log n],
[s,∞) : NP[logs n] = NP[n],
(s,∞) : NP[logs n log log n] = NP[n].
In addition, for each rational number q in (1,∞)−X, we will make

NP[logq n/ log log n] 6= NP[logq n] 6= NP[logq n log log n].

If 1 /∈ X, then we make P 6= NP[logn log log n] as well.
The construction is a slight modification of that in the proof of Theorem 2.7.

We perform the diagonalizations in some well-founded order, while maintaining the
codings as we go along. The only significant difference here is that the diagonalizations
are not performed in increasing order. Suppose that at some stage we are making
NP[a(n)] ⊂ NP[b(n)] and a coding string for some NP[c(n)] computation is queried;
we restrain that string if and only if (∃n)[c(n) > b(n)] if and only if (∀n)[c(n) ≥ b(n)].
The counting argument is the same as before.

Note that we could also close each distinct βr under complement or not, as we
wish, in the theorem above.

4. Open problems. The class βk is contained in NP ∩ DTIME(2logk n). Our
work shows that there is no relativizing proof that P = β2 ⇒ P = NP. We would
like to know whether P = NP ∩DTIME(nlogn) implies P = NP; i.e., if P 6= NP,
are there any easy languages in NP − P? The best we can show is that if P =
NP ∩DTIME(f(n)) for a well-behaved function f , then P = NP ∩DTIME(f(f(n))).
Is there an oracle relative to which this is the best possible translation of the collapse?

Does P = NP ∩DTIME(2logk n) imply P = NP?

DOWNWARD SEPARATION FAILS FOR β HIERARCHY 1429

Acknowledgments. We are grateful to Leen Torenvliet, Andrew Klapper, and
Martin Kummer for helpful discussions, and Andrew Klapper, Bill Gasarch, and Mar-
tin Kummer for careful proofreading of earlier drafts.

REFERENCES

[1] C. Àlvarez, J. Dı́az, and J. Torán, Complexity Classes With Complete Problems Between
P and NP-Complete, in Foundations of Computation Theory, Lecture Notes in Computer
Science 380, Springer-Verlag, New York, 1989, pp. 13–24.

[2] T. Baker, J. Gill, and R. Solovay, Relativizations of the P = NP question, SIAM J. Com-
put., 4 (1975), pp. 431–442.

[3] J. F. Buss and J. Goldsmith, Nondeterminism within P, SIAM J. Comput., 22 (1993),
pp. 560–572.

[4] J. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. W. Wagner,
and G. Wechsung, The Boolean hierarchy I: Structural properties, SIAM J. Comput., 17
(1988), pp. 1232–1252.

[5] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. Assoc. Comput. Mach.,
28 (1981), pp. 114–133.

[6] J. D́ıaz and J. Torán, Classes of bounded nondeterminism, Math. Systems Theory, 23 (1990),
pp. 21–32.

[7] J. Goldsmith, M. Levy, and M. Mundhenk, Limited nondeterminism, SIGACT News, June
1996, pp. 20–29.

[8] L. Hemachandra and S. Jha, Defying upward and downward separation, Inform. and Com-
put., 121 (1995), pp. 1–13.

[9] C. M. R. Kintala, Computations with a Restricted Number of Nondeterministic Steps, Ph.D.
Thesis, Pennsylvania State University, University Park, PA, 1977.

[10] C. M. R. Kintala and P. C. Fischer, Computations with a restricted number of nondeter-
ministic steps, in 9th Ann. ACM Symp. on Theory of Comput., ACM, New York, 1977,
pp. 178–185.

[11] C. M. R. Kintala and P. C. Fischer, Refining nondeterminism in relativized polynomial-time
bounded computations, SIAM J. Comput., 9 (1980), pp. 46–53.

[12] K.-I. Ko, Relativized polynomial hierarchies having exactly k levels, SIAM J. Comput., 18
(1989), pp. 392–408.

[13] S. Kurtz, Sparse sets in NP− P: Relativizations, SIAM J. Comput., 14 (1985), pp. 113–119.
[14] R. E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22

(1975), pp. 155–171.
[15] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity

of the V–C dimension, in 8th Ann. IEEE Conf. Structure in Complexity Theory, 1993,
pp. 12–18.

[16] V. R. Pratt, Every prime has a succinct certificate, SIAM J. Comput., 4 (1975), pp. 214–220.
[17] L. Sanchis, Constructing language instances based on partial information, Internat. J. Foun-

dations Comput. Sci., 5 (1994), pp. 209–229.

THE PL HIERARCHY COLLAPSES∗

MITSUNORI OGIHARA†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1430–1437, October 1998 012

Abstract. It is shown that the PL hierarchy PLH = PL
⋃

PLPL
⋃

PLPLPL ⋃ · · ·, defined in
terms of the Ruzzo–Simon–Tompa relativization, collapses to PL.

Key words. probabilistic complexity classes, nondeterministic complexity classes, logspace
reducibility, constant-depth circuits, relativization

AMS subject classifications. 68Q05, 68Q10, 68Q15

PII. S0097539795295924

1. Introduction. The oracle separations proven by Baker, Gill, and Solovay [2]
initiated the study of complexity classes by relativization. Since that work, various rel-
ativization models for nondeterministic logspace have been introduced [13, 19, 16, 18].
Ladner and Lynch [13] and I. Simon [19] studied the models that allow oracle ma-
chines to make nondeterministic moves while generating query strings and to generate
polynomially long query strings. Unfortunately, their models produce some counter-
intuitive results. With NL as the oracle, NL becomes NP while P remains P. On
the other hand, Rackoff and Seiferas [16] studied the model that allows nondetermin-
istic moves during query generation but demands the query strings be logarithmic
length-bounded, even for deterministic logspace machines. This model does not pro-
duce reverse inclusions, but oracles do not have much power. Even with QBF as the
oracle, NL remains NL. To overcome the problems of these models, Ruzzo, J. Simon,
and Tompa [18] proposed to allow polynomially long query strings and to demand
that nondeterministic Turing machines run deterministically while generating query
strings. The Ruzzo–Simon–Tompa model is reasonable. Nonrelativized inclusions of
logspace classes such as L ⊆ NL ⊆ P hold for every oracle, and powerful oracles make
NL bigger, e.g., NL relative to QBF is PSPACE. Because of the reasonability, the
Ruzzo–Simon–Tompa model is widely used as the standard relativization model. By
extending the restriction to probabilistic computation as well, one can examine classes
defined by stacks of logspace classes. But does this make sense? Ruzzo, Simon, and
Tompa show that the hierarchy with respect to BPL [10] (bounded-error probabilistic
logspace with unlimited computation time) collapses to BPL. Since NL ⊆ BPL [10],
stacks of NL and BPL never go beyond BPL. Also, the NL = coNL theorem [11, 20]
has collapsed the NL hierarchy to NL. So, one might wonder whether similar collapse
results hold for other logspace classes, in particular, PL. Do we have any intuition
concerning stacks of PL? It is known that PL is somewhere between NC1 and NC2

[7], but this does not indicate anything about where a stack of PLs will lie. More-
over, stacks of its relative, PP, do not seem to collapse (see, e.g., [5]). But, guessing
that PLPL 6= PL by analogy is perhaps too simplistic. In this paper, we resolve the
question by showing that PLPL = PL, i.e., that the PL hierarchy collapses.

The proof is built on top of the characterization of relativized PL in terms of

∗ Received by the editors December 8, 1995; accepted for publication (in revised form) August 2,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/29592.html
† Department of Computer Science, University of Rochester, Rochester, NY 14627 (ogihara@

cs.rochester.edu). This research was supported in part by the National Science Foundation under
grant CCR 9701911.

1430

THE PL HIERARCHY COLLAPSES 1431

GapL-functions [1] based on Jung’s observation that PLpoly, the polynomial time-
bounded version of PL, is identical to PL [12]. GapL is the class of functions that
count the difference between the number of accepting computation paths and that of
rejecting computation paths of nondeterministic Turing machines (see [8, 1]). Fur-
thermore, the proof makes use of the “polynomial technique” developed in papers
[14, 15, 6, 9]. In particular, our proofs borrow much of their construction from that
of Fortnow and Reingold [9], who show that PP is closed under polynomial-time
truth-table reductions.

This paper is organized as follows. In section 2, we define the class PL and
present a useful characterization of the class. Section 3 provides the proof of the
collapse result.

2. Preliminaries.

2.1. A characterization of PL. We first define the class PL.

Definition 2.1 (see [10]). A language L belongs to PL if there is a logarithmic
space-bounded probabilistic Turing machine M with no time-bound such that for every
x, x ∈ L if and only if the probability that M on x accepts is at least a half.

An immediate question is whether demanding that the machine M be polynomial
time-bounded makes the class smaller. Let PLpoly denote the class defined similarly
to PL, but with a polynomial time-bound on M . Jung [12] showed that these classes
are identical. Moreover, the equivalence holds relative to any oracle.

Proposition 2.2 (see [1]). For every oracle H, PLH = (PLpoly)
H .

This equivalence allows us to introduce counting classes that capture PL. For
a nondeterministic Turing machine M and a string x, let accM (x) (respectively,
rejM (x)) denote the number of accepting (respectively, rejecting) computation paths
of M on x, and let gapM (x) denote accM (x)− rejM (x). Define the logspace analogue
GapL [1] of GapP [8] as follows.

GapL = {gapM |M is a logarithmic space-bounded and polynomial time-bounded
nondeterministic Turing machine }.

By replacing the probabilistic coin tosses by nondeterministic moves, we obtain the
following characterization of PL.

Proposition 2.3 (see [1]). L ∈ PL if and only if there exists f ∈ GapL such
that for every x, x ∈ L if and only if f(x) ≥ 0.

The following properties of GapL can be proven using techniques similar to those
used for GapP in [8].

Theorem 2.4. Let f be a function in GapL, g : Σ∗ ×N 7→ Σ∗ be a function in
FL, and p be a polynomial. Then the following functions h1, h2, and h3 all belong to
GapL:

1. h1(x) = −f(x),

2. h2(x) =
∑p(|x|)

i=1 f(g(x, i)),

3. h3(x) =
∏p(|x|)
i=1 f(g(x, i)).

Given a function f ∈ GapL witnessing that a language L is in PL, define g by
g(x) = 2f(x) + 1. Then g always takes on odd values and witnesses that L is in PL.

Proposition 2.5. A language L is in PL if and only if there exists a function f
in GapL such that for every x,

f(x) ≥ 1 if x ∈ L and f(x) ≤ −1 otherwise.

2.2. The polynomials. Now we define the polynomials that play a crucial role
in the proof. These were defined in [6] and [9].

1432 MITSUNORI OGIHARA

Definition 2.6. Let m ≥ 1 and k ≥ 1. Define polynomials Pm(z) and Qm(z) in
Z[z] by

Pm(z) = (z − 1)
m∏
i=1

(z − 2i)2 and(1)

Qm(z) = −(Pm(z) + Pm(−z)),(2)

and define Rm,k(z) and Sm,k(z) by

Rm,k(z) =

(
2Pm(z)

Qm(z)

)2k

and(3)

Sm,k(z) = (1 +Rm,k(z))
−1.(4)

Furthermore, define polynomials Am,k(z) and Bm,k(z) by

Am,k(z) = Qm(z)2k and(5)

Bm,k(z) = Qm(z)2k + (2Pm(z))2k.(6)

Lemma 2.7. For every m, k ≥ 1 and every z, the following properties hold.
1. Sm,k(z) = Am,k(z)/Bm,k(z).
2. If 1 ≤ z ≤ 2m, then 1− 2−k ≤ Sm,k ≤ 1.
3. If −2m ≤ z ≤ −1, then 0 ≤ Sm,k(z) ≤ 2−k.

Proof. Let m, k ≥ 1. The first equivalence follows from a simple calculation. Note
that Pm(z) is nonnegative if and only if z ≥ 1. Let z be ≥ 1. We claim that Pm(z) ≤
|Pm(−z)|/4. This is seen as follows. Clearly, if z = 1, then Pm(z) = 0 6= Pm(−z),
and thus, the claim holds. On the other hand, if z > 1, then there exists a unique
t, 1 ≤ t ≤ m, such that 2t ≤ z < 2t+1, which satisfies |z − 2t| ≤ z/2 ≤ | − z − 2t|/2.
Noting that |z − 1| ≤ | − z − 1| and for every i, 1 ≤ i ≤ m, that |z − 2i| ≤ | − z − 2i|,
we have Pm(z) ≤ |Pm(−z)|/4.

Thus the claim is proven. So, for every z,

0 ≤ 2Pm(z)

Qm(z)
≤ 2

3
if 1 ≤ z ≤ 2m and

2Pm(z)

Qm(z)
≤ −2 if −2m ≤ z ≤ −1.

Since (2/3)2 ≤ 1/2, for every z,

0 ≤ Rm,k(z) ≤ 2−k if 1 ≤ z ≤ 2m and Rm,k(z) ≥ 2k if −2m ≤ z ≤ −1.

Since Sm,k(z) = (1+Rm,k(z))
−1 and (1+2−k)(1−2−k) < 1, for every z, 1 ≤ z ≤ 2m,

we have

1− 2−k ≤ Sm,k(z) ≤ 1.

Also, by observing that (1 + 2k)−1 ≤ 2−k, we see that 0 ≤ Sm,k(z) ≤ 2−k, for all z in
the range [−2m,−1]. This proves the lemma.

3. The PL hierarchy collapses. The following lemma states that logarithmic
space-bounded oracle Turing machines can be normalized so that the queries, includ-
ing the query order, are independent of the oracle.

Lemma 3.1. Let L ∈ PLH for some oracle H. Then there exist polynomials p
and q and a logarithmic space-bounded nondeterministic Turing machine N such that
for every x, the following properties hold.

THE PL HIERARCHY COLLAPSES 1433

1. On input x, N makes exactly p(|x|) queries and exactly q(|x|) nondetermin-
istic moves, independent of the oracle. Moreover, N on x makes no nondeterministic
moves while generating queries, and the queries are independent of the oracle as well.

2. For each i, 1 ≤ i ≤ p(|x|), the ith query of N is computable in logarithmic
space from x and i.

3. x ∈ L if and only if gapNH (x) > 0, and x 6∈ L if and only if gapNH (x) < 0.

Proof. Let M be the base probabilistic logarithmic space-bounded machine wit-
nessing that L ∈ PLH . By Proposition 2.2, we may assume that M is polynomial
time-bounded. There is a polynomial q0 such that for every x, M on x tosses at
most q0(|x|) coins no matter what its oracle may be. By normalizing the number of
coin-tosses, without changing the acceptance probability, we can modify M so that
M tosses exactly q0(|x|) coins. On the other hand, since M behaves deterministically
while generating queries, each potential query of M on x can be encoded using a
string of length O(log |x|), where the string denotes the ID (the head positions, the
state, and the contents of the work-tapes) at which M starts to generate the query.
Let r1 be a polynomial bounding the running time of M and let r2 be a polynomial
bounding the number of queries M could potentially make. Let p(n) = r1(n)r2(n).
Let M ′ be a Turing machine that simulates M as follows.

• When M starts to generate a query, say u, M ′ records the current ID, say I0.
• When M enters the query state, M ′ makes all the potential queries of M on
x by cycling through all the possible IDs I of M on input x and asking the
query generated by each ID. Each time a query is made, M ′ tests whether
I = I0. If I = I0, then M ′ stores the answer from the oracle in a memory
cell. Otherwise, the answer is discarded. Also, M ′ computes the count C of
the number of queries that are made while cycling through all the potential
IDs. When all the potential queries have been made, M ′ compares the count
C with r2(|x|). If C < r2(|x|), then M ′ makes additional queries about the
empty string r2(|x|) − C times. The answers to these queries are discarded.
With these additional queries, M ′ will have made exactly r2(|x|) queries for
the ID I0. Now M ′ returns to the simulation of M on x with the stored
answer.

• The machine M ′ also keeps the number Q of query rounds that have been
made so far. When M enters a halting state, if the number Q is smaller than
r1(|x|), then M ′ executes the above query round exactly r1(|x|) − Q times
with some fixed ID and discards the answers. With these additional query
rounds, M ′ will have made exactly r1(|x|) query rounds. Now M ′ accepts if
and only if M has accepted in the simulation.

It is obvious that M ′ satisfies conditions (1) and (2). Now replace the coin tosses of
M ′ by nondeterministic choices. Let M ′′ be the resulting machine. The probability
that M ′ on x accepts relative to H is equal to the ratio of the number of accepting
computation paths of M ′′ on x relative to H. Define M1 to be the Turing machine
that, on input x, guesses one bit b and then simulates M ′′ on x. The number of
accepting (rejecting) computation paths of M1 on x is twice as many as that of M ′′

on x. Also, define M2 to be the Turing machine that, on input x, guesses a bit b,
simulates M ′′ on x, and accepts x if and only if either (the bit b = 0) or (the bit
b = 1 and all the nondeterministic guesses for simulating M ′′ are 0). Then, M2 on
x has exactly 2q0(|x) + 1 accepting paths. Now define N to be the machine that, on
input x, guesses i ∈ {1, 2}, and simulates Mi on x, and accept if and only if Mi on x
accepts. Let q(n) = q0(n) + 2. Then N satisfies (1) and (2). It is easy to see that (3)

1434 MITSUNORI OGIHARA

is satisfied, too.
Theorem 3.2. PLPL = PL.
Proof. Let L ∈ PLPL be witnessed by a nondeterministic Turing machine N and

a language H ∈ PL satisfying the conditions in Lemma 3.1 with polynomials p and
q. Without loss of generality, we may assume that p(n), q(n) > 1 for all n. For each
x and i, 1 ≤ i ≤ p(|x|), let yx,i denote the ith query asked by N on x. Let f be
a function in GapL witnessing that H ∈ PL as in Proposition 2.5. There exists a
polynomial µ such that for every x and i, 1 ≤ i ≤ p(|x|), 1 ≤ |f(yx,i)| ≤ 2µ(|x|). Let
us fix such a polynomial µ. Define κ(n) = p(n) + q(n) + 1, and define for each x and
i, 1 ≤ i ≤ p(|x|),

S(x, i, 1) = Sµ,κ(f(yx,i)) and S(x, i, 0) = 1− Sµ,κ(f(yx,i)),

where Sµ,κ is short-hand for Sµ(|x|),κ(|x|). By Lemma 2.7, for every x, i, 1 ≤ i ≤ p(|x|),
and b ∈ {0, 1},

if χH(yx,i) = b, then 1 − 2−κ(|x|) ≤ S(x, i, b) ≤ 1,
and

(7)

if χH(yx,i) 6= b, then 0 ≤ S(x, i, b) ≤ 2−κ(|x|).(8)

Furthermore, define

α(x, i, 1) = Aµ,κ(f(yx,i)),

α(x, i, 0) = Bµ,κ(f(yx,i))−Aµ,κ(f(yx,i)), and

β(x, i) = Bµ,κ(f(yx,i)).

Then for every x, i, 1 ≤ i ≤ p(|x|), and b ∈ {0, 1},
S(x, i, b) = α(x, i, b)/β(x, i).

For each x and w ∈ {0, 1}p(|x|), define

S̃(x,w) =

p(|x|)∏
i=1

S(x, i, wi),

where wi denotes the ith bit of w. Then, by (7) and (8), we have

if w = χH(yx,1) · · · χH(yx,p(|x|)), then 1− p(|x|)2−κ(|x|) ≤ S̃(x,w) ≤ 1, and(9)

if w 6= χH(yx,1) · · · χH(yx,p(|x|)), then 0 ≤ S̃(x,w) ≤ 2−κ(|x|).(10)

Define

α̃(x,w) =

p(|x|)∏
i=1

α(x, i, wi) and

β̃(x) =

p(|x|)∏
i=1

β(x, i).

Then, for every x and w,

S̃(x,w) = α̃(x,w)/β̃(x).

THE PL HIERARCHY COLLAPSES 1435

Define the predicate e as follows:

For each x, w, |w| = p(|x|), and u, |u| = q(|x|), e(x,w, u) = 1 if and only if
N on input x with nondeterministic guesses u accepts assuming that the
answer to the ith query is affirmative if and only if wi = 1.

(11)

Define

T (x) =
∑

w,u:|w|=p(|x|),|u|=q(|x|)
e(x,w, u)S̃(x,w) and

a(x) =
∑

w,u:|w|=p(|x|),|u|=q(|x|)
e(x,w, u)α̃(x,w).

Clearly, T (x) = a(x)/β(x). By (9) and (10), the following properties hold.
1. For each x, there is a unique wx ∈ Σp(|x|) such that 1 − p(|x|)2−κ(|x|) ≤

S̃(x,wx) ≤ 1 and for every w 6= wx, 0 ≤ S̃(x,w) ≤ 2−κ(|x|).
2. If x ∈ L, then the number of u, |u| = q(|x|), such that e(x,wx, u) = 1 is at

least 2q(|x|)−1 + 1.
3. If x 6∈ L, then the number of u, |u| = q(|x|), such that e(x,wx, u) = 1 is at

most 2q(|x|)−1 − 1.
Recall that κ(n) = p(n)+ q(n)+1 and p(n), q(n) > 1. For every x, if x ∈ L, then

T (x) ≥ 2q(|x|)−1(1− p(|x|)2−κ(|x|))
≥ (2q(|x|)−1 + 1)(1− 2p(|x|)2−κ(|x|))
= 2q(|x|)−1 + (1− 2p(|x|)2−κ(|x|))− 2q(|x|)−12p(|x|)2−κ(|x|)

≥ 2q(|x|)−1 + 1/2− 1/4

> 2q(|x|)−1,

so T (x) > 2q(|x|)−1, and if x 6∈ L, then

T (x) ≤ (2q(|x|)−1 − 1) + 2p(|x|)+q(|x|)2−κ(|x|)

= 2q(|x|)−1 − 1 + 2−1

< 2q(|x|)−1 − 1/2,

so T (x) < 2q(|x|)−1. This implies that for every x, x ∈ L if and only if T (x) > 2q(|x|)−1

and x 6∈ L if and only if T (x) < 2q(|x|)−1. Finally, define h(x) = 4a(x)− 2q(|x|)+1β(x).
Then, for every x, x ∈ L if and only if h(x) ≥ 0.

It remains to show that h is in GapL. Define π to be the function that maps w to
2|w|. The constant 2 function is trivially in GapL and so, by part (3) of Theorem 2.4,
π ∈ GapL. So, one can prove that the function that maps x to Pµ(|x|)(f(x)), i.e.,

(f(x) − 1)
∏µ(|x|)
i=1 (f(x) − π(0i))2, is in GapL by combining the three parts of The-

orem 2.4. For much the same reason, the function that maps x to Qµ(|x|)(f(x)) is
in GapL. Since yx,i is logarithmic-space computable, by Theorem 2.4, α, β ∈ GapL.

This implies β̃ ∈ GapL. Since the function that maps x to 2q(|x|)+1 clearly belongs to
GapL, we have only to show that a is in GapL.

Let D be a logarithmic space-bounded nondeterministic Turing machine wit-
nessing that α ∈ GapL; that is, α = gapD. Note that D on input 〈x, i, b〉 with
1 ≤ i ≤ p(|x|) and b ∈ {0, 1} can be simulated in O(log |x|) space. Define G to be the
nondeterministic Turing machine that, on input x, behaves as follows.

1436 MITSUNORI OGIHARA

Step 1. G first sets a one-bit memory c to 0.
Step 2. G starts simulating N on x nondeterministically; that is, if N makes

its ith nondeterministic move, then so does G by guessing bit ui. When N
makes its ith query yx,i, G does the following.

(a) G nondeterministically guesses wi ∈ {0, 1} and simulates D on 〈x, i, wi〉.
If D rejects, then G flips bit c.

(b) G returns to the simulation of N on x assuming that the answer to the
query is affirmative if and only if wi = 1.

Step 3. When N enters the halting state, G does the following.
(a) If N has accepted, then G accepts if and only if c = 0.
(b) If N has rejected, then G nondeterministically guesses a bit d ∈ {0, 1}

and accepts if and only if d = 0.

Note that, at the beginning of Step 3, e(x,w, u) = 1 holds if and only if N has accepted
with w and u. In the case when N has rejected, and thus, e(x,w, u) = 0, G generates
one accepting path and one rejecting path, so there is no contribution to gapG(x)
from this w and u. In the case when N has accepted, and thus, e(x,w, u) = 1, the
one-bit memory c is the parity of the number of accepting simulations of D that G has
encountered. Since G accepts if and only if the parity is 0, the number of accepting
computation paths along w and u is the sum of all∏

i 6∈I
accD(x, i, wi)

∏
i∈I

rejD(x, i, wi)

with I ranging over all subsets of {1, . . . , p(|x|)} of even cardinality. Also, the number
of rejecting computation paths generated along w and u is the sum of all∏

i 6∈I
accD(x, i, wi)

∏
i∈I

rejD(x, i, wi)

with I ranging over all subsets of {1, . . . , p(|x|)} of odd cardinality. Note, for every
i and wi, that accD(x, i, wi) − rejD(x, i, wi) = gapD(x, i, wi). Thus, the difference
between the above two sums is equal to

p(|x|)∏
i=1

(accD(x, i, wi)− rejD(x, i, wi)) =

p(|x|)∏
i=1

gapD(x, i, wi).

Thus, for every x,

gapG(x) =
∑

w,u:|w|=p(|x|)|u|=q(|x|)
e(x,w, u)

p(|x|)∏
i=1

α(x, i, wi)

=
∑

w,u:|w|=p(|x|),|u|=q(|x|)
e(x,w, u)α̃(x,w)

= a(x).

Hence, a is in GapL. This proves the theorem.

Allender and Ogihara [1] observe that the PL hierarchy coincides with the logspace
uniform AC0 closure of PL. So, we immediately obtain the following corollary.

Corollary 3.3. PLH = AC0(PL) = PL.

THE PL HIERARCHY COLLAPSES 1437

The closure can be strengthened further. Given any constant-depth circuit, by
slicing the circuits into levels and by using the fact that PLPL = PL, one can collapse
the two levels into one.

Corollary 3.4. PL is closed under logspace-uniform, constant-depth reductions
with arbitrary symmetric functions as gates.

In particular, PL is closed under logspace-uniform TC0-reductions [17] and under
logspace-uniform ACC-reductions [3].

Can we extend the closure property to nonconstant-depth circuits? Recently,
Beigel and Fu have reported that the answer is positive: PL is closed under NC1-
reductions [4]. The result leaves us with the question of whether logarithmic-depth
semiunbounded fan-in circuits SAC1 are in PL, and, if so, whether PL is closed under
SAC1-reductions.

Acknowledgment. The author thanks Eric Allender, Richard Beigel, Lance
Fortnow, Janos Simon, and Marius Zimand for enjoyable discussions, and anonymous
referees for invaluable comments.

REFERENCES

[1] E. Allender and M. Ogihara, Relationships among PL, #L, and the determinant, in Proc.
9th IEEE Conf. on Structure in Complex. Theory, 1994, pp. 267–278.

[2] T. Baker, J. Gill, and R. Solovay, Relativizations of the P =?NP question, SIAM J.
Comput., 4 (1975), pp. 431–442.

[3] D. Barrington, Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1, J. Comput. System Sci., 38 (1989), pp. 150–164.

[4] R. Beigel and B. Fu, Circuits over PP and PL, in Proc. 12th Conf. on Comput. Complexity,
IEEE Computer Society Press, Los Alamitos, CA, 1997, pp. 24–35.

[5] R. Beigel, Perceptrons, PP, and the polynomial hierarchy, Comput. Complexity, 4 (1994),
pp. 339–349.

[6] R. Beigel, N. Reingold, and D. Spielman, PP is closed under intersection, J. Comput.
System Sci., 50 (1995), pp. 191–202.

[7] A. Borodin, S. Cook, and N. Pippenger, Parallel computation for well-endowed rings and
space-bounded probabilistic machines, Inform. and Control, 58 (1983), pp. 113–136.

[8] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput. System
Sci., 48 (1994), pp. 116–148.

[9] L. Fortnow and N. Reingold, PP is closed under truth-table reductions, Inform. and Com-
put., 124 (1996), pp. 1–6.

[10] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput., 6
(1977), pp. 675–695.

[11] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput.,
17 (1988), pp. 935–938.

[12] H. Jung, On probabilistic time and space, in Proc. 12th Conf. on Automata, Lang. and Prog.,
Lecture Notes in Comp. Sci. 194, Springer-Verlag, New York, 1985, pp. 310–317.

[13] R. Ladner and N. Lynch, Relativization of questions about logspace computability, Math.
Systems Theory, 10 (1976), pp. 19–32.

[14] D. Newman, Rational approximation to |x|, Michigan Math. J., 11 (1964), pp. 11–14.
[15] S. Paturi and M. Saks, Approximating threshold circuits by rational functions, Inform. and

Comput., 112 (1994), pp. 257–272.
[16] C. Rackoff and J. Seiferas, Limitations on separating nondeterministic complexity classes,

SIAM J. Comput., 10 (1981), pp. 742–745.
[17] J. Reif and S. Tate, On threshold circuits and polynomial computation, SIAM J. Comput.,

21 (1992), pp. 896–908.
[18] W. Ruzzo, J. Simon, and M. Tompa, Space-bounded hierarchies and probabilistic computa-

tions, J. Comput. System Sci., 28 (1984), pp. 216–230.
[19] I. Simon, On Some Subrecursive Reducibilities, Ph.D. Thesis, Stanford University, Stanford,

CA, 1977. Available as Computer Science Department, Stanford University, Technical Re-
port STAN-CS-77-608.

[20] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta
Inform., 26 (1988), pp. 279–284.

GENERATING LOW-DEGREE 2-SPANNERS∗

GUY KORTSARZ† AND DAVID PELEG‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1438–1456, October 1998 013

Abstract. A k-spanner of a connected (undirected unweighted) graph G = (V,E) is a subgraph
G′ consisting of all the vertices of V and a subset of the edges, with the additional property that
the distance between any two vertices in G′ is larger than that distance in G by no more than a
factor of k. This paper is concerned with approximating the problem of finding a 2-spanner in a
given graph, with minimum maximum degree. We first show that the problem is at least as hard to
approximate as set cover. Then a randomized approximation algorithm is provided for this problem,
with approximation ratio of Õ(∆1/4). We then present a probabilistic algorithm that is more efficient
for sparse graphs. Our algorithms are converted into deterministic ones using derandomization.

Key words. graph spanners, NP-hardness, approximation, randomized rounding

AMS subject classifications. 05C05, 05C12, 05C85, 68Q25, 68R10, 90C35

PII. S0097539794268753

1. Introduction. The concept of graph spanners has been studied in several
recent papers in the context of communication networks, distributed computing,
robotics, and computational geometry [ADDJ90, Cai91, Che86, DFS87, DJ89, LL89,
PS89, PU89, LR94, CDNS92]. Consider a connected simple (unweighted) graph
G = (V,E), with |V | = n vertices. A subgraph G′ = (V,E′) of G is a k-spanner
if for every u, v ∈ V ,

dist(u, v,G′)
dist(u, v,G)

≤ k,

where dist(u, v,G′) denotes the distance from u to v in G′, i.e., the minimum number
of edges in a path connecting them in G′. We refer to k as the stretch factor of G′.

In the Euclidean setting, spanners were studied in [Cai91, DFS87, DJ89, LL89,
Soa92]. Spanners for general graphs were first introduced in [PU89], where it was
shown that for every n-vertex hypercube there exists a 3-spanner with no more than
7n edges and then studied further in [PS89, LR94, ADDJ90, CDNS92]. Spanners were
used in [PU89] to construct a new type of synchronizer for an asynchronous network.

The usual criteria for the quality of the spanner are its stretch and its sparsity.
Namely, a good spanner is one with low stretch and as few edges as possible. For
the problem of finding a 2-spanner which is as sparse as possible, a logarithmic-ratio
approximation is given in [KP94].

However, another parameter of significance when selecting a good spanner is the
maximum degree of the spanner. In terms of applications, a high degree might mean
a high local load on a single vertex, increasing the cost of its local management. For
instance, in the application of using a spanner for implementing a δ-synchronizer in a
distributed network [PU89], or when using a spanner for efficient broadcast [ABP91],

∗Received by the editors June 3, 1994; accepted for publication (in revised form) August 9, 1996;
published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/26875.html
†Department of Computer Science, The Open University, Ramat-Aviv, Israel (guyk@tavor.

openu.ac.il). Part of this work was done while the author was at the Weizmann Institute.
‡Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot

76100, Israel (peleg@widsom.weizmann.ac.il). This research was supported in part by a Walter and
Elise Haas Career Development Award and by a grant from the Israel Science Foundation.

1438

GENERATING LOW-DEGREE 2-SPANNERS 1439

the degree of each node in the spanner directly translates into memory requirements
at the node, and high local degrees mean higher workload on the involved nodes.

It is clear that focusing on optimizing the sparsity measure alone may result in a
spanner with high vertex degrees. For example, if there is a vertex v in the graph that
is connected to all the rest of the vertices, then its edges form a 2-spanner and, there-
fore, a k-spanner for any k ≥ 2. However, in such a choice the local load of v might be
too high to handle, while the local load of any other vertex w may be much less than
what w can handle. In fact, the algorithm proposed in [KP94] will pick the vertex
v and is therefore unsuitable for selecting “balanced load” spanners. It is therefore
natural to try to design an algorithm that will perform a more “balanced” selection of
the edges. In particular, letting ∆(G′) denote the maximum vertex degree in a span-
ner G′, we consider the question of choosing a k-spanner G′ with minimum ∆(G′) for
some parameter k. We call this “low degree” variant of the problem LD-kSP. The
problem of designing low degree spanners is addressed in [LR94, LS93b, LS93a] for
some special graph classes such as pyramids and grids. The problem of designing small
degree spanners for Euclidean and geometric graphs is studied in [CDNS92, Soa92].
The distance is measured therein by the appropriate norm defined in the vector space.

This paper treats LD-2SP in general graphs. We first show that the problem
is at least as hard to approximate as set cover (up to constants). This implies the
following results. There is no lnn/5-ratio approximation algorithm for LD-2SP unless
NP ⊂ DTIME(npolylog(n)). Also, no approximation algorithm with constant ratio
exists for the problem unless P = NP . We next give a probabilistic algorithm that
outputs a 2-spanner G′ such that with high probability ∆(G′) is no more than Õ(∆1/4)
times the optimum. In other words, our algorithm has an approximation ratio of
Õ(∆1/4) with high probability. (Õ is a relaxed variant of the usual O notation that
ignores polylogarithmic factors.) The algorithm is then turned into a deterministic
one using derandomization.

The technique used in [KP94] to approximate the sparsest 2-spanner problem is
the “greedy” method that constructs the spanner gradually, attempting to 2-span
a large number of edges in every iteration. (An edge e = (u, v) is 2-spanned once
either itself or two other edges lying on a triangle with it, say (u, x) and (x, v), are
added to the spanner.) The LD-2SP problem seems to be harder to approximate.
In particular, the greedy approach seems to fail (i.e., be inefficient) for it. Hence
a different (and more involved) approach is required. The technique used in this
paper for the LD-2SP problem is a variant of the “randomized rounding” technique
of [RT87].

Our algorithm is composed of two different procedures. The first procedure is
designed to 2-span edges lying on “many” triangles. The second procedure deals with
the yet unspanned edges, i.e., edges that lie on a “small” number of triangles. We
describe the “2-spanning” problem for these edges as a linear program, solve it in
the fractional setting, and randomly round the fractional solutions. We note that
in the rounding process, we use only a subset of the variables. We also note that
every variable is rounded with probability considerably exceeding its fractional value.
These higher rounding probabilities seem to be needed in order to overcome some
“quadratic” behavior of the linear program.

We also present an additional probabilistic algorithm that is efficient for sparse
graphs. This algorithm can also be transformed into a deterministic one using deran-
domization.

Finally we deal with the problem of 2-spanning only the edges adjacent to a

1440 GUY KORTSARZ AND DAVID PELEG

small subset Vk, |Vk| = k of the vertices. We give an O(k · log n)-ratio approximation
algorithm for this problem. For fixed k, our hardness result implies that unless NP ⊂
DTIME(nlog log n) this is the best ratio possible (asymptotically).

2. Preliminaries. We start by introducing some definitions. In the sequel, let
G = (V,E) be the underlying n-vertex graph. We sometimes use E also to denote
the size of the set E, i.e., the number of edges. Let U ⊆ V be a subset of the vertices.
The graph induced by U is denoted by G(U). The set of edges in G(U) is denoted by
E(U). For a vertex v we denote by E(v) the set of edges adjacent to v in G. Similarly,
we denote by N(v) the set of neighbors of v in G, i.e.,

N(v) = {u | (u, v) ∈ E}.

We denote the degree of a vertex v by deg(v) = |N(v)|. The maximum degree in a
subgraph G′ = (V ′, E′), where V ′ ⊂ V and E′ ⊆ E, is denoted by ∆(G′). We denote
by ∆(E′) the largest degree in the subgraph (V,E′). We sometimes write ∆ for ∆(G).

We make use of an alternative characterization of k-spanners given in the following
simple lemma of [PS89].

Lemma 2.1 (see [PS89]). The subgraph G′ = (V,E′) is a k-spanner of the graph
G = (V,E) iff dist(u, v,G′) ≤ k for every (v, u) ∈ E.

Thus the LD-2SP problem can be restated as follows: we look for a subset of
edges E′ ⊂ E such that every edge e that does not belong to E′ lies on a triangle
with two edges that do belong to E′ and such that ∆(E′) is minimum.

Given an edge e ∈ E, let Tri(e) denote the set of triangles e lies on in the graph
G. Namely,

Tri(e) = {{e, e1, e2} | e, e1 and e2 form a triangle in G} .

Let D(e) be the set of vertices that lie on a triangle with e but do not touch e. (Note
that |D(e)| = |Tri(e)|, as each vertex in D(e) corresponds to exactly one triangle in
Tri(e).) We say that a vertex v ∈ D(e) (sharing a triangle T with e) 2-helps e in the
spanner H if the two edges incident to v on T are chosen into H.

In the sequel we estimate the probability of the deviation of some random variables
from their expectation, using the Chernoff bound [Che52].

Lemma 2.2 (see [Che52]). Let X1, X2, . . . , Xm be independent Bernoulli trials
with P(Xi = 1) = pi. Let X =

∑m
i=1 Xi and µ =

∑m
i=1 pi. Then

P(X > (1 + δ)µ) <

[
eδ

(1 + δ)(1+δ)

]µ
.

In the sequel we assume that ∆(G) ≥ Ω(log2 n). If this is not the case, then taking
the entire graph as our spanner results in a polylogarithmic-ratio approximation.

Unless stated otherwise, all logarithms in this paper are taken to the base 2.

3. Basic properties.

3.1. Low degree spanners for general graphs and special graph families.
The problem of designing low degree spanners is addressed in [LR94] for the special
case where the underlying graph is the pyramid. In particular, it is proven therein that
this graph enjoys a 2-spanner (respectively, 3, 7) with maximum degree 6 (respectively,
4, 3). The problem of designing small degree spanners for Euclidean and geometric

GENERATING LOW-DEGREE 2-SPANNERS 1441

graphs is studied in [CDNS92, Soa92]. There, however, the distance is measured by
the appropriate norm defined in the vector space.

We now establish some basic properties concerning the degrees of 2-spanners.
The next lemma indicates that for a graph with large ∆, the minimum degree in a
2-spanner must also be large. We prove this by showing that even for the sake of
2-spanning the edges of a single vertex v with degree ∆, it is necessary to have a
vertex in the spanner with degree at least

√
∆.

Lemma 3.1. Let v be a vertex of degree d in G. Let H = (V,E(H)) be a 2-spanner
of G. Then in H either v or some vertex in N(v) has degree at least

√
d.

Proof. Let t denote the maximum degree of any vertex from N(v) in H. Then
the number of vertices reachable from v in two steps over H edges is at most t2. Since
all d edges incident to v must be 2-spanned in H, necessarily t2 ≥ d.

As an immediate conclusion we have the following.
Lemma 3.2. Let H∗ = (V,E∗) be a 2-spanner for G with minimum maximum

degree. Then

∆(H∗) ≥
√

∆(G).

Let us remark that a similar result holds for k-spanners H∗ of minimum maximum
degree for any k ≥ 2, namely, ∆(H∗) is Ω(∆(G)1/k) (the proof is also similar).

Note that there are graphs G for which ∆(H) = ∆(G) for any 2-spanner H of
G. One particular such graph is the star of n− 1 vertices. However, there are dense
graphs, where the lower bound

√
∆ can be achieved (up to constants). The clique

(complete graph) Kn of n vertices admits low degree 2-spanners. In order to prove
this, we use the notion of a projective plane of order q for prime q. The existence
of projective planes of order q for every prime q is well known. A projective plane
P = (P,L) of order q is composed of a collection P = {p1, . . . , pm} of points and a
collection L = {l1, . . . , lm} of lines where m = q2 + q + 1. Every line li is a subset of
P containing exactly d = q + 1 points and every point is contained in exactly d lines.
Every two lines intersect in exactly one point and every two points share exactly one
line.

Consider now Kn = (V, V ×V) where V = {v1, . . . , vn}. Let q be a prime number
such that b√nc ≤ q ≤ 2b√nc. (Such a prime exists by Bertrand’s postulate; cf.
[HW56].) Thus, n < q2 + q + 1 < 5n. Let P = (P,L) be a projective plane of order
q. Define the following spanning subgraph H = (V,E′) of Kn. Add the edge (vi, vj)
to E′ iff there exist t and r that satisfy t ≡ i mod n and r ≡ j mod n such that either
pt ∈ lr or pr ∈ lt.

We now proceed to prove that H is a low degree 2-spanner for Kn. First we note
the following claim.

Claim 3.3. The subgraph H is a 2-spanner for Kn.
Proof. Let e = (vi, vj) be an arbitrary edge of Kn. The lines li and lj share some

point ps ∈ li ∩ lj . Let f be the integer satisfying 1 ≤ f ≤ n, f ≡ s mod n. If f = i or
f = j (i.e., the case is, for example, that pj ∈ li ∩ lj) then by definition (vi, vj) ∈ E′.
Otherwise, again by definition, both (vi, vf) ∈ E′ and (vj , vf) ∈ E′, and the edge e is
spanned.

We now estimate the degree of the vertices in H ′. Note that the degree of a vertex
vi ∈ H is only increased due to vertices in the set Si = {lj | j ≡ i mod n} ∪ {pj |
j ≡ i mod n}, and |Si| ≤ 10. Each vertex in Si increases the degree of vi by at most
d = q + 1, and thus the degree of vi in H is bounded by O(d) = O(

√
n).

In conclusion, we have established the following claim.

1442 GUY KORTSARZ AND DAVID PELEG

Lemma 3.4. The complete graph Kn admits a 2-spanner H with ∆(H) =
O(
√

∆(Kn)).

4. A hardness result for approximating LD-2SP. In this section we es-
tablish that the LD-2SP problem is (up to a constant factor) at least as hard to
approximate as the set cover problem. Formally, the set cover problem is defined as
follows. Given a bipartite graph G(V1, V2, E) with |V1| = |V2| = n, find a minimum
cardinality subset S of V1, that covers V2, i.e., such that every vertex in V2 has a
neighbor in S.

It is known that this problem is hard to approximate. In particular, the following
theorem is proved in [LY93, Fei96].

Theorem 4.1 (see [Fei96]). The set cover problem cannot be approximated with
ratio lnn− ε, for any fixed ε > 0, unless NP ⊂ DTIME(nlog log n).

Also, the following theorem is proven in [BGLR93].

Theorem 4.2 (see [BGLR93]). The set cover problem cannot be approximated
with any constant ratio c, unless P = NP .

For our purpose, we need a slightly different version of the set cover problem.
Define the

√
n-set cover problem as a variant of the set cover problem in which d(v) ≤√

n for each vertex v ∈ V1 ∪ V2. The usual greedy algorithm approximates this
problem with ratio ln

√
n + 1 = lnn/2 + 1 [Joh74, Lov75]. On the other hand, a

simple observation gives the following fact.

Fact 4.3. The
√
n-set cover problem cannot be approximated with ratio better

than lnn/2, unless NP ⊂ DTIME(nlog log n).

Proof. Assume the existence of an approximation algorithm A for the
√
n-set

cover problem, with ratio lnn/2 or better. Let G(V1, V2, E) be an instance of the
set cover problem. Let G̃ be a graph consisting of n (separate) copies of G. The
graph G̃ contains n2 vertices on each side, and the maximum degree in G̃ is bounded
by n. Thus, G̃ is amenable to approximation by algorithm A, and, consequently,
the set cover instance represented by G̃ can be approximated with ratio better than
ln(n2)/2 = lnn. Since any cover in G̃ is composed of n separate covers of V2, we
get by a straightforward averaging argument that one of these covers approximates
the optimum cover of V2 by a ratio better than lnn. By Theorem 4.1, this implies
NP ⊂ DTIME(nlog log n).

In the remainder of this section, we consider the
√
n-set cover problem, with

|V1| = |V2| = n. We show that the LD-2SP problem is at least as hard to approximate
as this problem. Throughout, we denote by t∗ the size of the optimum cover of V2 in
G. Let ` = d√n e. Note that

t∗ ≥ `.(1)

4.1. The construction. We use an auxiliary graph Ḡ constructed from G as
follows. The vertices of Ḡ are

V1 ∪ V2 ∪ {s} ∪ {c(v1) | v1 ∈ V1} ∪ {u1, . . . , u`}.

Divide the vertices of V1 arbitrarily into ` disjoint sets V i
1 , where each V i

1 contains
no more than

√
n vertices. The edge set of Ḡ is given by defining a number of edge

GENERATING LOW-DEGREE 2-SPANNERS 1443

classes as follows. Let

E1 = E(G),

E2 = {(s, v1) | v1 ∈ V1},
E3 = {(s, v2) | v2 ∈ V2},
E4 = {(c(v1), v1) | v1 ∈ V1} ∪ {(c(v1), v2) | (v1, v2) ∈ E(G)},
E5 = {(ui, v1) | v1 ∈ V i

1 , 1 ≤ i ≤ `},
E6 = {(s, ui) | 1 ≤ i ≤ `},

and set

E(Ḡ) = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 ∪ E6.

Let us make a few remarks on this construction. As the maximum degree in Ḡ is
more than 2n, the best 2-spanner H of G has maximum degree at least

√
2n. We note

that for the sake of choosing a good spanner, one can “afford” the edges of classes E1,
E4, E5, and E6, since it easily follows from the construction that these edges induce
a subgraph with maximum degree bounded by `. This observation relies on the fact
that the degrees of the vertices of V1 and V2 in G are bounded by

√
n.

Consequently, the edges from which a “good” spanner may need to omit are the
edges of classes E2 and E3. These edges give s its degree in Ḡ, which is higher than
2n. The heart of our proof lies in 2-spanning the edges of E3. Such an edge e must
either be included in the spanner or be 2-helped by some vertex v1 ∈ D(e). In order
to keep the degree of s low, one has to choose a small subset of V1 that covers V2.

4.2. The main claim. We prove the main result of this section using the fol-
lowing two lemmas.

Lemma 4.4. If G contains a cover of size t∗ then Ḡ contains a 2-spanner with
maximum degree bounded by 2t∗.

Proof. Assume a graph G(V1, V2, E) with a t∗-cover C = {v1, . . . , vt∗} ⊆ V1 of
V2. For every vertex v2 ∈ V2 choose a vertex R(v2) ∈ C connected to v2. Create a
spanner H consisting of the following two edge sets:

H1 = {(v2, R(v2)) | v2 ∈ V2} ∪ {(s, v1) | v1 ∈ C},
H2 = E4 ∪ E5 ∪ E6,

and set E(H) = H1 ∪H2.
(Remark. The above construction can be slightly improved. For example, it is not

necessary to put in H edges (c(v1), u) if v1 is the vertex chosen to cover u. We note,
nevertheless, that the maximum degree is not decreased by these improvements.)

We need the following observations.
Claim 4.5. The maximum degree in H is bounded by 2t∗.
Proof. As explained before, the edges of classes E4, E5, and E6 induce a graph

with maximum degree bounded by `. Specifically, s, the c(vi) vertices and the vertices
of V2 have degree bounded by ` and the vertices of V1 have degree bounded by 2 (i.e.,
a vertex v1 is connected to its ui and to c(v1).)

Now consider the edges of H1. The degree of each vertex in C is increased by no
more than

√
n+1 due to these edges (these edges connect a vertex v1 to its neighbors

in V2 and to s). Note, however, that t∗ new edges are added to s (connecting s to the
vertices of C), thus making its degree no more than t∗ + ` ≤ 2t∗ by inequality (1).
Hence the maximum degree is as stated.

1444 GUY KORTSARZ AND DAVID PELEG

Next we establish the following claim.
Claim 4.6. The graph H is a 2-spanner of Ḡ.
Proof. The edges of classes E4, E5, and E6 are in the spanner. We must show that

the edges of classes E1, E2, and E3 are 2-spanned by H.
An edge (v1, v2) ∈ E1 is 2-spanned in the spanner by the edges (c(v1), v1) and

(c(v1), v2), since both are in E4.
Next consider an edge (v1, s) ∈ E2. The node v1 must belong to some set V i

1 .
Therefore this edge is 2-spanned in H by the edges (ui, v1) and (ui, s), which are in
E5 and E6, respectively.

Finally, an edge (v2, s) ∈ E3 is 2-spanned in H by the edges (v2, R(v2)) and
(R(v2), s), which are in H1.

The second central lemma in this section is the following.
Lemma 4.7. Given a 2-spanner H of Ḡ, it is possible to find a cover of V2 in G

with cardinality bounded by ∆(H).
Proof. Consider a 2-spanner H. Partition the edges of class E3 into two disjoint

sets

EA3 = E3 ∩ E(H) and EB3 = E3 \ E(H).

Note that each of the edges of EB3 is 2-spanned in H by a 2-helping vertex.
Construct a cover of V2 in G as follows. First, for every edge (v2, s) ∈ EA3 , choose

an arbitrary vertex v1 connected to v2 in G, and let D1 be the set of selected vertices.
Second, for every edge (s, v2) in EB3 , choose an arbitrary vertex v1 ∈ V1 such that
both (s, v1) and (v2, v1) are in E(H). (A single vertex of V1 may be chosen several
times, as it may cover many edges in EB3 .) Let D2 be the set of vertices chosen by
this process.

Clearly, the set D1 ∪ D2 forms a cover of V2 in G. It remains to bound its
cardinality. First note that |D1| ≤ |EA3 | (at worst, a different vertex v1 is chosen to
D1 for every vertex of EA3). Now, every edge in EA3 adds 1 to the degree of s in H.
Also, every vertex in D2 is connected to s in H and thus adds 1 to its degree. Hence
|D1|+ |D2| ≤ ∆(H). This proves the claim.

The following corollary is now immediate.
Corollary 4.8. The LD-2SP problem cannot be approximated with ratio better

than lnn/5, unless NP ⊂ DTIME(nlog log n).
Proof. Assume the existence of an approximation algorithm A for the LD-2SP

problem, with ratio better than lnn/5. Take an input G of the
√
n-set cover problem.

Let t∗ be the size of a minimum cover of V2 in G. Construct Ḡ as explained before
(this can clearly be done in polynomial time). By Lemma 4.4 the graph Ḡ contains a
2-spanner with maximum degree bounded by 2t∗. Note that the number of vertices
in Ḡ is less than 4n. By the assumption, it is possible to use algorithm A and find a
2-spanner with maximum degree bounded by

2t∗(ln |Ḡ|)/5 ≤ 2t∗(lnn+ 4)/5 < t∗(lnn/2− 1)

(the last inequality holds for sufficiently large n). By Lemma 4.7 this implies that it
is possible to find in polynomial time a cover of V2 in G with cardinality bounded by
t∗(lnn/2− 1). By Fact 4.3, this implies NP ⊂ DTIME(nlog log n).

The following corollary also follows easily.
Corollary 4.9. The LD-2SP problem cannot be approximated with ratio c, for

any constant c, unless P = NP .

GENERATING LOW-DEGREE 2-SPANNERS 1445

5. The approximation algorithm for LD-2SP. Let us first explain the idea
behind our approximation algorithm for the LD-2SP problem. We separate the edge
set of our graph into two disjoint classes. The class E− is the class of edges that
lies on a small number of triangles, and the class E+ contains the rest of the edges,
namely,

E− = {e ∈ E | Tri(e) <
√

∆}, E+ = {e ∈ E | Tri(e) ≥
√

∆}.

(Recall that Tri(e) is the set {e, e1, e2} of triangles containing e.) We 2-span these two
classes of edges, using two separate procedures. Our general approach for handling
E− is to use the “randomized rounding” scheme of Raghavan and Thompson [RT87].
This scheme is based on the following idea. Let ∆∗ be the maximum degree in the best
2-spanner. (We shall soon see that it is possible, without loss of generality, to assume
that ∆∗ is known.) We then formulate the problem as the integer linear program
(P1) below.

The program (P1). Given are some subset Eu ⊆ E of “unspanned” edges
and a (possibly empty) set Er of edges that have already been added to the spanner.
Create for every edge ek ∈ Eu and vertex vi ∈ D(ek) a variable ŷi,k. (Recall that
D(e) is the set of vertices that lies on a triangle with e but does not touch it.) For
every two vertices vi, vj ∈ V, i < j, such that (vi, vj) ∈ E, create a variable x̂i,j . (We
shall freely use both x̂i,j and x̂j,i to denote this unique variable.) The program is
composed of the following sets of inequalities:∑

vj∈N(vi),(vi,vj)/∈Er

x̂i,j ≤ ∆∗ for all vi ∈ V,(2)

x̂l,t +
∑

vi∈D(ek)

ŷi,k ≥ 1 for all ek = (vl, vt) ∈ Eu,(3)

ŷi,k ≤ x̂i,l, x̂i,t for all ek = (vl, vt) ∈ Eu and vi ∈ D(ek),(4)

x̂ij = 1 for all e = (vi, vj) ∈ Er,(5)

x̂i,j , ŷi,k ∈ {0, 1} for all i, j, k.(6)

The intuitive meaning of the program is as follows. Every x̂i,j variable indicates
if the edge (vi, vj) is in the chosen spanner. Thus constraint (2) says that every vertex
vi has no more than ∆∗ new spanner edges. It is important to note that here we do
not count the edges of Er (those edges are counted separately in the analysis). The
variable ŷi,k, associated with a vertex vi and an edge ek = (vl, vt), indicates if vi
2-helps ek in the chosen spanner. This is enforced by constraint (4), which says that
vi 2-helps ek only if both the edges (vi, vl) and (vi, vt) are included in the spanner.
Constraint (3) says that in a feasible 2-spanner, every edge is either in the spanner or
is 2-helped by some vertex.

After writing the program, we solve the fractional relaxation of (P1) using the
well-known polynomial-time algorithms of [Kha80, Kar84]. Having the fractional
values of the variables, we round each variable to be 1 with probability proportional
to its fractional value.

When using this program for 2-spanning E−, we get a good result; i.e., the ran-
domized process gives a 2-spanner whose maximum degree is “close” to the “fractional
degree” of the fractional solution. However, using this method we are not expected
to 2-span all the edges of E+. To see this, consider an edge e lying in Ω(n) triangles.
The fractional program may give all (the variables of) the edges in these triangles a

1446 GUY KORTSARZ AND DAVID PELEG

value in Θ(1/n). In this way constraints (2) and (3) are easily satisfied. However,
the probability of a triangle to “survive the randomized rounding” (i.e., to have both
its edges set to 1) is Θ(1/n2). Since there are only Θ(n) triangles, the edge is not
expected to be 2-spanned. (This phenomenon captures the unfortunate “quadratic”
behavior of our linear program.)

We therefore 2-span the edges of E+ using a different procedure. We draw every
edge e ∈ E randomly to the spanner, with some fixed (small) probability. We then
show that the edges of E+, i.e., edges that belong to sufficiently many triangles, are
likely to be 2-spanned in the resulting subgraph (namely are likely to lie on a triangle
whose two other edges were selected by the randomized choice). We also show that
with high probability the degree that is added to each vertex in this procedure is
“small.”

In the remainder of this section we present our approximation algorithm, and in
the next section we give its analysis. Throughout the algorithm, we denote by Eu the
set of edges yet to be 2-spanned.

Algorithm 5.1.
Input: A graph G = (V,E) of maximum degree ∆.

1. Let

p =
2 · √log n

∆1/4
, M = 2 ·∆1/4 ·

√
log n

and set E1
r , E

2
r ← ∅.

2. For every edge e ∈ E, draw e randomly and independently to be in the spanner
with probability p. Let E1

r denote the set of edges selected into the spanner by
the randomized process.

3. Set Eu = {e ∈ E | e /∈ E1
r and no two edges e1, e2 ∈ E1

r form a triangle with e}.
4. Solve the fractional relaxation of the program (P1) corresponding to Eu, E

1
r ,

and ∆∗.
5. Let {xi,j , yi,k} be the optimal (fractional) solutions corresponding to (P1).

For every variable x̂i,j create a respective random variable x̄i,j.
6. Randomly and uniformly set x̄i,j to be 1 with probability min{1,M · xi,j}.
7. If x̄i,j is set to 1, then add the edge (vi, vj) to E2

r .
8. Let Eu be the set of edges that are still unspanned by E1

r ∪ E2
r .

Set Er = E1
r ∪ E2

r ∪ Eu.
9. Output Er.

6. Analysis. First we explain how to overcome the assumption that ∆∗ is
known. Let ∆∗

f be the smallest value for which (P1) has a feasible (fractional) solution.
We call ∆∗

f the smallest fractional degree of the best fractional 2-spanner. Indeed, we
only have to know (and run (P1) with) ∆∗

f for our scheme to work. Clearly, ∆∗ ≥ ∆∗
f .

This follows from the following simple claim.
Lemma 6.1. If we run the program (P1) with L replacing ∆∗, and (P1) has no

fractional feasible solution, then ∆∗ > L.
The value ∆∗

f is found through binary search, by running (P1) with values taken

from the (discrete) interval [d√∆ e,∆]. The search ends with some specific L such
that the program succeed with L+ 1 but fails with L. By Lemma 6.1, ∆∗ ≥ ∆∗

f > L.
On the other hand, we have a fractional feasible solution for L+1. Thus, we found the
best fractional ∆∗

f (up to a difference of 1). For proving the desired approximation
ratio, we show how to construct an (integer) spanner with maximum degree “close”
to L+ 1 and therefore close to ∆∗(> L).

GENERATING LOW-DEGREE 2-SPANNERS 1447

We now observe that the output is indeed a 2-spanner: the set of edges Er forms
a 2-spanner of G, since every edge not in Er lies on a triangle with two edges of Er.

Denote the optimum low-degree 2-spanner for G by H∗. Let us now proceed to
bound from above the ratio between ∆(Er) and ∆(H∗).

Throughout the subsequent analysis, we set p = 2
√

log n/∆1/4 and M = 4∆1/4 ·√
log n.

6.1. Handling E+. Our first aim is to show that edges in E+, i.e., edges with
large |Tri(e)|, are likely to be 2-spanned in step 2 of our algorithm.

Lemma 6.2. With probability at least 1 − 1/n2, every edge e ∈ E+ is 2-spanned
in step 2 of Algorithm 5.1.

Proof. Denote m = |Tri(e)| and assume that m ≥ √
∆. Let Tri(e) = {T1, T2, . . . ,

Tm} with Ti = {ei1, ei2, e}; i.e., the three edges of Ti form a triangle in G. The
probability that a triangle Ti does not 2-span e, namely, that neither ei1 nor ei2 are
selected into the spanner in step 2, is 1 − p2. The probability that neither of the
triangles 2-span e is

(1− p2)m ≤ (1− p2)
√

∆ =
((

1− p2
)1/p2)4 log n

<
1

n4
.

(The last inequality follows from the fact that (1−x)1/x ≤ 1/e for x ≤ 1.) Therefore,
the probability that there exists one such an edge which is not 2-spanned is bounded
by

|E|
n4

≤ 1

n2
.

Next we estimate the maximum degree ∆(E1
r) in the graph induced by E1

r by
proving the following lemma.

Lemma 6.3. With probability at least 1− 1/n2, ∆(E1
r) ≤ 4 ·∆3/4 · √log n.

Proof. For vertices v such that deg(v) < ∆3/4 ·√log n, the claim follows vacuously.
Hence we need to prove a degree bound only for vertices v such that deg(v) > ∆3/4 ·√

log n. Let sp1(e) be the random variable indicating if e was drawn to be in E1
r ;

namely,

sp1(e) =

{
1, e ∈ E1

r ,
0 otherwise.

Let d1
r(v) denote the random variable that equals the degree of v in the graph induced

by E1
r . Thus,

d1
r(v) =

∑
e∈E(v)

sp1(e).

Clearly, E(sp1(e)) = p and therefore

E(d1
r(v)) =

∑
e∈E(v)

E(sp1(e)) = p · deg(v).

(Recall the assumption that d(v) ≥ √
log n∆3/4.) By the definition of p we get that

the expected degree of v, µ(v) is bounded below by 2 logn
√

∆. Since d1
r(v) is a sum

1448 GUY KORTSARZ AND DAVID PELEG

of independent Bernoulli trials, we can apply Lemma 2.2 to it with δ = 1 and deduce
that

P
(
d1
r(v) > 2 · µ(v)

) ≤ (e
4

)µ(v)

<
1

n3
.

(For the last inequality, recall that one may assume that ∆ = Ω(log2 n). Indeed, here
we only need ∆ to be bounded below by some constant.)

Therefore, with probability at least 1− 1/n3,

d1
r(v) ≤ 4 ·∆3/4 ·

√
log n.

By summing up the probabilities over all the vertices, the lemma follows.
(We note that as in [Rag88] slightly better results are attainable; i.e., it is possible

to show a degree bound of 2 · √log n∆3/4 + o(∆3/4). However, we give the simpler
bound here, since in our case we already have an approximation ratio of ∆1/4 and
therefore the improvement can only (slightly) affect the constants. A similar situation
holds, later, with regards to Lemma 6.4.)

6.2. Handling E−. We would next like to show that the maximum degree in
the subgraph selected by our linear program algorithm is small. Define the variable
d2
r(v) to be the degree of v in the random choices made in steps 6 and 7 of Algorithm

5.1.
Lemma 6.4. With probability at least 1−1/n2, d2

r(v) < 2M ·∆∗ for every v ∈ V .
Proof. In order to establish an upper bound on the maximum degree, we must

prove that in the random choices of steps 6 and 7 of Algorithm 5.1, the expected
number of edges chosen for every vertex is “small.” Let vi ∈ V be an arbitrary
vertex, and let u1, . . . , um be its neighbors. Let ej = (vi, uj), j = 1, . . . ,m. We denote
by sp2(ej) the random indicator variable for the inclusion of ej in the spanner, in
steps 6 and 7; namely,

sp2(ej) =

{
1, ej is chosen to be in the spanner in steps 6 and 7,
0 otherwise

and thus

d2
r(vi) =

m∑
i=1

sp2(ej).

The expected value of d2
r(vi) satisfies

E(d2
r(vi)) =

m∑
j=1

E(sp2(ej)) =
m∑
j=1

min{1,Mxij} ≤M ·
m∑
j=1

xi,j .

By (2) we have

E(d2
r(vi)) ≤M ·∆∗.

Since d2
r(vi) is the sum of independent Bernoulli trials, it follows from Lemma 2.2

with δ = 1 that

P
(
d2
r(vi) > 2 ·M ·∆∗) < (e

4

)M∆∗

≤ 1

n3
.

GENERATING LOW-DEGREE 2-SPANNERS 1449

(The last inequality follows from the assumption that ∆ ≥ Ω(log2 n) and from
the definition of M .) Summing up the probabilities for all the vertices, the claim
follows.

In order to bound the number of edges added to each vertex v in step 8 of the
algorithm (i.e., when Eu is added to Er), we have to estimate how many edges are
2-spanned in steps 6 and 7. We show that with high probability, Eu is empty after
step 7, and therefore Eu does not change ∆(Er).

Lemma 6.5. The probability that an edge ek = (vl, vt) of E− is 2-spanned in
steps 6 and 7 is at least 1− 1/n4.

Proof. For the sake of proving the lemma we need the following technical lemma
(cf. Chapter 8 of [AS92]).

Lemma 6.6. Let {Ai}mi=1 be m independent events and let P(Ai) = pi and∑m
i=1 pi ≥ d. Then P(

⋃m
i=1 Ai) ≥ 1− 1/ed.

Let ek = (vl, vt) ∈ E− and let D(e) = {v1, . . . , vd}, d = |Tri(ek)| ≤
√

∆. The
inequality of the program (P1) corresponding to ek is

xl,t +
∑

vi∈D(ek)

yi,k ≥ 1.

Let Ai be the event that vi 2-helps ek in the chosen spanner. Let Ik be the event that
ek is included in the spanner. We now estimate the probability that Ai occurs. This
probability equals the probability that both (vi, vl) and (vi, vt) are selected to the
spanner. Clearly, we have only to consider the case that min{M · xi,t,M · xi,l} < 1,
for if this is not the case, P(Ai) = 1. In the case both M · xi,t < 1 and M · xi,l < 1,
P(Ai) = M2 · xi,t · xi,l. In the case that, say M · xi,t ≥ 1 and M · xi,l < 1, we have
P(Ai) = M · xi,l > M2 · x2

i,l. In either case, by (4) of the linear program we have

P(Ai) ≥M2 · y2
i,k.(7)

The event Cov(ek) =“ek is 2-spanned” is the union Cov(ek) =
⋃
iAi ∪ Ik; namely, ek

is 2-spanned iff it is in the spanner or is 2-helped by some vertex. We now estimate
the sum of probabilities of the Ai and Ik.

Claim 6.7. P(Ik) +
∑d

i=1 P(Ai) ≥ 3 · log n.
Proof. We may assume that xl,t < 1/M since otherwise the edge ek is taken

into the spanner with probability 1 and hence is 2-spanned. We therefore have∑
vi∈D(ek) yi,k > 1− 1/M .

We now have by (7)

d∑
i=1

P(Ai) ≥
d∑

i=1

M2y2
i,k = M2

d∑
i=1

y2
i,k.

By the Cauchy–Schwartz inequality (cf. [Fla85]) we have

d∑
i=1

P(Ai) ≥M2 · (
∑d

i=1 yi,k)
2

d
≥M2 (

∑d
i=1 yi,k)

2

√
∆

= 4 log n

(
d∑

i=1

yi,k

)2

≥ 4 log n(1− 1/M)2 > 3 log n.

(The last inequality holds for n ≥ 2, in which case M ≥ 4.) Therefore, this proves
our claim.

1450 GUY KORTSARZ AND DAVID PELEG

Note that the events Ik, Ai are all independent, since Ik and Ai all concern dif-
ferent edges. Thus we may apply Lemma 6.6 and get

P(Cov(ek)) ≥ 1− 1

e3 log n
> 1− 1

n4
,

proving the lemma.

Thus, with probability at least 1 − 1/n2, all the edges are 2-spanned in step 7.
Therefore, with probability at least 1 − 1/n2, Eu = ∅, in which case Eu does not
increase the maximum degree. In summary, Lemmas 6.2, 6.3, 6.4 and 3.2, combined
with the above discussion, yield the following theorem.

Theorem 6.8. With probability at least 1 − 1/n, the algorithm produces a 2-
spanner with maximum degree bounded by O(

√
log n∆1/4∆∗).

Corollary 6.9. Algorithm 5.1 produces a 2-spanner that with probability at least
1− 1/n is an O(

√
log n ·∆1/4) approximation for the LD-2SP problem.

Note that the error probability can be reduced to 1/nc for any (constant) c, losing
only constants in the approximation ratio.

7. Derandomization. In this section, we show how to transform our random-
ized algorithm into a deterministic one. We use the well-known “method of condi-
tional probabilities” (cf. [Spe87]) and its generalization, the method of “pessimistic
estimators” [Rag88].

7.1. The method of pessimistic estimators. Let us first describe the method
of pessimistic estimators in a form which is convenient for our purpose. Let q1, . . . , ql
be random Boolean variables, set to 0 or 1 with some probabilities, and consider the
probability spaceQ = {(q1, . . . , ql) | qi ∈ {0, 1}, 1 ≤ i ≤ l} of 2l points. LetX1, . . . , Xs

be a collection of “bad” events over Q, and suppose that P(Xi) = pi and that∑s
i=1 pi < 1. Thus the event

⋂
i X̄i has positive probability. We therefore have a

point (q̂1, . . . , q̂l) in the probability space Q for which
⋂
i X̄i holds. Suppose that for

each event Xi and for each 0 ≤ j ≤ l we have a function f ij(q1, . . . , qj) for which the
following holds.

(1)
∑s

i=1 f
i
j−1(q1, . . . , qj−1) ≥ min{∑s

i=1 f
i
j(q1, . . . , qj−1, 0),

∑s
i=1 f

i
j(q1, . . . , qj−1, 1)}

for all 1 ≤ i ≤ s, 0 ≤ j ≤ l.

(2) f ij(q1, . . . , qj) ≥ P(Xi | q1, . . . , qj).
(3)

∑s
i=1 f

i
0 < 1.

(4) The function f ij(q1, . . . , qj) can be computed in polynomial time in l for every i

and j and (q1, . . . , qj) ∈ {0, 1}j . Also, the number of events, s, is polynomial in l.

In this case one can transform the probabilistic existence proof into a polynomial
algorithm (in terms of l). This is done by fixing the value of qi to be 0 or 1 iter-
atively, one by one. In the jth step, having determined the values of q1, . . . , qj−1,
we decide upon the value qj (setting it either to 0 or to 1) so as to minimize the
sum

∑s
i=1 f

i
j(q1, . . . , qj). It easily follows from the above conditions that the sum∑s

i=1 f
i
j(q1, . . . , qj) never increases and, consequently (it follows from properties 2

and 3 that), at the end of the procedure we remain with a point (q̂1, . . . , q̂l) in the
sample space for which the event

⋂
i X̄i holds. Also by property (4) above, this de-

randomization procedure can be executed in time polynomial in l.

The functions f ij are called pessimistic estimators for the actual conditional proba-

bilities. The method of conditional probabilities is the special case where f ij(q1, . . . , qj) =
P(Xi | q1, . . . , qj) and property 3 holds, i.e., the case where in addition to property 3

GENERATING LOW-DEGREE 2-SPANNERS 1451

the conditional probabilities can be computed efficiently, so no estimators are needed.
When this is the case, the remaining properties 1 and 2 follow immediately.

7.2. Derandomizing the 2-spanner algorithm. In the case of the 2-spanner
problem we have a two-stage randomized procedure. Let us first focus on the harder
task of derandomizing the second stage, where we 2-span the edges of E− using
randomized rounding. We draw the edges with different probabilities (that depend
upon the values of the corresponding variables in the linear program). Our qi variables,
therefore, correspond to the edges, where every edge has some probability to be 1. We
will identify the edge ek with its corresponding random variable. (We will therefore
say “ek was set to 1” meaning that ek was added to the spanner.)

We now describe the “bad events” in the second stage. The event D(vi) is the
event where the degree of vi is greater than 2 ·M ·∆∗. The event U(ej) is the event
that an edge ej ∈ E− is unspanned at the end of Algorithm 5.1.

Throughout the sequel, we assume that we have already decided upon the values
of e1, . . . , ej−1, setting them either to 1 or 0, and we want to decide the value of ej .
We denote by p(ek) the probability by which ek is drawn in the randomized rounding.
(This probability equals M times the value of ek in the linear program.) We use the
following notation (that depends upon previous decisions). The number ẽk is defined
as

ẽk =

1, ek was previously set to 1,
0, ek was previously set to 0,
p(ek), the value of ek was not yet determined.

We next define the pessimistic estimator for the event U(ej). Given some edge
ek = (vs, vt) say that ek lies on tk = |Tri(ek)| triangles and denote Tri(ek) =
{(e1i , e2i , ek)}tki=1. We then set the pessimistic estimators for U(ek) to be

hkj (e1, . . . , ej) = Πtk
i=1(1− ẽ1i · ẽ2i).

We note that the above expression, exactly equals the probability that ek is unspanned
by either of its triangles (given the previous decisions). Note that ek may be 2-spanned
also if ek itself is drawn into the spanner. This observation proves property 2 for the
functions U(ek) and hkj (e1, . . . , ej). Property 4 follows trivially.

We now turn our attention to the event D(vi), meaning that the degree of vi
exceeds 2 ·M ·∆∗. For these events, the conditional probabilities can be calculated in
polynomial time using dynamic programming. However, this is relatively time consum-
ing, as O(d(v)∆∗) time is required in order to calculate each conditional probability
associated with every vertex. It is therefore convenient to introduce the following pes-
simistic estimators, which are a special case of some estimators introduced in [Rag88].
Suppose that the edges of vi are ei1, e

i
2, . . . , e

i
di

(where di is the degree of vi). For D(vi)
define the following pessimistic estimator. Set

gij(e1, . . . , ej) =
Πdi
r=1

(
ẽir + 1

)
4M ·∆∗ .

The required property 2 follows in a way similar to the proof of the Chernoff bound,
as in [Rag88]. Property 4 also follows trivially.

1452 GUY KORTSARZ AND DAVID PELEG

We now prove property 3. Note that since (as in [Rag88])

gi0 =
Πdi
k=1 (p(ek) + 1)

4M ·∆∗ ≤ Πdi
k=1e

p(ek)

4M ·∆∗ =
e
∑di

k=1
p(ek)

4M ·∆∗

≤
(e

4

)M ·∆∗

≤ 1

n3
,

property 3 follows from Lemmas 6.4 and 6.5. (In fact, the sum of the pessimistic
estimators of the bad events is not only smaller than 1 but is also smaller than 1/n.
Nevertheless, the degrees of the vertices can only be reduced by a constant factor.)

Finally, we have to check property 1. We have

S =

n∑
i=1

gij−1 +
m∑
k=1

hkj−1 =
n∑
i=1

Πdi
r=1

(
ẽir + 1

)
4M ·∆∗ +

m∑
k=1

Πtk
i=1(1− ẽ1i · ẽ2i).

We can write S as the sum S = S1(ej) + S2(ej) + S3 where

S1(ej) = (1 + p(ej)) ·Π1, S2(ej) =
∑
l

(1− p(ej) · ẽl) ·Πl
2,

and the expressions Π1, Πl
2, and S3 do not contain ẽj . When setting ej to 1, the

difference between the terms in the first summand is S1(1)−S1(ej) = (1−p(ej)) ·Π1,
and the difference in the second summand is S2(1)−S2(ej) = −∑l ẽl(1− p(ej)) ·Πl

2.
So if

∑
l ẽl · Πl

2 ≥ Π1 we are done. Otherwise, when setting ej to 0, the difference
in the first summand is S1(0) − S1(ej) = −p(ej) · Π1 and in the second summand,
S2(0)− S2(ej) =

∑
l p(ej) · ẽl ·Πl

2 < p(ej) ·Π1. Thus the required property follows.
Now we have to consider the first (and easier to derandomize) stage of the algo-

rithm, where we handle the edges of E+. In the first stage, we draw all the edges
independently and uniformly with probability p = 2 · √log n/∆1/4. The bad event
here is similar. We have the event D(vi) which is the bad event that the degree of vi
exceeds 4 · ∆3/4 · √log n. The event U(ek) is the event that an edge e ∈ E+ is not
2-spanned at the end of Algorithm 5.1.

Thus, the derandomization of this first stage is a special case of the derandom-
ization of the second stage.

We have therefore established the following result.
Corollary 7.1. Algorithm 5.1, together with a derandomization procedure,

produces a 2-spanner that is an O(
√

log n · ∆1/4) approximation for the LD-2SP
problem.

8. An algorithm for sparse graphs. In this section we present a relatively
simple algorithm Sparse1 that performs better than Algorithm 5.1 in the case where
the underlying graph is sparse. In this case, algorithm Sparse1 yields a 2

√
E additive

approximation. (By “α additive approximation” we mean that the resulting degree is
∆∗ + α.) Thus, if the number of edges is up to n3/2, we get an additive term of less
than n3/4 (or, alternatively, a very low multiplicative factor). For the range n3/2 ≤
E ≤ n7/4 we have a different algorithm Sparse2 that slightly improves Algorithm 5.1
in the worst case. This algorithm is considerably more complicated and is therefore
omitted. The interested reader is referred to [KP93].

8.1. Algorithm Sparse1. Algorithm Sparse1 divides the vertex set into “heavy”
and “light” vertices. The set Heavy consists of vertices with degrees at least

√
E, and

GENERATING LOW-DEGREE 2-SPANNERS 1453

the set Light consists of vertices whose degrees are less than
√
E. Then the set of all

edges with both endpoints in Heavy, E(Heavy), and all edges with both endpoints
in Light, E(Light), are taken into the spanner. The cut edges, with one endpoint in
Heavy and the other in Light, are 2-spanned using a linear programming formula-
tion. The output edge set is denoted Er. Again we may assume that ∆∗ (or, more
accurately, ∆∗

f) is known in advance.

Algorithm 8.1. Algorithm Sparse1
Input: A graph G = (V,E).

1. Let Heavy = {v ∈ V | deg(v) ≥ √
E}, Light = {v ∈ V | deg(v) <

√
E}.

2. Add E(Heavy) ∪ E(Light) into Er.
3. Let Eu be the set of cut edges having one endpoint in Heavy and one in

Light.
4. Solve the fractional relaxation of the program (P1) corresponding to Eu, Er,

and ∆∗.
5. Let {xi,j , yi,k} be the optimum (fractional) solutions corresponding to (P1).

For every variable x̂i,j create a respective random variable x̄i,j.
6. Randomly and uniformly set x̄i,j to be 1 with probability min{1, 4 log n ·xi,j}.
7. If x̄i,j is set to 1, then add the edge (vi, vj) to Er.
8. Add all the remaining non 2-spanned edges to Er and output Er.

8.2. Analysis. We now prove that Algorithm 8.1 yields a 2
√
E additive approx-

imation. We first note the following simple fact.

Fact 8.2. In step 2 of Algorithm 8.1, we add to Er no more than 2
√
E edges

adjacent to any vertex.

Proof. The claim is clear for vertices v in Light, since such a vertex has at
most

√
E adjacent edges. Also note that |Heavy| ≤ 2 · √E, and thus for a vertex

v ∈ Heavy at most 2 · √E edges are candidates for addition to Er in this step. The
claim follows.

We now note the following simple yet crucial fact.

Fact 8.3. In every triangle corresponding to a cut edge e in the set Eu defined in
step 3 of Algorithm 5.1, exactly one of its edges was already added to Er in Step 2.

Proof. Every such triangle contains an edge e′ that is not a cut edge. Thus, either
both vertices of e′ belong to Heavy or they both belong to Light. In either case e′

was added to Er in step 2.

Given some cut edge ek = (vl, vt), let yi,k be a variable corresponding to vi ∈
D(ek) and ek. Without loss of generality, let (vi, vl) be the other cut edge in the
triangle. Thus, the probability that vi 2-helps ek exactly equals min{1, 4 log n ·xi,l} ≥
min{1, 4 log n · yi,k}. Thus a proof along the lines of that in Lemma 6.5 (but simpler,
due to the fact that here we can avoid the “squaring” effect) gives the next corollary.
The main point is that the sum of the probabilities that the triangles of ek survive
is roughly 4 logn

∑
i yik = Ω(log n). (The squaring effect is avoided, since in any

triangle we need only one edge to survive and not two edges together, because the
other edge of every triangle was already chosen to the spanner.)

Corollary 8.4. With probability at least 1 − 1/n2 all the edges in Eu are 2-
spanned by the end of step 7 of Algorithm 8.1.

We note that the expectation of the degree of a vertex (and thus, using Lemma 2.2,
the expectation of the maximum degree) is bounded by 2

√
E+O(log n ·∆∗). Thus up

to logarithmic factors, this approximation is 2
√
E additive. By using derandomization

(as explained in the previous section) and Lemma 3.2 we have the following.

1454 GUY KORTSARZ AND DAVID PELEG

Corollary 8.5. There is an Õ(
√
E/∆) approximation algorithm for the LD-2SP

problem.
Note that if E ≤ ∆

√
∆ then Algorithm 8.1 performs better than Algorithm 5.1.

Let us consider the approximation ratio in terms of n. Algorithm 5.1 gives a worst-
case ratio of Õ(n1/4). This happens when ∆ is very large, i.e., ∆ = Θ(n). On the
other hand, if ∆ is very large, we may have

√|E|/∆ small. This implies that the
ratio is improved whenever |E| < n3/2 by doing the following. Considering a graph
with n3/2−ε edges, if ∆ ≤ n1−2ε/3 then apply Algorithm 5.1, else apply Algorithm
8.1. This gives the following bound.

Corollary 8.6. For every 0 ≤ ε ≤ 1/2, there exists an Õ(n1/4−ε/6) approxima-
tion algorithm for the LD-2SP problem on graphs G with E = O(n3/2−ε).

This result improves the ratio in “absolute terms” (i.e., in terms of n). For
example, if E = O(n) then the combined algorithm has an O(n1/6) approximation
ratio (whereas Algorithm 5.1 would give an O(n1/4) ratio in the worst case).

8.3. The case of n3/2 < E ≤ n7/4. In [KP93] we present Algorithm 8.1
which outperforms Algorithm 5.1 in the range n3/2 < E ≤ n7/4. That is, we assume
a graph with O(n7/4−ε) edges, where 0 ≤ ε ≤ 1/4, and show an Õ(n1/4−ε/11)-ratio
approximation algorithm, improving over the n1/4-ratio of Algorithm 5.1.

Theorem 8.7 (see [KP93]). Given a graph G = (V,E) with n7/4−ε edges, Al-
gorithm 8.1 combined with a derandomization procedure has an Õ(n1/4−ε/11) approx-
imation ratio.

9. Spanning the edges of a single vertex. In this section we consider the
weaker problem of spanning the edges adjacent to a single vertex and present an
O(log n) approximation for it. This construction can easily be applied to span the
edges adjacent to a small subset of the vertices.

Say that we are given a specific vertex v (presumably with high degree) and we
want to 2-span its edges (and do not care about the edges not touching v). Thus our
aim is to select some subset E′ ⊆ E inducing low degrees such that every missing
edge of v is 2-spanned by a triangle. Denote this problem by SLD-2SP.

First we note that the lower bound on approximability for the LD-2SP problem
applies to the SLD-2SP problem as well. Given an instance of the set cover problem,
we may construct Ḡ as in section 4, and consider the problem of spanning the edges
of s. A similar proof as in section 4 shows that unless NP ⊂ DTIME(nlog log n),
the ratio of any approximation algorithm for the SLD-2SP problem is no better
than lnn/5. On the other hand, in this section we match this result, showing a
logarithmic-ratio approximation algorithm for SLD-2SP. We use a known greedy
approximation for a (slightly) more involved version of the set cover problem. This
essentially shows that this weaker problem SLD-2SP is equivalent to set cover, with
respect to approximation.

The bounded-load set cover problem is a variant of the set cover problem that
deals with assigning specific covering vertices to the covered vertices. Namely, along
with finding a cover C of V2, it is required to provide a function ϕ : V2 → C, assigning
each vertex v2 in V2 a neighbor ϕ(v2) in C. The load of a vertex v1 ∈ V1 is defined as
the number of covered vertices it is assigned to, i.e., L(v1) = |{v2 ∈ V2 | ϕ(v2) = v1}|.
The problem is now defined as follows. Given a bipartite graph G(V1, V2, E) and an
integer L ≤ |V2|, find a cover C ⊂ V1 of V2 and an assignment ϕ with maximum load
bounded by L (i.e., such that no vertex in V1 is assigned to more than L vertices of
V2).

We recall the following theorem of [Wol82].

GENERATING LOW-DEGREE 2-SPANNERS 1455

Theorem 9.1 (see [W82]). The bounded load set cover problem can be approxi-
mated with ratio O(log |V2|).

Given an instance of the SLD-2SP problem, where our aim is to 2-span the edges
of v, we reduce it to an instance of the bounded load set cover problem. We use a
reformulation of the SLD-2SP problem as follows. Model the neighbors N(v) of v
and the edges E(v) of v in a bipartite graph Bip = (N(v), E(v), A) where a vertex
u ∈ N(v) is connected to an edge e = (v, w) ∈ E(v), iff (u,w) ∈ E. (Namely,
(u, e) ∈ A iff u belongs to D(e) and can 2-help e = (v, w) ∈ E(G) in the spanner by
the edges (u,w) and (u, v).)

The aim is to find a small-sized cover C of E(v) (in Bip), with small maximum
load. The merit of this construction is explained by the following observation.

Claim 9.2. Given a small set C covering E(v) with maximum load L, it is
possible to construct a 2-spanner of the edges of v with maximum degree bounded by
max{|C|, L+ 1}.

Proof. Construct the 2-spanner as follows. Define the bipartite graph Bip, and
let C = {w1, . . . , wk} ⊆ N(v). Let {ei1, . . . , eini} be the edges incident to v that are
covered in Bip by wi (where ni ≤ L). Let eij = (v, zij). Add the edges {(v, wi)}ki=1 to

the spanner. Also, add the edges (wi, z
i
j). Clearly, we have added |C| edges adjacent

to v (since one edge is added to v for each vertex of C). We have also added no more
than L + 1 edges adjacent to wi for every i, since wi covers no more than L edges
ej = (wi, z

i
j) in the spanner and also the edge (v, wi). Thus the SLD-2SP problem

is equivalent to finding a cover C and some assignment with load L, minimizing
max{|C|, L+ 1}.

It easily follows from Theorem 9.1 that the problem of finding a cover with a load
assignment minimizing max{|C|, L + 1} also enjoys a logarithmic approximation. In
turn, this gives a logarithmic approximation ratio for the problem of spanning the
edges of v.

Corollary 9.3. The problem of spanning the edges of v with low degree has a
polynomial time approximation algorithm with ratio O(log n). Conversely, the problem
cannot be approximated with ratio better than lnn/5, unless NP ⊂ DTIME(nlog log n)
holds.

As an additional by-product, if we are required to 2-span only the edges of a
collection of k of the graph vertices, for small k, we can 2-span the edges of every
vertex in the set one by one and get an O(k log n) approximation for this problem.

Corollary 9.4. The problem of 2-spanning the edges of a subset V ′ ⊂ V of k
vertices with minimum maximum degree can be approximated within an O(log n · k)
ratio.

REFERENCES

[ABP91] B. Awerbuch, A. Baratz, and D. Peleg, Efficient Broadcast and Light-Weight Span-
ners, 1991, manuscript.

[ADDJ90] I. Althöfer, G. Das, D. Dobkin, and D. Joseph, Generating sparse spanners for
weighted graphs, in Proc. 2nd Scandinavian Workshop on Algorithm Theory, Vol.
LNCS-447, Springer-Verlag, Berlin, New York, 1990, pp. 26–37.

[AS92] N. Alon and J. Spencer, The Probabilistic Method, John Wiley and Sons Inc., New
York, 1992.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically
checkable proofs: Applications to approximation, in Proc. 25th ACM Symposium
on the Theory of Computing, 1993, pp. 294–304.

[Cai91] L. Cai, Tree 2-spanners, Technical Report 91-4, Simon Fraser University, Burnaby, BC,
1991.

1456 GUY KORTSARZ AND DAVID PELEG

[CDNS92] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on
graph spanners, in Proc. 8th ACM Symposium on Computational Geometry, 1992.

[Che52] H. Chernoff, A measure of asymptotic efficiency for tests of hypothesis based on the
sum of observations, Ann. Math. Statist., 23 (1952), pp. 493–507.

[Che86] L. P. Chew, There is a planar graph almost as good as the complete graph, in ACM
Symposium on Computational Geometry, 1986, pp. 169–177.

[DFS87] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as
good as complete graphs, in Proc. 31st IEEE Symp. on Foundations of Computer
Science, 1987, pp. 20–26.

[DJ89] G. Das and D. Joseph, Which triangulation approximates the complete graph? in
International Symposium on Optimal Algorithms, Vol. LNCS-401, Springer-Verlag,
Berlin, New York, 1989, pp. 168–192.

[Fei96] U. Feige, A threshold of lnn for approximating set cover, in Proc. ACM STOC, 1996.
[Fla85] H. Flanders, Calculus, W.H. Freeman & Co., San Francisco, CA, 1985.
[HW56] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford

University Press, London, 1956.
[Joh74] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput.

System Sci., 9 (1974), pp. 256–278.
[Kar84] N. Karmarkar, A new polynomial time algorithm for linear programming, Combina-

torica, 4 (1984), pp. 373–395.
[Kha80] L. G. Khachian, Polynomial algorithms in linear programming, Zh. Vychisl. Mat. i

Mat. Fiz. (1980), pp. 53–72.
[KP93] G. Kortsarz and D. Peleg, Generating Low-Degree 2-Spanners, Technical Report

CS93-07, The Weizmann Institute, Rehovot, Israel, 1993.
[KP94] G. Kortsarz and D. Peleg, Generating sparse 2-spanners, J. Algorithms, 17 (1994),

pp. 222–236.
[LL89] C. Levcopoulos and A. Lingas, There are planar graphs almost as good as the com-

plete graph and as short as minimum spanning trees, in International Symposium
on Optimal Algorithms, Vol. LNCS-401, Springer-Verlag, New York, Berlin, 1989,
pp. 9–13.

[Lov75] L. Lovász, On the ratio of integral and fractional covers, Discrete Math., 13 (1975),
pp. 383–390.

[LR94] A. L. Liestman and D. Richards, Degree-constrained pyramid spanners, J. Parallel
Distr. Comput., 25 (1995), pp. 1–6.

[LS93a] A. L. Liestman and T. C. Shermer, Additive graph spanners, Networks, 23 (1993),
pp. 343–364.

[LS93b] A. L. Liestman and T. C. Shermer, Grid spanners, Networks, 23 (1993), pp. 123–133.
[LY93] C. Lund and M. Yannakakis, On the hardness of approximating minimization prob-

lems, in Proc. 25th ACM Symposium on the Theory of Computing, 1993, pp. 286–
293, 1993.

[PS89] D. Peleg and A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[PU89] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J.

Comput., 18 (1989), pp. 740–747.
[Rag88] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating

packing integer programs, J. Comput System Sci., 37 (1988), pp. 130–143.
[RT87] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably

good algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.
[Soa92] J. Soares, Approximating Euclidean Distances by Small Degree Graphs, Technical

Report 92-05, University of Chicago, 1992.
[Spe87] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, 1987.
[Wol82] L. A. Wolsey, An analysis of the greedy algorithm for the submodular set covering

problem, Combinatorica, 2 (1982), pp. 385–393.

PERFORMING WORK EFFICIENTLY IN THE PRESENCE OF
FAULTS∗

CYNTHIA DWORK† , JOSEPH Y. HALPERN‡ , AND ORLI WAARTS§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1457–1491, October 1998 014

Abstract. We consider a system of t synchronous processes that communicate only by sending
messages to one another, and together the processes must perform n independent units of work.
Processes may fail by crashing; we want to guarantee that in every execution of the protocol in which
at least one process survives, all n units of work will be performed. We consider three parameters:
the number of messages sent, the total number of units of work performed (including multiplicities),
and time. We present three protocols for solving the problem. All three are work optimal, doing
O(n+t) work. The first has moderate costs in the remaining two parameters, sends O(t

√
t) messages,

and takes O(n+ t) time. This protocol can be easily modified to run in any completely asynchronous
system equipped with a failure detection mechanism. The second sends only O(t log t) messages, but
its running time is large (O(t2(n+ t)2n+t)). The third is essentially time optimal in the (usual) case
in which there are no failures, and its time complexity degrades gracefully as the number of failures
increases.

Key words. fault tolerance, work, Byzantine agreement, load balancing, distributed systems

AMS subject classifications. 68Q22, 68M10, 90B25

PII. S0097539793255527

1. Introduction. A fundamental issue in distributed computing is fault tol-
erance: guaranteeing that work is performed, despite the presence of failures. For
example, in controlling a nuclear reactor it may be crucial for a set of valves to be
closed before fuel is added. Thus the procedure for verifying that the valves are closed
must be highly fault tolerant. If processes never fail then the work of checking that
the valves are closed could be distributed according to some load-balancing technique.
Since processes may fail, we would like an algorithm that guarantees that the work
will be performed as long as at least one process survives. Such an algorithm could
be particularly useful in a local area network, where jobs might be distributed among
idle workstations. (The idea of running computations on idle nodes is an old one,
going back at least to [17]. See [12] for one implementation of this approach and for
further references.) In this case a “failure” might correspond to a user reclaiming her
machine.

The notion of work in this paper is very broad, but is restricted to “idempotent”
operations, that is, operations that can be repeated without harm. This is because
if a process performs a unit of work and fails before telling a second process of its
achievement, then the second process has no choice but to repeat the given unit of

∗Received by the editors September 14, 1993; accepted for publication (in revised form) August
15, 1996; published electronically May 19. A preliminary version of this work appeared in Proc. 11th
ACM Symposium on Principles of Distributed Computing, 1992.

http://www.siam.org/journals/sicomp/27-5/25552.html
†IBM Research Division, Almaden Research Center, K53-B2, 650 Harry Road, San Jose, CA

95120-6099 (dwork@almaden.ibm.com).
‡Computer Science Department, Cornell University, Ithaca, NY 14853 (halpern@cs.cornell.edu).

Most of the work of this author was performed while the author was at IBM Almaden Research
Center.

§Computer Science Division, University of California, Berkeley, Berkeley, CA 94720 (waarts@
cs.berkeley.edu). During this research, this author was at Stanford University and was supported
by U.S. Army Research Office grant DAAL-03-91-G-0102, NSF grant CCR-8814921, ONR contract
N00014-88-K-0166, and an IBM fellowship.

1457

1458 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

work. Examples include verifying a step in a formal proof, evaluating a boolean
formula at a particular assignment to the variables, sensing the status of a valve,
closing a valve, sending a message, say, to a process outside of the given system, or
reading records in a distributed database.

Formally, we assume that we have a synchronous system of t processes that are
subject to crash failures, that want to perform n independent units of work. (For
now, we assume that initially there is common knowledge among the t processes
about the n units of work to be performed. We return to this point later.) In one
time unit a process can compute locally and perform one unit of work and one round
of communication (sending and receiving messages). Given that performing a unit
of work can be repeated without harm, a trivial solution is obtained by having each
process perform every unit of work. In our original example, this would mean that
every process checks that every valve is closed. This solution requires no messages,
but in the worst case it performs tn units of work and runs in n rounds. (Here the
worst case is when no process fails.)

Another straightforward solution can be obtained by having only one process
performing the work at any time and checkpointing to each process after completing
every unit of work. In this solution, at most n+t−1 units of work are ever performed,
but the number of messages sent is almost tn in the worst case.

In both these solutions the total amount of effort, defined as work plus messages,
is O(tn). If the actual cost of performing a unit of work is comparable with the
cost of sending a message, then neither solution is appealing. In this paper we focus
on solutions that are work optimal, up to a constant factor, while keeping the total
effort reasonable. Clearly, since a process can fail immediately after performing a
unit of work, before reporting that unit to any other process, a work-optimal solution
performs n+ t−1 units of work in the worst case. Thus we are interested in solutions
that perform O(n+ t) work.

Let n′ = max(n, t). Our first result is an algorithm whose total effort is at most
3n′ + 9t

√
t. In fact, in the worst case the amount of work performed is at most 3n′

and the number of messages is at most 9t
√
t, so the form of the bound explains the

costs exactly. We then optimize this algorithm to achieve running time of O(n + t)
rounds. Note that any solution requires n rounds in the worst case, since if t − 1
processes are initially faulty then the remaining process must perform all n units of
work. In this algorithm the synchrony is used only to detect failures, as usual by
detecting the absence of an expected message. Thus it can be easily modified to work
in a completely asynchronous system equipped with a failure detection mechanism.

We then prove that the above algorithm is not message optimal (among work-
optimal algorithms), by constructing a technically challenging work-optimal algorithm
that requires only O(t log t) messages in the worst case. Since O(n+t) is a lower bound
on work, and hence on effort, the O(n+t log t) effort of this algorithm is nearly optimal.
The improved message complexity is obtained by a more aggressive use of synchrony.
In particular, the absence of a message in this algorithm has two possible meanings:
either the potential sender failed or it has insufficient “information” (generally about
the history of the execution) and therefore has chosen not to send a message. Due to
this use of synchrony, unlike the first algorithm, this low-effort algorithm will not run
in the asynchronous model with failure detection. In addition, the efficiency comes at
a price in terms of time: in the worst case, the algorithm requires O(t2(n + t)2n+t)
rounds.

PERFORMING WORK EFFICIENTLY 1459

The first two algorithms are very sequential: at all times work is performed
by a single active process that uses some checkpointing strategy to inform other
processes about the completed work. This forces the algorithms to take at least n
steps, even in a failure-free run. To reduce the time we need to increase parallelism.
However, intuitively, increasing parallelism while simultaneously minimizing time and
still remaining work optimal may increase communication costs, since processes must
quickly tell each other about completed work. The third algorithm does exactly this
in a fairly straightforward way, paying a price in messages in order to decrease best-
case time. It is designed to perform time optimally in the absence of failures and to
have its time complexity degrade gracefully with additional faults. In particular, it
takes n/t+2 rounds in the failure-free case, and its message cost is 2t2; its worst-case
message cost is O(ft2), where f is the actual number of failures in the execution.

There are a number of assumptions in our model that are arguably not realistic.
For one, we assume that the n units of work are identical or, at least, that they all take
the same amount of time to perform. In addition, we assume that the total workload
is static and is common knowledge at the beginning of the algorithm. It is not too
hard to modify our last algorithm to deal with a more realistic scenario, where work
is continually coming in to different sites of the system, and is not initially common
knowledge. We remark that a patent has been filed by IBM for such a modified
algorithm.

One application of our algorithms is to Byzantine agreement. The idea is that
the general tries to inform t processes, and then each of these t processes performs
the “work” of ensuring that all processes are informed. In particular, our second
algorithm, called Protocol B, gives a Byzantine agreement algorithm for the crash
fault model that requires O(n+ t

√
t) messages and O(n) time, where n is the number

of processes in the system and t is a bound on the number of failures, while our third
algorithm gives a Byzantine agreement algorithm that uses O(n + t log t) messages
and exponential time. The best result prior to ours was a nonconstructive algorithm
due to Bracha that requires O(n + t

√
t) messages [4]. Galil, Mayer, and Yung [11]

have recently obtained an algorithm that uses only a linear number of messages.
However, the algorithm is not comparable with the agreement algorithm obtained
using Protocol B because it requires a superlinear number of rounds.

Using the observation that our solutions to the work problem yield solutions to
Byzantine agreement, we can now return to the assumption that initially there is
common knowledge about the work to be performed. Specifically, if even one process
knows about this work, then it can act as a general, run Byzantine agreement on the
pool of work using one of the three algorithms, and then the actual work is performed
by running the same algorithm a second time on the real work. If n, the amount
of actual work, is Ω(t), then the overall cost at most doubles when the work is not
initially common knowledge.

1.1. Related work. The idea of doing work in the presence of failures, in a
different context, has appeared elsewhere. First, Bridgland and Watro [5] considered
a system of t asynchronous processes that together must perform n independent units
of work. The processes may fail by crashing and each process can perform at most
one unit of work. They provide tight bounds on the number of crash failures that can
be tolerated by any solution to the problem.

Clearly, our problem assumes a very different model than that of [5]. Further-
more, they want a protocol that guarantees that the work will be performed in every
execution of the protocol, while we want only a protocol that guarantees that the work

1460 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

will be performed in executions in which at least one process survives. Consequently,
their problem is not always solvable and their focus is on finding conditions under
which it is solvable. Our problem is always solvable; our focus is on finding efficient
solutions.

Another similar but not identical problem was considered by Kanellakis and
Shvartsman. In a seminal paper [13] they consider the Write-All problem, in which
n processes cooperate to set all n entries of an n-element array to the value 1. They
provide an efficient solution that tolerates up to n − 1 faults, and they show how to
use it to derive robust versions of parallel algorithms for a large class of interesting
problems. Their original paper was followed by a number of papers that consider the
problem in other shared-memory models (see [1, 6, 14, 15, 16]).

The Write-All problem is, of course, a special case of the type of work we consider.
Nevertheless, our framework differs from that of [13] in two important respects, so
that their results do not apply to our problem (nor ours to theirs). First, they consider
the shared-memory model while we consider the message-passing model. Using the
shared-memory model simplifies things considerably for our problem. In this model,
there is a straightforward algorithm (that uses shared memory to record what work
has been done) with optimal effort O(n + t) (where effort now counts both reading
and writing into shared memory, as well as doing work), running in time O(nt).
While there are well-known emulators that can translate algorithms from the shared-
memory model to the message-passing model (see [2, 3]), these emulators are not
applicable for our problem, because the number of failures they tolerate is less than
a majority of the total number of processes, while our problem allows up to t − 1
failures. Also, these transformations introduce a multiplicative overhead of message
complexity that is polynomial in t, while one of our goals here is to minimize this
term.1 Second, our complexity measure is inherently different from that of [13].
Kanellakis and Shvartsman’s complexity measure is the sum, over the rounds during
which the algorithm is running, of the number of processes that are not faulty during
each round. They call their measure the available processor steps. This measure
essentially “charges” for a nonfaulty process at round r whether or not it is actually
doing any work (say, reading or writing a cell in shared memory). Our approach is
generally not to charge a process in round r if it is not expending any effort (sending
a message or performing a unit of work) at that round, since it is free at that round
to be working on some other task.2 Of course, the appropriateness of charging or not
charging for process idle time will depend very much on the details of the system and
the tasks being performed.

Our results have been extended by De Prisco, Mayer, and Yung [8] and by Galil,
Mayer, and Yung [11]. De Prisco, Mayer, and Yung [8] consider the problem in-
troduced here, but their goal is to optimize the available processor steps defined by
[13], and then the number of messages. They present a message-efficient algorithm
that achieves optimality in the available processor steps measure. They also show
that when t ≈ n, any algorithm for performing work in the message-passing model
requires at least n2 available processor steps. This lower bound can be avoided in
shared-memory models that allow concurrent writes; for example, an O(n log2 n) so-

1In fact, these emulators are designed for asynchronous systems, and it may be possible to
improve their resilience for our synchronous model. Nevertheless, they seem to have an inherent
multiplicative overhead in message complexity that is at least linear in t.

2Inactive processes in our algorithms may need to both receive messages and count the number
of rounds that have passed, say, from the time they received their last message. We assume that
processes can do this while carrying out other tasks.

PERFORMING WORK EFFICIENTLY 1461

lution is presented in [13]. Galil, Mayer, and Yung [11] employ the results of [8] to
obtain a Byzantine agreement algorithm for the crash fault model that requires only
a linear number of messages. Roughly speaking, the processors are organized into a
tree. The children of the root attempt to solve the problem recursively; the group
membership protocol of [8] (called a checkpoint protocol, not to be confused with the
checkpoints as defined in our paper) is used to attempt to determine which of the chil-
dren have failed to complete the recursive step, and the computation is reorganized
accordingly.

The Galil, Mayer, and Yung protocol compares with that obtained by using our
Protocol B as follows: [11] requires O(n) messages, while ours requires O(n

√
n); [11]

requires O(n1+1/ε) rounds of communication while ours requires O(n); finally, [11]
requires messages of length Ω(n+ log2 |V |), where V is the set of possible agreement
values. This appears to be because the protocol requires knowledge of which proces-
sors are alive and which processors occupy which parts of the tree. In contrast, our
messages are of length O(log n+ log2 |V |).

2. A protocol with effort O(n+t3/2). Our goal in this section is to present a
protocol with effort O(n+ t

√
t) and running time O(n+ t). We begin with a protocol

that is somewhat simpler to present and analyze, with effort O(n+ t
√
t) and running

time O(nt + t2). This protocol has the additional property of working with minimal
change in an asynchronous environment with failure detection.

The main idea of the protocol is to use checkpointing in order to avoid redoing
too much work if a process fails. The most näıve approach to checkpointing does
not work. To understand why, suppose a process does a checkpoint after every n/k
units of work. This means that up to n/k units of work are lost when a process fails.
Since up to t processes may fail, this means that nt/k units of work can be lost (and
thus must be repeated), which suggests we should take k ≥ t if we want to do no
more than O(n) units of work altogether. However, since each checkpoint involves
t messages, this means that roughly tk messages will be sent. Thus we must have
k ≤ √

t if we are to use fewer than t
√
t messages. Roughly speaking, this argument

shows that doing checkpoints too infrequently means that there might be a great deal
of wasted work, while doing them too often means that there will be a great deal of
message overhead. Our protocol avoids these problems by doing full checkpoints to
all the processes relatively infrequently—after n/

√
t units of work—but doing partial

checkpoints to only
√
t processes after every n/t units of work. This turns out to be

just the right compromise.

2.1. Description of the algorithm. For ease of exposition, we assume that t
is a perfect square and that n is divisible by t (so that, in particular, n > t). We leave
to the reader the easy modifications of the protocol when these assumptions do not
hold. We assume that the processes are numbered 0 through t− 1 and that the units
of work are numbered 1 through n. We divide the processes into

√
t groups of size

√
t

each and use the notation gi to denote process i’s group. (Note gi = d(i + 1)/
√
te.)

We divide the work into
√
t chunks, each of size n/

√
t, and subdivide the chunks into√

t subchunks of size n/t.
The protocol guarantees that at each round, at most one process is active. The

active process is the only process performing work. If process i is active, then it knows
that processes 0 to i − 1 have crashed or terminated. Initially, process 0 is active.
The algorithm for process 0 is straightforward: process 0 starts out doing the work,
a subchunk at a time. After completing a subchunk c, it does a checkpoint to the
remaining processes in its group g0 (processes 1 to

√
t−1); that is, it informs its group

1462 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

that the subchunk of work has been completed by broadcasting to the processes in its
group a message of the form (c). (If process 0 crashes in the middle of a broadcast,
we make no assumption about which processes receive the message.) We call this a
partial checkpoint, since the checkpointing is only to the processes in g0. (Code for
this for module and the whole protocol may be found in Figure 1.) After completing
a whole chunk of work—that is, after completing a subchunk c which is a multiple of√
t—process 0 informs all the processes that subchunk c has been completed, but it

informs them one group at a time. After informing a whole group, it checkpoints the
fact that a group has been informed to its own group (i.e., group 1). Formally, after
completing a subchunk c that is a multiple of

√
t, process 0 does a partial checkpoint to

its own group, and then for each group 2, . . . ,
√
t, process 0 broadcasts to the processes

in group g a message of the form (c, g) and then broadcasts to all the processes in its
own group a message of the form (c, g). We call this a full checkpoint. Note that in
a full checkpoint there is really a double checkpointing process: we checkpoint both
the fact that work has been completed, and (to the processes in g0) the fact that all
processes have been informed that the work has been completed. Process 0 terminates
after sending the message (t,

√
t) to process t− 1, indicating to the last process that

the last chunk of work has been completed (unless it crashes before that round).

If process 0 crashes, we want process 1 to become active; if process 1 crashes, we
want process 2 to become active, and so on. More generally, if process j discovers
that the first j − 1 processes have crashed, then it becomes active. Once process j
becomes active, it continues with essentially the same algorithm as process 0, except
that it does not repeat the work it knows has already been done. We must ensure
that the takeover proceeds in a “smooth” manner, so that there is at most one active
process at a time.

Process j’s algorithm is as follows. If j does not know that all the work has
already been performed and sufficiently long time has passed from the beginning of
the execution, then j becomes active. “Sufficiently long” means long enough to ensure
that processes 0, . . . , j−1 have crashed or terminated. As we show below, we can take
“sufficiently long” to be defined by the function DD(j) = j(n+3t). (“DD” stands for
deadline. We remark that this is not an optimal choice for the deadline; we return to
this issue later.) Thus if the round number r is less than DD(j), then j does nothing.
Otherwise, if j does not know that the work is completed, it takes over as the active
process at round DD(j).

When j takes over as the active process, it essentially follows process 0’s algorithm.
Suppose the last message j received was of the form (c, g), and this message was
received from a process k. By the syntax of the message we have that c is a multiple
of
√
t and that k was performing a full checkpoint when it sent the message. If k /∈ gj

then g = gj , since this is the only kind of full checkpoint message that k sends to
processes outside its group. Thus j informs the rest of its own group that subchunk
c was performed, which it does with a Partialcheckpoint(c), and then proceeds with
the full checkpoint of c, beginning with group gi + 1 = g + 1.

If k ∈ gj then g > gj ; the meaning of (c, g) in this case is that k has told group
g that subchunk c has been completed and is telling its own group gk (= gj) about
this fact. In this case j first ensures that its own group knows that group g has been
informed about subchunk c, which it does by broadcasting (c, g) to the remainder of
its group, and then proceeds with the full checkpoint beginning with group g + 1.

If the last message received was of the form (c) then this message was part of a
partial checkpoint to gj . In this case process j completes the partial checkpoint.

PERFORMING WORK EFFICIENTLY 1463

Main protocol

1. if round number = DD(j) and not received (t) or (t, gj)
2. then DoWork.

DoWork

1. if the last message received was from k and had the form (c, g)
2. then if k /∈ gj
3. then Partialcheckpoint(c); {see code below}
4. else Broadcast (c, g) to processes j + 1, . . . , gj

√
t− 1;

5. Fullcheckpoint(c, g + 1); {complete a full checkpoint; see code
below}

6. else let (c) be the last message received;
7. Partialcheckpoint(c);

8. if c is a multiple of
√
t

9. then Fullcheckpoint(c, gj + 1).
10. for s = c+ 1 to t do {proceed with performing work}
11. Perform subchunk s;
12. Partialcheckpoint(s);

13. if s is a multiple of
√
t;

14. then Fullcheckpoint(s, gj + 1)

Partialcheckpoint(c)

1. Inform the remainder of group gj that subchunk c has been performed

by broadcasting (c) to processes j + 1, . . . , gj
√
t− 1

Fullcheckpoint(c, l)

1. for g = l to
√
t do

2. Inform group g that subchunk c has been performed
by broadcasting (c, g) to group g;

3. Inform the remainder of group gj that group g has been informed

about subchunk c by broadcasting (c, g) to processes j + 1, . . . , gj
√
t− 1

Fig. 1. Protocol A: code for process j.

In all three cases, j proceeds with work beginning with subchunk c+ 1 (if such a
subchunk exists).

Unless it has already crashed, process j terminates before becoming active if it
receives (t) (as part of a partial checkpoint) or (t, gj) (as part of a full checkpoint).
Otherwise, after becoming active at DD(j), it terminates as follows. If gj =

√
t

then j terminates after broadcasting (t) to the remainder of gj . If gj <
√
t then j

terminates after completing a call of the form Fullcheckpoint(t, gj+1). This completes
the description of our first protocol. We call this Protocol A; the code appears in
Figure 1.

1464 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

Notice that we can easily modify this algorithm to run in a completely asyn-
chronous system equipped with an appropriate failure detection mechanism [7]: if
a process fails, then the failure detection mechanism must eventually inform all the
processes that have not failed of this fact; moreover, the mechanism must be sound,
in that it never says that a nonfaulty process has failed. The modification is trivial:
rather than waiting until round DD(j) before becoming active, process j waits until
it has been informed that processes 1, . . . , j − 1 crashed or terminated.

2.2. Analysis and proof of correctness. We now give a correctness proof for
Protocol A. We say a process is retired if it has either crashed or terminated.

Lemma 2.1. A process performs at most n units of work, sends at most 3t
√
t

messages, and runs for less than n+ 3t rounds from the time it becomes active to the
time it retires.

Proof. It is easy to see that from the time process i becomes active, it performs
each unit of work at most once, partial checkpoints each subchunk at most once (and
hence performs at most t partial checkpoints), and full checkpoints every chunk at
most once (and hence performs at most

√
t full checkpoints). Each partial checkpoint

consists of a broadcast to process i’s group and hence involves at most
√
t messages and

one round. Thus process i spends at most t rounds on partial checkpoints and sends
at most t

√
t messages when performing partial checkpoints. During a full checkpoint,

process i broadcasts once to each group other than its own, and broadcasts at most√
t times to its own group. Each broadcast involves at most

√
t messages and one

round, and there are
√
t groups. Thus process i sends less than 2t

√
t messages when

performing full checkpoints and takes less than 2t rounds doing so. The required
bounds immediately follow.

Recall that DD(j) = j(n+ 3t). The following lemma is now immediate from the
definition of DD.

Lemma 2.2. Assume process j becomes active at round r of an execution eA of
Protocol A. Then all processes < j have retired before round r.

It is sometimes convenient to view a group gi as a whole. Therefore we say that a
group is active in the period starting when some process in this group becomes active
and ending when the last process of this group retires. Notice that Lemma 2.2 ensures
that when gi becomes active, all processes in smaller groups have retired.

Theorem 2.3. In every execution of Protocol A,
(a) at most 3n units of work are performed in total by the processes;
(b) at most 9t

√
t messages are sent;

(c) by round nt+ 3t2, all processes have retired.
Proof. Part (c) is immediate from Lemma 2.1 and the definition of DD.
We prove parts (a) and (b) simultaneously. To do so, we need a careful way of

counting the total number of messages sent and the total amount of work done. A
given unit of work may be performed a number of times. If it is performed more
than once, say by processes i1, . . . , ik, we say that i2 redoes that unit of work of i1, i3
redoes the work of i2, etc. It is important to note that i3 does not redo the work of
i1 in this case, only that of i2. Similarly, we can talk about a message sent during a
partial checkpoint of a subchunk or a full checkpoint of a chunk done by i1 as being
resent by i2. In particular, a message m sent by i1 as part of a broadcast is resent by
i2 if i2 sends exactly the same message as part of a broadcast (not necessarily to the
same set of recipients). For example, if i1 sends (c) to the remainder of gi1 as part of
a partial checkpoint, and later i2 sends (c) to the remainder of gi2 , then, whether or
not gi1 = gi2 , the messages in the second broadcast are considered to be resendings.

PERFORMING WORK EFFICIENTLY 1465

Since the completion of a chunk is followed by a full checkpoint, it is not hard
to show that when a new group becomes active it will redo at most one chunk of
work that was already done by previous active groups. It will also redo at most one
full checkpoint that was done already on the previous chunk and at most

√
t partial

checkpoints (one for each subchunk of work redone). In all, it is easy to see that
at most n/

√
t units of work done by previous groups are redone when a new group

becomes active and at most 3t messages are resent. Similarly, since the completion of
a subchunk is followed by a partial checkpoint, it is not hard to show that when a new
process, say i, in a group that is already active becomes active, and the last message
it received was of the form (c) (i.e., a partial checkpoint of subchunk c), it will redo at
most one subchunk that was already done by previous active process (namely, c+ 1)
and may possibly resend the messages in two partial checkpoints: the one sent after
subchunk c and the one sent after subchunk c + 1 (if the previous process crashed
during the checkpointing of c+1 without i receiving the message). If the last message
that i received was (c, g) for g > gi (that is, the checkpointing of a checkpoint in the
middle of a full checkpoint), then similar arguments show that it may resend 3

√
t

messages: the checkpoint of (c, g) to its own group, the checkpoint (c, g + 1) to group
g + 1, and the checkpointing of (c, g + 1) to its own group. Thus the amount of work
done by an active group that is redone when a new process in that group becomes
active is at most n/t, and the number of messages resent is at most 3

√
t.

The maximum amount of unnecessary work done is (number of groups)× (amount
of work redone when a new group becomes active) + (number of processes) × (amount
of work redone when a new process in an already active group becomes active) ≤√
t(n/

√
t) + t(n/t) = 2n. Similarly, the maximum number of unnecessary messages

that may be sent is no more than (number of groups) × (number of messages resent
when a new group becomes active) + (number of processes) × (number of messages
resent when a new process in an already active group becomes active) ≤ √

t(3t) +
t3
√
t = 6t

√
t. Clearly, n units of work must be done; by Lemma 2.1, at most 3t

√
t

messages are necessary. Thus no more than 3n units of work will be done altogether,
and no more than 9t

√
t messages will be sent altogether.

2.3. Improving the time complexity. As we have observed, the round com-
plexity of Protocol A is nt+3t2. We now discuss how the protocol can be modified to
give a protocol that has round complexity O(n + t), while not significantly changing
the amount of work done or the number of messages sent.

Certainly one obvious hope for improvement is to use a better function than DD
for computing when process i should become active. While some improvement is
possible by doing this, we can get a round complexity of no better than O(n

√
t) if

this is all we do, which is still more than we want. Intuitively, the problem is that if
process j gets a message of the form (c, g), then it is possible, as far as j is concerned,
that some other process i < j may have received a message of the form (c +

√
t, h).

(Observe that this situation is possible even if gi = gj because if the sender of the
message (c +

√
t, h) crashes at the round when it broadcasts this message to gi, this

message may reach an arbitrary subset of the processes in gi.) Process j cannot
become active before it is sure that i has retired. To compute how long it must
wait before becoming active, it thus needs to compute how long i would wait before
becoming active, given that i got a message of the form (c +

√
t, h). On the other

hand, if i did get such a message, then as far as i is concerned, some process i′ < i may
have received a message of the form (c+ 2

√
t, h′). Notice that, in this case, process j

knows perfectly well that no process received a message of the form (c+ 2
√
t, h′); the

1466 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

problem is that i does not know this and must take into account this possibility when
it computes how long to wait before becoming active. Carrying out a computation
based on these arguments gives an algorithm which runs in O(n

√
t) rounds.

On closer inspection, it turns out that the situation described above really causes
difficulties only when all processes involved (in the example above, this would be the
processes j, i, and i′) are in the same group. Thus in our modified algorithm, called
Protocol B, process j computes the time to become active as follows: suppose that
the last message received by process j before round r was received from process i
in round r′. Process j then computes a function DDB(j, i) with the property that
if r = r′ + DDB(j, i), then process j knows at round r that all processes in groups
g′ < gj must have retired. Moreover, if gi = gj , then j knows at round r that all
processes ≤ i must have retired. Process j then polls all the lower-numbered processes
in its own group not known to it as retired, one by one, to see if they are alive; if not,
then j becomes active. If any of them is alive, then the lowest-numbered one that is
alive becomes active upon receipt of j’s message. Once a process becomes active, it
proceeds just as in Protocol A. This technique turns out to save a great deal of time,
while costing relatively little in the way of messages.

In particular, in Protocol B, process 0 follows the same algorithm as in Protocol
A. Process j’s algorithm is as follows. Here j receives messages either of the form
(c), (c, g) or of the form go ahead. We call the first two types of messages ordinary,
to distinguish them from the go ahead messages. Suppose that the last ordinary
message received by process j before round r is of the form (c) or (c, g), and this
message was received from process i at round r′. To avoid dealing separately with the
special case in which j does not receive any message before it becomes active, we use
the convention that process 0 becomes active in round 0 (just before the execution
begins) and every process receives from it an ordinary message (0, g) at that round.
(These fictitious messages are used only in the analysis and hence will not be taken
into account when computing the message complexity of the protocol. Also, if in the
actual execution process 0 crashes before ever becoming active then we say that it
crashes just after it finishes broadcasting these fictitious messages.) There are now two
ways for j to become active at round r. The first is if j receives a go ahead message
at round r and c < t. In this case j becomes active, proceeding just as in Protocol
A when it became active at round DD(j). Alternatively, if j does not receive a
message for a sufficiently long time, j becomes active. Intuitively, sufficiently long
will ensure that all processes smaller than j have already retired.

To analyze this more formally, we need some definitions. Let PTO be n/t + 2.
(“PTO” stands for process time out.) PTO − 1 is an upper bound on the number
of rounds that can pass before process j in group gj = gi hears from process i if i is
active. Let ̄ denote j mod

√
t. Let GTO(i) be n/

√
t + 3

√
t + (

√
t− ı̄− 1)PTO + 1.

(“GTO” stands for group time out.) GTO(i) − 1 is an upper bound on the number
of rounds that can pass before process j in group gj > gi hears from a process k in gi
with ı̄ ≤ k̄ ≤ √

t− 1 if any of these processes is active. Next we define a new deadline
function as follows:

DDB(j, i) =

{
GTO(i) + (gj − gi − 1)GTO(0) if gj 6= gi,
PTO otherwise.

We now define “sufficiently long” in terms of DDB rather than DD. Again taking r to
be the current round, r′ to be the last round before r in which j received a message, and
i to be the process sending that message, j proceeds as follows: if r < r′ +DDB(j, i),
then j does nothing. If c < t and r = r′ + DDB(j, i), j becomes preactive. First

PERFORMING WORK EFFICIENTLY 1467

consider the case where gi 6= gj . Informally, at this point, j knows that all processes
from groups < gj have failed. In this case, it sends a go ahead message to each lower-
numbered process in its group, starting with the first process in gj up to the (̄− 1)st
process in gj , and waiting PTO − 1 rounds between messages to see if it receives a
message. (Observe that if the recipient of the go ahead message is alive, the sender
receives a message from it within one round after the go ahead mesage was sent;
however, for technical reasons the sender of the go ahead messages waits PTO − 1
rounds between two successive go ahead messages.) If gi = gj , process j proceeds
similarly to the case where gi 6= gj except that when sending go ahead messages it
starts with the (̄ı + 1)st process in gj . That is, it sends a go ahead message to each
lower-numbered process in its group, starting with the (̄ı + 1)st process in gj up to
the (̄− 1)st process in gj , and waiting PTO− 1 rounds between messages to see if it
receives a message. If j does not receive any response to its go ahead messages by
round r′+DDB(j, i)+ ̄PTO−1 if gi 6= gj , or by round r′+(̄− ı̄)PTO−1 if gi = gj ,
then it becomes active at round r′+DDB(j, i)+ ̄PTO (respectively, r′+(̄− ı̄)PTO),
proceeding just as it did in Protocol A at round DD(j). If it does get a message,
then j becomes passive again.

Note that the construction of the algorithm guarantees that if r = r′+DDB(j, i)+
̄PTO, the last ordinary message that j receives in execution eB prior to round r
was sent by i, and gi 6= gj , then j will become active in eB at or before round
r. (It may become active earlier if it receives a go ahead message.) Similarly, if
r = r′ + (̄ − ı̄)PTO, the last ordinary message that j receives in execution eB prior
to round r was sent by i, and gi = gj , then j will become active in eB at or before
round r. Define

TT (j, i) =

{
GTO(i) + (gj − gi − 1)GTO(0) + ̄PTO if gj 6= gi,
(̄− ı̄)PTO otherwise.

(“TT”stands for transition time.) Our observations above show that if r = r′+TT (j, i)
and the last ordinary message that j receives in execution eB prior to round r was
sent by i, then j will become active in eB at or before round r.

Unless it has already crashed, process j terminates before becoming active if it
receives (t) (as part of a partial checkpoint) or (t, gj) (as part of a full checkpoint).
Otherwise, after becoming active it terminates as follows. If gj =

√
t then j terminates

after broadcasting (t) to the remainder of gj . If gj <
√
t then j terminates after

completing a call of the form Fullcheckpoint(t, gj +1). This completes the description
of Protocol B. The code for Protocol B appears in Figure 2; it uses the code for the
DoWork procedure in Figure 1.

2.4. Proof of correctness of Protocol B. In this section we show that the
round complexity of Protocol B is O(n + t), and that neither the amount of work
done nor the number of messages sent in Protocol B is significantly larger than that
in Protocol A.

Suppose for a moment that in every execution of Protocol B a process becomes
active only after all lower-numbered processes have retired. Since when a process
becomes active in an execution of Protocol B it performs essentially the same steps
as when it becomes active when it follows Protocol A, a similar proof to the one of
Theorem 2.3 will show that the amount of work performed in any execution of Protocol
B is no more than 3n units (which is roughly the maximum amount of work performed
in any execution of Protocol A), and the number of ordinary messages sent is no more
than 9t

√
t (which is roughly the maximum number of messages sent in any execution

1468 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

Main protocol

1. if just received a go ahead message
2. then DoWork; {see Figure 1 for details}
3. else if round number = r′ +DDB(j, i)

and last message received was from process i at round r′

4. then PreactivePhase(i, r′)

PreactivePhase(i, r′)

1. if gi 6= gj
2. then i′ := (gj − 1)

√
t;

3. else i′ := i+ 1;

4. r := current round ;
5. while not received a message and i′ < j do
6. if current round − r ≡ 0 (mod PTO)
7. then send go ahead message to process i′;
8. i′ := i′ + 1;
9. if just received a go ahead message or i′ ≥ j
10. then DoWork

Fig. 2. Protocol B: code for process j.

of Protocol A). Since the number of go ahead messages sent in any execution of
Protocol B is at most t

√
t (each process sends at most one go ahead message to

every other process in its group), it follows immediately that the total amount of
effort performed by Protocol B is not significantly larger than the one performed by
Protocol A. Therefore, the main property we need to prove is that in every execution
of Protocol B, a process becomes active only after all lower-numbered processes have
retired.

Our analysis uses what we call activation chains. The round r activation chain
of process i, denoted ac(i, r), is the sequence of processes 〈im, . . . , i0〉 such that i0 = i
and for all j, if ij received an ordinary message prior to round r, then ij+1 is the sender
of the last message received by ij . (As we show below, it cannot be the case that ij
receives ordinary messages from two distinct processes in the same round. Since we
have not yet proved this, for now, if ij received ordinary messages from more than one
process in the last round in which it received an ordinary message, we take ij+1 to be
the lowest-numbered process among them.) Notice that our convention that process
0 sent a round 0 message guarantees that im = 0. In addition, note that the processes
in the activation chain appear in increasing order since a process sends messages only
to higher-numbered processes.

It is sometimes convenient to view i’s activation chain as a whole and to reason
about the effort performed by the chain. We say that process k in ac(i, r) is the
current process from the round it becomes active up to (but not including) the round
at which its successor in the chain becomes active. Note that a process in ac(i, r) is
current when it first becomes active. Now let k, l be processes in ac(i, r) such that
l immediately succeeds k, and assume the last ordinary message l receives from k

PERFORMING WORK EFFICIENTLY 1469

before l becomes active is sent at round r′. Clearly, any operation (sending messages
or performing a unit of work) done by k after round r′ is not known by l and hence
may be repeated by the chain (that is, may be repeated by some process when it is
the current process in the chain). On the other hand, any operation done by k before
round r′ will be known by the processes succeeding it in the chain by the time they
become active and hence will not be repeated by the chain. The operation done by k
in round r′, which is a broadcast to gl, will be repeated by l in the first round in which
l becomes active. We say that an operation performed by a process k in the chain is
useful if it is performed before the round in which the process immediately succeeding
k in the chain heard from k for the last time before becoming active (if the process is
i, then there is no later process in the chain, and hence all operations performed by
i are useful). When we refer to an operation performed by a chain ac(l, r), we mean
a useful operation performed by some process in that chain. We say that a round is
useful for the chain ac(l, r) if the chain performed a useful operation in that round;
otherwise we say that the round is useless.

The discussion above shows that the operations performed by a chain proceed in
a similar order to the operations performed by a single active process. More precisely,
if we consider only useful operations, the processes in the chain perform work units
one by one in the natural order and without repetition; each time a subchunk c is
completed by the chain, the group of the process that completes this subchunk is
informed about this fact exactly once, and if the completed subchunk is a multiple of√
t, then in addition all groups whose numbers are higher than the group of the process

that completed this subchunk are informed that the subchunk is completed one by
one in the natural order and without repetition (that is, each such group g receives
a message (c, g) exactly once); moreover, each time such a group g is informed, this
fact is checkpointed to the group of the informer exactly once. Assume process i is
active at some round r with r ≥ r2 ≥ r1 ≥ 1. Then we denote by T r2

r1 (i) the number
of useful rounds for the chain ac(i, r) in interval [r1, r2] (that is, in the period from
round r1 to round r2 (inclusive)).

Lemma 2.4. Let l be active at some round r with r ≥ r2 ≥ r1 ≥ 1. Then

(a) T r2
r1 (l) ≤ n+ 3t;

(b) if T r2
r1 (l) ≥ n/

√
t + 3

√
t, then each process ≥ l must have received a message

from (a process in) ac(l, r) at some round r′ such that r1 ≤ r′ ≤ r2.

Proof. Part (a) follows from the fact that in each useful round, the chain does
one of the following: it performs work, it checkpoints to some group g the fact that
a subchunk c was performed, or it checkpoints the fact that group g was informed
that chunk c was performed. The discussion above shows that no unit of work is
repeated and hence there are at most n useful rounds in which the chain performs
work. Similarly, each subchunk is partially checkpointed at most once and hence
there are at most t useful rounds in which the chain performs partial checkpoints of
subchunks. Also, the completion of a chunk is checkpointed to each group at most
once, yielding at most t useful rounds in which such subchunks are checkpointed.
Finally, the fact that group g was informed about chunk c is checkpointed at most
once, yielding at most t additional useful rounds. Summing the above the claim
follows.

Part (b) follows because, as reasoned above, the useful operations done by the
chain follow the same order as if they are done by a single active process. Hence within
n/
√
t+ 3

√
t rounds the chain must complete a chunk and a full checkpoint.

1470 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

Now, as we mentioned above, at the core of our proof of correctness is the fact that
when a process becomes active, all lower numbered processes have already retired. To
prove this, we first prove a lower bound on the number of useful rounds for a given
activation chain in a given period. Using this bound, we can show that if some process
i receives its last ordinary message before becoming active at round r1, i becomes
active at round r2, and some process l < i has not retired by r2, then process i would
have received an ordinary message from some process in ac(l, r2) between rounds r1
and r2, contradicting our choice of r1.

We now proceed with the formal proofs. We start with a technical lemma.

Lemma 2.5. Let l > j > k. Then

(a) TT (j, k) + TT (l, j) = TT (l, k);
(b) if gj < gl, then TT (j, k) +DDB(l, j) = DDB(l, k).

Proof. The proof is straightforward. We start with part (a). In the calculations
below, we use “(gi = gj)” to denote the value 1 if gi = gj and 0 otherwise. Similarly,
“(gi 6= gj)” denotes 1 if gi 6= gj , and 0 otherwise. Recall that ̄ denotes j mod

√
t.

TT (j, k) + TT (l, j) = [GTO(k) + (gj − gk − 1)GTO(0) + ̄PTO](gj 6= gk)

+[(̄− k̄)PTO](gj = gk)

+[GTO(j) + (gl − gj − 1)GTO(0) + l̄PTO](gl 6= gj)

+[(l̄ − ̄)PTO](gl = gj).

If gj = gk, then

TT (j, k) + TT (l, j) = (̄− k̄)PTO

+[GTO(j) + (gl − gk − 1)GTO(0) + l̄PTO](gl 6= gk)

+[(l̄ − ̄)PTO](gl = gk)

= [GTO(k) + (gl − gk − 1)GTO(0) + l̄PTO](gl 6= gk)

+[(l̄ − k̄)PTO](gl = gk)

= TT (l, k),

and part (a) follows. (In the first equality we replaced gj by gk since in this case
they are identical, and the second equality follows because GTO(j) + (̄− k̄)PTO =
GTO(k).)

If gj 6= gk, then

TT (j, k) + TT (l, j) = [GTO(k) + (gj − gk − 1)GTO(0) + ̄PTO]

+[GTO(j) + (gl − gj − 1)GTO(0) + l̄PTO](gl 6= gj)

+[(l̄ − ̄)PTO](gl = gj)

= [GTO(k) + (gl − gk − 1)GTO(0) + l̄PTO](gl 6= gj)

+[GTO(k) + (gj − gk − 1)GTO(0) + l̄PTO](gl = gj)

= [GTO(k) + (gl − gk − 1)GTO(0) + l̄PTO]

= TT (l, k),

and again part (a) follows. (The second equality follows by a case analysis on whether
or not gl = gj , using the fact that GTO(j)+ ̄PTO = GTO(0) and the fourth equality
follows since gj 6= gk and l > j > k implies gl 6= gk.)

PERFORMING WORK EFFICIENTLY 1471

The proof of part (b) is similar. Observe that here by assumption, gl 6= gj and
hence also gl 6= gk. If gj = gk, then

TT (j, k) +DDB(l, j) = (̄− k̄)PTO + [GTO(j) + (gl − gk − 1)GTO(0)]

= [GTO(k) + (gl − gk − 1)GTO(0)]

= DDB(l, k),

and part (b) follows.
If gj 6= gk, then

TT (j, k) +DDB(l, j) = [GTO(k) + (gj − gk − 1)GTO(0) + ̄PTO]

+[GTO(j) + (gl − gj − 1)GTO(0)]

= [GTO(k) + (gl − gk − 1)GTO(0)]

= DDB(l, k),

and part (b) follows.
The next lemma establishes a lower bound on the number of useful rounds for an

activation chain in a given interval.
Lemma 2.6. Assume l is active at some round r such that r ≥ r2 ≥ r1 ≥ 1.

Assume p ≥ k is the current process in ac(l, r) at some round ≤ r1. Then T r2
r1 (l) ≥

r2− r1− TT (l, k) + 1.
Proof. We first show that if j is in ac(l, r) and becomes active at round r′ with

r1 ≤ r′ ≤ r2, then there are at most TT (j, k) useless rounds in [r1, r′−1]. We proceed
by induction on r′. If r′ = r1, the result is trivial. If r′ > r1, then j is i’s successor
for some i in the activation chain and j received its last message from i at some
round r′′. (There is such an i and such a message since by convention process 0 sent
an ordinary message to everybody just before the execution begins.) By definition,
we have r′ ≤ r′′ + TT (j, i). If i = k, we are done, since no round in [r1, r′′ − 1]
is useless, so there are at most TT (j, k) = TT (j, i) useless rounds in [r1, r′ − 1]. If
i > k, then suppose i becomes active at r′′′. By the inductive hypothesis, there are
at most TT (i, k) useless rounds in [r1, r′′′ − 1]. All the rounds in [r′′′, r′′ − 1] are
useful. Thus there are at most TT (j, i) + TT (i, k) useless rounds in [r1, r′− 1]. Since
TT (j, i) + TT (i, k) = TT (j, k) by Lemma 2.5, the inductive step follows.

Suppose that l becomes active at round r3. By the argument above, there are at
most TT (l, k) useless rounds in [r1, r3 − 1]. If r3 > r2, it immediately follows that
there are at most TT (l, k) useless rounds in [r1, r2]. On the other hand, if r3 < r2,
since l is still active at r > r2, it follows that there are no useless rounds in [r3, r2].
Hence we again get that there are at most TT (l, k) useless rounds in [r1, r2]. The
lemma follows.

The next lemma shows that in every execution of Protocol B, by the time a
process becomes active, all lower numbered processes have retired.

Lemma 2.7. In every execution of Protocol B,
(a) before the round r in which process i becomes preactive, all processes in groups

< gi have retired;
(b) before the round r in which process i becomes active, all processes < i have

retired.
Proof. Fix an execution eB of Protocol B. The proof proceeds by induction on

the round r. The base case of r = 0 holds trivially since only process 0 is active then.
Assume the claim for < r, and we will show it for r. If i = 0, the claim holds trivially.

1472 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

Thus we can assume i > 0. Suppose that the last ordinary message that i received
before round r came from k, and was received at round r1. (Note that there must
have been such an ordinary message, given our assumption that process 0 sent an
ordinary message to all the processes before the execution begins.)

We first prove part (a). Assume, by way of contradiction, that some process l
with gl < gi does not retire by round r.

Since, by assumption, r1 was the latest round < r at which i received an ordinary
message, to complete the proof it is enough to show that if l does not retire before
round r, i must have received an ordinary message at some round r′′ with r1 < r′′ < r.
In fact, we plan to show that i must have received a message in the interval (r1, r)
from some process in ac(l, r). To do this, we plan to use Lemmas 2.4 and 2.6. Notice
that both of these lemmas require l to be active. In fact, we can assume without loss
of generality that l is active at some round r3 ≥ r of eB, and that ac(l, r) = ac(l, r3).
If not, we can just consider the execution e′B which is identical to eB up to round
r, after which all processes other than l crash. It is clear that eventually l becomes
active in eB, with the same activation chain it has in round r. Moreover, if i receives
an ordinary message in the interval (r1, r) in e′B, then it must also receive the same
message in eB, since the two executions agree up to round r.

Since k becomes active at some round prior to r, the inductive hypothesis on part
(b) of the lemma implies that all processes ≤ k have retired by round r1 < r. Thus
without loss of generality l ≥ k. We consider two cases: (i) k is in ac(l, r); (ii) k is
not in ac(l, r).

In case (i), since k is in l’s activation chain and is active at round r1, by the
inductive hypothesis, it must be the current process in ac(l, r) at round r1. Applying
Lemma 2.6 to ac(l, r3) = ac(l, r), we get

T r−1
r1+1(l) ≥ (r − 1)− (r1 + 1)− TT (l, k) + 1.

By definition, i becomes preactive in round r = r1+DDB(i, k), and hence r−r1 =
DDB(i, k). Substituting this into the above inequality we get

T r−1
r1+1(l) ≥ DDB(i, k)− TT (l, k)− 1.

Since gi > gl, Lemma 2.5 implies that DDB(i, k) − TT (l, k) = DDB(i, l), and
substituting this fact in the above inequality we get

T r−1
r1+1(l) ≥ DDB(i, l)− 1

= GTO(l) + (gi − gl − 1)GTO(0)− 1

= (n/
√
t+ 3

√
t+ (

√
t− l̄ − 1)PTO + 1) + (gi − gl − 1)GTO(0)− 1

≥ n/
√
t+ 3

√
t.

Thus part (b) of Lemma 2.4 implies that i must have received an ordinary message
at some round in the interval (r1, r), contradicting the assumption that it does not,
and the claim follows.

In case (ii), let k′ be the greatest process < k in l’s activation chain, and let j be
the smallest process > k in l’s activation chain. Suppose j gets its last message before
becoming active from k′ at round r0. (Note that this means that the last message
received by j before becoming active came at r0.) Since the inductive hypothesis
on part (b) implies that k′ must retire before k becomes active, and since k must
become active at least one round before it sent a message to i (since by assumption

PERFORMING WORK EFFICIENTLY 1473

gk ≤ gl < gi and process k checkpoints to its own group before it sends a message
to another group), we have r0 < r1− 1. Furthermore, since the processes succeeding
k′ in l’s chain are greater than k, the same inductive hypothesis implies that these
processes can become active only after process k retires, and hence after round r1.
Since by definition any message received by i after round r0 from l’s chain must be
sent by one of the processes succeeding k′ in the chain, it follows that if i receives a
message from l’s chain after round r0, this message is sent after round r1.

To complete the proof we show that i must have received some message from l’s
chain at some round in the interval (r0, r), and hence in the interval (r1, r), contra-
dicting the assumption that it does not. As argued above, to show this it is enough
to show that T r−1

r0+1(l) ≥ n/
√
t+ 3

√
t. Applying Lemma 2.6 to l’s activation chain we

get

T r−1
r0+1(l) ≥ r − 1− (r0 + 1)− TT (l, k′) + 1.

To bound T r−1
r0+1(l), we need to bound r − r0. To do this we will compute two

terms: (a) r − r1 and (b) r1 − r0. The first term is equal to DDB(i, k) as argued
above. To compute the second term, we first show (1) gj > gk and (2) gk′ = gk.

For (1), clearly gj ≥ gk, since j > k. If gj = gk, j must have received a message
from k at round r1− 1 before k sent a message to i (since by assumption gk ≤ gl < gi
and process k checkpoints to its own group just before it sends a message to another
group). As we have observed, r1 − 1 > r0, so this contradicts the assumption that
the last message received by j before becoming active came at r0. Thus gj > gk.

For (2), clearly gk′ ≤ gk. If gk′ < gk, this means that j did not receive a message
from a process in gk before becoming active (because if it did, then by the inductive
hypothesis on part (b) we have that this message arrives after k′ retires and hence
after round r0). But since gj ≤ gl < gi, and k sent a message to i at r1, some process
in gk must have sent a message to j before round r1, and hence before j becomes
active. This gives us the desired contradiction.

To complete the proof of case (ii) we use the following claim.
Claim 2.1. Every process k′′ with k′ < k′′ ≤ k that becomes active does so no

earlier than round r0 + (k̄′′ − k̄′)PTO − 1.
Proof. We proceed by induction. Assume k′ < k1 ≤ k and the claim holds for all

k′′ with k′ < k′′ < k1. We prove it for k1.
We first show that the last ordinary message that any process ≥ k1 in gk receives

from any process k2 with k′ ≤ k2 < k1 is sent no earlier than round r0 + (k̄2 −
k̄′)PTO − 1. Observe that since k′ is in gk, so are k1 and k2. If k2 = k′, the claim
trivially follows since k′ must send a message to its own group at round r0 − 1 just
before it sends a message to gj > gk. Otherwise, by the induction hypothesis we have
that k2 became active no earlier than round r0 + (k̄2 − k̄′)PTO − 1, and the claim
again follows.

Let k2 be the last process from which k1 receives an ordinary message. Observe
that k′ ≤ k2 < k1. (Because, as reasoned above, k1 has received a message from
k′, and hence the message sent by k2 was sent at or after the time the message sent
by k′. The inductive hypothesis on part (b) therefore implies that k2 ≥ k′.) It
follows from the claim above that the message from k2 was sent no earlier than round
r0+ (k̄2− k̄′)PTO− 1. In addition, the inductive hypothesis on part (b) implies that
k1 becomes active only after k2 retires, and hence only after receiving its message.

Now assume that k1 does not receive a go ahead message. It then becomes
preactive PTO rounds after it receives the last ordinary message from k2 and then k1

1474 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

starts sending go ahead messages to lower-numbered processes in its group. Since, by
assumption, k1 does not receive a message in response, it becomes active TT (k1, k2) =
(k̄1− ¯k2)PTO rounds after receiving this last message from k2, and hence no earlier
than round r0 + (k̄1− k̄′)PTO − 1.

Next assume k1 receives a go ahead message. Let k3 be the process sending this
message. Let k2 be the last process from which k3 received an ordinary message before
sending the go ahead message to k1. Since k3 sends a go ahead message to k1, it
follows that k2 < k1. Just as above, we can show that k2 ≥ k′, and hence that k3
received the ordinary message from k2 no earlier than round ≥ r0+(k̄2− k̄′)PTO−1.
Clearly, k3 sends the go ahead message to k1 no earlier than (k̄1− k̄2)PTO rounds
after it receives its ordinary message from k2, and the claim follows as above. This
completes the proof of the inductive step.

Now, to compute r1−r0, observe that r1, the round in which k sends a message to
i, is at least one round after k becomes active (because gi > gk and k first broadcasts to
its own group), and hence Claim 2.1 immediately implies that r1−r0 ≥ (k̄− k̄′)PTO.
Thus we get that

T r−1
r0+1 ≥ (r − r1) + (r1− r0)− TT (l, k′)− 1

≥ DDB(i, k) + (k̄ − k̄′)PTO − TT (l, k′)− 1

= GTO(k) + (gi − gk − 1)GTO(0) + (k̄ − k̄′)PTO − TT (l, k′)− 1

= GTO(k′) + (gi − gk − 1)GTO(0)− TT (l, k′)− 1

= GTO(k′) + (gi − gk′ − 1)GTO(0)− TT (l, k′)− 1

= DDB(i, k′)− TT (l, k′)− 1.

(The fourth inequality follows because GTO(k) + (k̄ − k̄′)PTO = GTO(k′), and the
fifth inequality follows because gk = gk′ .)

Again, Lemma 2.5 implies that DDB(i, k′)− TT (l, k′) = DDB(i, l), and hence

T r−1
r0+1 ≥ DDB(i, l)− 1

= GTO(l) + (gi − gl − 1)GTO(0)− 1

≥ (n/
√
t+ 3

√
t+ (

√
t− l̄ − 1)PTO + 1)− 1

≥ n/
√
t+ 3

√
t.

This completes the proof of the inductive step for part (a).

For part (b), suppose by way of contradiction that i becomes active at round
r and process l < i has not retired by round r. First assume i does not receive a
go ahead message. If gl < gi, we get an immediate contradiction using the inductive
step for part (a), since i becomes active at or after it becomes preactive. Otherwise,
recall that k is the last process from which i receives an ordinary message before
becoming active, and this message is received at round r1. If k > l, then since k
became active before round r, the inductive hypothesis on part (b) implies that l
must have retired before k became active and hence before round r. If k = l, then i
becomes preactive only after PTO − 1 = n/t + 1 additional rounds in which it does
not hear from l. We claim that l must have retired by that time. Because, otherwise,
in this period l would have either performed a subchunk and informed its group or
would have checkpointed a subchunk to a group g 6= gl and informed its group about
the checkpoint. Since gi = gl, in both cases, i must have heard from l. Finally, if
l > k, then before i becomes active it sends a go ahead message to l and waits for

PERFORMING WORK EFFICIENTLY 1475

a message from l for PTO − 1 additional rounds. Exactly as above, it follows again
that since i does not receive any message from l, l must have retired.

Next assume i does get a go ahead message before becoming active. However, the
same reasoning as above shows that by the time a process sends a go ahead message
to process i, all processes < i have retired, and we are done.

Finally we can prove Theorem 2.8.

Theorem 2.8. In every execution of Protocol B,

(a) at most 3n units of work are performed in total by the processes,
(b) at most 10t

√
t messages are sent,

(c) by round 3n+ 8t all processes have retired.

Proof. Parts (a) and (b) were argued in the beginning of section 2.4.

For part (c), let i be the last process that is active and consider its activation chain.
We want to find the last round r2 in which i is active. It follows from Lemma 2.4 that
the maximal number of useful rounds performed by any chain is n + 3t. Therefore,
applying Lemma 2.6 with k = 0 we get that

n+ 3t ≥ T r2
1 (i) ≥ r2− 1− TT (i, 0) + 1.

Thus

r2 ≤ n+ 3t+ TT (i, 0)

≤ n+ 3t+ TT (t− 1, 0)

= n+ 3t+ (
√
t− 1)GTO(0) + (

√
t− 1)PTO

= n+ 3t+ (
√
t− 1)(n/

√
t+ 3

√
t+ (

√
t− 1)(n/t+ 2) + 1) + (

√
t− 1)(n/t+ 2)

≤ n+ 3t+ (
√
t− 1)(n/

√
t+ 3

√
t+

√
t(n/t+ 2) + 1)

= n+ 3t+ (
√
t− 1)(n/

√
t+ 3

√
t+ n/

√
t+ 2

√
t+ 1)

≤ n+ 3t+
√
t(2n/

√
t+ 5

√
t)

≤ 3n+ 8t.

3. An algorithm with effort O(n + t log t). In this section we prove that
the effort of O(n + t

√
t) obtained by the previous protocols is not optimal, even for

work-optimal protocols. We construct another work-optimal algorithm, Protocol C,
that requires only O(n + t log t) messages (and a variant that requires only O(t log t)
messages), yielding a total effort of O(n + t log t). As is the case with Protocols
A and B, at most one process is active at any given time. However, in Protocol C
it is not the case that there is a predetermined order in which the processes become
active. Rather, when an active process fails, we want the process that is currently
most knowledgeable to become the new active process. As we shall see, which process is
most knowledgeable after an active process i fails depends on how many units of work
i performed before failing. As a consequence, there is no obvious variant of Protocol
C that works in the model with asynchronous processes and a failure detector.

Roughly speaking, Protocol C strives to “spread out” as uniformly as possible
the knowledge of work that has been performed and the processes that have crashed.
Thus each time the active process, say, i, performs a new unit of work or detects a
failure, i tells this to the process j it currently considers least knowledgeable. Then
process j becomes as knowledgeable as i, so after performing the next unit of work
(or detecting another failure), i tells the process it now considers least knowledgeable
about this new fact.

1476 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

The most näıve implementation of this idea is the following: process 0 begins by
performing unit 1 of work and reporting this to process 1. It then performs unit 2
and reports units 1 and 2 to process 2, and so on, telling process i mod t about units
1 through i. Note that at all times, every process knows about all but at most the
last t units of work to be performed.

If process 0 crashes, we want the most knowledgeable alive process—the one that
knows about the most units of work that have been done—to become active. (If no
process alive knows about any work, then we want the highest numbered alive process
to become active.) It can be shown that this can be arranged by setting appropriate
deadlines. Moreover, the deadlines are chosen so that at most one process is active
at a given time. The most knowledgeable process then continues to perform work,
always informing the least knowledgeable process.

The problem with this näıve algorithm is that it requires O(n + t2) work and
O(n + t2) messages in the worst case. For example, suppose that process 0 performs
the first t−1 units of work, so that the last process to be informed is process t−1, and
then crashes. In addition, t/2 + 1, . . . , t − 1 crash. Eventually process t/2, the most
knowledgeable nonretired process, will become active. However, process t/2 has no
way of knowing whether process 0 crashed just after informing it about work unit t/2,
or process 0 continued to work, informing later processes (who must have crashed, for
otherwise they would have become active before process t/2). Thus process t/2 repeats
work units t/2 + 1, . . . , t − 1, again informing (retired) processes t/2 + 1, . . . , t − 1.
Suppose process t/2 crashes after performing work unit t − 1 and informing process
t−1. Then process t/2−1 becomes active and again repeats this work. If each process
t/2− 1, t/2− 2, . . . , 1 crashes after repeating work units t/2 + 1, . . . , t− 1, then O(t2)
work is done, and O(t2) messages are sent. (A slight variant of this example gives a
scenario in which O(n+ t2) work is done, and O(n+ t2) messages are sent.)

To prevent this situation, a process performs failure detection before proceed-
ing with the work. The key idea here is that we treat failure detection as another
type of work. This allows us to use our algorithm recursively for failure detection.
Specifically, fault detection is accomplished by polling a process and waiting for a
response or a timeout. The difficulty encountered by our approach is that, in contrast
to the real work, the set of faulty processes is dynamic, so it is not obvious how these
processes can be detected without sending (wasteful) polling messages to nonfaulty
processes. In fact, in our algorithm we do not attempt to detect all the faulty pro-
cesses, only enough to ensure that not too much work is wasted by reporting work to
faulty processes.

3.1. Description of the algorithm. For ease of exposition we assume t is a
power of 2. Again, the processes are numbered 0 through t− 1, and the units of work
are numbered 1 through n. Although our algorithm is recursive in nature, it can more
easily be described when the recursion is unfolded. Processing is divided into log t
levels, numbered 1 to log t, where level log t would have been the deepest level of the
recursion had we presented the algorithm recursively. In each level, the processes are
partitioned into groups as follows. In level h, 1 ≤ h ≤ log t, there are t/(2log t−h+1)
groups of size 2log t−h+1. Thus in level log t, there are t/2 groups of size 2, in level
log t−1 there are t/4 groups of size 4, and so on, until level 1, in which there is a single
group of size t. Let sh = 2log t−h+1 denote the size of a group at level h. The first
group of level h contains processes 0, 1, . . . , sh − 1, the next group contains processes
sh, sh + 1, . . . , 2sh − 1, and so on. Thus each group of level h < log t contains two
groups of level h+ 1. Note that each process i belongs to log t groups, exactly one on

PERFORMING WORK EFFICIENTLY 1477

each level. We let Gi
h denote the level h group of process i.

Initially process 0 is active. When process i becomes active, it performs fault
detection in its group at every level, beginning with the highest level and working
its way down, leaving level h as soon as it finds a nonfaulty process in Gi

h. Once
fault detection has been completed on Gi

1, the set of all processes, process i begins to
perform real work. Thus we sometimes refer to the actual work as G0, or level 0, and
the fault detection on level h as work on level h. For each 1 ≤ h ≤ log t, each time it
performs a unit of work on Gi

h−1, process i reports that work to some process in Gi
h.

(Observe that the above protocol requires at least n messages. However, it will later
become clear that modifying this protocol so that when a process performs work on
G0 it reports only each time it completes n/t units of work will immediately give a
work-optimal protocol that requires only O(t log t) messages.)

A unit of fault detection is performed by sending a special message “Are you
alive?” to one process and waiting for a reply in the following round. An ordinary
message informs a process at some level h, 1 ≤ h ≤ log t, of a unit of (real or fault-
detection) work at level h − 1. As we shall see, an ordinary message also carries
additional information. These two are the only types of messages sent by an active
process. As before, a process that has crashed or terminated is said to be retired. An
inactive nonretired process only sends responses to “Are you alive?” messages.

Each process i maintains a list Fi of processes known by i to be retired. It
also maintains an array of pointers, pointi, indexed by group name. Intuitively,
pointi[G0] is the successor of the last unit of work known by i to have been performed
(and therefore this is where i will start doing work when it becomes active). For
h ≥ 1, pointi[G

j
h] contains the successor (according to the cyclic order in Gj

h, which

we define precisely below) of the last process in Gj
h known by i to have received an

ordinary message from a process in Gj
h that was performing (real or fault-detection)

work on Gj
h−1. We call pointi[G

j
h] process i’s pointer into Gj

h. Process i’s moves
are governed entirely by the round number Fi and pointers into its own groups (i.e.,
pointers into groups Gi

h). Associated with each pointer pointi[G] is a round number
roundi[G] indicating the round at which the last message known to be sent was
sent (or, in the case of G0, when the last unit of work known to be done was done).
Initially, pointi[G0] = 1, pointi[G

j
h] is the lowest-numbered process in Gj

h − {i},
and roundi[G0] = roundi[G

j
h] = 0. We occasionally use roundi[G](r) to denote

the value of roundi[G] at the beginning of round r; we similarly use Fi(r) and
pointi[G](r).

The triple (Fi,pointi,roundi) is the view of process i. We also define the reduced
view of process i to be pointi[G0]− 1 + |Fi|; thus i’s reduced view is the sum of the
number of units of work known by i to be done and the number of processes known
by i to be faulty. A process includes its view whenever it sends an ordinary message.
When process i receives an ordinary message, it updates its view in light of the new
information received. Note that process i may receive information about one of its
own groups from a process not in that group. Similarly, it may pass to another process
information about a group in which the other process is a member but to which i does
not belong.

Let Gi
h be any group as described above, where the process numbers range from

x to y = x + |Gi
h| − 1. There is a natural fixed cyclic order on the group, which we

call the cyclic order. Process i sends messages to members of Gi
h in increasing order.

By this we mean according to the cyclic order but skipping itself and all processes
in Fi. Let j 6= i be in Gi

h. Then j’s i-successor in Gi
h is j’s nearest successor in the

1478 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

cyclic ordering that is not in {i} ∪ Fi. We omit the i in “i-successor,” as well as the
name of the group in which the successor is to be determined, when these are clear
from the context.

When process i first becomes active it searches for other nonretired processes as
follows. For each level h, starting with log t and going down to 1, process i polls
group Gi

h, starting with pointi[G
i
h], by sending an “Are you alive?” message. If no

answer is received, it adds this process to Fi. If h < log t, process i sends an ordinary
message reporting this newly detected failure to pointi[G

i
h+1], sets pointi[G

i
h+1] to

its i-successor in Gi
h+1, and sets roundi[G

i
h+1] to the current round number. Process

i repeats these steps until an answer is received or Gi
h \ {i} ⊆ Fi. It then enters

level h− 1 and repeats the process. Note that if no reply was received, then although
the pointer into Gi

h does not change, the successor in Gi
h of pointi[G

i
h] does change,

because the successor function takes into account Fi, which has changed.

Level 0 is handled similarly to levels 1 through log t−1, but the process performs
real work instead of polling and increases the work pointer after performing each unit
of work. If pointi[G0] = n+1 then process i halts, since in this case all the work has
been completed. This completes the description of the behavior of an active process.
The code for an active process appears in Figure 3.

1. h := log t;
2. while h > 0 do
3. done := false;
4. while ¬done do
5. Send “Are you alive?” to pointi[G

i
h];

6. if no response
7. then add pointi[G

i
h] to Fi;

8. if h 6= log t
9. then send ordinary message to pointi[G

i
h+1];

10. roundi[G
i
h+1] := current round ;

11. pointi[G
i
h+1] := successor(pointi[G

i
h+1]);

12. if Gi
h − Fi 6= {i}

13. then pointi[G
i
h] := successor(pointi[G

i
h]);

14. else done := true;
15. else (i.e., response received) done := true;
16. h := h− 1;

{Process level 0 (real work):}
17. while pointi[G0] ≤ n do
18. Perform work unit pointi[G0];
19. Send an ordinary message to pointi[G

i
1];

20. roundi[G
i
1] := current round ;

21. pointi[G
i
1] := successor(pointi[G

i
1]);

22. pointi[G0] := successor(pointi[G0])

Fig. 3. Code for active process i in Protocol C.

At any time in the execution of the algorithm, each inactive nonretired process i
has a deadline. We define D(i,m) to be the number of rounds that process i waits

PERFORMING WORK EFFICIENTLY 1479

from the round in which it first obtained reduced view m until it becomes active:

D(i,m) =

{
K(n+ t−m)2n+t−1−m if m ≥ 1,
K(t− i)(n+ t)2n+t−1 otherwise,

where K = 5t + 2 log t. As we show below (Lemma 3.2), K is an upper bound on
the number of rounds that any process needs to wait before first hearing from the
active process. (More formally, if j becomes active at round r and is still active K
rounds later, then by the beginning of round r +K all processes that are not retired
will have received a message from j.) All our arguments below work without change
if we replace K by any other bound on the number of rounds that a process needs
to wait before first hearing from the active process. This observation will be useful
later, when we consider a slight modification of Protocol C.

If process i receives no message by the end of D(i, 0)− 1, then it becomes active
at the beginning of round D(i, 0). Otherwise, if at round r it receives a message based
on which it obtains a reduced view of m, and if it receives no further messages by the
end of round r+D(i,m)−1, it becomes active at the beginning of round r+D(i,m).
This completes the description of the algorithm.

3.2. Analysis and proof of correctness.

Lemma 3.1. In every execution of Protocol C in which there are no more than
t− 1 failures, the work is completed.

Proof. By assumption, one of the processes is correct, say, i. At some point
process i will become active, since once every other process has retired process i will
not extend its deadline. It is straightforward from inspection of the algorithm that at
any time during the execution of the algorithm pointi[G0] = w if and only if the first
w − 1 units of work have been performed and that when it becomes active process i
performs all units of work from pointi[G0] through n.

The next lemma shows that our choice of K has the properties mentioned above.

Lemma 3.2. If j is active at round r and is not retired by round r + 5t+ 2 log t,
then all processes that are not retired will receive a message from j before the beginning
of r + 5t+ 2 log t.

Proof. It is immediate from the description of the algorithm that all nonretired
processes have received a message from j by the time it has performed t units of work
(at level G0) after round r. Thus we compute an upper bound on the time it takes for
j to perform t units of work starting at round r. In the worst case, j has just become
active at the beginning of round r, and must do failure detection before reaching
level G0 and doing work. While doing this failure detection, j sends “Are you alive?”
messages to at most t+ log t processes (the extra log t is due to the fact that at each
level, it may send one “Are you alive?” message to a process that is alive but crashes
later, while j is doing failure detection on a larger group). After discovering a failure,
process j sends an ordinary message; thus it sends at most t ordinary messages. Each
message sent takes up one round; in addition, process j waits one round for a response
after each “Are you alive?” message. This means that j spends at most 3t + 2 log t
rounds in levels Gj

log t, . . . , G
j
1. Clearly, j spends ≤ 2t − 1 rounds working at level

G0 in the course of doing t units of work (since it sends an ordinary message between
each unit of work). The required bound follows.

If i received its last ordinary message from j at round r, we call other processes
that received an ordinary message from j after i did first-generation processes (implic-
itly, with respect to i, j, and r). If i did not yet receive any ordinary messages, then

1480 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

the first-generation processes (with respect to i and r) are those that received an ordi-
nary message from a process with a number greater than i. We define kth-generation
processes inductively. If we have defined kth generation, then the (k+1)st generation
are those processes that receive an ordinary message from a kth-generation process.
The rank of a process is the highest generation that it is in.

Lemma 3.3. Let i receive its last ordinary message from j at round r, let m be
the reduced view of i after receiving this message, and let ` be a kth-rank process with
respect to i, j, and r. Then, after ` receives its last ordinary message, its reduced view
is at least m+ k.

Proof. The proof is an easy induction on k, since when a kth-rank process becomes
active, it knows about everything its parent knew when it became active and at least
one more piece of work or failure.

We say process i knows more than process j at round r if Fi(r) ⊇ Fj(r) and for
all groups G, roundi[G](r) ≥ roundj [G](r). Note that if equality holds everywhere
then intuitively the two processes are equally knowledgeable. We first show that our
algorithm has the property that for any two inactive nonretired processes, one of
them is more knowledgeable than the other, unless they both know nothing; that is,
the knowledge of two nonretired processes is never incomparable. This is important
so that the “most knowledgeable” process is well defined. Moreover, the knowledge
can be quantified by the reduced view. Process i knows more than inactive process
j if and only if the reduced view of i is greater than the reduced view of j. Finally,
the algorithm also ensures that the active process is at least as knowledgeable as any
inactive nonretired process.

Lemma 3.4. For every round r of the execution the following hold.

(a) If process i received an ordinary message from process j at round r′ < r and
i is inactive and has not retired by the beginning of round r, then at the beginning of
round r, no processes other than j and processes in the kth generation with respect to
i, j, and r′, for some k ≥ 1, know as much as i.

(b) Suppose process i received its last ordinary message at round r′ (if i has
received no ordinary messages then r′ = 0) and m is i’s reduced view after receiving
this message. If i is not retired at the beginning of round r = r′ + D(i,m), and it
receives no further ordinary messages before the beginning of round r, then at the
beginning of round r no nonretired process knows more than i.

(c) At the beginning of round r, there is an asymmetric total order (“knows more
than”) on the nonzero knowledge of the nonretired processes that did not become active
before round r, and the active process knows at least as much as the most knowledgeable
among these processes. Moreover, for any two nonretired processes i and j, i knows
more than j if and only if the reduced view of i is greater than the reduced view of j.

(d) At most one process is active in round r.

Proof. The proof is by induction on r. The base case r = 1 is straightforward.
Let r > 1 and assume that all parts of the lemma hold for smaller values of r. We
prove it for r.

For part (a), observe that by the inductive hypothesis, (a) holds at the beginning
of round r − 1. If no process is active in round r − 1, then no process’s knowledge
changes, so (a) holds at the beginning of round r as well. If process j′ is active in
round r − 1, then by part (c) of the inductive hypothesis, j′ knows at least as much
as i. Thus by part (a), it must be the case that j′ is either j or some process in
the kth generation with respect to i, j, and r′ for some k (since, by assumption, i is
not active at the beginning of round r). The only process whose knowledge changes

PERFORMING WORK EFFICIENTLY 1481

during round r − 1 is one to which j′ sends an ordinary message. It is immediate
from the definition that this process must be in the kth generation with respect to i,
j, and r for some k.

For part (b), we must consider two cases: r′ > 0 and r′ = 0. If r′ > 0, let j be
the process that wrote to i at r′. By part (a) we have that only j and processes in
generation k ≥ 1 with respect to i, j, and r′ are as knowledgeable as i at any round in
the interval [r′, r). By part (c), these can be the only processes active in this interval.
Thus it suffices to argue that j and all processes of generation k ≥ 1 with respect to
i, j, and r′ are retired by the beginning of round r. Since a reduced view is at most
n+ t−1, the highest rank a process could be in is n+ t−1. We now argue that by the
beginning of round r′+D(i,m) > r′+(n+ t−m)K+D(i,m+1)+ · · ·+D(i, n+ t−1)
all processes of ranks 1 through n + t − 1 have retired. More generally, we argue by
induction on k that for every k with 1 ≤ k ≤ n+ t−m−1, by the beginning of round
s+(k+1)K+D(i,m+1)+ · · ·+D(i,m+k), every process in ranks 1 to k has retired.

If k = 1, note that since i received an ordinary message from j at round r′, by
Lemma 3.2, every rank-1 process receives a message from j before round r′ + K. By
Lemma 3.3, the reduced view of any such process is at least m + 1. Since i receives
no message from j by round r′ + K, it must be the case that j has retired by round
r′ + K. By definition, no rank-1 process can receive any messages at any round in
[r′ + K, r) (otherwise it would have a rank higher than 1). Thus any rank-1 process
i′ became active before r′ +K +D(i′,m+ 1), so by definition of K and the fact that
D(i′,m+ 1) = D(i,m+ 1), i would have heard from i′ before r′ + 2K +D(i,m+ 1).
It is easy to check that r′ + 2K + D(i,m + 1) < r′ + D(i,m) = r. Since i did not
receive any messages by the beginning of round r, i′ must have retired by then.

In general, consider a rank-k + 1 process i′ and assume inductively that every
rank-k or lower process has retired by the beginning of round r. By definition of
rank, i′ received an ordinary message from a rank-k process, and, since these are all
retired by round r, i′ must have received this message before round r. By the inductive
hypothesis on k, i′ must have received its last ordinary message by the beginning of
round r′ + (k + 1)K +D(i,m+ 1) + · · ·+D(i,m+ k) < r (again using the fact that
D(i,m) = D(i′,m) if m > 0). By Lemma 3.3, the reduced view of i′ when it received
its last ordinary message before round r was at least m + k + 1. Thus it must have
become active before round r′ + (k + 1)K + D(i,m + 1) + · · ·+ D(i,m + k + 1) if it
became active at all. Since i received no messages from i′, it follows that i′ must have
retired before round r′ + (k + 2)K + D(i,m + 1) + · · · + D(i,m + k + 1) < r. This
completes the induction on k.

If r′ = 0 we need the fact that D(i, 0) > (n+ t)K + maxj>i{D(j, 0)}+D(i, 1) +
· · · + D(i, n + t − 1), which follows easily from the definitions. We claim that, for
every k ≥ 0, by round (k + 1)K + maxj>i{D(j, 0)} + D(i, 1) + · · · + D(i, k), every
process in ranks 1 to k has retired. To see this, note that a rank-0 process j′ (one
with a higher number than i that received no messages) must have become active at
round D(j′, 0) and therefore must have retired by round D(j′, 0) +K. Thus a level-1
process received its last message by maxj>i{D(j, 0)}+K. We now proceed as in the
case r′ > 0.

To prove part (c), observe that the result is immediate from the inductive hy-
pothesis applied to r − 1 if there is no active process at the beginning of round r − 1
(for in that case, no process’s reduced view changes). Otherwise, suppose that j is
active at the beginning of round r − 1. If j does not send an ordinary message in
round r−1, again the result follows immediately from the inductive hypothesis (since

1482 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

no process’s reduced view changes). If j does send an ordinary message to, say, pro-
cess i, it is immediate that i and j know more at the beginning of round r than any
other nonretired process, and that i’s reduced view is greater than that of any other
nonretired inactive process.

It remains to show part (d). Observe that the result is immediate if no process
becomes active at round r. Now suppose that process i becomes active at the be-
ginning of round r. We must show that no process that was active prior to round
r is still active at the beginning of round r, and that no process besides i becomes
active at round r. Let r′ be the last round in which i received a message (as usual,
if i received no messages prior to round r, then we take r′ = 0) and suppose that
m was i’s reduced view at round r′. Then we must have r = r′ + D(i,m). From
part (b), it follows that no nonretired process knows more than i at the beginning of
round r. From part (c), it follows that any process that was active in the interval
[r′, r) must know more than i. This shows that all processes that were active before
round r must have retired by the beginning of round r. Suppose some other process
i′ becomes active at round r. We have just shown that i′ does not know more than
i. From part (c) it follows therefore that i′ knows less than i. Thus part (b) provides
a contradiction to the assumption that i′ becomes active at round r.

Lemma 3.5. The running time of the algorithm is at most tK(n+t)2n+t rounds.

Proof. If process i’s reduced view is m and it does not receive a message within
D(i,m) steps, then it becomes active. Each message that i receives increases its
reduced view. Thus i becomes active in at most D(i, 0)+ · · ·+D(i, n+ t− 1) rounds.
Once active, arguments similar to those used in Lemma 3.2 show that it retires in
at most 2n + 3t + 2 log t rounds. Thus the running time of the algorithm is at most
D(1, 0) + · · ·+D(1, n+ t− 1) + 2n+ 3t+ 2 log t ≤ tK(n+ t)2n+t rounds.

The next lemma shows that an active process i does not send messages to retired
processes that, because they were more knowledgeable than i, should have become
active before i did. These messages are avoided because during fault detection i
discovers that these processes have retired.

Lemma 3.6. If process i′ gets an ordinary message at round r′ from a process
operating on group Gi′

h−1 and process i is active at the beginning of round r > r′ then
the following hold.

(a) If roundi[G
i′
h](r) ≥ r′, then all processes in the interval [i′,pointi[G

i′
h](r))

in the cyclic order on Gi′
h are either retired by the beginning of round r or receive

an ordinary message in the interval [r′,roundi[G
i′
h](r)] from a process operating on

Gi′
h−1. (If i′ = pointi[G

i′
h](r), then all processes in Gi′

h are either retired by the

beginning of round r or receive a message in the interval [r′,roundi[G
i′
h](r)] from a

process operating on Gi′
h−1.) Moreover, either i’s knowledge at the beginning of round

r is greater than i′’s knowledge at the end of r′ or i′ ∈ Fi(r).

(b) If roundi[G
i′
h](r) < r′, then all processes in the interval [pointi[G

i′
h](r), i′]

in the cyclic order on Gi′
h are either retired by the beginning of round r′ or receive a

message in the interval (roundi[G
i′
h](r), r′] from a process operating on Gi′

h−1. More-
over, all the processes in this interval are retired by the beginning of round r, and if
Gi
h = Gi′

h , then all these processes will be in Fi by the time i begins to operate on
Gi
h−1.

Proof. We proceed by induction on r. The case r = 1 is vacuous. Assume that
r > 1 and the result holds for r − 1. If r′ = r − 1, then it must be the case that i′

received its message from i, roundi[G
i′
h](r) = r − 1, and pointi[G

i′
h] is the successor

PERFORMING WORK EFFICIENTLY 1483

of i′ in the cyclic order on Gi′
h , as computed by i in round r − 1. It is easy to see

that the result follows immediately in this case, because all processes in the interval
(i′,pointi[G

i′
h]) must be retired.

Suppose r′ < r− 1. If i is also active at round r− 1, then the result is immediate
from the inductive hypothesis unless roundi[G

i′
h] changes during round r − 1. The

description of the algorithm shows that roundi[G
i′
h] changes only if Gi

h = Gi′
h and

i is operating on group Gi
h−1, in which case roundi[G

i′
h] is set to r − 1 at the end

of round r − 1 and pointi[G
i′
h](r) is the successor of pointi[G

i′
h](r − 1) in the cyclic

order on Gi′
h . In this case it is easy to see that the result follows from the inductive

hypothesis; we leave details to the reader.

Thus we can assume without loss of generality that i becomes active at round
r. Let roundi[G

i′
h](r) = r′′ and let pointi[G

i′
h](r) = i′′. If r′′ ≥ r′, then it must

be the case that i received a message from j at some earlier round s such that
pointj [G

i′
h](s) = pointi[G

i′
h](r) and roundj [G

i′
h](s) = roundi[G

i′
h](r). Since we

must have r′ ≤ r′′ = roundj [G
i′
h](s) ≤ s, the result now follows from the induction

hypothesis (using j and s instead of i and r).

It remains only to consider the case r′′ < r′. Let j′ ∈ Gi′
h be the process that sent

the ordinary message to process i′ at round r′, and suppose that j′ became active
at the beginning of round s′. We claim that we have the following chain of inequali-
ties: r′′ ≤ roundj′ [G

i′
h](s′) < s′ < r′ < r. Every inequality in this chain is immediate

from our assumptions except the first one. Suppose that roundj′ [G
i′
h](s′) < r′′. From

Lemma 3.4, it follows that roundk[G
i′
h](s′) < r′′ for all processes k not retired by

round s′. This means that no process not retired at s′ knows that a message was sent
at round r′′. But at round r > s′, process i knows this fact (since by assumption
roundi[G

i′
h](r) = r′′). This is impossible. Thus we must have roundj′ [G

i′
h](s′) ≥ r′′.

Note that pointj′ [G
i′
h](r′) = i′ by assumption. Thus, by the inductive hypothesis, all

processes in the cyclic order on Gi′
h in the interval [i′′, i′) are either retired by the be-

ginning of round s′ or receive an ordinary message in the interval [r′′,roundj′ [G
i′
h](s′)]

from a process operating on Gi′
h−1. Since we also know that i′ receives a message at

round r′ from a process operating on Gi′
h−1, this proves the first half of part (b). Since,

by Lemma 3.4, all processes not retired by round r must be less knowledgeable than
i at the beginning of round r, it follows from Lemma 3.4 that all the processes in the
interval [i′′, i′] in the cyclic order have in fact retired by round r. From the description
of the algorithm, it follows that i will detect this fact before it starts operating on
Gi
h−1.

Observe that the algorithm treats “Are you alive?” messages as real work. There-
fore, we refer to these messages as work unless stated otherwise. On the other hand,
the ordinary messages are still referred to as messages.

Using Lemma 3.6, we can show that indeed effort is not wasted.

Lemma 3.7. At most |Gi
h| + |Gi

h−1| units of work are done and reported to Gi
h

by group Gi
h when operating on group Gi

h−1.

Proof. Given i, h, and an execution e of Protocol C, we consider the sequence
of triples (x, y, z), with one triple in the sequence for every time a process x ∈ Gi

h

sends an ordinary message reporting a unit of work y ∈ Gi
h−1 to a process z ∈ Gi

h,
listed in the order that the work was performed. We must show that the length of
this sequence is no greater than |Gi

h−1|+ |Gi
h|.

We say that a triple (x, y, z) is repeated in this sequence if there is a triple (x′, y, z′)
later in the sequence where the same work unit y is performed. Clearly there are at

1484 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

most |Gi
h−1| nonrepeated triples in the sequence, so it suffices to show that there

are at most |Gi
h| repeated triples. To show this, it suffices to show that the third

components of repeated triples (denoting which process was informed about the unit
of work) are distinct. Suppose, by way of contradiction, that there are two repeated
triples (x1, y1, z1) and (x2, y2, z1) with the same third component. Suppose that x1

informed z1 about y1 in round r′, and x2 informed z1 about y2 in round r′′. Without
loss of generality, we can assume that r′ < r′′. Since (x1, y1, z1) is a repeated triple,
there is a triple (x3, y1, z2) after (x1, y1, z1) in the sequence. Let r3 be the round in
which x3 became active, and let r2 be the round in which x2 became active. Let
sj = roundxj [G

i
h](rj) for j = 2, 3. By Lemma 3.6, if s2 ≥ r′, then either x2’s

knowledge at the beginning of round s2 is greater than z1’s knowledge at the end of
r′, or z1 ∈ Fx2

(r′), and if s2 < r′, then z1 ∈ Fx2
before x2 starts operating on Gh−1

i .
Since x2 sends a message to z1 while operating on Gh−1

i , it cannot be the case that
z1 ∈ Fx2

before x2 starts operating on Gh−1
i , so it must be the case that s2 ≥ r′ and

x2’s knowledge at the beginning of round r2 is greater than z1’s knowledge at the end
of round r′. In particular, this means that x2 must know that x1 informed z1 about
y1 at the beginning of r2.

We next show that every process x ∈ Gh
i that is active at some round r between

r′ and r2 must know that x1 informed z1 about y1 at the beginning of round r. For
suppose not. Then, by Lemma 3.6, z1 must have retired by the beginning of round r.
Since, by Lemma 3.4, x is the most knowledgeable process at the beginning of round
r, it follows that no process that is not retired knows that z1 was informed about y1.
Thus there is no way that x2 could find this out by round r2.

It is easy to see that x3 does not know that z1 was informed about y1 (for if it
did, it would not repeat the unit of work y1). Therefore, (x3, y1, z2) must come after
(x2, y2, z1) in the sequence. Since pointx2 [G

i
h](r

′′) = z1, and z1 received an ordinary
message from x1 while operating on Gi

h−1 at round r′, it follows from Lemma 3.6
that between rounds r′ and r′′ every process in Gi

h that is not retired must receive an
ordinary message. In particular, this means that x3 must receive an ordinary message.
Since all active processes between round r′ and r′′ know that z1 was informed about
y1, it follows that x3 must know it too by the end of round r′′. But then x3 would
not redo y1, giving us the desired contradiction.

Theorem 3.8. In every execution of Protocol C,
(a) at most n+ 2t units of real work are performed;
(b) at most n+ 8t log t messags are sent;
(c) by round t(5t+ 2 log t)(n+ t)2n+t, all processes have retired.

Proof. Lemma 3.7 implies that the amount of real work units that are performed
and reported to G1 is at most |G0|+ |G1| = n+ t. In addition, each of the t processes
may perform one unit without reporting it (because it retired immediately afterward).
Summing the two, (a) follows.

For part (b), Lemma 3.7 implies that each Gi
h, h > 0, performs at most |Gi

h−1|+
|Gi

h| reported units of works when operating on Gi
h−1. (Here a unit is may be either a

real work unit or an “Are you alive?” message.) Let H = {(h, i) : 1 ≤ h ≤ log t, i ≡ 1
(mod 2log(t)+1−h)}. Notice if we consider groups of the form Gi

h for (h, i) ∈ H we
count all the groups exactly once. The argument above tells us that the total number
of reported units of work is

∑
(h,i)∈H

(|Gi
h−1|+ |Gi

h|) ≤ |G0|+ 3
∑

(h,i)∈H
|Gi

h|.

PERFORMING WORK EFFICIENTLY 1485

The reason for the factor of 3 is that if h < log t, then |Gi
h| occurs three times in

the left-hand sum: once when considering the work performed by group Gi
h operating

on Gi
h−1, once when considering the work performed by Gi

h+1 when operating on

Gi
h, and once when considering the work performed by Gi+h

h+1 when operating on Gi
h.

Clearly, the |G0| reported units performed on G0 result in one message each, and
the remaining ones result in two messages each (because then the unit itself is also a
message). So the number of messages corresponding to reported units of work is at
most

|G0|+ 6
∑

(h,i)∈H
|Gi

h| = n+ 6t log t.

In addition, the unreported units may result in messages. These consist both of
“Are you alive?” messages sent by a process but not reported by it due to the fact it
crashes or terminates immediately afterward, and of “Are you alive?” messages that
were not reported because the recipient of the “Are you alive?” message responded.
Each process in Gi

h, h > 1, can perform at most one such unreported unit when
operating on Gi

h−1, and hence each group Gi
h, h > 1 performs no more than |Gi

h| such
units. In addition, we have to sum the answers of alive processes in Gi

h−1, h > 1 to
“Are you alive?” message sent by Gi

h. Again, there are at most |Gi
h| such answers.

Finally, each process i sends messages to the other process in Gi
log t just before it

starts operating, which together with the answers sums up to a total of no more than
2t messages. Therefore, the number of messages corresponding to unreported units
of work is at most

2t+
∑

(i,h)∈H,h>1

2|Gi
h| = 2t log t.

Summing the messages due to the reported units of work and the messages due
to the unreported units of work, part (b) follows.

Part (c) is immediate from Lemma 3.5.
We remark that we can improve the message complexity to O(t log t) (that is,

remove the n term in (b) above) by informing processes in group G1 after n/t units
of work done at level G0, rather than after every unit of work. This does not result
in a significant increase in total work, but it does increase the time complexity. The
increase in time complexity comes from an increase in K (the upper bound on the
number of rounds, from the time the currently active process takes over, that any
process needs to wait before first hearing from the active process). Formally, we have
the following result.

Corollary 3.9. Modifying Protocol C by informing processes in group G1 after
n/t units of work done at level G0, rather than after every unit of work, yields a
protocol that sends O(t log t) messages, performs O(n+t) work, and terminates within
t(2n+ 3t+ 2 log t)(n+ t)2n+t rounds.

4. A time-optimal algorithm. All the algorithms we have considered so far
are inherently sequential: there is only one process performing work at a time. If
processes always have many (other) tasks that they can do, then the fact that all
but one process is idle at a given time is not a great problem. On the other hand,
time is certainly a critical element in many applications. In this section, we present
an algorithm that aims to achieve maximum distribution of the workload among the
processes. The algorithm is time optimal in the typical case where there are no faults,

1486 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

and its performance degrades gracefully in the presence of faults. The basic ideas of
this algorithm have been patented [9].

The idea of the algorithm is straightforward. We alternate work phases and
agreement phases, until all the correct processes are sure that all the work has been
done. In the first work phase, process j performs units of work 1+jn/t, . . . , (j+1)n/t
(we again assume for simplicity that n is a multiple of t) in the first n/t rounds.
Process j starts the first agreement phase by broadcasting a message to all the other
processes saying that it has done its work. In subsequent rounds, process j proceeds
much as in eventual Byzantine agreement [10]: it broadcasts its current view—what
work has been done, and which processes were alive at the end of the work phase,
from its point of view. It continues to do so until (a) the set of processes that are
currently alive, according to j’s view, is the same in two consecutive rounds, or (b) it
receives a message from some process i saying that i is done and containing i’s view.
In case (a) it takes as its final view its own view, while in case (b) it takes as its final
view the view in i’s message. In all cases, it then broadcasts a message saying it is
done, together with its final view of which processes were alive at the end of the work
phase and what work remains to be done, and terminates the phase.

Using the by-now standard techniques of [10], we can show that all the correct
processes agree on their final view at the time when they terminate the phase, and
a correct process is done by round n/t + f + 2, where f is the number of processes
that are faulty during the agreement phase. Finally, all correct processes terminate
at most one round after the first correct process terminates. We omit details here.

After process j terminates the first agreement phase, if, according to its final
view, n′ > 0 more work still needs to be done (perhaps because some process crashed
before doing its allocated work) and t′ ≥ t/2 processes are still correct, then it starts
the second work phase. It performs n′/t′ units of work, with the work being divided
among the correct processes according to their identification numbers.3 After the
work phase, there is an agreement phase, which is just like the first agreement phase,
with one small change. Whereas in the first agreement phase if process j did not
hear from process i during some round, then process j knew i was faulty, in later
agreement phases, since i may be behind j by one step, j must allow i one round of
grace before declaring it faulty. Similarly, in order to terminate, a process must have
two consecutive rounds after the grace round , where its view of the set of currently
alive processes is the same, or receive a message from another process saying it is
done. We leave it to the reader to check that again at the end of the phase all correct
processes agree that all the work has been performed or they agree on their final view
and, in addition, that every correct process terminates no more than one round after
the first correct process terminates.

We continue in this manner, provided no more than half of the processes that
were correct at the beginning of a phase fail, until all correct processes are sure that
all work has been done. If at any phase more than half the correct processes fail, we
revert to another of our algorithms (for example, Protocol A). We call this algorithm
protocol D; the code appears in Figure 4. In the code, we use the function gradeS ,
where S is a set of nonnegative integers; gradeS(s) = k if there are k elements of S
less than s.

3Since n′ may not be divisible by t′, a process might have to do dn′/t′e work. We ignore this
issue in the discussion, since its impact on complexity is negligible; however, the code takes it into
account.

PERFORMING WORK EFFICIENTLY 1487

Main protocol

1. S := {1, . . . , n}; {S is the set of outstanding units of work}
2. T := {0, . . . , t− 1}; {T is the set of processes known to have been correct

at the end of the previous work phase}
3. round := 1; {round keeps track of whether to allow a grace round}
4. while |S| > 0 do
5. S′ := {s ∈ S : gradeT (j)d|S|/|T |e ≤ gradeS(s) < (gradeT (j) + 1)d|S|/|T |e};
6. Perform work in S′;
7. Wait d|S|/|T |e − |S′| rounds; {to make sure all processes spend equally

long in this phase}
8. S := S\S′; {update outstanding units of work}
9. T ′ := T ;
10. Agree(round); {see code below}
11. if |T ′| > 2|T | (i.e., more than half the processes alive at the end of the

previous work phase failed by the end of the current
work phase)

12. then perform work in S using Protocol A;
13. S := ∅;
14. round := 0

Agree(round)

1. done := false;
2. U := T ; {U keeps track of processes not known by j to be faulty}
3. T := {j};
4. while ¬done do
5. Uj := U ; {save old value of U}
6. Broadcast (j, S, T,done) to all processes in U ;
7. for i ∈ Uj do
8. if received (i, Si, Ti,donei) and donei = false
9. then S := S ∩ Si;
10. T := T ∪ Ti;
11. if received (i, Si, Ti,donei) and donei = true
12. then S := Si;
13. T := Ti;
14. done := true;
15. if no message received from i and round ≥ 1
16. then U := U/{i};
17. if U = Uj and round ≥ 1
18. then done := true;
19. round := round + 1;
20. Broadcast (j, S, T,done) to all processes in U

Fig. 4. Protocol D: code for process j.

1488 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

We now analyze Protocol D. The analysis splits into two cases, depending on
whether it is the case that for every phase no more than half the processes that are
correct at the beginning of the phase are discovered to have failed during the phase.

A process p is thought to be correct at the beginning of phase i if i = 1 or i > 1
and p is in the final view of some process p′ that decided in the phase i− 1 agreement
protocol. Note that in the latter case p is in the final view of all processes that
complete the phase i− 1 agreement protocol.

Theorem 4.1. In every execution of Protocol D in which at most f processes
fail, the following hold.

1. If for each phase no more than half the processes that are thought to be correct
at the beginning of the phase are discovered to have failed by the end of that phase,
then

(a) at most 2n units of work are performed;
(b) at most (4f + 2)t2 messages are sent;
(c) by round (f + 1)n/t+ 4f + 2, all processes have retired.

2. If in some phase more than half the processes that are thought to be correct at
the beginning of some phase are discovered to have failed by the end of the phase, then

(a) at most 4n units of work are performed;
(b) at most (4f + 2)t2 + 9t

√
t/(2

√
2) messages are sent;

(c) by round (f + 1)n/t+ 4f + 2 + nt/2 + 3t2/4, all processes have retired.

Proof. For part 1, an easy induction on k shows that by the end of phase k, no
more than n/2k units of work remain to be done, and no more than n+ · · ·+ n/2k−1

units of work have been done. It follows that at most 2n units of work are done
altogether. (We remark that there is nothing special about the factor “half” in our
requirement that we revert to Protocol A if more than half the processes that were
correct at the beginning of the phase are discovered to have failed during the phase.
We could have chosen any factor α; a similar proof would show that by the end of
phase k, at most αkn units of work remain to be done, and no more than n+· · ·+αk−1n
units of work have been done, so that no more than n/(1−α) units of work are done
altogether. However, it follows from results of [8] that if we allow an arbitrary fraction
of the processes to fail at every step and do not revert to Protocol A, it is possible
to construct an execution where f processes fail and Ω(n log(f)/ log log(f)) units of
work are done altogether. Indeed, it follows from the arguments in [8] that this result
is tight; there is a matching upper bound.) Since each nonfaulty process broadcasts
to all the other nonfaulty processes in each round of an agreement phase, at most t2

messages are sent in each such round. If fk is the number of failures discovered during
the kth agreement phase, then the first agreement phase lasts at most f1 + 2 rounds,
while for k > 1, the kth agreement phase lasts at most fk + 3 rounds, because of the
grace round. Thus, altogether, the agreement phases last at most f + 3a− 1 rounds,
where a is the number of agreement phases. Since a ≤ f + 1, the agreement phases
last at most 4f + 2 rounds, and at most (4f + 2)t2 messages are sent. Finally, to
compute an upper bound on the total number of rounds, it remains only to compute
how many rounds are required to do the work (since we know the agreement phases
last altogether at most 4f + 2 rounds). Recall that at the end of phase k, at most
n/2k units of work need to be done. Since no more than half the processes fail during
any phase, at least t/2k processes are nonfaulty. Thus at most (n/2k)/(t/2k) = n/t
rounds are spent during each work phase doing work. Since there are at most f + 1
work phases, this gives the required bound on the total number of rounds.

For part (2), first observe that if we revert to Protocol A at the end of phase

PERFORMING WORK EFFICIENTLY 1489

k, then by our earlier observations it is known to the remaining processes that no
more than n/2k−1 units of work remain to be done, and no more than (2− 1/2k−1)n
units of work have been done. It is also easy to see that at least t/2 processes
are discovered as faulty. Moreover, by the bounds in part 1, at most (4f + 2)t2

messages have been sent and (f + 1)n/t+ 4f + 2 rounds have elapsed. Now applying
Theorem 2.3, we see that at most 3n/2k−1 work is performed by protocol A, no
more than 9(t/2)

√
t/2 = 9t

√
t/(2

√
2) messages are sent, and nt/2k + 3t2/4 rounds

are required. By taking k = 1 (the worst case), we get the bounds claimed in the
statement of the theorem.

While the worst-case message complexity of this algorithm is significantly worse
than that of our other algorithms, the time complexity is better (at least, if less
than half the correct processes fail in each phase). More importantly, the situation
is particularly good if no process fails or one process fails. If no process fails, then
n units of work are done, the algorithm takes n/t + 2 rounds, and 2t2 messages are
sent. If one process fails, then we leave it to the reader to check that the algorithm
requires at most n/t+ dn/(t(t− 1))e+6 rounds, has message complexity at most 5t2,
and at most n+ n/t units of work are done.

As we mentioned in the introduction, it is easy to modify this algorithm to deal
with a somewhat more realistic setting, where work is continually coming in to the
system. Essentially, the idea is to run eventual Byzantine agreement periodically
(where the length of the period depends on the size of the workload and on other
features of the system). We omit further details here.

We can also cut down the message complexity in the case of no failures to 2(t−1),
rather than 2t2, while still keeping the same work and time complexity. Instead of
messages being broadcast during the agreement phase, they are all sent to a central
coordinator, who broadcasts the results. If there are no failures, the agreement phase
lasts two rounds, just as before. Dealing with failures is somewhat subtle if we do
this though, so we do not analyze this approach carefully here.

5. Application to Byzantine agreement. One application of our algorithms
is to Byzantine agreement. A Byzantine agreement protocol provides a means for
n processes, at most t of which may be faulty, to agree on a value broadcast by a
distinguished process called the general in such a way that all nonfaulty processes
decide on the same value and, when the general is nonfaulty, they decide on the value
the general sent. As in the rest of the paper, we restrict ourselves here to crash
failures.

Consider the following Byzantine agreement algorithm. The algorithm proceeds
in two stages: first, the general broadcasts its value to processes 0 to t; and then
these t + 1 processes employ one of our sequential algorithms to perform the “work”
of informing processes 0 to n− 1 about the general’s value. So, performing one unit
of work here means sending a message of the form “The general’s value is x.” To
distinguish processes 0, . . . , t from the others, we refer to them as the senders. A
few more details are necessary to complete the description of the algorithm. First,
throughout the algorithm, each process has a value for the general. Initially, the value
is 0. If a process receives a message informing it about a value for the general different
from its current value, it adopts the new value. Second, if the chosen work protocol
is C, then we modify it slightly so that each of its messages contains, in addition to
its usual original contents, the current value the sender has for the general. Finally,
at a predetermined time by which the underlying work protocol is guaranteed to have
terminated, each process decides on its current value for the general.

1490 CYNTHIA DWORK, JOSEPH Y. HALPERN, AND ORLI WAARTS

Observe that processes 0, . . . , t play two roles in the second stage of the Byzantine
agreement algorithm: they both report the value of the general (as they do work) and
are informed of this value (as work is performed on them by other senders).

We now prove the correctness of our Byzantine agreement algorithm. Obviously,
if the general is correct, all processes will decide on its value. Since at least one of the
t+ 1 senders is nonfaulty, it must be the case that a value is reported by a sender to
every nonfaulty process. To show agreement, it suffices to show that there is no time
at which two nonfaulty processes that have had a value reported to them by a sender
have different (current) values. This, in turn, follows from the fact that if an active
sender p reports a value v, and the sender that was active just before p reported v̄,
then at the time p becomes active, no value was reported to any nonfaulty process.
Assume otherwise. Let p be the first active sender that violates this claim. Then p
reports v for the general and the previous sender reported v̄. Let q be the first sender
that was active before p and reported v̄; by construction, all senders that were active
after q but before p reported v̄.

By assumption, when q becomes active, no value was reported to any process that
has not yet crashed. The choice of q guarantees that the only value that is reported
from the time that q becomes active to the time that p becomes active is v̄. It cannot
be the case that a value was reported to p during this time, for then p’s value when
it becomes active would be v̄, not v. In the case of Protocols A and B, since work
is done in increasing order of process number, it follows that no value is reported
to any process with a higher number than p. (We remark that it is important here
that a value is not included as part of the checkpoint messages in Protocols A and
B. Since checkpoint messages are broadcast, if a value were included, it is possible
that a process that was active before p crashed while checkpointing to p; in this case,
p may not have heard the value v̄, and some process with a higher number than p
may have heard it.) Moreover, the proof of correctness of Protocols A and B shows
that all processes with a lower number than p must have crashed before p became
active. Thus it follows that no value was reported to any nonfaulty process at the
time p became active. In the case of Protocol C, when p becomes active it is the
most knowledgeable nonretired (and hence nonfaulty) process. Since for Protocol C
we assume that the checkpointing messages include the value that was sent, no value
can have been sent to any process that has not crashed.

Using Protocol C, we get a Byzantine agreement protocol for crash failures that
uses O(n + t log t) messages in the worst case, thus improving over Bracha’s bound
of O(n + t

√
t) [4]. Using A or B, we match Bracha’s message complexity, but our

protocols are constructive, whereas Bracha’s is not.

6. Conclusions. In this paper we have formulated the problem of performing
work efficiently in the presence of faults. We presented three work-optimal protocols
to solve the problem. One sends O(t

√
t) messages and takes O(n + t) time, another

requires O(t log t) messages at the cost of significantly greater running time, and the
third optimizes on time in the usual case (where there are few failures). In particular,
in the failure-free case, it takes n/t+ 2 rounds and requires 2t2 messages.

There are numerous open problems that remain. For example, it would be inter-
esting to see if message complexity and running time could be simultaneously opti-
mized. It would also be interesting to prove a nontrivial lower bound on the message
complexity of work-optimal protocols. Finally, note that by trying to optimize effort,
the sum of work done and messages sent, we implicitly assumed that one unit of work
was equal to one message. In practice, we may want to weight messages and work

PERFORMING WORK EFFICIENTLY 1491

differently. As long as the “weight” of a message is linearly related to the weight of
a unit of work, then, of course, the complexity bounds for our algorithms continue
to hold. However, if we weight things a little differently, then a completely different
set of algorithms might turn out to be optimal. In general, it would be interesting to
explore message/work/time tradeoffs in this model.

Acknowledgments. The authors are grateful to Vaughan Pratt for many help-
ful conversations, in particular for his help with the proof of Protocol A. We also
thank David Greenberg, Maurice Herlihy, and Serge Plotkin for their suggestions for
improving the presentation of this work. The second author gratefully acknowledges
the support of IBM.

REFERENCES

[1] R. J. Anderson and H. Woll, Algorithms for the certified write-all problem, SIAM J. Com-
put., 26 (1997), pp. 1277–1283. A preliminary version, containing other results, appears in
Proc. 23rd ACM Symposium on Theory of Computing, 1991, pp. 370–380 (with the title
Wait free parallel algorithms for the union-find problem).

[2] H. Attiya, A. Bar-Noy, and D. Dolev, Sharing memory robustly in message-passing systems,
J. Assoc. Comput. Mach., 42 (1995), pp. 124–142. A preliminary version appears in Proc.
9th ACM Symposium on Principles of Distributed Computing, 1990, pp. 363–375.

[3] A. Bar-Noy and D. Dolev, A partial equivalence between shared-memory and message-
passing in an asynchronous fail-stop distributed environment, Math. Systems Theory, 26
(1993), pp. 21–39.

[4] G. Bracha, Department of Computer Science, Cornell University, Ithaca, New York, July 1984,
manuscript.

[5] M. F. Bridgland and R. J. Watro, Fault-tolerant decision making in totally asynchronous
distributed systems, in Proc. 6th ACM Symposium on Principles of Distributed Computing,
1987, pp. 52–63.

[6] J. F. Buss, P. C. Kanellakis, P. L. Ragde, and A. A. Shvartsman, Parallel algorithms
with processor failures and delays, J. Algorithms, 20 (1996), pp. 45–86.

[7] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed systems,
J. Assoc. Comput. Mach., 43 (1996), pp. 225–267. A preliminary version appears in Proc.
10th ACM Symposium on Distributed Computing, 1991, pp. 325–340.

[8] R. De Prisco, A. Mayer, and M. Yung, Time-optimal message-efficient work performance
in the presence of faults, in Proc. 13th ACM Symposium on Principles of Distributed
Computing, 1994, pp. 161–172.

[9] C. Dwork, J. Y. Halpern, and H. R. Strong, Fault Tolerant Load Management System and
Method, U.S. Patent 5,513,354, 1996.

[10] D. Dolev, R. Reischuk, and H. R. Strong, Early stopping in Byzantine Agreement, J. Assoc.
Comput. Mach., 34 (1990), pp. 720–741.

[11] Z. Galil, A. Mayer, and M. Yung, Resolving message complexity of Byzantine agreement
and beyond, in Proc. 36th IEEE Symposium on Foundations of Computer Science, 1995,
pp. 724–733.

[12] D. Gelernter and D. Kaminsky, Supercomputing out of recycled garbage: Preliminary ex-
perience with Piranha, in Proc. ACM International Conference on Supercomputing, 1992,
pp. 417–427.

[13] P. C. Kanellakis and A. A. Shvartsman, Efficient parallel algorithms can be made robust,
Distrib. Comput., 5 (1992), pp. 201–219.

[14] Z. Kedem, K. Palem, A. Raghunathan, and P. G. Spirakis, Combining tentative and definite
executions for very fast dependable parallel computing, in Proc. 23rd ACM Symposium on
Theory of Computing, 1991, pp. 381–389.

[15] Z. M. Kedem, K. V. Palem, and P. G. Spirakis, Efficient robust parallel computations, in
Proc. 22nd ACM Symposium on Theory of Computing, 1990, pp. 138–148.

[16] C. U. Martel, A. Park, and R. Subramonian, Work optimal asynchronous algorithms for
shared memory parallel computers, SIAM J. Comput., 21 (1992), pp. 1070–1099.

[17] J. F. Shoch and J. A. Hupp, The Worm programs—early experience with a distributed com-
putation, Comm. Assoc. Comput. Mach., 25 (1982), pp. 95–103.

http://epubs.siam.org/sam-bin/jvip.pl?journal=SICOMP&vol=26&iss=5&pg=1277

TIME–SPACE TRADEOFFS FOR UNDIRECTED st-CONNECTIVITY
ON A GRAPH AUTOMATA∗

JEFF A. EDMONDS†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1492–1513, October 1998 015

Abstract. Undirected st-connectivity is an important problem in computing. There are algo-
rithms for this problem that use O (n) time and ones that use O (logn) space. The main result of this
paper is that, in a very natural structured model, these upper bounds are not simultaneously achiev-
able. Any probabilistic jumping automaton for graphs (JAG) requires either space Ω(log2 n/ log logn)
or time n(1+Ω(1/ log logn)) to solve undirected st-connectivity.

Key words. time–space tradeoffs, lower bounds, JAG graph, undirected st-connectivity

AMS subject classifications. 68Q05, 68Q15, 68Q25

PII. S0097539794277135

1. Introduction. Graph connectivity is an important problem, both practically
and theoretically. Practically, it is a basic subroutine to many graph theoretic com-
putations. It the basic step in solving network flow optimization problems such as
project scheduling and the matching of people to jobs. Graph connectivity is also
important for computer networks and search problems. Theoretically, it has been
studied extensively in a number of settings. Because the undirected version of the
problem is complete for symmetric log-space and the directed version is complete for
nondeterministic log-space, they are natural problems for studying these classes. The
study of random walks on undirected graphs and deterministic universal traversal se-
quences has made the problem relevant to the issue of probabilism. In addition, the
directed version was used by Karchmer and Wigderson to separate monotone NC1

from NC2. This paper proves time-space tradeoffs for undirected st-connectivity.
(They apply to the harder problem of directed st-connectivity as well.) The impor-
tance of st-connectivity is discussed in more detail in Wigderson’s beautiful survey
[24].

The fastest algorithms for undirected graph st-connectivity are depth-first and
breadth-first search [23]. These use linear time, i.e., O (m+ n) for an n node, m edge
graph. However, they require Ω (n) space. Alternatively, this problem can be solved
deterministically in O

(
log1.5 n

)
space and nO(1) time by traversing the graph using

pseudo-random generators to describe a universal traversal sequence [17]. If nonuni-
formity is allowed, these bounds can be improved to O (log n) space and O

(
n4 log n

)
time [10, 15]. If probabilism is allowed, random walks can traverse any component
of the graph using O (log n) space and only Θ (mn) time [1]. More generally, Broder
et al. [9] have exhibited a family of probabilistic algorithms that achieves a tradeoff

between the time and the space of S · T ∈ m2 logO(1) n. This has been improved to
S · T ∈ m1.5n.5 logO(1) n [2]. A long-term goal is to prove a matching lower bound.

Proving lower bounds for a general model of computation such as a Turing ma-
chine is beyond the reach of the current techniques. Thus it is natural to consider

∗Received by the editors November 2, 1994; accepted for publication (in revised form) August 1,
1996; published electronically May 21, 1998.

http://www.siam.org/journals/sicomp/27-5/27713.html
†Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3.

(jeff@cs.yorku.ca, http://www.cs.yorku.ca/jeff). This work was completed while the author was at
the University of Toronto, Canada.

1492

TIME–SPACE TRADEOFFS 1493

a “structured” model [8], whose basic operations are based on the structure of the
graph, as opposed to being based on the bits in the graph’s encoding. A natural
structured model is the JAG introduced by Cook and Rackoff [11]. It has a set of
states and a limited supply of labeled pebbles that it can either move from a node
to an adjacent node (“walk”) or move directly to a node containing another peb-
ble (“jump”). The pebbles represent node names that a structured algorithm might
record in its workspace and are useful for marking certain nodes temporarily, so that
they are recognizable when other pebbles reach them. Walking represents replacing a
node name by the name of a node that is adjacent to it in the input graph. Jumping
represents copying a previously recorded node name [5]. The space of a JAG is defined
to be S = p log2 n + log2 q, where p is the number of pebbles and q is the number of
states, because it requires log2 n bits to store the name of a node (i.e., the location of
a pebble) and log2 q bits to record the current state.

Although the JAG model is structured, it is not weak. In particular, it is general
enough so that most known algorithms for graph connectivity can be implemented
on it. For example, a JAG can perform depth-first or breadth-first search. It avoids
cycling by leaving a pebble on each node when it first visits it. This uses O (n log n)
space. Cook and Rackoff [11] show that the JAG model is powerful enough to exe-
cute an adaptation of Savitch’s algorithm [20] for directed st-connectivity using only
O
(
log2 n

)
space. Poon [18] shows that Barnes’s et al. [3] sublinear space, polynomial

time algorithm for directed st-connectivity runs on a JAG as well.

Furthermore, Savitch [21] shows that if one allows the JAG the additional ability
to move pebbles from each node i to node i+1 (for an arbitrary ordering of the nodes),
then the model can simulate an arbitrary Turing machine on directed graphs. Beame
et al. [5] show that even without this extra feature, JAGs can solve any undirected
graph problem to within a polynomial factor as fast as Turing machines.

A number of space lower bounds have been obtained (even when an unbounded
amount of time is allowed). Cook and Rackoff [11] prove a lower bound of Ω(log2 n/ log
· log n) on the space required for a JAG to compute directed st-connectivity. This has
been extended to randomized JAGs by Berman and Simon [6]. For undirected graph
st-connectivity Cook and Rackoff [11] prove that pq ∈ ω (1) and Beame et al. [5] prove
that if the pebbles are not allowed to jump, then pq ∈ Ω (n) even for simple 2-regular
graphs. These proofs for undirected graphs show that, with a sublinear number of
states, the model goes into an infinite loop. (This method does not work when there
are a linear number of states, because then the JAG is able to count the number of
nodes traversed.)

Tradeoffs between the number of pebbles p used and the amount of time needed
for undirected graph st-connectivity have also been obtained. These results are par-
ticularly strong, because they do not depend on the number of states q. A universal
traversal sequence is simply a JAG with an unlimited number of states but only one
pebble. Borodin, Ruzzo, and Tompa [7] prove that on this model, undirected st-
connectivity requires Ω

(
m2
)

time. Beame et al. [5] extend this to Ω
(
n2/p

)
for p

pebbles on 3-regular graphs with the restriction that all but one pebble are unmov-
able. Thus, for this very weak version of the model, a quadratic lower bound on
time×space has been achieved. Beame et al. [5] also prove that there is a family of
3p-regular undirected graphs for which st-connectivity with p ∈ o (n) pebbles requires
time Ω(m log(np)), when the pebbles are unable to jump. The new result presented in
this paper is the following.

1494 JEFF A. EDMONDS

Theorem 1. Any probabilistic JAG requires either space Ω(log2 n/ log logn) or
time n(1+Ω(1/ log log n)) to solve undirected st-connectivity even for 3-regular graphs.

This result improves upon the previous results in at least five ways: the lower
bound on time is larger, all pebbles are allowed to jump, the degree of the graphs
considered is constant, it applies to an average case input instead of just the worst-
case input, and probabilistic algorithms are allowed.

The essential reason that tradeoffs arise between the time and the space required
to solve a problem is that when the space is bounded the computation cannot store
the results to all the previously computed subproblems and hence must recompute
them over and over again. In order to prove a superlinear lower bound on the time to
compute st-connectivity, it must be proved that certain subgraphs must be traversed
many times. Although the first time the JAG traverses a particular subgraph may
take many time steps, it can use its states to record the structure of the subgraph so
that subsequent traversals can be performed more quickly. To deal with this situation,
the lower bound is actually proved on a stronger model, called the helper JAG. In this
model, the helper, after learning the input, is allowed to set the JAG’s initial state
and the initial position of the pebbles in the way that minimizes the computation
time. The helper is able to communicate to the JAG at least as much information
about the input as it could remember from a first traversal of a subgraph. In effect,
a helper JAG lower bound is a bound on the time for a regular JAG to traverse the
graph subsequent times.

The helper JAG lower bound is obtained by reducing st-connectivity to st-traversal
and reducing the traversal problem to a game, referred to as the helper-parity game.
The game characterizes the relationship between the number of bits of help (or fore-
knowledge) and the resulting traversal time.

The paper is structured as follows. Section 2 describes the helper parity game.
Section 3 formally defines the probabilistic JAG model. Section 4 reduces the st-
traversal problem to the st-connectivity problem. Section 5 defines the helper JAG.
Section 6 describes the fly swatter graph and gives the complexity of its traversal.
Section 7 describes a line of fly swatter graphs and compares its complexity with that
of the helper-parity game. Section 8 describes how the input graph is recursively built.
Section 9 provides the definitions of the time, pebbles, and cost used at a particular
level of the recursion. This section does not provide a formal proof, but it does give
some crucial intuition. Section 10 proves the main lemma by reducing the traversal
problem to the helper parity game. Section 11 proves the main theorem from the main
lemma. Finally, section 12 presents some strong intuition and possible techniques for
improving the lower bound to the desired bound of n2−o(1).

2. The helper-parity game. The task of one instance of the parity game is to
find a subset of the indexes on which the input vector has odd parity. This idea was
introduced by Borodin, Ruzzo, and Tompa [7]. We extend this game by including a
helper and multiple instances of the game. The helper is included in order to charac-
terize what the JAG stores about a computation when a problem must be computed
many times. Multiple instances of the game are included in order to decrease the
number of help bits per game instances (the number of bits of information that the
helper is allowed to give the player is bounded).

The helper-parity game with d game instances is defined as follows. There are
two parties: a player and a helper. The input ~α consists of d nonzero r bit vectors
α1, . . . , αd ∈ {0, 1}r−{0r}, one for each of the d game instances. The helper sends the
message M (~α) to the player. It consists of a total of b bits about the d vectors. Then

TIME–SPACE TRADEOFFS 1495

the player repeatedly asks the helper parity questions. A parity question specifies
one of the game instances i ∈ [1 . . . d] and a subset of the indexes E ⊆ [1 . . . r]. The
answer to the parity question is the parity of the input αi at the indexes in this set,
namely,

⊕
j∈E [αi]j . The game is complete when the player has received an answer

of 1 for each of the game instances. To simplify the game, the player is only charged
one for the first question asked about a game instance and an additional one for
any subsequent questions about the same game instance. Hence, the game can be
thought of as the player repeatedly selecting a game instance i (in any order) and
asking a single parity question Ei about that instance. If the parity is odd, the player
is charged one for the game instance. Otherwise, he is charged two. Independent of
the answer, the helper reveals the input αi to the player. This is repeated until one
question has been asked about each of the game instances. The cost is defined to be
the average charge per game instance.

c~α =
1

d

∑
i∈[1...d]

{
1 if

⊕
j∈Ei

[αi]j = 1

2 otherwise

}
.

Without any help, the expected charge per game instance is 1.5. Lemma 1 below
proves that if the amount of help is less than a fraction of a bit per game instance,
then the player cannot do much better than this.

Defining the game so that the vector αi is revealed after only one question is asked
about it simplifies the proof of the st-connectivity lower bound without significantly
affecting the bound obtained.

Lemma 1. Pr~α [c~α < 1.5− ε] ≤ 2be−(2ε2−2−r+1)d.

Proof. Fix a helper message m ∈ {0, 1}b. Randomly choose an input ~α uniformly

over all the inputs in ({0, 1}r)d. We will consider what the player’s protocol is given
this message and this input, even if the helper does not send this message on this input.
For i ∈ [1 . . . d], let xi be the indicator variable specifying whether the question about
the ith game instance had odd parity; i.e.,

⊕
j∈Ei

[αi]j = 1. Clearly, these variables

are independent and have probability 1
2 . The cost per game instance given the input

~α and the actions of the player on message m are defined to be

c〈~α,m〉 =
1

d

∑
i∈[1...d]

{
1 if xi = 1
2 otherwise

}
.

From this and Chernoff’s bound [22], we get that

Pr~α
[
c〈~α,m〉 < 1.5− ε

]
= Pr

 ∑
i∈[1...d]

xi ≥
(

1

2
+ ε

)
d

 ≤ e−2ε2d.

Therefore, the cost is low for at most this fraction of vectors ~α ∈ ({0, 1}r)d or,

equivalently, for at most e−2ε2d2rd inputs ~α.

There are 2b different helper messages m. For each message, the player’s actions
are different. Hence, the set of inputs on which the cost is low may be different for
each message and in the worst case are disjoint. Hence, the number of inputs ~α for
which the cost is low when the player is given the correct help from the helper is at
most 2be−2ε2d2rd. The input ~α is actually chosen randomly from ({0, 1}r−{0r})d. It

1496 JEFF A. EDMONDS

follows that

Pr~α [c~α < 1.5− ε] ≤ 2be−2ε2d 2rd

(2r − 1)
d

= 2be−2ε2d
(
1− 2−r

)−d
≤ 2be−2ε2d22−r+1d ≤ 2be−(2ε2−2−r+1)d.

My thesis [12] presents some surprising results about various versions of this
game. It turns out that the helper must give the player quite of few bits of help
before significantly decreasing the number of parity questions the player must ask
when playing a single game instance. However, the same number of bits of help will
decrease the number of questions asked down to only two question per game instance,
no matter how many game instances are being played simultaneously. However, the
helper must provide an additional bit of help per game instance to decrease the number
of questions asked per game instance below 2− ε.

This upper bound is best understood by not considering the message sent by
the helper as being information about the input but as being random bits. With a
few “random” bits, the worst-case complexity decreases to the point that it matches
the expected complexity for a randomized protocol, which is two questions per game
instance. The upper and lower bounds on the number of helper bits required match
the work done by Impagliazzo and Zuckerman [14] on recycling random bits.

3. The probabilistic JAG model. A probabilistic JAG [11] is a finite automa-
ton with p distinguishable pebbles and q states. The input to a JAG is an n vertex d
regular undirected graph with two distinguished vertices s and t. For each vertex v,
there is a labeling of the (half) edges emanating from v with d distinct labels. The set
of labels used at different vertices is the same, but an edge can receive two different
labels at its two endpoints. One of the pebbles is initially placed on the distinguished
node t and other p− 1 are placed on s.

The program of the JAG may depend nonuniformly on n and on the degree d of
the graph. What the JAG does each time step depends on the current state, which
pebbles coincide on the same vertices, which pebbles are on the distinguished vertices
s and t, and the value R ∈ {0, 1}∗ of some random bits. Based on this information,
the automaton changes state and does one of the following two things. It either selects
some pebble P ∈ [1 . . . p] and some label l ∈ [1 . . . d] and walks P along the edge with
label l or it selects two pebbles P, P ′ ∈ [1 . . . p] and jumps P to the vertex occupied by
P ′. A JAG that solves st-connectivity enters an accepting state if and only if there
is a path from s to t in the input graph.

The space of a JAG is defined to be S = p log2 n+ log2 q, where p is the number
of pebbles and q is the number of states, because it requires log2 n bits to store the
name of a node (i.e., the location of a pebble) and log2 q bits to record the current
state.

In this paper, the running time of a deterministic algorithm averaged over inputs
according to a fixed input distribution is considered instead of considering the ex-
pected running time for a probabilistic algorithm on the worst-case input. According
to Yao [25] this is sufficient.

4. Graph traversal. If it is possible for a pebble of a JAG to walk from s to
t on a graph, then a graph is st-connected. However, a JAG can determine that the
graph is st-connected in other ways. For example, suppose that at time T0, pebble
Ps is on vertex s, Pt is on t, and P1 and P2 are both on some third vertex v; at time
T ′ ∈ [T0 . . . T1], Ps and P1 are both on the same vertex v′; and at time T ′′ ∈ [T0 . . . T1],

TIME–SPACE TRADEOFFS 1497

Pt and P2 are both on some other vertex v′′. If these pebbles only walk along edges
of the graph, then it follows that the graph is st-connected.

Additional complexity is caused by the pebbles being able to jump. A single
pebble may not walk these paths from s to t. Instead, one pebble may walk part
of the way. Another pebble may jump to this pebble and continue on the walk. In
general, one cannot assume that a task is completed by a “specific pebble,” because the
pebbles are able to continually change places and each could complete some fraction
of the task.

Such complex procedures for determining st-connectivity are captured by the st-
traversal problem, which is formally defined as follows. Given a JAG computation
on a graph G, the traversal graph H is defined as follows. For every vertex v of G
and step T ∈ [T0 . . . T1], let 〈v, T 〉 be a vertex of H if and only if there is a pebble
on vertex v at time T . Let {〈u, T 〉 , 〈v, T + 1〉} be an edge of H if a pebble walks
along edge {u, v} in G during step T and let {〈v, T 〉 , 〈v, T + 1〉} be an edge of H
if there is a pebble that remains on vertex v during step T . We say that the JAG
traverses the graph G from vertex s to vertex t during the time interval [T0 . . . T1]
if and only if there is an undirected path in H between 〈s, Ts〉 and 〈t, Tt〉 for some
Ts, Tt ∈ [T0 . . . T1].

In the example given above there is a traversal path composed of the four segments
(see Figure 1): from 〈s, T0〉 to 〈v′, T ′〉 following the movements of Ps, from 〈v′, T ′〉
to 〈v, T0〉 following the movements of P1 backward in time, from 〈v, T0〉 to 〈v′′, T ′′〉
following the movements of P2, and from 〈v′′, T ′′〉 to 〈t, T0〉 following the movements
of Pt backward in time. From the existence of this path, the JAG can deduce that s
and t are connected.

pt< t, T0 >

ps
< v′, T ′ >

< v′′, T ′′ >

p1 p2

< s, T0 >

< v, T0 >

Fig. 1. A path in the traversal graph of G.

The st-connectivity decision problem and the problem of traversing from s to t
are closely related. Let F be a family of connected graphs with distinguished nodes s
and t. Let Gs,t ∪Gs′,t′ be the graph composed of two identical disjoint copies of the
graph G ∈ F . Let Gs,t′ ∪ Gs′,t be the same except that one copy has the vertices s
and t′ and the other has s′ and t. The first is st-connected and the second is not. Let
F ′ be the family of graphs {Gs,t ∪Gs′,t′ | G ∈ F} ∪ {Gs,t′ ∪Gs′,t | G ∈ F}.

Lemma 2. If a JAG solves st-connectivity (in T steps) with probability 1
2 + ε for

input graphs uniformally chosen from F ′, then a similar JAG can perform st-traversal
(in T steps) with probability 2ε for graphs uniformally chosen from F .

Proof. Suppose that there is a JAG that solves st-connectivity (in T steps) with
probability 1

2 + ε for graphs uniformally chosen from F ′. We will say that the same
JAG can perform st-traversal (in T steps) on a graph G ∈ F , if on input Gs,t ∪Gs′,t′

or Gs,t′ ∪ Gs,t′ ∈ F ′ it either traverses from s to t or from s′ to t′. By way of
contradiction, suppose for a random graph G ∈ F , the probability that it does this is
strictly less than 2ε. Consider one of the 1 − 2ε fractions of the graphs Gs,t ∪ Gs′,t′

1498 JEFF A. EDMONDS

on which it traverses neither from s to t nor from s′ to t′. Consider the connected
components of H. At each point in time, the pebbles can be partitioned based on
which connected component of H they are in. A pebble can change which part of this
partition it is in by jumping but not by traversing an edge. Since there is no path
from s to t in H, the node 〈s, Ts〉, for any time step Ts, is in a different component
than the nodes 〈t, Tt〉 for any time step Tt. Similarly, for all time steps Ts′ and
Tt′ , nodes 〈s′, Ts′〉 and 〈t′, Tt′〉 are in different components. If this JAG was given
Gs,t′ ∪ Gs′,t as input instead, the connected components of H and the partitioning
of the pebbles would be isomorphic. It follows that the computations on Gs,t ∪Gs′,t′

and on Gs,t′ ∪Gs′,t are identical. Therefore, for at least a half of the 1−2ε fraction of
the graphs being considered the JAG must give the wrong answer. This contradicts
the assumption.

By the definition of the st-traversal problem, all the pebbles are initially placed
on s and t, and not within the graph. However, the proof of the lower bound uses an
inductive argument for which the inductive step requires a somewhat stronger hypoth-
esis than the main result, namely, that the result holds for traversing a subgraph (also
with distinguished nodes s′ and t′) with an arbitrary initial placement of the pebbles
and with an arbitrary initial state. If the subgraph initially contains pebbles within
the subgraph or if the pebbles enter the subgraph via both the s′ and the t′ nodes,
then the path through the traversal graph H may go forward and backward in time
many times, as demonstrated in the above example. However, the following defines
the type of traversals for which proving a lower bound is easier. Consider a subgraph
with distinguished nodes s′ and t′ that initially contains no pebbles and that is built
so that it can be entered by pebbles only via s′ or t′. We will say that the subgraph
has been forward traversed from s′ to t′ if it is traversed, yet, during the time period
of the traversal, pebbles enter the subgraph via only one of the distinguished nodes
s′ or t′ but not both. When this occurs, there must be a path from s′ to t′ or from t′

to s′ that proceeds only forward in time.

Consider a line of d subgraphs, the ith of which has distinguished nodes si and ti,
which are connected by the nodes si and ti+1 being the same node. The input graph
will be many copies of this line of graphs. Consider a computation on this input graph
starting with some initial placement of the pebbles and stopping when one of the lines
of subgraphs has been traversed. Because the line is traversed, each of the subgraphs
in the line must have been traversed. However, only some of these subgraphs would
have been forward traversed. These need to be identified. Let S0 ⊂ [1 . . . d] consist of
those i for which some copy of the line initially contains a pebble in its ith subgraph.
Define S1 ⊂ [1 . . . d]−S0 to consist of those i such that the first time the ith subgraph
in some line is traversed it is not forward traversed. These subgraphs do not initially
contain pebbles; hence, when they are first traversed, pebbles must enter them via
both the distinguished nodes si and ti.

Claim 1. |S0 ∪ S1| ≤ 2p+ 1.

Proof. |S0| ≤ p, because there are only p pebbles. Consider two indices i and
i′ ∈ S0 such that i < i′ and there is no i′′ ∈ S0 strictly between i < i′′ < i′. Consider
two indexes j and j′ such that i < j < j′ < i′. If j, j′ ∈ S1, then pebbles would
need to enter the jth subgraph via tj and enter the j′th subgraph via sj′ . How did
pebbles get in the line of subgraphs between these two nodes without pebbles first
traversing the jth or the j′th subgraphs? Recall pebbles cannot jump to nodes not
already containing pebbles. This is a contradiction. Hence, there can only be one
j ∈ S1 between i and i′. There can also be at most one j ∈ S1 before first i ∈ S0 and
at most one after the last. Hence, |S1| ≤ |S0|+ 1.

TIME–SPACE TRADEOFFS 1499

For all i ∈ [1 . . . d] − (S0 ∪ S1), the ith subgraph is forward traversed. The pa-
rameters will be defined so that p ∈ o (d), so that most of the subgraphs need to be
forward traversed.

5. The helper JAG. If the goal of the JAG is to compute the st-connectivity
problem, then for any given input graph, a helper could tell the JAG the answer by
communicating only one bit of help. On the other hand, we will show that many bits
of help are required to significantly improve the time for the JAG to actually traverse
from s to t in a certain class of graphs.

Having formally defined st-traversal, we are now able to formally define a helper
JAG. It is the same as a regular JAG except that the helper, who knows the complete
input, is able to set the initial state and pebble configuration in a way that minimizes
the traversal time. Let T 〈G,Q,Π〉 be the time required for a regular JAG to traverse
the input graph G starting in state Q ∈ [1 . . . q] and with Π ∈ [1 . . . n]p specifying
for each of the p pebbles which of the n nodes it is initially on. The time for the
corresponding helper JAG to traverse G is defined to be min〈Q,Π〉 T 〈G,Q,Π〉. It is
often easier to think of the helper giving the JAG b = log (qnp) bits of information.

6. A fly swatter graph. The basic components of the input graphs defined in
section 8 are the fly swatter graphs (see Figure 2). A fly swatter graph consists of
two identical graphs with r switches between them. It is very similar to the squirrel
cage graph defined in [5]. Each half consists of a path of length h

2 , called the handle,
and a swatting part. The swatting part consists of two parallel paths of length r + 1
that are both connected to one end of the handle. The distinguished nodes s and t
are located at the ends of the handles farthest from the swatting parts. Suppose the
swatting part of one half of the graph contains the paths u0

0, u
′0
0 , u

0
1, u

′0
1 , . . . , u

′0
r−1, u

0
r

and v0
0 , v

′0
0 , v

0
1 , v

′0
1 , . . . , v

′0
r−1, v

0
r and the swatting part of the other half contains the

paths u1
0, u

′1
0 , u

1
1, u

′1
1 , . . . , u

′1
r−1, u

1
r and v1

0 , v
′1
0 , v

1
1 , v

′1
1 , . . . , v

′1
r−1, v

1
r . Then the setting of

the switches between the halves is specified by a nonzero vector α ∈ {0, 1}r as follows.

For each j ∈ [1 . . . r], the jth switch consists of the two cross-over edges {u0
j , v

[α]j
j }

and {u1
j , v

[α]j}. Note that if [α]j = 0, then the switch remains within the same half
and if [α]j = 1, then the switch crosses over from one half to the other. (The notation
[α]j is used to denote the jth bit of the vector α. The notation αi is reserved to mean

the ith vector in a vector of vectors.) The extra nodes u′0i and v′0i are added so that
the smallest square containing cross-over edges contains six edges.

Forward traversing from s to t in the fly swatter specified by α requires traversing
a sequence of switches E ∈ [1 . . . r]∗ for which the parity of the bits of α on the indexes
in E is 1, i.e.,

⊕
j∈E [α]j = 1. To be able complete this task, the JAG must be able

to determine the parity of such a sequence E. There are two ways in which the JAG
can ask a parity question. The lower bound will prove that these are the only ways
in which the JAG is able to acquire the information about the input.

The first method of asking a parity question requires only one pebble but a great
deal of time. The pebble enters the fly swatter via the distinguished node s (or t),
traverses up the handle, through a sequence of switches E ∈ [1 . . . r]+, and back down
the handle. While the pebble is inside the fly swatter, the JAG has no way of learning
which half the pebble is in, because the two halves are indistinguishable. However,
when the pebble reaches the bottom of the handle, the parity of the sequence is
determined by whether the distinguished node s or t is reached. Each handle contains
h
2 edges. Therefore, asking a parity question with one pebble requires the JAG to
traverse at least h edges. This is illustrated in Figure 3 (a).

1500 JEFF A. EDMONDS

α 2α dα1

h/

d
==1 1 2s s ts t 2 t 3 3

2

4

5

1

3

[α] = 1
[α] = 0

[α] = 0

[α] = 1

[α] = 1

α

s t

(b)(a)

2

r

Fig. 2. A fly swatter graph and a line of fly swatters.

The second method requires two pebbles, one of which acts as a marker and the
other of which traverses a sequence of switches E. The parity of the sequence is
determined by whether the traversing pebble returns to the marker. For example, if
a pebble starts at node u0

2 and walks the edges labeled 〈switch,up,switch,down 〉, then
one possible sequence of nodes for the pebble to follow is u0

2, v
0
2 , v

0
3 , u

0
3, u

0
2 and another

is u0
2, v

0
2 , v

0
3 , u

1
3, u

1
2 depending on which switches in the graph are switched. Provided

the JAG leaves a pebble as a marker at the node u0
2, it can differentiate between

these two sequences and learn whether [α]2 ⊕ [α]3 is 0 or 1. This is illustrated in
Figure 3 (b). Even though a parity question E (for example, the parity of all the bits
in α) may require Θ (r) edges to be traversed, the lower bound will only charge the
JAG for the traversal of at most two edges for a parity question using a marker.

If the JAG can only gain information about the input by asking parity questions in
these two ways, then a JAG that solves st-connectivity for a fly swatter graph must
be able to solve the following version of the parity game: The input to this game
consists of a single nonzero vector α ∈ {0, 1}r. The player, after receiving no help,
asks parity questions. A parity question specifies a subset of the indexes E ⊆ [1 . . . r].
The answer to the parity question is the parity of the input α at the indexes in this
set, namely,

⊕
j∈E [α]j . The complexity is the number of questions asked before the

player asks a parity question with answer 1.

Beame et al. [5] prove that, for this game, r questions must be asked in the worst
case. The proof uses the fact that α ∈ {0, 1}r−{0r} forms a vector space of dimension
r. In this way, they prove that for one pebble, Θ (hr) = Θ

(
n2
)

time is needed.
However, we are considering more than one pebble. With two pebbles the JAG can
traverse the fly swatter graph in linear time.

In order to prove lower bounds when the JAG has more than one pebble, a more
complex graph is needed. The fly swatter graph will be a subgraph of this more
complex graph. In order to traverse this complex graph the JAG will have to traverse
a particular fly swatter subgraph many times. Hence, on subsequent traversals of
this fly swatter the JAG may have some precomputed information about it. This is
modeled by a helper providing the JAG with this precomputed information.

TIME–SPACE TRADEOFFS 1501

1 53
[α] [α] [α] = 1

1 53
[α] [α] [α] = 0

2

4

5

1

3

[α] = 1
[α] = 0

[α] = 0

[α] = 1

[α] = 1

s t

(a)

s t

2

4

5

1

3

[α] = 0

[α] = 0

[α] = 1

[α] = 1

[α] = 0

vs

2h/

3 4
[α] [α] = 0 3 4

[α] [α] = 1

(b)

4

M M

VS
4

3 3

[α] = 0

[α] = 0

[α] = 1

[α] = 0

Fig. 3. A parity question without and with a marker.

7. The helper and a line of fly swatter graphs. The helper communicates
information to the JAG about the input graph by specifying the initial state Q ∈
[1 . . . q] and location of each of the p pebbles. Hence, the amount of information that
the helper is able to provide is limited to at most b = log (qnp) bits. Only log r << b
bits are required for the JAG to be able to traverse a fly swatter in linear time.
However, b is not enough bits of help to simultaneously provide sufficient information
about many fly swatter graphs. For this reason, we require the JAG to traverse a
line of d fly swatters. Such a line is specified by the parameters r ∈ O (1), h ∈ O (1),

d ∈ logO(1) n and the vector of vectors ~α = 〈α1, . . . , αd〉 ∈ ({0, 1}r−{0r})d. The d
graphs are connected by making the distinguished nodes ti and si+1 be the same node
for i ∈ [1 . . . d− 1]. This is illustrated in Figure 2 (b).

The similarities between the parity game and the traversal of a line of fly swatter
graphs should be clear, at least informally. Lemma 1 proves that if the JAG is only able
to gain information by asking parity questions and b << d, then the average number
of questions the JAG must ask is (1.5− ε) d. Therefore, if a marker is utilized in none

1502 JEFF A. EDMONDS

of the questions, then the number of edges traversed by the JAG is h (1.5− ε) d, and if
a marker is utilized in all of the questions, then 2 (1.5− ε) d edges are traversed. Note
that without a marker, the time required is roughly a factor of (1.5− ε) larger than
the number of edges. This factor is not very impressive, but its effect is magnified in
a recursive construction.

8. The recursive fly swatter graphs. See Figure 4. Let G (~αl) denote the line

of fly swatters specified by the vector of vectors ~αl =
〈
α〈l,1〉, . . . , α〈l,d〉

〉 ∈ ({0, 1}r−{0r})d.
For each l ≥ 0, we recursively define a graph. Define G (∅) to be a single edge.
Define G (~α1, . . . , ~αl) to be the graph G (~αl) where each edge is replaced by a su-
per edge consisting of a copy of G (~α1, . . . , ~αl−1). The node s〈l−1,1〉 is one end of
the super edge and the node t〈l−1,d〉 is the other end. All the super edges in one

level are the same. The family of recursive fly swatter graphs is
{
G (~α1, . . . , ~αL) |

~α1, . . . , ~αL ∈ ({0, 1}r−{0r})d }, where L is such that n is the total number of nodes.
(Gadgets can be added to make the graph 3-regular without changing it significantly.)
The graph G (~α1, . . . , ~αl) contains (h+ 10r) d copies of G (~α1, . . . , ~αl−1). Therefore,

the total number of edges is at most [(h+ 10r) d]
L
. The number of nodes n is ap-

proximately two thirds of the number of edges.

Fig. 4. The recursive line of fly swatters graph. (Sorry, the cycles in the figure have length 4
instead of 6.)

A crucial observation in understanding the complexity of traversing this graph
is that a pebble can only be used as a marker in one recursion level at a time. To
demonstrate this, consider L = 2 levels of recursion and p = 2 pebbles. If a parity
question is asked about the top level vector ~αL by leaving a pebble as a marker,
then only one pebble remains to traverse the sequence of super edges required by the
question. Hence, these super edges, which are themselves lines of fly swatters, must
be traversed with the use of only one pebble. Alternatively, if two pebbles are used
to traverse each super edge, then there is “effectively” one pebble for the traversal of
the top level. See Figures 3 (b) and 5.

An intuitive explanation of the lower bound can now be given. (A formal proof is
provided in section 11.) There are p pebbles, hence at most p− 1 markers. It follows
that L − p + 1 levels are traversed without the use of a marker. Note, as well, that
the time to traverse a copy of G (~α1, . . . , ~αl) is the number of super edges traversed
in the lth level subgraph G (~αl) multiplied by the time to traverse each super edge
G (~α1, . . . , ~αl−1). Therefore, an estimation of the total time is the product of the
number of super edges traversed at each of the L levels:

TIME–SPACE TRADEOFFS 1503

Fig. 5. Ten super edges of a two level recursive fly swatter graph.

T ≥ [h (1.5− ε) d]
L−p+1

[(1.5− ε) d]
p−1

= (1.5− ε)
L × (hd)

L × h−p+1.(8.1)

The parameters are chosen as follows: r, h ∈ Θ (1), d ∈ logΘ(1) n, and L ∈ Θ(logn
log log n).

Then the first factor becomes 2Ω(logn
log logn), the second is close with n (assuming r <<

h), and the third is insignificant compared with the first assuming that p is a constant
fraction of L

log h ∈ Θ(logn
log log n). This is the bound claimed in Theorem 1.

9. The time, pebbles, and cost used at level l. The lower bound is proved
by induction on the number of levels of recursion l. For each l ∈ [1 . . . L], we
prove a lower bound on the cost to traverse some copy of G (~α1, . . . , ~αl). Define

~γ = 〈~α1, . . . , ~αl−1〉 and ~β = 〈~αl+1, . . . , ~αL〉 so that G (~α1, . . . , ~αL) and G(~γ, ~αl, ~β)
denote the same graph. Think of G (~γ, ~αl) (the subgraph traversed) as a line of d
fly swatters G (~αl) with each of its super edges being a copy of G (~γ). The super
edge G (~γ) does not need to be understood, because the induction hypothesis proves

a lower bound on the time to traverse it. In the graph G(~γ, ~αl, ~β), there are many

copies of G (~γ, ~αl). The graph G(~β) is called the context in which these copies of
G (~γ, ~αl) appear.

Informally, the time required to traverse G (~γ, ~αl) is the number of super edges of
G (~αl) traversed multiplied by the time to traverse a super edge G (~γ). This fails to be
true, because each traversal of a super edge may require a different amount of time.
This difference in time is caused by the number of markers (pebbles) being used in
the traversal and by the state and position of the pebbles before the traversal. Note
that differences in traversal times are not caused by differences in the structure of the
super edges, because they are all identical.

Let Q ∈ [1 . . . q] be a state of the JAG and let Π ∈ [1 . . . n]p specify which node

of G(~γ, ~αl, ~β) each of the p pebbles is on. Consider the JAG computation starting in

the configuration described by Q and Π on the graph G(~γ, ~αl, ~β) until some copy of
G (~γ, ~αl) is traversed. Define T

[
l,
〈
~γ, ~αl, ~β

〉
, Q,Π

]
to be the number of time steps taken.

This will be abbreviated to T [l] when the rest of the parameters are understood.

1504 JEFF A. EDMONDS

Define p
[
l,
〈
~γ, ~αl, ~β

〉
, Q,Π

]
(abbreviated to p[l]) to be

p
[
l,
〈
~γ, ~αl, ~β

〉
, Q,Π

]
= max

T∈[1...T [l]]
[p+ 1− (# copies of G (~γ, ~αl) containing pebbles at time T)] .

At no time during the interval does a copy of G (~γ, ~αl) contain more than p[l] pebbles.
For example, suppose there are two copies of G (~γ, ~αl) containing pebbles. One copy
contains at least one pebble and, therefore, the other copy contains no more than
p + 1− 2 = p− 1 pebbles. Think of the “(# copies of G (~γ, ~αl) containing pebbles)”

as the number of pebbles being used as “markers” in the graph G(~β). Essentially, no
more than one of these pebbles is available to be used in the traversal of G (~γ, ~αl).

Define the cost incurred by the JAG in traversing a copy of G (~γ, ~αl) to be

w
[
l,
〈
~γ, ~αl, ~β

〉]
= min
〈Q,Π〉

h
p
[
l,

〈
~γ, ~αl,

~β

〉
, Q,Π

]
T
[
l,
〈
~γ, ~αl, ~β

〉
, Q,Π

]
.

The motivation for using hp[l]T [l] comes from (8.1). Since the average time T [l] to

traverse G (~γ, ~αl) can be estimated by (1.5− ε)
l
(hd)

l
h−p[l]+1, the quantity hp[l]T [l] is

essentially independent of the number of pebbles used. The reason for minimizing
over 〈Q,Π〉 is that we are assuming the helper sets the initial JAG configuration in a
way that minimizes the cost of the traversal. The actual bounds obtained (with high
probability) are the following:

W [0] = h,

W [l] = W [l− 1]× h× (d(1.5− ε)− 4p− 2)

= [h× (d(1.5− ε)− 4p− 2)]
l
h.

The remaining goal is to prove that with high probability (over randomly chosen
inputs) the cost w

[
l,
〈
~γ, ~αl, ~β

〉]
to traverse a copy of G (~γ, ~αl) is at least W [l]. Lemma 3

provides the inductive step for this proof.

10. Reducing the helper parity game to st-traversal. Suppose that there
is a JAG algorithm for which the time to traverse a copy of G (~γ, ~αl) is only a small
factor more than the time to traverse a copy of G (~γ). This means that the JAG is
able to traverse the line of fly swatters G (~αl) without traversing many of its super
edges and hence without “asking” many parity questions about ~αl. In effect, the JAG
is able to play the helper parity game with parameters r, d, and b = log (qnp), where
r and d are the parameters defining the line of fly swatters and log (qnp) is the space
allocated to the JAG. This is captured in the following lemma.

Lemma 3. Given an algorithm for st-traversal whose cost on input G(~γ, ~αl, ~β)
to traverse a subgraph at the l − 1st and the lth levels are w

[
l− 1,

〈
~γ, ~αl, ~β

〉]
and

w
[
l,
〈
~γ, ~αl, ~β

〉]
, we can produce a protocol for the helper parity game for which the

number of questions asked per game instance on input ~αl is c~αl such that

Pr~αl [c~αl < 1.5− ε] ≥ Pr〈~γ,~αl,~β〉
[
w
[
l,
〈
~γ, ~αl, ~β

〉]
< W [l]

]
−Pr〈~γ,~αl,~β〉

[
w
[
l− 1,

〈
~γ, ~αl, ~β

〉]
< W [l− 1]

]
.

TIME–SPACE TRADEOFFS 1505

Corollary 1. Given a helper-JAG algorithm for st-traversal whose traversal
time on input G (~α1, . . . , ~αL) is T〈~α1,...,~αL〉 and the helper parity game defined in
Lemma 3,

Pr〈~α1,...,~αL〉
[
T〈~α1,...,~αL〉 < [h× (d(1.5− ε)− 4p− 2)]

L
h−p+1

]
≤ L× Pr~α [c~α < 1.5− ε] .

Proof. The time and the cost incurred by the JAG to traverse the entire input
graph are defined to be T〈~α1,...,~αL〉 = T [L] and w[L] = min〈Q,Π〉 hp[L]T [L]. The number
of pebbles p[L] used in the traversal is at most the number of pebbles p the JAG has.
It follows that if traversal time is small, i.e., T [L] < W [L]h−p, then the cost is small,
i.e., w[L] = hp[L]T [L] < W [L]. It remains to prove that for l ≤ L,

Pr〈~α1,...,~αL〉
[
w
[
l,
〈
~γ, ~αl, ~β

〉]
< W [l]

]
≤ l × Pr~α [c~α < 1.5− ε] .

The proof proceeds by induction on l. For the base case, l = 0, the subgraph G ()
is a single edge requiring at least 1 time step for traversal by at least one pebble.
This guarantees that with probability 1, w[0] = min〈Q,Π〉 hp[0]T [0] ≥ h = W [0]. The
induction step follows easily using Lemma 3.

Proof. Consider a fixed algorithm for st-traversal. In the helper-parity protocol
defined below, the game helper learns what help to send and the game player learns
what questions to ask by running this fixed JAG algorithm as it traverses a line of fly
swatters at the lth level.

Both the st-traversal problem and the helper-parity game have the vector ~αl =〈
α〈l,1〉, . . . , α〈l,d〉

〉 ∈ ({0, 1}r−{0r})d as part of its input. However, the st-traversal

problem has the additional inputs ~γ and ~β. Therefore, these vectors are fixed to ~γ′

and ~β′ in a way that satisfies the property

Pr~αl

[
w
[
l,
〈
~γ′, ~αl, ~β′

〉]
< W [l]

]
− Pr~αl

[
w
[
l− 1,

〈
~γ′, ~αl, ~β′

〉]
< W [l− 1]

]
≤ Pr〈~γ,~αl,~β〉

[
w
[
l,
〈
~γ, ~αl, ~β

〉]
< W [l]

]
− Pr〈~γ,~αl,~β〉

[
w
[
l− 1,

〈
~γ, ~αl, ~β

〉]
< W [l− 1]

]
.

These vectors ~γ′ and ~β′ are known in advance to both the game helper and the game
player.

The first thing that the game protocol must specify is the message M (~αl) sent
by the game helper on each input ~αl. This message is defined to be

〈
Q〈l,~αl〉,Π〈l,~αl〉

〉
,

which specifies the configuration in which the JAG helper initially places the JAG
when G(~γ′, ~αl, ~β′) is the JAG’s input graph. Note that the game helper only sends
log (qnp) bits, because this is the number of bits needed to encode a state and the
locations of all p pebbles.

The game player learns which questions to ask the helper by simulating the JAG
algorithm on the graph G(~γ′, ?, ~β′) starting in the configuration

〈
Q〈l,~αl〉,Π〈l,~αl〉

〉
. The

only thing preventing the game player from running the JAG is that he does not know
the vector ~αl. However, he can run the JAG as long as the computation does not
depend on this unknown information. Specifically, suppose during the simulation that
pebbles enter a fly swatter defined by a α〈l,i〉 that is not known by the game player.
The game player will be able to continue running the JAG for quite a while. However,
as soon as the computation depends on which crossover edges of the fly swatter are
switched, he must stop the simulation. He then asks the game helper a question about
the game instance α〈l,i〉. By definition of the parity game, the game helper reveals

1506 JEFF A. EDMONDS

to him the entire vector α〈l,i〉. With this new information, the game player is able to
continue the simulation until the next such event occurs.

As was done in section 4, let S0 ⊂ [1 . . . d] consist of those i for which some copy
of G (~γ′, ~αl) initially (i.e., according to Π〈l,~αl〉) contains a pebble in its ith fly swatter.
Note that the p pebbles of the JAG might be contained in different copies of G (~γ′, ~αl),
but all such copies are considered. The game player begins the game by asking an
arbitrary parity question Ei about α〈l,i〉 for each i ∈ S0.

The game player then starts simulating the JAG. Because he knows α〈l,i〉 for
every fly swatter containing pebbles, he can run the JAG at least until a pebble moves
into an adjacent fly swatter. The JAG might alternately move pebbles contained in
different copies of G (~γ′, ~αl). However, we will count the number of time steps taken
in each copy separately.

If the ith fly swatter in some copy of G (~γ′, ~αl) is entered via both its si and ti
distinguished nodes, then the game player will also ask an arbitrary parity question
Ei about α〈l,i〉, as long as a question has not been asked about α〈l,i〉 already. The
indexes for which this happens forms the set S1, as defined in section 4. By Claim 1,
|S0 ∪ S1| ≤ 2p+ 1. Therefore, this completes at most 2p+ 1 of the d game instances
α〈l,1〉, . . . , α〈l,d〉. The remaining fly swatters indexed by i ∈ [1 . . . d] − (S0 ∪ S1) are
forward traversed.

Two events will now be defined. If one of these events occurs within the ith fly
swatter in some copy of G (~γ′, ~αl), then the game player asks a question about the ith
game instance α〈l,i〉. Below, we prove that the computation of the JAG through the
ith fly swatter does not depend on α〈l,i〉 until one of these events occurs. It follows that
the game player is always capable of running the simulation and hence of executing
the parity-game protocol currently being defined. We also prove that, because fly
swatters indexed by i ∈ [1 . . . d] − (S0 ∪ S1) are forward traversed, one of the events
eventually occurs within each of them. From this, it follows that the parity-game
protocol will terminate, asking a question about each game instance. Finally, I prove
that traversing a fly swatter is at least twice as costly for the JAG when the question
asked has even parity. Hence, the total cost for the parity game is proportional to the
total cost for the JAG traversal.

Before continuing, recall that section 6 described two ways to ask a parity ques-
tion. The first event will be defined so that it occurs within a fly swatter when the
two pebble method is used within it, i.e., a pebble is left as a marker while another
pebble walks along a sequence of super edges. Similarly, the second event will be
defined so that it occurs when the one pebble method is used; i.e., a pebble walks up
the handle, through a sequence of switches, and back down a handle again.

The first of these events is formally defined to occur within a fly swatter after the
following has occurred twice during disjoint intervals of time. What must occur twice
is that one of the super edges of the fly swatter is traversed, and during the entire
time of its traversal, there is a pebble (not necessarily the same pebble at each time
step) contained in the copy of G (~γ′, ~αl) containing the fly swatter but not contained
in the super edge in question. If this occurs in the ith fly swatter in some copy of
G (~γ′, ~αl), then the player asks an arbitrary question Ei about α〈l,i〉.

The second event is defined to occur within the ith fly swatter. If it is initially
empty, pebbles traverse up the handle, reach the cross-over edges, and then traverse
down the handle again, reaching one of the distinguished nodes s〈l,i〉 or t〈l,i〉; yet
during this entire time the first event never occurs within the ith fly swatter. We
claim that for this event to occur, for i ∈ [1 . . . d] − (S0 ∪ S1), all the pebbles within

TIME–SPACE TRADEOFFS 1507

this fly swatter must traverse a single well-defined sequence of switches. When the
second event occurs within the ith fly swatter in some copy of G (~γ′, ~αl), the game
player asks the question Ei that contains j iff the jth switch was traversed an odd
number of times.

Now we will prove the claim. As stated, the pebbles are initially outside of
the fly swatter. Because i 6∈ S1, pebbles do not enter the fly swatter via both the
distinguished nodes s〈l,i〉 and t〈l,i〉. Without loss generality assume that they enter
via s〈l,i〉. Furthermore, there are never two pebbles within the fly swatter that have
four or more full super edges between them. The reason is as follows. The pebbles
contained in the fly swatter are initially together, because they enter only via s〈l,i〉.
In order for two pebbles to get three full super edges between them, a super edge
must be traversed while there is a pebble contained in this copy of G (~γ′, ~αl) but not
contained in the super edge in question. For the first event to occur, this must happen
twice during disjoint intervals of time. For two pebbles to have four full super edges
between, a second super edge must be traversed in this way. These two traversals
occur during disjoint intervals in time and hence the first event occurs. Because the
first event does not occur, no two pebbles in the fly swatter ever have four full super
edges between them. Hence, the pebbles must traverse up the handle more or less
together. They cannot traverse in opposite directions around a square of six super
edges; hence they must traverse the same sequence of switches. Finally, they must
traverse down the handle together. This proves the claim.

We will now prove that the game player always has enough information to continue
running the JAG. Because of the game-helper’s message and the fact that ~γ′ and ~β′

are fixed, the only information that the player is lacking is ~αl. In addition, α〈l,i〉 is
revealed as soon he asks a question about it. Therefore, the only concern is whether
the game player, even though he does not know α〈l,i〉, can run the JAG as it traverses
the ith fly swatter, at least until one of the two events happens. As said, if the
first event has not occurred, then all the pebbles must traverse the same sequence
of switches. Therefore, the only influence that α〈l,i〉 (i.e., which switchable edges
are switched) has on the computation is in which of the two fly swatter halves these
pebbles are contained. However, the JAG has no way of knowing which half the
pebbles are in, because the super edges in the two halves, the structure of the halves,
and even the edge labels are identical. Therefore, the player knows as much as the
JAG knows (i.e., the state and the partition of the pebbles) until second event occurs.

It has now been proven that the above protocol is well defined and meets the
requirements of the game. The remaining task is to prove that the cost to the parity
game is proportional to the cost of the JAG’s traversal. Let us first consider the cost
of the JAG’s traversal. The JAG is run on the input graph G(~γ′, ~αl, ~β′), starting
in the configuration

〈
Q〈l,~αl〉,Π〈l,~αl〉

〉
specified by the JAG helper, until some copy

of G (~γ′, ~αl) (a line of fly swatters at the lth level) is traversed. By definition, the
time of this traversal is T

[
l,
〈
~γ′, ~αl, ~β′

〉
, Q〈l,~αl〉,Π〈l,~αl〉

]
, the number of pebbles “used”

during this traversal is p
[
l,
〈
~γ′, ~αl, ~β′

〉
, Q〈l,~αl〉,Π〈l,~αl〉

]
, and the cost incurred by the JAG

is w
[
l,
〈
~γ′, ~αl, ~β′

〉]
= min〈Q,Π〉 hp[l, 〈~γ′, ~αl, ~β′〉, Q,Π]T

[
l,
〈
~γ′, ~αl, ~β′

〉
, Q,Π

]
. Abbreviate these

values to T [l, ~αl], p[l, ~αl] and w[l, ~αl]. For each i ∈ [1 . . . d]−S0, define T [l, ~αl, i] to be the
number of time steps for the event to occur within the ith fly swatter of some copy
of G (~γ′, ~αl). This time is at least the product of the number of super edges traversed
and the minimum time to traverse a super edge on this input graph. The number of
super edges traversed depends on whether a pebble was left as a marker within the
fly swatter and whether a path from s〈l,i〉 to t〈l,i〉 was found in the first attempt, i.e.,

1508 JEFF A. EDMONDS

whether the answer to the parity was odd. The minimum cost to traverse a super
edge G (~γ′) when the input graph is G(~γ′, ~αl, ~β′) is defined to be w

[
l− 1,

〈
~γ′, ~αl, ~β′

〉]
.

Each traversal of a super edge will cost at least this minimum. Abbreviate this with
w[l− 1, ~αl]. The following claim bounds the time T [l, ~αl, i] for the event to occur within
the ith fly swatter.

Claim 2. For each i ∈ [1 . . . d]− (S0 ∪ S1),

T [l, ~αl, i] ≥
{

1 if
⊕
j∈Ei

[
α〈l,i〉

]
j

= 1

2 otherwise

}
w[l− 1, ~αl]h

−p
[
l, ~αl

]
+1
.

Proof. Case 1. Suppose the first event occurs; i.e., two super edges at level l−1 are
traversed by a pebble, and during the entire time of their traversal, there is another
pebble contained in the same copy of G (~γ′, ~αl) but not contained in these two super
edges. Consider one of these two super edges traversed and let

〈
Q〈l−1,~αl〉,Π〈l−1,~αl〉

〉
be the configuration of the JAG at the beginning of this traversal. The number of time
steps starting in this configuration until some copy of G (~γ′) is traversed (clearly the
super edge in question) is defined to be T

[
l− 1,

〈
~γ′, ~αl, ~β′

〉
, Q〈l−1,~αl〉,Π〈l−1,~αl〉

]
and the

number of pebbles “used” in this traversal is defined to be p
[
l− 1,

〈
~γ′, ~αl, ~β′

〉
, Q〈l−1,~αl〉,

Π〈l−1,~αl〉
]
. Abbreviate these to T [l− 1, ~αl] and p[l− 1, ~αl]. It will also be useful to use

T ′[l− 1, ~αl] to denote the time interval during which this super edge is traversed and
to use T ′[l, ~αl] to denote the time interval during which the entire line of fly swatters
G (~γ′, ~αl) is traversed. The “cost” of the traversal of the super edge is defined to be

hp[l− 1, ~αl]T [l− 1, ~αl].

This is at least

w[l− 1, ~αl] = min
〈Q,Π〉

h
p
[
l− 1,

〈
~γ′, ~αl, ~β′

〉
, Q,Π

]
T
[
l− 1,

〈
~γ′, ~αl, ~β′

〉
, Q,Π

]
,

which is the minimal cost of traversing any super edge when the helper has preset the
JAG configuration 〈Q,Π〉 to minimize the cost. Solving for the traversal time gives

T [l− 1, ~αl] ≥ w[l− 1, ~αl]h
−p
[
l − 1, ~αl

]
.

The next step is to bound the number of pebbles p[l− 1, ~αl] “used” to traverse
this super edge. The intuition is as follows. The JAG has p[l, ~αl] pebbles available to
traverse a copy of G (~γ′, ~αl). If it leaves a pebble as a marker in the lth level and
traverses a sequence of switchable edges with the other p[l, ~αl] − 1 pebbles, then only
p[l, ~αl] − 1 pebbles are available for the traversal of these super edges G (~γ′). More
formally, we want to prove that p[l− 1, ~αl] ≤ p[l, ~αl]−1. To do this, we must bound the
minimum number of copies of G (~γ′) in G(~γ′, ~αl, ~β′) that contain pebbles (number of
markers) during the traversal of this super edge. By definition,

p[l, ~αl] = max
T∈T ′[l, ~αl]

[p+ 1− (# copies of G (~γ′, ~αl) containing pebbles at time T)] .

Therefore,

min
T∈T ′[l− 1, ~αl]

[# copies of G (~γ′, ~αl) containing pebbles at time T] ≥ p− p[l, ~αl] + 1.

TIME–SPACE TRADEOFFS 1509

We know that during the time interval T ′[l− 1, ~αl], one of the copies of G (~γ′, ~αl)
contains two copies of G (~γ′) (super edges) that contain pebbles. Therefore,

min
T∈T ′[l− 1, ~αl]

[# copies of G (~γ′) containing pebbles at time T] ≥ p− p[l, ~αl] + 1 + 1

and, therefore, p[l− 1, ~αl] ≤ p[l, ~αl] − 1. From this we can bound the time of this su-
per edge’s traversal to be T [l− 1, ~αl] ≥ w[l− 1, ~αl]h−p[l, ~αl]+1. Because the first event
occurred, this occurred twice during disjoint intervals in time. Hence, the time re-
quired for the first event to occur can be taken to be at least the sum of the times
for the two super edges to be traversed, without overcounting time steps. Therefore,
2× w[l− 1, ~αl]h−p[l, ~αl]+1 time steps are required.

Case 2. Suppose the second event occurs and
⊕

j∈Ei

[
α〈l,i〉

]
j

= 1. This event in-

volves traversing up and down the handle. The handle contains h
2 super edges. There-

fore, at least h super edges are traversed. These traversals must occur during disjoint
intervals of time, because a super edge along the handle must be completely traversed
before the next super edge along the handle is entered. The maximum number of peb-
bles p[l− 1, ~αl] that can be used to traverse each of these copies of G (~γ′) is p[l, ~αl]. Even
if this number is used, the traversal time for each is T [l− 1, ~αl] ≥ w[l− 1, ~αl]h−p[l, ~αl].
Therefore, the time to traverse h super edges is at least w[l− 1, ~αl]h−p[l, ~αl]+1.

Case 3. Suppose the second event occurs and
⊕

j∈Ei

[
α〈l,i〉

]
j

= 0. Without loss

of generality, assume that the pebbles entered the ith fly swatter from the (i − 1)st
fly swatter through the s〈l,i〉 distinguished node. The pebbles then traverse up the
handle through a sequence of switches specified by Ei and back down the handle to
a distinguished node. Because

⊕
j∈Ei

[
α〈l,i〉

]
j

= 0, the pebbles do not make it to the

distinguished node t〈l,i〉 but arrive back at the s〈l,i〉 node. How do we know that the
pebbles traverse back up and down the handle a second time? By the definition of
i 6∈ S1, the JAG must “continue on” to traverse into the i + 1st fly swatter. Hence,
they must traverse up and down the handles a second time. The two traversals up

and down the handle take at least 2× w[l− 1, ~αl]h
p
[
l, ~αl

]
+1

time steps.
Using this claim, we can bound the total cost w[l, ~αl] (and time T [l, ~αl]) for the

JAG to traverse a line of fly swatters G (~γ′, ~αl).

w[l, ~αl] = h
p
[
l, ~αl

]
T [l, ~αl]

≥ h
p
[
l, ~αl

]
×

 ∑
i∈[1...d]−(S0∪S1)

{
1 if

⊕
j∈Ei

[αi]j = 1

2 otherwise

}
w[l− 1, ~αl]h

−p
[
l, ~αl

]
+1

 .

This can now be compared with the cost to the parity game defined above. By
definition of the game, the number of questions asked per game instance on input ~αl
is

c~αl =
1

d

∑
i∈[1...d]

{
1 if

⊕
j∈Ei

[αi]j = 1

2 otherwise

}

≤ 1

d

2|S0 ∪ S1| +

∑
i∈[1...d]−(S0∪S1)

{
1 if

⊕
j∈Ei

[αi]j = 1

2 otherwise

} .
By Claim 1, |S0 ∪ S1| ≤ 2p+ 1. This gives that

w[l, ~αl] ≥ w[l− 1, ~αl]× h× (dc~αl − 4p− 2) .

1510 JEFF A. EDMONDS

If ~αl were such that w[l− 1, ~αl] ≥W [l− 1] and c~αl ≥ 1.5− ε, then

w[l, ~αl] ≥W [l− 1]× h× (d(1.5− ε)− 4p− 2) = W [l].

It follows that

Pr~αl [w[l, ~αl] < W [l]] ≤ Pr~αl [c~αl < 1.5− ε] Pr~αl [w[l− 1, ~αl] < W [l− 1]] .

11. Completing the proof. The final step is to prove the theorem.
Theorem 1′ For every constant z ≥ 2 and every helper-JAG algorithm for st-

traversal that uses p ≤ 1
29z

logn
log log n pebbles and q ≤ 2logz n states and whose traversal

time on input G (~α1, . . . , ~αL) is T〈~α1,...,~αL〉,

Pr〈~α1,...,~αL〉
[
T〈~α1,...,~αL〉 < n× 2

1
29z

logn
log logn

]
≤ 2× 2−0.05 logz n.

Proof of Theorem 1′. Fix any constant z ≥ 2 and consider a helper-JAG algorithm
that uses p ≤ 1

29z
logn

log log n pebbles and q ≤ 2logz n states. The number of bits of help
given by the helper JAG to set the initial configuration is the space of the JAG which

is b = p log n+ log q ≤ 1
29z

log2 n
log log n + logz n = (1 + o(1)) logz n.

Consider the parity game with the bits of help from the helper being b = (1 +
o(1)) logz n, the length of the vector ~αi being r = 8, the number of game instances
being d = 60 logz n, and the error tolerance being ε = 0.1. By Lemma 1,

Pr~α [c~α < 1.5− ε] ≤ 2b × e−(2ε2−2−r+1)d

= 2(1+o(1)) logz n × e−(2(.1)2−2−8+1)60 logz n

≤ 2−0.054 logz n.

Define the line of fly swatter graphs such that the number of switches per fly
swatter graph is r = 8, the length of the handle is h = 10r

0.05 = 1600, and number of fly
swatters in the line is d = 60 logz n. Then, the number of vertices in G (~α1, . . . , ~αL)

is n ≤ [(h+ 10r) d]
L

= [1.05hd]
L

and L ≥ logn
log(1.05hd) ≥ logn

z log log n+O(1) . Corollary 1

bounds the time T〈~α1,...,~αL〉 for the helper JAG to traverse input G (~α1, . . . , ~αL):

Pr〈~α1,...,~αL〉
[
T〈~α1,...,~αL〉 < [h× (d(1.5− ε)− 4p− 2)]

L
h−p+1

]
≤ L× Pr~α [c~α < 1.5− ε]

≤ log n

z log log n+O (1)
× 2−0.054 logz n ≤ 2× 2−0.05 logz n.

This bound on the time can be computed to be

[h× (d(1.5− ε)− 4p− 2)]
L × h−p+1

≥ n

[1.05hd]
L
× [(1.4− o(1))hd]

L × h−p+1

≥ n×
[
1.4− o(1)

1.05

]L
× h−p

≥ n× 20.415 logn
z log logn+O(1) × 2− log(1600)× 1

29z
logn

log logn

≥ n× 2
1

29z
logn

log logn .

The proof of Theorem 1 follows from Theorem 1′ using Yao [25] and Lemma 2.

TIME–SPACE TRADEOFFS 1511

12. The pseudo-random walk game. The st-connectivity lower bound in
Theorem 1 on the recursive fly swatter graphs reveals to the JAG every time in
reaches the bottom of the handle whether it has reached the node s〈l,i〉 or the node
t〈l,i〉. In reality, however, the JAG does not have access to this information. My belief
in fact is that the JAG quickly looses track of where the pebble is located in the line
of fly swatter graphs. In effect, I believe that the pebble performs a “pseudo-random
walk” on the line. In this section, I define a game that characterizes this idea. A
lower bound on this game would give the desired lower bound for st-connectivity of
n2−o(1). The game is defined as follows.

Game 1. The parameters of the game are d, r, and W̃ (ideally r is a constant,
but it could be as much as log d, and ideally W̃ = d2−ε, but it could be as little as 2d).
The game consists of a player and a randomly chosen input, both of which direct a
pebble walking pseudo randomly on a line of length d. First, the player outputs a fixed
sequence of vectors ~γ = 〈γ1, γ2, . . .〉 ∈ [{0, 1}r]∗. The vector γt is used at time t. Then

the input is chosen. It is a sequence of vectors ~α = 〈α1, α2, . . . , αd〉 ∈ ({0, 1}r−{0r})d
that is chosen uniformly at random. The vector αi is associated with the ith node in
the path.

At every time step t, the pebble is located at some node i in the line and has a
direction of travel from {→,←}. Initially, the pebble is at node 0 with direction →.
The transition depends on αi · γt =

⊕
j∈[1...r] [αi]j ∧ [γt]j. If this dot product is 1,

then the pebble takes a step in the direction that it is traveling in. If the dot product
is 0, then the pebble turns around before taking a step. The following table lists the
possibilities.

αi · γt = 1 αi · γt = 0
→
i

→
i+ 1

←
i− 1

←
i

←
i− 1

→
i+ 1

Consider a fixed player specification ~γ. If the pebble ever returns to node 0, then
the pebble stops and the player looses. Otherwise, let W~α be the number of time steps
for the pebble to reach node d when the input is ~α. The goal of the player is to move
the pebble quickly from node 0 to node d. Our goal is to prove that no matter what
the player does, for a random input, the pebble will almost always require at least W̃
step; i.e., we win if

∀~γ Pr
~α

(W~α < W̃) ≤ 2−d
ε

.

The fact that the player loses if the pebble ever returns to node 0 is not in itself
significant. The game could equivalently be defined so that the pebble bounces at node
0 back to node 1 or that the line is extended in both directions. What is significant
about this part of the definition is that the player does not interact at all with the
game. He outputs the vectors ~γ = 〈γ1, γ2, . . .〉 at the beginning of the game without
any information about the input ~α.

I think that a constant r ∈ O(1) random bits per node is sufficient. In Theorem 1,
it is 8. This is large enough so that {0, 1}r−{0r} is not significantly far from {0, 1}r.
On the other hand, perhaps more random bits may help us. However, we have reasons
to believe that having r > log d can only help the player.

Lemma 4. For r ∈ O(1) and W̃ = d2−ε, the player can win.

1512 JEFF A. EDMONDS

Proof. For a purely random walk on a line, Pr~α(W~α < d2−ε) ≤ 2−d
ε

. The player
can easily be given to match this bound by outputting a random sequence of ~γ.

My conjecture is that the player in this random-walk game cannot do significantly
better than by outputting a random sequence of ~γ.

Conjecture 1. For some r ∈ [8 . . . log d] and for some W̃ ∈ [d1+ε . . . d2−ε], the
player must lose.

Lemma 1 effectively proves this conjecture for r = 8 and W̃ = 2d. The following
theorem states the JAG result.

Theorem 2. Suppose that Conjecture 1 is true; i.e., the pebble in Game 1 almost
always takes dω time steps to traverse a line of length d for some ω ∈ [1 + ε . . . 2− ε].
It follows that for every constant z > 2, the expected time to solve undirected st-

connectivity on a JAG with p ≤ δ2 logn
2z log log n pebbles and q ≤ 2logz n states is at least

nω(1−2δ).

The proof reduces st-traversal of recursive fly swatter graphs by a helper JAG to
the pseudo-random walk game. This reduction requires quite a different proof than
the one presented here. It has not been included because it is slightly more difficult
and because a lower bound on the pseudo-random walk game has not been obtained.

REFERENCES

[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in Proc. 20th Annual
Symposium on Foundations of Computer Science, IEEE, San Juan, Puerto Rico, October
1979, pp. 218–223.

[2] G. Barnes and U. Feige, Short random walks on graphs, in Proc. 25th Annual ACM Sympo-
sium on Theory of Computing, San Diego, CA, May 1993, pp. 728–737.

[3] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s-t connectivity, in Proc., Structure in Complexity Theory, Seventh
Annual Conference, IEEE, Boston, MA, June 1992, pp. 27–33; SIAM J. Comput., 27
(1998), pp. 1273–1282.

[4] G. Barnes and J. Edmonds, Time-space lower bounds for directed st-connectivity on JAG
models, in Proc. 34th Annual Symposium on Foundations of Computer Science, Palo Alto,
CA, November 1993, pp. 228–237.

[5] P. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space tradeoffs for
undirected graph traversal by graph automata, Inform. Comput., 130 (1996), pp. 101–129.

[6] P. Berman and J. Simon, Lower bounds on graph threading by probabilistic machines, in
Proc. 24th Annual Symposium on Foundations of Computer Science, IEEE, Tucson, AZ,
November 1983, pp. 304–311.

[7] A. Borodin, W. L. Ruzzo, and M. Tompa, Lower bounds on the length of universal traversal
sequences, J. Comput. System Sci., 45 (1992), pp. 180–203.

[8] A. Borodin, Structured vs. general models in computational complexity, L’Enseignement
Mathématique, 28 (1982).

[9] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal, Trading space for time in undi-
rected s-t connectivity, in Proc. 21st Annual ACM Symposium on Theory of Computing,
Seattle, WA, May 1989, pp. 543–549.

[10] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari, The electrical
resistance of a graph captures its commute and cover times, in Proc. 21st Annual ACM
Symposium on Theory of Computing, Seattle, WA, May 1989, pp. 574–586.

[11] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

[12] J. Edmonds, Time-Space Lower Bounds for Undirected and Directed ST -Connectivity on JAG
Models, Ph.D. thesis, Department of Computer Science, University of Toronto, August
1993.

[13] J. Edmonds, Time-space trade-offs for undirected st-connectivity on a JAG, in Proc. 25th
Annual ACM Symposium on Theory of Computing, San Diego, CA, May 1993, pp. 718–
727.

http://epubs.siam.org/sam-bin/jvip.pl?journal=SICOMP&vol=27&iss=5&pg=1273

TIME–SPACE TRADEOFFS 1513

[14] R. Impagliazzo and D. Zuckerman, How to recycle random bits, in Proc. 30th Annual Sym-
posium on Foundations of Computer Science, IEEE, Research Triangle Park, NC, October
1989, pp. 248–253.

[15] J. D. Kahn, N. Linial, N. Nisan, and M. E. Saks, On the cover time of random walks on
graphs, J. Theoret. Probab., 2 (1989), pp. 121–128.

[16] Logic and Algorithmic, an International Symposium Held in Honor of Ernst Specker, Zürich,
February 5–11, 1980. Monographie 30 de L’Enseignement Mathématique, Université de
Genève, 1982.

[17] N. Nisan, E. Szemerédi, and A. Wigderson, Undirected connectivity in O(log1.5 n) space,
in Proc. 33rd Annual Symposium on Foundations of Computer Science, IEEE, Pittsburgh,
PA, October 1992, pp. 24–29.

[18] C. K. Poon, A Sublinear Space, Polynomial Time Algorithm for Directed ST -Connectivity on
the JAG Model, Ph.D. thesis, University of Toronto, 1995.

[19] S. Rudich, personal communication, 1994.
[20] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,

J. Comput. System Sci., 4 (1970), pp. 177–192.
[21] W. J. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput.

System Sci., 7 (1973), pp. 389–403.
[22] N. A. Spencer, John Wiley and Sons, Inc., 1992.
[23] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),

pp. 146–160.
[24] A. Wigderson, The complexity of graph connectivity, in Mathematical Foundations of Com-

puter Science 1992: Proceedings, 17th Symposium, I. M. Havel and V. Koubek, eds.,
Lecture Notes in Computer Science 629, Springer-Verlag, Prague, Czechoslovakia, August
1992, pp. 112–132.

[25] A. C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Proc. 18th
Annual Symposium on Foundations of Computer Science, IEEE, Providence, RI, October
1977, pp. 222–227.

ON LEARNING READ-k-SATISFY-j DNF ∗

HOWARD AIZENSTEIN† , AVRIM BLUM‡ , RONI KHARDON§ , EYAL KUSHILEVITZ¶,
LEONARD PITT‖, AND DAN ROTH∗∗

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1515–1530, December 1998 001

Abstract. We study the learnability of read-k-satisfy-j (RkSj) DNF formulas. These are boolean
formulas in disjunctive normal form (DNF), in which the maximum number of occurrences of a
variable is bounded by k, and the number of terms satisfied by any assignment is at most j. After
motivating the investigation of this class of DNF formulas, we present an algorithm that for any
unknown RkSj DNF formula to be learned, with high probability finds a logically equivalent DNF
formula using the well-studied protocol of equivalence and membership queries. The algorithm runs
in polynomial time for k · j = O(logn

log logn
), where n is the number of input variables.

Key words. DNF, learning, computational learning theory, decision trees

AMS subject classifications. 68T05, 68Q25

PII. S0097539794274398

1. Introduction. A central question in the theory of learning is to decide which
subclasses of boolean formulas can be learned in polynomial time with respect to any
of a number of reasonable learning protocols. Among natural classes of formulas,
those efficiently representable in disjunctive normal form (DNF) have been exten-
sively studied since the seminal paper of Valiant [Val84]. Nonetheless, whether for
such formulas there are learning algorithms that can be guaranteed to succeed in
polynomial time using any of the standard learning protocols remains a challenging
open question.

Consequently, recent work has focused on the learnability of various restricted
subclasses of DNF formulas. For example, the learnability of those DNF formulas
with a bounded number of terms, or with bounded size terms, or with each variable
appearing only a bounded number of times, has received considerable attention (see,
e.g., [Val84, Ang87, PV88, BS90, Han91, Aiz93, PR95]). Investigation along these
lines is of interest for two reasons. First, techniques developed for learning subclasses

∗Received by the editors September 16, 1994; accepted for publication (in revised form) August
15, 1996; published electronically June 3, 1998.

http://www.siam.org/journals/sicomp/27-6/27439.html
† School of Medicine, University of Pittsburgh Western Psychiatric Institute and Clinic, 3811

O’Hara St., Pittsburgh, PA 15213 (aizen+@pitt.edu). This research was supported in part by NSF
grant IRI-9014840.

‡ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891
(avrim@cs.cmu.edu). This research was supported in part by NSF National Young Investigator
grant CCR-93-57793 and a Sloan Foundation Research Fellowship.

§ Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138
(roni@das.harvard.edu). This research was supported by grant DAAL03-92-G-0115 (Center
for Intelligent Control Systems).

¶ Department of Computer Science, Technion, Haifa, Israel 32000 (eyalk@cs.technion.ac.il,
http://www.cs.technion.ac.il/∼eyalk). Part of this research was done while the author was at
Aiken Computation Laboratory, Harvard University and was supported by research contracts ONR-
N0001491-J-1981 and NSF-CCR-90-07677.

‖ Department of Computer Science, University of Illinois, Urbana, IL 61801 (pitt@cs.uiuc.edu).
This research was supported in part by NSF grant IRI-9014840.
∗∗ Department of Computer Science, University of Illinois, Urbana, IL 61801 (danr@cs.uiuc.edu).

Part of this work was done while the author was at Harvard University and was supported by NSF
grant CCR-92-00884 and by DARPA grant AFOSR-F4962-92-J-0466.

1515

1516 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

of DNF may well be applicable to solving the more general problem, just as difficulties
encountered may suggest approaches towards proving that the general problem admits
no tractable solution. Second, and at least as important from a practical perspective,
is that in many real-world machine-learning settings, the full generality of DNF may
not be required, and the function to be learned might have an efficient expression in
one of the restricted forms for which learning algorithms have been found.

In this paper we show (Theorem 19) that boolean formulas over n variables that
can be expressed as read-k-satisfy-j DNF (which we abbreviate “RkSj”) are efficiently
learnable, provided that k·j = O(logn

log log n). An RkSj DNF representation for a function
is a DNF formula in which the maximum number of occurrences of each variable is
bounded by k and each assignment satisfies at most j terms of the formula. The
special case of RkSj for j = 1 is referred to as disjoint DNF, and we denote it as RkD.
The motivation for considering disjoint DNF expressions arises from the fact that
they generalize the decision-tree representation of boolean functions, which have been
used extensively in machine-learning theory and practice [BFOS84, Qui86, Qui93].
The “satisfy-j” constraint relaxes the notion of disjointness, thus incorporating a
wider class of functions. In the next section we will discuss the relationships between
RkSj DNF, RkD DNF, and previously investigated subclasses of DNF formulas.

The learning model we use is the standard equivalence and membership queries
model [Ang88]: we assume that some unknown target RkSj formula F to be learned
is chosen by nature. A learning algorithm may propose as a hypothesis any DNF
formula H by making an equivalence query to an oracle. (This has sometimes been
referred to as an “extended” equivalence query, as the hypothesis of the algorithm
need not be in RkSj form.) If H is logically equivalent to F then the answer to the
query is “yes” and the learning algorithm has succeeded and halts. Otherwise, the
answer to the equivalence query is “no” and the algorithm receives a counterexample—
a truth assignment to the variables that satisfies F but does not satisfy H (a positive
counterexample) or vice-versa (a negative counterexample). The learning algorithm
may also query an oracle for the value of the function F on a particular assignment
(example) a by making a membership query on a. The response to such a query is
“yes” if a is a positive example of F (F (a) = 1), or “no” if a is a negative example of
F (F (a) = 0).

We say that the learner learns a class of functions F if for every function F ∈ F
and for any confidence parameter δ > 0, with probability at least 1−δ over the random
choices of the learner, the learner outputs a hypothesis H that is logically equivalent
to F and does so in time polynomial in n (the number of boolean variables of F), |F |
(the length of the shortest representation of F in some natural encoding scheme), and
1
δ . This protocol is a probabilistic generalization of the slightly more demanding exact
learning model, which requires that deterministically, in time polynomial in n and |F |,
the learning algorithm necessarily finds some logically equivalent H. Learnability in
this model implies learnability in the well-studied “PAC” model with membership
queries [Val84, Ang88]. In that model, instead of equivalence queries, examples from
an arbitrary, unknown probability distribution D are available, and the goal of the
learner is to find with probability at least 1− δ a hypothesis H that disagrees with F
on a set of assignments of probability at most ε measured according to D.

The rest of the paper is organized as follows: we review related work in section 2.
Section 3 includes preliminary definitions. In section 4 we prove some useful properties
of RkSj DNF formulas. In section 5 we present the learning algorithm and prove its
correctness. In section 6 we show that read-twice disjoint (R2D) DNF does not have

ON LEARNING READ-k-SATISFY-j DNF 1517

small conjunctive normal form (CNF) representation (and in particular, no small
decision trees), which demonstrates that the class of R2D DNF (and the more general
class RkSj) is incomparable to subclasses of DNF recently shown to be learnable.

2. Related results. When membership queries are not available to the learning
algorithm, the problem of learning DNF, or even restricted subclasses of DNF, appears
quite difficult. In the model of learning with equivalence queries only, or in the PAC
model without membership queries [Val84], learning algorithms are known only for k-
DNF formulas (DNF formulas with a constant number of literals in each term) [Val84,
Ang88], DNF formulas with a constant number of terms [KLPV87, PV88] (provided
that the hypotheses need not be in the same form), or for “polynomially explainable”
subclasses of DNF in which the number of possible terms causing an example to be
positive is bounded by a polynomial [Val85, KR95]. Using information-theoretic argu-
ments, Angluin [Ang90] has shown that DNF in general is not learnable in polynomial
time using just DNF equivalence queries, although the negative result does not extend
to the PAC model.

In contrast, there are a number of positive learning results when membership
queries are allowed, and in many of these cases it can be shown that without the
membership queries the learning problem is as hard as the problem of learning general
DNF. Among these learnable subclasses are: monotone DNF [Val84, Ang88], read-
twice DNF [Han91, AP91, PR95], “Horn” DNF (at most one literal negated in every
term) [AFP92], logn term DNF [BR92], and DNF∩CNF (this class includes decision
trees) [Bsh95].

Read-k DNF. Particularly relevant to our work is the considerable attention that
has been given to the learnability of boolean formulas where each variable occurs some
bounded (often constant) number k of times (“read k”). Recently, polynomial-time al-
gorithms have been given for learning read-once and read-twice DNF [AHK93, Han91,
AP91, PR95]. (The result of [AHK93] is actually much stronger, giving an algorithm
for learning any read-once boolean formula, not just those efficiently representable as
read-once DNF.)

The learnability of read-k DNF for k ≥ 3 seems to be much more difficult. Recent
results show that in the PAC model with membership queries, learning read-thrice
DNF is no easier than learning general DNF formulas [AK95, Han91]. In the PAC
model, assuming the existence of one-way functions, Angluin and Kharitonov [AK95]
have shown that membership queries cannot help in learning DNF (assuming that the
learning algorithm is not required to express its hypotheses in any particular form,
and that the distribution on examples is “polynomially bounded”). In other words,
assuming one-way functions exist, in the PAC model the problem of learning read-
thrice DNF with membership queries is no easier than learning general DNF without
queries (in polynomially bounded distributions). In the model of learning from equiv-
alence and membership queries, it has been shown ([PR94]; see also [AHP92]) that
there is no polynomial-time algorithm for exactly learning read-thrice DNF using
read-thrice DNF equivalence queries, unless P = NP. One way to view our results is
to note that while the work referenced above indicates that for k ≥ 3, learning read-k
DNF is difficult, by adding a disjointness condition on the terms of the formula (or
even a much weaker condition that each assignment satisfy only j terms) the learning
problem becomes tractable.

Disjoint DNF. Variations of disjoint DNF formulas (without any “read” restric-
tion) have also been considered, as disjoint DNF formulas are a natural generalization
of decision trees. While every boolean function clearly has a disjoint DNF expression

1518 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

(simply take a fundamental product of exactly n literals for each satisfying assign-
ment), a function with a short DNF representation might have an exponentially long
disjoint representation. However, every decision tree can be efficiently expressed as
a disjoint DNF formula, by creating a term corresponding to the assignment of vari-
ables along each branch that leads to a leaf labeled “1”. Recently, Bshouty [Bsh95] has
given an algorithm (using equivalence and membership queries) for learning boolean
formulas in time polynomial in the size of their DNF and CNF representations. Since
every decision tree has a DNF and CNF that have size polynomial in the size of the
original tree, his algorithm may be used to learn decision trees. We show (Theorem 20)
that even R2D DNF formulas do not necessarily have small CNF representations (and
therefore do not have small decision trees). In particular, we present a family of func-
tions {Fn} that have short (poly(n)) R2D DNF formulas but require CNF formulas
of size 2Ω(

√
n).

Other results concerning the learnability of disjoint DNF have also been obtained.
On the positive side, Jackson [Jac94] gives a polynomial-time algorithm for learning
arbitrary DNF formulas in the PAC model with membership queries, provided that
the error is measured with respect to the uniform distribution. This extends results
on learning decision trees, disjoint DNF, and satisfy-j DNF formulas in the same
model [KM93, Kha94, BFJ+94]. On the negative side, some recent hardness results
for learning DNF in restricted models apply for disjoint DNF as well: Blum et al.
[BFJ+94] prove a hardness result for learning logn disjoint DNF in the “statistical
queries” model (note that in this model the learner does not have access to a member-
ship oracle). Aizenstein and Pitt [AP95] show that even if subset queries are allowed,
disjoint DNF (and also read-twice DNF) is not learnable by algorithms that collect
prime implicants in a greedy manner. Yet, the learnability for disjoint DNF remains
unresolved in any reasonable learning model, other than the result above assuming
a uniform distribution. Another way, then, to view our results, is to note that if we
add a read-k restriction on disjoint DNF, we obtain a positive learning result.

Finally, note that RkSj DNF may be thought of as a generalization of k-term
DNF (those DNFs with at most k terms): every k-term DNF formula is trivially
an RkSj DNF formula. Thus, our results may also be viewed as an extension of
previous results for learning k-term DNF formulas [Ang87, BR92, Bsh95], although
a true generalization of the strongest of these results would learn RkSj DNF for
k + j = O(log n). We leave the latter as an interesting open problem.

3. Preliminaries. Let x1, . . . , xn be n boolean variables. A literal is either a
variable xi or its negation xi. A literal ` is said to have index i if ` ∈ {xi, xi}. A term
is a conjunction (AND) of literals; a DNF formula is a disjunction (OR) of terms.
For convenience, we will also treat a set of literals as the term that consists of the
conjunction of literals in the set, and we will treat a set of terms as the DNF formula
obtained by taking the disjunction of terms in the set. An example (or assignment)
a is a boolean vector over {0, 1}n, and we write a[i] to denote the ith bit of a. An
example a satisfies a term t (denoted by t(a) = 1) if and only if it satisfies all the
literals in t. An example a satisfies a DNF formula F (written F (a) = 1) if and only
if there is at least one term t ∈ F that a satisfies. If a satisfies F then a is said to be
a positive example of F ; otherwise it is a negative example. An RkSj DNF formula
F is a DNF formula in which each variable appears at most k times, and for every
assignment a, there are at most j terms of F satisfied by a.

For two boolean functions F1, F2 we write that F1 implies F2 to mean that for
every assignment a, if F1(a) = 1 then F2(a) = 1. A term t is an implicant of a DNF

ON LEARNING READ-k-SATISFY-j DNF 1519

formula F if t implies F ; it is a prime implicant if no proper subset of t is also an
implicant of F .

We often want to look at examples obtained by changing the value of a given
example on a specified literal. Toward this end, we introduce the following notation.
Let a ∈ {0, 1}n be an example, and i an index. We define the example b = flip(a, i) by:
b[i] = 1−a[i] and b[i′] = a[i′] for i′ 6= i. For instance, if a = 1101 then flip(a, 3) = 1111.
If ` is a literal of index i, then flip(a, `) is defined to be the example flip(a, i). Hence,
if a = 1101, then flip(a, x3) = 1111 and also flip(a, x3) = 1111. Usually, we will write
flip(a, `) only when assignment a satisfies literal `. Finally, we may apply the flip
operator to sets of literals as well, to obtain an assignment given by simultaneously
flipping each literal in the set: for any set I ⊆ {1, . . . , n} define flip(a, I) to be the
assignment b such that b[i] = 1− a[i] if i ∈ I, and b[i′] = a[i′] for i′ /∈ I.

4. Properties of RkSj DNF formulas. A natural way to gather information
about a DNF formula F by asking membership queries is to find assignments a such
that when the assignment to some single literal of a is changed, the value of F changes.
That is, for some literal `, F (flip(a, `)) 6= F (a). Such an assignment is called a sensitive
assignment, and all such literals ` are sensitive literals for a. More formally, we present
the following definition.

Definition 1. For an assignment a ∈ {0, 1}n and a function F , the set of
sensitive literals is given by sensitive(a) = {` | F (flip(a, `)) 6= F (a)}.

Observe that the sensitive set of an assignment can be found by asking n + 1
membership queries. With one membership query we find the value of F (a), and then
with n additional membership queries, we determine whether the value of F (flip(a, `))
differs from F (a) for each of the n literals satisfied by a.

Property 2. If F is any DNF formula and a is an assignment such that F (a) =
1, then sensitive(a) ⊆ ∩{t ∈ F : t(a) = 1}. In other words, each literal in sensitive(a)
appears in all terms satisfied by a.

Proof. Suppose to the contrary that for some literal ` in sensitive(a) and for some
term t satisfied by a, ` is not in t. Then t would also be satisfied by flip(a, `), which
implies that F (flip(a, `)) = 1, contradicting the assumption that ` ∈ sensitive(a).

Property 2 suggests that one way to find (at least part of) a term of a DNF
formula, given a satisfying assignment a, is to construct the sensitive set of a. In
the event that the sensitive set is exactly a term t satisfied by a, then we have made
significant progress and can continue to find other terms. However, Property 2 only
guarantees that each sensitive literal is in every term a satisfies; it does not guarantee
that every literal of some term is in the sensitive set. Below, we will show that for
RkSj DNF formulas, we can find assignments whose sensitive sets are not missing
“many” literals. From these assignments, we will be able to find terms of the formula.

Suppose a satisfies only a single term t. By Property 2, any literal ` that is not
in t will not be in sensitive(a). But why might some literal ` that is in t fail to be in
sensitive(a)? It must be because flip(a, `) satisfies some term t′ containing `. Thus,
t′ was “almost” satisfied by assignment a; only the literal ` was set wrong. More
formally, we have Definition 3.

Definition 3. A term t is almost satisfied by an assignment a with respect to
index i if t(a) = 0 but t(flip(a, i)) = 1. A term t is almost satisfied by an assignment
a with respect to (literal) ` if a satisfies literal `, and if t(a) = 0 but t(flip(a, `)) = 1.

Let Y (a) be the set of all i’s such that some term t is almost satisfied by a with
respect to i. The following lemma is central in the analysis of our algorithm; it gives

1520 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

a bound on the size of Y (a). In the appendix it is shown that this bound is essentially
optimal.

Lemma 4. Let F be an RkSj formula, and let a ∈ {0, 1}n. Then, |Y (a)| ≤ 2kj.

Proof. Let a ∈ {0, 1}n be fixed. Note that for each almost satisfied term t, there
is exactly one index i such that t is almost satisfied (by a) with respect to i. We
partition the set of almost satisfied terms into m = |Y (a)| nonempty equivalence
classes Si1 , Si2 , . . . , Sim such that t is in Si if and only if t is almost satisfied by a with
respect to i. Suppose t is in Si. If a[i] = 0 then t must contain the literal xi, since
flipping the ith bit from 0 to 1 causes t to become satisfied. Similarly, if a[i] = 1,
then t must contain the literal xi. For notational convenience, define Si(xi) = xi if
a[i] = 0, and Si(xi) = xi if a[i] = 1. Thus, every term t in Si contains the literal
Si(xi). Further, since F is read-k, for each equivalence class Si, |Si| is at most k.

Consider a directed graph G = (V,E) induced by the equivalence classes, with
V = {Si1 , Si2 , . . . , Sim} and E = {〈Si′ , Si〉 : some term t ∈ Si contains the literal
Si′(xi′)}. (Note that t ∈ Si cannot contain the literal Si′(xi′) since this literal is
negated in a, and t is almost satisfied by a with respect to a different literal.)

Since each of the (at least one) terms in Si contains the literal Si(xi), and since F
is read-k, there are at most k−1 other equivalence classes Si′ containing a term which
has the literal Si(xi). Thus, the outdegree of every vertex is at most k − 1. Suppose
G′ is any subgraph of G containing µ vertices. Since there are at most µ(k− 1) edges
in G′, there must be some vertex S ∈ G′ whose indegree + outdegree in G′ is at most
2µ(k − 1)/µ = 2(k − 1). That is, S has at most 2(k − 1) neighbors in the underlying
undirected graph of G′.

Now assume, contrary to this lemma, that |Y (a)| (= m, the number of vertices in
G), is larger than 2kj. Then there must be an independent set Vind ⊆ V of G of size at
least j+1: such an independent set Vind can be constructed by first placing into Vind
some vertex Si satisfying the indegree + outdegree bound above, and removing from G
each of the at most 2(k−1) vertices adjacent to Si in the underlying undirected graph.
Then another vertex Si′ is included in Vind, its neighbors are removed, etc. After
iteratively choosing j such vertices (no two of which are adjacent in the underlying
undirected graph) and removing their neighbors, we will have eliminated at most
j · (2(k − 1) + 1) = 2kj − j < 2kj vertices. Thus, we can include at least one more
vertex into the set Vind, so that |Vind| ≥ j + 1 as desired.

Let I = {i : Si ∈ Vind}, namely, the set of indices of the at least j+1 equivalence
classes with no edges between them in G. Consider a term t in some equivalence class
Si with i ∈ I. By definition of the equivalence classes, t is almost satisfied by a with
respect to i, and thus flip(a, i) will satisfy term t. Since no other literal in t has index
in I by definition of the set Vind, flip(a, I) satisfies t as well. Thus flip(a, I) satisfies
every term from each of the j + 1 equivalence classes indexed by I, contradicting the
assumption that F was a satisfy-j formula.

Definition 5. A term t̃ is a p-variant of a term t if it contains all the literals
of t and at most p additional literals.

Corollary 6. If a is a satisfying assignment for an RkSj DNF formula F
satisfying the single term t ∈ F , then t is a 2kj-variant of sensitive(a).

Proof. First observe by Property 2 that sensitive(a) ⊆ t. Thus to prove this
corollary it is sufficient to show that there are at most 2kj literals in t− sensitive(a).
Consider why a literal ` with index i might be in t but not in sensitive(a). By
the definition of sensitive set this means that F (flip(a, i)) = F (a) and in this case
F (flip(a, i)) = F (a) = 1. But ` in t implies that t(flip(a, i)) = 0, so flip(a, i) must

ON LEARNING READ-k-SATISFY-j DNF 1521

satisfy some term other than t. Since t is the only term satisfied by a, all the terms
satisfied by flip(a, i) must be almost satisfied by a with respect to i. This means
i ∈ Y (a), and by Lemma 4 there can be at most 2kj such values of i, hence at most
2kj corresponding literals ` in t− sensitive(a).

Definition 7. Let a, b ∈ {0, 1}n. Then b is a d-neighbor of a if b = flip(a, I) for
some set I of cardinality at most d. (That is, if the Hamming distance between a and
b is at most d.)

Lemma 8. If a is a satisfying assignment for an RkSj DNF formula F satisfying
exactly the terms T = {t1, t2, . . . , tq} ⊆ F then there exists a (j − 1)-neighbor b of a
such that some term in T is a 2kj-variant of sensitive(b).

Proof. Since F is satisfy-j and a is a satisfying assignment it must be the case
that 1 ≤ |T | = q ≤ j. Note by Corollary 6 that if q = 1, t1 is a 2kj-variant of
sensitive(a), and since a is a 0-neighbor of itself, the lemma follows. To see that the
lemma is true for 1 < q ≤ j we will show that in this case either some term satisfied
by a is a 2kj-variant of sensitive(a) or else there exists some i such that flip(a, i)
satisfies a proper subset of T , and F (flip(a, i)) = 1. It then follows by induction that
for some set of indices I ⊆ {1, . . . , n} with |I| ≤ j − 1, some term satisfied by a is a
2kj-variant of sensitive(flip(a, I)). The assignment flip(a, I) is the (j − 1)-neighbor b
of a mentioned in the lemma.

If some term in T is a 2kj-variant of sensitive(a) then we are done. Otherwise
each term in T must contain more than 2kj literals not in sensitive(a). Let t be a
term in T and let L = {`1, `2, . . .} be a set of more than 2kj literals in t that are not
in sensitive(a). By Lemma 4, |Y (a)| ≤ 2kj, so there must be some literal ` ∈ L (say,
with index i) such that there does not exist a term in F almost satisfied by a with
respect to i. Consequently, flip(a, i) cannot satisfy any term not satisfied by a, and
must therefore satisfy a proper subset of the terms satisfied by a since t will no longer
be satisfied. Since ` /∈ sensitive(a), flip(a, i) still satisfies at least one term.

While the statement of Lemma 8 may appear somewhat confusing at first glance,
if examined further we see that it immediately suggests an algorithm for learning RkSj
DNF formulas (deterministically) where k and j are constants. First, conjecture the
null DNF formula. On receiving a positive counterexample a, generate a collection
H of terms, at least one of which is a term of the target DNF formula. To build
the collection H, simply enumerate each (j − 1)-neighbor b of a, and then include
in H every 2kj-variant of the sensitive set of each such b. By Lemma 8, H will
necessarily contain some term of F that a satisfied. Of course, H may also contain
many terms that are not in F (though only polynomially many, assuming k and j
are constants). On seeing a negative counterexample, the algorithm simply removes
from H any term that is satisfied, since these cannot be in F . Thus, on positive
counterexamples, the algorithm adds to its hypothesis H at least one correct term
not yet included, and at most a polynomial number of incorrect terms. On each
negative counterexample, at least one of the incorrect terms is removed. It follows
that the number of counterexamples that can be received (and hence the number of
equivalence queries until the algorithm has produced a DNF logically equivalent to
the target) is bounded by a polynomial in n and the number of terms of the target
RkSj DNF formula.

This general approach of finding many possible terms from a positive counterex-
ample a, and discarding the bad terms when seeing negative counterexamples, is a
fairly standard approach used in many of the algorithms for learning subclasses of
DNF formulas discussed in earlier sections. In the particular case of RkSj DNF, we

1522 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

need to develop additional technical lemmas in order to devise an algorithm that
works for values of k and j that are not constant.

The following is an immediate corollary of Lemma 4.

Corollary 9. For all a such that F (a) = 0, at most 2kj of the neighbors of a
(in the cube {0, 1}n) are satisfying assignments of F .

Proof. The neighbors of a are exactly flip(a, 1), . . . ,flip(a, n). Hence if flip(a, i) is
a satisfying assignment then i ∈ Y (a).

Let U denote the uniform distribution, and let “x ∈ U” denote that x is selected
uniformly at random (in {0, 1}n). Also, let “true” be the “all 1’s” concept.

Lemma 10. If F is an RkSj DNF, and F 6≡ true, then Probx∈U [F (x) = 0] ≥
2−2kj

Proof. The proof uses an argument similar to one in [Sim83]. Think of the cube
{0, 1}n as a graph in which each vertex is represented by an n-bit string and there is an
edge between any two vertices of Hamming distance 1. Consider the vertex-induced
subgraph G = (V,E), where V is the set of points a ∈ {0, 1}n such that F (a) = 0.
Since F 6≡ true, we know that there is at least one vertex in V . We further know by
Corollary 9 that the minimum degree of any vertex in G is at least n− 2kj.

A standard argument shows that any nonempty subgraph of {0, 1}n with mini-
mum degree at least d has at least 2d vertices. For completeness we give the proof,
which is by induction on n. The cases where n = 1 or d = 0 are easily verified. For
the more general cases, notice that cutting the cube in any coordinate i leaves the two
subcubes of dimension n−1, each with minimum degree at least d−1. This is because
each vertex has at most one neighbor in the other subcube. So we simply choose i so
that we have a nonempty subset of V in each subcube. Using the induction, we get
at least 2 · 2d−1 = 2d vertices.

This implies that |V | ≥ 2n−2kj , and therefore Probx∈U [F (x) = 0] ≥ 2−2kj .

Lemma 11. Let F be an RkSj formula. Then F has at most kjq terms of length
(number of literals) at most q.

Proof. Consider a graph with one vertex for each term in F of length at most q
and an edge between two vertices if their corresponding terms are not simultaneously
satisfiable. In other words, two terms are connected exactly when one of the terms
contains some variable xi and the other contains xi. Since F is read-k, the maximum
degree of a vertex in this graph is q(k − 1). Therefore, if the graph has N vertices, it
must have an independent set of size at least N/(q(k − 1) + 1): such an independent
set could be formed by repeatedly choosing a vertex to put in the set, and then
eliminating from consideration all of the at most q(k− 1) neighbors of the vertex. On
the other hand, the size of any independent set in this graph can be at most j since
F is a satisfy-j DNF (any independent set of vertices corresponds to terms that can
all be simultaneously satisfied). Therefore, N , the number of terms of length at most
q, is at most j(q(k − 1) + 1) ≤ jkq.

The next lemma is a variant of Lemma 8, which is easier to use in our arguments
to follow.

Lemma 12. If a is a satisfying assignment for an RkSj formula F , then either
some term satisfied by a is a 4kj-variant of sensitive(a) or else there is a set of literals
U such that |U | ≥ 2kj and for all ` ∈ U , the assignment b = flip(a, `) is a positive
example satisfying a strict subset of the terms of F satisfied by a.

Proof. Let T be the set of terms satisfied by a. If some term in T is a 4kj
variant of sensitive(a) then we are done. Otherwise, let t be any term in T , and let
W = {w1, w2, . . . , w4kj , . . .} be the set of at least 4kj literals that are in T but are not

ON LEARNING READ-k-SATISFY-j DNF 1523

Algorithm Learn-RkSj:
1. H ← φ.
2. b← EQ(H).
3. if b =“true” then stop and output H.
4. Else, if b is a negative counterexample then for every term t ∈ H such that

t(b) = 1 delete t from H.
5. Else (if b is a positive counterexample) then

(a) S ← find-useful-example(b). /* This procedure returns a set of exam-
ples. */

(b) For each a ∈ S, H ← H ∪ produce-terms(a).
6. GOTO 2.

Fig. 1. Algorithm Learn-RkSj.

in sensitive(a). By Lemma 4, for at least 2kj literals in W there does not exist a term
in F almost satisfied with respect to it. So for at least 2kj literals `, the assignment
flip(a, `) does not satisfy any term not satisfied by a. As such an assignment does not
satisfy the term t, it satisfies a strict subset of T .

5. The learning algorithm. On a positive counterexample, the algorithm
(with high probability) adds to its hypothesis a polynomial number of terms, one
of which is an implicant of the target RkSj DNF formula. On a negative counterex-
ample the algorithm deletes terms from the hypothesis that are satisfied by that
example (and therefore are not implicants of the function). The number of queries
will be bounded by a polynomial in n plus the number of terms in the target RkSj
DNF formula. The enumerative approach discussed earlier results in a polynomial-
time algorithm only when k and j are constants, because the number of neighbors
and variant terms to be enumerated is O(nO(kj)). We avoid the enumerative approach
and obtain an algorithm tolerating larger (nonconstant) values of k and j, by imple-
menting a probabilistic search in the spirit of [BR92]. We show the learnability of
RkSj DNF for k · j = O(logn

log log n).

Our algorithm has the following high level structure (see Figure 1), which we
describe here. The low level of the algorithm is described in the next two subsections.

Let F be the target function, and F = t1 ∨ t2 ∨ · · · ∨ ts its RkSj representation.
(There may be more than one such representation; in such a case we fix one of them
just for the purpose of the analysis.) The main tools in the algorithm are Procedures
produce-terms and find-useful-example that together, given a positive counterexample
b to the current hypothesis, find a set of terms such that with high probability one
of them (call it t) is an implicant of F (in fact, t will be a prime implicant) and is
implied by some term ti satisfied by b. Note that such a term t is satisfied by all the
assignments that satisfy ti, but not by any negative assignment of F . Thus finding t
is as good as (or even better than) finding the term ti.

The disjunction of all the terms found in this way is added to the hypothesis
of the algorithm, with which we now ask an equivalence query (step 2). A negative
counterexample allows us to throw out from the hypothesis terms that do not imply
F . A positive counterexample satisfies a term ti ∈ F we have not yet found, and we
use it to run again Procedures find-useful-example and produce-terms.

5.1. Producing terms. We now describe the way the procedure produce-terms
works given a positive example x of F . In our analysis, we will assume that example

1524 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

Procedure produce-terms(x):
1. Find sensitive(x) (using n membership queries).
2. L← ∅.
3. Repeat the following m1 = 26kj ln(12kjs/δ) times:

Pick a random y that agrees with sensitive(x) (that is, for each literal in
sensitive(x) we take yi = xi and for any other literal, not in sensitive(x),
the corresponding bit is selected randomly). If y is negative (a membership
query) then find all literals ` satisfied by y (and not in sensitive(x)) such
that flip(y, `) is a positive example. Put all those literals into L.

4. If |L| ≤ kjq2, then for each subset L′ of L of size at most 4kj, add to the
output the term sensitive(x) ∪ L′.

Fig. 2. Procedure produce-terms.

Procedure find-useful-example(x):
Do the following m2 = 2j+1 log(3s/δ) times and produce the union of the outputs.

1. Let x(0) = x.
2. For i = 1, 2, . . . ,m3, for m3 = n

2k ln(2j2j), let x(i) be a random positive

neighbor of x(i−1).
3. Output {x(0), x(1), . . . , x(m3)}.

Fig. 3. Procedure find-useful-example.

x has the property that some term t1 of F satisfied by x (1) is not in our hypothesis
and (2) is a 4kj-variant of sensitive(x). We call such an example x a useful example.
If F is a disjoint DNF, then any positive counterexample x will be useful by the
special case of Lemma 8 with j = 1. For general RkSj DNF, we use Procedure
find-useful-example (described in section 5.2) to find an example with these properties.
Procedure produce-terms is described in Figure 2, where q = c log2 n for some constant
c.

Our goal is to find an implicant of F that is implied by t1. In fact, we will find a
“small” collection of potential terms such that one of them will be such an implicant.
We start by finding sensitive(x), and we then fix those literals for the remainder
of the procedure. After fixing (projecting onto) those literals, we still have an RkSj
DNF, but t1 has at most 4kj literals by our assumption. Let t = `1`2 · · · `r (r ≤ 4kj)
be some minimal (prime) implicant of F implied by t1. Note that this means that for
each i ∈ {1, 2, . . . , r} the term t(i) = `1 · · · `i−1`i`i+1 · · · `r is not an implicant of F ,
because then we could remove `i from t and obtain an implicant, contradicting the
primality of t.

The idea is that we create a set of literals L that with high probability has the
following two properties: (1) L has all the literals of t, and (2) L has size poly(kj).
This is done in step 3. If we have such a set then we are done: given the set L, we
can look at all

∑4kj
i=0

(|L|
i

)
= |L|O(kj) small subsets (step 4), and one of them will be t.

Recall that s is the number of terms in the RkSj representation of F , and let
δ > 0 be a constant confidence parameter.

Claim 13. If x is a useful example and t1, t are as described above, then the
set L produced in step 3 of Procedure produce-terms contains all the literals in t with
probability at least 1− δ/3s.

Proof. Consider a literal `i in t. In a random y, there is a 1/2r chance that literals

ON LEARNING READ-k-SATISFY-j DNF 1525

`1, . . . , `r are set so that t(i) is satisfied. Also,

Proby∈U [y is negative | y satisfies t(i)] ≥ 1/22kj .

The reason is that if we project variables in t to satisfy t(i), then we are left with
an RkSj DNF which is not identically true, since t(i) is not an implicant of F . So,
we can apply Lemma 10. For such an example y, which is negative and satisfies
t(i), we know that flip(y, `i) is a positive example (as it satisfies t) and hence `i
will be inserted into L. So, the probability that a single y “discovers” `i is at least
1/2r+2kj ≥ 1/26kj . A standard calculation shows that if we repeat the loop (step 3)
at least m1 = 26kj ln(12kjs/δ) times then we find all r ≤ 4kj literals of t, with
probability at least 1− δ/3s. (Note that the number of repetitions, m1, is polynomial
as long as kj = O(log n).)

Claim 14. Let q = c log2 n, where c is a constant that depends on the constant δ,
and assume that kj = O(log n). With probability at least 1− δ/3s we get |L| ≤ kjq2.

Proof. Any literal found in step 3 of produce-terms must be in some term. So,
consider terms of size at most q. By Lemma 11 there are at most kjq such terms.
The number of literals that those terms can contribute to L is at most kjq2. Now
consider a term of size greater than q. With high probability, it will not contribute
any literals to L. The reason is that in order for such a term to “matter” (i.e., for
some flip(y, `) to satisfy that term) it must be that y satisfies all but one literal in that
term. The chance that y does so is at most n/2q which, by the choice of q, is smaller
than any polynomial fraction. Since the algorithm repeats in step 3 a polynomial
number of times (using here that kj = O(log n)), throughout the entire algorithm,
with high probability, no example flip(y, `) satisfies any of those terms. By choice of
c this probability can be made larger than 1− δ/3s.

Notice that by Claims 13 and 14, with high probability at least one of the terms
output in step 4 of Procedure produce-terms is the desired term t, and in addition at
most (kjq2)4kj terms are output in step 4 total. This number of terms is polynomial
in n as long as kj = O(log n/ log log n).

5.2. Finding a useful positive example. Procedure produce-terms in the
previous section requires a useful example x. Namely, some term t1 of F (1) is not in
our hypothesis and (2) is a 4kj-variant of sensitive(x). In this section we show how
to produce, given a positive counterexample x to our hypothesis, a polynomial-sized
set of examples such that with high probability at least one is useful in this sense. The
procedure is described in Figure 3. The idea behind Procedure find-useful-example is
as follows. Suppose that our given positive example x satisfies some number of terms
of F (none of them appears in our hypothesis). Lemma 12 states that either:

(A) all but 4kj of the literals in one of those terms are sensitive (i.e., x is already
useful), or else,

(B) there exist at least 2kj literals u1, . . . , u2kj such that flipping ui will cause
the example to remain positive but satisfy a strict subset of those terms and
no others.

We also know, by Lemma 4, that |Y (x)| ≤ 2kj, and therefore there are at most 2kj
literals that when flipped cause the example to satisfy some additional term.

What this means is that either example x is already useful, or else out of the n
literals, at least 2kj are “good” in that flipping them makes our example satisfy a
strict subset of the original set of terms, at most 2kj are “bad” in that flipping them
makes the example satisfy some new term, and the rest are “neutral” in that either
flipping them makes the example negative (which we will notice) or else flipping them

1526 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

does not affect the set of terms satisfied. So, as described in Figure 3 (step 2), let x(i)

to be a random positive neighbor of x(i−1) in the boolean hypercube.
Claim 15. With probability 1

2j+1 at least one of the examples x, x(1), . . . , x(m3) is
useful.

Proof. For the moment, consider the infinite sequence x(1), x(2), . . . of positive
examples. If the example x was not already useful, let’s say that we are “lucky” if we
flip one of the “good” literals before we flip any of the “bad” literals in this experiment
(i.e., we are lucky if we flip an arbitrary number of neutral literals followed by a good
literal). Notice that flipping a “neutral” literal may change the sets of good and bad
literals, but our bounds on the sizes of those sets remain. So, the probability that we
are lucky is at least 1/2. If this occurs, we then either have a useful positive example,
or else our bounds on the sizes of the good and bad sets remain but the example
satisfies at least one fewer term. Thus, with probability at least (1/2j), we continue
to flip good literals before we flip any bad literals, and we reach a useful example
(since by Corollary 6, if the example satisfies only one term, then it is useful).

Now for the finite sequence x(1), . . . , x(m3), we have to subtract the probability
of being lucky j times, but not within the first m3 trials. This event is included in
the event “there were less than j flips of nonneutral literals within m trials.” Let the
latter event be E.

Consider m3 as j blocks of n
2kj ln(2j2j) trials each. The probability that we do

not flip any nonneutral bit (or reach a useful example) in one block is at most 1
2j2j

(since the probability of getting a nonneutral bit is at least 2kj
n at each trial). The

probability that we fail in any of the j blocks is therefore at most 1
2j+1 . This is also

a bound for the probability of the event E. Thus our total success probability is at
least 1

2j − 1
2j+1 .

Claim 16. With probability at least 1−δ/3s, some example in the set of examples
produced by Procedure find-useful-example is useful.

Proof. Procedure find-useful-example repeats the experiment described in Claim
15 for m2 = 2j+1 ln(3s/δ) times. Thus, with probability at least 1− δ/3s, the exper-
iment is successful at least once.

5.3. Final analysis.
Claim 17. With probability at least 1−δ, Algorithm Learn-RkSj uses O(snm1m2m3)

membership queries and O(sm2m3(kjq
2)4kj) equivalence queries.

Proof. By Claim 16, each time that Procedure find-useful-example is invoked (on
a positive counterexample), we get a useful example with probability at least 1−δ/3s.
By Claims 13 and 14, if we have a useful example, then we find a term t that satisfies
the original counterexample with probability at least 1 − 2δ/3s. All together, we
find a good term t with probability at least 1 − δ/s. Therefore, if we get s positive
counterexamples, with probability at least 1− δ, we find prime implicants for all the
terms in F , and therefore the hypothesis is logically equivalent to F .

We now count the number of queries used in this case. In each call to produce-terms
we make n membership queries to find sensitive(x): one membership query for each
y, and n additional queries for each y that is negative. All together Procedure
produce-terms makes O(nm1) membership queries to create the set of literals L.
It then produces (in step 4) O((kjq2)4kj) terms (or none, in the unlikely event that
|L| > kjq2). The number of calls to Procedure produce-terms is bounded by the num-
ber of positive counterexamples that we get in the algorithm (which is bounded by s)
multiplied by the number of examples produced by Procedure find-useful-example on
each such counterexample (this is bounded by m2m3). Therefore, in total we make

ON LEARNING READ-k-SATISFY-j DNF 1527

O(snm1m2m3) membership queries and produce O(sm2m3(kjq
2)4kj) terms. This

immediately gives a bound on the number of negative counterexamples. Hence, the
number of equivalence queries is O(sm2m3(kjq

2)4kj). Note that just by the read-

k property of F we have s ≤ kn. A tighter bound of s = O(
√
k2jn) is given by

[Mat93].

Claim 18. Let δ > 0 be a constant and kj = O(logn
log log n). Algorithm Learn-RkSj

runs in time poly(n) and finds a function logically equivalent to F with probability at
least 1− δ.

Proof. By Claim 17, the algorithm succeeds with probability at least 1− δ. The
polynomial bound then follows, noting that m1, m2, and m3 are all polynomial for
kj = O(log n) and that (kjq2)O(kj) is polynomial for kj = O(log n/ log log n) (as q is
polylog(n)).

So far we considered only δ, which is a fixed constant (this is used in Claim 14
when we say that c is a constant). To generalize to arbitrary δ (e.g., δ can be a
function of n), we use a standard technique as follows.

Theorem 19. Let F be an RkSj formula, kj = O(logn
log log n), and δ > 0. There is

an algorithm that runs in time poly(n, log 1
δ) and finds a function logically equivalent

to F with probability at least 1− δ.

Proof. We run Algorithm Learn-RkSj ln 1
δ times. Every time we stop after using

the number of queries stated in Claim 17, and use an equivalence query to decide if we
need to run further. Clearly, the overall algorithm runs in poly(n, log 1

δ) and succeeds
with probability at least 1− δ.

As a last remark we note that it may be that the method we use here can be
adapted for kj = O(log n). The only part of the algorithm that does not allow for
kj = O(log n) is Procedure produce-terms, and in particular, step 4, which produces
O((log n)O(kj)) terms. Finding a better sampling method or a better way to produce
the terms out of the set L might solve this problem.

6. R2D DNF does not have small CNF. We present a family {Fn} of func-
tions that have short (poly(n)) R2D DNF formulas but require CNF formulas of size
2Ω(

√
n). Note that this also implies that the size of any decision tree for these func-

tions must also be superpolynomial, even without restricting the number of variable
occurrences. Bshouty [Bsh95] gives an algorithm for learning functions (such as de-
cision trees) which have both small DNFs and small CNFs. Our family of functions
{Fn} shows that this result does not apply here, as the size of the CNFs for even R2D
DNFs may be superpolynomial. It remains open, however, whether techniques similar
to those used in [Bsh95] can be applied to yield a comparable or stronger result. Such
a result would rely on showing that every RkSj DNF has a small “monotone basis”;
we suspect this is not the case, as even read-twice DNFs (though not disjoint) require
an exponentially large monotone basis [Bsh94].

Theorem 20. There is a family of functions {Fn} with polynomial-sized R2D

representations but whose CNF representations require at least 2
√

2n − 2(
√

2n + 1)
clauses.

Proof. Let n =
(
m+1

2

)
. We define a function Fn with m+1 terms each of length m

on n variables xi,j where 1 ≤ i < j ≤ m+ 1. The R2D representation of the function
is t1 ∨ t2 ∨ · · · ∨ tm+1, where the term tq includes all the literals xq,j for j > q, and all
the literals xj,q for j < q. The idea is that the variable xi,j appears only in the ith
term and the jth term, and is “responsible” for the disjointness of these two terms
(since the variable appears negated in one term and unnegated in the other). For

1528 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

example, for m = 3 the function is: x12x13x14 ∨ x12x23x24 ∨ x13 x23x34 ∨ x14 x24 x34.
The main step in the proof is the following claim.

Claim 21. Every clause in a CNF representation of Fn must have m+1 literals.
Given this claim, the following counting argument shows that the CNF must

have a large number of clauses: the number of assignments satisfied by Fn is exactly
(m+1)2n−m, since each of the m+1 terms satisfies 2n−m assignments (it determines
the value of m out of the n variables) and the representation is disjoint. This implies
that the number of assignments unsatisfied by Fn is 2n(1 − (m + 1)/2m). Since a
clause of length ≥ m + 1 falsifies at most 2n−m−1 assignments, we need at least
2m+1(1 − (m + 1)/2m) = 2m+1 − 2(m + 1) clauses to falsify all the unsatisfying
assignments of Fn. As m2 ≤ 2n ≤ (m+ 1)2 the theorem follows.

Proof of the claim. Assume by way of contradiction that there is a clause of length
α < m+1 in a CNF representation for Fn. Let C = (`1∨ `2∨ · · ·∨ `α) be that clause.
We show that there exists an assignment a such that C(a) = 0 (and hence the value
of the CNF formula on a is 0) and Fn(a) = 1, contradicting the assumption that C is
a clause in a CNF representation of Fn.

To construct a, notice that since every literal appears exactly once in the R2D
representation, fixing the values of α ≤ m variables can falsify at most m terms in
the DNF representation, so there is still a term tC that can be satisfied. Therefore,
we can define a to be the assignment in which all the literals in C are set to zero, all
the literals in tC are set to one, and all other literals are set arbitrarily. We thus have
that C(a) = 0 but tC(a) = 1 (and hence Fn(a) = 1), a contradiction.

7. Appendix: Lemma 4 is tight. Lemma 4 plays a central role in our analysis.
It gives a bound on the number of terms which are almost satisfied by an assignment
a, in terms of k and j. It is natural to ask how good this bound is. The following
example, due to Galia Givaty [Giv95], shows that it is essentially optimal (up to
constants). More precisely, for any values of k and j we give a function Fk,j with k · j
variables x0, x2, . . . , xkj−1 and an assignment a such that |Y (a)| = k · j. The function
Fk,j has kj terms:

ti = xixi+1 . . . xi+k−1 mod kj (0 ≤ i ≤ kj − 1).

It can be easily verified that the function is read-k (the variable xi appears only in
the terms ti−k+1 mod kj , . . . , ti). It is also satisfy-j, since if an assignment satisfies a
term ti it cannot satisfy any of the k − 1 terms ti−k+1 mod kj , . . . , ti−1 mod kj (as they
all contain the variable xi while ti contains xi). Now, let a be the all “1” assignment.
Each term ti is almost satisfied by a with respect to index i. Hence, |Y (a)| = kj.

8. Bibliographic remarks. The work presented here appeared in preliminary
forms as [AP92] and [BKK+94]. The algorithm for constant k and j is from [AP92],
and the extension to k · j = O(log n/ log log n), from [BKK+94]. The family of func-
tions given in section 6 was defined in [AP92], where it was shown that the class R2D
is not included in read-k decision trees. This result was later strengthened in [Aiz93]
to show that the family requires decision trees of size 2n−2. Its current form is from
[BKK+94].

REFERENCES

[AFP92] D. Angluin, M. Frazier, and L. Pitt, Learning conjunctions of Horn clauses, Ma-
chine Learning, 9 (1992), pp. 147–164.

ON LEARNING READ-k-SATISFY-j DNF 1529

[AHK93] D. Angluin, L. Hellerstein, and M. Karpinski, Learning read-once formulas with
queries, J. Assoc. Comput. Mach., 40 (1993), pp. 185–210.

[AHP92] H. Aizenstein, L. Hellerstein, and L. Pitt, Read-thrice DNF is hard to learn with
membership and equivalence queries, In Proc. 33rd Symp. on the Foundations of
Comp. Sci., IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 523–532.
A revised manuscript with additional results will appear in Comput. Complexity,
as Aizenstein, Hegedus, Hellerstein, and Pitt, Complexity theoretic hardness results
for query learning, to appear.

[Aiz93] H. Aizenstein, On the Learnability of Disjunctive Normal Form Formulas and Deci-
sion Trees, Ph.D. thesis, Dept. of Computer Science, University of Illinois, Urbana,
1993; also Technical Report UIUCDCS-R-93-1813, Dept. of Computer Science, Uni-
versity of Illinois, Urbana, 1993.

[AK95] D. Angluin and M. Kharitonov, When won’t membership queries help?, J. Comput.
System Sci., 50 (1995), pp. 336–355.

[Ang87] D. Angluin, Learning k-Term DNF Formulas using Queries and Counterexamples,
Technical Report YALEU/DCS/RR-559, Department of Computer Science, Yale
University, New Haven, CT, 1987.

[Ang88] D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[Ang90] D. Angluin, Negative results for equivalence queries, Machine Learning, 5 (1990),

pp. 121–150.
[AP91] H. Aizenstein and L. Pitt, Exact learning of read-twice DNF formulas, In Proc. 32nd

IEEE Symp. on Foundations of Computer Science, San Juan, 1991, pp. 170–179.
[AP92] H. Aizenstein and L. Pitt, Exact learning of read-k disjoint DNF and not-so-disjoint

DNF, in Proc. Annual ACM Workshop on Computational Learning Theory, Pitts-
burgh, PA, Morgan Kaufmann, San Francisco, 1992, pp. 71–76.

[AP95] H. Aizenstein and L. Pitt, On the learnability of disjunctive normal form formulas,
Machine Learning, 19 (1995), pp. 183–208.

[BFJ+94] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich, Weakly
learning DNF and characterizing statistical query learning using Fourier analysis,
In Proc. 26th ACM Symposium on Theory of Computing, ACM, New York, 1994.

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
Regression Trees, Wadsworth International Group, CA, 1984.

[BKK+94] A. Blum, R. Khardon, A. Kushilevitz, L. Pitt, and D. Roth, On learning read-
k satisfy-j DNF, in Proc. Annual ACM Workshop on Computational Learning
Theory, ACM, New York, 1994, pp. 110–117.

[BR92] A. Blum and S. Rudich, Fast learning of k-term DNF formulas with queries, in Proc.
24th ACM Symposium on Theory of Computing, ACM, New York, 1992, pp. 382–
389.

[BS90] A. Blum and M. Singh, Learning functions of k terms, In Proc. COLT ’90, Morgan
Kaufmann, San Francisco, 1990, pp. 144–153.

[Bsh94] N. H. Bshouty, personal communication, 1994.
[Bsh95] N. H. Bshouty, Exact learning boolean functions via the monotone theory, Inform.

and Comput., 123 (1995), pp. 146–153; an earlier version appeared in Proc. 34th
Ann. IEEE Symp. on Foundations of Computer Science, 1993.

[Giv95] G. Givaty, personal communication, 1995.
[Han91] T. Hancock, Learning 2µ DNF formulas and kµ decision trees, In Proc. 4th Annual

Workshop on Computational Learning Theory, Santa Cruz, CA, Morgan Kauf-
mann, San Francisco, 1991, pp. 199–209.

[Jac94] J. Jackson, An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution, in Proc. 35th IEEE Symp. on Foundations of Computer
Science, Santa Fe, NM, 1994, pp. 42–53.

[Kha94] R. Khardon, On using the Fourier transform to learn disjoint DNF, Inform. Process.
Lett., 49 (1994), pp. 219–222.

[KLPV87] M. Kearns, M. Li, L. Pitt, and L. Valiant, On the learnability of Boolean formulae,
In Proc. 19th Annual ACM Symposium on Theory of Computing, ACM, New York,
1987, pp. 285–294.

[KM93] E. Kushilevitz and Y. Mansour, Learning decision trees using the Fourier spectrum,
SIAM J. Comput., 22 (1993), pp. 1331–1348; an earlier version appeared in Proc.
23rd Annual ACM Symposium on Theory of Computing, 1991.

[KR95] E. Kushilevitz and D. Roth, On learning visual concepts and DNF formulae, Ma-
chine Learning, 1 (1995), pp. 11–46; an earlier version appeared in Proc. ACM
Workshop on Computational Learning Theory ’93, ACM, New York,

1530 AIZENSTEIN, BLUM, KHARDON, KUSHILEVITZ, PITT, ROTH

[Mat93] S. Matar, Learning with Minimal Number of Queries, Master’s thesis, University of
Alberta, Canada, 1993.

[PR94] K. Pillapakkamnatt and V. Raghavan, On the limits of proper learnability of subsets
of DNF formulas, in Proc. Annual ACM Workshop on Computational Learning
Theory, ACM, New York, 1994, pp. 118–129; Machine Learning, 25 (1996), pp. 237–
263.

[PR95] K. Pillapakkamnatt and V. Raghavan, Read twice DNF formulas are properly learn-
able, Inform. and Comput., 122 (1995), pp. 236–267.

[PV88] L. Pitt and L. Valiant, Computational limitations on learning from examples, J.
Assoc. Comput. Mach., 35 (1988), pp. 965–984.

[Qui86] J. R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986), pp. 81–106.
[Qui93] J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann, San Fran-

cisco, 1993.
[Sim83] H. U. Simon, A tight Ω(log log n)-bound on the time for parallel RAM’s to com-

pute nondegenerate boolean functions, in Lecture Notes in Computer Science 158,
Springer-Verlag, New York, 1983, pp. 439–444.

[Val84] L. G. Valiant, A theory of the learnable, Comm. ACM, 27 (1984), pp. 1134–1142.
[Val85] L. G. Valiant, Learning disjunctions of conjunctions, in Proc. 9th International Joint

Conference on Artificial Intelligence, Vol. 1, Los Angeles, CA, 1985, pp. 560–566.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION∗

EYAL KUSHILEVITZ† , RAFAIL OSTROVSKY‡ , AND ADI ROSÉN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1531–1549, December 1998 002

Abstract. Communication between processors is the essence of distributed computing: clearly,
without communication, distributed computation is impossible. However, as networks become larger
and larger, the frequency of link failures increases. The end-to-end communication problem asks
how to efficiently carry out fault-free communication between two processors over a network, in spite
of such frequent link failures. The sole minimum assumption is that the two processors that are
trying to communicate are not permanently disconnected (i.e., the communication should proceed
even when there does not (ever) simultaneously exist an operational path between the two processors
that are trying to communicate).

We present a protocol to solve the end-to-end problem with logarithmic-space and polynomial
communication at the same time. This is an exponential memory improvement to all previous
polynomial communication solutions. That is, all previous polynomial communication solutions
needed at least linear (in n, the size of the network) amount of memory per link.

Our protocol transfers packets over the network, maintains a simple-to-compute O(logn)-bits
potential function at each link in order to perform routing, and uses a novel technique of packet
canceling which allows us to keep only one packet per link. The computations of both our potential
function and our packet-canceling policy are totally local in nature.

Key words. end-to-end communication, space complexity, unreliable networks

AMS subject classifications. 68M10, 68Q22, 68Q25

PII. S0097539795296760

1. Introduction. In this paper we address the problem of communication in
distributed systems: how can two processors (a sender and a receiver) communicate
over an unreliable communication network? This question was considered in many
different settings, which can be divided into two groups depending on the frequency
of link failures.

Communication during infrequent faults. If link failures are “infrequent,” then
after each failure a new communication path between the two communicating proces-
sors can be computed, which will be operational until the next fault. That is, in case
failures occur rarely, it is possible, upon a failure, to “reset” the network and com-
pute a new path between the communicating processors (e.g., [Fin79, AAG87, AS88,
AAM89, AGH90]). In a related model, a communication path can also be computed
in a “self-stabilizing” manner (e.g., [Dij74, AKY90, KP90, APV91, AV91, AKM+93,
AO94, IL94]), which essentially means that after faults stop for a sufficiently long
period of time, the protocol “stabilizes” to its correct behavior (i.e., establishes a new
path). We emphasize that both the above reset and self-stabilizing solutions work
only if faults are not too frequent, as they require that a message be transmitted over
the computed path.

∗ Received by the editors December 18, 1995; accepted for publication (in revised form) August
30, 1996; published electronically June 3, 1998. An early version of this paper appeared in Proc. of
the 27th ACM Symp. on the Theory of Computing (STOC), 1995, pp. 559–568.

http://www.siam.org/journals/sicomp/27-6/29676.html
† Department of Computer Science, Technion, Haifa 32000, Israel (eyalk@cs.technion.ac.il, http://

www.cs.technion.ac.il/∼eyalk). Part of this research was done while the author was visiting ICSI,
Berkeley, CA.

‡ Computer Science Division, University of California at Berkeley, and International Computer
Science Institute, Berkeley, CA 94720 (rafail@cs.berkeley.edu).

§ Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel (adiro@math.
tau.ac.il). Part of this research was done while the author was visiting ICSI, Berkeley, CA. Current
address: Department of Computer Science, University of Toronto, ON, Canada.

1531

1532 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

Communication during frequent faults. We consider a setting where failures occur
frequently. The so-called end-to-end communication problem [AG88, AMS89, AGR92,
AAG+97] is to deliver, in finite time, data-items from a sender processor to a receiver
processor, where data-items are given in an on-line fashion to the sender and must be
output in the same order, without duplication or omission at the receiver processor.
This should be done even if there does not exist, at any time, a path of simultaneously
active links that connects the two communicating processors. The sole assumption
is that the two communicating processors are not separated by a cut of permanently
failed links.1 Solutions to the problem are evaluated according to their communication
complexity and space complexity.

1.1. Frequent faults model.

Communication complexity. One possible solution to the above problem is to give
data-items “unbounded sequence numbers” and to “flood” the network with each item
[Vis83, AE86]. However, this solution has the drawback that the message size increases
unboundedly with the number of items sent; hence, the amount of communication
needed per data-item grows unboundedly with the number of data items. Recently,
the study of end-to-end protocols with bounded communication complexity received a
lot of attention [AG88, AMS89, APV91, AG91, AGR92, AAG+97]. In this paper, we
concentrate on bounded (in fact, polynomial) communication-complexity protocols.

Space complexity. Another important complexity measure is the space complexity—
the amount of space needed at the processors, per incident link. Notice that the
“unbounded sequence numbers” solution requires unbounded memory as well. The
question of reducing memory requirements, while maintaining efficiency, received a
lot of attention in the “self-stabilizing” setting (e.g., [MOOY92, AO94, IL94]), where
it was shown that, in the case of infrequent memory faults, small memory and commu-
nication efficiency are simultaneously attainable. In contrast, all end-to-end protocols
that were efficient in terms of their communication complexity were not efficient in
their space complexity: more precisely, all end-to-end communication protocols that
had polynomial communication complexity required at least linear (in the number
of processors of the network) amount of space, at each processor, per incident link.
Protocols with smaller space complexity were only presented at the cost of (at least)
exponential communication complexity: Afek and Gafni [AG88] give a protocol which
uses logarithmic amount of space, but has exponential communication complexity, and
another protocol which uses constant amount of space but has unbounded communi-
cation complexity.

1.2. Our result. The question of whether there exists an end-to-end commu-
nication protocol with sublinear space complexity and at the same time polynomial
communication complexity remained open. In this paper, we give an affirmative an-
swer to this question: we give a protocol that has logarithmic (O(log n + D)) space
complexity and polynomial (O(n2mD)) communication complexity, where n and m
are the number of processors and links in the network, respectively, and D is the
data-item size. This is an exponential space complexity improvement over all known
polynomial communication protocols. Notice that this is achieved at a slight increase
of the communication complexity compared to the best known solution [AG91]. We
compare our result to the previous work in the table below.

1 See section 2 for a formal description of the model.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1533

Paper reference Communication

complexity

(total number

of bits)

Space complexity

(bits per inci-

dent link)

[Vis83, AE86] unbounded: ∞ unbounded: ∞
[AG88], Alg. 1. unbounded: ∞ constant: O(D)

[AG88], Alg. 2. exponential: O(D · exponential(n)) logarithmic: O(logn+D)

[AMS89] polynomial: O(n9 +mD) polynomial: O(n5 +D)

[AGR92] polynomial: O(n2mD) linear : O(nD)

[AG91] polynomial: O(nm logn+mD) linear: O(n+D)

present work polynomial: O(n2mD) logarithmic: O(logn+D)

Our techniques and previous work. The starting point of our investigation is the
Slide protocol of [AGR92]2 and the Majority algorithm of [AAF+90, AGR92]. The
Slide protocol requires storing n packets per incident link, and the decision on the
recency of the received item is taken only at the receiver processor (using the technique
of [AAF+90]). If we wish to reduce the space per link, we can no longer afford storing
n different packets, but must keep far fewer packets per link, and we can no longer
afford the Majority algorithm of [AAF+90, AGR92], which collects a large number of
packets arriving at the receiver and then calculates the value representing the majority
among the received values. Thus, we must somehow “drop” all but several packets,
and decide which to keep at each of the processors. Moreover, we must design an “on-
line” analogue of the majority calculation, where we can “discard” packets as soon
as they arrive at the receiver processor, yet manage to compute the majority value.
However, if we begin to “drop” packets everywhere, is it no longer the case that the
technique of deciding which packet is the correct one to output (at the receiver) still
works. To overcome both difficulties, we combine two ingredients:

• a potential function that controls the flow of data-items in the network, which
is an analogue to the potential function of the Slide protocol; and

• a novel data-item canceling policy which makes sure that in any processor
there will be at most two distinct values of data-items per link. The same
policy is used in both the intermediate processors and the receiver processor.

We show that a combination of these two techniques yields the desired result. Hence,
even in the presence of frequent link failures, it is possible to achieve both polynomial
communication and logarithmic space. As in [AMS89, AGR92], our solution has
the additional benefit that it is totally local in nature. For example, the locality
of Slide was used for establishing its self-stabilizing extension in [APV91]; similar
local techniques were also used for various multicommodity flow problems in dynamic
graphs [AL93, AL94].

1.3. Organization. Section 2 contains all the necessary background including
the formal definitions of the model and the problem. Section 3 contains the description
of the protocol; we start with an informal description (section 3.1) and then give a
formal description (sections 3.2 and 3.3). Then, we show some of the properties of
the protocol (section 3.4, with some proofs deferred to Appendix A). We conclude
with its proof of correctness and complexity (section 4).

2 A journal version of this paper, jointly with [AMS89], appears in [AAG+97].

1534 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

2. Model and problem statement.

2.1. The network model. A communication network is associated with an
undirected graph G(V,E), |V | = n, |E| = m, where nodes correspond to processors
and edges correspond to links of communication. We denote by E(v), for v ∈ V , the
set of edges which are adjacent to v. Processors are modeled as identical (except the
sender and the receiver) deterministic finite state transducers with O(log n) memory
per edge. (We do not require processors to have unique identifiers.) We model each
undirected communication link as consisting of two directed links, delivering messages
in opposite directions. Each transmission of a message is associated with a send event
and a receive event; each event has its time of occurrence according to a global time,
unknown to the processors. Without loss of generality, we assume that no two events
occur at exactly the same time. A message is said to be in transit any time after its
send event and before its receive event. As discussed in the introduction we would like
to deal with networks whose links may fail and recover frequently. Each failure and
recovery is eventually reported to both end-points of the link. When a link fails, mes-
sages that are in transit over it are lost. In the following we give a formal definition of
a somewhat simpler-to-discuss model that we use in the sequel. Intuitively, the main
difference between the models is that in the model we define below links never recover
if they fail, and that such a failure is not reported to the processors. It is known that
this simpler model, which was also used in [AG88, AMS89, AGR92], does not cause
any reduction in power (for completeness, we prove this fact in section 2.4). In our
model each directed link satisfies the following properties.

• Each link has constant capacity; that is, the protocol must obey the rule that
only a constant number of messages are in transit on a given link at any given
time.

• Communication over links obeys the FIFO (first in, first out) rule; that is,
at any time, the sequence of messages received over the link is a prefix of the
sequence of messages sent over the link.

• Communication is asynchronous; that is, there is no a priori bound on message
transmission delays over the links.

A directed link is called nonviable if starting from some message and on it does
not deliver any message; the transmission delay of this message and any subsequent
message sent on this link is considered to be infinite. The sequence of messages
received over the link is in this case a proper prefix of the sequence of messages sent.
Otherwise, the link is viable. An undirected link is viable if both directed links that
it consists of are viable.

We say that the sender is eventually connected to the receiver if there exists a
(simple) path from the sender to the receiver consisting entirely of viable (undirected)
links. Note that if there is a cut of the network, disconnecting the sender from the
receiver, such that all the directed links crossing the cut are nonviable links, then
eventually it becomes impossible to deliver messages from the sender to the receiver.

Remark. Notice that we model an undirected graph as a bi-connected directed
graph. Hence we assume that either both directed links are viable or both are not
viable. In this case, the above assumption about the eventual connectivity of the
sender and the receiver is in fact the minimal possible for communication between
them. On the other hand, in the model of directed graphs, it could be the case
that there is a directed path from the sender to the receiver, and maybe (another)
directed path from receiver to sender, yet all undirected edges are nonviable. We do
not consider such (more difficult) case, and are in fact dealing only with undirected

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1535

graphs.

2.2. The end-to-end communication problem. The purpose of an end-to-
end communication protocol is to establish a (directed) “virtual link” to be used for
the delivery of data-items from one special processor, called the sender, to another
special processor, called the receiver. Each data-item is a character of some alphabet
of size 2D; that is, each data-item can be encoded by D bits. It is required that if
the sender is eventually connected to the receiver then the “virtual link” established
by the protocol will be viable. This virtual link should have the same properties as a
“regular” network link; namely, it should satisfy:

Safety: The sequence of data-items output by the receiver, at any time, is a
prefix of the sequence of data-items input by the sender.

Liveness: If the sender is eventually connected to the receiver, then each data-
item input by the sender is eventually output by the receiver.

A protocol for the end-to-end communication problem is given, in an on-line
fashion, a sequence of data-items at the sender (i.e., every data-item must be delivered
without the knowledge of the next data-item to be transmitted) and generates a
sequence of data-items at the receiver that obey the safety and liveness properties.

2.3. The complexity measures. We consider the following complexity mea-
sures.

Communication: The number of bits transferred in the network in the worst
case, per data-item delivered. More precisely, the total number of bits sent in
the worst case in the period of time between two successive data-item output
events at the receiver (measured in terms of n, m, and D).

Space: The maximum amount of space per incident link required by a proces-
sor’s program throughout the protocol (measured in terms of n, m, and D).

In addition, we require that the local computation of the processors be polynomial
for each send/receive event at each processor (in fact, our protocol uses a constant
number of computational steps per event).

2.4. Relations to other models. The model described above is called the “∞-
delay model” in [AG88] and the “fail-stop model” in [AM88]. As mentioned, we
would like to deal with networks where links fail and recover frequently; in such
dynamic networks, links may fail and recover many times (yet processors never fail)
(see [AAG87]), and each failure or recovery of a network link is eventually reported at
both its end-points by some underlying link protocol. This model should be contrasted
with the self-stabilizing model (e.g., [Dij74]), where both processors and links can start
in an inconsistent state, but it is assumed that they never fail after the computation
begins. As was discussed in the introduction, the self-stabilizing model corresponds
to infrequent memory faults and is incomparable to the model of frequent link failures
addressed here. The question of how, in addition to frequent failures of links, one can
allow inconsistent initial memory states was addressed in the end-to-end setting in
[APV91, DW93].

As pointed out in [AG88], one can design protocols in the fail-stop model and
convert them to the dynamic model. For this, a message to be forwarded on a link
is stored in a buffer until the link recovers and the previously sent message has been
delivered. A protocol similar to the data-link initialization protocol of [BS88] is used
to guarantee that no message is lost or duplicated. Each link in the dynamic network
that fails and never recovers for a long enough period to allow the delivery of a
message is represented by a nonviable link. Note that the only space used by the

1536 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

above transformation is for storing the buffers (i.e., per each link, it is the capacity
of the link times the size of the longest message).3

3. The protocol.

3.1. High-level description. Our starting point is a linear space, yet simple,
solution of [AGR92]. Their solution combines (as black-boxes) two components: the
Slide protocol and the Majority algorithm. Before explaining our protocol, we give
a short overview of the approach taken in [AGR92]. The Slide is used to transfer
tokens (packets containing a data-item) in the network. This is done by letting each
processor maintain a stack of tokens for each of its links. On each link, if active,
tokens move from a larger stack of tokens to a smaller stack of tokens. The sender
always has a large stack of tokens, so it only sends tokens out, and the receiver always
has an empty stack, hence it only receives tokens. The Majority algorithm enables
the receiver to decide, by collecting a sufficiently large number of tokens (containing
data-items) and taking the majority value, what is the sequence of data-items sent by
the sender. It is proved in [AGR92] that the combination of these two components
yields a polynomial communication solution to the end-to-end problem.

In order to make the space requirements of the protocol logarithmic per edge,
we can no longer use the Slide as a method to establish the virtual link between the
sender and the receiver and we can no longer use the Majority algorithm. The reason
is that the Slide needs a lot of space to store the stack of tokens (for each link), and the
Majority algorithm needs even more space to collect the tokens in order to decide on
the correct value to output. To overcome this, we introduce the following procedure.

• While transferring packets from the sender to the receiver, our protocol “can-
cels” some of these packets both en route and upon their arrival at the receiver
processor. More precisely, it replaces some packets by “nil” packets.

• The canceling policy is designed so as to guarantee that at most two different
packet-values are to be stored at each processor (including the receiver) at any
given time—a “real” packet and a “nil” packet. We use a potential function
that only counts the number of packets of both types, rather than storing all
of them, and use this function to control the flow of tokens. We prove that
two counters (of dlog ne bits each) per link are sufficient for this. Altogether,
we use only two counters per link and store only one data-item per processor.

Note that, usually, protocols that change the values of packets are undesirable. How-
ever, our protocol changes these values in a very restricted way—it may only replace
a “real” packet by a “nil” packet. Our “canceling” policy does not effect the routing
properties of the Slide protocol: it guarantees that if the sender and the receiver are
eventually connected, then tokens will be transferred from the sender to the receiver.
Moreover, our protocol guarantees an upper bound on the number of tokens that are
in the network at any given time. Denote this upper bound by C. For each data-
item to be sent, the sender transmits to the receiver 2C + 1 packets (tokens) that
contain that data-item. The receiver in an on-line, space-efficient fashion, “collects”
the same number (i.e., 2C + 1) of tokens (some of which, but no more than C, may
be old tokens remaining in the network from previous transmissions) and outputs the
data-item that represents the majority amongst the tokens received, ignoring the nil
tokens.4 We emphasize that the receiver computes this majority without storing the

3 The communication is increased by a multiplicative factor of the number of failures of the link.
4 For the first data-item only C + 1 tokens are collected.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1537

tokens; rather, it does so by using the same “canceling policy” as in the intermediate
processors.

As is clear from the above description, the heart of our protocol is the new (local)
“canceling policy,” described below. Whenever a token arrives into a processor on a
given edge e we do the following.

• If it is a nil-token, then the counter of nil-tokens of edge e is augmented by one.
• If it is a “real” data-token and the data-item is identical to the data-item currently stored in

the processor, then the data-tokens counter of edge e is augmented by one.
• If it is a “real” data-token and the data-item is different from the data-item currently stored

in the processor, then the arriving token, and one data-token already accounted for in the
processor are both “canceled” and become two nil-tokens (that is, the counter of nil-tokens of
edge e is augmented by one, and for some edge e′, whose data-tokens counter is greater than 0,
the counter of nil-tokens is augmented by one, and the counter of data-tokens is decreased by
one). If as a result there are no more “real” data-tokens accounted for in the processor (over
all edges), we erase the current data-item stored in the processor.

• If it is a “real” data-token and there is no data-item currently stored in the processor, we store
the arriving data-item as the current one, and set the counter of data-tokens of e to 1.

The essential idea of the above “canceling” policy is that from the point of view
of the majority calculation done by the receiver, the above cancelation of two data-
items into nil-tokens has only a minor effect; the receiver only needs to ignore the
nil-tokens. Intuitively, since one of the properties of the old Majority algorithm is
that, without these cancelations, the “correct” data-item would have more than half
the tokens in any block of 2C + 1 tokens then, at worst, if any of the canceled data-
items is the correct one, then the other canceled data-item is an old one. Therefore,
the majority of the correct data-items is maintained, while storing only one data-item
per processor, and two counters per link.

3.2. A formal description of the protocol. We begin by describing the data-
structures and messages used by our protocol. The protocol uses the following types
of messages:

token messages: to carry data-items (either “real” data-items or the “nil”
data-item).

token left messages: to announce over a link e that a token, accounted for
in the counters of link e, has been sent away.

ack token and ack token left messages: are used to acknowledge the ar-
rival of a token message or a token left message, respectively.

The following data is stored at each processor v:
• A variable current message that stores a single data-item to be duplicated

and sent in token messages.
• For each incident link e, there are two counters, message tokens[e] and
nil tokens[e]. The variable message tokens[e] records a value assoc-
iated with the number of tokens that arrived on e carrying the value
current message; however, the value stored is not exactly this number, as
sometimes a stored token is converted from a message-token into a nil-token,
at which event the value of message tokens[e] is decreased by one and the
value of nil tokens[e] is increased by one.

• For each incident link e, a variable bound[e] that stores an estimate on
the sum of the above counters on the other side of the link. This bound
is initialized to 1, incremented by one every time a token is sent over the

1538 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

outgoing link, and decremented by one every time a token left message is
received over the corresponding incoming link.

• For each incident link e = (v, u), a counter called tokens left pending[e],
which counts the number of token messages that were sent from v (possi-
bly on other links) on “the account” of e (i.e., caused the counters of e to
decrease), but have not yet been reported as such to u. This counter is ini-
tialized as 0, incremented by one when a token leaves the counters of e, and
decremented by one when a token left message is sent over e.

• For each incident link e, a flag free for token indicating whether an ack
token message has already been received for the previous token message
sent on e, and a flag free for token left, indicating whether an ack
token left message has already been received for the previous token left
message sent on e.

The sender and the receiver store some additional data. The sender stores the
last message it has received to transmit (current input), together with a count of
how many such packets are still to be sent (left to send). In addition, it stores
part of the above stated data relative to an additional “virtual link” through which
it introduces new tokens into the network. Although we call it a virtual link, in what
follows it is not included in the set E. The receiver maintains a counter storing the
number of packets it received since the time of the last output event (count), and
another counter storing the number of packets that contained the message stored
in current message (current message count). It also maintains a single-bit flag
first item.

Throughout the proofs we assume a global time, unknown to the processors, and
we denote the value of variables in a processor at a given time by a subscript of
the processor and a superscript of the time (e.g., X t

v). We also use the following
notation to count the number of different messages on a given link at a given time:
Let tokenstu→v be the number of token messages in transit from u to v at time t.
Let tokens lefttu→v be the number of token left messages in transit from u to v
at time t.

In our protocol the nodes do not store tokens, but merely store a single message-
value and several counters. However, for our proofs we sometime use the terminology
that tokens are stored, or present, in the nodes. The analogy is straightforward:
when a counter counts k nil-tokens, we sometimes refer to it as if the node stores k
nil-tokens, etc. This enables us to talk about the “number of tokens in the network,”
rather than about the “sum of values of the counters in the network,” and make our
arguments more readable.

3.3. The code. In this section, we present the code of our protocol. Following
[AMS89, AGR92], the presentation of the code is based on the language of guarded
commands of Dijkstra (see [DF88]), where the code of each process is of the form

Select G1 → A1 G2 → A2 . . . Gl → Al End Select.

The code is executed by repeatedly selecting an arbitrary i from all guards Gi which
are true, and executing Ai. Each guard Gi is a conjunction of predicates.

The predicate Receive M is true when a message M is available to be received. If
the statements associated with this predicate are executed, then prior to this execution
the message M is actually received. The message may contain some values that are
assigned, upon its receipt, to variables stated in the Receive predicate (e.g., Receive
token(data)). The command Send M on e sends the message M on the link e.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1539

We present the code of a regular processor (Figure 1), which is every processor
except the sender and the receiver. The code of the receiver is presented separately
(Figure 3). The sender has an additional “virtual link” (which does not belong to the
set E) through which new tokens are introduced into the network. This virtual link is
denoted in the code by I. The code of the sender is composed of two parts: the code
of a regular processor, and additional special code (Figure 2). Upon initialization,
the sender executes the two initialization procedures (of a regular processor and the
additional one), and then regards the two select commands as a unified one.

3.4. Properties of the protocol. In this section we present properties of the
protocol which later allow us to prove its correctness and complexity. The structure
of the proof follows the structure of the proofs in [AGR92], and some of the proofs are
analogous to those of [AMS89, AGR92]. We first state the following technical lemmas
(we postpone their proofs to Appendix A).

Consider an edge e = (u, v) ∈ E. The following lemma relates the estimate
bound[e]tu which u has on the number of tokens that are stored in v (in the counters
corresponding to the same edge e). It shows that this estimate essentially equals the
actual number of tokens stored (i.e., message tokens[e]tv + nil tokens[e]tv) plus those
that have left, but were not yet reported as such, and those which are still in transit
(i.e., tokenstu→v + tokens lefttv→u).

Lemma 1. At any time t, and for any e = (u, v) ∈ E,

bound[e]tu − 1 = message tokens[e]tv + nil tokens[e]tv

+ tokens left pending[e]tv + tokenstu→v + tokens lefttv→u .

The next lemma gives the main intuition for the progress in the protocol.
Lemma 2. Consider a token message sent from processor u to processor v,

on link e = (u, v). Let e′ be the link whose counter at processor u decreased when
the message was sent. If just before the message is sent message tokens[e′]u +
nil tokens[e′]u = i and just after it is received message tokens[e]v +nil tokens[e]v =
j, then j < i.

Since all the tokens in the network are either “stored” in the processors or in
transit over links, the following lemma and corollary will allow us to give a bound on
the capacity of the network (property (P1) below).

Lemma 3. At any time t and for any e = (u, v),

bound[e]tu ≤ n .

Corollary 4. The following hold for any time t.
(1) For any e = (u, v) ∈ E,

message tokens[e]tv + nil tokens[e]tv + tokenstu→v ≤ n ,

tokens left pending[e]tv ≤ n .

(2) For e = I,

message tokens[e]tv + nil tokens[e]tv ≤ n ,

tokens left pending[e]tv ≤ n .

1540 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

Select
Initialization −→

C := n · (2m+ 1) ;
current message=empty;
for every incident link e ∈ E(v)

bound[e]:=1; message tokens[e]:=0; nil tokens[e]:=0; tokens left pending[e]:=0;
free for token[e]:=true; free for token left[e]:=true;

Receive token left on e −→
bound[e]:=bound[e]-1;
Send ack token left on e;

Receive token(data) on e −→
if (data=nil) then

nil tokens[e]:=nil tokens[e]+1;
else

if (current message=empty or current message=data) then
message tokens[e]:=message tokens[e]+1;
current message:=data;

else
nil tokens[e]:=nil tokens[e]+1;
for some e′ ∈ E(V) s.t. message tokens[e′] >0

nil tokens[e′]:=nil tokens[e′]+1;
message tokens[e′]:=message tokens[e′] -1;

if (for every e message tokens[e]=0) then current message:=empty;
endif

endif
Send ack token on e;

Receive ack token on e −→
free for token[e]:=true;

Receive ack token left on e −→
free for token left[e]:=true;

∃e, e′ ∈ E(v) s.t. nil tokens[e′]+message tokens[e′] > bound[e] and
free for token[e]=true −→ /* possibly e′ = e */

if (nil tokens[e′] > 0) then
Send token(nil) on e
nil tokens[e′]:=nil tokens[e′] - 1;

else
Send token (current message) on e;
message tokens[e′]:=message tokens[e′] - 1;

endif
free for token[e]:=false;
bound[e]:=bound[e]+1;
tokens left pending[e′]:= tokens left pending[e′] + 1;

∃e ∈ E(v) s.t. tokens left pending[e] > 0 and free for token left[e]=true −→
send token left on e;
free for token left[e]:=false;
tokens left pending[e]:=tokens left pending[e]- 1;

End Select

Fig. 1. Code of ordinary processor v.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1541

Select
Initialization −→

C := n · (2m+ 1) ;
current input=nil;
left to send:=0;
message tokens[I]:=0;
nil tokens[I]:=0;
tokens left pending[I]:=0;

left to send = 0 −→
current input := input data-item;
left to send:= 2C + 1;

message tokens[I] < n and left to send > 0 −→
message tokens[I]:=message tokens[I] +1;
left to send:=left to send - 1;

∃e ∈ E(v) s.t. message tokens[I] > bound[e] and free for token[e]=true −→
Send token (current input) on e;
message tokens[I]:=message tokens[I] - 1;
free for token[e]:=false;
bound[e]:=bound[e]+1;

End Select

Fig. 2. Additional code for the sender.

We use the above lemmas to prove the following theorem.

Theorem 5. The protocol has the following properties.

(P1) At any time t, the number of tokens in the network is bounded by C = n ·
(2m+ 1).

(P2) Consider a time interval in which knew new tokens are inserted into the net-
work. During this time interval, at most O(n2m+ knew · n) token messages
are sent in the network.

(P3) If the sender and the receiver are eventually connected, the sender will even-
tually insert a new token into the network.

Proof. Every token in the network is either in transit on a link or accounted for
in some counter at a processor. For every edge e = (u, v) ∈ E we consider its two
directions. For the direction from u to v (v to u) Corollary 4 states that at any given
time the number of tokens in transit from u to v (v to u) plus the number of tokens
accounted for at the counters of e at node v (node u) is at most n. Thus we get at
most n ·2m tokens. At most n additional tokens can be accounted for at the counters
of the “virtual link” I, altogether n · (2m + 1) tokens. This concludes the proof of
property (P1).

We can now also prove property (P2). Define the following potential function.
For any processor v and for any incident link e = (v, u), and for e = I if v = s,

denote J t(v, e) = message tokens[e]tv+nil tokens[e]tv and let Ht(v, e) =
∑Jt(v,e)

k=1 k =(
Jt(v,e)

2

)
. Let P t be the set of token messages in transit at time t. For p ∈ P t let

t′ be the time just before the token message p was sent, say from v to u. If e′

is the link whose counters accounted for the token sent, then we define T t(p) =
message tokens[e′]t

′
v + nil tokens[e′]t

′
v (that is, the token “carries” the “number” of

tokens in v, at link e′, just before it left this processor). Denote the sender by S. The
potential function is

1542 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

Procedure check and output
if first item and count=C + 1 then /* first data-item */

output(current message);
current message := empty;
count:= 0;
current message count:= 0;
first item:=false;

else
if (not first item) and count= 2·C + 1 then /* all other data-items */

output(current message);
current message := empty;
count := 0;
current message count:= 0;

endif
endif

End Procedure
Initialize −→

C := n · (2m+ 1) ;
current message := empty;
current message count:=0;
count:=0;
first item:=true;
for every incident link e ∈ E(u)

bound[e]:=0 ;
message tokens[e]:=0;
nil tokens[e]:=0;
tokens left pending[e]:=0;
free for token left[e]:=true;

Receive token(data) on e −→
count:=count + 1;
if (data 6= nil) then

if (current message=empty or current message=data) then
current message count:=current message count+1;
current message:=data;

else
current message count:=current message count -1;
if (current message count=0) then current message:=empty;

endif
endif
tokens left pending[e]:= tokens left pending[e] + 1;
Send ack token on e;
call check and output;

Receive ack token left on e −→
free for token left[e]:=true;

∃e ∈ E(u) s.t. tokens left pending[e] > 0 and free for token left[e]=true −→
send token left on e;
free for token left[e]:=false;
tokens left pending[e]:=tokens left pending[e]- 1;

End Select

Fig. 3. Code of the receiver u .

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1543

Φt = Ht(S, I) +
∑

e=(u,v)∈E
[Ht(v, e) +Ht(u, e)] +

∑

p∈P t

T t(p).

This potential function may change upon one of the following three events.
1. A new token enters the network—the potential function increases by at most

n.
2. A token is sent—the potential function does not change, since the relevant H

function decreases by exactly the value of the relevant new T function that
is added to the sum.

3. A token is received—the potential function decreases by at least 1. This
follows from Lemma 2, as the value of the function T that is extracted from
the sum, is larger by at least 1 than the sum message tokens+nil tokens at
the accepting link, which is the exact increase in the corresponding function
H.

Since by Corollary 4,

message tokens[e]tv + nil tokens[e]tv ≤ n,

and since there is at most one token in transit on each link at any given time, the
value of Φ is at most 2m · ((n2

)
+ n) +

(
n
2

)
; also, Φ is clearly always nonnegative. For

each token received, Φ decreases by 1, and it can increase only upon the entry of a
new token to the network and by at most n. Thus if in a given time interval knew new
tokens are introduced, then an upper bound on the number of token receipts in this
time interval is 2m · ((n2

)
+ n) +

(
n
2

)
+ knew · n, since otherwise the potential function

Φ would become negative. Since by the code a token message is sent on link e only
after an acknowledgment on the previous token message is received, the number of
token messages sent in the time interval is at most 2m more than the number of
token messages received in the time interval. Thus, we get property (P2).

We now turn to the proof of property (P3). By way of contradiction, assume that
t is the last time at which a new token enters the network. As a result of property (P2)
and as there is at most one token left message per token message, and one ack
message (of the corresponding type) per token and token left message, there is
a time t′ ≥ t after which no token, token left, ack token, or ack token left
messages are sent. As the sender, S, and the receiver, R, are eventually connected,
there is a path R = v0, v1, . . . , vk−1, vk = S, k < n, such that for each 0 ≤ i ≤ k − 1,
the edge e = (vi, vi+1) is viable; hence there is a time t′′ ≥ t′ by which all messages
between vi and vi+1, in both directions, are delivered. Note that we enumerate the
nodes on the path in the direction from the receiver to the sender.

Next, note that this implies that tokens left pending[e]vi = 0 for any i and
for any time after t′′. We now prove by induction on the length of the viable path
from vi to R that for any link e incident to vi, after time t′′, message tokens[e]vi +
nil tokens[e]vi ≤ i. The receiver, v0, has no tokens stored at all, thus the induction
basis holds. Let e = (vi−1, vi) (for i ≥ 1), and apply the induction hypothesis to the
link e in node vi−1, i.e., message tokens[e]vi−1 + nil tokens[e]vi−1 ≤ i− 1. Applying
Lemma 1, and since after t′′ there is no message in transit between vi−1 and vi, and
tokens left pending[e]vi−1

= 0, we get bound[e]vi ≤ i. As t′′ ≥ t′, no token is sent
after t′′, but according to the code this can happen only if for any time after t′′, and
any e incident to vi, message tokens[e]vi +nil tokens[e]vi ≤ i, proving the induction
step.

1544 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

Thus, for the “virtual link” I at the sender S, message tokens[I]S+nil tokens[I]S
≤ k < n, and by the code of the sender a new token is introduced into the network,
contradicting the assumption. Property (P3) follows.

4. Correctness proof of the protocol. In this section we prove the safety and
liveness properties of the protocol.

Theorem 6 (safety). At any time the output of the receiver is a prefix of the
input of the sender.

Proof. Denote by IN = (I1, I2, . . .) the input to the sender, and by OUT = (O1,
O2, . . .) the output of the receiver. Denote by ti, i > 0, the time at which Oi is output.

By the code, the receiver outputs at ti the value in current message as the next
output. We will therefore show that at ti the value of current message is Ii. For
this, we consider the tokens received by the receiver in the time interval between the
time data-item i− 1 and data-item i are output. We use the following definitions.

Definition 1. Let in(t,t′] be the number of tokens introduced into the network by
the sender in interval of time (t, t′]. Let out(t,t

′] be the number of tokens received by
the receiver in the interval of time (t, t′].

First note that the total number of tokens (either nil-tokens or message-tokens)
received by the receiver by time ti is

out(t0,ti] = C + 1 + (i− 1)(2·C + 1).

By Theorem 5, the capacity of the network is C, thus the total number of tokens
sent by the sender by any time t is at most C more than the total number of tokens
received by the receiver by the same time, t. Thus,

in(t0,ti] ≤ i(2·C + 1).

Since the sender sends successively 2C+1 tokens for each data item, this implies that
all tokens sent by time ti carry the value Ij for some j ≤ i.

As to the first data-item, this guarantees that all token messages received by time
t1 carry the first data-item, and since at the beginning of the run current message
is initialized to empty, this guarantees that at time t1 current message is I1.

To prove the claim for i > 1 we first show that more than half of the tokens
received by the receiver in (ti−1, ti] that carry a data-item when received (as opposed
to nil-tokens), carry the value Ii. Since in(t0,ti] ≤ i(2 ·C + 1) no token carrying Ik,
for k > i is present in the network by time ti. Therefore, and since out(t0,tl] =
(l − 1)(2C + 1) + (C + 1), any token received in (ti−1, ti] is a token that is either:

• sent with value Ii (note that no such token can be received by ti−1), or
• sent with value Ik, k < i, and not received by time ti−1. There can be at

most C such tokens, as the total number of tokens ever sent with Ik (k < i),
is (i− 1)(2C + 1).

The set of tokens received in (ti−1, ti] is thus some subset of size 2C + 1 of the
above 2C + 1 + C tokens. We argue that in any subset of size 2C + 1 of these tokens,
more than half of the “real” tokens carry the value Ii. This is true along time, even
after the occurrence of “cancelation” events that cause two tokens to become nil. At
ti−1 the claim is true since no one of the 2C + 1 tokens to be sent with Ii is sent
yet, thus they still “carry” Ii, while there are at most C other tokens. Consider any
cancelation event; then if the number of tokens carrying Ii is reduced as a result of
one such token becoming nil, then a token carrying a value Ik, k < i also becomes nil.

We now show that indeed at time ti the value of current message is Ii. Consider
the sequence of 2C+1 tokens received during the interval (ti−1, ti]. For the purpose of

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1545

the proof we give to each token that arrives at the receiver in the time interval (ti−1, ti],
a number which is its number in the sequence of the tokens that arrive after time ti−1.
Let 1 ≤ T1 < T2 < Tj < · · · < Tk ≤ 2C + 1 be the token numbers upon whose arrival
the value of current message changes from empty to another value. Let V alj be the
new value assigned to current message. We show that at time ti current message
is not empty, and that the last “real” value assigned to it, V alk, is Ii. Consider the
set of tokens with numbers Tj ≤ l < Tj+1, for j < k. If at Tj+1 a new, not empty,
value is assigned to current message, then current message count was 0 at this time,
which means that it has become such at the receipt of token number Tj+1 − p, for
some p ≥ 1, and any token with number s, such that Tj+1 − p + 1 ≤ s < Tj+1 (if
any) was a nil-token. Thus, we conclude that among the tokens Tj ≤ l < Tj+1 that
carry a data-item (i.e., are not nil-tokens), exactly half carry V alj . Whatever the
value V alj is, at most half of the above tokens carry Ii. If upon the receipt of token
2C + 1, current message is empty (and is thus empty at time ti), we have that over
the whole sequence the number of tokens carrying Ii is at most half the number of
tokens carrying any value. Thus, this cannot happen (i.e., current message is not
empty at time ti). Next, assume that V alk 6= Ii (and this is the value at time ti).
Then more than half the tokens Tk ≤ l ≤ 2C + 1, that are not nil-tokens, carry value
V alk. Then, over the whole sequence the tokens carrying Ii are less than half the
number of tokens carrying any value, a contradiction again.

Theorem 7 (liveness). If the sender and the receiver are eventually connected,
then the receiver eventually outputs any data-item input to the sender.

Proof. If the sender inputs the ith data-item, then it tries to send i(2 · C + 1)
tokens (counted over the whole run). As the sender and the receiver are eventually
connected, by property (P3) all these tokens are eventually input into the network.
Since the network can delay at most C tokens, the receiver will eventually receive
i(2·C + 1)− C tokens, and thus outputs the ith data-item.

4.1. The complexity of the protocol.
Lemma 8. The number of messages sent by the protocol in any time interval

where knew new tokens are added to the network is O(n2m+ knew · n).
Proof. Each message is a token, token left, ack token, or ack token left

message. By property (P2), the number of token messages sent in the time interval
is O(n2m+knew ·n). The number of token left messages sent is at most the sum of
the counters token left pending at the beginning of the interval, plus the number of
token messages sent in the time interval. By Corollary 4 and the above, this sums
to O(2nm+ n2m+ knew · n).

The number of ack token and ack token left messages sent, in the time
interval under consideration, is at most the number of token and token left mes-
sages sent in this time interval, plus the number of messages that were in transit when
the time interval started. Since the capacity of each link is constant the number of
messages in transit at any given time is O(m), and we have a bound on the number
of ack messages (of both types) of O(n2m+ knew · n+ 2mn+m).

Lemma 9. The message complexity of the protocol is O(n2m) messages.
Proof. For every time interval (ti−1, ti] the receiver receives 2 · C + 1 tokens

during the interval. Since the capacity of the network is C tokens, at most 3 ·C + 1
tokens are sent by the sender in (ti−1, ti]. As C = O(nm), the lemma follows from
Lemma 8.

Since messages have size at most the size of the data-item, we establish the
following theorem.

1546 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

Theorem 10 (communication complexity). The communication complexity of
the above protocol is O(n2mD) bits.

Theorem 11 (space complexity). The space required at each processor is O(D+
log n) bits per incident link.

Proof. The list of variables used by each processor (per incident link) is given
in section 3.2. By Corollary 4, the value of each of the counters message tokens,
nil tokens, and tokens left pending is at most n, and hence requires only O(log n)
bits. By Lemma 3, the same is true for the counter bound. In addition, there is a
constant number of single-bit flags, per link. Finally, the processors store a single
variable, current message, of size D bits.

5. Conclusions. In this work, we give an end-to-end communication protocol
that has polynomial communication complexity and at the same time logarithmic
space complexity. Thus we show that it is possible to attain polynomial commu-
nication complexity and sublinear space complexity at the same time. It remains,
however, open, whether constant space complexity (more precisely, space complexity
O(D)) allows for polynomial, or even merely bounded, communication complexity
protocols in the above setting.

Appendix A. Proofs of technical lemmas.
Proof of Lemma 1. Upon initialization, the invariant holds. This is because the

variable bound[e] is initialized to 1, the counters message tokens[e], nil tokens[e],
and tokens left pending[e] are initialized to 0, and no message is in transit in the
network. By induction on the events that change any of the values participating in
the invariant, we show that the invariant holds for any time t. There are six types of
events to be considered: send and receive events of token messages from u to v on
e; send and receive events of token left messages from v to u on e; send events of
token messages from v, when the token sent is accounted for in the counters of e in
v; and receive events of a token at v, when this arrival causes a token accounted for
at e to become a nil-token.

If both v and u are not the receiver, then the following describes the effects of
any of the events:

• Send event of a token message from u to v on e: bound[e]u is incremented
by 1, but so is tokensu→v.

• Receive event of a token message at v on link e: the sum message tokens[e]v
+ nil tokens[e]v is incremented by 1, but tokensu→v is decremented by 1.

• Send event of a token left message from v to u on e: tokens left pending[e]v
is decremented by 1, but tokens leftv→u is incremented by 1.

• Receive event of a token left message at u from v, on e: bound[e]u is
decremented by 1, but so is tokens leftv→u.

• A send event of a token message from u on some link e′, when the token sent
was accounted for at the counters of e: message tokens[e] and nil tokens[e]
are decremented by 1, but tokens left pending[e] is incremented by 1.

• A receive event of a token message at v (on some link) may cause a to-
ken accounted for at the counters of e to become nil: message tokens[e] is
decremented by 1, but nil tokens[e] is incremented by 1.

If v is the receiver:
• Send event of a token message from u to v on e: bound[e]u is incremented

by 1, but so is tokensu→v.
• Receive event of a token message at v on e: tokensu→v is decremented by

1 but tokens left pending[e] is incremented by 1.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1547

• Send event of a token left message from v to u on e: tokens left pending[e]v
is decremented by 1, but tokens leftv→u is incremented by 1.

• Receive event of a token left message at u from v, on e: bound[e]u is
decremented by 1, but so is tokens leftv→u.

• A send event of a token message from u on some link e′, when the token sent
was accounted for at the counters of e: one of the counters message tokens[e]
and nil tokens[e] is decremented by 1, but tokens left pending[e] is incre-
mented by 1. (However, note that this event cannot happen, since u never
receives any token on e.)

• A receive event of a token message at v (on some link) never changes the
values of message tokens[e] or nil tokens[e].

If u is the receiver:
• A send event of a token message from u on e cannot happen, by the code.
• Receive event of a token message at v on link e: the sum message tokens[e]v

+ nil tokens[e]v is incremented by 1, but tokensu→v is decremented by 1
(note, however, that such an event cannot happen as u does not send token
messages).

• Send event of a token left message from v to u on e: tokens left pending[e]v
is decremented by 1, but tokens leftv→u is incremented by 1 (note that this
event cannot happen too).

• Receive event of a token left message at u from v, on e: bound[e]u is
decremented by 1, but so is tokens leftv→u (note that this event cannot
happen).

• A send event of a token message accounted for at u cannot happen, by the
code.

• A receive event of a token message at v (on some link) may cause a to-
ken accounted for at the counters of e to become nil: message tokens[e] is
decremented by 1, but nil tokens[e] is incremented by 1.

Proof of Lemma 2. Let t be the time just before the token is sent from u, and
t′ the time just before it is received at v. Because the sum of message tokens and
nil tokens can increment only when tokens arrive on the link, and because the links
are FIFO, we have:

message tokens[e]t
′
v + nil tokens[e]t

′
v

≤ message tokens[e]tv + nil tokens[e]tv + tokenstu→v.

By Lemma 1,

message tokens[e]tv + nil tokens[e]tv + tokenstu→v + 1 ≤ bound[e]tu .

Thus,

message tokens[e]t
′
v + nil tokens[e]t

′
v + 1 ≤ bound[e]tu.

By the code, i > bound[e]tu and j = message tokens[e]t
′
v + nil tokens[e]t

′
v + 1, hence

i > j.
Proof of Lemma 3. We prove the claim by contradiction. Assume bound[e]tu > n

for some t, u, and e = (u, v). Then a token must have been sent over e from u
to v when bound[e]u ≥ n. By the code, this can happen only if, for some e′ ∈
E ∪ {I}, message tokens[e′]u + nil tokens[e′]u > n. However, for any e′, the value
of message tokens[e′]u + nil tokens[e′]u is initialized to 0. Therefore, consider the

1548 EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND ADI ROSÉN

first time that, for some e′ and u, message tokens[e′]u + nil tokens[e′]u > n. For
the “virtual link” I at the sender this cannot happen by the code. For every e′ =
(u, v′) ∈ E, the value of message tokens[e′]u + nil tokens[e′]u increases only when a
token is received at u over e′. Consider the token upon whose receipt the value of
message tokens[e′]u+nil tokens[e′]u became strictly larger than n, and denote by e′′

the link incident to v whose counters accounted for this token before it was sent from
v. By Lemma 2, when the token was sent from v, the value of message tokens[e′′]v +
nil tokens[e′′]v was already strictly greater than n, contradicting the fact that we are
considering the first such event.

Proof of Corollary 4. For e = I, the claim follows from the code. For any e ∈ E,
by Lemmas 1 and 3,

message tokens[e]tv + nil tokens[e]tv + tokenstu→v ≤ bound[e]tu − 1 ≤ n− 1 ,

and

tokens left pending[e]tv ≤ bound[e]tu − 1 ≤ n− 1 .

REFERENCES

[AAF+90] Y. Afek, H. Attiya, A. Fekete, M. J. Fischer, N. Lynch, Y. Mansour, D. Wang,
and L. D. Zuck, Reliable communication over unreliable channel, J. Assoc. Com-
put. Mach., 40 (1993), pp. 1087–1107.

[AAG+97] Y. Afek, B. Awerbuch, E. Gafni, Y. Mansour, A. Rosén, and N. Shavit,
Slide – the key to polynomial end-to-end communication, J. Algorithms, 22 (1997),
pp. 158–186.

[AAG87] Y. Afek, B. Awerbuch, and E. Gafni, Applying static network protocols to dynamic
networks, in Proc. 28th IEEE Ann. Symp. on Foundations of Computer Science,
1987, pp. 358–370.

[AAM89] Y. Afek, B. Awerbuch, and H. Moriel, A Complexity Preserving Reset Procedure,
Technical Report MIT/LCS/TM-389, MIT, Cambridge, MA, May 1989.

[AE86] B. Awerbuch and S. Even, Reliable broadcast protocols in unreliable networks, Net-
works, 16 (1986), pp. 381–396.

[AG88] Y. Afek and E. Gafni, End-to-end communication in unreliable networks, in Proc.
7th ACM Symp. on Principles of Distributed Computing, August 1988, pp. 131–
148.

[AG91] Y. Afek and E. Gafni, Bootstrap network resynchronization: An efficient technique
for end-to-end communication, in Proc. 10th Ann. ACM Symp. on Principles of
Distributed Computing, August 1991, pp. 295–307.

[AG90] A. Arora and M. Gouda, Distributed reset, in Proc. 10th Conf. on Foundations of
Software Technology and Theoretical Computer Science, Lecture Notes in Comp.
Sci. 472, Springer-Verlag, New York, 1990, pp. 316–331.

[AGH90] B. Awerbuch, O. Goldreich, and A. Herzberg, A quantitative approach to dynamic
networks, in Proc. 9th ACM Symp. on Principles of Distributed Computing, Au-
gust 1990, pp. 189–204.

[AGR92] Y. Afek, E. Gafni, and A. Rosén, The slide mechanism with applications in dynamic
networks, in Proc. 11th ACM Symp. on Principles of Distributed Computing,
August 1992, pp. 35–46.

[AKM+93] A. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese, Time
optimal self-stabilizing synchronization, in Proc. 25th ACM Symp. on the Theory
of Computing , 1992, pp. 652–661.

[AKY90] Y. Afek, S. Kutten, and M. Yung, Memory-efficient self-stabilization on general
networks, in Proc. 4th Workshop on Distributed Algorithms, Italy, 1990, Lecture
Notes in Comp. Sci. 486, Springer-Verlag, New York, 1990, pp. 15–28.

[AL93] B. Awerbuch and T. Leighton, A simple local-control approximation algorithm for
multi-commodity flow, in Proc. 34th IEEE Symp. on Foundations of Computer
Science, 1993, pp. 459–469.

LOG-SPACE POLYNOMIAL END-TO-END COMMUNICATION 1549

[AL94] B. Awerbuch and T. Leighton, Improved approximation algorithms for the multi-
commodity flow problem and local competitive routing in dynamic networks, in
Proc. 26th ACM Symp. on the Theory of Computing, 1994, pp. 487–496.

[AM88] B. Awerbuch and Y. Mansour, An efficient topology update protocol for dynamic
networks, Unpublished manuscript, January 1988.

[AMS89] B. Awerbuch, Y. Mansour, and N. Shavit, Polynomial end to end communication,
in Proc. 30th IEEE Ann. Symp. on Foundations of Computer Science, October
1989, pp. 358–363.

[AO94] B. Awerbuch and R. Ostrovsky, Memory-efficient and self-stabilizing network
RESET, in Proc. 13th ACM Symp. on Principles of Distributed Computing, Au-
gust 1994, pp. 254–263.

[APV91] B. Awerbuch, B. Patt-Shamir, and G. Varghese, Self-stabilization by local checking
and correction, in Proc. 32nd IEEE Ann. Symp. on Foundations of Computer
Science, October 1991, pp. 268–277.

[AS88] B. Awerbuch and M. Sipser, Dynamic networks are as fast as static networks, in
Proc. 29th IEEE Ann. Symp. on Foundations of Computer Science, October 1988,
pp. 206–220.

[AV91] B. Awerbuch and G. Varghese, Distributed program checking: A paradigm for build-
ing self-stabilizing distributed protocols, in Proc. 32nd IEEE Ann. Symp. on Foun-
dations of Computer Science, October 1991, pp. 258–267.

[BS88] A. E. Baratz and A. Segall, Reliable link initialization procedures, IEEE Trans.
Comm., 36 (1988), pp. 144–153; also in IFIP 3rd Workshop on Protocol Specifi-
cation, Testing and Verification, III.

[Dij74] E. Dijkstra, Self stabilization in spite of distributed control, Comm. ACM, 17 (1974),
pp. 643–644.

[DF88] E. W. Dijkstra and W. H. J. Feijin, A Method of Programming, Addison-Wesley,
Reading, MA, 1988.

[DW93] S. Dolev and J. Welch, Crash resilient communication in dynamic networks, in
Proc. 7th International Workshop on Distributed Algorithms, Lecture Notes in
Comp. Sci. 725, Springer-Verlag, New York, 1993, pp. 129–144.

[Fin79] S. Finn, Resynch procedures and a fail-safe network protocol, IEEE Trans. Comm.,
COM-27 (1979), pp. 840–845.

[IL94] G. Itkis and L. Levin, Fast and lean self-stabilizing asynchronous protocols, in Proc.
35th IEEE Ann. Symp. on Foundations of Computer Science, November 1994,
pp. 226–239.

[KP90] S. Katz and K. Perry, Self-stabilizing extensions for message-passing systems, in
Proc. 9th ACM Symp. on Principles of Distributed Computing, August 1990,
pp. 91–101.

[MOOY92] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung, Self-stabilizing symmetry break-
ing in constant-space, in Proc. 24th ACM Symp. on the Theory of Computing,
1992, pp. 667–678.

[Vis83] U. Vishkin, A distributed orientation algorithm, IEEE Trans. Inform. Theory, 29
(1983), pp. 624–629.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION∗

EYAL KUSHILEVITZ† , YISHAY MANSOUR‡ , MICHAEL O. RABIN§ , AND

DAVID ZUCKERMAN¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1550–1563, December 1998 003

Abstract. We establish, for the first time, lower bounds for randomized mutual exclusion
algorithms (with a read-modify-write operation). Our main result is that a constant-size shared
variable cannot guarantee strong fairness, even if randomization is allowed. In fact, we prove a lower
bound of Ω(log log n) bits on the size of the shared variable, which is also tight.

We investigate weaker fairness conditions and derive tight (upper and lower) bounds for them as
well. Surprisingly, it turns out that slightly weakening the fairness condition results in an exponential
reduction in the size of the required shared variable. Our lower bounds rely on an analysis of Markov
chains that may be of interest on its own and may have applications elsewhere.

Key words. mutual exclusion, randomized distributed algorithms, Markov chains, lower bounds

AMS subject classifications. 68Q22, 68M99, 60J10

PII. S009753979426513X

1. Introduction. Randomization has played an important role in the design
and understanding of distributed algorithms. It is a natural tool which is usually
used in order to break symmetry between identical processes in a distributed system.
Beyond its natural role in symmetry breaking, randomization often increases the
computation power (e.g., [LR81, Ben83]), significantly decreases computational costs
(e.g., [Bra85, FM88]), and helps in simplifying algorithms.

For many applications in distributed environments, there is a provable gap be-
tween the power of randomized algorithms and that of their deterministic counter-
parts. The most renowned example is achieving Byzantine agreement with a linear
number of faults; while any deterministic algorithm requires at least a linear number
of rounds [FL82], there is a randomized algorithm that performs the same task in a
constant number of rounds [FM88]. Another important example is that of reaching
a consensus in an asynchronous distributed system with faults: this is impossible
with deterministic protocols, even if the faults are restricted to a single fail-stop fault
[FLP85], but is possible with the use of randomized protocols (see [CIL87]).

The gap between the performances of randomized and deterministic algorithms
exists also for the mutual exclusion problem. The complexity measure here is the

∗ Received by the editors February 1, 1994; accepted for publication (in revised form) September
5, 1996; published electronically June 3, 1998. An early version of this paper appeared in Proc. of the
25th ACM Symp. on Theory of Computing, 1993, pp. 154–163. The research of Eyal Kushilevitz and
Michael Rabin was supported by research contracts ONR-N0001491-J-1981 and NSF-CCR-90-07677
at Harvard University.

http://www.siam.org/journals/sicomp/27-6/26513.html
† Dept. of Computer Science, Technion, Haifa 32000, Israel (eyalk@cs.technion.ac.il, http://www.

cs.technion.ac.il/∼eyalk). Part of this research was done while the author was at Aiken Computation
Lab., Harvard University, Cambridge, MA 02138.

‡ Computer Science Dept., Tel-Aviv University and IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598 (mansour@math.tau.ac.il).

§ Aiken Computation Lab., Harvard University, Cambridge, MA 02138-2901 and Institute of
Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel (rabin@das.harvard.
edu).

¶ Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712
(diz@cs.utexas.edu). This research was done while the author was at the Laboratory for Computer
Science, MIT, and supported by an NSF Postdoctoral Fellowship.

1550

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1551

size of the shared variable.1 Any deterministic algorithm requires an Ω(logn)-bit
shared variable, in order to achieve mutual exclusion (with fairness) between n distinct
processes, and this bound is tight [BFJ+82]. On the other hand, there is a randomized
algorithm requiring only an O(log log n)-bit shared variable [Rab82, KR92].2

It remained an open problem whether the complexity of the randomized algorithm
for the mutual exclusion problem could be further reduced, perhaps even to a constant
number of bits. A constant-size shared variable is of special interest, since it implies
that the size of the shared memory can be independent of the number of the processes
using it. Our main contribution is a tight Ω(log logn) lower bound on the number of
bits required to implement the shared variable. Other tight upper and lower bounds
are given for mutual exclusion with weaker fairness properties.

Few lower bounds are known for randomized distributed algorithms. Many of
these lower bounds are based on arguments that arise from the need for information
to flow from one side of the network to the other side, or based on the symmetry
between different processes [IR81]. Another type of argument for randomized lower
bounds is the use of the min-max theorem [Yao77, AS91]. For randomized Byzantine
agreement, when more than a third of the processes are faulty, a lower bound on the
success rate is known [KY84, GY89].

Previous work and our results. In the following, we give a more detailed
description of the mutual exclusion problem and a summary of our results together
with previous results related to our work.

The setting of the mutual exclusion problem is as follows. There are n processes
that from time to time need to execute a critical section in which exactly one is allowed
to employ some shared resource. The processes can coordinate their activities through
a shared read-modify-write variable (i.e., reading and rewriting the shared variable is
an atomic action). The sequence of accesses to the shared variable is determined by
a scheduler.

The mutual exclusion problem is a classical problem in distributed computing.
It was first suggested by Dijkstra [Dij65], who solved the problem using a (one-bit)
semaphore. While the semaphore does solve the problem and guarantees deadlock
freedom, it does not guarantee any fairness among the processes competing for the
critical section; a process that is waiting for the critical section may wait forever.
Since then, numerous solutions have been proposed for the mutual exclusion problem.
All these solutions guarantee deadlock freedom, together with some notion of fairness.

An important parameter for evaluating the complexity of a mutual exclusion
algorithm is the size of the shared variable that is used. As mentioned above, to
guarantee only deadlock-freeness, a one-bit semaphore is sufficient [Dij65]. Burns
et al. [BFJ+82] define the bounded-waiting property as a fairness criterion. Roughly
speaking, this property guarantees that between the first time that a process accesses
the shared variable in order to try to enter the critical section and the time it actually
enters the critical section, each of the other processes may enter the critical section at
most once. They proved that if deterministic algorithms are used, then an Ω(logn)-

1 Throughout this work the size of the shared variable is measured in terms of the number of
bits of the shared variable rather then the number of values (as is done in some of the papers in
the literature). Clearly, the number of bits is logarithmic in the number of values, hence a constant
factor in the number of bits translates to a polynomial factor in the number of values. Still, the
number of bits is a very natural measure for the size of the variables.

2 The first solution to this problem was given in [Rab82]. A flaw in this solution was pointed out
by [Sai92]. A new solution, based on ideas of [Rab82], was given in [KR92].

1552 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

bit shared variable is required for achieving bounded-waiting and that this number of
bits is also sufficient.

Rabin [Rab82] suggested the use of randomized algorithms for mutual exclusion
and defined the notion of fairness for such algorithms. Roughly speaking, the fairness
of a randomized mutual exclusion algorithm measures the probability that a process
enters the critical section at a given time, as a function of the number of processes
concurrently competing for the critical section. Specifically, Rabin was interested
in the following fairness property, which we refer to as linear-fairness: if a process
participates in a “round”3 together with m processes, it has probability Ω(1/m) of
entering the critical section in the next round. This property can be considered as a
probabilistic analogue of the bounded-waiting property. Randomized algorithms hav-
ing the linear-fairness property that use O(log log n)-bit shared variable are presented
in [Rab82, KR92]. This is in contrast to the Θ(logn)-bit shared variable required by
deterministic algorithms.

Proving the correctness of such randomized distributed protocols involves many
delicate issues. Saias [Sai92] developed a general methodology to prove the correctness
of a randomized distributed protocol. The main difficulty of such proofs is the need to
deal with two separate sources of nondeterminism: the randomness that the protocol
generates and the decisions of the adversary. The key idea in his methodology is that
these two ingredients should be made independent. Using his systematic methodology,
Saias [Sai92] uncovered the flaw in [Rab82].

No lower bounds for randomized mutual exclusion were known. In fact, in light
of the results mentioned earlier, it may seem plausible that a constant-size shared
variable is sufficient for mutual exclusion with linear fairness. More than that, it was
shown [Rab82, KR92] that a constant-size shared variable may be powerful; it suffices
for guaranteeing that each of the competing processes will have Ω(1/n) probability
of entering the critical section. However, this is independent of m and hence is much
weaker. In this paper, we prove a tight Ω(log logn)-bit lower bound on the size of
the shared variable that is needed for achieving mutual exclusion with linear-fairness.
Thus, in particular, a constant-size shared variable cannot guarantee linear-fairness.

We define a slightly weaker fairness property that we term polynomial-fairness:
if a process participates in a round together with m processes, it has a probability of
Ω(1/m1+ε) to enter the critical section in the next round (where ε > 0 is a constant).
Surprisingly, we show that for every ε > 0 an O(log log logn)-bit shared variable
is sufficient to achieve polynomial fairness, and that an Ω(log log logn)-bit shared
variable is necessary. Hence, this slight weakening of the fairness property results
in an exponential reduction in the size of the required shared variable. Finally, we
show that with a constant-size shared variable it is possible to guarantee an Ω(1/2m)
probability of entering the critical section.

For our lower-bound proofs, we study general Markov chains, i.e., those which
are represented by a k × k real nonnegative matrix where the sum of elements in
each row is 1. We call a Markov chain live if in each of its first n steps it has a
“considerable probability” of visiting a new state (i.e., a state that was not visited
in each of the previous steps). We relate the fairness of mutual exclusion algorithms
to the liveness of Markov chains (where the different notions of fairness correspond
to different interpretations of “considerable probability”). We obtain our bounds for
mutual exclusion by proving bounds on k, the number of states of the Markov chains
(as a function of n). We believe that our bounds and technique may be found useful

3 A round is the time between two consecutive closings of the critical section.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1553

for other applications.
The paper is organized as follows. In section 2 we formally define the mutual

exclusion problem and Markov chains. In sections 3 and 4 we prove the lower bounds
for linear/polynomial-fairness (respectively). Finally, in section 5 we show the upper
bounds.

2. Preliminaries.

2.1. Mutual exclusion. In this section we define the properties required from
a randomized mutual exclusion algorithm. Let P1, . . . , Pn be the n processes in the
system. The processes coordinate their activities by using a shared read-modify-write
variable v. (In addition, each process Pi has unbounded local memory.) While it is
convenient to assume that all the processes run the same program, our results do not
depend on this assumption. During the computation, each process Pi is in one of four
possible phases: TRYING phase, in which it attempts to enter the critical section,
CS (critical section) phase, in which it executes the critical section, EXIT phase, in
which it leaves the critical section, or REMAINDER phase, in which it does other
local computations.

At any given time the adversary scheduler4 can observe the external behavior of
the processes (i.e., which of the four phases each process currently executes) and use
this information (together with its information on the past behavior of the processes)
to determine which process will be the next to access the shared variable. (It is also
assumed that the adversary knows the algorithm used by the processes, including the
initial state of each process.) The adversary scheduler cannot observe the content of
the shared variable nor the content of any local variable.5 More formally, let a run
be a (finite or infinite) sequence (i1, x1), . . . , (ik, xk), . . ., where xj indicates which
phase process Pij started or whether it accessed the shared variable. A run is called
proper if the subsequence of phases corresponding to every process Pi is of the form
REMAINDER, TRYING, CS, EXIT, REMAINDER,

A scheduler is a (probabilistic) function that on a finite run σ gives the identity of
the next process to access the shared variable. It should satisfy the following property.

Scheduler-liveness: For each time t and any process Pj not in REMAINDER
phase at time t, there exists a time t′ > t in which Pj makes a move.

Next, we discuss the correctness conditions of a randomized mutual exclusion
algorithm. While the first three conditions are rather standard, the fairness definition
is the one unique to the randomized solutions. These correctness conditions may
be generalized in various ways without affecting the results. We discuss possible
extensions of the conditions throughout the paper.

Mutual exclusion: At any time t there is at most one process in the CS phase.
If there is a process in the CS phase then we say that the critical section is
closed; otherwise, it is open.

Fault-freeness: If a process Pj moves from TRYING phase to the CS phase then
eventually Pj moves from the CS phase to EXIT phase and from EXIT phase
to REMAINDER phase. (For example, a protocol in which a process after
entering the critical section gets into an infinite loop violates this condition.)

Deadlock-freeness: If the critical section is open and there is a process in
TRYING phase, then eventually some process enters the CS phase.6

4 We assume here the same adversary scheduler and the same correctness conditions as in [KR92].
5 Note that since we are interested in this work in proving lower bounds, this assumption makes

our job more complicated.
6 The definition can be weakened to require that this will hold with probability 1, and all the

1554 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

f-fairness: Let Ci be the time at which the ith closing of the critical section
occurs. Let Si be the set of processes in TRYING phase that were scheduled
to access the shared variable between time Ci−1 and Ci, excluding the process
that entered the critical section at Ci.

1. If Si 6= ∅ then one of the processes in Si enters the critical section at
Ci+1.

2. For every process Pj ∈ Si, the probability that Pj enters at time Ci+1

is at least 1/f(t), where t = |Si|.7
In particular, for a constant c, we refer to c · t-fairness as linear-fairness, and
to tc-fairness as polynomial-fairness.8

In the definition of f -fairness, we require that a process that tries to enter at
time Ci will have a “good” chance to enter at the next time, i.e., Ci+1. At first sight,
it seems more natural to require that a process that arrives between time Ci−1 and
Ci will have a good probability to enter at Ci, as defined in [Rab82]. However, as
pointed out by [Sai92], such a statement is circular since the definition of the event Ci

depends on whether the process enters the critical section or not, and it seems that
there is no “acceptable” way to get around this problem. We follow here the solution
suggested by [KR92], which requires the “good” chance to be only in the next time
step.

2.2. Markov chains. Let S = {s1, s2, . . . , sk} be a set of k states. A Markov
chain is a real, nonnegative, k × k matrix (Qi,j) with the property that the sum of
elements in each row equals 1. It can be used to generate sequences of elements of S
in the following way. Start in the initial state, say, s1. At each step, if the last element
in the sequence is si, move to state sj with probability Qi,j (i.e., the probability of
moving into state sj depends only on the last state si and not on the whole history).

We say that a Markov chain (Qi,j) is (n, f(t))-live if for every 1 ≤ t ≤ n the
probability that the sequence generated by the above process visits in the tth step a
state that was not visited during the first t− 1 steps is at least 1/f(t).

It is sometimes convenient to think about the Markov chain as a complete directed
graph on k nodes. Every edge i→ j has a value Qi,j which is the probability of visiting
node j in the next step when being in node i. The sequence of states, in this case, is
usually called a walk.

3. Lower bound: Linear-fairness. In this section we describe the lower bound
for the case of linear-fairness; that is, where the probability of each process entering
the critical section is required to be inversely proportional to the number of processes
trying to enter the critical section. To do so, we describe a strategy for the adversary
scheduler, given a mutual exclusion algorithm A, to plan a schedule in which the
probability that a certain process (that the adversary wish to discriminate against)
enters the critical section in a given round is smaller than what is required.

results of the paper will remain valid.
7 The probability space is defined on prefixes of runs; therefore, the space is finite. Formally, the

above requirement says that for any prefix of a run up to Ci, σ, which have a nonzero probability,
the probability that Pj enters at time Ci+1 given σ is at least 1/f(t). Later, when we will refer to
an event as “happened in the past” we will mean that it is satisfied by σ.

8 It is possible to relax the definition of fairness and to allow each party that was scheduled to
access the shared variable between times Ci−1 and Ci and that has not entered the critical section
at times Ci, Ci+1, . . . , Ci+d−1, for some parameter d, to compete on entering at time Ci+d with
probability of success at least 1/f(t). The results and the proofs (with few minor changes) hold for
such a definition as well.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1555

1. Schedule Pn until it enters the critical section.
2. Schedule P1, . . . , Ps, . . . , Pt (each is scheduled once).
3. Schedule Pn until it exists the critical section.
4. Schedule P1, . . . , Ps for M steps (in a round-robin).
5. Schedule P1, . . . , Pn (in a round-robin).

Fig. 1. Strategy for the adversary (assuming the existence of s and t as in Lemma 1).

The schedule starts by scheduling the process Pn to access the shared variable
until this process enters the CS phase; i.e., the critical section is closed (Figure 1,
step 1). The deadlock-freeness property guarantees that this will eventually happen.
Denote by d the number of steps taken by Pn before entering the CS phase, and by
v[n] the value that Pn wrote into the shared variable at this time. Then, the adversary
schedules each of the processes P1 to Pt (in order) to perform a single read-modify-
write operation on the shared variable, where t is a parameter (Figure 1, step 2). We
denote by v[i] the value written by Pi into the shared variable. The proof of the lower
bound has two parts. We first show that if t is good (in a sense that will be defined
later) then the adversary can discriminate against Pt; namely, with high probability,
process Pt will not enter the critical section (although scheduled to access the shared
variable). Later, we show that if the shared variable is “too small” then a good t
must exist. To introduce the idea of the proof we first assume that t satisfies an even
stronger property, as formalized in the next lemma.

Lemma 1. Assume that there exists a specific s, 1 < s < t, such that the
probability that the value v[t] written by Pt into the shared variable equals the value
v[s] written by Ps is at least 1−δ. Then there exists an extension of the above schedule
such that the probability that Pt enters at either C1 or C2 is at most δ+ ε, where ε is
arbitrarily small.

Proof. Assume that v[t] = v[s]. That is, Pt wrote into the shared variable
the same value as Ps (this happens with probability at least 1 − δ). The adversary
extends the schedule by first scheduling Pn to access the shared variable until it moves
to the REMAINDER phase and the critical section is open (Figure 1, step 3). This
is guaranteed by the fault-freeness property. Then (Figure 1, step 4), the adversary
continues by scheduling only P1 to Ps (say, by a round-robin). Observe that the only
way that a process Pi can note that another process Pj was scheduled before it is
if Pj changed the value of the shared variable. Hence, if indeed v[t] = v[s], then in
this case processes P1 to Ps must operate as if Ps+1 to Pt were not scheduled. This
implies (by the deadlock-freeness property and the first part of the fairness property)
that eventually some process Pi enters at C1, and some other process Pj at C2, where
1 ≤ i, j ≤ s. More precisely, there exists a large enough M such that if P1, . . . , Ps are
scheduled to take M steps, then with probability at least 1− ε, two of these processes
enter at time C1 and time C2 (if this does not happen during the M steps this could
be either because Pt did not write the same value as Ps or because none of P1, . . . , Ps
entered the critical section). Hence, the probability that Pt enters at either C1 or
C2 is bounded by the probability that it did not write the same value as Ps plus the
probability that M steps were not enough for P1, . . . , Ps, which is at most δ+ ε.

The problem with the above lemma is that the adversary needs to know some
fixed s, such that the probability that Pt writes to the shared variable the same value
that was written by Ps, is “high.” The next lemma shows that the same bound holds
even when s is not fixed. First we define the notion of good t.

1556 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

1. Schedule Pn until it enters the critical section.
2. Schedule P1, . . . , Pt (each is scheduled once).
3. Schedule Pn until it exists the critical section.
4. For i = 1, . . . , t− 1

Schedule P1, . . . , Pi for Mi steps (in a round-robin).
5. Schedule P1, . . . , Pn (in a round-robin).

Fig. 2. Strategy for the adversary (assuming the existence of t which is δ-good).

Definition 1. We say that t is δ-good9 if the probability that the value v[t]
written by Pt into the shared variable equals one of v[1], . . . , v[t−1] (the values written
by P1, . . . , Pt−1, respectively) is at least 1− δ.

Lemma 2. Given that t is δ-good, there exists an extension of the above schedule
such that the probability that Pt enters at either C1 or C2 is at most δ+ ε, where ε is
arbitrarily small.

Proof. As t is δ-good, the adversary, who knows the algorithm used, knows that
with high probability there exists an s (1 ≤ s < t) such that v[t] equals v[s]. However,
the adversary has to overcome the fact that he does not know the value of s. He will
do so by trying all the possible values of s. The problem is that trying one value of
s, say s = 9, influences other values of s, say s = 3, since the processes may notice
that s > 3. The first idea is to try s = 1, 2, . . . , t − 1 in this order. This guarantees
that before trying s = i, the only processes scheduled are P1, . . . , Pi−1 (this is done
by modifying step 4; see Figure 2).

Essentially, when the adversary checks whether s = i, it does the same thing as in
the proof of Lemma 1 above. Namely, it schedules only P1, . . . , Pi. If, indeed, s = i,
then the adversary is guaranteed that if it schedules only P1, . . . , Pi, eventually one of
them would enter at C1 and one at C2 (it might be the same process in both cases).
If the scheduler detects that s 6= i, then it continues to i+1. We are guaranteed that,
with probability 1− δ, there exists such an i.

We need to show how the adversary can check whether s = i or s 6= i. If the
adversary has a bound on the number of steps until the processes P1, . . . , Pi would let
one in C1 and another in C2, say Mi steps, it would schedule them this many steps.
If no process would enter at either C1 or C2, then the scheduler is guaranteed that
s 6= i. As in the proof of Lemma 1 it may be the case that such a bound Mi does
not exist. For this reason it would compute the value of Mi such that if s = i the
probability that one of P1, . . . , Pi enters at C1 and C2 during at most Mi steps (in a
round-robin schedule) is at least 1− ε.

The probability that the scheduler misses the right value of s is ε (note that we
do not care about the other cases). In addition, we assumed that there exists such an
s, with probability 1 − δ. Therefore, the probability that Pt enters is at most δ + ε.
This is since this probability is bounded by the probability that there is no such s
(bounded by ε), plus the probability that, given that there is such an s, the scheduler
misses it (bounded by δ).

So far, we proved that if there is a t which is δ-good then the adversary can
discriminate against Pt. We now prove that such a t must exist if the number of
values is “too small.” At this point it is convenient to define the Markov chain
Q(A, d) corresponding to a mutual exclusion algorithm A and an integer d (where d

9 The term “good” is from the adversary point of view.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1557

will be taken as the number of times Pn was scheduled before entering the critical
section; this parameter is known to the adversary). Note that d does depend on A,
but for each specific d we have a different Markov chain. Recall that we assume, at
this point, that all the processes run the same program.

States: The states of the Markov chain correspond to the possible values of the
shared variable. In addition there is a special initial state q0 (i.e., if we have
a k-bit shared variable, then the Markov chain has 2k + 1 states).

Transition probabilities: For i, j ≥ 1, the entry Qi,j equals the probability
that a process, when invoked for the first time (i.e., it is in its initial state)
and reading the value i from the shared variable, writes the value j. This
probability is defined by the algorithm A. For the initial state and i > 0,
we define Q0,i to be the probability that the process Pn, before closing the
critical section, wrote the value v[n] = i (this probability depends on d!).
Also, Qi,0 = 0 for all i.

The idea is that the behavior of a process which is scheduled to read the shared
variable for the first time depends only on the current value of the shared variable
and does not depend on the whole history of values. This Markov property enables us
to describe the process of writes as a Markov chain. The relation between this Markov
chain and the schedule we are constructing is formalized by the following claim; later
we concentrate on analyzing the Markov chain.

Claim 1. Fix a schedule as above. Also, let A, d, and Q(A, d) be as above. Then,
for every sequence of values Vn, V1, . . . , Vi,

Pr[(s0 = Vn) ∧ (s1 = V1) ∧ . . . ∧ (si = Vi)]

= Pr[(v[n] = Vn) ∧ (v[1] = V1) ∧ . . . ∧ (v[i] = Vi)],

where s0, s1, s2, . . . is the sequence of states visited by the Markov chain.
Proof. The proof follows by an easy induction from the definition of the Markov

chain.
It follows from the definitions that if every t is not 1

ct -good, then the corresponding
Markov chain is (n, c · t)-live; hence, if the Markov chain is not (n, ct)-live, then there
exists a t which is 1

ct -good. (Recall that a Markov chain (Qi,j) is (n, f(t))-live if for
every 1 ≤ t ≤ n the probability that the tth step reaches a state that was not visited
during the first t− 1 steps is at least 1/f(t).) The following lemma gives a bound on
the number of states of any Markov chain (not only those constructed as above) with
linear-liveness property.

Lemma 3. Let c ≥ 0 be any constant. Let (Qi,j) be any Markov chain on k states
which is (n, c · t)-live. Then, k > 1

c lnn.
Proof. For every 1 ≤ i ≤ n, let Xi be a random variable which takes the value 1 if

the Markov chain visits a new state in its ith step, and 0 otherwise. Clearly,
∑n

i=1 Xi

is at most the number of states k, and hence also E[
∑n

i=1 Xi] ≤ k. By linearity of
expectation, E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi]. By the liveness of the Markov chain, for

every i, Prob[Xi = 1] ≥ 1
ci . This implies that E(Xi) ≥ 1

ci . Combining all together,
we get that k ≥∑n

i=1
1
ci >

1
c · lnn.

Theorem 4. Every mutual exclusion algorithm A for n processes which guaran-
tees O(t)-fairness requires a shared variable of Ω(log log n) bits.

Proof. Consider the algorithm A and the corresponding Markov chain Q(A, d)
and assume that the algorithm A guarantees ct-fairness. If the Markov chain Q(A, d)
is not (n − 1, 2ct)-live, then there exists a t, 1 ≤ t ≤ n − 1, which is 1

2ct -good. By
Lemma 2, there exists an extension of the basic schedule (in which Pn was scheduled d

1558 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

times) such that the probability of Pt entering the critical section at either C1 or C2 is
less than 1

ct , contradicting the ct-fairness of the algorithm. Therefore, Q(A, d) must be
(n−1, 2ct)-live. By Lemma 3, this implies that k, the number of states in this Markov
chain, is at least 1

2c ln(n−1). By the construction of the Markov chain, the number of
bits in the shared variable used by A is log(k−1) ≥ log(1

2c ln(n−1)−1) = Ω(log logn),
as claimed.

Note that in the proof of Lemma 3 we do not use the fact that in each step we
use the same transition matrix. In other words, the lemma holds even if we associate
with every step i a different transition matrix Q(i). This implies that the lower bound
of Theorem 4 still holds even if the processes are allowed to use different programs.

Corollary 5. Every mutual exclusion algorithm for n processes which guaran-
tees O(t)-fairness requires a shared variable of Ω(log log n) bits, even if each process
runs a different program.

In the above discussion, we assumed that the adversary knows which value of t is
1

2ct -good. We can make this assumption because the adversary is given the algorithm
A, and it knows the number of steps d taken by Pn before entering the CS phase.
Therefore, it can construct the above Markov chain. Based on this, the adversary can
compute the probability of visiting a new state at any given step and hence find the
value of t.

4. Lower bound: Nonlinear-fairness. In this section we extend the results
from the case of linear-fairness to the case of polynomial (tc, for c > 1) fairness. The
proof goes along the same lines, except that the proof of Lemma 3 fails in this case,
since

∑
i 1/i

c = O(1), for c > 1. Thus, a different approach is required.
To simplify the proof, we assume that all the processes are identical (i.e., both

code and initial state). At the end of the section we show that the proof can be
extended to the case when the processes are not identical. Our goal now is to derive
a lower bound for the number of states of (n, tc)-live Markov chains.

Consider the k2 values Qi,j of the Markov chain. We divide the proof into two
cases according to the way these values are distributed in the interval [0, 1]. The easy
case is when these values are “dense” in the interval. Lemma 6 below claims that
in this case k must be “large.” Then, we handle the more difficult case where there
exists some “gap” in the interval [0, 1] in which none of these k2 values fall, and we
show that in this case the Markov chain is not (n, tc)-live.

Lemma 6. Let λ > 1 be a constant.10 Let (Qi,j) be a Markov chain over k
states. If, for every 0 ≤ α ≤ 1/2 such that αλk ≥ 1/n, there exist i and j such that
Qi,j ∈ (αλk, α], then k = Ω(

√
log log n/ log log logn).

Proof. Consider the sequence β` = 2−(λk)` (` = 0, 1, . . .). By the assumption, if
β`+1 ≥ 1/n then the interval (β`+1, β`] contains at least one of the values Qi,j (also
note that these intervals are disjoint). Since there are at most k2 such values, then
βk2+1 < 1/n; otherwise, not all the intervals contain a value Qi,j . From this inequality

we get that k = Ω(
√

log log n/ log log logn).
In the following we assume that there is such a gap; i.e., there exists an α ≤ 1/2

such that the interval (αλk, α] contains no probability Qi,j , and αλk ≥ 1/n. An edge
i→ j with probability Qi,j ≤ αλk is called α-light; otherwise, if Qi,j > α, it is called
α-heavy. The assumption that there is a gap implies that every edge is either α-heavy
or α-light. We consider a random walk of (a suitably chosen) length t < n. We show
two main properties. The first is that the probability that in t steps of the Markov

10 The value of λ depends on the value of the constant c.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1559

chain some α-light edge is used is “small.” The second is that the probability that we
do not “cover” the graph induced by the α-heavy edges is “small.” Before going into
the details, we will make our choice of parameters, as follows:

t =
γk2c2

α2k
and

λ = γ′c log c,

where γ and γ′ are sufficiently large constants and k is the number of states. (Un-
fortunately, the best intuition that we can give for the choice of t and λ is that they
make the proof go through.) We start by showing that the probability of traversing
some α-light edge is negligible.

Lemma 7. The probability that any α-light edge is used in a walk of length t is
less than 1/(2tc).

Proof. In each of the t steps, the walk can choose among at most k − 1 α-light
edges, each with probability at most αλk. Therefore, the probability that any α-
light edge is used is not more than t · k · αλk. To see that this is less than 1/(2tc),
it is sufficient to show that 2tc+1kαλk < 1. We now substitute the value of t into
this inequality and we get that it is sufficient to prove 2γc+1k2c+3c2c+2α(λ−2(c+1))k

< 1. As α < 1/2 it is enough that 2γc+1k2c+3c2c+2 < 2(λ−2(c+1))k. This is satisfied
as long as (λ − 2(c + 1))k > 1 + (c + 1) log γ + (2c + 3) log k + (2c + 2) log c. Hence,
choosing λ as above, with γ′ sufficiently large, will satisfy the inequality, and the
lemma follows.

In the following we define what it means to cover a directed graph. Intuitively, a
directed graph is covered by a walk if no new node can be reached.

Definition 2. A directed graph is completely covered by a walk W if each node
that is reachable from the last node of the walk W has already been visited in W .

Note that the above definition does not require that the walk visit all the nodes
in the graph, just that there be no new nodes which can be reached from the last
node. The next lemma gives a bound on the probability that we completely cover the
graph induced by the α-heavy edges.

Lemma 8. Consider a Markov chain (Qi,j) such that each transition probability
is either α-heavy or α-light. The probability that after a walk W of t steps, which uses
only α-heavy edges, the induced (directed) graph of α-heavy edges is not completely
covered is less than 1/(2tc).

Proof. Recall that k is the number of states in the Markov chain. We divide the
walk W into b = dt/ke blocks of size k. Consider the location v of the walk at the
beginning of a block. Either all the nodes reachable from v in the induced graph of
α-heavy edges were already visited, or there is some node v′, reachable from v, which
was not visited yet. This implies that there is a (simple) path of length at most k
from v to v′ consisting of α-heavy edges. (There may be more than one such path;
however, we cannot make any stronger assumption, e.g., the existence of an α-heavy
edge connecting v to v′.) Therefore, the probability that the walk visits v′ during the
current block of steps is at least αk.

By standard Chernoff bounds, the probability that the graph is not completely

covered after t/k blocks is at most e−
tαk

8k . To see this, define a random variable Xi

which is 1 if the graph is completely covered by the first i − 1 blocks of the walk
or if a new node is visited during the ith block of the walk. Otherwise, Xi = 0.
By the above, the probability that Xi is 1 is at least p = αk. Let S be the sum of

these random variables. That is, S
4
=
∑b

i=1 Xi. With these definitions, the event

1560 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

S ≥ k implies that the graph is completely covered. The Chernoff bound shows that
Pr(S ≤ (1 − ε)pb) ≤ e−bpε

2/2, which for ε = 1/2 and our choices of b and p gives

e−
tαk

8k . Finally, note that (1 − ε)pb = (1/2)αkt/k which is greater than k for our

choice of t. Therefore, Pr(S < k) ≤ Pr(S < (1− ε)pb) ≤ e−
tαk

8k .

Finally, we need to show that e−
tαk

8k < 1/(2tc). It is enough to show that − tαk

8k <

− ln(2tc) or that 2t > 16k
αk

c ln(2t). It can be easily verified that for D ≥ 3 the

equation x > D lnx is true for any x ≥ D2. In our case we take D = 16ck
αk

. (Note
that c > 1, k ≥ 1, and α < 1; hence, indeed D ≥ 3.) Therefore, the choice of t (with
γ sufficiently large) guarantees the inequality. The lemma follows.

Given that the walk does not use any α-light edge, and since every edge is either
α-light or α-heavy, the probability that in step t the walk visits a state in which it is
already visited is at least the probability that a walk of length t−1 completely covers
the induced graph of α-heavy edges (since, by the definition of “completely covered,”
the only nodes that can be reached in step t, by an α-heavy edge, have already been
visited).

Lemma 9. Consider a Markov chain (Qi,j) such that each transition probability
is either α-heavy or α-light. For any c > 1, the Markov chain is not (n, tc)-live.

Proof. In order to show that the Markov chain is not (n, tc)-live, it is sufficient
to show that there exists a t, such that the probability that in step t a new state is
visited is less than 1/tc. The probability of reaching a new state at step t is

Pr(new state in step t)

= Pr(new state in step t|α-light edge is used) · Pr(α-light edge is used)

+ Pr(new state in step t|no α-light edge is used) · Pr(no α-light edge is used)

≤ Pr(α-light edge is used) + Pr(new state in step t|no α-light edge is used).

The first summand is less than 1/(2tc), by Lemma 7. If the graph of the α-heavy edges
is covered and no α-light edge was used, we cannot reach a new state. Therefore, the
second summand is not more than the probability of not covering the graph in t− 1
steps (given that no α-light edge is used). By Lemma 8, this probability is also less
than 1/(2tc). Altogether, we get that the probability of visiting a new state in step
t is less than 1/tc. This implies that the Markov chain does not have the required
liveness property.

Corollary 10. Let c ≥ 0 be any constant. Let (Qi,j) be any Markov chain on

k states which is (n, tc)-live. Then, k = Ω(
√

log log n/ log log logn).
Proof. Lemma 6 shows that if there is no “gap” of the form (αλk, α], then the

claimed lower bound holds. Lemma 9 shows that if there is such a “gap,” then the
Markov chain is not (n, tc)-live.

Theorem 11. Every mutual exclusion algorithm for n processes which guarantees
tc-fairness requires a shared variable of Ω(log log log n) bits.

Proof. The proof is similar to the proof of Theorem 4, but using Corollary
10 instead of Lemma 3. Consider the algorithm A and the corresponding Markov
chain Q(A, d), and assume that the algorithm A guarantees tc-fairness. If the
Markov chain Q(A, d) is not (n − 1, 2tc)-live, then there exists a 1 ≤ t ≤ n − 1
which is 1

2tc -good. By Lemma 2, there exists an extension of the basic schedule
such that the probability that Pt enters the critical section at either C1 or C2 is less
than 1

tc , contradicting the tc-fairness of the algorithm. Therefore, Q(A, d) must be
(n − 1, 2tc)-live. By Corollary 10, this implies that k, the number of states in this

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1561

Markov chain, is Ω(
√

log log n/ log log logn). By the construction of the Markov
chain, the number of bits in the shared variable used byA is log(k−1) = Ω(log log logn),
as claimed.

To relax the requirement that the processes have the same program, we make the
following observations. For every process Pi, we can associate with its program Ai

a Markov chain Q(Ai, d), as before. All those Markov chains have the same number
of states k. If k = Ω(

√
log log n/ log log logn), we are done. That is, the number

of bits of the shared variable is Ω(log log logn). By Lemma 6, if k is “too small”
(i.e., k = o(

√
log log n/ log log logn)), then for every process there is some gap. That

is, one of the k2 intervals (β`+1, β`] considered in the proof of Lemma 6 is empty.
Moreover, for n/k2 of the processes the gap is in the same interval. Denote this
interval by (αλk, α]. Now, consider only these processes and the α-heavy edges in
the corresponding graphs. The number of ways of choosing for each of the k2 edges

whether it is heavy or not is 2k
2

. Therefore, there are n′
4
= n/(k2 · 2k2

) processes
with the same gap, and the same α-heavy edges. If we take only these processes, the
same proof can be repeated. Finally, note that due to the double logarithmic relation
between k and n, the number of processes we remained with is

n′ = n/(k2 · 2k2

) > nε

for some constant ε > 0. Hence, we also get a lower bound of Ω(log log logn′) =
Ω(log log log n) for the case when processes may use different programs. We conclude
with the following theorem.

Theorem 12. Every mutual exclusion algorithm for n processes which guarantees
tc-fairness requires a shared variable of Ω(log log log n) bits, even if each process runs
a different program.

5. Upper bounds. In this section, we present some upper bounds to complete
the picture. In fact, we do not explicitly present protocols. Instead, we present
appropriate lotteries, where a lottery is just a probability distribution that allows
processes to draw numbers (“tickets”) in {1, 2, . . . , B}. The “winners” of the lottery
are those processes drawing the maximal drawn number. We use as a black box the
following theorem, implicit in [KR92], that reduces the existence of mutual exclusion
algorithms with certain fairness properties to the existence of lotteries that guarantee
a certain probability of having a unique winner.

Theorem 13 (see [KR92]). Let f be a function, and n and B be integers. Assume
that there exists a lottery for at most n processes, on B values, with the property that
for every number of processes 1 ≤ t ≤ n and every participating process Pi with
probability at least 1/f(t), the maximal drawn number was drawn by the process Pi,
and all other participating processes draw strictly smaller numbers. Then, there exists
a randomized mutual exclusion algorithm for n processes that guarantees f-fairness
and uses a shared variable of 2 logB +O(1) bits.

By this theorem, in order to prove the existence of mutual exclusion algorithms,
it is enough to prove the existence of the appropriate lotteries. For example, the
lottery used in [Rab82, KR92] assigns a probability of 2−j for each value 1 ≤ j < B
(B = 4 + logn), and probability 2−B+1 for the value B. It is shown that this lottery
gives f(t) = O(t) and therefore can be used to achieve mutual exclusion with linear
fairness.

Note that all the upper bounds we give immediately give upper bounds on the
number of states of (n, f)-live Markov chains for the appropriate f ’s. We start by
showing an upper bound for a constant-size shared variable.

1562 KUSHILEVITZ, MANSOUR, RABIN, AND ZUCKERMAN

Theorem 14. There exists a randomized mutual exclusion algorithm that uses a
constant-size shared variable and guarantees 1/2t-fairness.

Proof. We show a lottery with f(t) = 2t; by Theorem 13, this completes the proof.
In the lottery, each participating process Pi chooses a value in {1, 2} with uniform
distribution; i.e., the probability that Pi chooses each of the two values is 1/2. For
every participating process Pi, we are interested in the event in which Pi chooses the
maximum value and it is unique. Since there are only two possible values, this is
simply the event in which Pi chooses the value 2 and all other participating processes
choose 1. The probability that Pi chooses the value 2 and all other participating
processes choose 1 is exactly 1/2t; therefore, f(t) = 2t.

The next theorem derives a bound in the case where the fairness guarantee needs
to be polynomial in t (note that in the previous theorem, the fairness guarantee is
exponential in t). We show the result by exhibiting a different lottery for this case.
This lottery implies an upper bound of O(log log logn) bits for mutual exclusion with
polynomial-fairness.

Theorem 15. For any constant c > 1, there exists a randomized mutual exclusion
algorithm that uses an O(log log logn)-size shared variable and guarantees Ω(1/tc)-
fairness.

Proof. Again, we show a lottery with f(t) = O(tc); by Theorem 13, this completes

the proof. Consider the following lottery: the value j is chosen with probability 1/2c
j

,
for (j = 1, 2, . . . , c′ log log n), and the value 0 is chosen otherwise. For every integer t

(the number of participants), let ` ≥ 0 be an integer such that 2c
` ≤ t < 2c

`+1

(the
constant c′ is chosen so as to guarantee that such an ` exists for every t ≤ n). We are
interested in the event in which Pi chooses a value `+1 and all other t−1 participating
processes choose values at most `. This clearly lower-bounds the probability that Pi is
the unique process that chooses the maximum value. The probability that Pi chooses

the value `+ 1 is 1/2c
`+1

. For each Pj , j 6= i, the probability that Pj chooses a value
greater than or equal to `+ 1 is

c′ log log n∑
k=`+1

1

2ck
≤

c′ log log n∑
k=`+1

(
1

2c

)k
<

c′′

2c`+1 ,

where c′′ is a constant (e.g., c′′ = 2d1/ log2 ce suffices). Therefore, the probability

that Pj chooses a value less than or equal to ` is at least 1− c′′

2c`+1 . Since we have t−1
different Pj ’s, the probability that Pi chooses ` + 1 and all other t − 1 participating
processes choose values of at most ` is at least

1

2c`+1 ·
(

1− c′′

2c`+1

)t−1

≥ 1

2c`+1 ·
(

1− c′′

2c`+1

)2c
`+1

>
1

2tc
·
(

1

2e

)c′′
,

which completes the proof of the theorem. (The proof remains similar in the case
when we wish to get a lottery with f(t) = αtc for a particular constant α.)

REFERENCES

[AS91] H. Attiya and M. Snir, Better computing on the anonymous ring, J. Algorithms, 12
(1991), pp. 204–238.

[Ben83] M. Ben-Or, Another advantage of free choice: Complete asynchronous agreement proto-
cols, in Proc. 6th ACM Symp. on Principles of Distributed Computing, 1983, pp. 27–
30.

LOWER BOUNDS FOR RANDOMIZED MUTUAL EXCLUSION 1563

[BFJ+82] J. E. Burns, M. J. Fischer, P. Jackson, N. A. Lynch, and G. L. Peterson, Data
requirements for implementation of n-process mutual exclusion using a single shared
variable, J. Assoc. Comput. Mach., 29 (1982), pp. 183–205.

[Bra85] G. Bracha, An O(logn) expected rounds randomized byzantine generals protocol, in Proc.
17th ACM Symp. on Theory of Computing, 1985, pp. 316–326.

[CIL87] B. Chor, A. Israeli, and M. Li, On process coordination using asynchronous hardware,
in Proc. 6th ACM Symp. on Principles of Distributed Computing, 1987, pp. 86–97.

[Dij65] E. Dijkstra, Solution of a problem in concurrent programming control, Comm. ACM, 8
(1965), p. 569.

[FL82] M. Fischer and N. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process. Lett., 14 (1982), pp. 183–186.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus
with one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[FM88] P. Feldman and S. Micali, Optimal algorithms for byzantine agreement, in Proc. 20th
ACM Symp. on Theory of Computing, 1985, pp. 148–161.

[GY89] R. L. Graham and A. C. Yao, On the improbability of reaching byzantine agreements, in
Proc. 21st ACM Symp. on Theory of Computing, 1989, pp. 467–478.

[IR81] A. Itai and M. Rodeh, The lord of the ring, or probabilistic methods for breaking symme-
try in distributed networks, in Proc. 22th IEEE Symp. on Foundations of Computer
Science, 1981, pp. 150–158.

[KR92] E. Kushilevitz and M. O. Rabin, Randomized mutual exclusion algorithms revisited, in
Proc. 11th ACM Symp. on Principles of Distributed Computing, 1992, pp. 275–283.

[KY84] A. Karlin and A. C. Yao, Probabilistic Lower Bounds for Byzantine Agreement, unpub-
lished manuscript, 1984.

[LR81] D. Lehman and M. O. Rabin, On the advantage of free choice: A symmetric and fully
distributed solution to the dining philosophers problem, in Proc. 8th ACM Symp. on
Principles of Programming Languages, 1981, pp. 133–138.

[Rab82] M. O. Rabin, n-process mutual exclusion with bounded waiting by 4 log2 n-valued shared
variable, J. Comput. System Sci., 25 (1982), pp. 66–75.

[Sai92] I. Saias, Proving probabilistic correctness statements: The case of Rabin‘s algorithm for
mutual exclusion, in Proc. 11th ACM Symp. on Principles of Distributed Computing,
1992, pp. 263–272.

[Yao77] A. C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Proc.
18th IEEE Symp. on Foundations of Computer Science, 1977, pp. 222–227.

ADAPTIVE HEURISTICS FOR BINARY SEARCH TREES AND
CONSTANT LINKAGE COST∗

TONY W. LAI† AND DERICK WOOD‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1564–1591, December 1998 004

Abstract. We present lower and upper bounds on adaptive heuristics for maintaining binary
search trees using a constant number of link or pointer changes for each operation (constant linkage
cost (CLC)). We show that no adaptive heuristic with an amortized linkage cost of o(logn) can be
competitive. In particular, we show that any heuristic that performs f(n) = o(logn) promotions
(rotations) amortized over each access has a competitive ratio of at least Ω(log n/f(n)) against an
oblivious adversary, and any heuristic that performs f(n) = o(logn) pointer changes amortized

over each access has a competitive ratio of at least Ω(logn
f(n) log(logn/f(n))

) against an adaptive online

adversary.

In our investigation of upper bounds we present four adaptive heuristics:

• a randomized, worst-case-CLC heuristic randomized two-promotion (R2P) whose expected
search time is within a constant factor of the search time using an optimal tree; that is, it
is statically competitive against an oblivious adversary;

• a randomized, expected-CLC heuristic (locally optimized randomized partial splay (LORPS))
that has O(logn) expected-amortized update time and is statically competitive against an
oblivious adversary;

• a deterministic, amortized-CLC heuristic (locally optimized partial splay (LOPS)) that has
O(logn) amortized update time and is statically competitive against an adaptive adversary;

• a practical, randomized heuristic (randomized partial splay (RPS)) that is not CLC but
has performance bounds comparable with those of the splay heuristic of Sleator and Tarjan;
it is statically competitive against an adaptive adversary.

The randomized heuristics use only constant extra space, whereas the deterministic heuristic uses
O(n) extra space.

Key words. adaptivity, self-adjustment, self-organization, binary search trees, constant linkage
cost, expected amortization, competitive ratio

AMS subject classifications. 68P05, 68P10, 68O25, 68R99

PII. S0097539793250329

1. Introduction. One of the most fundamental problems in computer science is
the dictionary problem: we have a totally ordered universe U , and we want to maintain
efficiently a set S ⊆ U that supports the operations of insert, delete, and member. The
binary search tree is a well-known and well-studied data structure that can support
these operations in O(log n) time in the expected case. Many kinds of balanced trees
have been proposed that can support all dictionary operations in O(log n) worst-case
time [1, 11, 16]; however, these structures cannot adapt to nonuniform or skewed access
patterns. We consider the problem of maintaining an adaptive binary search tree (also
known as a self-organizing search tree [2] and a self-adjusting search tree [21]).

∗Received by the editors June 15, 1993; accepted for publication (in revised form) August 19,
1996; published electronically June 3, 1998. A preliminary version of this paper appeared in Proc.
2nd Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1991, pp. 72–77.

http://www.siam.org/journals/sicomp/27-3/25032.html
†IBM Canada Ltd., 1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada

(twhlai@vnet.ibm.com). The work of this author was partially supported by a NSERC postgraduate
scholarship.

‡Department of Computer Science, Hong Kong University of Science & Technology, Clear Water
Bay, Kowloon, Hong Kong (dwood@cs.ust.hk). The work of this author was supported by grants from
the Natural Sciences and Engineering Research Council of Canada and the Information Technology
Research Centre of Ontario.

1564

ADAPTIVE HEURISTICS FOR SEARCH TREES 1565

yn

xn

�
�
�

L
L
L
�� SS

�
�
�

L
L
L

¡¡ @@

�
�
�

L
L
L

xn

�
�
�

L
L
L
¡¡ @@

yn

�
�
�

L
L
L
�� SS

�
�
�

L
L
L

-
promote x

�
promote y

Fig. 1. The promotion operation.

zk

yk

xk

�
��

B
BB
�� TT

�
��

B
BB

�� SS

�
��

B
BB

�� \\

�
��

B
BB

xk

�
��

B
BB
�� \\

yk

�
��

B
BB
�� SS

zk

�
��

B
BB
�� TT

�
��

B
BB

-

(a) Spine promotion of x

zk

yk

�
��

B
BB
�� SS

xk

�
��

B
BB
�� TT

�
��

B
BB

%% ee

�
��

B
BB

xk

yk

�
��

B
BB
�� TT

�
��

B
BB

,, ll
zk

�
��

B
BB
�� TT

�
��

B
BB

-

(b) Zig-zag promotion of x

Fig. 2. The two-promotion operations.

Compared with balanced trees, adaptive trees have the disadvantage of requiring
more restructuring, especially during accesses (searches). This additional work often
makes adaptive trees less practical than balanced trees; for instance, the performance
of splay trees [21] is worse than that of AVL trees unless the pattern of accesses
is very highly skewed [4]. High overhead, though, is not inherent to adaptation in
general. For instance, the move-to-front heuristic for sequential lists changes only a
constant number of pointers for each operation, yet is very efficient in practice [7].
To restructure a tree, we use the promotion operation (see Figure 1), also known as
a rotation, and the two-promotion operation (see Figure 2), also known as a splaying
step.

We consider the problem of minimizing the restructuring that is required for each
operation. Ideally, we would like adaptivity to have the following four properties:

1. It should change at most a constant number of pointers for each operation in
the worst case; that is, it should have CLC.

2. It should support both accesses and updates.
3. Its running time should be within a constant factor of the time of any heuristic

for sufficiently long sequences of operations; that is, it should be competitive.

1566 TONY W. LAI AND DERICK WOOD

4. It should use only constant extra space.

We are interested in the CLC restriction for at least three reasons. First, our main
motivation is that CLC is crucial when binary search trees have adjunct secondary
structures such as in priority–search trees [14], segment–range trees [20], and segment–
segment trees [20]. (A weaker motivation is the storage of binary search trees on
secondary memory when the CLC constraint implies that only a constant number of
blocks have to be rewritten after an access.) In each case, a promotion in a primary
binary search tree of size n typically causes an Ω(log n)-time update in its adjunct
structure; therefore, Ω(k) promotions take Ω(k log n) time. Since we want updates
to take only O(log n) time in most circumstances, CLC updates are appealing. It is
well known that insertions into an AVL tree are CLC, whereas deletions may cause
Θ(logn) promotions in an AVL tree of size n. This behavior is the reason for using
red–black trees to implement priority–search trees since red–black trees have both
CLC insertions and CLC deletions.

Second, the CLC constraint is, we believe, fundamental and should be investi-
gated. Ottmann and Wood [17], for example, present a general framework for obtain-
ing binary search trees that are CLC in the worst case. Third, it may provide insight
into the dynamic optimality conjecture for splay trees (see the work of Cole [10]).

Various schemes for maintaining adaptive search trees have been proposed such as
move-to-root [2], simple exchange [2], monotonicity [8], dynamic binary search [15],
splaying [21], biasing [6], conditional rotation [9], weighted randomization [3], and
deepsplaying [19]. Of these schemes, only simple exchange, conditional rotation, and
weighted randomization are applicable to binary search trees and also are CLC. Simple
exchange and conditional rotation are worst-case CLC but have an amortized access
time of Θ(n). In contrast, weighted randomization is expected CLC and has an
expected access time comparable with that of an optimal static tree for fixed access
sequences. Simple exchange does not use extra space, whereas conditional rotation
and weighted randomization use O(n logm) bits of extra space, where m is the number
of performed accesses.

While some upper bounds are known for adaptive, constant-linkage-cost heuris-
tics [2, 3, 9], few lower bounds are known. In section 3, we show that no worst-case-
CLC heuristic can be competitive. Indeed, an online adaptive adversary can force any
heuristic with an amortized linkage cost of f(n) = o(log n) to use a multiplicative fac-
tor of Ω(logn

f(n) log(log n/f(n))) more time than the splay heuristic to access an arbitrarily

long sequence. In light of this lower bound, we replace property 3 with property 3′.
3′. The heuristic’s access time should be within a constant factor of the time

taken by any static tree for any sufficiently long access sequence; that is, the
heuristic should be statically competitive.

Although this revised property may be unnecessarily weak, it can be considered both
a minimum requirement for effective adaptation and a first step in the investigation
of CLC adaptive heuristics. We leave as an open problem the investigation of lower
bounds on competitiveness of arbitrary heuristics against an oblivious adversary.

Although we have not been able to improve on the results for splay trees under
amortization, we can improve them with respect to the expected time taken by a
sequence of operations. (Just as we can bound the greatest (or worst) and expected
times taken by a single operation, we can also bound the greatest (or worst) and
expected times taken by sequences of operations.) We present three statically com-
petitive CLC heuristics and a statically competitive heuristic that is not CLC yet
has performance bounds comparable with Sleator and Tarjan’s splay trees. There are

ADAPTIVE HEURISTICS FOR SEARCH TREES 1567

Table 1
A comparison of the R2P, LORPS, LOPS, and RPS heuristics. LOPS is a deterministic

heuristic, whereas R2P, LORPS, and RPS are randomized heuristics.

Linkage Statically Update Extra
Heuristic cost competitive time space
R2P O(1) worst case yes/obliv Θ(n) O(1)
LORPS O(1) expected yes/obliv O(logn) expect O(1)
LOPS O(1) amortized yes/adap O(logn) amort O(n)
RPS O(logn) amortized yes/adap O(logn) amort O(1)

two kinds of results: we focus on accesses and consider static competitiveness, and we
consider all three dictionary operations and compare the performance of the heuristics
with the performance of red–black and splay trees.

The first (the R2P heuristic) is a randomized, worst-case-CLC heuristic that
supports only accesses. The second (the LORPS heuristic) is a randomized, expected-
CLC heuristic that supports updates in O(log n) expected time. The third (the LOPS
heuristic) is a deterministic, amortized-CLC heuristic that also supports updates in
O(log n) amortized time. The randomized heuristics use only constant extra space,
or O(log n) bits of extra space in a bit-cost model, whereas the deterministic heuristic
uses O(n) extra space, or O(n log n) bits of extra space in a bit-cost model. The last
(the RPS heuristic) is a new, practical, randomized heuristic that is not CLC but has
a simple, efficient implementation and can be preferable to the splay heuristic when
the pattern of accesses is stable. RPS supports updates in O(log n) amortized time,
and it has O(log n)-amortized linkage cost. A comparison of the heuristics is shown
in Table 1.

2. Definitions. We define the depth or level of a node x of a tree to be the
number of edges in the root-to-x path; the depth of the root is 0. We define (x, y)
to be a left edge in a tree T if y is a left child of x in T . We define a right edge
analogously.

In our analyses, we assign positive numbers called weights to each node in a tree.
We define the size s(x) of a node x to be the sum of the weights of all nodes in the
subtree rooted at x. The rank r(x) of x is log s(x). The total rank R(T) of a tree T
is the sum of all ranks in the tree. The weighted path length of a tree T is 0 if T is
empty or the sum of all weights in T plus the weighted path lengths of T ’s left and
right subtrees otherwise.

When analyzing an adaptive algorithm, we assume that it services requests gen-
erated by an adversary. An oblivious adversary generates a fixed sequence of requests
in advance, without knowledge of the state of the adaptive algorithm. An adaptive
adversary generates a request after seeing the effect of all previous requests on the
state of the algorithm. Notice that when an adaptive algorithm is deterministic, adap-
tive and oblivious adversaries have the same power. We use this observation when
analyzing the LOPS heuristic.

We may also compare the performance of an adaptive algorithm with the perfor-
mance of an adversary. An online adversary services each request immediately after
generating it, whereas an offline adversary can service requests after generating the
entire request sequence. We thus have three distinct types of adversaries: oblivious,
adaptive online, and adaptive offline. For more details, consult the work of Ben-David
et al. [5].

1568 TONY W. LAI AND DERICK WOOD

Let CH(r1, . . . , rm) be the cost incurred by an adaptive heuristic H when servicing
the request sequence r1, . . . , rm. Let CA(r1, . . . , rm) be the cost incurred by an
adversary A when servicing r1, . . . , rm. We say that H is c-competitive against A if
there is a real number e, independent of m, such that

E[CH(r1, . . . , rm) − c · CA(r1, . . . , rm)] ≤ e

for any finite sequence r1, . . . , rm generated by A. The competitive ratio of H is
infimum over all c such that H is c-competitive.

Note that, in the definition of competitiveness, we use the same cost model for
the heuristic H and the adversary A. We handicap the adversary by giving it a less
advantageous cost model. Let CS(r1, . . . , rm) be the cost incurred by a static structure
(chosen by the adversary before it services the requests) for the request sequence r1,
. . . , rm. We say that an adaptive heuristic H is statically c-competitive against an
adversary A, if there is a real number e, independent of m, such that

E[CH(r1, . . . , rm) − c · CS(r1, . . . , rm)] ≤ e,

for any finite sequence r1, . . . , rm of accesses generated by A, where the cost models
for A and H are not necessarily the same. If H is statically c-competitive for some
constant c, then we say that H is statically competitive. Note that we have outlawed
updates within the framework of static competitiveness.

Let Φ be a potential function that maps each configuration of some data structure
to a real number. We define the expected-amortized time a of an operation to be
E[t+ Φ(D′) − Φ(D)], where t is the actual time of the operation, and D and D′ are
the configurations of the data structure before and after the operation, respectively.
Since E is a linear operator, E[t] = a+E[Φ(D)]−E[Φ(D′)]; hence, we can show that
the expected time of m operations is the sum of the expected-amortized times of the
operations and the expected drop in potential. In other words,

E

[
m∑
i=1

ti

]
= E

[
Φ0 − Φm +

m∑
i=1

ai

]
,

where ti is the actual time of the ith operation, ai is the expected-amortized time
of the ith operation, Φ0 is the initial potential, and Φi is the potential after the ith
operation. By bounding the maximum drop in potential, we can use the expected-
amortized time to obtain an upper bound on the expected time of a sequence of
operations. This technique is analogous to the potential method of conventional
amortized analysis. Lai [12] discusses expected-amortized time more thoroughly as
do Ben-David et al. [5] and Raghavan and Snir [18].

3. Lower bounds. We use a pointer machine as the model of computation in
the proofs of the lower bounds. We assume without loss of generality that a heuristic
performs restructuring only after it searches for an accessed element.

We present two lower bounds. The first bound applies to a restricted model
in which only promotions are used to restructure a tree, whereas the second bound
applies to arbitrary pointer changes. The first model applies to randomized search
trees [3] and establishes that although the heuristic is expected CLC, it cannot be
competitive.

ADAPTIVE HEURISTICS FOR SEARCH TREES 1569

3.1. The restricted model. We prove that, for any function f(n) = o(log n), if
a heuristic H performs at most f(n) promotions amortized over accesses, then H has
a competitive ratio of Ω(logn/f(n)) against an oblivious adversary. In the following,
we say that a heuristic is promotion based if it uses only promotions to alter the shape
of a tree.

To prove our lower bound on H’s competitive ratio, the adversary maintains its
tree using the splay heuristic [21]. The splay heuristic has three important properties:
it has an amortized access time of O(log n), it moves accessed elements to the root,
and it does not change the tree if the root element is accessed. Thus, the amortized
time of accessing some element r times consecutively, using the splay heuristic, is
O(log n+ r).

The heuristic H, on the other hand, cannot quickly move elements to the root. In
general, after logn/(2f(n)) accesses, H cannot perform more than logn/2 promotions.
Thus, if an adversary knows an element x of depth at least logn in H’s tree, and
accesses it r ≤ log n/(2f(n)) times, then x will still have depth Ω(logn) afterward,
which implies that H requires Ω(r log n) time. Using this line of reasoning, we can
easily establish a lower bound of Ω(logn/f(n)) on the competitive ratio of H against
an adaptive, online adversary that uses the splay heuristic.

To show that an oblivious adversary can force poor performance from H, we show
that an oblivious adversary can consistently access nodes of great depth in a tree that
is maintained by any promotion-based heuristic. Let revk(i) be the number resulting
from reversing the bits of a k-bit number i. Wilber [22] proved that if n = 2k,
then there exists a fixed sequence of length n, namely 〈revk(0), . . . , revk(n− 1)〉, that
requires Ω(n log n) access time in a search tree of size n for the n keys 0 . . . n − 1,
using any promotion-based heuristic.

Lemma 3.1 (Wilber). Let T be a tree of size n = 2k that contains nodes labeled 0,
. . . , n− 1. Assume that we maintain T using an adaptive promotion-based heuristic,
and that we are allowed to access only the root element. The time to access the
sequence S1 = 〈revk(0), . . . , revk(n− 1)〉 is at least n log n+ 1; that is, the number of
promotions required to access S1 is at least n log n− n+ 1.

Wilber’s lower bound can be easily extended for the case where n is not a power of
2; it is straightforward to extend Wilber’s lower bound to show that, for any 0 ≤ k ≤
blog nc, the number of promotions to access the sequence 〈revk(0), . . . , revk(2

k − 1)〉
is at least k · 2k − 2k + 1.

Wilber observed that limiting accesses to only the root is not a serious limitation,
since we can access a node of depth d by promoting it to the root and returning it to
its original position, at the expense of performing 2d extra promotions. That is, if we
have a general heuristic that can access S1 in A time using P promotions, then we
can transform it into a heuristic that performs only root accesses and uses at most
2A− n+ P promotions to access S1. Thus, Wilber’s lower bound implies that there
is a tradeoff between the access time and the number of promotions performed for
general promotion-based heuristics, as we now claim.

Corollary 3.2. Let T be a tree of size n that contains nodes labeled 0, . . . , n−1,
let k = blog nc, and let N = 2k. Assume that we maintain T using an adaptive
promotion-based heuristic. If we access the sequence S1 = 〈revk(0), . . . , revk(N − 1)〉,
then the access time A and number P of promotions performed satisfies 2A + P ≥
N logN + 1.

We prove our main theorem on the competitiveness of H as follows. Let Sr be the
sequence obtained from the sequence S1 = 〈revk(0), . . . , revk(2

k − 1)〉 by repeating

1570 TONY W. LAI AND DERICK WOOD

each element r times. We note that the splay heuristic requires Θ(n log n) time to
access Sr, whereas we show that heuristic H requires Ω(rn log n) time, provided that
r = Θ(logn/f(n)). Finally, we note that if a heuristic H performs f(n) promotions
amortized over accesses, for some function f , then there exists a function g such that
H performs at most g(n) +m · f(n) promotions in its first m accesses for all m.

Theorem 3.3. For any functions f and g such that f(n) = o(log n), if a
promotion-based heuristic H performs at most g(n) +m · f(n) promotions in its first
m accesses, for all m, then H has a competitive ratio of Ω(log n/f(n)) against an
oblivious adversary.

Proof. Without loss of generality, assume that the elements are labeled 0, . . . , n−1.
Let N = 2blognc and, for 0 ≤ i ≤ N−1, let xi = revblognc(i). Let r = blogN/(8f(n))c
and let Sr = 〈x0〉r〈x1〉r . . . 〈xN−1〉r. We assume that n is large enough such that r ≥ 1.
Since r has been chosen to be O(log n), the splay heuristic takes time O(n log n)
to access Sr. We claim that, for all q ≥ max(2g(n), 1), the time to access (Sr)

q

using heuristic H is Ω(qn log2 n/f(n)). Since the splay heuristic can access (Sr)
q in

O(qn log n) time, the claim implies that H has a competitive ratio of Ω(logn/f(n)).
To prove the claim, it is sufficient to show the following two facts. First, there are
at least dq/2e accesses of Sr in which we perform at most N logN/4 + 1 promotions.
Second, if we perform at most N logN/4 + 1 promotions when accessing Sr, then the
access time is Ω(N log2 N/f(n)).

Because the sequence (Sr)
q is of length qrN , the heuristic H performs at most

g(n) + qrN · f(n) promotions when accessing (Sr)
q. Observe that there must be at

least dq/2e accesses of Sr in which H performs no more than 2 [g(n) + qrN · f(n)] /q =
2g(n)/q + 2rN · f(n) promotions. Since q ≥ 2g(n), we have 2rN · f(n) + 2g(n)/q ≤
2rN · f(n) + 1 ≤ N logN/4 + 1.

It remains to show that if we access Sr using at most N logN/4 + 1 promotions,
then the access time is Ω(n log2 n/f(n)). For 0 ≤ i ≤ N − 1, let ti be the time
required for the first access of xi in Sr and, for 0 ≤ i ≤ N − 1 and 1 ≤ j ≤ r,
let pij be the number of promotions performed after accessing the jth occurrence of
xi. Consider a heuristic H ′ that performs the same promotions when accessing xi as
the heuristic H does when accessing 〈xi〉r for all i. Observe that the access time of

H ′ over S1 is exactly
∑N−1

i=0 ti. Since H ′ performs at most N logN/4 + 1 promotions

when accessing S1 = x0x1 . . . xN−1, Corollary 3.2 implies that
∑N−1

i=0 ti ≥ 3N logN/8.

Finally, observe that the time to access the jth occurrence of xi is at least ti−
∑j−1

k=1 pik,

since we can move xi upward at most
∑j−1

k=1 pik levels after xi was first accessed.
Therefore, the access time A is at least

N−1∑
i=0

r∑
j=1

[
ti −

j−1∑
k=1

pik

]
=

N−1∑
i=0

r∑
j=1

ti −
N−1∑
i=0

r∑
j=1

j−1∑
k=1

pik

= r ·
N−1∑
i=0

ti −
N−1∑
i=0

r∑
j=1

j−1∑
k=1

pik.

Since
∑N−1

i=0

∑r
j=1 pij ≤ N logN/4 + 1, we have

N−1∑
i=0

r∑
j=1

j−1∑
k=1

pik ≤ rN logN

4
+ r;

ADAPTIVE HEURISTICS FOR SEARCH TREES 1571

〈0〉i

〈1〉i,
,, l

ll 〈1〉i

〈1, 1〉i#
c

cc 〈2〉i

〈2, 1〉i

〈2, 2〉 i

〈2, 3〉 i
S
S 〈2, 3, 1〉i

�
�

�
� S

S 〈2, 1, 1〉i

#
##

Fig. 3. Turn sequences in a tree.

thus,

A ≥ r · 3N logN

8
− r · N logN

4
− r

= Ω

(
N log2 N

f(n)

)
.

3.2. The general model. We now consider the general case in which we may
detach and attach arbitrary edges to modify the shape of the tree. We prove that, for
any functions g(n) and f(n) = o(log n), if a heuristic H attaches and detaches at most
g(n) + m · f(n) pointers in its first m accesses, for all m, then H has a competitive
ratio of at least Ω(logn

f(n) log(log n/f(n))) against an adaptive, online adversary.

Because we allow arbitrary pointer changes, the lower bound of Wilber does not
help us. Instead, we analyze what we call the turn sequences of nodes. We say that
a node x has turn sequence 〈a1, . . . , ak〉 if the root-to-x path consists of either a1 left
edges, a2 right edges, a3 left edges, and so forth, or a1 right edges, a2 left edges, a3

right edges, and so forth; see Figure 3. We also call each path of left edges and each
path of right edges a segment. More formally, we define a turn sequence as follows.

Definition 3.4. Let x be a node on level l in a tree T . Let U = 〈a1, a2, . . . , at〉
be a sequence of nonnegative integers. For 0 ≤ i ≤ l, let xi be the ancestor of x on
level i. Let h(i) = j if

∑j−1
k=1 ak ≤ i <

∑j
k=1 ak. We say that x has turn sequence U

if one of the following three statements holds.
1. x is the root of T , a1 = 0, and t = 1.
2. l =

∑t
i=1 ai; for all i, 1 ≤ i ≤ t, ai ≥ 1; and, for all i, 0 ≤ i < l (xi, xi+1) is

a left edge if and only if h(i) is even.
3. l =

∑t
i=1 ai; for all i, 1 ≤ i ≤ t, ai ≥ 1; and, for all i, 0 ≤ i < l (xi, xi+1) is

a left edge if and only if h(i) is odd.
If x has turn sequence U , then we say that the root-to-x path has t−1 turns, or x has
t− 1 turns. We also define the jth segment to be the set of edges {(xi, xi+1) : h(i) =
j}.

To prove our lower bound, we first characterize how quickly we can move a node
closer to the root; we show that one pointer change can shorten a path to a node by

1572 TONY W. LAI AND DERICK WOOD

at most one segment. We then use a combinatorial argument to prove that, for any
tree T , either the height of T is large or there is a node x in T that has depth Ω(logn)
even if we remove many segments in the root-to-x path. Thus, for any heuristic H
of linkage cost o(log n), an adversary can always access an element x some number of
times r such that the total access time of 〈x〉r using heuristic H is ω(log n), while the
amortized access time of 〈x〉r using the splay heuristic is O(log n).

Lemma 3.5. Suppose that a node x on level l in a tree T has turn sequence
〈a1, . . . , ak〉. For all j, 1 ≤ j ≤ k, let bj be the jth smallest element of the multiset
{ai : 1 ≤ i ≤ k}. If p pointers in T are detached and p new pointers are attached to

obtain a new tree T ′, then the depth of x in T ′ is at least
∑k−p

i=1 bi.

Proof. By definition of a segment, the root-to-x path in T has k segments S1, . . . ,
Sk. Since p pointers are detached to obtain T ′, at least k− p segments are unaffected
and occur in both T and T ′. To prove that the depth of x in T ′ is at least

∑k−p
i=1 bi, it

is sufficient to show that, for any j, if the edges in a segment Sj are in T ′, then Sj is
in the root-to-x path in T ′, or the lowest node z in Sj is an ancestor of x. Consider
the bottom edge (y, z) of Sj . If z 6= x, then by definition of a segment, x falls between
y and z in an inorder traversal of T and, thus, of T ′, which implies that z must be an
ancestor of x.

Let nij be the maximum possible number of nodes on level i with j turns in a
tree and Nht be the maximum possible number of nodes of a tree of height h such
that each node has fewer than t turns. By definition, a tree of height h has nodes of
depth at most h− 1, so Nht ≤

∑h−1
i=0

∑t−1
j=0 nij . We now relate the height of a tree T

with the size of T and the maximum number of turns in T .

Lemma 3.6. If t ≤ h/3, then Nht < 1 + 4
(
h−1
t

)
.

Proof. Observe that n00 = 1 and n10 = 2. Also note that, for i > 1, a node on
level i with t turns must have a parent on level i − 1 with either t or t − 1 turns if
t > 0. Hence, for i > 1 and 0 ≤ j ≤ i − 1, we have nij ≤ ni−1,j−1 + ni−1,j , where
nk,−1 = nk,k = 0 for all k. By induction, we can show that nij ≤ 2

(
i−1
j

)
for i ≥ 1 and

0 ≤ j ≤ i− 1.

Therefore, the maximum number Nht of nodes in a tree of height h in which each
node has fewer than t turns is

h−1∑
i=0

t−1∑
j=0

nij = 1 +
h−1∑
i=1

t−1∑
j=0

nij

≤ 1 + 2
h−1∑
i=1

t−1∑
j=0

(
i− 1

j

)

= 1 + 2

t−1∑
j=0

h−2∑
i=0

(
i

j

)

= 1 + 2

t−1∑
j=0

(
h− 1

j + 1

)
.

Since t ≤ h/3, we have, for all k ≤ t,

(
h− 1

k − 1

)
≤ 1

2

(
h− 1

k

)
.

ADAPTIVE HEURISTICS FOR SEARCH TREES 1573

Thus,

Nht ≤ 1 + 2
t∑

j=1

2j−t
(
h− 1

t

)

< 1 + 4

(
h− 1

t

)
.

Corollary 3.7. If t ≤ h/3, then Nh+1,t < 1 + 4(eh/t)t.
Proof. The proof is immediate from Lemma 3.6 and the fact that (h− 1) · · · (h−

t) < ht and t! ≥ tte−t.
Corollary 3.7 implies that if the maximum number of turns in a tree T of size n

is small, then the height of T must be large compared with logn. We use this fact
to prove that, for any tree T and any function f(n) = o(log n), either T is of height
Ω(log2 n/f(n)) or there is a node x in T such that the depth of x is Ω(log n) even if
we remove O(log n/ log(logn/f(n))) segments in the root-to-x path.

Lemma 3.8. For any function f(n) = o(log n) and any tree T of sufficiently large
size n, one of the following two statements holds.

1. T is of height at least log2 n/f(n).

2. There is a node with turn sequence 〈a1, . . . , ak〉 such that k ≥ p and
∑k−p

i=1 bi ≥
log n/4, where bi is the ith smallest element of the multiset {a1, . . . , ak}, and
p = b logn

8[4+log e+log(log n/f(n))]c.
Proof. We prove the lemma by contradiction. Because at most two nodes have the

same turn sequence, the n nodes of T must have at least n/2 distinct turn sequences.
Hence, it is sufficient to show that there are at most o(n) distinct turn sequences

〈a1, . . . , ak〉 such that a1 + · · · + ak < log2 n/f(n) and k < p or
∑k−p

i=1 bi < log n/4.
Let H = dlog2 n/f(n)e−1. Corollary 3.7 implies that the number of distinct turn

sequences 〈a1, . . . , ak〉 such that a1 + · · · + ak ≤ H and k < p is at most NH+1,p <

1 + 4(eHp)p < 1 + 4(e log2 n
f(n)p)p. We claim that NH+1,p < 1 + 4n1/4. It is sufficient

to show that p log(e log2 n
f(n)p) < log n/4. Note that, by the definition of p, we have

p ≥ logn
16[4+log e+log(log n/f(n))] for sufficiently large n. Now,

p log

(
e log2 n

f(n)p

)
≤ p log

(
e log2 n

f(n)
·
16[4 + log e+ log(logn

f(n))]

log n

)

= p log

(
16e · log n

f(n)

[
4 + log e+ log

(
log n

f(n)

)])

= p

[
4 + log e+ log

(
log n

f(n)

)
+ log

(
4 + log e+ log

(
log n

f(n)

))]

<
log n

8[4 + log e+ log(logn
f(n))]

· 2 ·
[
4 + log e+ log

(
log n

f(n)

)]

=
log n

4
.

Observe that any turn sequence 〈a1, . . . , ak〉 such that a1 + · · · + ak ≤ H and∑k−p
i=1 bi < log n/4 can be constructed by interleaving two sequences 〈c1, . . . , cp〉 and

〈d1, . . . , dk−p〉 sequences such that
∑k−p

i=1 di ≤M , where M = dlog n/4e−1. The num-
ber t of such turn sequences 〈a1, . . . , ak〉 is at most the product of the number of turn

1574 TONY W. LAI AND DERICK WOOD

sequences 〈c1, . . . , cp〉, the number of turn sequences 〈d1, . . . , dk−p〉, and the number of
interleavings of 〈c1, . . . , cp〉 and 〈d1, . . . , dk−p〉, summed over all k. Clearly, the num-
ber of turn sequences 〈c1, . . . , cp〉 is at most NH+1,p ≤ 1+4n1/4 since

∑p
i=1 ci < H+1.

Also, there are at most
(
M
k−p

)
sequences 〈d1, . . . , dk−p〉 such that d1 + · · ·+ dk−p ≤M

since d1, . . . , dk−p ≥ 1. The number of interleavings of 〈c1, . . . , cp〉 and 〈d1, . . . , dk−p〉
is
(
k
p

)
. Note that p ≤ k and k − p ≤M , which imply that p ≤ k ≤ p+M . Therefore,

the number t of possible turn sequences 〈a1, . . . , ak〉 such that a1 + · · ·+ ak ≤ H and∑k−p
i=1 bi ≤M is at most

p+M∑
k=p

[
(1 + 4n1/4)

(
M

k − p

)(
k

p

)]
= (1 + 4n1/4)

M∑
j=0

[(
M

j

)(
j + p

p

)]

< (1 + 4n1/4)

(
M + p

p

) M∑
j=0

(
M

j

)

= (1 + 4n1/4)

(
M + p

p

)
2M .

Since M + p < H for large n, we know that
(
M+p
p

)
<
(
H
p

)
< (eHp)p < n1/4. Also,

2M < 2logn/4 = n1/4. Thus, t = O(n1/4 · n1/4 · n1/4) = O(n3/4). Therefore, there are
at most O(n3/4) = o(n) distinct turn sequences 〈a1, . . . , ak〉 such that a1 + · · ·+ ak <

log2 n/f(n), and k < p or
∑k−p

i=1 bi < log n/4, which completes the proof.
The proof of the lower bound for arbitrary pointer changes is now straightforward.
Theorem 3.9. For any functions f and g such that f(n) = o(log n), if a heuristic

H performs at most g(n) + m · f(n) pointer changes during its first m accesses, for
all m, then H has a competitive ratio of Ω(logn

f(n) log(log n/f(n))) against adaptive, online

adversaries.
Proof. Let p = b logn

8[4+log e+log(log n/f(n))]c and r = b(p− 2)/(2f(n))c. We assume

that n is large enough to ensure that r ≥ 1. Consider the following algorithm for
generating accesses for a tree T . If T is of height at least log2 n/f(n), then locate the
leftmost deepest node and access it r times. Otherwise, Lemma 3.8 implies that there
exists a node x with turn sequence 〈a1, . . . , ak〉 such that k ≥ p and

∑k−p
i=1 bi ≥ log n/4,

where bi is the ith smallest element of the multiset {a1, . . . , ak}; access x a total of r
times. Note that, in either case, if at most p pointers are changed during r accesses,

then the total access time is Ω(log2 n
f(n) log(log n/f(n))).

Suppose an adversary applies the above algorithm I times to obtain the access
sequence S = 〈v1〉r〈v2〉r . . . 〈vI〉r, where I ≥ max(n, g(n)). The splay heuristic takes
only O(I log n + n log n) = O(I log n) time to access S. On the other hand, the
heuristic H performs at most g(n) + r · I · f(n) ≤ p/2 · I pointer changes when
accessing S, which implies that H changes at most p pointers during at least bI/2c
access sequences of the form 〈vj〉r. Hence, H requires at least Ω(I · log2 n

f(n) log(log n/f(n)))

time to access S; therefore, it has a competitive ratio of Ω(log n
f(n) log(log n/f(n))).

An unfortunate consequence of our lower bounds is that no o(log n)-linkage-cost
heuristic can have two desirable properties of the splay heuristic, the working set
property, and the dynamic finger property, because either of the properties is sufficient
to obtain the upper bounds on the splay heuristic used in our proofs. The working
set property implies that a heuristic can quickly retrieve an element that was recently
accessed. For splay trees, Sleator and Tarjan [21] proved that the amortized time

ADAPTIVE HEURISTICS FOR SEARCH TREES 1575

to access a sequence 〈x1, . . . , xm〉 is O(m + n log n +
∑m

i=1 log(t(i) + 1)), where t(i)
is the number of distinct elements accessed between the ith access and the previous
access of xi, for i = 1, . . . ,m. The dynamic finger property implies that a heuristic can
quickly access an element that is near the previously accessed element; for splay trees,
Cole [10] showed that the amortized time to access 〈x1, . . . , xm〉 is O(m+n log log n+∑m−1

i=1 log(|ki+1 − ki|+ 1)), where ki is the symmetric-order position of xi among the
n tree elements for i = 1, . . . ,m.

4. Upper bounds. We now turn our attention to the problem of upper bounds.
We present new heuristics that are based on the splay heuristic of Sleator and Tar-
jan [21]. In this section, we introduce three CLC heuristics and, in section 5, we
present a practical, randomized, non-CLC heuristic. The splay heuristic two-promotes
an accessed node until it reaches the root; this operation is called a splay. Sleator and
Tarjan proved that the splay heuristic is statically competitive and conjectured that
it is in fact competitive. Unfortunately, the splay heuristic has an amortized linkage
cost of Θ(logn). To achieve constant linkage cost, our heuristics perform only part of
a splay. This approach, however, may not be adequate to achieve a low search cost,
so we also use an extra restructuring step called a local optimization in two of the
heuristics.

4.1. The randomized two-promotion heuristic (R2P). The first heuristic
we present is a very simple one that supports only accesses. In the R2P heuristic,
we attempt to perform (2/n)ths of the work of the splay heuristic. More precisely,
suppose we access a node x on level l. We generate a random number L uniformly
between 0 and n − 1, inclusive. If L ≤ l, then we two-promote x’s ancestor on level
L. Otherwise, we do nothing. Clearly, the R2P heuristic is worst-case CLC, since
we perform at most two promotions on each access. Also, it requires only constant
extra space, and it can be implemented as a single top-down pass through the tree.
Although the R2P heuristic is so simple, it achieves a surprisingly low expected access
time, as we prove below.

Before analyzing the R2P heuristic, we briefly recall Sleator and Tarjan’s amor-
tized analysis of the splay heuristic [21]. They chose the potential Φ(T) of a tree
T to be the total rank R(T), and they analyzed the effect of a promotion and a
two-promotion on R(T).

Lemma 4.1 (Sleator and Tarjan [21]). The change in R(T) after promoting a
node x in a tree T is no greater than 3(r′(x)− r(x)) if x is of depth of at least 1, and
the change in R(T) after two-promoting x is no greater than 3(r′(x) − r(x)) − 2 if x
is of depth at least 2, where r′(x) is the rank of x after the restructuring operation.

Sleator and Tarjan also showed that the change in R(T) after splaying a node x
on level l is no more than 3(r(t) − r(x)) − l + 1, where t is the root of T .

Lemma 4.2 (Sleator and Tarjan [21]). Let t be the root of a tree T , and let x
be a node on level l in T . The change in R(T) after splaying x is no more than
3(r(t) − r(x)) − 2bl/2c.

Since the time to access x is l + 1, the amortized time of splaying x is no more
than 3(r(t) − r(x)) + 2. By choosing node weights appropriately, we obtain various
bounds. For example, if we assign a weight of 1 to each node, then the rank r(t) of
the root is log n, so we obtain an O(log n) amortized access time.

Note that the splay heuristic two-promotes only half of the ancestors of an ac-
cessed node x. If we two-promote each ancestor of x with probability p, where the
probabilities may or may not be independent, then we expect to do 2pths of the work

1576 TONY W. LAI AND DERICK WOOD

of the splay heuristic. We prove, in the following, that the expected change in R(T)
from this two-promotion scheme is essentially 2p times the change in R(T) using the
splay heuristic.

Lemma 4.3. Let t be the root of a tree T and x be a node of T on level l. Let
xi be the ancestor of x on level i for i = 0, . . . , l. Suppose that, for i = 0, . . . , l,
the probability of each xi being two-promoted is p such that for all j if xj is two-
promoted, then xj−1 and xj−2 are not. Then, the expected change ∆R in R(T) is at
most p[6(r(t) − r(x)) − 2(l − 1)].

Proof. The lemma trivially holds if l = 0. If l = 1, then Lemma 4.1 implies
that the expected change in potential is ∆R ≤ p[3(r(x0)− r(x1))] < p[6(r(t)− r(x))].
Finally, if l ≥ 2, then Lemma 4.1 implies that

∆R ≤ p[3(r(x0) − r(x1))] + p
l∑

i=2

[3(r(xi−2) − r(xi)) − 2]

= p[3(r(x0) − r(x1))] + p[3(r(x0) + r(x1) − r(xl−1) − r(xl)) − 2(l − 1)]

< p[6(r(x0) − r(xl)) − 2(l − 1)]

= p[6(r(t) − r(x)) − 2(l − 1)].

Lemma 4.3 implies that the R2P heuristic adapts at a rate 1/(2p) as fast as the
splay heuristic, yet also has an expected-amortized access time of 3(r(t)− r(x))+2, if
we choose the potential of a tree T to be R(T)/(2p). Hence, in the following we analyze
the running time of the R2P heuristic using the potential function Φ(T) = n/2 ·R(T).

We first bound the expected-amortized time of a single operation, before analyzing
the expected time of a sequence of operations. We finally prove that the R2P heuristic
is statically competitive.

Lemma 4.4. The expected-amortized time to access a node x of a tree with root
t using the R2P heuristic is at most 3(r(t) − r(x)) + 2.

Proof. The expected-amortized time of an operation is the sum of the actual time
and the expected change in potential. Let l be the depth of x. If l = 0, then the
expected-amortized time to access x is 1 < 3(r(t)− r(x)) + 2. Otherwise, the time to
access x is l + 1, and since each ancestor of x is two-promoted with probability 1/n,
Lemma 4.1 implies that the expected change ∆Φ in potential is no greater than

n

2
∆R ≤ n

2

{
1

n
[6(r(t) − r(x)) − 2(l − 1)]

}
= 3(r(t) − r(x)) − (l − 1).

The expected-amortized time is thus at most l+1+3(r(t)− r(x))− (l−1) = 3(r(t)−
r(x)) + 2.

We now bound the maximum expected time of a sequence of accesses by bounding
the expected-amortized time of the sequence. Note that we have expected access
frequencies in the following lemma, rather than observed access frequencies. The
reason is that we assume the adversary is adaptive and maps histories of a tree to
accesses in some manner. This mapping, along with the random numbers generated
by the R2P heuristic, defines a probability distribution for the accesses, thus giving
rise to expected access frequencies. For further details, readers should consult Lai’s
thesis [12].

Lemma 4.5. Let n be the size of a tree, m be the number of accesses, and qi be
the expected access frequency of the ith smallest element for i = 1, . . . , n. Let wi be

ADAPTIVE HEURISTICS FOR SEARCH TREES 1577

an arbitrary, positive constant, for i = 1, . . . , n, and let W =
∑n

i=1 wi. Then, the
expected time of m accesses using the R2P heuristic is at most

O(m) + 3 ·
n∑
i=1

[
qi · log

(
W

wi

)]
+
n

2
·

n∑
i=1

log

(
W

wi

)
,

even if accesses are chosen by an adaptive adversary.
Proof. Let xi be the ith smallest element, for each i. We assign xi a weight of

wi; this implies that the root of the tree has a total weight of W . Recall that the
expected time of m operations is no more than the sum of the expected-amortized
time of the m operations and the maximum drop in potential.

Since the rank of the root of the tree is logW and the rank r(xi) of xi is log s(xi) ≥
logwi, the expected-amortized time of accessing xi is at most 3 log(W/wi)+2. There-
fore, the expected-amortized time of the m accesses is no more than

3

n∑
i=1

[
qi · log

(
W

wi

)]
+ 2m.

It remains to determine an upper bound on the maximum drop in potential. For
each i, the rank of xi is at least logwi and at most logW , which implies that the
potential of the tree is at least n/2 ·∑n

i=1 logwi and at most n/2 ·∑n
i=1 logW . Hence,

the potential drop is at most n/2 ·∑n
i=1(logW − logwi) = n/2 ·∑n

i=1 log(W/wi).
Therefore, the expected time E of the m accesses is at most

O(m) + 3 ·
n∑
i=1

[
qi log

(
W

wi

)]
+
n

2
·

n∑
i=1

log

(
W

wi

)
.

An amortized bound similar to that of Lemma 4.5 holds for splay trees, except
that the term n/2 ·∑n

i=1 log(W/wi) is replaced by
∑n

i=1 log(W/wi).
Note that Lemma 4.5 holds for all assignments of weights w1, . . . , wn simultane-

ously. By choosing different values of the weights, we obtain different upper bounds.
Also, note that the specific values of the weights are unimportant; only the ratios
between the weights affect the bound of Lemma 4.5. For example, if we choose all
weights to be equal, we obtain the following bound.

Theorem 4.6. The expected time of m accesses using the R2P heuristic is
O(m log n+ n2 log n), even against an adaptive adversary.

Proof. Assign a weight of 1/n to each item. Then W = 1, which implies that
the expected-amortized access time is O(log n) and the maximum drop in potential
is O(n2 log n). The theorem follows.

Theorem 4.6 implies that the expected time of an access is essentially O(log n),
even if an adversary is allowed to inspect the tree to choose accesses. However, the
expected amount of overwork is O(n2 log n), which is a factor of n greater than the
overwork of the splay heuristic.

By choosing the weights differently, we prove that the R2P heuristic is statically
competitive against an oblivious adversary.

Theorem 4.7. Let n be the size of a tree. Suppose that an oblivious adversary
accesses a sequence X of length m. Let qi be the access frequency of the ith smallest
element in X for i = 1, . . . , n. The expected time T of the m accesses using the R2P
heuristic is

O

(
m+ n2 log n+

n∑
i=1

[
qi log

(
m

qi

)])
;

1578 TONY W. LAI AND DERICK WOOD

thus, R2P is statically competitive against an oblivious adversary.
Proof. Sherk [19], in his proof that deep-splay trees are statically optimal, proved

that for any assignment of values to q1, . . . , qn, there is an assignment to w1, . . . , wn
such that

n∑
i=1

[
qi log

(
W

wi

)]
= O

(
n∑
i=1

[
qi log

(
m

qi

)])
,

and

n∑
i=1

log

(
W

wi

)
= O(n log n).

Therefore, Lemma 4.5 implies that the expected time of m accesses is

O

(
m+ n2 log n+

n∑
i=1

[
qi log

(
m

qi

)])
.

Now, the adversary’s access time TA using an optimal static tree is Ω(m +∑m
i=1 qi log(m/qi)), where m is the number of accesses and qi is the access frequency

of the ith smallest element. Since T is O(TA+n2 log n), R2P is statically competitive
against an oblivious adversary.

4.2. The locally optimized randomized partial-splay (LORPS) heuris-
tic. Our first heuristic, the R2P heuristic, cannot support updates efficiently, since it
rarely performs any restructuring if the height of the tree is low. The second heuristic,
the LORPS heuristic, supports both accesses and updates. Furthermore, the LORPS
heuristic is statically competitive in the sense that it is competitive against any static
tree for any obliviously generated access sequence that does not contain intervening
updates.

Let d(n) = 2+log(n+1). The LORPS heuristic works as follows. After accessing
some node x on level l, we generate a random number L uniformly between 0 and
bd(n)c − 1. If L > l, we do nothing. Otherwise, we two-promote x’s ancestors on
levels in the set {i : i ≤ l and i ≡ L (mod bd(n)c)}. We call this operation a partial
splay, since it performs (2/bd(n)c)ths or roughly (2/ log n)ths of the work of a splay.

To delete a node w with at most one child, we delete w and partially splay its
parent. To delete an internal node x, we replace x by x’s inorder successor y, delete
y, and partially splay y’s parent.

Inserting a node x on level l is more difficult. Let xi be the ancestor of x on level
i for i = 0, . . . , l. Let k be the largest index such that k ≤ l and s(xk) ≥ d(n)/ ln 2+1.
If there is no such k or if l − k ≤ 4, we partially splay x. Otherwise, let

Bi =
s(xi−2)[s(xi−2) − s(xi+1)]

s(xi+1)2
,

for all i, and let

C = min
k+3≤i≤l−1

Bi.

If C ≥ 1, we partially splay x. If C < 1, we two-promote some xi such that Bi = C and
then partially splay x; we call the two-promotion of xi a local optimization. Observe

ADAPTIVE HEURISTICS FOR SEARCH TREES 1579

that we do not need balance information since we can count the sizes of xl, xl−1, . . .
to obtain k. This computation requires only O(d(n)) = O(log n) time since we can
stop immediately after we find an ancestor xk such that s(xk) ≥ d(n)/ ln 2 + 1.

Intuitively, a local optimization is a type of balance operation. In particular,
logBi is an estimate of the change in total rank of the tree if xi is two-promoted.
Hence, a local optimization seeks to reduce the rank if the fringe or bottom of the
tree is imbalanced. The reason for using local optimization is that a partial splay
alone appears inadequate to achieve O(log n) expected insertion time in pathological
situations. In particular, using our method of analysis, the expected amortized time
of an insertion may be as high as Θ(logn log log n). By using an extra two-promotion
to improve the balance during insertions, we can provably achieve O(log n) expected
operation time.

To analyze the LORPS heuristic, we first prove that the expected-amortized time
of an access, an insertion, or a deletion is O(log n), before we analyze the expected
time of a sequence of operations. In the following, we assign a weight of 1 to each
node. To analyze the expected time, we choose the potential ΦE(T) of a tree T to be
d(n)R(T). To analyze the expected number of two-promotions, we use the potential
function ΦEP (T) = R(T).

Lemma 4.8. The expected-amortized time to access x on level l in a tree, using
the LORPS heuristic, is at most 8(r(t)−r(x))− l+3, where t is the root of the tree. If
each element has a weight of 1, the expected-amortized time is at most 8 log n− l+ 3.
The expected-amortized number of two-promotions is no more than 7 − l/bd(n)c.

Proof. Recall that the expected-amortized time of an operation is the sum of the
actual time and the expected change in potential. Each ancestor of x has a probability
of 1/bd(n)c of being two-promoted, so Lemma 4.3 implies that the expected change
∆Φ in potential is less than

d(n)

bd(n)c [6(r(t) − r(x)) − 2(l − 1)].

Since n ≥ 1, we have 1 ≤ d(n)/bd(n)c < 4/3, which implies that

∆Φ < 8(r(t) − r(x)) − 2(l − 1).

Thus, the expected-amortized time is at most l + 1 + 8(r(t) − r(x)) − 2(l − 1) =
8(r(t)− r(x))− l+3. Since the rank of the root t is log n and the rank of x is at least
0, the expected-amortized time is at most 8 log n− l + 3.

Similarly, it is straightforward to show that the expected number of two-promotions
is l/bd(n)c, and the expected change in the potential function ΦEP is at most 6/bd(n)c
log n− (2(l − 1))/bd(n)c, which implies that the expected-amortized number of two-
promotions is at most (6/bd(n)c) log n− l/bd(n)c + 1 < 7 − l/bd(n)c.

Before analyzing the expected-amortized time of an insertion, we establish an
upper bound on the change in potential caused by a local optimization. Intuitively,
Lemma 4.9 states that a local optimization negates most of the increase in potential
caused by increases in ranks along the access or insertion path.

Lemma 4.9. Let d(n) be some nondecreasing function of the tree size n. Let
x0, . . . , xl be the nodes of the path from the root to xl in T . Assume that s(x0) ≥
d(n)/ ln 2 + 1. Let Bi, for k + 3 ≤ i ≤ i − 1, and C be defined as above, where k is
the largest index such that k ≤ l and s(xk) ≥ d(n)/ ln 2 + 1. Suppose that we increase
the size of xi by 1, for i = 0, . . . l − 1, and that we do the following steps.

1. If k > l − 5 or C ≥ 1, do nothing.

1580 TONY W. LAI AND DERICK WOOD

2. Otherwise, two-promote some xa such that Ba = C.
Then, the total change in Φ(T) = d(n)R(T) caused by the increase in total rank and
the restructuring is less than l + 15

2 d(n).
Proof. The change in potential Φ(T) is caused by the change in the sizes of x0,

. . . , xl−1 and the two-promotion of xa if any. The change in potential caused by the

change in the sizes is exactly d(n) ·∑l−1
i=0 log(s(xi)

s(xi)−1), where s(xi) is the size of xi
after the change in weight but before the extra two-promotion of xa if any. Since
ln(1 + y) ≤ y/ ln 2, for any y ≥ 0, we have

d(n) ·
l−1∑
i=0

log

(
s(xi)

s(xi) − 1

)
≤ d(n) ·

k∑
i=0

log

(
s(xi)

s(xi) − 1

)
+ d(n)·

l−1∑
i=k+1

log

(
s(xi)

s(xi) − 1

)

≤ d(n)

ln 2

k∑
i=0

1

s(xi) − 1
+ d(n)·

l−1∑
i=k+1

log

(
s(xi)

s(xi) − 1

)

≤ k + 1 + d(n) ·
l−1∑

i=k+1

log

(
s(xi)

s(xi) − 1

)

by the definition of k.
We claim that the total change in Φ is less than l+ 15

2 d(n). We consider the three
possibilities separately.

1. k ≥ l − 4.
If k ≥ l − 4, then no local optimization is performed. Since s(xi) ≥ 2 for
i < l, we know that

d(n) ·
l−1∑

i=k+1

log

(
s(xi)

s(xi) − 1

)
< 3d(n).

Thus, the change in potential is at most k + 1 + 3d(n) < l + 4d(n).
2. k ≤ l − 5 and C ≥ 1.

Let r be the largest index such that r ≤ l − 1 and s(xr) ≥ 5; such an r must

exist since l ≥ 5, which implies that n ≥ 6. We have
∑l−1

i=r+1 log(s(xi)
s(xi)−1) ≤

log 4 = 2, which implies that

d(n) ·
l−1∑

i=k+1

log

(
s(xi)

s(xi) − 1

)
≤ d(n)

ln 2

r∑
i=k+1

1

s(xi) − 1
+ 2d(n).

To bound
∑r

i=k+1
1

s(xi)−1 , we show that the sequence s(xr), s(xr−1), . . . ,

increases exponentially. For any k + 3 ≤ i ≤ l− 1, we know by the definition
of C that

C ≤ s(xi−2)[s(xi−2) − s(xi+1)]

s(xi+1)2
.

Hence, s(xi−2)
2 − s(xi+1)s(xi−2) − C · s(xi+1)

2 ≥ 0, which implies that

s(xi−2) ≥ s(xi+1) +
√
s(xi+1)2 + 4C · s(xi+1)2

2

=

(
1 +

√
1 + 4C

2

)
s(xi+1).

ADAPTIVE HEURISTICS FOR SEARCH TREES 1581

Since C ≥ 1, we know that s(xi−2) ≥ (1+
√

5
2)s(xi+1). By induction, we can

show that, for all j ≥ 0, s(xr−j) ≥ 5(1+
√

5
2)bj/3c. Thus,

d(n)

ln 2

r∑
i=k+1

1

s(xi) − 1
<
d(n)

ln 2

∞∑
j=0

[
1

4(1+
√

5
2)bj/3c

]

=
d(n)

ln 2
· 3

4
·
∞∑
j=0

1

(1+
√

5
2)j

≤ d(n)

ln 2
· 3

4
·
√

5 + 1√
5 − 1

< 3d(n).

Therefore, the change in the potential from the changes in the sizes of xk+1,
. . . , xl−1 is less than 3d(n) + 2d(n) = 5d(n). The total change in potential is
less than k + 1 + 5d(n) < l + 5d(n).

3. k ≤ l − 5 and C < 1.
Let r be the largest index such that r ≤ l − 1 and s(xr) ≥ d2/Ce + 1. If no
such r exists, then

l−1∑
i=k+1

log

(
s(xi)

s(xi) − 1

)
≤ d(n) log

⌈
2

C

⌉
.

Otherwise,
∑l−1

i=r+1 log(s(xi)
s(xi)−1) ≤ log s(xr+1) ≤ logd2/Ce, which implies that

d(n) ·
l−1∑

i=k+1

log

(
s(xi)

s(xi) − 1

)
≤ d(n)

ln 2

r∑
i=k+1

1

s(xi) − 1
+ d(n) log

⌈
2

C

⌉
.

To bound
∑r

i=k+1
1

s(xi)−1 , we analyze the rate of growth of the sequence

s(xr), s(xr−1), Let z = d2/Ce/(2/C). Since C < 1, we have 1 ≤ z < 3/2.
Observe that, for all k + 3 ≤ i ≤ l − 1, we have

s(xi−2) ≥
(

1 +
√

1 + 4C

2

)
s(xi+1)

>

(
1 +

C

2

)
s(xi+1).

We can show by induction that, for j ≥ 0, s(xr−j)−1 > (1+C/2)bj/3cd2/Ce.
Thus,

d(n)

ln 2

r∑
i=k+1

1

s(xi) − 1
<
d(n)

ln 2

(
3

d 2
C e
) ∞∑

i=0

1

(1 + C
2)i

=
d(n)

ln 2

(
3

d 2
C e
)(

1 + C
2

C
2

)

=
d(n)

ln 2
· 3(1 + C

2)

z

<
9d(n)

2z ln 2
.

1582 TONY W. LAI AND DERICK WOOD

Therefore,

d(n) ·
l−1∑

i=k+1

log

(
s(xi)

s(xi) − 1

)
< d(n)

[
9

2z ln 2
+ log

(
2

C

)
+ log z

]
.

Now, 9/(2z ln 2) + log z is maximized when z = 1, so the change in potential
due to the change in ranks of xk+1, . . . , xl−1 is

d(n) ·
l−1∑

i=k+1

log

(
s(xi)

s(xi) − 1

)
≤ d(n)

[
9

2 ln 2
+ 1 − logC

]
.

Let xa be the node that has been two-promoted. Only the ranks of xa−2,
xa−1, and xa are changed. Before the two-promotion, the sum of their ranks
is log s(xa−2) + log s(xa−1) + log s(xa) > log s(xa−2) + 2 log s(xa+1). After
the two-promotion, the size of either xa−1 or xa−2 can be shown to be less
than s(xa−2) − s(xa+1), while the size of the other node is clearly less than
s(xa−2). Thus, the sum of the new ranks of xa−2, xa−1, and xa is no greater
than 2 log s(xa−2)+log(s(xa−2)−s(xa+1)). The change ∆Φ in potential from
the local optimization is less than

d(n)[log s(xa−2) + log(s(xa−2) − s(xa+1)) − 2 log s(xa+1)]

and, hence,

∆Φ < d(n)

{
log

s(xa−2)[s(xa−2) − s(xa+1)]

s(xa+1)2

}
= d(n) logC.

Thus, the sum of the change in d(n) ·∑l−1
i=k+1 log(s(xi)

s(xi)−1) and the change in

potential caused by the local optimization is at most (9
2 ln 2 +1)d(n) < 15

2 d(n).
The total change in potential is, therefore, less than l + 15

2 d(n).
The lemma follows immediately.

Now that we have analyzed the effect of a local optimization, we bound the
expected-amortized time for an insertion, before analyzing the time for a deletion.

Lemma 4.10. The expected-amortized insertion time using the LORPS heuristic
is O(log n), and the expected-amortized number of two-promotions is constant.

Proof. Clearly, for n ≤ 8, the expected-amortized time is O(1). If n > 8, then
the expected-amortized time of inserting a node x is the sum of the search time, the
change in potential caused by the change in d(n), the change in potential caused by
the addition of x in various subtrees, the expected-amortized time of partially splaying
x, and the expected change in potential caused by the local optimization (if any).

Lemma 4.8 implies that the sum of the expected-amortized time for searching the
tree for x and partially splaying x is l+1+8 logn−2(l−2)+2 = 8 logn− l+7, where
l is the depth at which x is originally inserted. The reason we have −2(l− 2) instead
of −2l is that x may be moved upward two levels during the local optimization before
it is partially splayed.

The change in potential caused by the change in d(n) is at most (d(n) − d(n −
1))n log n. Observe that

d(n) − d(n− 1) = log

(
1 +

1

n

)
.

ADAPTIVE HEURISTICS FOR SEARCH TREES 1583

We can show that log(1 + 1/n) ≤ 1/(n ln 2), so the change in potential caused by the
change in d(n) is at most (n log n)/(n ln 2) = (logn)/ ln 2.

Let xi be the ancestor of x on level l for 0 ≤ i ≤ l. Let k be the largest index such
that k ≤ l and s(xk) ≥ d(n)/ ln 2+1; such a k must exist if n ≥ 9. Lemma 4.9 implies
that the change in potential from the change in sizes and the local optimization, if
any, is at most l + 15

2 d(n) = l +O(log n). Therefore, the expected-amortized time of
inserting x is O(log n).

The expected number of two-promotions performed when inserting x is at most
l/bd(n)c+1, and the preceding proof implies that the change in the potential function
ΦEP is O(log n/bd(n)c)−l/bd(n)c. Therefore, the expected-amortized number of two-
promotions is O(log n/bd(n)c) = O(1).

Lemma 4.11. The expected-amortized deletion time using the LORPS heuristic
is O(log n), and the expected-amortized number of two-promotions is constant.

Proof. Without loss of generality assume that the deleted node x has at most
one child. The expected-amortized time to delete x is the sum of the time to search
for x, the change in potential from the change in d(n), the change in the potential
from removing x from various subtrees, and the expected-amortized time of partially
splaying x’s parent. A deletion causes d(n) and the ranks of x’s ancestors to decrease,
which implies that the change in potential is negative. Lemma 4.8 implies that the
expected-amortized time to search for x, remove it, and partially splay its parent is
at most l + 1 + 8 logn− 2(l − 1) + 2 ≤ 8 log n+ 5, where l is the original depth of x.

The expected number of two-promotions performed when deleting x is less than
l/bd(n)c, and the above proof implies that the change in the potential function ΦEP

is O(log n/bd(n)c) − l/bd(n)c. Therefore, the expected-amortized number of two-
promotions is O(log n/bd(n)c) = O(1).

We are now ready to show that the LORPS heuristic effectively has an expected-
amortized update time of O(log n).

Theorem 4.12. Suppose that we perform m operations on an empty tree using
the LORPS heuristic. Let pin be the probability that the size of the tree is n after the
ith operation. The expected time of m operations is

O

m+

m∑
i=1

i∑
j=0

[pij log(j + 1)]

and the expected linkage cost of m operations is O(m), even if operations are chosen
by an adaptive adversary. Essentially, the expected cost of an operation is O(log n),
and the expected linkage cost is constant.

Proof. Recall that the expected time is no more than the sum of the expected-
amortized time and the maximum drop in potential. Observe that ΦE = 0 and
ΦEP = 0 when the tree is empty, so the maximum potential drop is 0. The expected
time bound immediately follows from Lemmas 4.8, 4.10, and 4.11. Since Lemmas
4.8, 4.10, and 4.11 also imply that the expected-amortized number of two-promotions,
for any operation, is constant, the expected linkage cost of the m operations is
O(m).

Theorem 4.12 implies that the LORPS heuristic is as efficient as any balanced
tree. Although it is not practical and requires restructuring during accesses, unlike
red–black trees [11] or randomized search trees [3], it has the advantage of requiring
no balance information to achieve O(log n) expected operation cost.

By varying the node weights as in our analysis of the R2P heuristic, we show that
the LORPS heuristic is also statically competitive.

1584 TONY W. LAI AND DERICK WOOD

Theorem 4.13. Let n be the size of a tree. Suppose an oblivious adversary
accesses a sequence X of length m. Let qi be the access frequency of the ith smallest
element in X for i = 1, . . . , n. The expected time of the m searches using the LORPS
heuristic is

O

(
m+ n log2 n+

n∑
i=1

[
qi log

(
m

qi

)])
;

thus, LORPS is statically competitive against an oblivious adversary.
Proof. Let xi be the ith smallest element for each i. We assign xi a weight of wi

such that

n∑
i=1

[
qi log

(
W

wi

)]
= O

(
n∑
i=1

[
qi log

(
m

qi

)])

and

n∑
i=1

log

(
W

wi

)
= O(n log n),

where W =
∑n

i=1 wi; Sherk [19] proved that this assignment is possible for any values
of q1, . . . , qn.

Lemma 4.8 implies that the expected-amortized time of accessing xi is

8(r(t) − r(xi)) + 3 ≤ 8 log(W/wi) + 3,

where r(t) is the rank of the root of the tree. Thus, the expected-amortized time of m
accesses is at most O(m) + 8

∑n
i=1[qi log(W/wi)] = O(m +

∑n
i=1[qi log(m/qi)]). For

each i, the rank of xi is at least logwi and at most logW , which implies that the
maximum potential drop is at most d(n) · ∑n

i=1 log(W/wi) ≤ O(d(n) · n log n) =
O(n log2 n). The theorem follows in a similar manner to the proof of Theorem
4.7.

4.3. The locally optimized partial-splay (LOPS) heuristic. The third
heuristic, the LOPS heuristic, is a deterministic, statically competitive, amortized-
CLC heuristic. The LOPS heuristic is essentially a deterministic version of the LORPS
heuristic that maintains bounded frequency counts. The local optimizations play the
same role in LOPS as they do in LORPS; namely, they are rebalancing operations.
The LOPS heuristic achieves amortized time bounds comparable with the LORPS
heuristic’s expected-time bound, although at the expense of linear extra space.

At first sight, it appears that we can use Ben-David et al.’s results [5] to obtain a
deterministic algorithm from the LORPS heuristic. They provide a general technique,
essentially maintaining an estimate of the potential, to convert a online randomized
algorithm into a online deterministic algorithm with little loss in competitiveness. The
main problem with their approach is that it does not handle static competitiveness
and whether it could be modified to handle static competitiveness is unclear.

In the LOPS heuristic we store a positive integer weight in each node. Let d(n) =
2 + log(n+ 1). Suppose we access x on level l. There are two steps.

1. Increase the weight of x by 1. Let xi be the ancestor of x on level l for i =
0, . . . , l. Let k be the largest index such that k ≤ l and s(xk) ≥ d(n)/ ln 2+1.
If no such k exists or l − k ≤ 4, go to step 2. Otherwise, let

ADAPTIVE HEURISTICS FOR SEARCH TREES 1585

Bi =
s(xi−2)[s(xi−2) − s(xi+1)]

s(xi+1)2
,

for all i, and let

C = min
k+3≤i≤l−1

Bi.

If C ≥ 1, go to step 2. Otherwise, two-promote some xi such that Bi = C.
We call step 1 a local optimization.

2. Let l′ be the new level of x and let x′i be the ancestor of x on level i for
i = 0, . . . , l′. If l′ = 0, we are done. Otherwise, let Dj = b(l′ − j)/bd(n)cc for
j = 1, . . . , bd(n)c. Let δi = 3(r(x′i−2) − r(x′i)) − 2, for i = 2, . . . , l′. Compute

R1 = 3(r(x′0) − r(x′1)) +

D1∑
j=1

δbd(n)cj+1,

and, for i = 2, . . . , bd(n)c,

Ri =

Di∑
j=0

δbd(n)cj+i.

Let C ′ = min(R1, . . . , Rbd(n)c). If C ′ ≥ 0, then we are done. Otherwise,
two-promote x’s ancestors on levels in {i : i ≤ l and i ≡ L (mod bd(n)c)} for
some L such that RL = C ′. We call step 2 a partial splay.

Updates are straightforward. To delete a node with at most one child, we delete
the node and partially splay its parent. To delete an internal node x, we replace x by
x’s inorder successor y, delete y, and partially splay y’s parent. To insert some node
x, we assign x a weight of 0 and access x, applying both steps 1 and 2.

To reduce the size of the weights, we reset the weights to 1 after every bn/2c+ 1
operations. This step ensures that we need only O(n) extra space or O(n log n) bits
of extra space in a bit-cost model.

The analysis of the LOPS heuristic is similar to that of the LORPS heuristic.
To analyze the amortized time of the LOPS heuristic, we use the potential function
ΦA(T) = d(n) · R(T). To analyze the amortized number of two-promotions, we use
the potential function Φ2P (T) = R(T). We note that the amortized cost of resetting
weights is constant, so we ignore it in the analysis.

We first analyze the amortized costs of an access, an insertion, and a deletion
before analyzing the amortized cost of a sequence of operations.

Lemma 4.14. The amortized time to access node x of a tree with root t using
the LOPS heuristic is O(log(s(t)/s(x))). The amortized number of two-promotions
performed when accessing x is constant.

Proof. Let l be the depth of x. Without loss of generality, assume that n ≥ 9 since
the amortized access time is clearly constant otherwise. The amortized time to access
x is the sum of the actual time, which is l + 1, and the change in potential, caused
by the increases in sizes, the local optimization (if any), the partial splay, and the
resetting of weights (if any). We may ignore the contribution of the weight resetting
since it reduces the potential.

Let ∆Φ be the change in potential ΦA caused by the increases in sizes and the
local optimization. For 0 ≤ i ≤ l, let xi be the ancestor of x on level i before the

1586 TONY W. LAI AND DERICK WOOD

access. Let k be the largest index such that k ≤ l and s(xk) ≥ d(n)/ ln 2 + 1; such a
k exists if n ≥ 9. If k = l, then no local optimization is performed and

∆Φ = d(n) ·
l∑

i=0

log

(
s(xi)

s(xi) − 1

)

≤ d(n)

ln 2

l∑
i=0

1

s(xi) − 1

≤ l + 1.

If k 6= l, then Lemma 4.9 implies that the change ∆Φ in potential is

d(n) · log

(
s(xl)

s(xl) − 1

)
+ l +

15

2
d(n) ≤ l +

17

2
d(n).

Let ∆Φ′ be the change in potential caused by the partial splay. Let l′ be the level
of x after step 1 of the access algorithm and, for all i, 0 ≤ i ≤ l′, let x′i be the ancestor of
x on level i after step 1. Observe that Lemma 4.1 implies that the change in potential
after two-promoting x’s ancestors on levels in {i : i ≤ l and i ≡ L (mod bd(n)c)} is
at most d(n) ·RL. Thus, the change ∆Φ′ in potential from the partial splay is at most
d(n) · min(R1, . . . , Rbd(n)c, 0). Clearly,

min(R1, . . . , Rbd(n)c) ≤
R1 + · · · +Rbd(n)c

bd(n)c .

If l′ ≥ 2, then, since l′ ≥ l − 2 and d(n) ≥ 3, we know that

∆Φ′ ≤ d(n)

bd(n)c
bd(n)c∑
i=1

Ri

=
d(n)

bd(n)c · 3(r(x′0) − r(x′1)) +
d(n)

bd(n)c
l′∑
i=2

[
3(r(x′i−2) − r(x′i)) − 2

]

=
d(n)

bd(n)c [6r(x′0) − 3r(x′l−1) − 3r(x′l) − 2(l′ − 1)]

< 8r(x′0) − 8r(x′l) − 2l′ + 2

≤ 8r(t) − 8r(x) − 2l + 6,

where r(t) is the rank of the root after the increases in sizes. Note that the above
bound also holds if l′ < 2.

Therefore, the amortized access time A is at most

l + 1 + ∆Φ + ∆Φ′ < 8[r(t) − r(x)] − l + 7 + ∆Φ

= O(log(s(t)/s(x))) − l + ∆Φ.

If s(x) ≥ d(n)/ ln 2+1, then k = l and the amortized access timeA isO(log(s(t)/s(x)))−
l + l + 1 = O(log(s(t)/s(x))). Otherwise, if s(x) < d(n)/ ln 2 + 1, then s(t) ≥ n im-
plies that log(s(t)/s(x)) = Ω(logn) and A = O(log(s(t)/s(x))) − l + l + 17

2 d(n) =
O(log(s(t)/s(x))).

The amortized number of two-promotions performed is at most l/bd(n)c + 2 +
(∆Φ + ∆Φ′)/d(n) = O(log(s(t)/s(x))/bd(n)c). Since we reset all weights to 1 every

ADAPTIVE HEURISTICS FOR SEARCH TREES 1587

dn/2e operations, we know that s(t) = O(n2), which implies that the amortized
number of two-promotions is constant.

Lemma 4.15. The amortized insertion time using the LOPS heuristic is O(log n),
and the amortized number of two-promotions is constant.

Proof. The amortized time to insert a node x is the sum of the actual time and
the change in potential, or, equivalently, the sum of the change in potential caused by
the change in d(n) and the amortized time to access x. Since all weights are at most
n, the change ∆Φ in potential from the change in d(n) is

O((d(n) − d(n− 1))n log n) = O((log(n+ 1) − log n)n log n)

= O(log n).

Lemma 4.14 implies that the amortized access time of x is O(log n), so the total
amortized time is O(log n).

The amortized number of two-promotions to insert x is equal to the amortized
number of two-promotions to access x, which is constant.

Lemma 4.16. The amortized deletion time using the LOPS heuristic is O(log n),
and the amortized number of two-promotions is constant.

Proof. The amortized time to delete a node x on level l is the sum of the actual
time, which is l + 1, and the change in potential caused by the change in d(n), the
change in sizes, and the partial splay. Since d(n) and the sizes decrease, it is sufficient
to consider the change in potential ∆ΦA from the partial splay.

It is sufficient to consider the case where x has at most one child. If x is the root,
then the amortized deletion time is clearly O(1). Otherwise, let y be x’s parent. The
proof of Lemma 4.14 implies that ∆ΦA < 8(r(t)−r(y))−2(l−1)+2, where r(t) is the
rank of the root. (We have −2(l−1) instead of −2l since we partially splay y, which is
on level l−1.) Thus, the amortized deletion time is at most l+1+8(r(t)−r(y))−2l+4 =
O(log n).

The amortized number of two-promotions to delete x is the sum of the actual num-
ber of two-promotions, which is less than l/bd(n)c + 1, and the change in potential
∆Φ2P . The preceding upper bound on ∆ΦA implies that ∆Φ2P ≤ c − l/d(n), for
some constant c, which implies that the amortized number of two-promotions is
constant.

Before proving our main theorem on the time of the LOPS heuristic, we state a
useful relationship involving logarithms. Note that we define 0 log(x/0) = 0.

Lemma 4.17. For any 0 ≤ a ≤ x and 0 ≤ b ≤ y, a log(x/a) + b log(y/b) ≤
(a+ b) log((x+ y)/(a+ b)).

We are now ready to prove our main result: the LOPS heuristic supports all
operations inO(log n) amortized time, is amortized CLC, and is statically competitive.

Theorem 4.18. Suppose we perform m operations in an empty tree using the
LOPS heuristic. Let ni be the size of the tree during the ith operation. Then, the
worst-case time of the m operations is

O

(
m+

m∑
i=1

log(ni + 1)

)
.

The worst-case linkage cost of the m operations is O(m).
Proof. Observe that the potential functions ΦA and Φ2P are initially 0, which

implies that the maximum potential drop is 0 and that the worst-case time of the m

1588 TONY W. LAI AND DERICK WOOD

operations is no greater than the sum of the amortized times of the operations. The
proof follows from the amortized time bounds of Lemmas 4.14, 4.15, and 4.16.

Since LOPS is a deterministic heuristic, adaptive and oblivious adversaries are
equally powerful.

Theorem 4.19. Let n be the size of a tree. Suppose that an adversary accesses a
sequence X of length m. Let qi be the access frequency of the ith smallest element in
X for i = 1, . . . , n. The worst-case time of the m searches using the LOPS heuristic
is

O

(
m+ n log2 n+

n∑
i=1

[
qi log

(
m

qi

)])
;

thus, LOPS is statically competitive.
Proof. Since the maximum weight in the tree in no more than n, the maximum

rank of the tree and hence the maximum drop in potential ΦA is O(n log2 n). Thus,
it is sufficient to show that the sum of the amortized times of the m accesses is
O(m + n log2 n +

∑n
i=1(qi log(m/qi))). Clearly, Lemma 4.14 implies this bound if

m ≤ n, so we assume in the following that m > n.
For i = 1, . . . , n, let xi be the ith smallest element in X, and let Ti be the

total amortized time of the qi accesses of xi. To prove the claimed time bound, it
is sufficient to show that Ti = O(qi + qi log(m/qi)). Let R be the number of times
that the weights have been reset. Let Qij be the number of times that xi is accessed
between the jth and (j + 1)th weight resettings for 0 ≤ j ≤ R. Since we reset the
weights after every bn/2c + 1 operations, we know that the total weight of the tree
before the (j + 1)th weight resetting is at most b3n/2c + 1. Thus, we have

Ti = O

qi +

R∑
j=0

Qij∑
k=1

log

(b 3
2nc + 1

k

)

= O

qi +

R∑
j=0

[
Qij log

(⌊
3n

2

⌋
+ 1

)
− logQij !

]

= O

qi +

R∑
j=0

[
Qij log

(⌊
3n

2

⌋
+ 1

)
−Qij logQij +

Qij

ln 2

]

= O

qi +

R∑
j=0

[
Qij log

b 3
2nc + 1

Qij

] .

Because we reset weights every bn/2c+1 operations, the fact that we have performed

m operations implies that
∑R−1

j=0 (bn/2c + 1) ≤ m. Also, we know that n < m, so

R∑
j=0

[⌊
3n

2

⌋
+ 1

]
≤ 9

2
m+ 1.

Since
∑R

j=0 Qij = qi, Lemma 4.17 implies that

Ti = O

(
qi + qi log

(9
2m+ 1

qi

))

= O

(
qi + qi log

(
m

qi

))
.

ADAPTIVE HEURISTICS FOR SEARCH TREES 1589

The theorem follows in a similar manner to the proof of Theorem 4.7.

5. The randomized partial-splay (RPS) heuristic. The last heuristic we
present, the RPS heuristic, performs (2/d)ths of the work of the splay heuristic. By
adjusting the parameter d, one can obtain a tradeoff between the rate of adaptation
and the linkage cost. More precisely, the RPS heuristic works as follows. Let d ≥ 3
be an integer constant. After accessing some node x on level l, we generate a random
number L uniformly between 0 and d − 1. If L > l, we do nothing. Otherwise, we
two-promote x’s ancestors on levels in the set {i : i ≤ l and i ≡ L (mod d)}. We note,
as an aside, that Sleator and Tarjan’s semisplay step [21] can be used in place of the
two-promotion.

Updates are straightforward. To delete a node with at most one child, we just
delete the node and partially splay its parent. To delete an internal node x, we replace
x by x’s inorder successor y, delete y, and partially splay y’s parent. To insert some
node x, we insert x naively and then partially splay x.

Although the RPS heuristic is not CLC, it is practical and is much simpler to
implement than the LORPS and LOPS heuristics. Because the RPS heuristic spaces
out its two-promotions, the two-promotions do not interact with one another, so the
RPS heuristic has a straightforward top-down implementation. We show that the
RPS heuristic is statically competitive and has performance bounds similar to those
of the splay heuristic. The RPS heuristic does not adapt as quickly as the splay
heuristic to changes in usage but may be preferable to the splay heuristic if updates
are infrequent and the access pattern is stable.

We first prove a technical result that bounds the change in potential caused by a
partial splay.

Lemma 5.1. Suppose, for some node x, we two-promote x’s ancestors on levels
l(1), . . . , l(k), such that l(i + 1) ≥ l(i) + 3, for any i. Then, the change in R(T) in
the worst case is at most 3(r(t)− r(xl(k)))− 2(k− 1), where t is the root of the tree.

Proof. Let xi be the ancestor of x on level i for all i. For convenience, we
define r(x−i) = r(x0) for i ≥ 1. From Lemma 4.1, the change in R(T) is at most

3
∑k

i=1[r(xl(i)−2)− r(xl(i))]− 2(k− 1). Since, for all i, we have l(i+ 1) ≥ l(i) + 3 and
r(xi) ≥ r(xi+1), we can conclude that

k∑
i=1

[r(xl(i)−2) − r(xl(i))] ≤ r(t) − r(xl(k)).

The lemma follows.
We now prove that the RPS heuristic supports accesses, insertions, and deletions

in O(log n) amortized time.
Theorem 5.2. The expected time of m operations using the RPS heuristic with

parameter d in an initially empty tree against an oblivious adversary is O(m+d log d ·
I +

∑m
i=1 log ni), where ni is the size of the tree after operation i is performed and I

is the total number of insertions. The worst-case time of the m operations is O(m+
d
∑m

i=1 log ni).
Proof. To analyze the expected search time, we use the potential function ΦE =

d · R(T) and assign a weight of 1 to each node. It is sufficient to show that the
expected-amortized time is O(log n) for an access, O(log n+ d log d) for an insertion,
and O(log n) for a deletion.

The expected-amortized time to access a node x on level l is the sum of the
search time, which is l + 1, and the change in potential, which Lemma 4.3 implies

1590 TONY W. LAI AND DERICK WOOD

is at most 6 log n − 2l + 2. Thus, the expected-amortized access time is at most
6 log n− l +O(1) = O(log n).

The expected-amortized time to insert a node x on level l is the sum of the
expected-amortized access time, which is at most 6 log n− l+O(1), and the change in
potential caused by the increase in ranks from the insertion, which can be shown to be
at most d[log l+log(n/(n−1))]. It is simple to show that d log l < l for all l ≥ 4d log d,
so the expected-amortized insertion time is less than 6 log n+d log(4d log d)+O(1) =
O(log n+ d log d).

The expected-amortized time for a deletion is the sum of the expected-amortized
access time, which is O(log n), and the change in potential caused by the decrease in
ranks from the deletion, which is negative. Hence, the expected-amortized deletion
time is O(log n).

To analyze the amortized time, we use the potential function ΦA = d/2 · R(T).
The amortized time of an operation is no greater than the sum of the search time,
which is l + 1, the increase in potential from the change in ranks in the case of
an insertion, and the change in potential from the partial splay. Observe that the
potential change after an insertion due to the increase in ranks is at most d log(l+1) ≤
d log(n+1). Because the RPS heuristic performs at least b(l + 1)/dc two-promotions,
Lemma 5.1 implies that the change in potential from the partial splay is at most
d/2 · [3 log n− 2b(l + 1)/dc + 2] = O(d log n) − l, so the total amortized time for any
single operation is O(d log n). The theorem follows.

We finally show that the RPS heuristic is statically competitive against an adap-
tive (or oblivious) adversary.

Theorem 5.3. The expected time of m accesses in a tree of size n using the
RPS heuristic with parameter d against an oblivious adversary is O(m + dn log n +∑n

i=1[qi log(m/qi)]), where qi is the number of times the ith smallest element is ac-
cessed; thus, RPS is statically competitive against an oblivious adversary.

The worst-case time of m accesses in a tree of size n using the RPS heuristic with
parameter d against an adaptive adversary is O(dm+dn log n+d

∑n
i=1[qi log(m/qi)]);

thus, RPS is statically competitive against an adaptive adversary.
Proof. We use the potential function Φ = d/2 ·R(T) to analyze both the expected

and amortized times. The theorem follows from Lemmas 4.3 and 5.1 and is similar to
the proof of Theorem 4.7. Note that the static competitiveness against an adaptive
adversary follows from the amortized-time bound, rather than from the expected-time
bound.

6. Concluding remarks. We investigated the rate of adaptation achievable by
a constant-linkage-cost heuristic for maintaining a binary search tree. In particular,
we showed that no o(log n)-linkage-cost heuristic can be competitive and we presented
three statically competitive, constant-linkage-cost heuristics. We believe that proofs
that R2P and LORPS are statically competitive against oblivious adversaries can be
modified to establish that they are statically competitive against adaptive adversaries.

Many open problems remain. An obvious problem is whether our lower bounds
are tight. Another open problem is whether there are matching lower bounds on
the competitiveness of promotion-based heuristics and arbitrary heuristics. An area
for further work is to investigate lower bounds on the competitiveness of arbitrary
heuristics against oblivious adversaries.

Note that none of the first three heuristics attain the (revised) ideal of a statically
competitive, worst-case-CLC heuristic that supports updates and uses only constant
extra space. Indeed, an open problem is to devise such a heuristic or to prove that none

ADAPTIVE HEURISTICS FOR SEARCH TREES 1591

exists. Another open problem is to devise a statically competitive, worst-case-CLC
heuristic that supports updates; it would achieve three of the four requirements of the
ideal. Yet another open problem is to devise a statically competitive, amortized-CLC
heuristic that supports updates and uses o(n) extra space.

REFERENCES

[1] G. M. Adel’son-Vel’skii and E. M. Landis, An algorithm for the organization of information,
Soviet Math. Dokl., 3 (1962), pp. 1259–1262.

[2] B. Allen and I. Munro, Self-organizing binary search trees, J. Assoc. Comput. Mach., 25
(1978), pp. 526–535.

[3] C. R. Aragon and R. G. Seidel, Randomized search trees, in Proc. 30th Annual IEEE Sym-
posium on Foundations of Computer Science, 1989, pp. 540–545.

[4] J. Bell and G. Gupta, An evaluation of self-adjusting binary search tree techniques, Software
Practice and Experience, 23 (1993), pp. 369–382.

[5] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in online algorithms, in Proc. 22th Annual ACM Symposium on Theory of
Computing, 1990, pp. 379–386.

[6] S. W. Bent, D. D. Sleator, and R. E. Tarjan, Biased search trees, SIAM J. Comput., 14
(1985), pp. 545–568.

[7] J. L. Bentley and C. C. McGeoch, Amortized analysis of self-organizing sequential search
heuristics, Comm. ACM, 28 (1985), pp. 404–411.

[8] J. R. Bitner, Heuristics that dynamically organize data structures, SIAM J. Comput., 8 (1979),
pp. 82–110.

[9] R. P. Cheetham, B. J. Oommen, and D. T. H. Ng, Adaptive structuring of binary search
trees using conditional rotations, Tech. report SCS-TR-126, Carleton University, Ottawa,
Canada, October 1987.

[10] R. Cole, On the dynamic finger conjecture for splay trees (extended abstract), in Proc. 22nd
Annual ACM Symposium on Theory of Computing, 1990, pp. 8–17.

[11] L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, in Proc. 19th
Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 8–21.

[12] T. W. H. Lai, Efficient Maintenance of Binary Search Trees, Ph.D. thesis, University of
Waterloo, 1990.

[13] T. W. H. Lai and D. Wood, Adaptive heuristics for binary search trees and constant linkage
cost, in Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 72–77.

[14] E. M. McCreight, Priority search trees, SIAM J. Comput., 14 (1985), pp. 257–276.
[15] K. Mehlhorn, Dynamic binary search, SIAM J. Comput., 8 (1979), pp. 175–198.
[16] J. Nievergelt and E. M. Reingold, Binary search trees of bounded balance, SIAM J. Com-

put., 2 (1973), pp. 33–43.
[17] T. Ottmann and D. Wood, Updating binary trees with constant linkage cost, Internat. J.

Found. Comput. Sci., 3 (1992), pp. 479–501.
[18] P. Raghavan and M. Snir, Memory versus randomization in on-line algorithms, IBM J.

Research and Development, 38 (1994), pp. 683–707.
[19] M. Sherk, Self-adjusting k-ary Search Trees and Self-adjusting Balanced Search Trees, Tech.

report 234/90, University of Toronto, February 1990.
[20] H.-W. Six and D. Wood, Counting and reporting intersections of d-ranges, IEEE Trans.

Comput., C-31 (1982), pp. 181–187.
[21] D. D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, J. Assoc. Comput. Mach.,

32 (1985), pp. 652–686.
[22] R. Wilber, Lower bounds for accessing binary search trees with rotations, SIAM J. Comput.,

18 (1989), pp. 56–67.

TREE CONTRACTIONS AND EVOLUTIONARY TREES∗

MING-YANG KAO†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1592–1616, December 1998 005

Abstract. An evolutionary tree is a rooted tree where each internal vertex has at least two
children and where the leaves are labeled with distinct symbols representing species. Evolutionary
trees are useful for modeling the evolutionary history of species. An agreement subtree of two
evolutionary trees is an evolutionary tree which is also a topological subtree of the two given trees.
We give an algorithm to determine the largest possible number of leaves in any agreement subtree
of two trees T1 and T2 with n leaves each. If the maximum degree d of these trees is bounded by a
constant, the time complexity is O(n log2 n) and is within a log n factor of optimal. For general d,

this algorithm runs in O(nd2 log d log2 n) time or alternatively in O(nd
√
d log3 n) time.

Key words. minimal condensed forms, tree contractions, evolutionary trees, computational
biology

AMS subject classifications. 05C05, 05C85, 05C90, 68Q25, 92B05

PII. S0097539795283504

1. Introduction. An evolutionary tree is a rooted tree where each internal ver-
tex has at least two children and where the leaves are labeled with distinct symbols
representing species. Evolutionary trees are useful for modeling the evolutionary his-
tory of species. Many mathematical biologists and computer scientists have been
investigating how to construct and compare evolutionary trees [2, 5, 7, 10, 11, 12,
16, 17, 18, 20, 24, 26, 27, 28, 33, 34, 35, 36, 37, 43, 44, 46, 48, 49]. An agreement
subtree of two evolutionary trees is an evolutionary tree which is also a topological
subtree of the two given trees. A maximum agreement subtree is one with the largest
possible number of leaves. Different theories about the evolutionary history of the
same species often result in different evolutionary trees. A fundamental problem in
computational biology is to determine how much two theories have in common. To
a certain extent, this problem can be answered by computing a maximum agreement
subtree of two given evolutionary trees [19].

Let T1 and T2 be two evolutionary trees with n leaves each. Let d be the maxi-
mum degree of these trees. Previously, Kubicka, Kubicki, and McMorris [39] gave an
algorithm that can compute the number of leaves in a maximum agreement subtree
of T1 and T2 in O(n(1

2+ε) log n) time for d = 2. Steel and Warnow [47] gave the first
polynomial-time algorithm. Their algorithm runs in O(min{d!n2, d2.5n2 log n}) time if
d is bounded by a constant and inO(n4.5 log n) time for general trees. Farach and Tho-
rup [14] later reduced the time complexity of this algorithm to O(n2) for general trees.
More recently, they gave an algorithm [15] that runs in O(n1.5 log n) time for general

trees. If d is bounded by a constant, this algorithm runs in O(nc
√

logn + n
√
d log n)

time for some constant c > 1.
This paper presents an algorithm for computing a maximum agreement subtree

in O(n log2 n) time for d bounded by a constant. Since there is a lower bound of
Ω(n log n), our algorithm is within a logn factor of optimal. For general d, this
algorithm runs in O(nd2 log d log2 n) time or alternatively in O(nd

√
d log3 n) time.

∗ Received by the editors March 22, 1995; accepted for publication (in revised form) August 22,
1996; published electronically June 3, 1998.

http://www.siam.org/journals/sicomp/27-6/28350.html
† Department of Computer Science, Yale University, New Haven, CT 06520 (kao-ming-yang@

cs.yale.edu). This research was supported in part by NSF grant CCR-9531028.

1592

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1593

This algorithm employs new tree contraction techniques [1, 22, 38, 40, 41]. With tree
contraction, we can immediately obtain an O(n log5 n)-time algorithm for d bounded
by a constant. Reducing the time bound to O(n log2 n) requires additional techniques.
We develop new results that are useful for bounding the time complexity of tree
contraction algorithms. As in [14, 15, 47], we also explore the dynamic programming
structure of the problem. We obtain some highly regular structural properties and
combine these properties with the tree contraction techniques to reduce the time
bound by a factor of log2 n. To remove the last log n factor, we incorporate some
techniques that can compute maxima of multiple sets of sequences at multiple points,
where the input sequences are in a compressed format.

We present tree contraction techniques in section 2 and outline our algorithms
in section 3. The maximum agreement subtree problem is solved in sections 4 and 5
with a discussion of condensed sequence techniques in section 5.1. Section 6 concludes
this paper with an open problem.

2. New tree contraction techniques. Throughout this paper, all trees are
rooted ones, and every nonempty tree path is a vertex-simple one from a vertex to a
descendant. For a tree T and a vertex u, let Tu denote the subtree of T formed by u
and all its descendants in T .

A key idea of our dynamic programming approach is to partition T1 and T2 into
well-structured tree paths. We recursively solve our problem for T x

1 and T y
2 for all

heads x and y of the tree paths in the partitions of T1 and T2, respectively. The
partitioning is based on new tree contraction techniques developed in this section.

A tree is homeomorphic if every internal vertex of that tree has at least two
children. Note that the size of a homeomorphic tree is less than twice its number of
leaves. Let S be a tree that may or may not be homeomorphic. A chain of S is a
tree path in S such that every vertex of the given path has at most one child in S.
A tube of S is a maximal chain of S. A root path of a tree is a tree path whose head
is the root of that tree; similarly, a leaf path is one ending at a leaf. A leaf tube of
S is a tube that is also a leaf path. Let L(S) denote the set of leaf tubes in S. Let
R(S) = S−L(S), i.e., the subtree of S obtained by deleting from S all its leaf tubes.
The operation R is called the rake operation. See Figures 1 and 2 for examples of
rakes and leaf tubes.

Our dynamic programming approach iteratively rakes T1 and T2 until they become
empty. The tubes obtained in the process form the desired partitions of T1 and T2.
Our rake-based algorithms focus on certain sets of tubes described here. A tube system
of a tree T is a set of nonempty tree paths P1, . . . , Pm in T such that (1) the paths
Pi contain no leaves of T and (2) Th1 , . . . , Thm are pairwise disjoint, where hi is the
head of Pi. Condition (1) is required here because our rake-based algorithms process
leaves and nonleaf vertices differently. Condition (2) holds if and only if for all i and
j, hi is not an ancestor or descendant of hj . We can iteratively rake T to obtain tube
systems. The set of tubes obtained by the first rake, i.e., L(T), is not a tube system
of T because L(T) simply consists of the leaves of T and thus violates condition (1).
Every further rake produces a tube system of T until T is raked to empty. Our
rake-based algorithms only use these systems although there may be others.

We next develop a theorem to bound the time complexities of rake-based algo-
rithms in this paper. For a tree path P in a tree T ,

• K(P, T) denotes the set of children of P ’s vertices in T , excluding P ’s vertices;
• t(P) denotes the number of vertices in P ;
• b(P, T) denotes the number of leaves in Th where h is the head of P .

1594 MING-YANG KAO

zx1

zx2

zx3

zx4

zx5

zx6

zx7

zx8

zx9

zx10

zx11

zx12

�
�

�
�

�
�

A
A
A
A
A
A

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@
¡

¡
¡

@
@

@

������

@
@

@

������

@
@

@

After the first rake, the above tree becomes the following tree.

zx2

zx4

zx6

zx7

zx10

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

������

������

After the second rake, the above tree becomes the following tree.

zx4

zx7

zx10

������

������

After the third rake, the above tree becomes empty.

Fig. 1. An example of iterative applications of rakes.

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1595

zx1 zx3

zx5 zx8

zx9

zx11

zx12

The first rake deletes the above leaf tubes.

zx2 zx6

The second rake deletes the above leaf tubes.

zx4

zx7

zx10

������

������

The third rake deletes the above leaf tube.

Fig. 2. The leaf tubes deleted by the rakes in Figure 1.

1596 MING-YANG KAO

(The symbol K stands for the word “kids,” t for top, and b for bottom.)
Given T , we recursively define a mapping ΦT from the subtrees S of T to reals.

If S is an empty tree, then ΦT (S) = 0. Otherwise,

ΦT (S) = ΦT (R(S)) +
∑

P∈L(S)

b(P, T) · log(1 + t(P)).

(Note. All logarithmic functions log in this paper are in base 2.)
Theorem 2.1. For all positive integers n and all n-leaf homeomorphic trees T ,

ΦT (T) ≤ n(1 + log n).
Proof. For any given n, ΦT (T) is maximized when T is a binary tree formed by

attaching n leaves to a path of n− 1 vertices. The proof is by induction.
Base case. For n = 1, the theorem trivially holds.
Now assume n ≥ 2.
Induction hypothesis. For every positive integer n′ < n, the theorem holds.
Induction step. Let r be the smallest integer such that T is empty after r rakes.

Then, at the end of the (r − 1)th rake, T is a path P = x1, . . . , xp. Let T1, . . . , Ts be
the subtrees of T rooted at vertices in K(P, T). Let ni be the number of leaves in Ti.
Note that

ΦT (T) = n log(p+ 1) +

s∑
i=1

ΦTi(Ti).

Since 1 ≤ ni < n and Ti is homeomorphic, by the induction hypothesis,

ΦT (T) ≤ n log(p+ 1) +

s∑
i=1

ni(1 + log ni).

Since
∑s

i=1 ni = n,

ΦT (T) ≤ n+ n log(p+ 1) +
s∑

i=1

ni log ni.(1)

Because T is homeomorphic, each xi has at least one child in K(P, T). Since n ≥ 2,
r ≥ 2. Then, xp cannot be a leaf in T and thus has at least two children in K(P, T).
Consequently, s ≥ p+ 1. Next, note that for all m1,m2 > 0,

m1 logm1 +m2 logm2 ≤ (m1 +m2) log(m1 +m2).

With this inequality and the fact that s ≥ p + 1, we can combine the terms in the
right-hand-side summation of inequality (1) to obtain the following inequality:

ΦT (T) ≤ n+ n log(p+ 1) +

p+1∑
i=1

n′i log n′i,(2)

where
∑p+1

i=1 n
′
i = n and n′i ≥ 1. For any given p, the summation in inequality (2) is

maximized when n′1 = n− p and n′2 = · · · = n′p+1 = 1. Therefore,

ΦT (T) ≤ n+ n log(p+ 1) + (n− p) log(n− p).(3)

The right-hand side of inequality (3) is maximized when p = n − 1. This gives the
desired bound and finishes the induction proof.

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1597

3. Comparing evolutionary trees. Formally, an evolutionary tree is a home-
omorphic tree whose leaves are labeled by distinct labels. The label set of an evolu-
tionary tree is the set of all the leaf labels of that tree.

The homeomorphic version T ′ of a tree T is the homeomorphic tree constructed
from T as follows. Let W = {w | w is a leaf of T or is the lowest common ancestor of
two leaves}. T ′ is the tree over W that preserves the ancestor–descendant relationship
of T . Let T1 and T2 be two evolutionary trees with label sets L1 and L2, respectively.

• For a subset L′1 of L1, T1||L′1 denotes the homeomorphic version of the tree
constructed by deleting from T1 all the leaves with labels outside L′1.

• Let T1||T2 = T1||(L1∩L2).
• For a tree path P of T1, P ||T2 denotes the tree path in T1||T2 formed by the

vertices of P that remain in T1||T2.
• For a set P of tree paths P1, . . . , Pm of T1, P||T2 denotes the set of all Pi||T2.

Formally, if L′ is a maximum cardinality subset of L1∩L2 such that there exists
a label-preserving tree isomorphism between T1||L′ and T2||L′, then T1||L′ and T2||L′
are called maximum agreement subtrees of T1 and T2.

• rr(T1, T2) denotes the number of leaves in a maximum agreement subtree of
T1 and T2.

• ra(T1, T2) is the mapping from each vertex v ∈ T2||T1 to rr(T1, (T2||T1)
v),

i.e., ra(T1, T2)(v) = rr(T1, (T2||T1)
v).

For a tree path Q of T2, if Q is nonempty, let H(Q,T2) be the set of all vertices in
Q and those in K(Q,T2). If Q is empty, let H(Q,T2) consist of the root of T2 and,
thus, if both T2 and Q are empty, H(Q,T2) = ∅.

• For a set Q of tree paths Q1, . . . , Qm of T2, let rp(T1, T2,Q) be the mapping
from v ∈ ∪mi=1H(Qi||T1, T2||T1) to rr(T1, (T2||T1)

v), i.e., rp(T1, T2,Q)(v) =
rr(T1, (T2||T1)

v). For simplicity, when Q consists of only one path Q, let
rp(T1, T2, Q) denote rp(T1, T2,Q).

(The notations rr, ra, and rp stand for the phrases root to root, root to all, and
root to path. We use rr to replace the notation mast of previous work [14, 15, 47] for
the sake of notational uniformity.)

Lemma 3.1. Let T1, T2, T3 be evolutionary trees.

• (T1||T2)||T3 = T1||(T2||T3).
• If T3 is a subtree of T1, then T3||T1 = T1||T3 = T3.
• rr(T1, T2) = rr(T1||T2, T2) = rr(T1, T2||T1) = rr(T1||T2, T2||T1).

Proof. The proof is straightforward.

Fact 1 (see [14]). Given an n-leaf evolutionary tree T and k disjoint sets
L1, . . . , Lk of leaf labels of T , the subtrees T ||L1, . . . , T ||Lk can be computed in O(n)
time.

Proof. The ideas are to preprocess T for answering queries of lowest common
ancestors [25, 45] and to reconstruct subtrees from appropriate tree traversal num-
bering [4, 9].

Given T1 and T2, our main goal is to evaluate rr(T1, T2) efficiently. Note that
rr(T1, T2) = rr(T1||T2, T2||T1) and that T1||T2 and T2||T1 can be computed in linear
time. Thus, the remaining discussion assumes that T1 and T2 have the same label
set. To evaluate rr(T1, T2), we actually compute ra(T2, T1) and divide the discussion
among the five problems defined below. Each problem is named as a p-q case, where
p and q are the numbers of tree paths in T1 and T2 contained in the input. The inputs
of these problems are illustrated in Figure 3.

1598 MING-YANG KAO

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T1

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T2

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

�
�
�

A
A

A

T1

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T2

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T1

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T2

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T1

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

�
�
�

A
A

A

T2

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T1

�
�
�
�
�
�
�
�
�B

B
B
B
B
B
B
B
B

T2

Fig. 3. Inputs of Problems 1–5.

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1599

Problem 1 (one-one case).

Input:
1. T1 and T2;
2. root paths P of T1 and Q of T2 with no leaves from their respective trees;
3. rp(Tu

1 , T2, Q) for all u ∈ K(P, T1);
4. rp(T v

2 , T1, P) for all v ∈ K(Q,T2).
Output: rp(T1, T2, Q) and rp(T2, T1, P).

The next problem generalizes Problem 1.

Problem 2 (many-one case).

Input:
1. T1 and T2;
2. a tube system P = {P1, . . . , Pm} of T1 and a root path Q of T2 with no

leaf from T2;
3. rp(Tu

1 , T2, Q) for all Pi and u ∈ K(Pi, T1);
4. rp(T v

2 , T1,P) for all v ∈ K(Q,T2).
Output:

1. rp(Thi
1 , T2, Q) for the head hi of each Pi;

2. rp(T2, T1,P).

Problem 3 (zero-one case).

Input:
1. T1 and T2;
2. a root path Q of T2 with no leaf from T2;
3. ra(T v

2 , T1) for all v ∈ K(Q,T2).
Output: ra(T2, T1).

The next problem generalizes Problem 3.

Problem 4 (zero-many case).

Input:
1. T1 and T2;
2. a tube system Q = {Q1, . . . , Qm} of T2;
3. ra(T v

2 , T1) for all Qi and v ∈ K(Qi, T2).
Output: ra(Thi

2 , T1) for the head hi of each Qi.

Our main goal is to evaluate rr(T1, T2). It suffices to solve the next problem.

Problem 5 (zero-zero case).

Input: T1 and T2.
Output: ra(T2, T1).

Our algorithms for these problems are called One-One, Many-One, Zero-One,
Zero-Many, and Zero-Zero, respectively. Each algorithm except One-One uses the
preceding one in this list as a subroutine. These reductions are based on the rake
operation defined in section 2. We give One-One in section 5 and the other four in
sections 4.1–4.4.

These five algorithms assume that the input trees T1 and T2 have n leaves each
and d is the maximum degree. We use integer sort and radix sort [4, 9] extensively to
help achieve the desired time complexity. (For brevity, from here onward, radix sort
refers to both integer and radix sorts.) For this reason, we make the following integer
indexing assumptions:

• an integer array of size O(n) is allocated to each algorithm;
• the vertices of T1 and T2 are indexed by integers from [1, O(n)];
• the leaf labels are indexed by integers from [1, O(n)].

We call Zero-Zero only once to compare two given trees. Consequently, we may

1600 MING-YANG KAO

reasonably assume that the tree vertices are indexed with integers from [1, O(n)].
When we call Zero-Zero, we simply allocate an array of size O(n). As for indexing the
leaf labels, this paper considers only evolutionary trees whose leaf labels are drawn
from a total order. Before we call Zero-Zero, we can sort the leaf labels and index
them with integers from [1, O(n)]. This preprocessing takes O(n log n) time, which is
well within our desired time complexity for Zero-Zero.

The other four algorithms are called more than once, and their integer indexing
assumptions are maintained in slightly different situations from that for Zero-Zero.
When an algorithm issues subroutine calls, it is responsible for maintaining the index-
ing assumptions for the callees. In certain cases, the caller uses radix sort to reindex
the labels and the vertices of each callee’s input trees. The caller also partitions
its array into segments and allocates to each callee a segment in proportion to that
callee’s input size. The new indices and the array segments for subroutine calls can
be computed in obvious manners within the desired time complexity of each caller.
For brevity of presentation, such preprocessing steps are omitted in the descriptions
of the five algorithms.

Some inputs to the algorithms are mappings. We represent a mapping f by
the set of all pairs (x, f(x)). With this representation, the total size of the input
mappings in an algorithm is O(n). Since the input mappings have integer values at
most n, this representation and the integer indexing assumptions together enable us to
evaluate the input mappings at many points in a batch by means of radix sort. Other
mappings that are produced within the algorithms are similarly evaluated. When
these algorithms are detailed, it becomes evident that such evaluations can computed
in straightforward manners in time linear in n and the number of points evaluated.
The descriptions of these algorithms assume that the values of mappings are accessed
by radix sort.

4. The rake-based reductions. For ease of understanding, our solutions to
Problems 1–5 are presented in a different order from their logical one. This section
assumes the following theorem for Problem 1 and uses it to solve Problems 2–5. In
section 5.6, we prove this theorem by giving an algorithm, called One-One, that solves
Problem 1 within the theorem’s stated time bounds.

Theorem 4.1. Problem 1 can be solved in O(nd2 log d+ n log(p+ 1) log(q + 1))
time or alternatively in O(nd

√
d log n+ n log(p+ 1) log(q + 1)) time.

Proof. The proof follows from theorem 5.14 at the end of section 5.6.

4.1. The many-one case. The following algorithm is for Problem 2 and uses
One-One as a subroutine. Note that Problem 2 is merely a multipath version of
Problem 1.

Algorithm Many-One
begin

1. For all Pi, compute T1,i = Thi
1 , T2,i = T2||T1,i, and Qi = Q||T1,i;

2. For all empty Qi, compute part of the output as follows:
(a) Compute the root v̂ of T2,i and v ∈ K(Q,T2) such that v̂ ∈ T v

2 ;

(b) rp(Thi
1 , T2, Q)(v̂) ← rp(T v

2 , T1,P)(hi); (Note. H(Qi, T2,i) = {v̂}. This
is part of the output.)

(c) For all x ∈ H(Pi, T1), rp(T2, T1,P)(x) ← rp(T v
2 , T1,P)(x); (Note. This

is part of the output.)
3. For all nonempty Qi, compute the remaining output as follows: (Note. The

many-one case is reduced to the one-one case with input T1,i, T2,i, Pi, and Qi.)

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1601

(a) For all u ∈ K(Pi, T1,i), rp(Tu
1,i, T2,i, Qi) ← rp(Tu

1 , T2, Q);

(b) For all v̂ ∈ K(Qi, T2,i), compute rp(T v̂
2,i, T1,i, Pi) as follows:

i. Compute the vertex v ∈ K(Q,T2) such that v̂ ∈ T v
2 ;

ii. rp(T v̂
2,i, T1,i, Pi)(x) ← rp(T v

2 , T1,P)(x) for all x ∈ H(Pi, T1,i);
(c) Compute rp(T1,i, T2,i, Qi) and rp(T2,i, T1,i, Pi) by applying One-One to

T1,i, T2,i, Pi, Qi, and the mappings computed at steps 3(a) and 3(b);

(d) rp(Thi
1 , T2, Q) ← rp(T1,i, T2,i, Qi); (Note. This is part of the output.)

(e) For all x ∈ H(Pi, T1,i), rp(T2, T1,P)(x) ← rp(T2,i, T1,i, Pi)(x); (Note.
This is part of the output.)

end.
Theorem 4.2. Algorithm Many-One solves Problem 2 with the following time

complexities:

O

(
nd2 log d+ log(1 + t(Q))·

m∑
i=1

b(Pi, T1) log(1 + t(Pi))

)

or, alternatively,

O

(
nd
√
d log n+ log(1 + t(Q))·

m∑
i=1

b(Pi, T1) log(1 + t(Pi))

)
.

Proof. Since T1 and T2 have the same label set, all T2,i are nonempty. To compute
the output rp, there are two cases depending on whether Qi is empty or nonempty.
These cases are computed by steps 2 and 3. The correctness of Many-One is then
determined by that of steps 2(b), 2(c), 3(a), 3(b), 3(b)ii, 3(d), and 3(e). These
steps can be verified using Lemma 3.1. As for the time complexity, these steps take
O(n) time using radix sort to evaluate rp. Step 1 uses Fact 1 and takes O(n) time.
Steps 2(a) and 3(b)i take O(n) time using tree traversal and radix sort. As discussed
in section 3, step 3(c) preprocesses the input of its One-One calls to maintain their
integer indexing assumptions. We reindex the labels and vertices of T1,i and T2,i and
pass the new indices to the calls. We also partition Many-One’s O(n)-size array to
allocate a segment of size |T1,i| to the call with input T1,i. Since the total input size
of the calls is O(n), this preprocessing takes O(n) time in an obvious manner. After
this preprocessing, the running time of step 3(c) dominates that of Many-One. The
stated time bounds follow from Theorem 4.1 and the fact that Qi is not longer than
Q and the degrees of T2,i are at most d.

4.2. The zero-one case. The following algorithm is for Problem 3. It uses
Many-One as a subroutine to recursively compare T2 with the subtrees of T1 rooted
at the heads of the tubes obtained by iteratively raking T1. The tubes obtained by
the first rake are compared with T2 first, and the tube obtained by the last rake is
compared last.
Algorithm Zero-One
begin

1. S ← T1;
2. LF ← L(S); (Note. LF consists of the leaves of T1.)
3. For all x ∈ LF , ra(T2, T1)(x) ← 1; (Note. This is part of the output.)
4. For all u ∈ LF , rp(Tu

1 , T2, Q)(y) ← 1, where y is the unique vertex of T2||Tu
1 ;

(Note. This is the base case of rake-based recursion.)
5. S ← S − L(S);

1602 MING-YANG KAO

6. while S is not empty do the following steps:
(a) Compute L(S) = {P1, . . . , Pm};
(b) Gather the mappings rp(Tu

1 , T2, Q) for all Pi and u ∈ K(Pi, T1); (Note.
These mappings are either initialized at step 4 or computed at previous
iterations of step 6(d).)

(c) rp(T v
2 , T1,L(S))(x) ← ra(T v

2 , T1)(x) for all v ∈ K(Q,T2) and x ∈
∪mi=1H(Pi, T1);

(d) Compute rp(Thi
1 , T2, Q) for the head hi of each Pi and rp(T2, T1,L(S))

by applying Many-One to T1, T2, L(S), Q, and the mappings obtained
at steps 6(b) and 6(c); (Note. This is the recursion step of rake-based
recursion.)

(e) For all x ∈ ∪mi=1K(Pi, T1),ra(T2, T1)(x) ← rp(T2, T1,L(S))(x); (Note.
This is part of the output.)

(f) S ← S − L(S);
end.

Theorem 4.3. Zero-One solves Problem 3 with the following time complexities:

O(nd2 log d log n+ n log n log(1 + t(Q)))

or, alternatively,

O(nd
√
d log2 n+ n log n log(1 + t(Q))).

Proof. The L(S) at step 6(a) is a tube system. The heads of the tubes in L(S)
become children of the tubes in future L(S). The vertices u ∈ K(Pi, T1) at step 6(b)
are either leaves of T1 or heads of the tubes in previous L(S). These properties
ensure the correctness of the rake-based recursion. The remaining correctness proof
uses Lemma 3.1 to verify the correctness of steps 3, 4, 6(c) and 6(e). Steps 1–5,
6(a), 6(b), and 6(f) are straightforward and take O(n) time. Steps 6(c) and 6(e)
take O(n) time using radix sort to access rp and ra. At Step 6(d), to maintain the
integer indexing assumptions for the call to Many-One, we simply pass to Many-One
the indices of T1 and T2 and the whole array of Zero-One. Step 6(d) has the same
time complexity as Zero-One. The desired time bounds follow from Theorems 2.1 and
4.2.

4.3. The zero-many case. The following algorithm is for Problem 4 and uses
Zero-One as a subroutine. Note that Problem 4 is merely a multipath version of
Problem 3.
Algorithm Zero-Many
begin

1. For all Qi, compute T2,i = Thi
2 and T1,i = T1||T2,i;

2. For all Qi and v ∈ K(Qi, T2,i), ra(T v
2,i, T1,i) ← ra(T v

2 , T1);
3. For all Qi, compute ra(T2,i, T1,i) by applying Zero-One to T1,i, T2,i, Qi, and

the mapping computed at Step 2;
4. For all Qi,ra(Thi

2 , T1) ← ra(T2,i, T1,i); (Note. This is the output.)
end.

Theorem 4.4. Zero-Many solves Problem 4 with the following time complexities:

O

(
nd2 log d log n+ log n·

m∑
i=1

b(Qi, T2) log(1 + t(Qi))

)

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1603

or, alternatively,

O

(
nd
√
d log2 n+ log n·

m∑
i=1

b(Qi, T2) log(1 + t(Qi))

)
.

Proof. The proof is similar to that of Theorem 4.2. The time bounds follow from
Theorem 4.3.

4.4. The zero-zero case. The following algorithm is for Problem 5. It uses
Zero-Many as a subroutine to recursively compare T1 with the subtrees of T2 rooted
at the heads of the tubes obtained by iteratively raking T2. The tubes obtained by
the first rake are compared with T1 first, and the tube obtained by the last rake is
compared last.
Algorithm Zero-Zero
begin

1. S ← T2;
2. LF ← L(S); (Note. LF consists of the leaves of T2.)
3. For all v ∈ LF , ra(T v

2 , T1)(x) ← 1, where x is the only vertex in T1||T v
2 ;

(Note. This is the base case of rake-based recursion.)
4. S ← S − L(S);
5. while S is not empty do

(a) Compute L(S) = {Q1, . . . , Qm};
(b) Gather the mappings ra(T v

2 , T1) for all Qi and v ∈ K(Qi, T2); (Note.
These mappings are either initialized at step 3 or computed at previous
iterations of step 5(c).)

(c) Compute ra(Thi
2 , T1) for the head hi of each Qi by applying Zero-Many

to T1, T2,L(S) and the mappings obtained at step 5(b). (Note. This is
the recursion step of rake-based recursion.)

(d) S ← S − L(S);
6. ra(T2, T1) ← ra(Th

2 , T1), where h is the root of T2; (Note. This is the output.
If T2 has only one vertex, ra(Th

2 , T1) is computed at step 3; otherwise it is
computed at the last iteration of step 5(c).)

end.
Theorem 4.5. Zero-Zero solves Problem 5 within O(nd2 log d log2 n) time or

alternatively within O(nd
√
d log3 n) time.

Proof. The proof is similar to that of Theorem 4.3. The time bounds follow from
Theorems 2.1 and 4.4.

5. The one-one case. Our algorithm for Problem 1 makes extensive use of
bisection-based dynamic programming and implicit computation in compressed for-
mats. This problem generalizes the longest common subsequence problem [6, 23, 29,
30, 32], which has efficient dynamic programming solutions. A direct dynamic pro-
gramming approach to our problem would recursively solve the problem with T x

1 and
T y

2 in place of T1 and T2 for all vertices x ∈ P and y ∈ Q. This approach may require
solving Ω(n2) subproblems. To improve the time complexity, observe that the number
of leaves in a maximum agreement subtree of T x

1 and T y
2 can range only from 0 to

n. Moreover, this number never increases when x moves from the root of T1 along P
to P ’s endpoint, and y remains fixed, or vice versa. Compared with the length of P ,
rr(T x

1 , T
y
2) often assumes relatively few different values. Thus, to compute this num-

ber along P , it is useful to compute the locations at P where the number decreases.

1604 MING-YANG KAO

We can find those locations with a bisection scheme and use them to implicitly solve
the O(n2) subproblems in certain compressed formats. We first describe basic tech-
niques used in such implicit computation in section 5.1 and then proceed to discuss
bisection-based dynamic programming techniques in sections 5.2–5.5. We combine all
these techniques to give an algorithm to solve Problem 1 in section 5.6.

5.1. Condensed sequences. For integers k1 and k2 with k1 ≤ k2, let [k1, k2] =
{k1, . . . , k2}, i.e., the integer interval between k1 and k2. The length of an integer
interval is the number of its integers. The upper and lower halves of an even length
[k1, k2] are [k1,

k1+k2−1
2] and [k1+k2+1

2 , k2], respectively. The regular integer intervals
are defined recursively. For all integers α ≥ 0, [1, 2α] is regular. The upper and lower
halves of an even length regular interval are also regular.

For example, [1, 8] is regular. Its regular subintervals are [1, 4], [5, 8], [1, 2], [3, 4],
[5, 6], [7, 8], and the singletons [1, 1], [2, 2], . . . , [8, 8].

A normal sequence is a nonincreasing sequence {f(j)}lj=1 of nonnegative numbers.
A normal sequence is nontrivial if it has at least one nonzero term.

For example, 5, 4, 4, 0 is a nontrivial normal sequence, whereas 0, 0, 0 is a trivial
one.

Let f1, . . . , fk be k normal sequences of length l. An interval query for f1, . . . , fk
is a pair ([k1, k2], j) where [k1, k2] ⊆ [1, k] and j ∈ [1, l]. If k1 = k2, ([k1, k2], j) is also
called a point query. The value of a query ([k1, k2], j) is maxk1≤i≤k2 fi(j). A query
([k1, k2], j) is regular if [k1, k2] is a regular integer interval.

For example, let

f1 = 5, 4, 4, 3, 2;
f2 = 8, 7, 4, 2, 0;
f3 = 9, 9, 5, 0, 0.

Then, f1, f2, and f3 are normal sequences of length 5. Here, k = 3 and l = 5.
Thus, ([1, 3], 2) is an interval query; its value is max{f1(2), f2(2), f3(2)} = 9. The
pair ([1, 1], 3) is a point query; its value is f1(3) = 4. The pair ([1, 2], 2) is a regular
query; its values is max{f1(2), f2(2)} = 7.

The joint of f1, . . . , fk is the normal sequence f̂ also of length l such that f̂(j) =
max{f1(j), . . . , fk(j)}.

Continuing the above example, the joint of f1, f2, f3 is

f̂ = 9, 9, 5, 3, 2.

The minimal condensed form of a normal sequence {f(j)}lj=1 is the set of all pairs
(j, f(j)) where f(j) 6= 0 and j is the largest index of any f(j′) with f(j′) = f(j). A
condensed form is a set of pairs (j, f(j)) that includes the minimal condensed form.
The size of a condensed form is the number of pairs in it. The total size of a collection
of condensed forms is the sum of the sizes of those forms.

Continuing the above example, the minimal condensed form of f3 is {(2, 9), (3, 5)};
its size is 2. The set {(1, 9), (2, 9), (3, 5), (5, 0)} is a condensed form of f3; its size is 4.
The total size of these two forms is 6.

Lemma 5.1. Let F1, . . . , Fk be sets of nontrivial normal sequences of length l.
Let f̂i be the joint of the sequences in Fi. Given a condensed form of each sequence
in each Fi, we can compute the minimal condensed forms of all f̂i in O(l + s) time
where s is the total size of the input forms.

Proof. The desired minimal forms can be computed by the two steps below:

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1605

1. Sort the pairs in the given condensed forms for Fi into a sequence in the
increasing order of the first components of these pairs.

2. Go through this sequence to delete all unnecessary pairs to obtain the minimal
condensed form of f̂i.

We can use radix sort to implement step 1 in O(l + s) time for all Fi. Step 2 can be
easily implemented in O(s) time for all Fi.

Lemma 5.2. Let f1, . . . , fk be nontrivial normal sequences of length l. Assume
that the input consists of a condensed form of each fi with a total size of s.

1. We can evaluate m point queries in O(m+ l + s) time.
2. We can evaluate m1 regular queries and m2 irregular queries in a total of

O(m1 + (m2 + l + s) log(k + 1)) time.
Proof. The proof of statement 1 uses radix sort in an obvious manner. To prove

statement 2, we assume without loss of generality that k is a power of two. The input
queries can be evaluated by the following three stages within the desired time bound.

Stage 1. For each regular interval [k1, k2] ⊆ [1, k], let f [k1, k2] be the joint of
fk1

, . . . , fk2
. We use Lemma 5.1 O(log(k+1)) times to compute the minimal condensed

forms of all f [k1, k2]. The total size of these forms is O(s log(k+1)). This stage takes
O((l + s) log(k + 1)) time.

Stage 2. For each irregular input query ([i1, i2], j), we partition [i1, i2] into
O(log(k + 1)) regular subintervals [h1, h2], [h2 + 1, h3], . . . , [hr−1 + 1, hr]. Then, the
value of ([i1, i2], j) is the maximum of those of ([h1, h2], j), . . . , ([hr−1+1, hr], j). These
regular queries are point queries for f [h1, h2], . . . , f [hr−1 + 1, hr]. Together with the
given m1 regular queries, we have now generated O(m1 +m2 log(k+1)) point queries
for all f [k1.k2]. This stage takes O(m1 +m2 log(k + 1)) time.

Stage 3. We use statement 1 and the minimal condensed forms of f [k1.k2] to
evaluate the points queries generated at Stage 2. Once the values of these point
queries are obtained, we can easily compute the values of the input queries. This
stage takes O(m1 +m2 log(k + 1) + l + s log(k + 1)) time.

5.2. Normalizing the input. To solve Problem 1, we first augment its input
T1, T2, P , and Q in order to simplify our discussion. Let P = x1, . . . , xp and Q =
y1, . . . , yq. Without loss of generality, we assume that p ≥ q.

1. Let α and β be the smallest positive integers such that p′ = 2α+1, q′ = 2β+1,
p′ ≥ q′, p′ > p, and q′ > q. (Note. The conditions p′ > p and q′ > q are
employed for technical simplicity. They can be changed to p′ ≥ p and q′ ≥ q
with some modification to Algorithm One-One.)

2. Attach to xp the path xp+1, . . . , xp′ and to yq the path yq+1, . . . , yq′ .
3. Let P ′ = x1, . . . , xp′ and Q′ = y1, . . . , yq′ .
4. Attach a leaf to each of xp+1, . . . , xp′−1 and yq+1, . . . , yq′−1, two leaves to xp′ ,

and two leaves to yq′ .
5. Assign distinct labels to the new leaves which also differ from the existing

labels of T1 and T2.
6. Let S1 be T1 together with P ′ and the new leaves of P ′. Let S2 be T2 together

with Q′ and the new leaves of Q′.
S1 and S2 are evolutionary trees. P ′ and Q′ contain no leaves from S1 and S2

and are root paths of these trees. Let n′ = max{n1, n2} where ni is the number of
leaves in Si. Let d′ be the maximum degree in S1 and S2.

Lemma 5.3.
• n′ = O(n), p′ = O(p), q′ = O(q), and d′ ≤ d+ 1.
• rp(T1, T2, Q) = rp(S1, S2, Q

′) and rp(T2, T1, P) = rp(S2, S1, P
′).

1606 MING-YANG KAO

Proof. The proof is straightforward.

In light of Lemma 5.3, our discussion below mainly works with S1, S2, P
′, and

Q′. Let G = GP ∪ GQ where GP is the set of all pairs (xi, y1) and GQ is the set of
all (x1, yj). To solve Problem 1, a main task is to evaluate rr(Sx1 , S

y
2) for (x, y) ∈ G.

The output rp values that are excluded here can be retrieved directly from the input
rp mappings.

5.3. Predecessors. A pair (xi′ , yj′) is a predecessor of a distinct (xi, yj) if i ≤ i′

and j ≤ j′. One-One proceeds by recursively reducing the problem of computing
rr(Sx1 , S

y
2) to that of computing the rr values of the P -predecessor, Q-predecessor,

and PQ-predecessor defined below.

Let P [i, i′] be the path xi, . . . , xi′ , where i ≤ i′. Let Xi be the set of the children
of xi in S1 that are not in P ′. We similarly define Q[j, j′] and Yj . A pair (xi, yj) is
intersecting if Su1 and Sv2 have at least one common leaf label for some u ∈ Xi and
v ∈ Yj . (P [i, i′], Q[yj , yj′]) is intersecting if some xi′′ ∈ P [i, i′] and yi′′ ∈ Q[j, j′] form
an intersecting pair.

The lengths of P [i, i′] and Q[j, j′] are those of [i, i′] and [j, j′], respectively. A
path P [i, i′] is regular if [i, i′] is a regular interval. A regular Q[j, j′] is similarly de-
fined. We now construct a tree Ψ over pairs of regular paths; this tree is slightly
different from that of [15]. The root of Ψ is (P [1, p′ − 1], Q[1, q′ − 1]). A pair
(P [i, i′], Q[j, j′]) ∈ Ψ is a leaf if and only if either (1) i = i′, j = j′, and (xi, yj)
is intersecting, or (2) this pair is nonintersecting. For a nonleaf (P [i, i′], Q[j, j′]) ∈
Ψ, if j = j′, then its children are (P [i, i+i′−1

2], yj) and (P [i+i′+1
2 , i′], yj). Other-

wise, this pair has four children (P [i, i+i′−1
2], Q[j, j+j′−1

2]), (P [i, i+i′−1
2], Q[j+j′+1

2 , j′]),
(P [i+i′+1

2 , i′], Q[j, j+j′−1
2]), (P [i+i′+1

2 , i′], Q[j+j′+1
2 , j′]).

The ceiling of (P [i, i′], Q[j, j′]) is (xi, yj); its floor is (xi′+1, yj′+1) [15]. Its P -
diagonal is (xi′+1, yj); its Q-diagonal is (xi, yj′+1). Let E be the set of all ceilings,
diagonals, floors of the leaves of Ψ. Let B = {(xi, yq′) | i ∈ [1, p′]} ∪ {(xp′ , yj) | j ∈
[1, q′]}. Due to its recursive nature, One-One evaluates rr(Sx1 , S

y
2) for all (x, y) ∈

G ∪ E ∪B.

Given (xi, yj), if (xi+1, yi+1) ∈ G∪E ∪B, then this pair is the PQ-predecessor of
(xi, yj). Let i′ be the smallest index that is larger than i such that (xi′ , yj) ∈ G∪E∪B.
This (xi′ , yj) is the P -predecessor of (xi, yj). Let j′ be the smallest index larger than
j such that (xi, yj′) ∈ G ∪ E ∪B. This (xi, yj′) is the Q-predecessor of (xi, yj).

Lemma 5.4.

1. Each intersecting (xi, yj) ∈ (G ∪ E) − B has a P -predecessor (xi+1, yj), a
Q-predecessor (xi, yj+1), and a PQ-predecessor (xi+1, yj+1).

2. Each nonintersecting (xi, yj) ∈ E − B has a P -predecessor (xi′ , yj) and a
Q-predecessor (xi, yj′). Also, (P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

3. Each nonintersecting (xi, y1) ∈ GP −B has a P -predecessor (xi+1, y1) and a
Q-predecessor (xi, yj). Moreover, (xi, Q[1, j − 1]) is nonintersecting.

4. Each nonintersecting (x1, yj) ∈ GQ − B has a P -predecessor (xi, yj) and a
Q-predecessor (x1, yj+1). Moreover, (P [1, i− 1], yj) is nonintersecting.

Proof. Statement 1 follows from the definitions of Ψ and E. The proofs of
statements 3 and 4 are similar to Case 3 in the proof of statement 2 below.

As for statement 2, by the definition of B, xi′ and yj′ exist. To show (P [i, i′ −
1], Q[j, j′ − 1]) is nonintersecting, we consider the following four cases. The proofs of
their symmetric cases are similar to theirs and are omitted for brevity.

Case 1. (xi, yj) is the ceiling of a nonintersecting leaf (P [i, i2], Q[j, j2]) ∈ Ψ.

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1607

Since (xi, yj2+1) and (xi2+1, yj) are in E, i′ ≤ i2 + 1 and j′ ≤ j2 + 1. Then because
(P [i, i2], Q[j, j2]) is nonintersecting, so is (P [i, i′ − 1], Q[j, j′ − 1]).

Case 2. (xi, yj) is the Q-diagonal of a nonintersecting leaf (P [i, i2], Q[j1, j−1]) (or
symmetrically, (xi, yj) is the P -diagonal of a nonintersecting leaf (P [i1, i−1], Q[j, j2])).
Since (xi2+1, yj) is the floor of (P [i, i2], Q[j1, j−1]), (xi2+1, yj) ∈ E and thus i′ ≤ i2+1.
Let j′′ be the smallest index such that j ≤ j′′ and (P [i, i2], yj′′) is intersecting. There
are two subcases.

Case 2a. j′′ does not exist. Then, (P [i, i2], Q[j, q′]) is nonintersecting and there-
fore (P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

Case 2b. j′′ exists. Let Q[j3, j4] be a regular path that contains yj′′ and is of the
same length as Q[j1, j − 1]. Note that j ≤ j3 and (P [i, i2], Q[j3, j4]) ∈ Ψ. There are
two subcases.

Case 2b(1). j3 = j. Then (xi, yj) is the ceiling of (P [i, i2], Q[j3, j4]). Since (xi, yj)
is nonintersecting, it is the ceiling of a nonintersecting leaf in Ψ which is a descendant
of (P [i, i2], Q[j3, j4]). Therefore, Case 2b(1) is reduced to Case 1.

Case 2b(2). j3 > j. By the construction of Ψ, (xi, yj3) ∈ E and thus j′ ≤ j3.
By the choice of Q[j3, j4], (P [i, i2], Q[j, j3 − 1]) is nonintersecting and so is (P [i, i′ −
1], Q[j, j′ − 1]).

Case 3. (xi, yj) is the Q-diagonal of an intersecting leaf (xi, yj−1) (or, symmetri-
cally, (xi, yj) is the P -diagonal of an intersecting leaf (xi−1, yj)). Since (xi+1, yj) ∈ E,
i′ = i + 1 and P [i, i′ − 1] = xi. Let j′′ be the smallest index such that j < j′′ and
(xi, yj′′) is intersecting. There are two subcases.

Case 3a. j′′ does not exist. Then, (xi, Q[j, q′]) is nonintersecting and therefore
(P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

Case 3b. j′′ exists. Then, (xi, yj′′) ∈ E and j′ ≤ j′′. By the choice of j′′,
(xi, Q[j, j′′ − 1]) is nonintersecting. Thus, (P [i, i′ − 1], Q[j, j′ − 1]) is nonintersecting.

Case 4. (xi, yj) is the floor of a leaf (P [i1, i − 1], Q[j1, j − 1]), which may or
may not be intersecting. Let (P [i3, i4], Q[j3, j4]) be the lowest ancestor of (P [i1, i −
1], Q[j1, j − 1]) in Ψ such that (xi, yj) is not the floor of (P [i3, i4], Q[j3, j4]). This
ancestor exists because (xi, yj) 6∈ B. There are two subcases.

Case 4a. j3 = j4 and i3 < i4. Then, P [i1, i − 1] is a subpath of P [i3,
i3+i4−1

2]

and i = i3+i4+1
2 . Also, j3 = j1 = j − 1. Thus, (xi, yj) is the Q-diagonal of

(P [i, i4], yj−1) ∈ Ψ. By the construction of Ψ, (xi, yj) is the Q-diagonal of a leaf
which is either (P [i, i4], yj−1) itself or its descendant. Depending on whether this leaf
is nonintersecting or intersecting, Case 4a is reduced to Case 2 or 3.

Case 4b. j3 < j4 and i3 < i4. There are two subcases.

Case 4b(1). P [i1, i − 1] ⊂ P [i3,
i3+i4−1

2] and Q[j1, j − 1] ⊂ Q[j3,
j3+j4−1

2]. Note

that i = i3+i4+1
2 , j = j3+j4+1

2 , and (xi, yj) is the ceiling of (P [i3+i4+1
2 , i4], Q[j3+j4+1

2 , j4])
∈ Ψ. Since (xi, yj) is nonintersecting, (xi, yj) is the ceiling of a nonintersecting leaf
in Ψ which is (P [i3+i4+1

2 , i4], Q[j3+j4+1
2 , j4]) itself or a descendant. This reduces Case

4b(1) to Case 1.

Case 4b(2). P [i1, i−1] ⊂ P [i3,
i3+i4−1

2] and Q[j1, j−1] ⊂ Q[j3+j4+1
2 , j4] (or, sym-

metrically, P [i1, i−1] ⊂ P [i3+i4+1
2 , i4] and Q[j1, j−1] ⊂ Q[j3,

j3+j4−1
2]). Note that i =

i3+i4+1
2 , j = j4 + 1, and (xi, yj) is the Q-diagonal of (P [i3+i4+1

2 , i4], Q[j3+j4+1
2 , j4]) ∈

Ψ. Then, (xi, yj) is the Q-diagonal of a leaf which is (P [i3+i4+1
2 , i4], Q[j3+j4+1

2 , j4]) it-
self or a descendant. Depending on whether this leaf is nonintersecting or intersecting,
Case 4b(2) is reduced to Case 2 or 3.

1608 MING-YANG KAO

5.4. Counting lemmas. We now give some counting lemmas that are used in
section 5.6 to bound One-One’s time complexity.

For all (P [i1, i2], Q[j1, j2]) ∈ Ψ,

• C(P [i1, i2], Q[j1, j2]) denotes the set of all ceilings of the leaves in Ψ which
are either (P [i1, i2], Q[j1, j2]) itself or its descendants;

• D(P [i1, i2], Q[j1, j2]) denotes the set of all Q-diagonals of the leaves in Ψ
which are either (P [i1, i2], Q[j1, j2]) itself or its descendants;

• I(P [i1, i2], Q[j1, j2]) = {(xi, yj) | xi ∈ P [i1, i2], yj ∈ Q[j1, j2] and (xi, yj) is
intersecting}.

Lemma 5.5.

1. |I(P [1, p′ − 1], Q[1, q′ − 1])| ≤ n.
2. Ψ has O(n log(q + 1)) leaves of the form (P [i1, i2], Q[j1, j2]) where j1 < j2.
3. Ψ has O(n log(q + 1)) pairs of the form (P [i1, i2], yj) where P [i1, i2] is of

length p′−1
q′−1 .

4. |E| = O(n log(p+ 1)).

Proof. Statements 1–3 are proved below. The proof of Statement 4 is similar to
those of Statements 2 and 3.

Statement 1. For all distinct intersecting pairs (xi, yj) and (xi′ , yj′), the leaf labels
shared by the subtrees Tu

1 where u ∈ Xi and the subtrees T v
2 where v ∈ Yi are different

from the shared labels for Xi′ and Yj′ . Statement 1 then follows from the fact that
S1 and S2 share n leaf labels.

Statements 2 and 3. On each level of Ψ, for all distinct pairs (P [i1, i2], Q[j1, j2])
and (P [i′1, i

′
2], Q[j′1, j

′
2]), I(P [i1, i2], Q[j1, j2]) ∩ I(P [i′1, i

′
2], Q[j′1, j

′
2]) = ∅. Thus, each

level has at most |I(P [1, p′ − 1], Q[1, q′ − 1])| nonleaf pairs. Consequently, from the
second level downward, each level has at most 4·|I(P [1, p′−1], Q[1, q′−1])| pairs. These
two statements then follow from Statement 1 and the fact that the pairs specified in
these two statements are within the top 1 + log(q′ − 1) levels of Ψ.

A pair (xi, yj) is P -regular if [i, i′ − 1] is a regular interval where (xi′ , yj) is the
P -predecessor of (xi, yj). (We do not need the notion of Q-regular because p′ ≥ q′.)

Given a regular [i1, i2], a set {h1, . . . , hk} regularly partitions [i1, i2] if h1 = i1 and
the intervals [h1, h2 − 1], [h2, h3 − 1], . . . , [hk−1, hk − 1], [hk, i2] are all regular.

Lemma 5.6.

1. Assume that j > 1 and P ([i1, i2], yj) ∈ Ψ. If the P -predecessor (xi, yj) of
some (xi′ , yj) ∈ C(P [i1, i2], yj) is not in {(xi2+1, yj)} ∪ C(P [i1, i2], yj), then
P ([i1, i2], yj−1) ∈ Ψ and (xi, yj) ∈ D(P [i1, i2], yj−1).

2. Assume that j < q′ and P ([i1, i2], yj−1) ∈ Ψ. If the P -predecessor (xi, yj) of
some (xi′ , yj) ∈ D(P [i1, i2], yj−1) is not in {(xi2+1, yj)} ∪D(P [i1, i2], yj−1),
then P ([i1, i2], yj) ∈ Ψ and (xi, yj) ∈ C(P [i1, i2], yj).

3. For every (P [i1, i2], yj) ∈ Ψ, the set {i | (xi, yj) ∈ C(P [i1, i2], yj)} regularly
partitions [i1, i2] and so does the set {i | (xi, yj) ∈ D(P [i1, i2], yj)}.

4. For all (P [i1, i2], yj) ∈ Ψ, every pair in C(P [i1, i2], yj) ∪ D(P [i1, i2], yj) is
P -regular.

5. At most O(n log(q + 1)) of the nonintersecting pairs of E are P -irregular.

Proof. The proofs of Statements 1 and 5 are detailed below. The proof of State-
ment 2 is similar to that of Statement 1 and is omitted. Statement 3 is obvious.
Statement 4 follows from the first three statements and the fact that if two sets
regularly partition [i1, i2], then so does their union.

Statement 1. Note that i1 < i ≤ i2 and q′ > j > 1. The pair (xi, yj) can be the
ceiling, the P -diagonal, the Q-diagonal, or the floor of some leaf (P [i3, i4], Q[j3, j4]) ∈

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1609

Ψ. These four cases are discussed below.
Case 1. (xi, yj) is the ceiling. Then i = i3 and j = j3. Since i1 < i ≤ i2 and both

[i, i4] and [i1, i2] are regular, [i, i4] ⊂ [i1, i2]. Since the length of P [i1, i2] is at most
p′−1
q′−1 , so is the length of P [i, i4]. Thus Q[j3, j4] = yj and (P [i, i4], yj) is a descendant

of (P [i1, i2], yj). This contradicts the assumption that (xi, yj) 6∈ C(P [i1, i2], yj), and
this case cannot exist.

Case 2. (xi, yj) is the P -diagonal. Then i = i4 + 1 and j = j3. As in Case 1,
Q[j3, j4] = yj and (P [i3, i − 1], yj) is a descendant of (P [i1, i2], yj). Thus, there
exists a leaf (P [i, i6], yj) that is a descendant of (P [i1, i2], yj). Because (xi, yj) is
the ceiling of this leaf, the existence of this leaf contradicts the assumption that
(xi, yj) 6∈ C(P [i1, i2], yj) and this case cannot exist.

Case 3. (xi, yj) is the Q-diagonal. Then, i = i3 and j = j4 + 1. As in Case 1,
[i, i4] ⊂ [i1, i2] and Q[j3, j4] = yj−1. Since (P [i, i4], yj−1) ∈ Ψ, (P [i1, i2], yj−1) ∈ Ψ.
Then (P [i, i4], yj−1) is a descendant of (P [i1, i2], yj−1) and (xi, yj) ∈ D(P [i1, i2], yj−1).

Case 4. (xi, yj) is the floor. Then, i = i4 + 1 and j = j4 + 1. As in Case 3,
(P [i1, i2], yj−1) ∈ Ψ, Q[j3, j − 1] = yj−1 and (P [i3, i − 1], yj−1) is a descendant
of (P [i1, i2], yj−1). Thus, there is a leaf (P [i, i6], yj−1) which is a descendant of
(P [i1, i2], yj−1). Since (xi, yj) is this leaf’s Q-diagonal, it is in D(P [i1, i2], yj−1).

Statement 5. Note that E consists of the following three types of pairs:
1. the ceiling, diagonals, and floor of a leaf (P [i1, i2], Q[j1, j2]) ∈ Ψ where j1 <

j2;
2. the P -diagonal and floor of (P [i1, i2], yj]) ∈ Ψ where P [i1, i2] is of length

p′−1
q′−1 ;

3. the pairs in C(P [i1, i2], j]) ∪ D(P [i1, i2], yj]) where (P [i1, i2], j]) ∈ Ψ and

P [i1, i2] is of length p′−1
q′−1 .

By Statement 4, only the pairs of the first two types may be P -irregular. This
statement then follows from Lemmas 5.5(5.5) and 5.5(5.5).

5.5. Recurrences. One-One uses the following formulas to recursively compute
rr(Sxi1 , S

yj
2) for (xi, yj) ∈ G ∪ E ∪ B in terms of the rr values of the appropriate

P -predecessor, Q-predecessor, and PQ-predecessor of (xi, yj).
For vertex subsets U of S1 and V of S2, m(U, V) denotes the maximum weight of

any matching of the bipartite graph (U, V, U×V) where the weight of an edge (u, v)
is rr(Su1 , S

v
2). Let m(U, v) = m(U, {v}) and m(u, V) = m({u}, V). Given two vertices

x ∈ S1 and y ∈ S2, let m(U, V, x, y) be the maximum weight of any matching of the
same graph without the edge (x, y).

Lemma 5.7. For each (xi, yj) ∈ B, rr(Sx1 , S
y
2) = 0.

Proof. This lemma follows from the fact that p′ > p, q > q, and the new labels of
S1 and S2 are different from one another and the labels of T1 and T2.

Fact 2 (see [47]). For all vertices u ∈ S1 and v ∈ S2,

rr(Su1 , S
v
2) = max

m(K(u, S1),K(v, S2))
m(u,K(v, S2))
m(K(u, S1), v)

 .

Proof. To form maximum agreement subtrees of Su1 and Sv2 , there are three cases.
(1) m(K(u, S1),K(v, S2)) accounts for matching u to v. (2) m(u,K(v, S2)) accounts
for matching u to a proper descendant of v. (3) m(K(u, S1), v) accounts for matching
v to a proper descendant of u.

1610 MING-YANG KAO

Lemma 5.8. For all (xi, yj) where i < p′ and j < q′, regardless of whether (xi, yj)
is intersecting or nonintersecting,

rr(Sxi1 , S
yj
2) = max

m(Xi, Yj) + rr(S
xi+1

1 , S
yj+1

2)
m(Xi ∪ {xi+1}, Yj ∪ {yj+1}, xi+1, yj+1)
rr(Sxi1 , S

yj+1

2)
m(xi, Yj)
rr(S

xi+1

1 , S
yj
2)

m(Xi, yj)

.

Proof. This lemma follows from Fact 2 with a finer case analysis for the cases in
the proof of Fact 2.

Lemma 5.9. For each nonintersecting (xi, yj) ∈ E−B with P -predecessor (xi′ , yj)
and Q-predecessor (xi, yj′),

rr(Sxi1 , S
yj
2) = max

maxj′′∈[j,j′−1] m(xi′ , Yj′′) + maxi′′∈[i,i′−1] m(Xi′′ , yj′)

rr(Sxi1 , S
yj′
2)

rr(S
xi′
1 , S

yj
2)

 .

Proof. This lemma follows from Lemma 5.4(2) and is obtained by iterative appli-
cations of Lemma 5.8. The following properties are used. Since (P [i, i′−1], Q[j, j′−1])
is nonintersecting, for i′′ ∈ [i, i′ − 1] and j′′ ∈ [j, j′ − 1],

• m(Xi′′ , Yj′′) = 0;
• m(Xi′′ ∪ {xi′′+1}, Yj′′ ∪ {yj′′+1}, xi′′+1, yj′′+1) = m(xi′′ , Yj′′) + m(Xi′′ , yj′′);
• m(xi′′ , Yj′′) = m(xi′ , Yj′′);
• m(Xi′′ , yj′′) = m(Xi′′ , yj′).

For brevity, the symmetric statement of the next lemma for GQ is omitted.
Lemma 5.10. For all nonintersecting pairs (xi, y1) ∈ GP −B with Q-predecessor

(xi, yj),

rr(Sxi1 , Sy1

2) = max

rr(Sxi1 , S
yj
2)

rr(S
xi+1

1 , Sy1

2)
m(Xi, yj) + maxj′∈[1,j−1] m(xi+1, Yj′)

 .

Proof. The proof is similar to the proof of Lemma 5.9 and follows from Lemma
5.4(3).

5.6. The algorithm for Problem 1. We combine the discussion in sections
5.3–5.5 to give the following algorithm to solve Problem 1.
Algorithm One-One
begin

1. Compute S1, S2, P
′, Q′, rp(Su1 , S2, Q

′) for u ∈ K(P ′, S1), and rp(Sv2 , S1, P
′)

v ∈ K(Q′, S2);
2. Compute G ∪ E ∪ B, B, I(P [1, p′ − 1], Q[1, q′ − 1]) − B, the set of all non-

intersecting pairs in E − B, and the sets of nonintersecting pairs in GP − B
and GQ −B, respectively;

3. Compute the following predecessors:
• the P -predecessor, Q-predecessor, and PQ-predecessor of each pair in
I(P [1, p′ − 1], Q[1, q′ − 1])−B;

• the P -predecessor and Q-predecessor of each nonintersecting pair in E−
B;

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1611

• the Q-predecessor of each nonintersecting pair in GP − B and the P -
predecessor of each nonintersecting pair in GQ −B;

4. For all pairs in G ∪ E ∪ B, compute the non-rr terms in the appropriate
recurrence formulas of section 5.5:
• Lemma 5.7 for B;
• Lemma 5.8 for I(P [1, p′ − 1], Q[1, q′ − 1])−B;
• Lemma 5.9 for the nonintersecting pairs in E −B;
• Lemma 5.10 for the nonintersecting pairs in GP −B and its symmetric

statement for the nonintersecting pairs in GQ −B;
5. Compute the rr(Sxi1 , S

yj
2) for all (xi, yj) ∈ G ∪ E ∪B using the appropriate

recurrence formulas given in section 5.5 and the non-rr terms computed at
step 4;

6. Compute the output as follows:
• For all yj ∈ Q, rp(T1, T2, Q)(yj) ← rr(Sx1

1 , S
yj
2);

• For all xi ∈ P , rp(T2, T1, P)(xi) ← rr(Sxi1 , Sy1

2);
• For every v ∈ K(Q,T2), rp(T1, T2, Q)(v) ← rp(T v

2 , T1, P)(h) where h is
the root of T1||T v

2 ;
• For every u ∈ K(P, T1), rp(T2, T1, P)(u) ← rp(Tu

1 , T2, Q)(h) where h is
the root of T2||Tu

1 ;

end.

To analyze One-One, we first focus on step 4. The recurrences of section 5.5
contain only four types of non-rr terms other than the constant 0 in Lemma 5.7:

1. m(Xi, yj) and m(xi, Yj);
2. maxi∈[i1,i2] m(Xi, yj) and maxj∈[j1,j2] m(xi, Yj);
3. m(Xi, Yj);
4. m(Xi ∪ {xi+1}, Yj ∪ {yj+1}, xi+1, yj+1).

It is important to notice that these non-rr terms can be simultaneously evaluated.
In light of this observation, we compute these terms by using the techniques of section
5.1 to process the normal sequences Ai, Au, Bj , Bv defined below:

• Ai(j) = m(Xi, yj) for all xi and yj ;
• Bj(i) = m(xi, Yj) for all yj and xi;
• Au(j) = rr(Su1 , S

yj
2) for all u ∈ K(P ′, S1) and yj ;

• Bv(i) = rr(Sv2 , S
xi
1) for all v ∈ K(Q′, S2) and xi.

Note that Ai and Au have length q′, and Ai is the joint of all Au where u ∈ Xi.
Similarly, Bj and Bv have length p′, and Bj is the joint of all Bv where v ∈ Yj .

Lemma 5.11.

1. The minimal condensed forms of the sequences Au and Bv have a total size
of O(n) and can be computed in O(n) time.

2. The minimal condensed forms of the sequences Ai and Bj have a total size
of O(n) and can be computed in O(n) time.

Proof. Statement 2 follows from Statement 1 and Lemma 5.1. Below we only
prove Statement 1 for Au; Statement 1 for Bv is similarly proved. We first compute
a condensed form Au for each Au as follows:

1. For all u ∈ K(P ′, S1), compute S2,u = S2||Su1 and Qu = Q′||Su1 .
2. For all u where Qu is nonempty, do the following steps:

(a) Au ← {(j, w) | yj ∈ Qu, w = rp(Su1 , S2, Q
′)(yj)}.

(b) Compute all tuples (v̂, v, yj) where v̂ ∈ K(Qu, S2,u), v ∈ K(Q′, S2),
v̂ ∈ Sv2 , and v ∈ Yj .

(c) Find the smallest s such that some (v̂, v, ys) is obtained at Step 2(b).

1612 MING-YANG KAO

(d) If there is only one (v̂, v, ys), then add to Au the pair (s, w) where w =
rp(Su1 , S2, Q

′)(v̂).
3. For all u where S2,u is nonempty and Qu is empty, do the following steps:

(a) Compute v̂, v, and ys where v̂ is the root of S2,u, v ∈ K(Q′, S2), v̂ ∈ Sv2 ,
and v ∈ Ys.

(b) Au ← {(s, w)}, where w = rp(Su1 , S2, Q
′)(v̂).

4. For all u where S2,u is empty, Au ← ∅.
The correctness proof of this algorithm has three cases.

Case 1. Qu is nonempty. Let yj1 , yj2 , . . . , yjk = Qu. Let j0 = 0. Then, for all
k′ ∈ [1, k] and all j ∈ [jk′−1 + 1, jk′], S

yj
2 ||Su1 = S

yk′
2,u and by Lemma 3.1, Au(j) =

rp(Su1 , S2, Q
′)(yk′). There are two subcases for j > jk.

Case 1a. Step 2(b) finds two or more (v̂, v, ys). Then ys ∈ Qu, s = jk, and for all
j ∈ [jk + 1, q′], Syj2 ||Su2 is empty and Au(j) = 0.

Case 1b. Step 2(b) finds only one (v̂, v, ys). Then ys 6∈ Qu and s > jk. For all
j ∈ [jk + 1, s], S

yj
2 ||Su1 = Sv̂2,u and Au(j) = rp(Su1 , S2, Q

′)(v̂). For all j ∈ [s + 1, q′],
S
yj
2 ||Su1 is empty and Au(j) = 0.

Thus, the Au of Step 2 is a condensed form of Au for Case 1.

Case 2. S2,u is nonempty and Qu is empty. This case is similar to Case 1b, and
Step 3 computes a correct condensed form Au for this case.

Case 3. S2,u is empty. This case is obvious, and Step 4 correctly computes a
condensed form Au of Au for this case.

The total size of all Au is at most that of the rp mappings of S1, S2, P
′, and Q′,

which is the desired O(n). Step 1 takes O(n) time using Fact 1. The other steps
can be implemented in O(n) time in straightforward manners using radix sort and
tree traversal. As discussed in section 3, the rp mappings are evaluated by radix
sort. Once the forms Au are obtained, we can in O(n) time radix sort the pairs in all
Au and then delete all unnecessary pairs to obtain the desired minimal condensed
forms.

Lemma 5.12. All the non-rr terms of the first two types for the pairs in G∪E∪B
can be evaluated in O(n log(p+ 1) log(q + 1)) time.

Proof. The value of m(Xi, yj) is that of the point query ([i, i], j) for A1, . . . , Aq′ ,
and the value of maxi∈[i1,i2] m(Xi, yj) is that of the interval query ([i1, i2], j). By
Lemma 5.5(5.5), there are O(n log(p+1)) such terms required for the pairs inG∪E∪B.
Given the results of steps 2 and 3 of One-One, we can determine all such terms and the
corresponding queries inO(n log(p+1)) time. By Lemma 5.6(5), onlyO(n log(q+1)) of
these queries are not P -regular. By Lemmas 5.11(2) and 5.2(2), we can evaluate these
queries in O(n log(p+1) log(q+1)) time. The terms m(xi, Yj) and maxj∈[j1,j2] m(xi, Yj)
are similarly evaluated in O(n log(p+1) log(q+1)) time. The analysis for these terms
is easier because p′ ≥ q′, and it does not involve the notion of Q-regularity.

Lemma 5.13. The non-rr terms of the third and the fourth type for the pairs in
G ∪ E ∪B can be evaluated within the following time complexity:

1. O(nd log d) or alternatively O(n
√
d log n) for the third type;

2. O(nd2 log d) or alternatively O(nd
√
d log n) for the fourth type.

Proof. To prove Statement 1, we consider the graphs (Xi, Yj , Xi×Yj) on which
the desired terms m(Xi, Yj) are defined. Let Zi,j be the subgraph of (Xi, Yj , Xi×Yj)
constructed by removing all zero-weight edges and all resulting isolated vertices. The
edges of Zi,j are computed as follows:

1. For all u ∈ K(P ′, S1), compute S2,u = S2||Su1 and Qu = Q′||Su1 .
2. For all S2,u is nonempty, do the following steps:

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1613

(a) If Qu is nonempty, compute all tuples (u, v, w) where v̂ ∈ K(Qu, S2,u),
v ∈ K(Q′, S2), v̂ ∈ Sv2 , and w = rp(Su1 , S2, Q

′)(v̂).
(b) If Qu is empty, compute the tuple (u, v, w) where v̂ is the root of S2,u,

v ∈ K(Q′, S2), v̂ ∈ Sv2 , and w = rp(Su1 , S2, Q
′)(v̂).

This algorithm captures all the nonzero-weight (u, v). At step 2, Sv̂2,u = Sv2 ||Su1 and
by Lemma 3.1 rr(Su1 , S

v
2) = rp(Su1 , S2, Q

′)(v̂). Thus, the first two components of
the obtained tuples form the edges of all desired Zi,j and the third components are
the weights of these edges. We use Fact 1 to implement step 1 in O(n) time. We
can implement step 2 in O(n) time using radix sort and tree traversal. Note that
step 2 uses radix sort to evaluate rp mappings. With the tuples (u, v, w) obtained,
we use radix sort to construct all desired Zi,j in O(n) time. Let mi,j and ni,j be
the numbers of edges and vertices in Zi,j , respectively. Since an edge weighs at
most n, we can compute m(Xi, Yj) in O(ni,j ·mi,j + n2

i,j · log ni,j) and alternatively in
O(mi,j ·√ni,j · log(n·ni,j)) time [21, 42]. Statement 1 then follows from the fact that
ni,j ≤ 2d′, ni,j ≤ 2mi,j , and by Lemma 5.5(5.5) the sum of all mi,j is at most n.

To prove Statement 2, we similarly process the bipartite graphs on which the
desired terms m(Xi ∪ {xi+1}, Yj ∪ {yj+1}, xi+1, yj+1) are defined. The key difference
from the third type is that in addition to some of the edges in Zi,j , we need certain
nonzero-weight (u, yj+1) for u ∈ Xi and (xi+1, v) for v ∈ Yj . Since these edges
are required only for intersecting (xi, yj), by Lemma 5.5(5.5), O(dn) such edges are
needed. We use Lemma 5.11(1) to compute the weights of these edges in O(dn) time.
Due to these edges, the total time complexity for the fourth type is O(d) times that
for the third type.

The next theorem serves to prove Theorem 4.1 given at the beginning of section
4.

Theorem 5.14. One-One solves Problem 1 with the following time complexities:

O(nd2 log d+ n log(p+ 1) log(q + 1))

or, alternatively,

O(nd
√
d log n+ n log(p+ 1) log(q + 1)).

Proof. The correctness of One-One follows from Lemma 5.3 and sections 5.3–5.5.
As for the time complexity, step 1 is obvious and takes O(n) time. By computing Ψ,
we can compute the sets E and I(P [1, p′ − 1], Q[1, q′ − 1]). Since the leaf labels of
S1 and S2 are from [1, O(n)], each level of Ψ can be computed in O(n) time. Since
Ψ has O(log(p + 1)) levels, E and I(P [1, p′ − 1], Q[1, q′ − 1]) can be computed in
O(n log(p + 1)) time. With these two sets obtained, we can compute all the desired
sets in O(n log(p + 1)) time. Thus, step 2 takes O(n log(p + 1)) time. Step 3 takes
O(n log(p+ 1)) time using radix sort. The time complexity of step 4 dominates that
of One-One. This step uses Lemmas 5.12 and 5.13 and takes O(n log(p + 1) log(q +
1) + nd2 log d) time or, alternatively, O(n log(p + 1) log(q + 1) + nd

√
d log n) time.

Step 5 spends O(n log(p+ 1)) time using radix sort to create pointers from the pairs
in G ∪ E ∪ B to appropriate predecessors. Step 5 then takes O(1) time per pair in
G ∪ E ∪ B and O(n log(p + 1)) time in total. Step 6 takes O(n log(p + 1)) time. It
uses radix sort to access the desired rr values and evaluate the input mappings. It
also uses Fact 1 to compute all T1||T v

2 and T2||Tu
1 .

6. Discussions. We answer the main problem of this paper with the following
theorem and conclude with an open problem.

1614 MING-YANG KAO

Theorem 6.1. Let T1 and T2 be two evolutionary trees with n leaves each. Let
d be their maximum degree. Given T1 and T2, a maximum agreement subtree of T1

and T2 can be computed in O(nd2 log d log2 n) time or alternatively in O(nd
√
d log3 n)

time. Thus, if d is bounded by a constant, a maximum agreement subtree can be
computed in O(n log2 n) time.

Proof. By Theorem 4.5, the algorithms in sections 4–5 compute rr(T1, T2) within
the desired time bounds. With straightforward modifications, these algorithms can
compute a maximum agreement subtree within the same time bounds.

The next lemma establishes a reduction from the longest common subsequence
problem to that of computing a maximum agreement subtree.

Lemma 6.2. Let M1 = x1, . . . , xn and M2 = y1, . . . , yn be two sequences. Assume
that the symbols xi are all distinct and so are the symbols yj. Then, the problem of
computing a longest common subsequence of M1 and M2 can be reduced in linear time
to that of computing a maximum agreement subtree of two binary evolutionary trees.

Proof. Given M1 and M2, we construct two binary evolutionary trees T1 and T2

as follows. Let z1 and z2 be two distinct symbols different from all xi and yi. Next,
we construct two paths P1 = u1, . . . , un+1 and P2 = v1, . . . , vn+1. T1 is formed by
making u1 the root, attaching xi to ui as a leaf, and attaching z1 and z2 to un+1 as
leaves. Symmetrically, T2 is formed by making v1 the root, attaching yi to vi, and
attaching z1 and z2 to vn+1. The lemma follows from the straightforward one-to-one
onto correspondence between the longest common subsequences of M1 and M2 and
the maximum agreement subtrees of T1 and T2.

We can use Lemma 6.2 to derive lower complexity bounds for computing a max-
imum agreement subtree from known bounds for the longest common subsequence
problem in various models of computation [3, 6, 23, 29, 30, 32, 50]. This paper as-
sumes a comparison model where two labels x and y can be compared to determine
whether x is smaller than y or x = y or x is greater than y. Since the longest common
subsequence problem in Lemma 6.2 requires Ω(n log n) time in this model [31], the
same bound holds for the problem of computing a maximum agreement subtree of
two evolutionary trees where d is bounded by a constant. It would be significant to
close the gap between this lower bound and the upper bound of O(n log2 n) stated in
Theorem 6.1. Recently, Farach, Przytycka, and Thorup [13] independently developed
an algorithm that runs in O(n

√
d log3 n) time. For binary trees, Cole and Hariha-

ran [8] gave an O(n log n)-time algorithm. It may be possible to close the gap by
incorporating ideas used in those two results and this paper.

Acknowledgments. The author is deeply appreciative for the extremely thor-
ough and useful suggestions given by the anonymous referee. The author thanks
Joseph Cheriyan, Harold Gabow, Andrew Goldberg, Dan Gusfield, Dan Hirschberg,
Phil Klein, Phil Long, K. Subramani, Bob Tarjan, and Tandy Warnow for helpful
comments, discussions, and references.

REFERENCES

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple tree con-
traction algorithm, J. Algorithms, 10 (1989), pp. 287–302.

[2] R. Agarwala and D. Fernández-Baca, A polynomial-time algorithm for the perfect phy-
logeny problem when the number of character states is fixed, SIAM J. Comput., 23 (1994),
pp. 1216–1224.

[3] A. V. Aho, D. S. Hirschberg, and J. D. Ullman, Bounds on the complexity of the longest
common subsequence problem, J. Assoc. Comput. Mach., 23 (1976), pp. 1–12.

TREE CONTRACTIONS AND EVOLUTIONARY TREES 1615

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison–Wesley, Reading, MA, 1974.

[5] A. V. Aho, Y. Savig, T. G. Szymanski, and J. D. Ullman, Inferring a tree from the lowest
common ancestors with an application to the optimization of relational expressions, SIAM
J. Comput., 10 (1981), pp. 405–421.

[6] A. Apostolico and C. Guerra, The longest common subsequence problem revisited, Algo-
rithmica, 2 (1987), pp. 315–336.

[7] H. L. Bodlaender, M. R. Fellows, and T. J. Warnow, Two strikes against perfect phy-
logeny, in Lecture Notes in Computer Science 623: Proceedings of the 19th International
Colloquium on Automata, Languages, and Programming, Springer-Verlag, New York, 1992,
pp. 273–283.

[8] R. Cole and R. Hariharan, An O(n logn) algorithm for the maximum agreement subtree
problem for binary trees, in Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1996, pp. 323–332.

[9] T. H. Cormen, C. L. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1991.

[10] W. H. E. Day and D. Sankoff, Computational complexity of inferring phylogenies from
chromosome inversion data, J. Theoret. Biology, 124 (1987), pp. 213–218.

[11] S. Dress and M. Steel, Convex tree realizations of partitions, Appl. Math. Lett., 5 (1992),
pp. 3–6.

[12] M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary
trees, Algorithmica, 13 (1995), pp. 155–179.

[13] M. Farach, T. M. Przytycka, and M. Thorup, Computing the agreement of trees with
bounded degrees, in Lecture Notes in Computer Science 979: Proceedings of the Third
Annual European Symposium on Algorithms, P. Spirakis, ed., Springer-Verlag, New York,
1995, pp. 381–393.

[14] M. Farach and M. Thorup, Fast comparison of evolutionary trees (extended abstract), in
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994,
pp. 481–488.

[15] M. Farach and M. Thorup, Optimal evolutionary tree comparison by sparse dynamic pro-
gramming (extended abstract), in Proceedings of the 35th Annual IEEE Symposium on
Foundations of Computer Science, 1994, pp. 770–779.

[16] J. Felsenstein, Numerical methods for inferring evolutionary trees, The Quarterly Review of
Biology, 57 (1982), pp. 379–404.

[17] J. Felsenstein, Inferring evolutionary trees from DNA sequences, in Statistical Analysis of
DNA Sequence Data, B. Weir, ed., Marcel Dekker, New York, 1983, pp. 133–150.

[18] J. Felsenstein, Phylogenies from molecular sequences: Inference and reliability, Ann. Rev.
Genetics, 22 (1988), pp. 521–565.

[19] C. R. Finden and A. D. Gordon, Obtaining common pruned trees, J. Classification, 2 (1985),
pp. 255–276.

[20] A. Friday, Quantitative aspects of the estimation of evolutionary trees, Folia Primatologica,
53 (1989), pp. 221–234.

[21] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for network problems, SIAM J.
Comput., 18 (1989), pp. 1013–1036.

[22] H. Gazit, G. L. Miller, and S. H. Teng, Optimal tree contraction in the EREW model,
in Concurrent Computations: Algorithms, Architecture, and Technology, S. T. and
B.W. Dickinson and S. Schwartz, eds., Plenum, New York, 1988, pp. 139–156.

[23] R. N. Goldberg, Minimal string difference encodings, J. Algorithms, 3 (1982), pp. 147–156.
[24] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks, 21 (1991), pp. 19–

28.
[25] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.

Comput., 13 (1984), pp. 338–355.
[26] J. J. Hein, An optimal algorithm to reconstruct trees from additive distance data, Bull. Math.

Biology, 51 (1989), pp. 597–603.
[27] M. D. Hendy, The relationship between simple evolutionary tree models and observable se-

quence data, Systematic Zoology, 38 (1989), pp. 310–321.
[28] M. D. Hendy and D. Penny, Branch and bound algorithms to determine minimal evolutionary

trees, Math. Biosciences, 59 (1982), pp. 277–290.
[29] D. S. Hirschberg, A linear space algorithm for computing maximal common subsequences,

Comm. Assoc. Comput. Mach., 18 (1975), pp. 341–343.
[30] D. S. Hirschberg, Algorithms for the longest common subsequence problem, J. Assoc. Comput.

Mach., 24 (1977), pp. 664–675.

1616 MING-YANG KAO

[31] D. S. Hirschberg, An information theoretic lower bound for the longest common subsequence
problem, Inform. Proc. Lett., 7 (1978), pp. 40–41.

[32] J. W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common subse-
quences, Comm. Assoc. Comput. Mach., 20 (1977), pp. 350–353.

[33] T. Jiang, E. L. Lawler, and L. Wang, Aligning sequences via an evolutionary tree: Com-
plexity and approximation, in Proceedings of the 26th Annual ACM Symposium on Theory
of Computing, 1994, pp. 760–769.

[34] S. K. Kannan, E. L. Lawler, and T. J. Warnow, Determining the evolutionary tree using
experiments, J. Algorithms, 21 (1996), pp. 26–50.

[35] S. K. Kannan and T. J. Warnow, Inferring evolutionary history from DNA sequences, SIAM
J. Comput., 23 (1994), pp. 713–737.

[36] D. Keselman and A. Amir, Maximum agreement subtree in a set of evolutionary trees –
Metrics and efficient algorithms, in Proceedings of the 35th Annual IEEE Symposium
on Foundations of Computer Science, 1994, pp. 758–769; SIAM J. Comput., 26 (1997),
pp. 1656–1669.

[37] L. C. Klotz and R. L. Blanken, A practical method for calculating evolutionary trees from
sequence data, J. Theoretical Biology, 91 (1981), pp. 261–272.

[38] S. R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured computa-
tions by raking, in Lecture Notes in Computer Science 319: VLSI Algorithms and Archi-
tectures, the 3rd Aegean Workshop on Computing, J. H. Reif, ed., Springer-Verlag, New
York, 1988, pp. 101–110.

[39] E. Kubicka, G. Kubicki, and F. McMorris, An algorithm to find agreement subtrees, J.
Classification, 12 (1995), pp. 91–99.

[40] G. L. Miller and J. H. Reif, Parallel tree contraction, part 1: Fundamentals, in Advances
in Computing Research: Randomness and Computation, Vol. 5, S. Micali, ed., JAI Press,
Greenwich, CT, 1989, pp. 47–72.

[41] G. L. Miller and J. H. Reif, Parallel tree contraction part 2: Further applications, SIAM J.
Comput., 20 (1991), pp. 1128–1147.

[42] J. B. Orlin and R. K. Ahuja, New scaling algorithms for the assignment and minimum mean
cycle problems, Math. Programming, 54 (1992), pp. 41–56.

[43] D. Penny and M. Hendy, Estimating the reliability of evolutionary trees, Molecular Biology
and Evolution, 3 (1986), pp. 403–417.

[44] A. Rzhetsky and M. Nei, A simple method for estimating and testing minimum-evolution
trees, Molecular Biology and Evolution, 9 (1992), pp. 945–967.

[45] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and paral-
lelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[46] M. Steel, The complexity of reconstructing trees from qualitative characters and subtrees, J.
Classification, 9 (1992), pp. 91–116.

[47] M. Steel and T. Warnow, Kaikoura tree theorems: Computing the maximum agreement
subtree, Inform. Process. Lett., 48 (1993), pp. 77–82.

[48] L. Wang, T. Jiang, and E. Lawler, Approximation algorithms for tree alignment with a
given phylogeny, Algorithmica, 16 (1996), pp. 302–315.

[49] T. J. Warnow, Tree compatibility and inferring evolutionary history, J. Algorithms, 16 (1994),
pp. 388–407.

[50] C. K. Wong and A. K. Chandra, Bounds for the string editing problem, J. Assoc. Comput.
Mach., 23 (1976), pp. 13–16.

OPTIMAL PREDICTION FOR PREFETCHING
IN THE WORST CASE∗

P. KRISHNAN† AND JEFFREY SCOTT VITTER‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1617–1636, December 1998 006

Abstract. Response time delays caused by I/O are a major problem in many systems and
database applications. Prefetching and cache replacement methods are attracting renewed attention
because of their success in avoiding costly I/Os. Prefetching can be looked upon as a type of online
sequential prediction, where the predictions must be accurate as well as made in a computationally
efficient way. Unlike other online problems, prefetching cannot admit a competitive analysis, since the
optimal offline prefetcher incurs no cost when it knows the future page requests. Previous analytical
work on prefetching [J. Assoc. Comput. Mach., 143 (1996), pp. 771–793] consisted of modeling the
user as a probabilistic Markov source.

In this paper, we look at the much stronger form of worst-case analysis and derive a randomized
algorithm for pure prefetching. We compare our algorithm for every page request sequence with the
important class of finite state prefetchers, making no assumptions as to how the sequence of page
requests is generated. We prove analytically that the fault rate of our online prefetching algorithm
converges almost surely for every page request sequence to the fault rate of the optimal finite state
prefetcher for the sequence. This analysis model can be looked upon as a generalization of the com-
petitive framework, in that it compares an online algorithm in a worst-case manner over all sequences
with a powerful yet nonclairvoyant opponent. We simultaneously achieve the computational goal of
implementing our prefetcher in optimal constant expected time per prefetched page using the optimal
dynamic discrete random variate generator of Matias, Vitter, and Ni [Proc. 4th Annual SIAM/ACM
Symposium on Discrete Algorithms, Austin, TX, January 1993].

Key words. caching, prefetching, competitive analysis, finite state prefetchers, response time,
fault rate, hypertext, operating systems, databases, prediction, machine learning

AMS subject classifications. 68Q25, 68T05, 68P20, 68N25, 60J20

PII. S0097539794261817

1. Introduction. Most computer memories are organized hierarchically. A typ-
ical two-level memory consists of a relatively small but fast cache (such as internal
memory) and a relatively large but slow memory (such as disk storage). Two-level
memories can also model on-chip versus off-chip memory in VLSI systems. The pages
requested by an application must be in cache before computation can proceed. In the
event that a requested page is not in cache, a page fault occurs and the application has
to wait while the page is fetched from slow memory to cache. The method of fetching
pages into cache only when a fault occurs is called demand fetching. The problem of
cache replacement is to decide which pages to remove from cache to accommodate the
incoming pages.

In many systems and database applications, users spend a significant amount of

∗Received by the editors January 19, 1994; accepted for publication (in revised form) August
26, 1996; published electronically June 3, 1998. An extended abstract appears in the Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, January 1994,
pp. 392–401.

http://www.siam.org/journals/sicomp/27-6/26181.html
†Bell Laboratories, 101 Crawfords Corner Road, Holmdel, NJ 07733-3030 (pk@research.

bell-labs.com). Support was provided in part by the Office of Naval Research and the Defense
Advanced Research Projects Agency under contract N00014–91–J–4052, ARPA order 8225, and by
Air Force Office of Scientific Research grants F49620–92–J–0515 and F49620–94–1–0217. This work
was done while the author was associated with Brown University and Duke University.

‡Dept. of Computer Science, Duke University, Durham, NC 27708–0129 (jsv@cs.duke.edu). Sup-
port was provided in part by National Science Foundation research grants CCR–9007851 and CCR–
9522047, by Air Force Office of Scientific Research grants F49620–92–J–0515 and F49620–94–1–0217,
and by a Universities Space Research Association/CESDIS associate membership.

1617

1618 P. KRISHNAN AND JEFFREY SCOTT VITTER

time processing a page, and the computer and I/O system are typically idle during
that period. If the computer can predict which page the user will request next, it
can fetch that page into cache (if it is not already in cache) before the user asks for
it. When the user requests the page, it is available in cache, and the user perceives
a faster response time. This method of getting pages into cache in the background
before they are requested is called prefetching.

In many hypertext and interactive database systems, there is often sufficient time
between user requests to prefetch as many pages as wanted, limited only by the
cache size k. We refer to prefetching under this assumption as pure prefetching,
and we restrict our analysis to pure prefetching in this paper. Pure prefetching is
an important theoretical and practical model that helps in analyzing the benefits of
fetching pages in the background.

In general applications, other issues come into play. For example, prefetches are
often done well in advance of when the page is expected to be needed, to take into
account latency [29, 31]. User requests can also preempt prefetch requests, resulting
in fewer than k prefetches being done at a time. In such situations, which we call
nonpure prefetching, issues of cache replacement come into play; the algorithm must
determine not only which page(s) to prefetch but also which page(s) to evict from
cache to make room. Pure prefetchers can be converted into efficient and practical
nonpure prefetchers by melding them with good cache replacement strategies. In
[10], pure prefetchers are used with the popular least recently used (LRU) cache
replacement strategy, and significant reductions in page fault rate (number of page
faults divided by the number of page requests) are demonstrated. We expect that
better pure prefetchers (e.g., the one developed in this paper) melded with better
cache replacement strategies (e.g., [5, 13, 19, 20]) may yield even more impressive
performance improvements.

An algorithm is online if it must make its decisions based only on the past his-
tory. An offline algorithm can use knowledge of the future. If the program generating
page requests is known a priori, prefetching decisions could be made offline, as is
done in compiler-directed prefetching [6, 29, 31] where prefetch instructions are ex-
plicitly inserted into the code. Without a priori knowledge or statistics of the user
request pattern, as is the case in many hypertext and interactive applications (e.g., the
world wide web), an algorithm for cache replacement or prefetching must be online.
An important computational requirement of online prefetching (and online demand
fetching) algorithms is that the time spent deciding which pages to fetch into (or evict
from) cache must be minimal. In this paper, we study online pure prefetching.

1.1. Analysis technique. The notion of competitiveness introduced by Sleator
and Tarjan [34] evaluates an online algorithm by comparing its performance with that
of offline algorithms. Competitive algorithms for cache replacement are well examined
in the literature [5, 13, 27, 34]. It is unreasonable to expect prefetching algorithms to
be competitive in this sense. The trivial optimal offline algorithm for prefetching never
faults, if it can prefetch at least one page every time. In order to be competitive, an
online algorithm would have to be an almost perfect predictor for any sequence, which
seems intuitively impossible. Some restrictions on the power of the offline algorithm
are therefore needed for a meaningful analysis.

Vitter and Krishnan [36] analyzed pure prefetching using a form of the compet-
itive philosophy; they assumed that the sequence of page requests was generated by
a probabilistic Markov source [14]. They showed that the prediction techniques in-
herent in data compression methods (such as the Lempel–Ziv algorithm [37]) can be

OPTIMAL PREDICTION FOR PREFETCHING 1619

used to get optimal pure prefetchers. Cache replacement has been studied by Karlin,
Phillips, and Raghavan [20] under a different stochastic version of the competitive
framework; the sequence of page requests was assumed to be generated by a Markov
chain (a subset of Markov sources). In [20, 36], the online prefetching or cache re-
placement algorithm is compared with the optimal online algorithm that has full prior
knowledge of the source. A PAC learning framework incorporating Markov sources
of examples was developed in [1]. Recent empirical work on prefetching includes a
pattern matching approach to prediction [30], computing various first-order statistics
for prediction [32], a growing-order Markov predictor [24], prefetching in a paral-
lel environment [22], and research projects at a lower level of abstraction including
compiler-directed prefetching [6, 29, 31].

In this paper, we develop a randomized algorithm for pure prefetching and show
its optimality in the limit under the following analysis strategy. Putting no restrictions
on the generator of page requests, we compare the page fault rate of our prefetcher
for every sequence of page requests with that of the best finite state prefetcher for the
sequence. We also show how to implement each prefetch in constant expected time,
independent of the number of pages in the database and the cache size, which is
optimal.

The analysis strategy used in this paper is much stronger than the ones in [20, 36]
for the following reasons. First, our comparison is for all sequences, without any
assumption about how the sequences are generated. Second, although the comparison
in [20, 36] is against the optimal computationally unlimited online algorithm with full
a priori knowledge of the source, it is the case for prefetching and cache replacement
that when the page request sequences are generated by a finite state Markov source
(or a Markov chain), the optimal online algorithm is finite state. (See [36, Definition 4]
and [20, Theorem 2].) In particular, the fault rate of the prefetcher we develop in this
paper is asymptotically the same as the fault rate of the optimal prefetcher from [36]
when the source is finite state Markov.

Pure prefetching can be looked upon as the following prediction problem: given
an arbitrary alphabet of size α (the set of α pages in the database) and a sequence
of (page) requests drawn from this alphabet, at each time instant we have to predict
the best k choices for the k pages to prefetch into cache. Randomness is required in
order for a predictor or prefetcher to be optimal for every sequence when compared
with finite state prefetchers (FSPs) [7]. (Also see Appendix A.) In the fields of infor-
mation theory and statistics [4, 8, 12, 17] interesting algorithms for binary sequences
(corresponding to an alphabet size of α = 2 pages) that make one prediction for the
next page (corresponding to cache size k = 1) have been developed independently of
[36], and the comparison is made with the best finite state predictor. However, the
α = 2, k = 1 case is clearly unsuitable for our prefetching scenario. The procedure in
[17] may possibly be generalizable to the arbitrary alphabet case α ≥ 2 for cache size
k = 1, but it cannot possibly make a prediction in constant time independent of α,
and the k > 1 case is open. In [28], predictors are developed for various continuous
loss functions, but they are not relevant to the harder-to-analyze discontinuous 0–1
loss functions associated with cache replacement and prefetching. The solution to the
general case thus requires a fundamentally different approach from those mentioned
above.

1.2. This paper. Our major contribution in this paper is a randomized algo-
rithm for pure prefetching that achieves the optimal fault rate almost surely in the
limit against the class of FSPs and that is simultaneously optimal in terms of running

1620 P. KRISHNAN AND JEFFREY SCOTT VITTER

time for the general case of α ≥ 2 pages and cache size k ≥ 1. (“Almost surely”
means that the probability that convergence does not occur for an arbitrary sequence
converges to 0 as the sequence length n gets larger.)

Our analysis model and main results are summarized in the next section. In
section 3, we present our core prefetching algorithm P1, which makes use of sampling
without replacement, and we analyze it in section 4 by comparing it with the best one-
state prefetcher. In section 5 we draw on ideas from information theory [9] applied to
predicting [8, 12, 28] and generalize P1 to get a universal prefetcher P that is optimal
in the limit against a general FSP. The resulting optimal prefetcher P is a blend of
P1 and the prefetcher [36] based on the Lempel–Ziv data compressor [18, 25, 37].
We show in section 6 how to implement the prefetcher in constant expected time
per prefetched page, independent of alphabet size α and cache size k, by using the
optimal dynamic algorithm for generating discrete random variates of Matias, Vitter,
and Ni [26], which uses a table lookup method of Hagerup, Mehlhorn, and Munro [16].
Other issues are discussed in section 7.

2. Analysis model and main results. We denote the cache size by k and the
total number of different pages (or alphabet size) by α. We use the notation σji to
denote the subsequence of a (possibly infinite) sequence σ starting at the ith page
request up to and including the jth page request; in particular, σn1 denotes the first n
page requests of σ. Given a parsing of σn1 into subsequences, we will denote the jth
subsequence by σj .

Definition 1. An FSP is represented as a quintuple (S,A, g,D, z0), where S is
a finite set of states, A = {0, 1, 2, . . . , α−1} is a finite alphabet of cardinality |A| = α,
g is a deterministic “next state” function that maps S × A into S, D is a (possibly
randomized) decision strategy function that maps S into a k-tuple Ak, and z0 ∈ S is
the start state. The FSP prefetches at state z ∈ S the k pages specified by D(z), and
upon seeing the next page request i, it changes state from z to g(z, i). We denote the
set of all FSPs with at most s states by F(s).

We next define the best fault rate achieved on a sequence by the class of FSPs.
Definition 2. Given an FSP F and a sequence σn1 , we denote by FaultF (σn1)

the fault rate of F on σn1 , that is, the number of page faults of F on σn1 (expected
number of page faults if F has a randomized decision strategy), divided by the length
n of the sequence. We define FaultF(s)(σ

n
1) to be infF∈F(s) FaultF (σn1). With a little

abuse of notation we also denote by FaultB(σn1) the fault rate of a nonfinite state
prefetcher B.

Intuitively, we can think of FaultF(s)(σ
n
1) as being given by an optimal offline

algorithm restricted by the finite state requirement. This means that unlike an offline
algorithm, the FSP does not know the sequence σn1 beforehand. However, it knows
how many times each of its transitions will be traversed when it is used to prefetch on
the sequence σn1 . In other words, the optimal FSP is a “weak” offline algorithm. For
example, the optimal one-state FSP for a sequence σn1 does not know σn1 but knows
how many times each page appears in σn1 . By simple convexity arguments it can be
verified that the optimal one-state FSP for σn1 will, when at state z, deterministically
prefetch the k pages corresponding to the k transitions out of z that are traversed
the maximum number of times. (Hence FaultF(s)(σ

n
1) = minF∈F(s) FaultF (σn1), the

minimum fault rate achieved by any FSP with at most s states on σn1 .) For example,
FaultF(1)(σ

n
1) is attained by the following one-state (zero-order) prefetcher F1: count

the number of times that page i, for 0 ≤ i ≤ α − 1, appears in σn1 . Let C1(σ
n
1) =

{i1, i2, . . . , ik} be k pages with the maximum k counts. At every time t, for 1 ≤ t ≤ n,

OPTIMAL PREDICTION FOR PREFETCHING 1621

predict the next page to be one of the k pages in C1(σ
n
1) (that is, we always keep the

same k pages in cache).We develop an online randomized prefetcher P1 that achieves on average the best
single-state (zero-order) prefetching fault rate FaultF(1)(σ

n
1) on every sequence σn1 of

length n in the limit as n→∞.
Theorem 1. For every sequence σn1 of length n drawn from alphabet A, the fault

rate of prefetcher P1 on σn1 converges almost surely to FaultF(1)(σ
n
1) as n → ∞. In

particular,

FaultP1(σ
n
1) ≤ FaultF(1)(σ

n
1) +O

(
log n√
n

)
.(1)

The main difficulty in developing P1 and its proof of optimality is that the alpha-
bet size α and the cache size k are arbitrary. We note that even for the α = 2, k = 1
case, the convergence rate cannot be faster than O(1/

√
n) [7].

The importance of the above theorem lies in its generalization to higher order
using techniques from information theory [9]. The approach of [12] allows us to
combine P1 with a prefetcher [36] based on the Lempel–Ziv data compressor [18, 25,
37] to get a prefetcher P that is optimal in the limit against the class of FSPs.

Theorem 2. For every sequence σn1 of length n drawn from alphabet A, and any
s ≥ 0, the fault rate of prefetcher P on σn1 converges almost surely to FaultF(s)(σ

n
1)

as n→∞.
From the observation in section 1.1 that under the model from [36] (where the

sequences of page requests are generated by a finite state Markov source), the optimal
prefetcher is also an FSP, we get the following corollary.

Corollary 1. Under the model from [36], where the sequences of page requests
are generated by a finite state Markov source M , the fault rate of prefetcher P con-
verges almost surely to the minimum fault rate of any online prefetcher with complete
a priori knowledge of the source M .

The expected running time for prefetcher P can be made optimal by using the
optimal dynamic random variate generator of [26].

Theorem 3. The prefetcher P runs in constant expected time (independent of
α and k) for each page prefetched; that is, it requires an average of O(k) time to
determine which k pages to prefetch.

The rate of convergence of Theorems 1 and 2 depends on the alphabet size α.
For example, the error term is O(αk2(log n)/

√
n) in Theorem 1; for simplicity we

suppress the αk2 term in our discussion since it is insignificant w.r.t. n in the limit.
(Note that in general k � α.) However, the constant time bound for each prediction
is entirely independent of α and k, which is important from a computational point of
view.

3. The prefetching algorithm P1. In this section we give the algorithm P1

that matches the best one-state prefetcher in the limit. Before introducing P1, we
present the more intuitive algorithm P ′

1 upon which algorithm P1 is based.
Let t be the current time and let σt1 be the sequence of t pages requested until

now. Let fi(σ
t
1), 0 ≤ i ≤ α − 1, denote the number of times page i appears in σt1.

Define rt = 2j when 4j−1 < t ≤ 4j . That is, the integer rt is “close to”
√
t; it doubles

at discrete time steps (when t is one greater than a power of 4).
The key idea that prefetcher P ′

1 (and prefetcher P1) uses is to reduce the prob-
lem of prediction to the problem of generating random variates. Intuitively P ′

1

should choose for the cache the page i with the highest or nearly highest frequency

1622 P. KRISHNAN AND JEFFREY SCOTT VITTER

count fi(σ
t
1). (Randomness in the picking is required, by the remark in section 1 [7],

so it does not suffice to simply pick the page with the highest frequency count; see
Appendix A.1. Further, the “natural” randomized algorithm that prefetches page i
at time t with probability proportional to fi(σ

t
1) is also not optimal as shown in Ap-

pendix A.2.) In P ′
1 we get the effect of choosing the pages with the highest or nearly

highest counts by “boosting” the frequency counts of the page by a large power and
then choosing a page with probability proportional to its boosted count. (The boosted
counts will be very large but can be represented with O(log n) bits, using the scheme
discussed in section 6.) Efficient random variate generation with dynamically chang-
ing weights can be done using [26], as discussed in section 6.

The algorithm P ′
1 is a simple randomized weighting algorithm that makes k pre-

dictions at each time step for the next page request. At each time t and 0 ≤ i ≤ α−1,
P ′

1 assigns to page i a probability pi,t proportional to the boosted frequency count(
fi(σ

t
1)
)rt

,(2)

which is the rtth power of frequency fi(σ
t
1). It predicts k items for the next request

by choosing without replacement from the distribution p0,t, p1,t, . . . , pα−1,t.
Example 1. Let α = 3, k = 2. If the sequence σt1 of t = 9 pages seen until now is

210011102, we have f0(σ
9
1) = 3, f1(σ

9
1) = 4, f2(σ

9
1) = 2, and rt = 22 = 4. Algorithm

P ′
1 assigns probability p0,9 = 34/(34 + 44 + 24) ≈ 0.229 to page 0, probability p1,9 =

44/(34 + 44 + 24) ≈ 0.725 to page 1, and probability p2,9 = 24/(34 + 44 + 24) ≈ 0.045
to page 2. It predicts two pages out of these three by choosing without replacement
based on the above probability distribution. Pages 0 and 1 are the likely pages to be
chosen.

Algorithm P ′
1 can be shown to be optimal against the best one-state FSP for

general α ≥ 2 but only when k = 1 [23]. We can modify algorithm P ′
1 to get algorithm

P1 that is optimal against the best one-state FSP for general α ≥ 2, k ≥ 1.

Definition 3. We define subsequence σ0 = σ2
1, and σj = σ4j+1

4j−1+2 for j ≥ 1. We
call σj the jth r-subsequence of σn1 .

Notice from the definition of rt that P ′
1 predicts each page in an r-subsequence

using the same value for rt in (2) when t > 2.
Algorithm P1 works like algorithm P ′

1, except that the frequency counts for the
pages are reset to 0 at the start of each r-subsequence. That is, at time t > 1,
4j−1 < t ≤ 4j , algorithm P1 assigns to page i a probability pi,t proportional to(

fi(σ
t
4j−1+2)

)rt
.

Example 2. As in Example 1, let α = 3, k = 2, and let the sequence of t = 9
pages σt1 seen until now be 210011102. We have σ0 = 21, σ1 = 001, and the portion of
σ2 seen until now is 1102. The counts of pages 0, 1, and 2 in the current r-subsequence
are 1, 2, and 1, respectively, and rt = 22 = 4. Algorithm P1 assigns pages 0, 1, and 2
the probabilities p0,9 = 14/(14 +24 +14) ≈ 0.056, p1,9 = 24/(14 +24 +14) ≈ 0.889, and
p2,9 = 14/(14 + 24 + 14) ≈ 0.056, respectively. It predicts two pages out of these three
by choosing without replacement based on the above probability distribution.

This regular throwing away of past information by algorithm P1 makes the proof
of optimality more elegant. Algorithm P1 may also perform better than algorithm P ′

1

in practice, since it captures the effect of locality of reference found in page request
sequences [3, 5, 11, 19, 20, 33].

4. One-state case: Optimality of P1 vs. F(1). In this section we prove an
important special case of Theorem 1, namely, that the expected value of P1’s fault

OPTIMAL PREDICTION FOR PREFETCHING 1623

rate FaultP1
(σn1) converges to FaultF(1)(σ

n
1); the almost-sure convergence follows by

using the Borel–Cantelli lemma. As pointed out in section 2, given a sequence σn1 , the
following prefetcher F1 ∈ F(1) attains the minimum fault rate among all one-state
prefetchers: count the number of times page i, for 0 ≤ i ≤ α− 1, appears in σn1 . Let
C1(σ

n
1) = {i1, i2, . . . , ik} be the pages with the maximum k counts. For each time

instant t, 1 ≤ t ≤ n, F1 prefetches the k pages in C1(σ
n
1). We have

FaultF(1)(σ
n
1) = 1− fi1(σ

n
1) + fi2(σ

n
1) + · · ·+ fik,n(σn1)

n
.(3)

We now define a balanced form of a subsequence and an approximately balanced
form of a sequence. These notions are useful in showing the optimality of P1.

Definition 4. A subsequence σ̂ba is a balanced form of σba if
1. σ̂ba has the same composition of pages as σba, that is, for all 0 ≤ i ≤ α − 1,

page i appears the same number of times in σ̂ba as it does in σba;
2. for each a ≤ t ≤ b, page σ̂tt occurs the maximal number of times in σ̂ta in

comparison with the other pages.
For example, if σ10

1 = 1111211321, a balanced form is σ̂10
1 = 123121211.

Definition 5. A sequence σ̃n1 is an approximately or piecewise balanced form
of σn1 if

σ̃n1 = σ̂0σ̂1σ̂2 . . . ,

where σ̂j is a balanced form of σj, and σj is the jth r-subsequence of σn1 as defined in
Definition 3.

By (3) and the first condition in Definition 4, we have FaultF(1)(σ
n
1) = FaultF(1)(σ̃

n
1).

Our strategy to show optimality of P1 (Theorem 1) is a two-step process described
by the following two theorems. First, we show that the fault rate of P1 on σn1 is never
more than the fault rate of P1 on the approximately balanced σ̃n1 .

Theorem 4. For every sequence σn1 , we have

FaultP1(σ
n
1) ≤ FaultP1(σ̃

n
1).(4)

We then compute the fault rate of P1 on the approximately balanced σ̃n1 and show
that it is close to the fault rate of the best one-state machine for σn1 .

Theorem 5. For every sequence σn1 , we have

FaultP1
(σ̃n1)− FaultF(1)(σ

n
1) = O(log n/

√
n).(5)

The proofs of the above two theorems are dealt with in the next two subsections.

4.1. The approximately balanced sequence is sufficiently worst case. In
this subsection we prove Theorem 4 using an interesting extension of the switch anal-
ysis of [12] in conjunction with the important notion of boosted frequency counts (2).

We denote the jth r-subsequence σj by πη1 , where η = 4j−4j−1 is the length of σj .
The sequence πη1 can be converted to a balanced form π̂η1 by an iterative balancing
strategy. Without loss of generality, let the (τ + 2)nd page request in πη1 be 1, and
let the (τ + 1)st page request of the balanced sequence π̂τ+1

1 be 0. We denote by fi
the number of times page i appears in π̂τ1 . In particular, we denote the number of 0’s
in π̂τ1 by f0, and the number of 1’s in π̂τ1 by f1. We consider the following iterative
balancing strategy to convert π̂τ+1

1 to π̂τ+2
1 .

1624 P. KRISHNAN AND JEFFREY SCOTT VITTER

Balancing strategy. Since π̂τ+1
1 is balanced, f1 ≤ f0 + 1. If f1 ≥ f0, then π̂τ+1

1

appended with a 1 gives π̂τ+2
1 . If f1 < f0, we perform a “01” → “10” switch at

position (τ + 1, τ + 2) by moving the 1 in front of the 0. We continue this process
of “bubbling” the 1 forward through π̂τ1 by performing similar switches, until the
subsequence of the first τ + 2 page requests of πη1 is balanced.

Our proof of Theorem 4 consists in showing that each switch in the balancing
strategy does not lower the page fault rate of the entire sequence.

A similar but simpler idea worked in the binary case for a different algorithm
[12], in which the sequence did not need to be broken up into subsequences, and the
sequence σ̂n1 could be shown to be strictly worst case. We break σn1 into subsequences
as part of our method for achieving optimal computational efficiency (as discussed in
section 6).

We now show that a switch within an r-subsequence can only increase the fault
rate for algorithm P1. The fact that we allow k ≥ 1 predictions before each page re-
quest makes the probability terms in the analysis conditional on the previous prefetches
at that time step, and that complicates the analysis.

Lemma 1. Each switch involved in converting πη1 to π̂η1 creates a subsequence on
which P1 has a larger fault rate (that is, switches within an r-subsequence increase
the fault rate).

Proof. Let us denote by A the probability of predicting the 0 in πτ101πητ+3 and
by B the probability of predicting the 1 in πτ101πητ+3, where the 0 and 1 are in the
same r-subsequence. Similarly, let us denote by C the probability of predicting the 1
in πτ110σητ+3, and by D the probability of predicting the 0 in πτ110σητ+3, where the
1 and 0 are in the same r-subsequence. The number of faults algorithm P1 makes
on the portions πτ1 and πητ+3 will be the same before and after the switch, since the
probability of fault by P1 at position x of πη1 depends only on the composition of pages
in πx1 . (Recall that P1 throws away all previous counts for pages at the beginning of
an r-subsequence.) To show that a switch increases the fault rate, we must show that
the increase in the number of faults caused by moving the 0 to later in the sequence
overshadows the decrease in the number of faults caused by moving the 1 to earlier
in the sequence; that is, we need to show that (1−A) + (1−B) ≤ (1−C) + (1−D).
This is equivalent to showing that

A−D ≥ C −B.(6)

If P1 makes only one prediction at each step, the proof of (6) is easy. (The proof
follows directly from (7) for the special case k = 1.) However, P1 makes k ≥ 1
predictions at each time instant.

Let A = A1 + A2 + · · · + Ak, where Ai is the probability of predicting the 0 in
πτ101πητ+3 in the ith prediction. The probabilities B,C,D are similarly partitioned.
Each Ai can be further broken up into a “good part” GA

i and a “bad part” RA
i . The

good part GA
i is the probability of the event that we predict the 0 in πτ101πητ+3 in

the ith prediction and that none of the previous i − 1 predictions was a 1. The bad
part RA

i is the probability of the event that we predict the 0 in πτ101πητ+3 in the ith
prediction and that a 1 was predicted in one of the previous i−1 predictions. Clearly,
Ai = GA

i + RA
i , and RA

1 = 0. The quantities GB
i , R

B
i , G

C
i , R

C
i , G

D
i , R

D
i are defined

similarly. We now show the following two facts:
Fact 1. GA

i −GD
i ≥ GC

i −GB
i for 1 ≤ i ≤ k;

Fact 2. (GA
i −GD

i) + (RA
i+1−RD

i+1) = 0 and (GC
i −GB

i) + (RC
i+1−RB

i+1) = 0 for
1 ≤ i ≤ k − 1.

OPTIMAL PREDICTION FOR PREFETCHING 1625

Facts 1 and 2 say intuitively that the good parts of the ith prediction maintain
the relationship that we want. The bad parts of the ith prediction exactly cancel the
gain from the good parts of the (i − 1)st prediction. The lemma follows from the
above two facts as follows:

A−D =
∑

1≤i≤k
Ai −Di =

∑
1≤i≤k

(GA
i −GD

i) + (RA
i −RD

i) = GA
k −GD

k

by repeated application of Fact 2. Similarly, C−B = GC
k −GB

k . By Fact 1, GA
k −GD

k ≥
GC
k −GB

k , which implies A−D ≥ C −B.
We now prove Facts 1 and 2 by induction. Since πτ1 is an r-subsequence, at each

time step, algorithm P1 boosts frequencies by the same exponent rt; for convenience,
we denote this exponent by r. Let d =

∑α−1
0 (fi)

r, d1 = d − (f1)
r + (f1 + 1)r, and

d0 = d− (f0)
r + (f0 + 1)r. These quantities are involved in the denominators of the

rational expressions for the predictions. Let uAi = uAi (x1, . . . , xi−1) be the term in
GA
i that corresponds to predicting x1, . . . , xi−1, none of them a 0 or a 1 as the first

i−1 predictions and 0 as the ith prediction. (The order of the first i−1 predictions is
important. For example, when i = 3, the probability of predicting a 0 following x1, x2

is different from the probability of predicting a 0 following x2, x1.) The quantities
uBi , u

C
i , u

D
i are defined similarly. The expressions in Fact 1 can be expressed in terms

of the u’s; for example,

GA
i −GD

i =
∑

x1,...,xi−1

distinct, 6= 0, 1

uAi − uDi .

Let vAi = vAi (x1, x2, . . . , xi−2) be the term in RA
i that corresponds to predicting

a 0 in the ith prediction with a 1 as one of the first i − 1 predictions and the other
i − 2 predictions being x1, . . . , xi−2, none of them a 0 or a 1. (The order of these
i − 2 predictions is important, as it is with ui, but the relative point at which the 1
is predicted is arbitrary. In effect, vAi is the sum of i− 1 probability terms, where the
i−1 terms correspond to the i−1 positions that the “1” is predicted.) The quantities
vBi , v

C
i , v

D
i are defined similarly. The expressions in Fact 2 can be expressed in terms

of the u’s and the v’s; for example,

(GA
i −GD

i) + (RA
i+1 −RD

i+1) =
∑

x1,...,xi−1

distinct, 6= 0, 1

(uAi − uDi) + (vAi+1 − vDi+1).

Let den(d, 0) = d, and let den(d, i − 1) = d − (fx1
)r − · · · − (fxi−1

)r for i ≥ 2. Let
πden(d, i− 1) for i ≥ 2 be the (i− 1)-term falling product d× (d− (fx1

)r)× · · ·× (d−
(fx1

)r − · · · − (fxi−2
)r) = Πi−1

j=1den(d, j − 1).

Proof of Fact 1. It suffices to show by induction that uAi −uDi ≥ uCi −uBi . For the
base case when i = 1, uA1 −uD1 = (f0)

r/d−(f0)
r/d1, and uC1 −uD1 = (f1)

r/d−(f1)
r/d0.

Hence

uA1 − uD1
uC1 − uB1

=
(f0)

r

(f1)r
× (f1 + 1)r − (f1)

r

(f0 + 1)r − (f0)r
× d0

d1
=

(1 + 1/f1)
r − 1

(1 + 1/f0)r − 1
× d0

d1
.(7)

Since the function g(x) = xr is convex and f0 ≥ f1, the above quantity is at least 1.
From the induction hypothesis that uAi−1 − uDi−1 ≥ uCi−1 − uBi−1 we get

1626 P. KRISHNAN AND JEFFREY SCOTT VITTER

(fx1
fx2

· · · fxi−2
f0)

r

(
1

πden(d, i− 1)
− 1

πden(d1, i− 1)

)
≥ (fx1

fx2
· · · fxi−2

f1)
r

(
1

πden(d, i− 1)
− 1

πden(d0, i− 1)

)
.(8)

As in (7), since g(x) = xr is convex, and f0 ≥ f1, we have

(f0)
r

(f1)r
× d1 − d

d0 − d
× πden(d0, i− 1)

πden(d1, i− 1)
× den(d0, i− 1)

den(d1, i− 1)
≥ 0.

It follows that

(fx1
fx2

· · · fxi−1
f0)

r

πden(d1, i− 1)

(
1

den(d, i− 1)
− 1

den(d1, i− 1)

)
≥ (fx1fx2 · · · fxi−1f1)

r

πden(d0, i− 1)

(
1

den(d, i− 1)
− 1

den(d0, i− 1)

)
.(9)

Multiplying (8) by (fxi−1)
r/den(d, i−1) and adding to (9) gives us uAi −uDi ≥ uCi −uBi .

Proof of Fact 2. To prove that (GA
i − GD

i) + (RA
i+1 − RD

i+1) = 0, it suffices to
show that (uAi − uDi) + (vAi+1 − vDi+1) = 0. For the base case when i = 1, uA1 − uD1 =
(f0)

r(1/d− 1/d1), and

vA2 − vD2 =
(f1)

r(f0)
r

d(d− (f1)r)
− (f1 + 1)r(f0)

r

d1(d1 − (f1 + 1)r)
.

Using the fact that d1 = d + (f1 + 1)r − (f1)
r, it follows from simple algebra that

vA2 − vD2 + (uA1 − uD1) = 0.
For the inductive step, recall that vAi+1 is a sum of i probability terms, where the i

terms correspond to the i positions that the “1” is predicted. (The terms are each
rational expressions with different denominators.) In particular, vAi+1 equals

(fx1
fx2

· · · fxi−1
f0f1)

r

den(d, i− 1)− (f1)r

(
1

πden(d, i)
+

1

den(d, i− 2)− (f1)r

(
1

πden(d, i− 1)
+ · · ·

))
,

which can be simplified to

vAi+1 =
(fx1

fx2
· · · f0f1)

r

den(d, i− 1)− (f1)r

(
1

πden(d, i)
+

vAi
(fx1fx2 · · · fxi−2f0f1)r

)
.

Since d1 − (f1 + 1)r = d− (f1)
r, we find that vAi+1 − vDi+1 equals

(fx1fx2 · · · fxi−1f0)
r

den(d, i− 1)− (f1)r

(
(f1)

r

πden(d, i)
− (f1 + 1)r

πden(d1, i)
+

vAi − vDi
(fx1fx2 · · · fxi−2f0)r

)
.(10)

By the induction hypothesis, vAi −vDi = −(uAi−1−uDi−1). The value for uAi−1−uDi−1

is the expression on the left-hand side of (8). Substituting for uAi−1 − uDi−1 in (10) we
get

vAi+1 − vDi+1 =
(fx1fx2 · · · fxi−1f0)

r

d− (fx1)
r − · · · − (fxi−1)

r − (f1)r
× U,(11)

where

U =
(f1)

r

πden(d, i)
− (f1 + 1)r

πden(d1, i)
− 1

πden(d, i− 1)
+

1

πden(d1, i− 1)
.

OPTIMAL PREDICTION FOR PREFETCHING 1627

The quantity uAi − uDi can be expressed as

uAi − uDi = (fx1
fx2

· · · fxi−1
f0)

r

(
1

πden(d, i)
− 1

πden(d1, i)

)
.

Adding the above expression to (11) and simplifying we find that (uAi −uDi)+(vAi+1−
vDi+1) = 0. A similar analysis shows that (GC

i −GB
i) + (RC

i+1 −RB
i+1) = 0.

4.2. FaultP1(σ̃
n
1) is close to FaultF(1)(σ

n
1). In this subsection we prove The-

orem 5. Let F1 ∈ F(1) be the best one-state prefetcher for σn1 . Let F j
1 ∈ F(1) be the

best one-state prefetcher tuned for the jth r-subsequence σj . Let NumFaultsB(σba)
be the number of faults incurred by algorithm B on subsequence σba.

It is clear by definition that prefetcher F j
1 incurs at most as many faults on σj as

F1 incurs on σj . In other words,

NumFaultsF1
(σ̂j) = NumFaultsF1

(σj) ≥ NumFaultsF j
1
(σj) = NumFaultsF j

1
(σ̂j).(12)

Equation (12) directly implies the following lemma.
Lemma 2. The fault rate incurred for σn1 by using prefetcher F j

1 to prefetch for
the jth r-subsequence σj, for each j ≥ 0, is no greater than FaultF(1)(σ

n
1). That is,

FaultF(1)(σ
n
1) = FaultF(1)(σ̃

n
1) =

NumFaultsF1
(σ̂n1)

n
≥
∑

j≥0 NumFaultsF j
1
(σ̂j)

n
.

The above lemma is useful since it is easier to compare algorithm P1 with algo-
rithm F j

1 on page request sequence σ̂j than it is to compare P1 with F1.
Lemma 3. The number of faults that algorithm P1 incurs on σ̂j is close to the

number of faults of the optimal one-state machine tuned for σ̂j. In particular,

NumFaultsP1
(σ̂j)−NumFaultsF j

i
(σ̂j) = O((αk2)j2j).

From Lemmas 2 and 3 we get

FaultP1
(σ̃n1)− FaultF(1)(σ̃

n
1) ≤

∑
j

NumFaultsP1(σ̂j)−NumFaultsF j
1
(σ̃j)

n

= O

(
αk2

∑
j j2

j

n

)

= O

(
αk2 log n√

n

)
.(13)

Theorem 5 follows from (13) and the observation following Definition 5.
We now give the proof of Lemma 3.
Proof of Lemma 3. For simplicity, we denote by πη1 the balanced jth r-subsequence

σ̂j , where η = 4j − 4j−1 is the length of σ̂j . Divide πη1 into α subsequences π0, π1, . . . ,
πα−1, where exactly α − i different pages appear in πi. (Some of the πi’s may be
empty. Notice that since πη1 is balanced, each πi has the same number of occurrences
of each of the α − i pages in it.) We explicitly compute the difference between the
expected number of faults of P1 and the number of faults of F j

1 for each subsequence
πi. We need to be careful with the asymptotics involved, since the counts for the

1628 P. KRISHNAN AND JEFFREY SCOTT VITTER

pages are small in the earlier part of πη1 , but rt = O(
√
η) is relatively larger. For

simplicity, we drop the subscript t from rt in the following discussion; recall that rt
does not change in an r-subsequence.

Let |πi| be the length of subsequence πi. Algorithm F j
1 incurs |πi| ×max{0, 1 −

k/(α− i)} faults on πi. Define Li as

Li =

|π0|
α

+
|π1|
α− 1

+ · · ·+ |πi−1|
α− (i− 1)

if i ≥ 1,

0 if i = 0.

The quantity Li tracks the number of times a page that appears in πi has already
appeared in π0, π1, . . . , πi−1. The expected number of faults incurred by algorithm
P1 on πi is

NumFaultsP1
(πi) = |πi| −

|πi|/(α−i)∑
u=1

α−i−1∑
v=0

k∑
k1=1

Pr(u, v, k1),(14)

where Pr(u, v, k1) is the probability of predicting the ((u − 1) × (α − i) + v + 1)st
page request of πi in the k1th prediction. For notational simplicity, let t = (u− 1)×
(α− i) + v + 1. Clearly, the tth page has appeared Li + u− 1 times in πt−1

1 , and no
page in πi has appeared more than Li + u times in πt−1

1 . Since we require an upper
bound on NumFaultsP1(πi), we determine a lower bound for Pr(u, v, k1) as follows.
We only consider k1 ≤ α− i, and we only consider that subset of events when pages
with count greater than or equal to that of the tth page (i.e., pages appearing in πi)
were predicted in the previous k1 − 1 predictions. Hence

Pr(u, v, k1) ≥ (k1 − 1)!

(
α− i− 1
k1 − 1

) k1−1∏
w=0

(Li + u− 1)r

(α− i− w)(Li + u)r +
∑i−1

q=0(Lq+1)r
.

Notice that multiplying by (k1− 1)! in the above equation is essential, since the order
of the first (k1 − 1) predictions is significant. We get

Pr(u, v, k1) ≥ (α− i− 1)k1−1
k1−1∏
w=0

(Li + u− 1)r

(α− i− w)(Li + u)r +
∑i−1

q=0(Lq+1)r
,(15)

where the expression xy stands for the “falling power” x× (x− 1)× · · · × (x− y+ 1).
In our following analysis, the important intuition is that asymptotically Li + u−

1 ≈ Li + u, but (Li)
r � (Li + u)r. Replacing

∑i−1
q=0(Lq+1)

r by i(Li)
r, we get

Pr(u, v, k1) ≥ (α− i− 1)k1−1
k1−1∏
w=0

(Li + u− 1)r

(α− i− w)(Li + u)r + i(Li)r
.(16)

Adding and subtracting (Li + u)r to the numerator in (16) and simplifying, we get

Pr(u, v, k1) ≥ (α− i− 1)k1−1

(
k1−1∏
w=0

(Li + u)r

(α− i− w)(Li + u)r + i(Li)r
− δ1(u, i)

α− i− w

)
,(17)

where δ1(u, i) = ((Li + u)r − (Li + u− 1)r)/(Li + u)r.Adding and subtracting (i/α−
i− w)× (Li)

r to the numerator of the first rational term in (17) and simplifying, we
get

Pr(u, v, k1) ≥ (α− i− 1)k1−1

(α− i)k1
(1− (δ1(u, i) + δ2(u, i)))

k1 ,(18)

OPTIMAL PREDICTION FOR PREFETCHING 1629

where δ2(u, i) = i(Li)
r/(Li + u)r. With the expression for Pr(u, v, k1) from (18)

it is easy to verify that the leading term of NumFaultsP1
(πi) is |πi| × max{0, 1 −

k/(α − i)}, which is the number of faults incurred by F j
1 on πi. The error term

ε = NumFaultsP1(πi)−NumFaultsF j
1
(πi) equals

1

α− i

|πi|/(α−i)∑
u=1

α−i−1∑
v=0

k∑
k1=1

ε(u, i, k1),(19)

where

ε(u, i, k1) = 1− (1− δ1(u, i)− δ2(u, i))
k1 .

The following facts can be verified by using the asymptotic techniques from [15, Chap-
ter 9]:

1. δ1(u, i) ≤ r/(Li + u− 1) if Li + u− 1 ≥ r;
2. δ2(u, i) ≤ i× exp(−ru/2Li) if u ≤ Li, and δ2(u, i) ≤ i2−r if u ≥ Li.

The lower-order terms arising from the binomial expansion of (1−(δ1(u, i)+δ2(u, i))
k1

from (19) (i.e., terms of degree 2 or greater) can be disregarded if Li + u − 1 ≥ kr
and u ≥ √

3η log(αk). When Li + u − 1 < kr or u <
√

3η log(αk), we can bound
ε(u, i, k1) by 1; the net contribution of this to ε is O(αr ln(αk)). Disregarding lower-
order terms in (19) and using the expressions from Facts 1 and 2 above, we get
ε = O(αk2r ln η + αk2η/r) = O(αk2

√
η log η) = O(αk2j2j).

5. Generalizing P1 to get P . In this section we prove Theorem 2 by construct-
ing our optimal prefetcher P . The prefetcher P is a mix of P1 and the character-based
version of the Lempel–Ziv algorithm for data compression. The original Lempel–Ziv
algorithm is a word-based data compression algorithm that parses the input string xn1
into distinct substrings x0, x1, x2, . . ., xc such that, for all j ≥ 1, substring xj with-
out its last character is equal to some xi for 0 ≤ i < j. (We use the convention that
x0 = λ, the empty substring.) It encodes the string one substring at a time. Since the
substrings are prefix-closed, they can be represented by a dynamically growing tree T
(the “LZ tree”), with the nodes of the tree representing the substrings and node xi
being an ancestor of node xj if substring xi is a prefix of substring xj ; λ is the root
of the tree. An example of the LZ tree is given in Figure 1a.

Let x(z) be the sequence of pages seen until now by P when at state z. At the
end of a parse, prefetcher P positions itself at the root of the LZ tree. It looks at the
subsequence x(z) at its current state z and simulates P1 on x(z) to prefetch for the
next page. (Algorithm P1 breaks x(z) into r-subsequences and prefetches based on the
current r-subsequence at state z as described in section 3. Note that P1 does not have
to maintain x(z) explicitly; it only has to maintain counts for the different pages.) On
observing the next page request j, it updates x(z), moves down the transition labeled
by j, and prefetches the next page similarly by simulating P1 on the sequence of
pages seen at the new current state. On reaching a leaf state, it prefetches k pages at
random, and the next request ends a parse. The important point is that although the
counts for some or all of the transitions can be 0 (since algorithm P1 resets the counts
for all pages to 0 at the beginning of an r-subsequence), the transitions themselves
are retained in the tree. An example snapshot of the data structure of P is given in
Figure 1b.

We now briefly explain why P is optimal against an arbitrary s-state machine
(Theorem 2) using the interesting approach of [12]. An mth-order Markov prefetcher

1630 P. KRISHNAN AND JEFFREY SCOTT VITTER

Fig. 1. Snapshot of data structure for algorithm P . Assume for simplicity that our alphabet is
{0, 1}. We consider the page request sequence xt

1 = “00001010011110” The Ziv–Lempel encoder
parses this string as “(0)(00)(01)(010)(011)(1)(10)” The tree T that is built at the end of the
seventh parse is pictured above in (a). In (b), next to each node/state z of the tree we give the
sequence of page requests x(z) seen at that state. For example, for any page request sequence xt

1 that
is parsed by the Lempel–Ziv data compressor into distinct substrings λ, x1, x2, . . ., xc, the first page
of each substring xi, 1 ≤ i ≤ c, forms x(λ), the sequence of pages requested when the current state
is the root of the tree. In (b), x(λ) = 0000011. The dotted vertical lines in the sequences delimit
the r-subsequences, and the underlined portion is the current r-subsequence. The counts (given in
italics) on the transitions out of each state z are the counts obtained by simulating P1 on x(z).

predicts its k choices for the next page based solely on the previous m page requests
of the sequence. In particular, an mth-order prefetcher can be described by an FSP
having αm states, where each state is labeled by an m-page context (denoting the
last m pages requested), and the transitions denote the unique change from one m-
context to the next. The pages to prefetch are determined solely by the state that the
mth-order Markov prefetcher is in, which is equivalent to the most recent m pages
requested. The basic idea of the proof is to compare both prefetcher P and the best
s-state prefetcher with mth-order Markov prefetchers.

If we let m be large, an mth-order Markov prefetcher achieves, for every se-
quence σn1 and any s, a fault rate close to the fault rate of the best s-state prefetcher.
In particular, by simple extensions to [12, Theorem 2] as shown in Appendix B, we
see that

FaultM(αm)(σ
n
1) ≤ FaultF(s)(σ

n
1) +O

(√
log s

m+ 1

)
.(20)

The idea of the proof in [12] is to consider a “cross-product” machine of the mth-
order Markov predictor and the s state prefetcher and to show that the cross-product
machine is not much better than either of its constituents.

The prefetcher P can be looked upon as a Markov prefetcher of growing order.
In particular, most nodes in the tree T built by P (i.e., nodes below a depth of m)
have a context of length greater than m. Hence one would intuitively expect that
in the limit as n → ∞, prefetcher P will “beat” any mth-order Markov predictor.
Theorem 1 can be applied to each node of T , and by carefully summing the errors

OPTIMAL PREDICTION FOR PREFETCHING 1631

over each node we get

FaultP (σn1) ≤ FaultM(αm)(σ
n
1) + δ(n,m),(21)

where for a fixed m, δ(n,m) = O((log logn)/
√

log n). This idea was used in [12,
Theorem 4] for a binary alphabet, and the simple changes required to obtain (21) are
summarized in Appendix B. Theorem 2 follows from (20) and (21).

Given that P1 is optimal against F(1) (Theorem 1), in order to show optimality
of P against F(s) by the approach described above, we need to extend some results
of [12] to hold for the prefetching problem. These extensions are simple as described
in Appendix B. The intuition for why these extensions are simple is because the
comparisons are primarily between two “offline” algorithms, and the online algorithm
is not much involved, as opposed to the more complex analysis of section 4.

6. Constant-time prediction. In this section we prove Theorem 3 by showing
that our prefetcher P runs in constant time (independent of α, k) on the average for
each of the pages it prefetches into cache.

In section 5, we showed that it suffices to consider one-state prefetchers; the
prefetcher at each step uses the appropriate P1 to generate random variates according
to a dynamically changing set of weights. We showed earlier that P1’s prediction
strategy is optimal, in which we successively pick a page at random (without replace-
ment) with probabilities in proportion to the boosted frequency counts (f0)

r, (f1)
r,

. . . , (fα−1)
r, where r ≈ √t. (Actually, we use r = 2j , where 4j−1 < t ≤ 4j , so that r

seldom changes. The frequency counts fi are reset to zero when r changes.)
The general problem of generating a random variate with a value in the range

{0, 1, 2, . . . , α − 1} and distributed according to α dynamically changing weights
w0, w1, w2, . . . , wα−1 is solved optimally by Matias, Vitter, and Ni [26, section 5].
The idea at an intuitive level is to group the weights into ranges according to their
values. Range j stores weights in the range [2j , 2j+1). Each range is said to have
a weight equal to the sum of the weights it contains. With high probability, the
individual weight chosen during the generation will be within the first O(logα) ranges,
so each successive group of O(logα) ranges should be processed in a recursive data
structure according to the weights of the ranges. The use of the rejection method [21]
is used to adjust the probabilities of generation appropriately, since the weights in
each bucket may vary by a factor of 2. After two recursive levels, the problem reduces
to generating one of O(log logα) weights, each in the range [1, logα], which can be
done dynamically in constant time by the clever table lookup method of Hagerup,
Mehlhorn, and Munro [16].

There is also extensive concern in [26] about the choice of hashing parameters in
the universal hashing schemes used to get linear space, since no a priori bound on the
key values is known. (In fact, a constant-time solution to the general dictionary prob-
lem is proposed in [26].) The model of computation allows arithmetic computation
and truncated logarithms of quantities up to value O(W), where W is the maximum
weight.

In our application, the computation assumption of [26] is unreasonable, since it
allows constant-time operations on arbitrary numbers of bits. We make the stronger
requirement often used in algorithm design that the standard arithmetic operations
(such as addition, multiplication, division, and using exponents and logarithms) take
constant time with finite-precision quantities of O(log n) bits, where n is the length
of the sequence of page requests. However, the boosted frequencies wi = (fi)

r used
in the random variate generation can be as large as n

√
n in value, which cannot be

1632 P. KRISHNAN AND JEFFREY SCOTT VITTER

manipulated efficiently. Fortunately we can get around the precision problem by
approximating wi by 2dr lg fie. The first level of the algorithm in [26] is applied to
these approximated weights, using arithmetic on the exponents, which involves only
O(log n) bits. For example, we can determine the bucket j that contains 2dr lg fie in
constant time using operations on O(log n) bits by noting that j can be represented
with only about lg lg((fi)

r) = lg r+lg lg fi ≤ 2 lg n bits. The range j can be computed,
therefore, in constant time using O(log n)-bit arithmetic. The resulting recursive
subproblems have polynomial-sized weights, and the rest of the construction continues
as in [26].

Because of the initial approximation, if the “approximated” page i is selected for
generation, a final acceptance–rejection test must be done before actually choosing
page i; the acceptance probability is (fi)

r/2dr lg fie, which is at least 1/2. This test can
be done conceptually by generating a uniform random integer U in the range [1, 2j+1)
and testing if U ≤ (fi)

r, but handling quantities of that magnitude is infeasible,
as mentioned above. It suffices to determine if lgU ≤ r lg fi, which can be done
in constant time using finite precision by generating the exponentially distributed
random variate lgU directly [21, p. 128]. The expected number of steps needed
before the acceptance or rejection is determined is a small constant, so finite precision
suffices. This completes the proof of Theorem 3.

7. Conclusions. We have studied the problem of prediction of sequences (of
pages requests, for example) drawn from a finite but arbitrary alphabet of cardi-
nality α, in which we can make, at each time step, k predictions for the next item
(page). This corresponds to the problem of pure prefetching in databases. We have
developed a simple randomized weighting algorithm P1 and have combined it with
the Lempel–Ziv data compressor to get an efficient prefetcher P . We have shown an-
alytically that P ’s fault rate converges almost surely to that of the best FSP for every
(worst-case) sequence of page requests. It has been shown in [7] that any optimal
algorithm for the binary alphabet case has to be necessarily randomized. Because of
the way our algorithm is designed, we need to spend at most constant expected time
making the random choices for each prediction, which is optimal. Thus the algorithm
is simultaneously optimal with respect to fault rate and running time.

An open problem is to study if there are stronger analysis models closer to the
competitive model that would permit prediction problems such as prefetching to be
studied. It would also be interesting to improve the convergence bounds while main-
taining optimal running time.

We have also investigated nonpure prefetching in [10, 35], in which there may not
always be enough time to load the cache with k pages before the user issues the next
page request, and prefetching requests may have to be done in advance. We have
also described therein a nice way of gathering the statistics with no I/O overhead.
The resulting prefetcher is practical in terms of time, disk accesses, and fault rate
and outperforms other known prefetchers. We also expect that our results apply
to prefetchers based on data compression methods other than Lempel–Ziv that are
optimal in various models.

Appendix A. Nonoptimal prefetchers. In section A.1 we give a simple ex-
ample which illustrates that no deterministic algorithm can be optimal for prefetching
in the worst case. In section A.2, we show that the Proportional algorithm, which
at time t prefetches page i with probability proportional to fi(σ

t
1), where fi(σ

t
1), for

0 ≤ i ≤ α − 1, denotes the number of times page i appears in σt1, is not optimal.

OPTIMAL PREDICTION FOR PREFETCHING 1633

For both proofs of nonoptimality, we develop a page request sequence with alpha-
bet A = {0, 1}, cache size k = 1, and compare it with the best 1-state prefetcher.

From an intuitive standpoint, algorithm Proportional is too conservative, while
deterministic algorithms are “too naive” and hence susceptible to worst-case-type
adversaries (like FSPs). Algorithm P1, by choosing the high probability pages with
very high likelihood, closely tracks the optimal. The tricky issues are proving the
optimality of P1 and making predictions in a computationally efficient fashion.

A.1. Deterministic algorithms. It is easy to see that the fault rate of an
optimal 1-state prefetcher for any sequence with α = 2 and k = 1 is at most 1/2,
since it predicts at each time instant the overall most frequent page. We can make a
deterministic algorithm fault at every page request by creating a sequence such that
the next page request is for the page not in cache.

A.2. Algorithm Proportional. Consider the page request sequence

σn1 = 01010101 . . . 010000 . . . 00,

where the first “0101. . .” subsequence is of length n/2, and it is followed by n/2 0’s.
The fault rate of the optimal 1-state prefetcher (which always predicts “0” to be
the next page request) is 1/4. Algorithm Proportional is expected to incur at least
1/2×n/2 faults in the first n/2 page requests. Since the proportion of 0’s in the entire
sequence is 3/4, algorithm Proportional incurs, on the average, more than 1/4× n/2
faults for the last n/2 page requests. This implies a net average fault rate of more
than 3/8, which is clearly suboptimal.

Appendix B. Proof of Theorem 2. In this section we continue the discussion
from section 5 and present the required extensions to the results of [12] in order to
prove optimality of prefetcher P . (Recall that [12] deals with the binary alphabet case,
which corresponds to α = 2, k = 1.) The main objective of this section is to show the
necessary extensions required to prove (20) and (21) (which are the counterparts for
Theorems 2 and 4 from [12]).

We start with a definition of mth-order Markov prefetchers.
Definition 6. An mth-order Markov prefetcher prefetches for its next page based

solely on the previous m page requests of the sequence. Using the notation from Defini-
tion 1, an mth-order Markov prefetcher has αm states, where each state is (represents)
an m-context (x1, x2, . . . , xm), and g((x1, . . . , xm), u) = (x2, . . . , xm, u). We denote
the fault rate of an mth-order prefetcher by FaultM(αm)(σ

n
1), where M(αm) ⊆ F(αm).

We also introduce notation to help describe faults easily.
Definition 7. Given an α-probability vector ~p = (p0, . . . , pα−1), we denote by

minα−k(~p) the sum of the minimum α− k elements of ~p. In other words if p0 ≥ p1 ≥
· · · ≥ pα−1, then minα−k(~p) =

∑α−1
i=k pi.

Proving (20) is equivalent to showing that Theorem 2 from [12] holds for prefetch-
ing. As mentioned in section 5, the proof of [12, Theorem 2] is based on comparing
the s-state prefetcher and the mth-order Markov prefetcher with a cross product of
these two machines.1 Theorem 2 of [12] is strongly dependent on [12, Lemma 1],
where the mth-order Markov machine is compared with the cross-product machine.
The basic idea of [12, Lemma 1] is to bound prediction error by a function of the

1The term “cross product” is taken from [36], where a similar product of two machines was used
to prove the optimality of prefetchers under a Markov source model.

1634 P. KRISHNAN AND JEFFREY SCOTT VITTER

empirical entropies, and it is based on the following fact: for every 0 ≤ p, q ≤ 1,

p log
p

q
+ (1− p) log

1− p

1− q
≥ 2

ln 2
(min{p, 1− p} −min{q, 1− q})2 .(22)

It is not hard to see that the left-hand side of (22) is closely related to the entropy
and the right-hand side of (22) to the prediction error. (The idea of bounding error
for prefetching by bounding coding length differences was used independently in [36]
to derive optimal prefetchers from data compressors under a Markov source input
model.) A fact equivalent to (22) that we prove for our prefetching problem (via
Lemmas 4 and 5 below) is the following: given two probability vectors ~p and ~q,

α∑
1

pi ln
pi
qi
≥ 1

2

(
min
α−k

(~p)−min
α−k

(~q)

)2

.(23)

The proof of [12, Lemma 1] follows from (22), Jensen’s inequality, and the convexity of
the square function. The proof of [12, Theorem 2] follows from [12, Lemma 1], Jensen’s
inequality, the concavity of the square root function, and the chain rule of conditional
entropies. Except for (22), the other aspects of the proof of [12, Theorem 2] are
effectively independent of the alphabet and cache size. To derive (20), we consider
the proof of [12, Theorem 2] and uniformly replace min{p0, p1}, where p0 and p1

are the probabilities of a 0 and a 1, by minα−k(~p), where ~p is the corresponding α-
probability vector for prefetching, replace summations over {0, 1} by summations over
the alphabet A, and use (23) in place of (22).

We now prove (23) using the following two lemmas.
Lemma 4. Given two α-probability vectors ~p and ~q, we have

min
α−k

(~p)−min
α−k

(~q) ≤
α−1∑
i=0

|pi − qi|.

Proof. Without loss of generality assume p0 ≥ p1 ≥ · · · ≥ pα−1. Let X =
{0, 1, . . . , k− 1}, and let Y = {k, k+ 1, . . . , α− 1}. Hence minα−k(~p) =

∑
i∈Y pi. Let

Z = {i1, i2, . . . , iα−k} be the α− k pages with minimum count in ~q. Let U = Z ∩ Y ,
and V = Z ∩X. By definition, minα−k(~p)−minα−k(~q) =

∑
i∈Y pi −

∑
i∈Z qi. Since

by assumption p0 ≥ p1 ≥ · · · ≥ pα−1, we have

min
α−k

(~p)−min
α−k

(~q) ≤
∑
i∈U

(pi − qi) +
∑
i∈V

(pi − qi) ≤
∑
i∈A

|pi − qi|,

where A is the alphabet as given in Definition 1.
The next lemma is well known; the proof can be found in [2, 36]. The summation

on the right-hand side of the equation in the lemma is the Kullback–Leibler divergence
of ~q w.r.t. ~p.

Lemma 5. Given two probability vectors (p0, . . . , pα−1) and (q0, . . . , qα−1), we
have (

α∑
i=0

|pi − qi|
)2

≤ 2
α∑
i=1

pi ln
pi
qi
.

To verify (21) (i.e., the equivalent of [12, Theorem 4] for prefetching), the proof
technique presented in [12] carries over with virtually no change; we need to use

OPTIMAL PREDICTION FOR PREFETCHING 1635

Theorem 1 of our paper in place of [12, Theorem 1]. (As done earlier, we do need
to uniformly replace min{p0, p1} by minα−k(~p) and replace summations over {0, 1}
by summations over the alphabet A.) The basic idea of the proof is to consider
separately each node of the tree T created by P , look at the faults for the pages
requested when at that node, and take the average of these individual faults weighted
by the number of times the node is visited. The main observation is that for most
nodes (i.e., nodes below a depth of m), there is a mapping from the nodes of T to
the states of the mth-order Markov prefetcher; hence bounding the error at each
node of T involves comparing with the best one-state prefetcher, which is done in
Theorem 1. Since there are at most c = O(n/ log n) nodes in T [37], and the
one-state error from Theorem 1 is O((log n)

√
n/n), the net error turns out to be

O((log(n/c))
√
n/c/(n/c)) = O((log logn)/

√
log n). (This is as opposed to the case

of α = 2, k = 1 studied in [12],where the one-state error is O(1/
√
n), yielding a net

error of O(1/
√

log n).)
This completes our description of the extensions to [12] required to prove Theo-

rem 2.

REFERENCES

[1] D. Aldous and U. Vazirani, A Markovian extension of Valiant’s learning model, in Proc. 31st
Annual IEEE Symposium on Foundations of Computer Science, October 1990, pp. 392–396.

[2] Y. Amit and M. Miller, Large Deviations for Coding Markov Chains and Gibbs Random
Fields, Technical Report, Washington University, St. Louis, MO, 1990.

[3] L. A. Belady, A study of replacement algorithms for virtual storage computers, IBM Systems
J., 5 (1966), pp. 78–101.

[4] D. Blackwell, An analog to the minimax theorem for vector payoffs, Pacific J. Math., 6
(1956), pp. 1–8.

[5] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of
reference, in Proc. 23rd Annual ACM Symposium on Theory of Computation, May 1991.

[6] T. F. Chen and J. L. Baer, Reducing memory latency via non-blocking and prefetching
caches, in Proc. 5th Internat. Conf. on Architectural Support for Programming Languages
and Operating Systems, Department of Computer Science and Engineering, University of
Washington, Boston, MA, October 1992.

[7] T. M. Cover, Behavior of predictors of binary sequences, in Proc. 4th Prague Conference on
Information Theory, Statistical Decision Functions, Random Processes, Publishing House
of the Czechoslovak Academy of Sciences, Prague, 1967, pp. 263–272.

[8] T. M. Cover and A. Shenhar, Compound Bayes predictors with apparent Markov structure,
IEEE Trans. Systems Man Cybernet., V SMC-7 (1977), pp. 421–424.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991.
[10] K. Curewitz, P. Krishnan, and J. S. Vitter, Practical prefetching via data compression, in

Proc. 1993 ACM SIGMOD International Conference on Management of Data, May 1993,
pp. 257–266.

[11] P. J. Denning, Working sets past and present, IEEE Trans. Software Engrg., SE-6 (1980),
pp. 64–84.

[12] M. Feder, N. Merhav, and M. Gutman, Universal prediction of individual sequences, IEEE
Trans. Inform. Theory, IT-38 (1992), pp. 1258–1270.

[13] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young, On
competitive algorithms for paging problems, J. Algorithms, 12 (1991), pp. 685–699.

[14] R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York, 1968.
[15] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison–Wesley,

Reading, MA, 1989.
[16] T. Hagerup, K. Mehlhorn, and I. Munro, Optimal algorithms for generating time vary-

ing discrete random variables, in Proc. of the 20th Annual International Coll. on Au-
tomata Languages and Prog., Lecture Notes in Comput. Sci. 700, Springer, New York,
1993, pp. 253–264.

[17] J. F. Hannan, Approximation to Bayes Risk in Repeated Plays, Contributions to the Theory
of Games, Vol. 3, Annals of Mathematical Studies, Princeton University Press, Princeton,
NJ, 1957, pp. 97–139.

1636 P. KRISHNAN AND JEFFREY SCOTT VITTER

[18] P. G. Howard and J. S. Vitter, Analysis of arithmetic coding for data compression, In-
vited paper in Special Issue on Data Compression for Images and Texts, Inform. Process.
Management, 28 (1992), pp. 749–763.

[19] S. Irani, A. R. Karlin, and S. Phillips, Strongly competitive algorithms for paging with
locality of reference, in Proc. 3rd Annual ACM-SIAM Symposium of Discrete Algorithms,
January 1992.

[20] A. R. Karlin, S. J. Phillips, and P. Raghavan, Markov paging, in Proc. 33rd Annual IEEE
Conference on Foundations of Computer Science, October 1992, pp. 208–217.

[21] D. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, MA, 1981.

[22] D. F. Kotz and C. S. Ellis, Prefetching in File Systems for MIMD Multiprocessors, IEEE
Transactions on Parallel and Distributed Systems, Vol. 1, April 1990, pp. 218–230.

[23] P. Krishnan and J. S. Vitter, Optimal Prediction for Prefetching in the Worst Case, Tech-
nical Report DUKE–CS–93–26, Duke University , Durham, NC, 1993.

[24] P. Laird, TDAG: An Algorithm for Learning to Predict Discrete Sequences, FIA-92-01, NASA
Ames Research Center, AI Research Branch, Moffet Field, CA, 1992.

[25] G. G. Langdon, A Note on the Ziv–Lempel Model for Compressing Individual Sequences,
IEEE Trans. Inform. Theory, Vol. 29, March 1983, pp. 284–287.

[26] Y. Matias, J. S. Vitter, and W. C. Ni, Dynamic generation of discrete random variates,
in Proc. 4th Annual SIAM/ACM Symposium on Discrete Algorithms, Austin, TX, Jan-
uary 1993, pp. 361–370.

[27] L. A. McGeoch and D. D. Sleator, A strongly competitive randomized paging algorithm,
Algorithmica, 6 (1991), pp. 816–825.

[28] N. Merhav and M. Feder, Universal Sequential Learning and Decision from Individual Data
Sequences, in Proc. 5th ACM Workshop on Computational Learning Theory, Santa Cruz,
July 1992.

[29] T. C. Mowry, M. S. Lam, and A. Gupta, Design and evaluation of a compiler algorithm
for prefetching, in Proc. 5th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems Computer Systems Laboratory, Boston, MA,
October 1992.

[30] M. Palmer and S. Zdonik, Fido: A cache that learns to fetch, in Proc. 1991 International
Conference on Very Large Databases, Barcelona, September 1991.

[31] A. Rogers and K. Li, Software support for speculative loads, in Proc. 5th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
Department of Computer Science, Boston, MA, October 1992.

[32] K. Salem, Adaptive Prefetching for Disk Buffers, CESDIS, Goddard Space Flight Center,
Greenbelt, MD, TR–91–46, January 1991.

[33] G. S. Shedler and C. Tung, Locality in page reference strings, SIAM J. Comput., 1 (1972),
pp. 218–241.

[34] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Com-
munications of the ACM, 28 (1985), pp. 202–208.

[35] J. S. Vitter, K. Curewitz, and P. Krishnan, Online Background Predictors and Prefetchers,
Duke University, United States Patent No. 5,485,609, January 16, 1996.

[36] J. S. Vitter and P. Krishnan, Optimal prefetching via data compression, J. Assoc. Comput.
Mach., 143 (1996), pp. 771–793.

[37] J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding, IEEE
Trans. Inform. Theory, 24 (1978), pp. 530–536.

A CORRECTNESS CONDITION FOR HIGH-PERFORMANCE
MULTIPROCESSORS∗

HAGIT ATTIYA† AND ROY FRIEDMAN‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1637–1670, December 1998 007

Abstract. Hybrid consistency, a consistency condition for shared memory multiprocessors,
attempts to capture the guarantees provided by contemporary high-performance architectures. It
combines the expressiveness of strong consistency conditions (e.g., sequential consistency, lineariz-
ability) and the efficiency of weak consistency conditions (e.g., pipelined RAM, causal memory).
Memory access operations are classified as either strong or weak. A global ordering of strong opera-
tions at different processes is guaranteed, but there is very little guarantee on the ordering of weak
operations at different processes, except for what is implied by their interleaving with the strong
operations. A formal and precise definition of this condition is given and an algorithm for providing
hybrid consistency on distributed memory machines is presented. The response time of the algorithm
is proved to be within a constant multiplicative factor of the (theoretical) optimal time bounds.

Key words. distributed shared memory, consistency conditions, sequential consistency, hybrid
consistency, weak consistency

AMS subject classifications. 68-02, 68M07, 68P05, 68Q10, 68Q20, 68Q22, 68Q60, 68Q65

PII. S0097539795289215

1. Introduction. Shared memory is an attractive paradigm for communication
among computing entities because it is familiar from the uniprocessor case, it is more
high level than message passing, and many of the classical solutions for synchroniza-
tion problems were developed for shared memory. The fundamental problem is how
to provide programmers with a useful model of logically shared data that can be ac-
cessed atomically, without sacrificing performance. The model must specify how the
data can be accessed and what guarantees are provided about the results.

To enhance performance (e.g., response time), many implementations maintain
multiple copies of the same logical piece of shared data (caching). Also, multiple
application programs must be able to execute concurrently. More complications arise
because at some level, each access to shared data has duration in time, from its start to
its end; it is not instantaneous. A consistency mechanism guarantees that operations
will appear to occur in some ordering that is consistent with some condition. Much
research has addressed the issue of consistency for various system types and levels of
abstraction. A major issue is which consistency condition should be supported: which
conditions can be implemented efficiently, which conditions can be used conveniently,
and which conditions support faster programs.

Until recently, theoretical research on this subject addressed strong consistency
conditions like sequential consistency and linearizability [14, 21, 22, 24, 29, 41, 44, 45,
48, 51, 54]. These conditions guarantee that operations appear to be executed atom-
ically, in some sequential order that is consistent with the order seen at individual

∗ Received by the editors July 17, 1995; accepted for publication (in revised form) August 30, 1996;
published electronically June 3, 1998. This research was supported by grant 92-0233 from the United
States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, and Technion V.P.R.—B. and
G. Greenberg Research Fund (Ottawa). An extended abstract of this work appears in Proceedings
of the 24th ACM Symposium on Theory of Computing, May 1992, pp. 679–690.

http://www.siam.org/journals/sicomp/27-6/28921.html
† Department of Computer Science, Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il). Part

of this work was performed while the author was visiting DEC Cambridge Research Laboratory.
‡ Department of Computer Science, Cornell University, Ithaca, NY 14850 (roy@cs.cornell.edu).

1637

1638 HAGIT ATTIYA AND ROY FRIEDMAN

processes.1 Sequential consistency and linearizability provide a clean and easy seman-
tics for the execution of operations; programming using these conditions is (relatively)
easy.

Unfortunately, supporting either sequential consistency or linearizability has a
nonnegligible cost (cf. [12, 29, 40, 46]); i.e., these consistency conditions cannot be
implemented efficiently. A way around this cost is to define conditions which pro-
vide weaker guarantees on the ordering of operations and can be efficiently imple-
mented. Prominent among these weaker conditions are mixed consistency conditions
(e.g., [1, 20, 30, 35, 38, 51]) that distinguish between two types of operations—strong
and weak. Typically, strong operations appear to be executed atomically, in some
sequential order that is consistent with the order seen at individual processes.2 The
only guarantees provided for weak operations are those implied by their interleaving
with strong operations. Mixed conditions can be implemented so that weak opera-
tions are extremely fast, without degrading the response time for strong operations.
Thus, a programmer can use the fast weak operations most of the time and resort to
the slower strong operations only when global coordination is required.

In this paper, we make a step towards a theoretical study of mixed conditions for
shared memory consistency, in an attempt to further our understanding of the issues
involved in selecting and implementing a memory consistency condition.

Our first contribution is a formal and precise definition of hybrid consistency,
which is a specific mixed condition. Very informally, hybrid consistency guarantees
two properties.

1. Strong operations appear to be executed in some sequential order.
2. If two operations are invoked by the same process and one of them is strong,

then they appear to be executed in the order in which they were invoked.
In particular, the second property guarantees that a strong operation appears to be
executed after any operation (weak or strong) invoked before it by the same process,
and before any operation (weak or strong) invoked after it by the same process. The
definition applies to any collection of objects for which a sequential specification is
provided (cf. [41]).

Our definition is very high-level and abstract—it describes the way operations
appear to the programmer, not the way they are implemented. This results in a
relatively simple definition and allows us to optimize its implementation.

We believe that hybrid consistency supports common concurrent programming
techniques. In section 4, we show how Peterson’s simple mutual exclusion algorithm
[50] can be modified to exploit hybrid consistency. We discuss the performance ben-
efits achieved by using hybrid consistency and illustrate how the formal definition is
used when arguing about the correctness of algorithms. The correctness proof of this
algorithm is quite similar to the proof of Peterson’s original algorithm, which assumes
sequential consistency. This may indicate that the complexity of arguing about pro-
grams assuming hybrid consistency is not much greater than the complexity of arguing
about them assuming sequential consistency.

Our second contribution is an algorithm that implements hybrid consistency on
distributed memory machines [14, 20, 45, 51]; our algorithm supports read/write
objects and assumes each processor has a copy of every object. The algorithm is
completely asynchronous. Weak operations are executed instantaneously, while the

1 These conditions are similar in flavor to the notion of serializability from database theory [15, 49];
however, serializability applies to transactions which aggregate many operations.

2 In some cases, e.g., [1, 35, 38], the requirements from strong operations are slightly weaker.

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1639

response time for strong operations is linear in the network delay. The algorithm is
based on an atomic broadcast mechanism for sending messages. This mechanism is
used to guarantee that all strong operations are executed by all processes in the same
order. All weak writes to the same location are executed in the same order by all
processes. Combined with the fact that a strong operation does not start until all
previous operations have been executed by all processes, and does not terminate until
it was executed by all other processes, this guarantees the second property of hybrid
consistency. By adapting proof techniques from [12, 46], we show that the response
time of our algorithm is within a constant factor of the optimum. Algorithms for
providing hybrid consistency for other objects, using somewhat different techniques,
appear in [33].

Another class of consistency conditions are those that, essentially, include only
weak operations, e.g., [5, 39, 46]. It has been shown that without strong operations,
mutual exclusion can be solved only by centralized algorithms [10, 32]. We do not
address these conditions any further in this paper.

The rest of the paper is organized as follows: section 2 includes our basic defini-
tions and some notation. Section 3 contains the definition of hybrid consistency and
a discussion of related definitions. Section 4 provides an example of programming
with hybrid consistency. In section 5, we present an algorithm for providing hybrid
consistency, together with its correctness proof and performance analysis. Section 6
contains lower bounds on the response time of strong operations under hybrid consis-
tency. We conclude, in section 7, with a discussion of our results and directions for
further research.

2. The system. We consider a collection of application programs running con-
currently and communicating via virtual shared memory, which consists of a collection
of objects. We assume a system consisting of a collection of nodes P connected via
a communication network; each application program runs on a different node. The
shared memory abstraction is implemented by a memory consistency system (mcs),
which uses local memory and some protocol executed by the mcs processes (one at
each node). A correctness condition is defined at the interface between the application
programs (written by the user) and the mcs processes (supplied by the system). Thus,
the mcs must provide the proper semantics when the values of the responses to calls
are considered, throughout the network. An illustration of the system architecture is
given in Figure 1.

The following events may occur at the mcs process on node i.

1. Call events: The initiation of operations by the application program according
to their specification. For example, in the case of read/write objects, the call
events are Readi(X) and Writei(X, v) for all objects X and values v.

2. Response events: The response of the mcs to operations initiated by the
application program, according to their specification. For example, in the
case of read/write objects, the response events are Returni(X, v) and Acki(X)
for all objects X and values v.

3. Message-receive events: receive(i,m, j) for all messages m and mcs processes
pi and pj : the mcs process on node i receives message m from the mcs process
on node j.

4. Message-send events: send(i,m, j) for all messages m and mcs processes pi
and pj : the mcs process on node i sends message m to the mcs process on
node j.

The call and message-receive events are interrupt events.

1640 HAGIT ATTIYA AND ROY FRIEDMAN

-

��

-

networkmcs process
application

program

receive message

send message

Response

Call

node

Fig. 1. System architecture.

An mcs process (or simply process) is an automaton with a (possibly infinite)
set of states, including an initial state and a transition function. Each interrupt
event causes an application of the transition function. The transition function is a
function from states and interrupt events to states, sets of response events, and sets
of message-send events. That is, the transition function takes as input the current
state and an interrupt event, and produces a new state, a set of response events for
the application process, and a set of messages to be sent. A step of a process pi is a
tuple (s, i, s′, R,M), where s and s′ are states, i is an interrupt event, R is a set of
response events, M is a set of message-send events, and s′, R, and M are the result
of p’s transition function acting on s and i. A history of a process p is a mapping h
from < (real time) to finite (possibly empty) sequences of steps such that

1. for each real time t, there is only a finite number of times t′ < t such that the
corresponding sequence of steps h(t′) is nonempty (thus the concatenation of
all the sequences in real time order is a sequence);

2. the old state in the first step is p’s initial state; and
3. the old state of each subsequent step is the new state of the previous step.

An execution of an mcs is a set of histories, one for each process in P , in which
there is a one-to-one correspondence from the messages received by pi from pj onto
the messages sent by pj to pi, for any processes pi and pj . An infinite execution is an
execution in which every history is infinite. We use the message correspondence to
define the delay of any message in an execution to be the real time of receipt minus the
real time of sending. (The network is not explicitly modeled, although the constraints
on executions, defined below, imply that the network reliably delivers all messages
sent.)

An execution σ is admissible if the following conditions hold.

1. For every i and j, every message in σ from pi to pj has its delay in the range
[0, d], for a fixed nonnegative integer d. (This is a restriction on the network.)

2. For every i, in every prefix of σ the number of calls at pi can be larger than
the number of responses at pi by at most one. (This is a restriction on the
application program.)

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1641

Each pair of a call event and a subsequent matching response event forms an
operation. The call event marks the start of the operation, while the response event
marks the end of that operation. An operation op is invoked when the application
process issues the appropriate call for op; op terminates when the mcs process issues
the appropriate response for op. An operation is pending if it is invoked and is not
terminated. Note that since we assumed that all executions are admissible, there can
be at most one pending operation per process; i.e., an application program does not
invoke a new operation before the previous one has terminated. Given a particular
mcs, an object x implemented by it, and an operation type op on x, we denote
by |op(x)| the maximum time taken from the invocation to the termination of an
operation of type op on x in any execution. We denote by |op| the maximum of
|op(x)|, over all objects x implemented by the mcs.

Every object is assumed to have a sequential specification (cf. [41]) defining a set
of operations and a set of operation sequences, which are the allowable sequences of
operations on that object. For example, in the case of a read/write object, the ordered
pair of events [Readi(x), Returni(x, v)] forms an operation for any pi, x, and v, as
does [Writei(x, v), Acki(x)]. The set of operation sequences consists of all sequences
in which every read operation returns the value of the latest preceding write operation
(the usual read/write semantics).

A sequence τ of operations for a collection of processes and objects is legal if, for
every object x, the restriction of τ to operations of x is in the sequential specification
of x.

Let τ be an execution or a sequence of operations. Denote by τ | j the restriction
of τ to operations invoked by pj ; similarly, denote by τ | x the restriction of τ to
operations on object x.

Given an execution σ, let ops(σ) be the sequence of call and response events
appearing in σ in real time order, breaking ties by ordering all events of the same
process in the order in which they appear in that process and then using process ids.

An execution σ induces a partial order,
σ- , on the operations that appear in σ;

op1
σ- op2 if the response event of op1 appears in ops(σ) before the call event of

op2.

Given an execution σ, a sequence of operations τ is a serialization of σ if it is

a permutation of ops(σ). A serialization τ of σ is a linearization if it extends
σ- ;

that is, if op1
σ- op2 then op1

τ- op2. In our framework, sequential consistency
and linearizability are defined as follows.

Definition 2.1 (sequential consistency). An execution σ is sequentially con-
sistent if there exists a legal serialization τ of σ, such that for each process pj,
σ | j = τ | j.

Definition 2.2 (linearizability). An execution σ is linearizable if there exists a
legal linearization τ of σ, such that for each process pj, σ | j = τ | j.

It is possible to mark some operations as strong; all other operations are called
weak. In the case of read/write objects this means that it is possible to use strong reads
and strong writes. We denote the call events for strong operations by SWrite(x, v)
and SRead(x) and the respective response events by SAck(x) and SReturn(x, v).

We now introduce some notation we use in the rest of the paper. By opi we denote
an operation invoked by pi (weak or strong), and by sopi we denote a strong operation
invoked by process pi. We use superscripts, e.g., op1

i , op
2
i , . . ., to distinguish between

operations invoked by the same process. We sometimes use a shorthand notation for

1642 HAGIT ATTIYA AND ROY FRIEDMAN

read and write operations and denote by ri(x, v) a weak read operation invoked by
process pi returning v from x; we denote by wi(x, v) a weak write operation invoked
by process pi writing v to x. Similarly, sri(x, v) is a strong read operation invoked by
process pi returning v from x; swi(x, v) is a strong write operation invoked by process
pi writing v to x.

3. Definition of hybrid consistency. The following definition requires that
(a) strong operations appear to occur in the same order at all processes, and (b) if
two operations are invoked by the same process and one of them is strong, then they
appear to occur at all processes in the order in which they were invoked.

Definition 3.1 (hybrid consistency based on linearizability). An execution σ is
hybrid if there exists a linearization ρ of σ such that for each process pj, there exists
a legal sequence of operations τj with the following properties.

1. τj is a permutation of ops(σ).

2. If op1
i

σ- op2
i and at least one of op1

i and op2
i is strong, then op1

i

τj- op2
i

for any i.

3. If op1
ρ- op2 and op1 and op2 are strong, then op1

τj- op2.
4. τj | j = σ | j.

Definition 3.1 defines the view τj for each process pj . This view must include
all the memory operations in the execution (this is the first requirement). Any two
operations invoked by the same process pi, where at least one of them is strong, must
be viewed by pj in their order of invocation at pi (this is the second requirement).
The views of all processes must agree on the order of the strong operations, including
those by other processes (this is the third requirement). Finally, process pj must view
its own operations in their order of invocation (this is the fourth requirement).

The definition requires the existence of a linearization ρ of σ. However, ρ is used
only to force a global order on the strong operations. Therefore, we can require the
existence of a linearization only of the strong operations in σ, obtaining an equivalent
definition.

When restricted to strong operations, this definition is equivalent to linearizability.
However, following the results of [12], we might be interested in examining hybrid
models in which strong operations are only sequentially consistent. This leads to the
following variant of hybrid consistency.

Definition 3.2 (hybrid consistency based on sequential consistency). An exe-
cution σ is hybrid if there exists a serialization ρ of σ such that for each process pj,
there exists a legal sequence of operations τj with the following properties.

1. τj is a permutation of ops(σ).

2. If op1
i

σ- op2
i and at least one of op1

i and op2
i is strong, then op1

i

τj- op2
i

for any i.

3. If op1
ρ- op2 and op1 and op2 are strong, then op1

τj- op2.
4. τj | j = σ | j.

The only difference between the two definitions is that the second definition re-
quires that ρ is a serialization of σ rather than a linearization.

3.1. Related definitions. We now present a detailed comparison of hybrid con-
sistency, as defined above, with other definitions of mixed consistency conditions,
which distinguish between two kinds of operations.

Most previously known definitions of hybrid consistency are given by specifying,
at some degree of formality, how the mcs handles operations, i.e., how the hardware

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1643

should behave. In contrast, our definition specifies how the operations appear to the
application program, i.e., how the hardware should appear to the programmer. In
particular, our definition is given at the interface between the application program
and the mcs, while most previous definitions of hybrid consistency are given at the
interface between the mcs and the network.

Although from the architect’s point of view it is easier to work with a definition
that is given at the interface between the mcs and the network, a definition at the
interface between the application program and the mcs is more convenient for pro-
gramming. It is more difficult to write programs or argue about their correctness
when the exact behavior of the hardware has to be considered. Also, programs that
are written with respect to an abstract consistency condition are more portable; they
can run correctly on different implementations of the consistency condition, regardless
of the optimizations that are used by the hardware. Our work complements previous
work by presenting an abstract and formal definition at a more comfortable interface,
even if this disallows some hardware optimizations.

We now turn to a more detailed comparison of our definition of hybrid consistency
with related definitions. It is necessary to make here a distinction between the frame-
work and the definition style we suggest for consistency conditions, and the specific
decisions we made in specifying hybrid condition. The current definition of hybrid
consistency was given based on our impression of what would be a reasonable model
for programming. However, if due to performance reasons, one wishes to change some
of these choices, our framework allows such changes to be done very easily. In our
opinion, this is one of the main advantages of our framework.

Dubois, Scheurich, and Briggs. The most related condition is weak ordering,
defined by Dubois, Scheurich, and Briggs [30]. Variables are classified as either regular
or synchronization, and it is required that:

1. accesses to global synchronization variables are strongly ordered;
2. no access to a synchronizing variable is issued by a process before all its

previous global data accesses have been executed by all the processes;
3. no access to global data is issued by a process before its previous access to a

synchronizing variable has been executed by all the processes.

This definition is given in terms of restrictions on the implementation (i.e., at the
interface between the mcs processes), rather than on the way the mcs should appear
to the programmer (i.e., at the interface between the application programs and the
mcs).

This definition rules out implementations which obey the intended semantics of
the definition and give better performance. For example, the implementation given
in [30] could be improved by pipelining weak operations with strong operations. This
improvement seems to obey the intended semantics of the definition, but violates the
definition itself. To alleviate this problem and be able to compare this definition with
ours, the following definition is specified at the interface between the mcs and the
application program, and (we hope) provides the semantics intended by the definition
in [30].

Definition 3.3. Let X be the set of synchronizing variables in the system. An
execution σ is object-based hybrid if there exists a serialization ρ of σ such that for
each process pj, there exists a legal sequence τj of operations such that the following
hold.

1. τj is a permutation of ops(σ).

2. If op1
i ∈ (σ | X) or op2

i ∈ (σ | X) and op1
i

σ- op2
i , then op1

i

τj- op2
i .

1644 HAGIT ATTIYA AND ROY FRIEDMAN

3. If op1, op2 ∈ (σ | X) and op1
ρ- op2, then op1

τj- op2.
4. τj | j = σ | j.

This definition is a special case of our definition of hybrid consistency in which
strong operations are restricted to special synchronization objects. In contrast, our
definition allows the use of strong and weak operations on the same object. This
property is exploited in the mutual exclusion algorithm given below in section 4. In
this algorithm, the reads from synchronization objects are weak. This results in a
reduced number of messages in the system.

Adve and Hill. A different approach splits the responsibility for memory con-
sistency between the software and the hardware. In this approach, the hardware must
exhibit some known predefined behavior only for software that obeys certain require-
ments. For example, the following definition of weak ordering was given by Adve and
Hill [1]:

“Hardware is weakly ordered with respect to a synchronization model
if and only if it appears sequentially consistent to all software that
obeys the synchronization model.”

Following this definition, they give a formal definition of a synchronization model
DRF0. In this synchronization model, an application program is required to use syn-
chronization operations in any place where a data race3 is possible. Using the same
approach, a generalization of DRF0 that supports further classification of synchroniza-
tion operations into releases and acquires is presented in [2, 3]. This synchronization
model is called DRF1. Again, the application program is required to use synchroniza-
tion operations to prevent data races.

The approach taken by Adve and Hill divides the responsibility for correctness be-
tween the mcs and the application program: the mcs supports a consistency condition
very similar to hybrid consistency, and the application program is required to obey a
certain synchronization model, in this case DRF0 (or DRF1). Then it is guaranteed
that the programs will run as if the mcs was sequentially consistent. In this approach,
the mcs provides a guarantee about the results of memory access operations only for
programs that obey DRF0 (or DRF1). There is no crisp guarantee (that does not
rely on understanding a specific implementation) for programs that violate DRF0 (or
DRF1).

Release consistency. Release consistency, defined by Gharachorloo et al. [35], is
supported in the Stanford DASH multiprocessor. The definition given in [35] assumes
three types of operations: ordinary, sync, and nsync. Each type is further divided
into reads and writes. The following list of sufficient conditions is then given.

1. Uniprocessor data dependencies are respected.
2. All writes to the same location are serialized in some order and are executed

in that order with respect to any process.
3. Before a sync write access is allowed to execute with respect to any other

process, all previous ordinary write accesses by the same process must be
executed.

4. Sync and nsync accesses are kept sequentially consistent with respect to one
another.

Besides being at the interface between the mcs and the network, this definition is
given as a list of sufficient conditions on the hardware. These conditions are based on

3 Informally, a data race occurs when the order of two conflicting memory accesses (which are
not synchronization operations) is not predetermined; for precise definitions and more discussion,
see [1, 9, 11].

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1645

the notion of “an operation being executed with respect to a process,” whose meaning
depends on the specific implementation which was kept in mind when the definition
was given.

Formal definitions of release consistency are given in [37, 38].4 These definitions
are quite complex and make reasoning about programs directly with release consis-
tency a very difficult task. To overcome this problem, a synchronization model called
PL-programs is defined; this model is similar to DRF1. (In fact, DRF1 is an exten-
sion of DRF0, which reflects the release-acquire distinction made by PL.) It is then
guaranteed that any program obeying this synchronization model will run as if the
mcs was sequentially consistent. This approach, like the one taken by Adve and Hill,
gives little support to the design of programs that do not obey specific synchronization
models, e.g., our modification of the classical solution to mutual exclusion (presented
in the next section). Note that sometimes it is easier to prove the correctness of a
program with respect to a consistency condition from scratch than to prove that the
program obeys some synchronization model like DRF0, DRF1, or PL.

The major conceptual difference between release consistency and hybrid consis-
tency is the further classification of strong operations into release and acquire. It was
shown in [34, 60] that in certain cases, this further classification improves the achiev-
able performance, but in other cases, it does not provide any substantial benefit. It is
simple to modify our definition to capture this further distinction (see the definition
of asymmetric hybrid consistency in [9]). In addition, release consistency does not
require that each process view the weak reads of other processes.

Hybrid consistency, on the other hand, requires that the view of every process
include all operations of any other process, in particular, the weak reads. However,
our framework allows us to change the definition very easily to omit this requirement;
furthermore, none of our results depend on this condition.5 We believe that this addi-
tional requirement makes the programmer’s model more comprehensive and therefore
more convenient to use, although it may prohibit some otherwise possible hardware
optimizations.

4. Programming with hybrid consistency. Hybrid consistency supports a
very simple method of programming: use only strong operations and “think sequential
consistency” (or linearizability, as the case may be). Clearly, this method is prone
to the same performance penalties as sequential consistency. A better programming
method is to use weak operations most of the time and strong operations only in
those places where global ordering is needed. In this section, we give an example of
a mutual exclusion algorithm based on hybrid consistency, and prove its correctness.
This example demonstrates that programming with hybrid consistency can be simple
and efficient. It also gives some intuition on when strong operations should be used,
and how to prove correctness relying on hybrid consistency.

Formally, an algorithm for mutual exclusion consists of four disjoint sections–
entry, critical, exit, and remainder (cf. [52]). In the entry section, a process tries to
gain access to the critical section; the exit section is executed by each process upon
leaving the critical section; the remainder section is the rest of the code. A mutual
exclusion algorithm should guarantee

mutual exclusion: no two processes are inside the critical section at
the same time;

4 The definition in [37] is a generalization of the definition in [38] that allows pipelining of memory
operations.

5 The algorithm could be slightly simplified without this condition.

1646 HAGIT ATTIYA AND ROY FRIEDMAN

1: sw(need[i], true);
2: sw(turn, 1 − i);
3: if r(need[1 − i]) =true and r(turn) = 1 − i then goto 3;

〈critical section〉
4: sw(need[i], false);

〈remainder section〉

Fig. 2. Mutual exclusion using hybrid consistency; code for process pi, i = 0, 1.

deadlock freedom: in every infinite execution, if there is a process in
the entry section, then eventually there is some process in the critical
section; and
starvation freedom: in every infinite execution, every process which
executes the entry section is eventually granted permission to enter
the critical section.

Figure 2 presents a solution for two processes which is fair; it is a simple modifica-
tion of Peterson’s algorithm [50]. The algorithm can be extended to n processes along
the lines of Peterson’s algorithm. Lines 1–3 are the entry section; line 4 is the exit
section. In the code we use the notation r(x) = v to denote a weak read of x returning
the value v, and sw(x, v) to denote a strong write of v to x, for any read/write object
x and value v.

The lemmas and proofs of this section apply to hybrid consistency based on
linearizability and to hybrid consistency based on sequential consistency.

Lemma 4.1. The algorithm in Figure 2 guarantees mutual exclusion under hybrid
consistency.

Proof. Assume, by way of contradiction, that there is a hybrid execution σ in
which p0 and p1 execute the critical section together. Denote by sw0(need[0], true) and
sw0(turn, 1) the last strong writes to need[0] and turn executed by p0 before entering
the critical section, and by sw1(need[1], true) and sw1(turn, 0) the last strong writes
to need[1] and turn executed by p1 before entering the critical section. Remember
that σ is a hybrid execution and consider a serialization ρ of σ as guaranteed by the
definition of hybrid consistency. Without loss of generality, assume that sw0(turn, 1)
appears before sw1(turn, 0) in ρ. In particular, sw0(need[0], true) is ordered before
sw1(turn, 0) in ρ. Since p1 entered its critical section, it follows that p1’s last r1(turn)

before entering returned 1. However, by assumption, sw0(turn, 1)
ρ- sw1(turn, 0).

By the definition of τ1 it follows that sw0(turn, 1)
τ1- sw1(turn, 0)

τ1- r1(turn, 1).
Thus, τ1 is not legal, since r1(turn) should have returned 0.

Lemma 4.2. The algorithm in Figure 2 is free of deadlock under hybrid consis-
tency.

Proof. Assume, by way of contradiction, that there is a hybrid execution σ in
which there is a deadlock. A deadlock occurs if p0 and p1 keep executing line 3; that
is, p0 continually reads r0(need[1], true) and r0(turn, 1) in line 3 and p1 continually
reads r1(need[0], true) and r1(turn, 0).

Since σ is a hybrid execution, there exists a serialization ρ of σ. Without loss of
generality, assume sw0(turn, 1), the write by p0 immediately preceding p0’s infinite
loop, is ordered in ρ before sw1(turn, 0), the write by p1 immediately preceding p1’s
infinite loop.

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1647

Now consider p0’s view, τ0, as guaranteed by the definition of hybrid consistency.
In τ0, sw0(turn, 1) precedes sw1(turn, 0), since τ0 respects ρ. Let r0(turn, 1) be the
first such read by p0 that follows sw1(turn, 0) in τ0. It exists because there are
infinitely many such reads. We now show that no write to turn can fall between
sw1(turn, 0) and r0(turn, 1) in τ0, violating the legality of τ0.

Every write to turn by p0 is a strong write and precedes sw0(turn, 1) in the actual
execution, and thus precedes sw1(turn, 0) in ρ and in τ0. Every (other) write to turn
by p1 is a strong write and precedes sw1(turn, 0) in the actual implementation, and
thus precedes sw1(turn, 0) in ρ and in τ0. Thus, sw1(turn, 0) is the last write to turn
ordered in τ0 before r0(turn, 1), a contradiction to the legality of τ0.

Lemma 4.3. The algorithm in Figure 2 is starvation free under hybrid consis-
tency.

Proof. Assume, by way of contradiction, that there exists an infinite hybrid
execution σ of the algorithm in which one process, say p0, is trying to enter the
critical section, but is never granted permission. Let sw0(turn, 1) be the last write
of p0 to turn. By Lemma 4.2, p1 must enter the critical section an infinite num-
ber of times. Let ρ be a serialization of all operations in σ, as guaranteed in the
definition of hybrid consistency. Every operation in σ must appear in ρ after a fi-
nite number of operations. Thus, there exists an operation sw1(turn, 0) such that

sw0(turn, 1)
ρ- sw1(turn, 0). Consider a legal serialization τ1 of σ, as guaran-

teed by hybrid consistency. Under the assumption that p1 enters the critical section
infinitely often, τ1 must include the following subsequence:

sw0(turn, 1)
τ1- sw1(turn, 0)

τ1- r1(turn, 1) .

This contradicts the assumption that τ1 is legal.
The algorithm uses only weak reads in the entry section; hence, when running

on an efficient implementation of hybrid consistency (like the one presented in this
paper), the entry section is executed faster and with less message overhead.6

Note that if the first operation inside the critical section is a weak operation,
then we might not have logical mutual exclusion. That is, the operations of the entry
and exit sections are ordered correctly, but weak operations issued by p0 inside the
critical section may be ordered in the view of p1 before the last (weak read) operation
of the corresponding entry section of p0. Similarly, weak operations issued by p1

inside the critical section may be ordered in the view of p0 before the last (weak read)
operation of the corresponding entry section of p1. This need not happen in every
implementation of hybrid consistency, but could happen in some of them. One way to
solve this problem is to add one strong (read or write) operation to some object that
is not accessed elsewhere in the program, before entering the critical section. This
will guarantee that all the operations that are invoked inside the critical section will
be ordered after all operations that belong to the entry section. Since the number
of operations in the entry section is expected to be quite large, adding one operation
(that will be executed only once) should not impose a significant performance loss. A
detailed discussion of this problem and another solution can be found in [9].

5. An algorithm for providing hybrid consistency. In this section we present
an efficient algorithm for providing hybrid consistency, in both flavors, that supports

6 Note that by efficient implementations we refer to implementations that execute weak operations
faster than the network delay. By the lower bounds proved in [12] and in section 6, strong operations
cannot be implemented faster than the network delay.

1648 HAGIT ATTIYA AND ROY FRIEDMAN

read/write objects, accessible by either strong or weak operations. The algorithm
allows weak operations to be executed instantaneously, while keeping the response
time for strong operations proportional to the network delay. Being able to execute
weak operations fast is vital for the usefulness of this algorithm, since it is the major
advantage hybrid consistency has over sequential consistency. (Recall that in order to
implement sequential consistency, the execution time of either reads or writes must
be at least linear with the network delay.) Our algorithm assumes that each process
holds a complete copy of the entire memory, which allows for instantaneous execution
of weak operations, provided that write operations will eventually update all copies.
(We later discuss how to relax this assumption.)

The algorithm we describe is completely asynchronous. This means that every
process may run at a different rate and that the delay of the network need not be
known.

The algorithm uses an atomic broadcast mechanism to send messages. Atomic
broadcast is becoming quite common as an underlying tool in the development of
distributed systems [16, 17, 47, 53, 55, 57]. Our decision to use atomic broadcast
follows this trend and is justified by the immediate benefits that this mechanism
provides. An atomic broadcast mechanism guarantees that all messages are delivered
at all processes in the same order. Thus, it creates a “global logical time,” which
simplifies the code of the algorithm and its proof of correctness. Furthermore, using an
atomic broadcast mechanism is more modular than implementing the communication
protocol directly. Many atomic broadcast algorithms with various degrees of fault
tolerance and efficiency have been developed, e.g., [6, 7, 8, 10, 12, 18, 19, 23, 25, 27,
26, 31, 43, 59]. Thus, by employing different atomic broadcast algorithms, one may
balance the degree of fault tolerance, message complexity, and time complexity, to fit
the desired goals of the implementation.

In the algorithm, weak operations are executed on the local copy of the memory.
Strong operations and weak write operations broadcast a message to all processes; an
operation is executed by each process when the corresponding message is delivered at
the process. Thus, the order of execution should reflect the order in which messages
are delivered by the atomic broadcast mechanism.

Unfortunately, there is a problem, since weak operations must return immediately
and a weak read that immediately follows a weak write by the same process must
return the value written by that write. To handle this problem, we modify the basic
idea such that weak writes that are not invoked by the local process are executed
under the following conditions. A weak write that is not concurrent7 with any other
(weak or strong) write is always executed when its corresponding message is delivered.
If there are two concurrent weak writes, then the one which is delivered first by the
atomic broadcast service is executed by every process, while the other one is ignored
by every process.

The detailed description of the algorithm and its pseudocode in section 5.1 is
followed by a correctness proof in section 5.2 and a complexity analysis in section 5.3.

5.1. The algorithm. We assume a system of n processes, each capable of hold-
ing a local copy of the entire memory. The processes are connected by some inter-
connection network. We assume an atomic broadcast mechanism that supports two

7 Concurrency is defined with respect to the global order of message delivery. In other words,
two weak writes are concurrent if they were invoked by different processes and the same number of
messages (that were broadcast to everybody) have been delivered at the invoking processes before
they were invoked.

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1649

primitives: abcast and asend. The first primitive, abcast, broadcasts a message to
all processes atomically. A process may use the second primitive, asend, to send a
message to a single process, when the interleaving of this message with other mes-
sages sent by it, using either abcast or asend, should reflect their relative order of
invocation.

More precisely, let MA be the set of messages sent using abcast and denote by
MAi the sequence of messages in MA that are delivered at process pi, according to
the order in which they are delivered at pi. Then the following hold: (a) for any i
and j, MAi =MAj , and (b) for any two messages m1

i ,m
2
i ∈MA such that both m1

i

and m2
i are sent by pi and m1

i is sent before m2
i , then m1

i is ordered in MAi before
m2

i . Moreover, let MPij be the sequence of messages sent from process pi to process
pj using either abcast or asend. Then the messages in MPij are delivered at pj in
the order in which they were sent by pi.

We use asend instead of a regular send to send acknowledgments since the cor-
rectness of the algorithm depends on the fact that at each process, the delivery order
of all messages reflects the order in which they were sent. We use asend instead of
abcast because in some implementations of atomic broadcast, e.g., sequencer/token-
based protocols [6, 8, 10, 18, 27, 43, 58], it results in a lower message complexity.

Every process maintains a local copy of the entire memory mem, an array of
integers last mess, an array of ids last id, an integer counter received, and another
object val, as described below. (See also Figure 3.)

The counter received is used to count the messages delivered by the atomic broad-
cast. It serves as a logical timestamp and its value is added to messages. It is initialized
to 0 and incremented each time a message that was sent with abcast is delivered.

For each object, last mess and last id uniquely identify the last operation that
updated the object. That is, whenever a (weak or strong) write updates an object,
last mess is assigned the current value of the variable received and last id is assigned
the id of the process that invoked the write.

Finally, the variable val is used to temporarily store a value that a pending strong
read should return, as described later.

Weak operations are executed on the local copy of the memory and return im-
mediately. A weak write causes an update message to be broadcast to all processes.
This message contains the name of the object to be updated, the new value for the
object, and a logical timestamp which is the value of received when the operation is
invoked. Whenever an update message is received, an ack message is sent back to
the initiator of the operation, using asend.

Following this, processes that did not invoke the write execute it on the local
copy of the object if either (a) the previous operation that updated the same object
was invoked by the same process (held in the variable last id), or (b) the value of
last mess is smaller than the value of received that is included in the update message
of the weak write. These conditions guarantee that all writes to the same location are
executed by all processes in the same order, based on the following observation: the
value last mess[x] is a counter for how many messages were delivered by the atomic
broadcast mechanism when object x was last updated. (In that sense the atomic
broadcast mechanism serves to order all writes.) If a write wk has a timestamp bigger
than last mess[x] at pi, then wk was invoked by pk after pk had also seen the last
update to x that pi had seen; call this update wl. So, wk causally follows the actual
act of updating x which was caused by wl. In particular, if wl is a weak write, wk

should not overwrite it. On the other hand, if the timestamp of wk is smaller than

1650 HAGIT ATTIYA AND ROY FRIEDMAN

last mess[x], then it does not causally follow the actual act of updating x at pk, and
might have overwritten wl in pl.

Hence, the first write that passes the timestamp test among all those which are
concurrent gets to update the memory. The rest of the concurrent writes fail this
test, because we are using the value of received when the update message is delivered
to update last mess[x], and not the timestamp of the update message itself. So, these
writes never get to update any process (except their local process, but even there they
are overwritten by the “winner” write), and in a logical sense they are ordered before
the “winning” write, which is the first of the concurrent writes to be delivered by the
atomic broadcast mechanism.

Note that this order corresponds to the order implied by the logical timestamp
of the writes. In other words, it corresponds to the value of the variable received at
the time of their invocation. Ties among all writes with the same logical timestamp
are broken by ordering the first delivered weak write after all other weak writes with
the same logical timestamp. The variable last id is required to preserve the order of
writes by the same process, since two consecutive weak writes by the same process
may have the same logical timestamp.

Whenever a strong operation is invoked, if the operation is a strong read and
the last local operation was a weak read, then a dummy message is broadcast to all
processes. Every process that receives a dummy message returns an ack message to the
initiator using asend. Next, the invoking process waits until all ack messages for the
previous operations and for the current dummy message return. Then, a strong-write

or a strong-read message is broadcast to every process. The operation is executed
by every process whenever the appropriate message is delivered. A strong write is
executed by updating the local copy of the object. A strong read is executed at the
invoking process by copying the value of the local copy of the object to val. This value
is returned when the operation returns. A strong read is executed by other processes
by doing nothing. After executing a strong operation, an ack message is sent back
to the initiator of the operation. A strong operation does not return until all ack
messages have been received.

A dummy message is broadcast between the invocation of a weak read and the in-
vocation of a strong read to guarantee that the invocation of a strong read is separated
by at least a certain amount of “logical time” from the invocation of the last previous
weak operation by the same process. This allows us to reorder strong reads relative
to the delivery of their strong-read messages; the exact reordering is described in
the correctness proof. Note that there is no need to send a dummy message after a
weak write, since weak writes broadcast an update message; this already guarantees
that there is enough “logical time” between the invocation of the weak write and the
strong operation.

The precise code appears in Figures 3 and 4; recall that Ack, SAck, Return, and
SReturn are defined at the end of section 2.

5.2. Proof of correctness. Given an execution σ, we explicitly show how to
construct the set of sequences T = {τj}nj=1, as required in the definition of hybrid
consistency. We prove that our algorithm satisfies Definition 3.1; this clearly implies
that it also satisfies Definition 3.2.

Very informally, the construction goes as follows. For each process pj , we first
build the sequence τ ′j , consisting of all (weak and strong) write operations, all local
weak read operations, and all delivery events. The operations are ordered according
to the order in which they occurred in pj . The delivery events serve as markers

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1651

The state of each process pi consists of the following components:

mem : copy of every object, initially equal to its initial value
last mess : array of integers with one entry for each object, all initially 0
last id : array of ids with one entry for each object, all initially 0
received : integer, initially 0

(serial number of the last message delivered to pi)
missing acks : integer, initially 0

(number of acknowledgments that are outstanding)
val : an object

Read(x):
generate Return(x,mem[x])

Write(x,v):
mem[x] := v
abcast 〈update, x, v, received〉
missing acks := missing acks + n
generate Ack(x)

SRead(x):
if the last previous operation by pi was a weak read then

abcast 〈dummy〉
missing acks := missing acks + n

endif
wait until missing acks = 0 /* This line is not atomic */
abcast 〈strong-read, x〉
missing acks := missing acks + n

SWrite(x,v):
wait until missing acks = 0 /* This line is not atomic */
abcast 〈strong-write, x, v〉
missing acks := missing acks + n

Fig. 3. The algorithm; code for process pi.

which are useful for the rest of the proof. They are ordered according to the order in
which they occurred, such that each delivery event is ordered after the corresponding
operation. We show that T ′ = {τ ′j}nj=1 obeys all the requirements in the definition of
hybrid consistency, except for including all operations in ops(σ) and having delivery
events. (This is done in section 5.2.1.)

Following this, we insert the strong reads into T ′, creating a new set of sequences
T ′′ = {τ ′′j }nj=1, such that the strong reads are legal. T ′′ obeys all the requirements in
the definition of hybrid consistency, but it does not include all operations of ops(σ)
and includes the delivery events. This is the most complicated part of the proof, due

1652 HAGIT ATTIYA AND ROY FRIEDMAN

received 〈update, x, v, s〉 from pj :
asend 〈ack, j〉
received := received + 1
if ((s ≥last mess[x]) or (last id[x] = j)) then

last mess[x] := received
last id[x] := j
if i 6= j then

mem[x] := v
endif

endif

received 〈dummy〉 from pj :
asend 〈ack, j〉 >
received := received + 1

received 〈strong-write, x, v〉 from pj :
asend 〈ack, j〉
received := received + 1
last mess[x] := received
mem[x] := v
last id[x] := j

received 〈strong-read, x〉 from pj :
asend 〈ack, j〉
received := received + 1
if (j = i) then val := mem[x] endif

received 〈ack, i〉 from pj :
missing acks := missing acks −1
if (missing acks = 0) and there is a pending strong operation to some object x then

if the strong operation is a write then generate SAck(x)
else generate SReturn(x,val)
endif

endif

Fig. 4. The algorithm; code for handling message-receive events at process pi.

to the fact that strong reads need to appear consistently in all views. (This is done
in section 5.2.2.)

At this stage, we insert in each sequence τ ′′j all weak reads by other processes.
This yields a new set of sequences T ′′′ = {τ ′′′j }nj=1 such that all reads in each τ ′′′j are
legal. T ′′′ obeys all the requirements in the definition of hybrid consistency except for
having the delivery events. (This is done in section 5.2.3.)

Finally, we construct the desired set of sequences T by removing all delivery events
from T ′′′, in section 5.2.4.

We now turn to the formal proof and start with some definitions and notations.

For every operation op that causes a message to be broadcast, i.e., weak write,
strong write, or strong read, we denote by delj(op) the delivery event of the corre-

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1653

sponding message (update, strong-write, or strong-read, accordingly) in pj . Given
a strong read sri, we denote by prev(sri) the last (strong-read, strong-write,
update, or dummy) message broadcast by pi before the strong-read message of sri.
We slightly abuse the notation and denote by delj(prev(sri)) the delivery event of
prev(sri) in pj .

A read operation ri(x, v) reads from a write operation wk(x, v) if wk(x, v) is the
last write to x that updates pi’s copy of x before ri(x, v) reads x. This definition
is with respect to the actual execution at pi, i.e., σ|i. If ri(x, v) is strong, then
ri(x, v) is defined to read from x when it copies the value of x into val. A read
ri(x, v) is legal in a sequence of operations τ if there exists a write wk(x, v) such that

wk(x, v)
τ- ri(x, v) and there does not exist another write wl(x, u), u 6= v, such

that wk(x, v)
τ- wl(x, u)

τ- ri(x, v); otherwise, the read is illegal in τ .

Given a read operation ri(x, v) that reads from a write wk(x, v) and a sequence of

operations τ , a write wl(x, u) is an obliterating write for ri(x, v) in τ if wk(x, v)
τ-

wl(x, u). Note that in order to define wk, we need to start with ri that read from it
(in σ|i).

A conditional execution interval of a weak write wk is the interval of events in σ
between the invocation of wk and the delivery of the update message of wk by the
atomic broadcast at pk. A weak write wk(x, v) is overwritten by another (weak or
strong) write wj(x, u) if wj(x, u) is performed in pk during the conditional execution
interval of wk(x, v). A potential execution interval of a weak write wk(x, v) is the
largest interval inside the conditional execution interval of wk, starting with the invo-
cation of wk(x, v), in which no other write wj(x, u), j 6= k, is performed by pk. Note
that a weak write updates the local copy of the object and returns immediately. The
potential execution interval is the interval after a weak write updates the local copy
of the object, but may still be overwritten. For example, let wk(x, v) be a weak write
that is overwritten by another write wi(x, u). If we denote the invocation event of
wk(x, v) by inv(wk(x, v)), we get

conditional execution interval
︷ ︸︸ ︷

inv(wk(x, v)) . . . delk(wi(x, u))
︸ ︷︷ ︸

potential execution interval

. . . delk(wk(x, v)) .

Define the notion of influence as follows. A weak write wk(x, v) influences process
pj , j 6= k, if it updates the copy of x in pj (in line 7 of the code for handling
update messages). A weak write wk(x, v) influences process pk if it is not overwritten.
In particular, not every weak write influences its invoking process. A strong write
influences every process. Intuitively, a weak write influences its invoking process if it
is not overwritten, and influences another process if it is performed by that process.
Strong writes are never overwritten and are performed by every process.

Next, define the notion of an operation being executed by a process as follows.

• A strong operation sopk is executed by pj when the corresponding strong-write
or strong-read message is delivered at pj .

• A weak operation opj is executed by pj when the appropriate call event occurs.
• A weak write wk that influences pj , k 6= j, is executed by pj when the

corresponding update message is delivered at pj .

Let abcast order be the order in which all messages sent with abcast are delivered;
note that this order is well defined.

1654 HAGIT ATTIYA AND ROY FRIEDMAN

We now turn to the details of the proof; for the rest of this section, fix some
execution σ of the algorithm.

5.2.1. Creating the initial sequences. For each process pj , create the se-
quence of operations and delivery events τ ′j as follows: order all delivery events in pj
according to the order in which they occur in pj . Next, add all weak operations by
pj according to their order of invocation in pj (with respect to themselves and to the
delivery events in pj). Next, add all weak writes that are invoked by other processes
and are executed by pj and all strong writes (including the strong writes of pj) imme-
diately before the delivery of their corresponding strong-write or update message.
Finally, add every weak write wk that is not executed by pj immediately before the
last write to the same location that is executed in pj before receiving w′

k’s update

message, breaking ties arbitrarily. Note that if wk is not executed, then the code of
the algorithm guarantees the existence of this write. Note also that all delivery events
are ordered in the same order in all sequences τ ′j . That is, for every two operations

op1
k and op2

l ,

delj(op
1
k)

τ ′
j- delj(op

2
l) if and only if deli(op

1
k)

τ ′
i- deli(op

2
l)

for every i and j.
The following lemmas show that {τ ′j}nj=1 obey all requirements in the definition

of hybrid consistency, except for not including all operations, as follows.
• Legality is shown in Lemma 5.3.
• Condition 1 is not relevant at this point.
• Condition 2 is shown by Lemma 5.5.
• Condition 3 is shown by Lemma 5.1.
• Condition 4 is shown by Lemma 5.2.

Lemma 5.4 concerns a write influencing processes and is used in the proof of Lemma 5.5.
Lemma 5.1. There exists a linearization ρ of all the operations in σ such that

for every pair of strong operations sopk and sopl in τ ′j,

sopk
ρ- sopl if and only if sopk

τ ′
j- sopl

for every τ ′j.
Proof. The strong operations appear in every τ ′j in an order which is consistent

with the abcast order. Since a strong operation does not return before all its ack

messages return, the real time of its delivery is always between the real time of its
invocation and the real time of its termination. Thus, the order in which all strong
operations appear in every τ ′j is a linearization.

Lemma 5.2. For every sequence τ ′j, τ
′
j |j = σ′|j, where σ′ is σ without the strong

reads.
Proof. Atomic broadcast delivers all messages sent by the same process in the

order in which they were sent. Also, strong operations do not return until all ack
messages are delivered. Since weak operations are ordered according to their invo-
cation and strong operations are ordered according to their delivery, it follows that
τ ′j |j = σ|j \ {strong reads} for every sequence τ ′j .

Note that in each τ ′j , each (local weak) read rj(x, v) is ordered after the last write
to x that is executed by pj before the invocation of rj(x, v), with no other write to x
in between them. Thus, we have the following lemma.

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1655

Lemma 5.3. For every sequence τ ′j, all the weak reads of pj are legal in τ ′j.
The following lemma is crucial in the rest of the proof.
Lemma 5.4. If a write influences some process, then it influences every process.
Proof. Recall that all messages are delivered to every process in the abcast or-

der. Furthermore, the variable received is incremented each time a message that was
sent using abcast is delivered by the atomic broadcast. Since the atomic broadcast
mechanism provides total ordering on the delivery of messages sent with abcast, for
every weak write, the value of received is the same when the corresponding update

message is delivered in every process. Moreover, this value is different for different
weak writes.

Assume, by way of contradiction, that there exists some write that influences
some process but not all processes. Let wk(x, v) be the first such write, i.e., the
one for which the value of received during the delivery event of its update message is
minimum. Assume that wk(x, v) does not influence pj . Thus, wk(x, v) is not executed
by pj . The code of the algorithm for executing weak writes implies that there exists
another write wl(x, u) for which the following holds: (a) wl(x, u) influences pj , (b) the
update message of wl(x, u) is delivered in pj before the update message of wk(x, v),
and (c) the update message of wl(x, u) is delivered in pk after wk(x, v) is invoked.
(This is the condition which is checked whenever an update message is delivered.)
Since wk(x, v) is the first write that influences only some of the processes, wl(x, u)
influences pk and therefore wk(x, v) is overwritten.

Atomic broadcast delivers all messages to all processes in the same order. Since
wk(x, v) is the first write that influences only some of the processes, wl(x, u) influences
all processes and its update or strong-write message is delivered before the update

message of wk(x, v) to all processes. Thus, by the assumptions about wl(x, u), none
of the processes executes wk(x, v). Hence, wk(x, v) does not influence any process.
This is a contradiction to the assumption that wk(x, v) influences some process.

Lemma 5.5. For each sequence of operations τ ′j and every pair of operations op1
k

and op2
k in τ ′j such that either op1

k or op2
k is strong,

op1
k

τ ′
j- op2

k if and only if op1
k

σ- op2
k.

Proof. By Lemma 5.2, the claim holds if k = j. Thus, for the rest of the proof,
we may assume that k 6= j.

Assume, by way of contradiction, that for some sequence τ ′j and two operations

op1
k and op2

k such that either op1
k or op2

k is strong,

op1
k

τ ′
j- op2

k but op2
k

σ- op1
k.

We claim that op1
k is a weak write that does not influence pj and op2

k is strong.
Strong operations and weak writes that influence pj are executed according to the
abcast order. This order is consistent with the order by which operations are invoked
at each process. Therefore, the only operations that may not be ordered correctly in
τ ′j with respect to the previous and next strong operations by the same process are
weak writes that do not influence pj . Moreover, since strong operations are ordered
immediately before their corresponding delivery events, and since weak writes are
always ordered before their corresponding delivery event, a weak write that does not
influence pj may not be ordered after a later strong operation by the same process.

1656 HAGIT ATTIYA AND ROY FRIEDMAN

Assume, without loss of generality, that op1
k writes to x. Let wi be the first write

to x that influences pj and is ordered after op1
k in τ ′j . The existence of such a write is

guaranteed by the assumption that op1
k does not influence pj and the construction of

τ ′j ; wi is the write that caused op1
k to be ordered before op2

k. Note that if wi did not

exist, op1
k would have been executed and would have been ordered where its delivery

event is ordered, and therefore also after op2
k. Since op1

k is inserted before op2
k in τj

due to wi, and since by construction, wi is ordered next to its delivery event, it follows
that wi is delivered in pj before op2

k.
If i 6= j, or if i = j and op2

k is delivered after the completion of the conditional
execution interval of wi in pj , then by Lemma 5.4, wi influences every process. Thus,
wi is delivered in every process before op2

k. In particular, wi is delivered in pk before
op2

k. Since op2
k is a strong operation and since op1

k is invoked after op2
k, wi is delivered

in pk before op1
k starts. Since op1

k is inserted before its delivery event, there exists
another write wl(x,w) that influences pj and is delivered in pj between wi and op1

k.
Thus, wl(x,w) is ordered in τ ′j between wi and op1

k. This contradicts the assumption

that wi is the first write to x that influences pj and is ordered after op1
k in τ ′j .

If i = j and op2
k is delivered inside the conditional execution interval of wi, then

the ack message of op2
k is delivered in pk after the update message of wi. By Lemma

5.4, wi influences pk and is delivered in pk before op1
k starts. Therefore, there exists

another write wl(x, v) that influences pj and is delivered in pj between wi and op1
k.

Thus, wl(x,w) is ordered in τ ′j between wi and op1
k. This contradicts the assumption

that wi is the first write to x that influences pj and is ordered after op1
k in τ ′j .

Thus, we have shown that the sequences {τ ′j}nj=1 obey all the requirements in
the definition of hybrid consistency; however, it does not include all the operations of
ops(σ) and includes delivery events. To finish the proof, we must insert the missing
operations, i.e., the missing reads, to each τ ′j without violating the requirements of
the definition of hybrid consistency.

5.2.2. Inserting the strong reads. We start with the strong reads. For each
j, create τ ′′j by inserting the strong reads into τ ′j according to the abcast order of their
strong-read messages. Unlike strong writes, sometimes it is not possible to insert
a strong read immediately before its corresponding delivery event and still be legal.
This is because the strong-read message can be delivered at another process inside
a potential execution interval of a weak write to the same object. If this happens,
then the last value written to the object is the value written by the local weak write,
and not the value returned by the strong read. Therefore, in order to maintain the
legality of the sequence, the strong read has to be inserted before the weak write.
However, since hybrid consistency requires that all views of all processes agree on
the order of strong operations, if a strong read sri(x, v) is inserted in one sequence
before another strong operation sopk, then sri(x, v) must be inserted before sopk in
every sequence τ ′′j . On the other hand, if sopk is a strong read that is inserted long
before its corresponding strong-read message, then inserting sri(x, v) before sopk
could cause sri(x, v) to be ordered before a previous weak operation by pi. In order
to prevent such chain reactions, it is sometimes required to drag a previously inserted
strong read srk(y, u) before sri(x, v) instead of inserting sri(x, v) before srk(y, u). For
example, if we have

τ ′′j = . . . wj(x, u) . . . sopq . . . srk(y, u) . . . delj(sri(x, v)) . . . delj(wj(x, u)) and

τ ′′l = . . . sopq . . . srk(y, u) . . . dell(sri(x, v)),

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1657

then sri(x, v) must be inserted before wj(x, u) and sopq in τ ′′j . Moreover, sri(x, v)
must be inserted before sopq in τ ′′l , too. In addition, if srk(y, u) is a strong read that
is dragged by the insertion of sri(x, v), then srk(y, u) must be ordered before sri(x, v)
and sopq in both τ ′′j and τ ′′l .

To insert the strong reads, we introduce some definitions. For each strong read
sri(x, v), and for each process pj , if the strong-read message of sri(x, v) is de-
livered inside a potential execution interval of some weak write wj(x, u), then let
Ij(wj(x, u), sri(x, v)) be the set of strong operations already ordered in τ ′j between
the invocation of wj(x, u) and the delivery of the strong-read message of sri(x, v).
Let Bj(wj(x, u), sri(x, v)) be the set of strong reads {srq} such that srq ∈ Ij(wj(x, u),
sri(x, v)) and the write srq reads from is included in the potential execution inter-
val of wj(x, u). Let Ij(sri(x, v)) be the union of Ij(wj(x, u), sri(x, v)) over all such
wj(x, u); let Bj(sri(x, v)) be the union of Bj(wj(x, u), sri(x, v)), over all such wj(x, u).
Let B(sri(x, v)) = ∪n

j=1Bj(sri(x, v)) and I(sri(x, v)) = ∪n
j=1Ij(sri(x, v)), and let

C(sri(x, v)) be the set of strong reads in I(sri(x, v))\B(sri(x, v)) and D(sri(x, v)) =
I(sri(x, v)) \ C(sri(x, v)).

Intuitively, I(sri(x, v)) is the set of strong operations that sri(x, v) might be
inserted before, although delj(sri(x, v)) is ordered after them in some sequence τ ′j .
D(sri(x, v)) is the set of strong operations that sri(x, v) is actually inserted before,
although delj(sri(x, v)) is ordered after them in some sequence τ ′j . C(sri(x, v)) is the
set of strong reads that might be dragged by sri(x, v), while B(sri(x, v)) is the set of
strong reads that appear in I(sri(x, v)) and are not dragged by sri(x, v). B(sri(x, v))
is merely used to define C(sri(x, v)). For example, if we have

τ ′′j = . . . wj(x, v), swq, srk(y, u), wg(z, w), srl(z, w), delj(sri(x, u)), delj(wj(x, v)), . . .

and this is the only potential execution interval of a weak write to x that includes the
delivery event of sri(x, u), then I(sri(x, u)) = {swq, srk(y, u), srl(z, w)}, B(sri(x, u)) =
{srl(z, w)}, C(sri(x, u)) = {srk(y, u)}, and D(sri(x, u)) = {swq, srl(z, w)}.

Add sri(x, v) to each τ ′j in the last possible place such that it will be ordered before
every strong operation in D(sri(x, v)), before the delivery event of its strong-read

message and before any obliterating write operation. For every strong read srq in
C(sri(x, v)), if sri(x, v) is ordered before srq in τ ′j , then reorder srq immediately
before sri(x, v) in τ ′j . In this case, we say that srq is dragged by sri(x, v) in τ ′j .
If there is more than one strong read that is dragged by sri(x, v), then break ties
according to the abcast order of their corresponding strong-read messages.

The following lemmas show that {τ ′′j }nj=1 obey all requirements in the definition
of hybrid consistency, except for not including all operations, as follows.

• Legality follows from legality of {τ ′j}nj=1 and Lemma 5.7.
• Condition 1 is not relevant at this point.
• Condition 2 follows from the fact that {τ ′j}nj=1 obeys it and Lemma 5.11.
• Condition 3 follows from the fact that {τ ′j}nj=1 obeys it and Lemma 5.9.
• Condition 4 follows from the fact that {τ ′j}nj=1 obeys it and Lemma 5.10.

Lemma 5.6 gives more technical information concerning the influence of a write and
is used in some of the lemmas’ proofs. Lemma 5.8 is another technical lemma.

Lemma 5.6. A strong read reads from a write that influences every process.
Proof. Let sri be a strong read that reads from some write wk. If wk is strong,

then by definition, wk influences every process. So, assume that wk is weak. If k = i,
then since sri is a strong operation, it is not executed until the conditional execution
interval of wk is completed. Therefore, wk is not overwritten, and by Lemma 5.4,

1658 HAGIT ATTIYA AND ROY FRIEDMAN

wk influences every process. If k 6= i, then wk influences pi, and by Lemma 5.4, wk

influences every process.

Lemma 5.7. Every strong read is legal in every sequence τ ′′j .

Proof. We prove that every strong read is ordered in every sequence τ ′′j after the
write it reads from. Since, by definition, every strong read appears in every sequence
τ ′′j before any obliterating write operation, this will imply that the strong read is legal.

Assume, by way of contradiction, that there exists a strong read that is ordered
in some sequence τ ′′j before the write it reads from. Let sri(x, v) be the first strong
read such that, following the insertion of sri(x, v), there exists a strong read which
is ordered in some sequence τ ′′j before the write it reads from. Thus, either sri(x, v)
is ordered in τ ′′j before the write it reads from or there exists another strong read
srs(y, w), which is dragged in τ ′′j before the write it reads from.

Assume that sri(x, v) is ordered in τ ′′j before the write it reads from, and denote
this write by wk(x, v). In particular, sri(x, v) is ordered before delj(wk(x, v)) in
τ ′′j . Thus, dell(sri(x, v)) is ordered in some sequence τ ′′l inside a potential execution
interval of some weak write wl(x, u) that includes a strong operation sopq which is
ordered in τ ′′j before delj(wk(x, v)). (If there is no such sopq, then there is no reason to
order sri(x, v) in τ ′′j before the write it reads from.) By the assumption that sri(x, v)
reads from wk(x, v) and by Lemma 5.6, wk(x, v) influences every process. Therefore,
dell(wk(x, v)) is ordered in τ ′′l before the potential execution interval of wl(x, u). Since
we assumed that sopq is ordered in τ ′′j before delj(wk(x, v)), and since delj(sopq) is
ordered after delj(wk(x, v)), it follows that sopq is a strong read and the write sopq
reads from is ordered inside the potential execution interval of wl(x, u). Denote the
write sopq reads from by wm. By Lemma 5.6, both wm and wk(x, v) influence every
process, and therefore both wm and wk(x, v) are ordered immediately before their
delivery events. Thus, wm is ordered after wk(x, v) in τ ′′j . By the minimality of
sri(x, v), sopq is ordered after wm in τ ′′j , and therefore after wk(x, v). This is a
contradiction.

Assume that srs(y, w) is dragged by sri(x, v) before the write it reads from,
and denote this write by wk(y, w). In particular, srs(y, w) is dragged by sri(x, v)
before delj(srs(y, w)) in τ ′′j . By the minimality of sri(x, v), srs(y, w) is ordered after
wk(y, w) in every sequence τ ′′p before the insertion of sri(x, v). Thus, dell(sri(x, v))
and dell(srs(y, w)) are ordered inside a potential execution interval of some weak
write wl(x, u) that includes a strong operation sopq which is ordered in τ ′′j before
delj(wk(y, w)). Since we assumed that sopq is ordered in τ ′′j before delj(wk(y, w)),
and since delj(sopq) is ordered after delj(wk(y, w)), it follows that sopq is a strong
read and the write sopq reads from is ordered inside the potential execution interval
of wl(x, u). Denote the write sopq reads from by wm. By Lemma 5.6, both wm

and wk(x, v) influence every process, and therefore both wm and wk(x, v) are ordered
immediately before their delivery events. Thus, wm is ordered after wk(x, v) in τ ′′j .
By the minimality of sri(x, v), sopq is ordered after wm in τ ′′j , and therefore after
wk(y, w). This is a contradiction.

Lemma 5.8. Every strong read sri(x, v) is ordered after delj(prev(sri(x, v))) in
every sequence τ ′′j .

Proof. Assume, by way of contradiction, that there exists a strong read sri(x, v)
that is ordered in some sequence τ ′′j before delj(prev(sri(x, v))). Assume, without
loss of generality, that sri(x, v) is the first strong read such that following the in-
sertion of sri(x, v), there exists a strong read srs(y, w) which is ordered in some se-
quence τ ′′j before delj(prev(srs(y, w))). Thus, either sri(x, v) is ordered in τ ′′j before

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1659

delj(prev(sri(x, v))) or there exists another strong read srs(y, w) which is dragged in
τ ′′j before delj(prev(srs(y, w))).

Assume that sri(x, v) is ordered in τ ′′j before delj(prev(sri(x, v))). Thus, there
exists a sequence τ ′′l for which dell(sri(x, v)) is ordered in τ ′′l inside a potential ex-
ecution interval of some weak write wl(x, u) that includes a strong operation sopq
which is ordered in τ ′′j before delj(prev(sri(x, v))). Since sri(x, v) does not return
until all ack messages of prev(sri(x, v)) are delivered, dell(prev(sri(x, v))) is ordered
in τ ′′l before the potential execution interval of wl(x, u). Since sopq is ordered before
delj(prev(sri(x, v))) in τ ′′j and after dell(prev(sri(x, v))) in τ ′′l , then sopq is a strong
read and the write sopq reads from is ordered inside the potential execution interval
of wl(x, u). Denote the write sopq reads from by wm. By Lemma 5.6, wm influences
every process and is therefore ordered in τ ′′j immediately before delj(wm). Thus, wm

is ordered after delj(prev(sri(x, v))) in τ ′′j . By Lemma 5.7, sopq is ordered after wm

in τ ′′j , and therefore after delj(prev(sri(x, v))). This is a contradiction.
Assume that srs(y, w) is dragged by sri(x, v) before delj(prev(srs(y, w))) in τ ′′j .

By the minimality of sri(x, v), srs(y, w) is ordered after delp(prev(srs(y, w))) in every
sequence τ ′′p before the insertion of sri(x, v). Thus, there exists a sequence τ ′′l for which
dell(sri(x, v)) and dell(srs(y, w)) are ordered inside a potential execution interval of
some weak write wl(x, u) that includes a strong operation sopq which is ordered in τ ′′j
before delj(prev(srs(y, w))). Since sopq is ordered before delj(prev(srs(y, w))) in τ ′′j
and after dell(prev(srs(y, w))) in τ ′′l , it follows that sopq is a strong read and the write
sopq reads from is ordered inside the potential execution interval of wl(x, u). Denote
the write sopq reads from by wm. By Lemma 5.6, wm influences every process, and
therefore is ordered in τ ′′j immediately before delj(wm). Thus, wm is ordered after
delj(prev(srs(y, w))) in τ ′′j . By Lemma 5.7, sopq is ordered after wm in τ ′′j , and
therefore after delj(prev(srs(y, w))). This is a contradiction.

Lemma 5.9. There exists a linearization ρ of all the operations in σ such that
for every pair of strong operations sopk and sopl,

sopk
ρ- sopl if and only if sopk

τ ′′
j- sopl for every τ ′′j .

Proof. We have to show that all the strong operations are ordered in all the
sequences τ ′′j in the same order, and that this order is a linearization of the strong
operations in ops(σ).

We first show that all strong operations appear in the same order in all sequences
τ ′′j . Assume, by way of contradiction, that there exist two strong operations sopk and
sopi and two sequences τ ′′j and τ ′′l such that

sopk
τ ′′
j- sopi but sopi

τ ′′
l- sopk.

By Lemma 5.1 and since strong writes are not dragged by strong reads, this can only
happen if at least one of sopk or sopi is a strong read.

If both sopk and sopi are strong reads, then let sopi = sri(x, v) and sopk =
srk(y, w). Assume, without loss of generality, that sri(x, v) appears before srk(y, w)
in the order of insertion for strong reads. Thus, the strong-read message of srk(y, w)
is delivered after the strong-read message of sri(x, v). Since

srk(y, w)
τ ′′
j- sri(x, v),

1660 HAGIT ATTIYA AND ROY FRIEDMAN

then either sri(x, v) ∈ D(srk(y, w)) or srk(y, w) is dragged by another strong read
before sri. In either case, srk(y, w) is ordered before sri(x, v) in every sequence τ ′′l .
This is a contradiction.

Otherwise, without loss of generality, sopi is a strong read and sopk is a strong
write. Let sopi = sri(x, v). If the strong-read message of sri(x, v) is delivered
before the strong-write message of sopk, then sri(x, v) is ordered before sopk in
every sequence τ ′′j . Therefore, the strong-read of sri(x, v) is delivered after the
strong-write message of sopk. Since sri(x, v) is ordered before sopk in τ ′′j , then either
sopk ∈ D(sri(x, v)) or sri(x, v) is dragged by another strong read before sopk. In any
case, sri(x, v) is ordered before sopk in every sequence τ ′′l . This is a contradiction.

We now show that the order in which strong operations appear in τ ′′j preserves
the order implied by ρ. Assume, by way of contradiction, that the order in which
all strong operations appear in every sequence τ ′′j is not a linearization. Note that
strong reads are always inserted before their corresponding delivery event. By Lemma
5.1 and since strong writes are not dragged by strong reads, the total order is not a
linearization only if there exist a strong read sri(x, v) and another strong operation
sopk such that sopk terminates before sri(x, v) begins, but

sri(x, v)
τ ′′
j- sopk

for every sequence τ ′′j . Since, by definition,

sopk
τ ′′
j- delj(sopk)

for every sequence τ ′′j , this can only happen in one of two cases.
Case 1. The delivery event of the strong-read message of sri(x, v) is ordered

inside the potential execution interval of some wl(x, v), and sopk is also ordered in-
side the same potential execution interval. Then the ack message for sopk is deliv-
ered in pk after the update message of wl(x, u), while the strong-read message of
sri(x, v) is delivered in all processes before the update message of wl(x, u). Hence,
the strong-read message of sri(x, v) is delivered in pk before sopk terminates. This
contradicts the assumption that sopk terminates before sri(x, v) begins.

Case 2. sri(x, v) is dragged by some other strong read srq(y, w) before sopk.
Thus, the strong-read message of srq(y, w) is delivered inside the potential execution
interval of some weak write wl(y, z) that includes both dell(sopk) and dell(sri(x, v)).
Therefore, the ack message for sopk is delivered in pk after the update message
of wl(y, z), while the strong-read message of sri(x, v) is delivered in all processes
before the update message of wl(y, z). Hence, the strong-read message of sri(x, v)
is delivered in pk before sopk terminates. This contradicts the assumption that sopk
terminates before sri(x, v) begins.

Lemma 5.10. For every sequence τ ′′j , τ ′′j |j = σ|j.
Proof. Consider any two operations op1

j and op2
j such that op1

j

σ- op2
j . We

show that

op1
j

τj- op2
j

by a simple case analysis. If neither op1
j nor op2

j is a strong read, then the claim holds
by Lemma 5.2 and the fact that the insertion of strong reads does not change the
order of other operations. If both op1

j and op2
j are strong reads, then the claim holds

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1661

by Lemma 5.9. If only op1
j is a strong read, then the claim holds because strong reads

are inserted before their corresponding delivery event. If, on the other hand, only op2
j

is a strong read, then by Lemma 5.8,

delj(prev(op
2
j))

τ ′′
j- op2

j .

By construction of τ ′′j ,

op1
j

τ ′′
j- delj(prev(op

2
j)).

Thus,

op1
j

τ ′′
j- op2

j

and the claim holds. (Note that we have covered all the cases, since we still do not
have weak reads by other processes.)

Lemma 5.11. For each sequence of operations τ ′′j and every pair of operations

op1
k and op2

k in τ ′′j such that either op1
k or op2

k is strong,

op1
k

τ ′′
j- op2

k if and only if op1
k

σ- op2
k.

Proof. By Lemma 5.10, the claim holds for k = j. Thus, we assume for the rest
of the proof that k 6= j. Assume, by way of contradiction, that for some sequence τ ′′j
and two operations op1

k and op2
k such that either op1

k or op2
k is strong,

op1
k

τ ′′
j- op2

k but op2
k

σ- op1
k.

By Lemmas 5.5 and 5.9 and the construction of τ ′′j , this can only happen in one of
the following cases.

Case 1. op1
k is a strong read and op2

k is a weak write. By the construction of τ ′′j , op2
k

is ordered before delj(op
2
k). In particular, op2

k is ordered in τ ′′j before delj(prev(op
1
k)).

By Lemma 5.8, op1
k is ordered in τ ′′j after delj(prev(op

1
k)). Thus,

op2
k

τ ′′
j- op1

k.

This is a contradiction.
Case 2. op2

k is a strong read and op1
k is a weak write that does not influence pj . By

definition, op2
k is ordered before delp(op

2
k) in every sequence τ ′′p . Assume, without loss

of generality, that op1
k writes to x, and let wl(x,w) be the last write that influences

pj before the delivery of the update message of op1
k. Thus, op1

k is invoked before the
delivery of the update or strong-write message of wl(x,w) in pk. Moreover, op1

k is
ordered in τ ′′j before op2

k because wl(x, v) is ordered in τ ′′j before op2
k. Since op2

k does
not return before all of its ack messages are delivered, and since every ack message
is sent using asend, the ack message for op2

k is delivered in pk after the update or
strong-write message of wl(x,w). Thus, op1

k is invoked after the delivery of the
update or strong-write message of wl(x,w). This is a contradiction.

1662 HAGIT ATTIYA AND ROY FRIEDMAN

5.2.3. Inserting weak reads. We now insert the weak reads. A sequence τ ′′′j
is constructed from each sequence τ ′′j , by inserting into τ ′′j all the weak reads that
are invoked by other processes than pj , one after the other as follows: every weak
read rk(x, v), k 6= j, is inserted in the first possible place such that it will be ordered
after the previous strong operation by pk (if there is one) and after the write it reads
from (if there is one). Note that this is well defined: if there is no previous strong
operation and the weak read returns the initial value of the object, then the weak
read is inserted at the beginning of the sequence.

The following lemmas show that {τ ′′′j }nj=1 obey all requirements in the definition
of hybrid consistency, except for including delivery events, as follows.

• Legality follows from legality of {τ ′′j }nj=1 and Lemma 5.13.
• Condition 1 follows from the construction.
• Condition 2 follows from the fact that {τ ′′j }nj=1 obeys it and Lemma 5.12.
• Condition 3 follows from the fact that {τ ′′j }nj=1 obeys it and that adding weak

reads does not affect it.
• Condition 4 follows from the fact that {τ ′′j }nj=1 obeys it and that adding weak

reads does not affect it.
Lemma 5.12. For each sequence of operations τ ′′′j and every pair of operations

op1
k and op2

k such that either op1
k or op2

k is strong,

op1
k

τ ′′′
j- op2

k if and only if op1
k

σ- op2
k.

Proof. Assume, by way of contradiction, that there exist a sequence τ ′′′j and two

operations op1
k and op2

k such that either op1
k or op2

k is strong,

op1
k

τ ′′′
j- op2

k but op2
k

σ- op1
k.

By Lemma 5.10, the claim of the lemma holds if k = j. By Lemma 5.11 and since
the insertion of weak reads does not change the order of other operations in τ ′′′j , the

claim of the lemma holds if neither op1
k nor op2

k is a weak read. Moreover, since weak
reads are inserted after the previous strong operation by the same process, the only
case in which op1

k may be ordered in τ ′′′j before op2
k is when op2

k is a weak read, op1
k is

a strong operation, k 6= j, and the write op2
k reads from is ordered after op1

k in τ ′′′j .

Assume, without loss of generality, that op2
k reads from wl(x, v). Lemma 5.11 and

the assumption that op2
k reads from wl(x, v) imply that l 6= k. Thus, wl(x, v) influences

every process and is therefore ordered in τ ′′′j immediately before delj(wl(x, v)). If op1
k

is a strong write, then it is ordered in τ ′′′j immediately before delj(op
1
k). Thus,

delj(op
1
k)

τ ′′′
j- wl(x, v)

τ ′′′
j- delj(wl(x, v)).

If, on the other hand, op1
k is a strong read, then by Lemma 5.8, op1

k is ordered in τ ′′′j
after delj(prev(op

1
k)). Thus,

delj(prev(op
1
k))

τ ′′′
j- wl(x, v)

τ ′′′
j- delj(wl(x, v)).

In either case, by the use of atomic broadcast, the update or strong-write message
of wl(x, v) is delivered in pk after op2

k is executed. This contradicts the assumption
that op2

k reads from wl(x, v).

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1663

Lemma 5.13. Every read is legal in every sequence τ ′′′j .
Proof. By Lemma 5.7, all strong reads are legal in any of the sequences τ ′′′j .

Thus, assume, by way of contradiction, that there exist a sequence τ ′′′j and a weak
read ri(x, v) such that ri(x, v) is not legal in τ ′′′j . Denote by wl(x, v) the write ri(x, v)
reads from and by sopi the next strong operation by pi. By Lemma 5.3 and since
the insertion of (strong or weak) read operations does not change the order of write
operations (by any process) or the order of weak reads by pj , i 6= j. Thus, by the
rules for inserting weak reads, there exists an obliterating write wk(x, u) such that

wl(x, v)
τ ′′′
j- wk(x, u)

τ ′′′
j- sopi.

If k = j, then the update or strong-write message of wk(x, u) is delivered at
pi after the execution of wl(x, v) and before the delivery of the ack message of sopi.
Thus, either wk(x, u) or another write to x is executed by pi between the execution of
wl(x, v) and the invocation of ri(x, v). This contradicts the assumption that ri(x, v)
reads from wl(x, v).

Thus, k 6= j. We may assume, without loss of generality, that wk(x, u) influences
pj . Otherwise, there exists another write wq(x,w) that influences pj such that

wl(x, v)
τ ′′′
j- wk(x, u)

τ ′′′
j- wq(x,w)

τ ′′′
j- sopi,

and we could have chosen wq(x,w). Thus, wk(x, u) is ordered in τ ′′′j immediately
before delj(wk(x, u)). By Lemma 5.4, wk(x, u) influences every process. By the con-
struction of τ ′′′j , sopi is ordered before delj(sopi). Thus, the update or strong-write
message of wk(x, u) is delivered at pi after the execution of wl(x, v) and before the
delivery of the strong-write or strong-read message of sopi. Thus, wk(x, u) is
executed by pi between the execution of wl(x, v) and the invocation of ri(x, v). This
contradicts the assumption that ri(x, v) reads from wl(x, v).

5.2.4. Obtaining the final sequences. Finally, from each process pj , create a
new sequence of operations τj by removing all delivery events from τ ′′′j .

Theorem 5.14. Every execution generated by the algorithm is hybrid.
Proof. For an execution σ, we have constructed a set of sequences {τj}nj=1. We

now show why this set satisfies the requirements of the definition of hybrid consistency.
Legality. By Lemma 5.13, every sequence τj is legal.
Condition 1. By construction, every sequence τj is a permutation of ops(σ),

which satisfies Condition 1 in the definition of hybrid consistency.
Condition 2. By Lemma 5.12, for every pair of operations op1

l and op2
l such that

either op1
l or op2

l is strong, op1
l

τj- op2
l if and only if op1

l

σ- op2
l , which

satisfies Condition 2 in the definition of hybrid consistency.
Condition 3. By Lemma 5.9, there exists a linearization ρ of all operations in

ops(σ) such that for every pair of strong operations sopl and sopk, sopl
τj-

sopk if and only if sopl
ρ- sopk, which satisfies Condition 3 in the definition

of hybrid consistency.
Condition 4. By Lemma 5.10, for every sequence τj , τj |j = σ|j, which satisfies

Condition 4 in the definition of hybrid consistency.

5.3. Complexity analysis. Since the algorithm uses an atomic broadcast mech-
anism, the actual time and message complexity depends on the complexity of this

1664 HAGIT ATTIYA AND ROY FRIEDMAN

mechanism. We will make the complexity analysis with respect to tabc, the time
required to broadcast a message using abcast, tsend, the time required to send a mes-
sage using asend, nabc, the number of physical messages required to perform abcast,
and nsend, the number of physical messages required to perform asend. We ignore
the effects of contention on the network in this time analysis.

Weak reads are executed instantaneously from the local copy of the object they
access and cause no messages to be sent. Weak writes are also executed instanta-
neously, but each weak write requires nabc physical messages in order to broadcast its
update message and n · nsend physical messages for the corresponding ack messages.

A strong operation must wait for all ack messages of previous weak write opera-
tions and dummy messages, which could take tabc + tsend time. Then, it broadcasts its
own message and must wait until all ack messages are delivered, which could take an
additional tabc + tsend time. The total time required to execute a strong operation is
therefore 2(tabc + tsend).

A strong write operation requires nabc physical messages in order to broadcast
its strong-write message and n · nsend physical messages for the corresponding ack

messages. The total number of physical messages caused by a strong write operation
is therefore nabc + n · nsend.

A strong read operation requires nabc physical messages in order to broadcast its
dummy message and n · nsend physical messages for the corresponding ack messages
if the last previous operation was a weak read. Then, an additional nabc physical
messages are required to broadcast its strong-read message plus n · nsend physical
messages for the corresponding ack messages. The total number of physical messages
caused by every strong read operation is therefore 2(nabc + n · nsend).

Much work has been done on atomic broadcast, and several atomic broadcast
algorithms have been developed, e.g., [6, 7, 8, 10, 12, 18, 19, 23, 25, 26, 27, 31, 43, 59].
Several of these protocols guarantee that messages are delivered within 2d time [10,
18, 26, 43]. Assuming a delivery time of 2d, the time complexity of strong operations
is 8d, or in other words, linear with the network delay, which matches our goal.

The exact values of nabc and nsend highly depend on the specific atomic broadcast
mechanism being used and whether it uses hardware multicast or not. If we use a
simple sequencer scheme, such as proposed in [10], then nabc is 2 if we assume hardware
multicast and n otherwise, while nsend is 2 in any case. By using these numbers in
the above analysis, we get 0 messages for weak reads, 2 + 2n messages for weak or
strong writes assuming hardware multicast and 3n otherwise, and 4+4n messages for
strong reads assuming hardware multicast and 6n otherwise.

5.4. Relaxing the complete copy assumption. As done in other theoretical
papers on this topic (e.g., [4, 5, 42]) our implementation assumes that each process
maintains a copy of the entire memory. This assumption was made for clarity of
presentation, but it can be relaxed as follows. The memory may be split among the
processes, such that every memory object is held by at least one process. Whenever
a memory operation is invoked at a process pi, if pi owns a copy of the object, then
the code is executed as in the case where each member has a complete copy of the
entire memory. If pi does not hold a copy of that object, then it behaves in one of
the following ways, depending on the type of the operation: if the operation is a weak
or strong write, then pi follows the same code as before, except for not updating the
copy that it does not have. If the operation is a weak read, pi sends a message to the
nearest copy of the object using asend, inquiring about the value of this object, and
returns the answer. Finally, if the operation is a strong read, pi sends the strong-read

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1665

message as before, and one of the holders of the object returns the value of this object
at the time it received the strong-read message. When pi receives all the replies, it
returns this value to the application program.

Note that there is a tradeoff here between memory efficiency and execution laten-
cies: in order to always be able to execute weak reads instantaneously, every process
must hold a complete copy of the entire memory; the more copies of each memory
object exist, the more likely it is for a weak read to be executed immediately. This
tradeoff exists in other consistency conditions as well.

6. Lower bounds for implementing hybrid consistency. It is known [12]
that in any (asynchronous) implementation of linearizability, the response time of
(“strong”) read and write operations is Ω(d). Thus, our algorithm shows that it is
possible to implement hybrid consistency in such a way that weak operations are
extremely fast, without sacrificing the response time of strong operations.

Our implementation of hybrid consistency supports Definition 3.1, that is, hy-
brid consistency where the strong operations are linearizable. In contrast, sequential
consistency can be implemented more efficiently than linearizability [12]. This might
lead one to think that hybrid consistency where the strong operations are sequen-
tially consistent can be implemented with a better asymptotic response time than our
implementation. The following theorems show that this is not the case, at least if
weak operations are required to be “fast.” These theorems are a variation of a similar
theorem which appears in [46]. The lower bounds proved in this section apply to both
flavors of hybrid consistency. Recall that |op| denotes the maximum time required to
execute an operation of type op.

Theorem 6.1. For any implementation of hybrid consistency, |read|+ |swrite| ≥
d.

Proof. Assume, by way of contradiction, that there is an implementation of hybrid
consistency for which |read|+ |swrite| < d. Let p1 and p2 be two processes that access
x and y. Without loss of generality, assume that x and y are initially 0.

By the specification of y, there is a hybrid execution σ1 such that ops(σ1) is

[SWrite1(x, 1), SAck1(x)], [Read1(y), Return1(y, 0)],

SWrite1(x, 1) occurs at real time 0, and Read1(y) occurs immediately after SAck1(x).
The delay of all messages in σ1 is exactly d. By assumption, the real time at the end
of σ1 is less than d. Hence, no message is received at any node during σ1.

Similarly, by the specification of x, there is some hybrid execution σ2 such that
ops(σ2) is

[SWrite2(y, 1), SAck2(y)], [Read2(x), Return2(x, 0)],

SWrite2(y, 1) occurs at real time 0, and Read2(x) occurs immediately after SAck2(y).
The delay of all messages in σ2 is exactly d. By assumption, the real time at the end
of σ2 is less than d. Hence, no message is received at any node during σ2.

Since no message is ever received in σ1 and σ2, the result of combining p1’s history
in σ1 with p2’s history in σ2 can be extended to a hybrid execution σ. Then ops(σ) con-
sists of the operation [SWrite1(x, 1), SAck1(x)] followed by [Read1(y), Return1(y, 0)]
and [SWrite2(y, 1), SAck2(y)] followed by [Read2(x), Return2(x, 0)].

Since σ is hybrid, there exists a serialization ρ of ops(σ) such that for every
i ∈ {1, 2}, there exists a legal serialization τi of ops(σ) that preserves: (a) the or-
der of operations at pi, (b) the order between strong and weak operations at all

1666 HAGIT ATTIYA AND ROY FRIEDMAN

processes, and (c) the order between strong operations in ρ (as formalized in Defi-
nition 3.2). Without loss of generality, assume that in ρ, [SWrite1(x, 1), SAck1(x)]
precedes [SWrite2(y, 1), SAck2(y)].

Consider τ2. Since τ2 is legal, each read should precede the strong write to
the same variable (by the other process) in τ2. Thus, in τ2, [Read2(x), Return2(x, 0)]
precedes [SWrite1(x, 1), SAck1(x)], which, in turn, precedes [SWrite2(y, 1), SAck2(y)].
Therefore, in τ2, [Read2(x), Return2(x, 0)] precedes [SWrite2(y, 1), SAck2(y)], but
then τ2 | 2 6= σ | 2. This is a contradiction.

The interested reader can compare this proof with the proof of the similar result
in [12, Theorem 3.1] to see the extra care needed when arguing about properties of
hybrid executions.

Using the same arguments as in the proof of Theorem 6.1, only reversing the roles
of reads and writes, we can prove the following theorem.

Theorem 6.2. For any implementation of hybrid consistency, |write|+ |sread| ≥
d.

We define a fast write implementation to be one in which the time required to
execute weak write operations is strictly less than d/2. Likewise, a fast read im-
plementation is an implementation in which the time required to execute weak read
operations is strictly less than d/2. Note that the implementation given in the previ-
ous section is fast—weak operations return instantaneously. We immediately obtain
the following corollary.

Corollary 6.3. Let I be a fast read implementation of hybrid consistency. Then
|swrite | ≥ d/2.

Corollary 6.4. Let I be a fast write implementation of hybrid consistency.
Then |sread | ≥ d/2.

That is, in any implementation of hybrid consistency in which weak reads are
executed faster than the network delay, strong writes must be slower than the network
delay, and if weak writes are faster than the network delay, then strong reads must
be slower than the network delay. In that sense, the implementation presented in this
paper is optimal (up to a constant factor).

7. Discussion and further research. This paper presents a theoretical study
of hybrid consistency. This study is motivated by several new processors and multi-
processors that support some sort of weak and strong operations; it is also motivated
by recent theoretical results on the cost of supporting global consistency conditions
and the inadequacy of weak consistency conditions. We have presented a formal and
precise definition of hybrid consistency in two flavors, one based on sequential con-
sistency and the other based on linearizability. We have presented an algorithm for
providing hybrid consistency, proved its correctness, and analyzed its performance.
We have also shown lower bounds on the response time of any implementation of
hybrid consistency that does not delay weak operations (which are within constant
factors of the bounds achieved by our algorithm).

Our definition of hybrid consistency (Definition 3.2) assumes that operations of
the same process are executed one at a time and in program order. Recently, our
definition has been generalized to allow nonsequential executions [9], i.e., executions
in which operations may be executed in parallel, in pipeline, and even out of order.
The definition in [9] also incorporates a formal treatment of control operations, which
is not part of our definition. Naturally, the result is a slightly more complicated
definition. We feel that Definition 3.2 is still interesting since it sheds light on hybrid

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1667

consistency: how to program with it, what its costs are, and possible algorithms for
providing it. Furthermore, to the best of our knowledge, there is no formally verified
algorithm for providing hybrid consistency when operations can be issued in parallel,
in pipeline, and out of order.

Our work leaves open several theoretical, as well as practical, questions.

We would like to obtain tighter bounds (for time, messages, and congestion) for
implementations of hybrid consistency. In this work we assumed that local com-
putations are negligible and that messages can be sent to the network without any
limitations. It is important to obtain lower and upper bounds on implementations of
hybrid consistency and other consistency conditions in a more realistic model. The
Postal [13] or the LogP [28] models might serve as a middle ground between our
theoretical assumptions and realistic architectures.

It would be interesting to quantify what the performance benefits of programming
with hybrid consistency are. Specifically, are algorithms for solving a specific problem
that rely on hybrid consistency faster than algorithms for solving the same problem
that rely on other consistency conditions? If so, how much? These questions can be
answered either by theoretical or experimental methods.

In this paper, we have made a small step towards developing proof techniques
for hybrid consistency by showing how to argue about the correctness of an example
program. Subsequent work [9] presents several techniques for transforming programs
written for sequentially consistent hardware into correct and efficient programs for
hybrid consistent hardware; related results for alpha consistency appear in [11].

Another interesting and important issue is the design of compiler techniques for
using hybrid consistency. Such a compiler can, for example, take a program which was
written assuming a sequentially consistent or linearizable memory, and decide auto-
matically for each memory access operation whether it should be weak or strong. This
should be done without affecting the correctness of the program and while achieving
the maximal possible speedup. (Such techniques for sequentially consistent memories
that allow pipelining appear in [56].)

The problem of verifying whether a given execution is sequentially consistent was
investigated by Gibbons and Korach [36]. They have shown that for most interesting
cases, this problem is NP-complete, although under some restrictions it can be solved
in polynomial time. It is clear that the problem of verifying whether a given execution
is hybrid consistent is at least as hard. However, it is unclear whether verifying hybrid
consistency is harder than verifying sequential consistency.

The ultimate goal of our research is to obtain a better understanding of memory
consistency conditions, so it would be possible to evaluate several conditions and
decide which is best suited for a specific application and architecture. In order to
do so, a wide spectrum of properties needs to be considered, such as performance,
computation power, and complexity of the possible implementations. It is necessary to
formalize these properties and develop criteria for evaluating consistency conditions.

Acknowledgments. Jennifer Welch collaborated with us in the early stages of
this research. We are indebted to her for her contributions to the definition of hybrid
consistency and for many helpful discussions and comments on several versions of
this paper. Thanks also to Sarita Adve, Eran Aharonson, Ken Birman, Kourosh
Gharachorloo, Maurice Herlihy, Martha Kosa, Rivka Ladin, Friedemann Mattern,
Lihu Rappoport, and Tali Shintel for helpful remarks.

1668 HAGIT ATTIYA AND ROY FRIEDMAN

REFERENCES

[1] S. Adve and M. Hill, Weak ordering—A new definition, in Proc. 17th ACM/IEEE Interna-
tional Symp. on Computer Architecture, 1990, pp. 2–14.

[2] S. Adve and M. Hill, A Unified Formalization of Four Shared-Memory Models, Technical
Report 1051, Computer Science Department, University of Wisconsin, Madison, 1991.

[3] S. Adve and M. Hill, Sufficient Conditions for Implementing the Data-Race-Free-1 Memory
Model, Technical Report 1107, Computer Science Department, University of Wisconsin,
Madison, 1992.

[4] M. Ahamad, P. Hutto, and R. John, Implementing and Programming Causal Distributed
Shared Memory, Technical Report TR GIT-CC-90-49, Georgia Institute of Technology,
Atlanta, 1990.

[5] M. Ahamad, G. Neiger, P. Kohli, J. Burns, and P. Hutto, Causal memory: Definitions,
implementation, and programming, Distrib. Computing, 9 (1995), pp. 37–49.

[6] G. Alvarez, F. Cristian, and S. Mishra, On-Demand Asynchronous Atomic Broadcast, Tech-
nical Report CS95-416, Dept. of Computer Science, University of California, San Diego,
1995.

[7] Y. Amir, D. Dolev, S. Kramer, and D. Malki, Total Ordering of Messages in Broadcast
Domains, Technical Report CS92-9, Dept. of Computer Science, The Hebrew University
of Jerusalem, 1992.

[8] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D.A. Agarwal, and P. Ciarfella, Fast
message ordering and membership using a logical token-passing ring, in Proc. 13th IEEE
International Conf. on Distributed Computing Systems, 1993, pp. 551–560.

[9] H. Attiya, S. Chaudhuri, R. Friedman, and J. Welch, Shared memory consistency con-
ditions for non-sequential execution: Definitions and programming strategies, SIAM J.
Comput., 27 (1998), to appear.

[10] H. Attiya and R. Friedman, A Correctness Condition for High-Performance Multiprocessors.
Technical Report #767, Department of Computer Science, Technion, Haifa, Israel, 1993.

[11] H. Attiya and R. Friedman, Programming DEC-alpha based multiprocessors the easy way,
in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, ACM, New York,
1994, pp. 157–166; also, Technical Report LPCR #9411, Department of Computer Science,
Technion, Haifa, Israel.

[12] H. Attiya and J. Welch, Sequential consistency versus linearizability, ACM Trans. Comput.
Systems, 12 (1994), pp. 91–122.

[13] A. Bar-Noy and S. Kipnis, Designing broadcasting algorithms in the postal model for message-
passing systems, in Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, ACM,
New York, 1992, pp. 11–22.

[14] J. Bennett, J. Carter, and W. Zwaenepoel, Munin: Distributed shared memory based on
type-specific memory coherence, in Proc. 2nd ACM Symp. on Principles and Practice of
Parallel Processing, ACM, New York, 1990, pp. 168–176.

[15] P. Bernstein, V. Hadzilacos, and H. Goodman, Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[16] K. Birman, The process group approach to reliable distributed computing, Comm. ACM, 36
(1993), pp. 37–53.

[17] K. Birman and T. Joseph, Exploiting virtual synchrony in distributed systems, in Proc. 11th
ACM Symp. on Operating Systems Principles, ACM, New York, 1987, pp. 123–138.

[18] K. Birman and T. Joseph, Reliable communication in the presence of failures, ACM Trans.
Comput. Systems, 5 (1987), pp. 47–76.

[19] K. Birman, A. Schiper, and P. Stephenson, Lightweight causal and atomic group multicast,
ACM Trans. Comput. Systems, 9 (1991), pp. 272–314.

[20] R. Bisiani, A. Nowatzyk, and M. Ravishankar, Coherent Shared Memory on a Distributed
Memory Machine, in Proc. International Conf. on Parallel Processing, Pennsylvania State
University, University Park, PA, 1989, pp. I–133–141.

[21] W. Brantley, K. McAuliffe, and J. Weiss, RP3 processor-memory element, in Proc. In-
ternational Conf. on Parallel Processing, Pennsylvania State University, University Park,
PA, 1985, pp. 782–789.

[22] L. M. Censier and P. Feautrier, A new solution to coherence problems in multicache sys-
tems, IEEE Trans. Comput., C-27 (1978), pp. 1112–1118.

[23] J. Chang and N. Maxemchuk, Reliable broadcast protocols, ACM Trans. Comput. Systems,
2 (1984), pp. 251–273.

[24] W. W. Collier, Architectures for Systems of Parallel Processes, Technical Report IBM TR
00.3253, IBM, Poughkeepsie, NY, 1984.

A CORRECTNESS CONDITION FOR MULTIPROCESSORS 1669

[25] F. Cristian, Asynchronous Atomic Broadcast, IBM Technical Disclosure Bulletin, 33, 1991,
pp. 115–116; also, 1st IEEE Workshop on Management of Replicated Data, Houston, TX,
IEEE, Piscataway, NJ, 1990.

[26] F. Cristian, R. Beijer, and S. Mishra, A performance comparison of asynchronous atomic
broadcast protocols, Distrib. Systems Engrg. J., 1 (1994), pp. 177–201.

[27] F. Cristian and S. Mishra, The pinwheel asynchronous atomic broadcast protocols, in Proc.
2nd International Symp. on Autonomous Decentralized Systems, Phoenix, AZ, 1995; also,
Technical Report CSE93-331, Department of Computer Science & Engineering, University
of California, San Diego.

[28] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eiken, LogP: Towards a realistic model of parallel compu-
tation, in ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
ACM, New York, 1993. Also: Technical Report UCB/CS/92 713, University of California,
Berkeley.

[29] M. Dubois and C. Scheurich, Memory access dependencies in shared-memory multiproces-
sors, IEEE Trans. Software Engrg., 16 (1990), pp. 660–673.

[30] M. Dubois, C. Scheurich, and F. A. Briggs, Synchronization, coherence and event ordering
in multiprocessors, IEEE Trans. Comput., 21 (1988), pp. 9–21.

[31] P. Ezhilchelvan, R. Macedo, and S. Shrivastava, Newtop: A Fault-Tolerant Group Com-
munication Protocol, Technical Report, Computer Science Department, University of New-
castle, Newcastle upon Tyne, UK, 1994.

[32] R. Friedman, Consistency Conditions for Distributed Shared Memories. Ph.D. Thesis, De-
partment of Computer Science, Technion, Haifa, Israel, 1994.

[33] R. Friedman, Implementing hybrid consistency with high-level synchronization operations,
Distrib. Comput., 9 (1995), pp. 119–129.

[34] K. Gharachorloo, A. Gupta, and J. Hennessy, Performance evaluation of memory consis-
tency models for shared-memory multiprocessors, in Proc. 4th ACM International Conf.
on Architectural Support for Programming Languages and Operating Systems, ACM, New
York, 1991, pp. 245–257.

[35] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
Memory consistency and event ordering in scalable shared-memory multiprocessors, in
Proc. 17th ACM/IEEE International Symp. on Computer Architecture, 1990, pp. 15–26.

[36] P. Gibbons and E. Korach, Testing shared memories, SIAM J. Comput., 26 (1997), pp.
1208–1244.

[37] P. Gibbons and M. Merritt, Specifying non-blocking shared memories, in Proc. 4th ACM
Symp. on Parallel Algorithms and Architectures, ACM, New York, 1992, pp. 306–315.

[38] P. Gibbons, M. Merritt, and K. Gharachorloo, Proving sequential consistency of high-
performance shared memories, in Proc. 3rd ACM Symp. on Parallel Algorithms and Ar-
chitectures, ACM, New York, 1991, pp. 292–303.

[39] R. J. Goodman, Cache Consistency and Sequential Consistency, Technical Report 1006, Com-
puter Science Department, University of Wisconsin, Madison, 1991.

[40] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W. Weber, Comparative evalu-
ation of latency reducing and tolerating techniques, in Proc. 18th ACM/IEEE International
Symp. on Computer Architecture, May 1991, pp. 254–263.

[41] M. Herlihy and J. Wing, Linearizability: A correctness condition for concurrent objects,
ACM Trans. Programming Languages Systems, 12 (1990), pp. 463–492.

[42] J. James and A. Singh, Complete implementations for shared memory consistency conditions,
in Proc. 14th ACM Symp. on Principles of Distributed Computing, ACM, New York, 1995,
p. 273.

[43] F. Kaashoek, A. Tanenbaum, S. Hummel, and H. Bal, An efficient reliable broadcast pro-
tocol, Operating Systems Review, 23 (1989), pp. 5–19.

[44] L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess
programs, IEEE Trans. Comput., C-28 (1979), pp. 690–691.

[45] K. Li and P. Hudak, Memory coherence in shared virtual memory systems, ACM Trans.
Comput. Systems, 7 (1989), pp. 321–359.

[46] R. Lipton and J. Sandberg, PRAM: A Scalable Shared Memory, Technical Report CS-TR-
180-88, Computer Science Department, Princeton University, Princeton, NJ, 1988.

[47] K. Marzullo, R. Cooper, M. Wood, and K. Birman, Tools for distributed applications
management, IEEE Trans. Comput., 24 (1991), pp. 42–51.

[48] S. Min and J. Baer, A timestamp-based cache coherence scheme, in Proc. International Conf.
on Parallel Processing, Pennsylvania State University, University Park, PA, 1989, pp. I–
23–32.

1670 HAGIT ATTIYA AND ROY FRIEDMAN

[49] C. Papadimitriou, The Theory of Concurrency Control, Computer Science Press, Rockville,
MD, 1986.

[50] G. L. Peterson, Myths about the mutual exclusion problem, Inform. Process. Lett., 12 (1981),
pp. 115–116.

[51] U. Ramachandran, M. Ahamad, and M. Y. Khalidi, Coherence of distributed shared mem-
ory: Unifying synchronization and data transfer, in Proc. International Conf. on Parallel
Processing, Pennsylvania State University, University Park, PA 1989, pp. II–160–169.

[52] M. Raynal, Algorithms for Mutual Exclusion, MIT Press, Cambridge, MA, 1986.
[53] P. Reynolds, C. Williams, and R. Wagner, Empirical Analysis of Isotach Networks, Tech-

nical Report 92-19, Dept. of Computer Science, University of Virginia, Richmond, 1992.
[54] C. Scheurich and M. Dubois, Correct memory operation of cache-based multiprocessors, in

Proc. 14th ACM/IEEE International Symp. on Computer Architecture, 1987, pp. 234–243.
[55] A. Setubal and G. Gerber, Fault-tolerant distributed database for supervisory control system,

in Proc. Workshop Verteilte Datenbaksysteme, Karlsruhe University, Karlsruhe, Germany,
1991.

[56] D. Shasha and M. Snir, Correct and efficient execution of parallel programs that share mem-
ory, ACM Trans. Programming Languages Systems, 10 (1988), pp. 282–312.

[57] A. Siegel, K. Birman, and K. Marzullo, Deceit: A Flexible Distributed File System, Tech-
nical Report TR 89-1042, Department of Computer Science, Cornell University, Ithaca,
NY, 1989.

[58] R. van Renesse, K. Birman, R. Friedman, M. Hayden, and D. Karr, A framework for
protocol composition in horus, in Proc. 14th ACM Symposium on Principles of Distributed
Computing, ACM, New York, 1995, pp. 80–89.

[59] R. van Renesse, K. Birman, and S. Maffeis, Horus: A flexible group communication system,
Comm. ACM, 39 (1996), pp. 76–83.

[60] R. N. Zucker and J.-L. Baer, A Performance Study of Memory Consistency Models, in Proc.
19th ACM/IEEE International Symp. on Computer Architecture, 1992, pp. 2–12.

EFFICIENT ALGORITHMS FOR THE DOMINATION PROBLEMS
ON INTERVAL AND CIRCULAR-ARC GRAPHS∗

MAW-SHANG CHANG†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1671–1694, December 1998 008

Abstract. This paper first presents a unified approach to design efficient algorithms for the
weighted domination problem and its three variants, i.e., the weighted independent, connected, and
total domination problems, on interval graphs. Given an interval model with endpoints sorted, these
algorithms run in time O(n) or O(n log logn) where n is the number of vertices. The results are then
extended to solve the same problems on circular-arc graphs in O(n+m) time where m is the number
of edges of the input graph.

Key words. interval graphs, circular-arc graphs, domination, graph algorithms

AMS subject classifications. 05C85, 68Q25, 68Q20, 68R10, 90C27

PII. S0097539792238431

1. Introduction. Let G = (V,E) be an undirected graph. Throughout the
paper, n and m denote the numbers of vertices and edges of a graph, respectively.
For a vertex v ∈ V , let N(v) = {u : u ∈ V , u 6= v and u is a neighbor of v} and
N [v] = N(v) ∪ {v}. In general, for S ⊆ V , N(S) and N [S] denote ∪v∈SN(v) and
N(S)∪S, respectively. A subset S of V dominates another subset T of V if T ⊆ N [S].
A dominating set S of a subset T of V is called an independent, connected, and total
dominating set of T if the induced subgraph of S has no edges, is connected, and
has no isolated vertices, respectively. A subset S of V is called an (independent,
connected, total) dominating set of graph G if S is an (independent, connected, total)
dominating set of V . Let each vertex of graph G be associated with a real weight.
The weight of a set of vertices is the sum of the weights of all vertices in the set. For
a vertex v and a set S of vertices, w(v) and w(S) denote the weights of v and S,
respectively. The weighted domination problem involves finding a dominating set of
minimum weight for a weighted graph. The weighted independent (connected, total)
domination problem involves finding an independent (connected, total) dominating
set of minimum weight for a weighted graph. Given a graph G and an integer K,
the problem of determining whether G has a dominating set whose cardinality is less
than K is NP-complete [17]. The same holds true for independent, connected, and
total domination [17], [27].

A graph G = (V,E) is called an intersection graph for a finite family F of a
nonempty set if there is a one-to-one correspondence between F and V such that two
sets in F have nonempty intersection if and only if their corresponding vertices in V
are adjacent to each other. We call F an intersection model of G. For an intersection
model F , we use G(F) to denote the intersection graph for F . If F is a family of
intervals on a real line, then G is called an interval graph for F and F is called an
interval model of G. If F is a family of arcs on a circle, then G is called a circular-arc
graph for F and F is called a circular-arc model of G.

∗ Received by the editors October 13, 1992; accepted for publication (in revised form) September
9, 1996; published electronically JUne 3, 1998. This research was supported in part by the National
Science Council of the Republic of China under grant NSC 81-0408-E-194-04. An extended abstract
of this work appeared in the Proceedings of the 12th IFIP World Computer Congress.

http://www.siam.org/journals/sicomp/27-6/23843.html
† Department of Computer Science and Information Engineering, National Chung Cheng Univer-

sity, Min-Hsiung, Chiayi 621, Taiwan, Republic of China (mschang@cs.ccu.edu.tw).

1671

1672 MAW-SHANG CHANG

Booth and Lueker [10] gave an O(n+m)-time algorithm for recognizing an interval
graph and constructing, in the affirmative case, an interval model using PQ-trees.
Also, the endpoints of constructed intervals can be restricted to be distinct integers
between 1 and 2n [31]. We refer to a set of intervals satisfying that the endpoints
are distinct integers between 1 and 2n as a set of sorted intervals since they can be
sorted easily in O(n) time. Korte and Möhring [26] simplified the operations on a
PQ-tree. Ramalingan and Pandu Rangan gave a simple O(n2) time algorithm which
can be implemented in parallel easily [32]. Simon [35], Hsu and Ma [24] gave new
algorithms without using PQ-trees. Interval graphs have been used in many practical
applications [19]. If we are given an interval model whose endpoints are not integers
between 1 and 2n, we can sort the endpoints in nondecreasing order and use the indices
of endpoints in the sorted list to construct a new interval model whose endpoints are
distinct integers between 1 and 2n. Thus, we refer to a set of intervals satisfying that
the endpoints are distinct integers between 1 and 2n as a set of sorted intervals.

Tucker [39] proposed an O(n3)-time algorithm for recognizing a circular-arc graph
and constructing, in the affirmative case, a circular-arc model. Hsu gave an O(nm)-
time algorithm [23] and Eschen and Spinrad presented an O(n2)-time algorithm [13].
Circular-arc graphs have a variety of applications involving traffic light sequencing,
genetics, and others. Circular-arc graphs have been studied in [18], [19], [22], [9].
Similarly, we refer to a set of arcs satisfying that the endpoints are distinct integers
between 1 and 2n as a set of sorted arcs.

Investigating the algorithmic complexity of total domination on interval graphs
was mentioned in [27] as a relevant open question. An O(n2)-time algorithm has
been proposed for this problem in [3]. Later, Ramalingan and Pandu Rangan gave
an O(n + m) algorithm [30], and Bertossi and Gori [5] presented an O(n log n)-time
algorithm for this problem. Ramalingam and Pandu Rangan [31] presented a unified
approach to solve the weighted versions of various domination problems mentioned
above on interval graphs in O(m + n) time. Bonuccelli [9] gave an O(nm)-time
algorithm for finding a minimum-cardinality dominating set on circular-arc graphs.
Bertossi and Moretti [6] presented O(n3) algorithms for finding a minimum-weight
dominating set and a minimum-weight total dominating set on circular-arc graphs.
Recently, an O(n)-time algorithm for finding a minimum-cardinality dominating set
of a circular-arc graph given a set of sorted arcs was given by Hsu and Tsai [25] and an
O(n2 log n) algorithm for the weighted version was given by Asano [2]. Interval graphs
and circular-arc graphs have been studied by many researchers [20]. We only mention
some results related to the domination problem studied in this paper. For computing
the independence number of circular-arc graphs, see [21], [29]. For the irredundance
problem on circular-arc graphs, please refer to [11]. For parallel algorithms for various
domination problems and some other problems in interval graphs and circular-arc
graphs, we refer the reader to [4], [6], [33], [36], [40].

In this paper, we assume that weights are real for the independent domination
problem and assume that weights are nonnegative for the domination, connected, and
total domination problems. Manacher and Mankus [28] showed that any algorithm
for finding a minimum-weight dominating set, connected dominating set, and a total
dominating set of a graph with nonnegative weights can be extended to incorporate
negative-weight vertices without loss of efficiency. We will present a new unified
approach to solve the weighted domination, independent, connected, and total domi-
nation problems on interval graphs. Given a set I of sorted intervals, the algorithms
solve these problems on G(I) in O(n) or O(n log log n) time and O(n) space. These

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1673

algorithms are straightforward and simple but efficient. Then we extend the results
to solve the same four problems on circular-arc graphs given sorted arc models in
O(m+ n) time and O(n) space. The results of this paper are summarized in section
4.

2. Algorithms for various domination problems on interval graphs. In
this section, we study algorithms for various domination problems [8, 12, 20] on inter-
val graphs. It is assumed that the input graph is given by an interval model I which
is a set of n sorted intervals labeled by 1, 2, . . . , n in increasing order of their right
endpoints. The left endpoint of interval i is denoted by ai and the right endpoint by
bi. We say that interval i starts from endpoint ai and finishes at endpoint bi. By
definition, 1 ≤ ai < bi ≤ 2n for 1 ≤ i ≤ n. For convenience, we need the following
notation.

(i) For a set S of intervals, the largest (respectively, smallest) right endpoint of
intervals in S is denoted by max b(S) (respectively, min b(S)); the interval in S with
the largest (respectively, smallest) right endpoint is denoted by last(S) (respectively,
first(S)); the largest left endpoint of intervals in S is denoted by max a(S). For
technical reasons, we let max a(S) = 0 if S is empty.

(ii) For endpoint e, we use interval(e) to denote the interval whose left or right
endpoint is equivalent to e, IFB(e) (intervals finishing before endpoint e) to denote
the set of all intervals whose right endpoints are less than e, and ISB(e) (intervals
starting before endpoint e) to denote the set of all intervals whose left endpoints are
less than e. Thus, max a(IFB(e)) is the largest left endpoint of the intervals whose
right endpoints are less than e. Clearly, interval(max a(S)) is the interval with the
largest left endpoint in S.

(iii) A subset S of I is called a partial dominating (PD) set if S dominates
all intervals starting before the right endpoint of last(S). A PD set S is called an
independent partial dominating (IPD) set if S is an independent set. A PD set S is
called a connected partial dominating (CPD) set if the subgraph G(S) induced by S is
connected. A PD set S is a total partial dominating (TPD) set if the subgraph G(S)
induced by S has no isolated vertices.

(iv) For a family X of sets of vertices, Min(X) denotes a minimum-weight vertex
set in X if X is not the empty set; Min(X) denotes a set of infinite weight otherwise.

(v) Suppose L is a list of numbers. We use δL and τL to denote the head and tail
of L, respectively. For number j, we refer to the smallest number in L which is larger
than j, denoted by succL(j), as the successor of j in L and the largest number in L
which is less than j, denoted by predL(j), as the predecessor of j in L, respectively.
For simplicity, we use δ and τ , succ(j), and pred(j) when L is understood without
ambiguity.

To readers familiar with notation, we give a set I of seven intervals shown in
Figure 1 for illustration. For example, ISB(b1) = {1, 2, 4}, ISB(b3) = {1, 2, 3, 4},
ISB(b5) = I, interval(5) = 3, and interval(10) = 4. For example, IFB(a1) = ∅,
IFB(a4) = ∅, IFB(a3) = {1}, IFB(b2) = {1}, and IFB(a6) = {1, 2, 3, 4}. It is easy
to verify that max a(IFB(a1)) = 0, max a(IFB(a4)) = 0, max a(IFB(a3)) = a1,
max a(IFB(b2)) = a1, and max a(IFB(a6)) = a3. For S = {1, 2, 3, 4}, we have
that min b(S) = 4, max b(S) = 10, max a(S) = 5, first(S) = 1, last(S) = 4, and
interval(max a(S)) = 3. Since {1, 3} dominates ISB(b3), it is a PD set of G(I).
Clearly, it is also an IPD set. It is easy to see that {4, 5} is a connected and a TPD
set. Suppose that w(1) = 11, w(2) = 5, w(3) = 1, w(4) = 2.5, w(5) = 7, w(6) = 6,
and w(7) = 3.4. For X = {{1, 3, 7}, {2, 5}, {2, 4, 6}, {1, 3}}, which is a family of

1674 MAW-SHANG CHANG

10

9

3

14

4

2
61

7

6
11 13

5
8 12

5 742
1 3

Fig. 1. A family of seven intervals.

four subsets of I, Min(X) = {2, 5} or Min(X) = {1, 3} since w({1, 3, 7}) = 15.4,
w({2, 5}) = 12, w({2, 4, 6}) = 13.7, and w({1, 3}) = 12.

Following the above definitions, we can prove the following two lemmas easily.
Lemma 2.1. For two endpoints e1 and e2 where e1 < e2 of intervals in I,

there does not exist any interval j ∈ I such that e1 < aj < bj < e2 if and only if
e1 ≥ max a(IFB(e2)).

Proof. The lemma is proved by definition.
Lemma 2.2. For two intervals k and i of I where k < i, interval i dominates

ISB(bi)− ISB(bk) if and only if bk > max a(IFB(ai)).
Proof. It is easy to see that ISB(bi) − ISB(bk) can be partitioned into two

subsets Z1 and Z2, where Z1 ⊆ N [i] and Z2 = {j : j ∈ I, bk < aj < bj < ai}. By
Lemma 2.1, Z2 = ∅ if and only if bk > max a(IFB(ai)). Thus, interval i dominates
ISB(bi)− ISB(bk) if and only if bk > max a(IFB(ai)).

In the following subsections, we will give recursive formulas for various weighted
domination problem in interval graphs. Although Ramalingan and Pandu Rangan
also gave recursive formulas in [31], our recursive formulas are different from theirs.

2.1. Independent domination. Let Id be the set of intervals obtained by aug-
menting I with two intervals 0 and n+1 with w(0) = w(n+1) = 0. The left and right
endpoints of interval 0 are −1 and 0, respectively, and the left and right endpoints of
interval n+1 are 2n+1 and 2n+2, respectively. That is, Id = I ∪{0, n+1}. Then a
subset S of I is an independent dominating set of G(I) if and only if S ∪ {0, n+ 1} is
an independent dominating set of G(Id). For technical reason, we solve the weighted
independent domination problem on G(I) by finding a minimum-weight independent
dominating set of G(Id). In this subsection, the set of intervals considered is Id if not
specified explicitly. It is easy to see that all IPDs contain interval 0. Let IPD(i) be
the collection of all IPDs whose last intervals are interval i. Then a subset S of Id is
an independent dominating set of G(Id) if and only if S ∈ IPD(n+1). For simplicity,
we use MIPD(i) to denote Min(IPD(i)). Then we have the following lemma.

Lemma 2.3. The following three statements are true:
(1) MIPD(0) = {0}.
(2) For 1 ≤ i ≤ n+ 1, we have that
MIPD(i) = {i} ∪Min({MIPD(j) : max a(IFB(ai)) < bj < ai}).
(3) MIPD(n+ 1) is a minimum-weight independent dominating set of G(Id).
Proof. It is easy to verify the correctness of statements (1) and (3). In the

following, we prove the correctness of statement (2) by showing that (i) if S ∈ IPD(k)
where max a(IFB(ai)) < bk < ai, then S ∪ {i} ∈ IPD(i); and (ii) if S ∈ IPD(i) and
k = last(S − {i}), then S − {i} ∈ IPD(k) and max a(IFB(ai)) < bk < ai.

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1675

First, we prove statement (i). By definition, last(S) = k, and S dominates
ISB(bk). Since bk < ai and S is an independent set, S∪{i} is also an independent set.
By Lemma 2.2, interval i dominates ISB(bi)− ISB(bk) since max a(IFB(ai)) < bk.
Thus, S ∪ {i} dominates ISB(bi). By definition, S ∪ {i} ∈ IPD(i).

Next, we prove statement (ii). Since S is an independent set, interval i is not
adjacent to interval k where k = last(S − {i}). Thus, bk < ai. Since S dominates
ISB(bi) and bk < ai, we have that S−{i} dominates ISB(bk) and interval i dominates
ISB(bi)− ISB(bk). By definition, S − {i} ∈ IPD(k). By Lemma 2.2, we have that
max a(IFB(ai)) < bk.

The recursive relation in Lemma 2.3 can be used to compute a minimum-weight
independent domination set. The algorithm scans the endpoints of Id from left to
right. It uses a list L to store some intervals in increasing order. For simplicity, let
WI(k) = w(MIPD(k)).

Algorithm MIDS. Find a minimum-weight independent dominating set of
G(Id) given a set Id of sorted intervals.

Input. A set Id of sorted intervals and the weights of all intervals.

Output. A minimum-weight independent dominating set of G(Id).

Method.

1. L← {0}; WI(0) ← 0; MIPD(0) ← {0};
2. for e = 1 to 2n+ 1 do
3. If e is the left endpoint of some interval i, i.e., e = ai, then
4. MIPD(i) = {i} ∪MIPD(δ);

The union operation is implemented by setting a pointer from i to δ.
5. WI(i) = w(i) +WI(δ) where δ is the head of L;
6. else e is the right endpoint of some interval i, i.e., e = bi, do
7. Delete all elements of L whose right endpoints are less

than ai from the head of the list one by one;
8. while L 6= ∅ and WI(τ) > WI(i) do
9. Delete τ from L where τ is the tail of L;

end while
10. Append i to the end of L;

end if else
end for

11. Output MIPD(n+ 1);

By the for loop (lines 2 to 10), the algorithm visits the endpoints of Id − {0}
in increasing order one by one and maintains an invariant (invariant 1): right be-
fore the left endpoint of interval i to be visited, MIPD(δ) = Min({MIPD(j) :
max a(IFB(ai)) < bj < ai}). Thus by statement (2) of Lemma 2.3, the results of
lines 4 and 5 are correct. In the following, we show how the invariant is maintained
true. In fact, the algorithm maintains some other invariants: right before endpoint
e is to be visited, invariant 2, L ⊆ {j : j ∈ I,max a(IFB(e)) < bj < e}; invariant
3, the intervals in L are in increasing order of their right endpoints; and invariant 4,
for f , h ∈ L, if f < h, then WI(f) ≤ WI(h). Apparently, all of these invariants are
true initially. Invariant 2 holds because of the following two reasons: (i) the intervals
whose right endpoints are less than the left endpoint of interval(e) are removed from
L when right endpoint e is being visited (line 7), and (ii) an interval is appended to
the tail of L when its right endpoint is being visited (line 10). The intervals in L are
easily maintained in increasing order of their right endpoints because (i) endpoints
are visited in increasing order, and (ii) an interval is appended to the tail of L when

1676 MAW-SHANG CHANG

its right endpoint is being visited (line 10). Thus, invariant 3 holds. Invariant 4 holds
since all intervals j with WI(j) > WI(interval(e)) are removed from L by the while
loop (lines 8 and 9) when right endpoint e is being visited and interval(e) is appended
to the end of L (line 10). By invariants 3 and 4, WI(δ) is smallest among all WI(j)’s
of j ∈ L. It is straightforward to verify that when the left endpoint of interval i is
being visited, {j : j ∈ I,max a(IFB(ai)) < bj < ai} − L are those intervals removed
from L by the while loop (lines 8 and 9). Hence there exists a right endpoint in L, i.e.,
τ , such that WI(j) > WI(τ) for all j ∈ {j : j ∈ I,max a(IFB(ai)) < bj < ai} − L
when the left endpoint of interval i is being visited. By invariants 2, 3, 4, WI(δ) is the
smallest among all WI(i)’s where j ∈ {j : j ∈ I,max a(IFB(ai)) < bj < ai} when
the left endpoint of interval i is being visited. Therefore, invariant 1 is maintained
true. This proves the correctness of algorithm MIPD. In practical implementation,
MIPD(i)’s can be represented by linking lists as follows: we set a pointer from inter-
val i to interval k when we form MIPD(i) by the union of MIPD(k) and {i} (line
5). Then MIPD(i) can be obtained by visiting intervals following the pointers from
i to 0 and collecting the intervals visited. Thus, the union operation of line 5 can be
done in constant time and line 11 can be implemented to run in O(n) time. Since
an interval is appended to the tail of L exactly once (line 10), the total number of
deletions done by lines 7 and 9 is at most n. Thus we have the following theorem.

Theorem 2.4. Given a set I of sorted intervals, a minimum-weight independent
dominating set of G(I) is found in O(n) time and O(n) space by Algorithm MIDS.

2.2. Domination. In this subsection, we describe an algorithm that will be used
to solve the weighted domination problem on interval and circular-arc graphs. Let
PD(i) be the collection of all PD sets of G(I) whose first and last intervals are intervals
1 and i, respectively. That is, S ∈ PD(i) if and only if first(S) = 1, last(S) = i, and
S dominates ISB(bi). For simplicity, we use MPD(i) to denote Min(PD(i)). Then,
we have the following lemma.

Lemma 2.5. The following two statements are true:
(1) MPD(1) = {1}.
(2) For 2 ≤ i ≤ n, MPD(i) = {i}∪Min{MPD(j) : max a(IFB(ai)) < bj < bi}.
Proof. Statement (1) is easily seen. We will prove statement (2) by showing

that (i) if S ∈ PD(k) and max a(IFB(ai)) < bk < bi, then S ∪ {i} ∈ PD(i), and
(ii) there exists a set S ∈ PD(i) such that w(S) = w(MPD(i)), k = last(S − {i}),
S − {i} ∈ PD(k), and max a(IFB(ai)) < bk < bi.

We first prove statement (i). By definition, last(S) = k and S dominates ISB(bk)
since S ∈ PD(k). By Lemma 2.2, interval i dominates ISB(bi) − ISB(bk) since
max a(IFB(ai)) < bk. Thus S ∪ {i} dominates ISB(bi). This proves statement (i).

Next, we prove statement (ii). Since PD(i) 6= ∅, there exists a set S′ such that
S′ ∈ PD(i) and w(S′) = w(MPD(i)). Then we obtain S by removing all intervals
contained in interval i except interval 1 from S′; i.e., let S = S′ − {h : h ∈ I, h 6=
1, ai < ah < bh < bi}. It is easy to see that S ∈ PD(i). Clearly w(S) ≤ w(S′) since all
weights are nonnegative. Thus w(S) = w(MPD(i)). Let interval k be the last interval
of S − {i}. Obviously, bk < bi and ak < ai if k 6= 1. Thus S dominates ISB(bi),
S − {i} dominates ISB(bk), and interval i dominates ISB(bi) − ISB(bk) no matter
whether interval k is equivalent to interval 1 or not. Since S−{i} dominates ISB(bk),
by definition S − {i} ∈ PD(k). By Lemma 2.2, we have that max a(IFB(ai)) < bk.
This proves statement (ii).

In the following, we briefly describe the static disjoint set union and find the algo-
rithm proposed by Gabow and Tarjan [15] that is used in solving our problems. The

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1677

disjoint set union and find problem [1], [15] is to carry out three kinds of operations
on disjoint sets:

makeset(x): Create a new singleton set {x} whose name is x
for an element x which is in no existing set.

find(x): Return the name of the set containing element x.
union(x, y): Form a new set that is the union of the sets containing x and y,

destroying the two old sets.
The name of the new set is the name of the old set containing x.

We refer to union(x, y) as the operation that unites the set containing y to the set
containing x. The fastest known algorithm for this problem runs in O(pα(p+q, q)+q)
time and O(q) space, where α is the inverse of Ackermann’s function [37], [38], q is the
number of elements, and p is the number of operations performed. A special case of
the disjoint set union-find problem can be formalized as follows. We are given a tree T
of q nodes that corresponds to the initial q singleton sets. Let the parent of the node v
in T be denoted by parent(v). The problem involves performing a sequence of union
and find operations such that each union can be only of the form union(parent(v), v).
T is called the static union tree and the problem is referred to as the static tree set
union. For this special case, each union and find operation can be supported in O(1)
amortized time on a random access machine, and the total space required is O(q) [15].
There is a special case of the static tree set union problem where the union tree is a
path [15] also known as interval union-find problem [16].

For simplicity, let W (k) = w(MPD(k)). Following Lemma 3.2, we design Algo-
rithm MPD for computing W (i) and MPD(i) for all i ∈ I in O(n) time and space.
All MPD(i)’s are stored in an O(n) space data structure in the same way as we store
MIPD(i)’s in the previous subsection. An MPD(i) can be output from this data
structure in O(|MPD(i)|) time for all i ∈ I. We refer to a set S of left endpoints of I
as a consecutive left endpoint set if there exist left endpoints e1 and e2 of S such that
S = {e : e1 ≤ e ≤ e2, e is a left endpoint of I}. Note that e1 and e2 may be identical.
Algorithm MPD first scans endpoints to find left endpoint sets {aj : bi−1 < aj < bi}
where b0 = 0 for all i ∈ I. It forms a set for each left endpoint set found by using
makeset and union operations. Note that all these left endpoint sets are either empty
or consecutive left endpoint sets. Initially, each left endpoint set {aj : bi−1 < aj < bi}
is associated with right endpoint bi. What we mean by saying that a set is associ-
ated with a right endpoint is that both of the operations of finding the set from the
right endpoint and finding the right endpoint from the set can be done in constant
time. This can be done easily by pointers. Besides the left endpoint sets, the algo-
rithm also maintains a list L. The elements stored in L are right endpoints. Initially,
L = {b1, b2, . . . , bn}. Elements of L are stored in a list in increasing order. Details of
the algorithm are as follows.

Algorithm MPD. Computing W (i) and an O(n) space data structure such that
an MPD(i) can be output from this data structure in O(|MPD(i)|) time for all i ∈ I.

Input. A set I of sorted intervals and the weights of intervals.

Output. W (i) and an O(n) space data structure such that an MPD(i) can be output
in O(k) time, where k = |MPD(i)|, for all i ∈ I.

Method.

1. Find max a(IFB(ai)) for all i ∈ I;
2. Scan the endpoints of I to find left endpoint sets

{aj : bi−1 < aj < bi} where b0 = 0 for all i ∈ I.

1678 MAW-SHANG CHANG

Each right endpoint set bi is associated with
the left endpoint set {aj : bi−1 < aj < bi}.

3. L← {b1, b2, . . . , bn};
4. W (1) ← w(1); MPD(1) ← {1};
5. for i = 2 to n do
6. Find the set containing max a(IFB(ai));
7. Let bk be the right endpoint associated with this set;
8. MPD(i) ← {i} ∪MPD(k);

The union operation is implemented by setting a pointer from i to k.
9. W (i) ← w(i) +W (k);
10. while W (interval(pred(bi))) > W (i) do
11. Unite the set associated with pred(bi) to the set associated with bi

by union operation;
12. Delete pred(bi) from L;
13. end while
14. end for

The correctness of this algorithm can be proved by induction. Algorithm MPD
visits intervals one by one (line 5). Let i be the currently visited interval and L′ = {e :
e ∈ L, e < bi}. Algorithm MPD maintains the following three invariants: immediately
before interval i is visited, invariant 1, for any two right endpoints f and h of L′,
W (interval(f)) ≤ W (interval(h)) if f < h; invariant 2, if the set containing left
endpoint e1 is associated with the right endpoint e2, then e2 is the successor of e1 in
L; and invariant 3, for every right endpoint e that is removed from L, there exists
a right endpoint e′ in L′ such that e < e′ and W (interval(e)) > W (interval(e′)).
Initially, all three invariants are true. Then they are maintained by the while loop
of lines 10 to 13. By invariant 1 and 2, we have that MPD(k) = Min({MPD(j) :
bj ∈ L′,max a(IFB(ai)) < bj < bi}) where k is the interval found by line 7. By
invariant 3, we have that MPD(k) = Min({MPD(j) : max a(IFB(ai)) < bj < bi}).
By Lemma 2.5, it is easy to see the correctness of Algorithm MPD. Note that the
union operation of line 8 is implemented by setting a pointer from i to k. Thus to
output MPD(i) we simply follow the pointers to visit intervals starting from interval
i until we reach interval 1. The set of intervals visited is an MPD(i). By invariant 2,
every left endpoint set formed by line 11 of the algorithm is a consecutive left endpoint
set. This is an interval union-find problem [16]. Hence line 11 can be implemented in
constant amortized time.

In the following, we give a simple algorithm to find max a(IFB(ai)) for every
interval i in O(n) time.

Algorithm P. Computing max a(IFB(e)) for all endpoints of a set I of sorted
intervals.

Input. A set I of sorted intervals.

Output. max a(IFB(e))’s of all endpoints of I.

Method.

1. β ← 0;
2. for e = 1 to 2n do
3. max a(IFB(e)) ← β;
4. if e is the right endpoint of some interval i, then
5. β ← max{ai, β};

end if
end for

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1679

We will not prove the correctness of Algorithm P to save space. From the above
discussions, it is easy to see that Algorithm MPD can be implemented in O(n) time.
Hence we have the following lemma.

Lemma 2.6. Given a set I of sorted intervals with weights, Algorithm MPD
computes W (i) and MPD(i) for all i ∈ I. All MPD(i)’s are stored in an O(n) space
data structure such that an MPD(i) can be output in O(|MPD(i)|) time.

Now we show how to use Algorithm MPD to solve the weighted domination
problem on interval graphs. Note the set Id of intervals is obtained from I as described
in the previous subsection. Similarly, a subset S of I is a dominating set of G(I) if
and only if S ∪ {0, n+ 1} is a dominating set of G(Id). It is easy to see that interval
0 is the first interval of Id and all dominating sets of G(Id) contain intervals 0 and
n + 1. Thus, MPD(n + 1) of G(Id) is a minimum-weight dominating set of G(Id)
and MPD(n + 1) − {0, n + 1} is a minimum-weight dominating set of G(I). Since
MPD(n+ 1) can be computed in O(n) time and space by Algorithm MPD, we have
the following theorem.

Theorem 2.7. Given a set of sorted intervals, a minimum-weight dominating
set of G(I) can be found in O(n) time and O(n) space.

2.3. Connected domination. If a graph is not connected, then it has no con-
nected dominating set. Whether G(I) is connected can be checked in O(n) time.
Hence we assume that G(I) is connected in this subsection. Let CPD(i) be the set of
all connected PD sets of G(I) whose first and last intervals are intervals 1 and i, respec-
tively. That is, CPD(i) = {S : S ⊆ I, first(S) = 1, last(S) = i, G(S) is connected,
and S dominates ISB(bi)}. Let MCPD(i) = Min(CPD(i)). If G({1, 2, . . . , i}) is not
connected, then CPD(i) = ∅. In this case, MCPD(i) is considered as a set of infinite
weight. The following lemma can be proved by arguments similar to those for proving
Lemma 2.5.

Lemma 2.8. The following two statements are true:
(1) MCPD(1) = {1}; and
(2) For 2 ≤ i ≤ n, MCPD(i) = {i} ∪Min({MCPD(j) : ai < bj < bi}).
Proof. The correctness of statement (1) is easily verified. We will prove statement

(2) by showing that (i) if S ∈ CPD(k) and ai < bk < bi, then S ∪ {i} ∈ CPD(i); (ii)
if CPD(i) 6= ∅, then there exists a set S ∈ CPD(i) such that w(S) = w(MCPD(i)),
S − {i} ∈ CPD(k), where k = last(S − {i}) and ai < bk < bi.

Statement (i) can be easily verified. We prove statement (ii). Let S′ ∈ CPD(i)
and w(S′) = w(MCPD(i)). We obtain S by removing from S′ all intervals which are
contained in interval i except interval 1. That is, S = S′ − {j : j ∈ I, j 6= 1, ai <
aj < bj < bi}. Clearly w(S) ≤ w(S′) since all interval weights are nonnegative. It
is easy to see that S ∈ CPD(i) and w(S) = w(MCPD(i)). Let k = last(S − {i}).
Obviously, ai < bk < bi since G(S) is connected. By definition, S dominates ISB(bi).
It is easy to verify that S − {i} dominates ISB(bk) and G(S − {i}) is connected
no matter whether interval k is equivalent to interval 1 or not. This proves that
S − {i} ∈ CPD(k).

For simplicity, let WC(k) denote w(MCPD(k)). Following Lemma 2.8, one might
think that we can modify Algorithm MPD to compute WC(i) and MCPD(i) for all
i ∈ I in O(n) time simply by replacing max a(IFB(ai)) of line 6 by ai. We should
be careful of that because 2 ≤ i ≤ n, {j : j ∈ I,max a(IFB(ai)) < bj < bi} is always
not empty but {j : j ∈ I, ai < bj < bi} is possibly empty. If {j : j ∈ I, ai < bj < bi}
is empty, then CPD(i) = ∅. Thus MCPD(i) is a set of infinite weight. To modify
Algorithm MPD to compute WC(i) and MCPD(i) for all i ∈ I in O(n) time, we

1680 MAW-SHANG CHANG

replace lines 6 to 13 by lines 6’ to 17’ as follows. Note that lines 8’ and 9’ handle the
case that {j : j ∈ I, ai < bj < bi} = ∅.
6’. Find the set containing ai;
7’. Let bk be the right endpoint associated with the left endpoint set

containing ai;
8’. if k = i then do
9’. Mark that MCPD(i) is a set of infinite weight;
10’. else do
11’. MCPD(i) ← {i} ∪MCPD(k);

The union operation is implemented by setting a pointer from i to k;
12’. WC(i) ← w(i) +WC(k);
13’. while WC(interval(pred(bi))) > WC(i) do
14’. Unite the set associated with pred(bi) to the set associated with bi

by union operation;
15’. Delete pred(bi) from L;
16’. end while
17’. end if else

Thus, we have the following lemma.
Lemma 2.9. Given a set I of sorted intervals with weights, we can compute

WC(i) and MCPD(i) for all i ∈ I. All MCPD(i)’s are stored in an O(n) space
data structure such that an MCPD(i) can be output in O(|MPD(i)|) time.

Let Ic be the set of intervals obtained by augmenting I with two zero-weight
intervals, intervals 0 and n + 1, where a0 = 0, b0 = b1 − 0.5, an+1 = max a(I) + 0.5,
bn+1 = 2n+ 1. Note that max a(I) denotes the largest left endpoint of intervals in I.
It is easy to see that the endpoints of Ic can be sorted in O(n) time and intervals 0 and
n + 1 are the first and last interval of Ic, respectively. It is straightforward to verify
that a subset S of I is a connected dominating set of G(I) if and only if S∪{0, n+1} is
in CPD(n+1) of G(Ic). Thus, we can find a minimum-weight connected dominating
set of G(I) by computing MCPD(n+1) of G(Ic). Since MCPD(n+1) of G(Ic) can
be computed in O(n) time, we have the following theorem.

Theorem 2.10. Given a set I of sorted intervals, a minimum-weight connected
dominating set of G(I) can be found in O(n) time.

2.4. Total domination. A subset S of I is called an intermediate total partial
dominating (ITPD) set if the following four conditions are satisfied:

(1) S contains the first interval of I;
(2) S is a PD set of G(I);
(3) G(S − {last(S)}) has no isolated vertices; and
(4) max b(S − {last(S)}) is less than the left endpoint of last(S); i.e., the last

interval of S does not overlap any other interval of S.
Let TPD(i) be the collection of all TPD sets which contain the first interval of

I and whose last intervals are equivalent to interval i, respectively, let ITPD(i) be
the collection of all ITPD sets whose last intervals are equivalent to interval i, and
let XTPD(i) = TPD(i) ∪ ITPD(i). For simplicity, let MTPD(i) = Min(TPD(i)),
MITPD(i) = Min(ITPD(i)), MXTPD(i) = Min(XTPD(i)), WIT (i) =
w(MITPD(i)), WT (i) = w(MTPD(i)), and WX(i) = w(MXTPD(i)). Let X(i) =
∪ai<bj<biXTPD(j), MX(i) = Min(X(i)), K(i) = {{j} : j ∈ I, ai < aj < bj < bi}),
and MK(i) = Min(K(i)). Note that if K(i) = ∅, then MK(i) is considered as a set
of infinite weight. In words, X(i) is the union of all XTPD(j)’s where ai < bj < bi
and K(i) is the collection of all single interval sets {j}’s where ai < aj < bj < bi.

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1681

Then, we have the following lemma.
Lemma 2.11. The following four statements are true:
(1) MTPD(1) is a set of infinite weight, and MITPD(1) = {1};
(2) for 2 ≤ i ≤ n and ai < b1, MITPD(i) is a set of infinite weight ;
(3) for 2 ≤ i ≤ n and ai > b1, MITPD(i) = {i}∪Min({MTPD(j) : max a(IFB(ai))

< bj < ai}); and
(4) for 2 ≤ i ≤ n, MTPD(i) = Min({MX(i) ∪ {i},MITPD(i) ∪MK(i)}).
Proof. The correctness of statements (1) and (2) is easy to see. The correctness

of statement (3) can be proved by arguments similar to those for proving statement
(2) of Lemma 2.3. We prove statement (4) by showing that (i) if S ∈ X(i), then
S ∪ {i} ∈ TPD(i); (ii) if S ∈ ITPD(i) and K(i) 6= ∅, then S ∪ {k} ∈ TPD(i) for
any k ∈ K(i); and (iii) if TPD(i) 6= ∅, there exists a set S ∈ TPD(i) which has
minimum weight and either S−{i} ∈ X(i) or there exists an interval k ∈ S such that
{k} ∈ K(i) and S − {k} ∈ ITPD(i).

We first prove statement (i). For simplicity, let k = last(S). By definition,
S ∈ TPD(k) or S ∈ ITPD(k). Clearly, S dominates ISB(bk). Since ai < bk < bi,
interval i dominates ISB(bi)− ISB(bk). In other words, S ∪ {i} dominates ISB(bi).
It is straightforward to verify that G(S ∪{i}) has no isolated vertices. Thus S ∪{i} ∈
TPD(i). This proves statement (i).

Next we prove statement (ii). Since i is the only isolated vertex in G(S), G(S ∪
{k}) has no isolated vertices. By definition, S dominates ISB(bi). Thus S ∪ {k}
dominates ISB(bi) too. By definition, S ∪{k} ∈ TPD(i). This proves statement (ii).

Now we prove statement (iii). Let S be a TPD set of TPD(i) such that w(S) =
WT (i) and |S| is minimum. By definition, S dominates ISB(bi). Let C(i) be the
set of intervals that are contained in interval i but are not equivalent to interval 1.
Consider the following two cases.

Case 1. C(i) 6= ∅.
Case 2. C(i) = ∅.
In Case 1, it is easy to see that S − C(i) is still a dominating set of ISB(bi).

Suppose G(S − C(i)) has no isolated vertices. Then S − C(i) ∈ TPD(i). Since
interval weights are nonnegative, w(S − C(i)) ≤ w(S). Apparently, |S − C(i)| < |S|.
It contradicts the assumption that S ∈ TPD(i), w(S) = WT (i), and |S| is minimum.
Thus, G(S −C(i)) has isolated vertices. It is easy to verify that interval i is the only
isolated vertex in G(S − C(i)) and 1 /∈ N(i). By definition, S − C(i) ∈ ITPD(i).
Similarly, we can prove that |S ∩ C(i)| = 1. Since 1 /∈ N(i), there exists an interval
k ∈ S such that {k} ∈ K(i) and S − {k} ∈ ITPD(i) in this case.

In Case 2, again we consider the following two cases.
Case 2.1. Interval 1 is adjacent to interval i.
Case 2.2. Interval 1 is not adjacent to interval i.
In Case 2.1, it is easy to verify that S = {1, i}. Thus, S − {i} ∈ ITPD(1). Since

ai < b1 < bi, we have that S − {i} ∈ X(i).
Now we consider Case 2.2. Let k = last(S − {i}). Then ak < ai < bk < bk since

G(S) has no isolated vertices and S does not contain any other interval contained in
interval i. Thus, S − {i} dominates ISB(bk). Suppose G(S − {i}) has no isolated
vertices. Then, S − {i} ∈ TPD(k). On the other hand, suppose G(S − {i}) has
isolated vertices. It is straightforward to verify that k is the only isolated vertex
in G(S − {i}) and hence S − {i} ∈ ITPD(k). By definition, S − {i} ∈ X(i) since
ai < bk < bi. This proves statement (iii).

Based on Lemma 2.11, we design Algorithm MTPD to compute WT (i), WIT (i),
MTPD(i), and MITPD(i) for all i ∈ I. All MTPD(i)’s and MITPD(i)’s are stored

1682 MAW-SHANG CHANG

in an O(n) space data structure by using pointers. We can obtain an MTPD(i)
(respectively, MITPD(i)) from the data structure in O(|MTPD(i)|) (respectively,
O(|MITPD(i)|)) time. In fact, Algorithm MTPD uses both techniques used by Algo-
rithm MIDS and MPD. Algorithm MTPD visits endpoints one by one and maintains
two lists L1 and L2. Algorithm MTPD maintains L1 and L2 in the same way as
Algorithm MIDS and MPD, respectively, maintain list L. Elements in lists L1 and L2

are intervals and right endpoints of intervals, respectively. If j ∈ L1 and ai is the left
endpoint currently visited, then max a(IFB(ai)) < bj < ai. If e1 ∈ L2 and e1 < e2
where e2 is the endpoint currently visited, then there does not exist a right endpoint
e3 ∈ L2 such that e1 < e3 < e2 and WX(interval(e1)) > WX(interval(e3)).

Algorithm MTPD. Compute WT (i), WIT (i), MTPD(i), and MITPD(i) for
all i ∈ I.

Input. A set I of sorted intervals and the weights of all intervals.

Output. WT (i), WIT (i), MTPD(i), and MITPD(i) for all i ∈ I. All MTPD(i)’s
and MITPD(i)’s are stored in an O(n) space data structure. We can obtain an
MTPD(i) (respectively, MITPD(i)) from the data structure in O(|MTPD(i)|) (re-
spectively, O(|MITPD(i)|)) time.

Method.

1. For each i ∈ {j : j ∈ I − {1}, aj < b1},
mark that MITPD(i) is a set of infinite weight;

WIT (i) ←∞ for all i ∈ {j : j ∈ I − {1}, aj < b1};
2. Mark that MTPD(1) is a set of infinite weight;

WT (1) ←∞; MITPD(1) ← {1}; WIT (1) ← w(1);
MXTPD(1) ← {1}; WX(1) ←WIT (1);

3. L1 ← {1}; L2 ← {b1, b2, . . . , bn};
4. For each interval i ∈ I − {1}, find MK(i);
5. Scan the endpoints of I to find left endpoint sets

{aj : bi−1 < aj < bi} where b0 = 0 for all i ∈ I.
Each right endpoint bi is associated with
the left endpoint set {aj : bi−1 < aj < bi}.

6. for e = b1 + 1 to 2n do
7. if e is equivalent to the left endpoint of interval i, i.e., e = ai, then do
8. MITPD(i) = {i} ∪MTPD(δL1

);
This statement can be implemented by saving the value of δL1

.
9. WIT (i) = w(i) +WT (δL1

);
10. else e is the right endpoint of interval i, i.e., e = bi, do
11. Find the set containing ai;
12. Let bk be the right endpoint associated with the set containing ai;
13. if k = i then do
14. Mark that MTPD(i) is a set of infinite weight; WT (i) ←∞;
15. else do
16. MTPD(i) = Min({MXTPD(k) ∪ {i},MITPD(i) ∪MK(i)});

WT (i) = min{w(i) +WX(j), w(MK(i)) +WIT (i)};
This statement can be implemented by marking that
whether MTPD(i) = MXTPD(k) ∪ {i}
or MTPD(i) = MITPD(i) ∪MK(i).
If MTPD(i) = MXTPD(k) ∪ {i}, then we also save the value

of k.
end if else

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1683

17. MXTPD(i) = Min({MTPD(i),MITPD(i)});
This statement can be implemented by marking that
whether MXTPD(i) = MTPD(i) or MXTPD(i) = MITPD(i).

18. WX(i) = min{WT (i),WIT (i)};
19. Delete all elements of L1 whose right endpoints are less

than ai from the head of the list one by one;
20. while L1 6= ∅ and WT (τL1

) > WT (i) do
21. Delete τL1

from L1;
end while

22. Append i to the end of L1;
23. while WX(interval(predL2(bi))) > WX(i) do
24. Unite the set associated with predL2

(bi) to the set associated
with bi by union operation;

25. Delete predL2
(bi) from L2;

26. end while
end if else

end for

It is easy to see the correctness of lines 1 to 3 of Algorithm MTPD. Then it
visits endpoints starting from b1 + 1 one by one in increasing order. (See the for
loop of lines 6 to 26.) Algorithm MTPD maintains list L1 in the same way that
Algorithm MIDS maintains list L (lines 19 to 22). It maintains list L2 in the same
way that Algorithm MPD maintains list L (lines 23 to 25). For each MTPD(i), we
mark whether MTPD(i) = MXTPD(k)∪ {i} or MTPD(i) = MITPD(i)∪MK(i)
(line 16). If MTPD(i) = MXTPD(k) ∪ {i}, then we also save the value of k.
For each MITPD(i), we save the value of δL1

(line 8). For each MXTPD(i), we
mark whether MXTPD(i) = MTPD(i) or MXTPD(i) = MITPD(i) (line 17).
Thus, all MTPD(i)’s and MITPD(i)’s are stored in an O(n) space. Clearly, we can
obtain any MTPD(i) or MITPD(i) recursively according to the information stored.
Hence, following Lemma 2.11, it is not hard to see that algorithm MTPD is correct.
Algorithm MTPD can be implemented in O(n) time if MK(i)’s for all i ∈ I can be
computed in O(n) time. For the cardinality case that w(i) = 1 for all i ∈ I, we can
compute MK(i)’s for all i ∈ I in O(n) time easily. In the following, we will give an
O(n log log n) algorithm to compute all MK(i)’s for the case that w(i) = 1 is not true
for all i ∈ I. Algorithm K visits intervals one by one in increasing order of their right
endpoints. A set of left endpoints that have been visited are kept in an L. Initially,
L = ∅. Algorithm K maintains the following invariants:

(1) For e1, e2 ∈ L, if e1 < e2, then w(interval(e1)) ≤ w(interval(e2)).

(2) Right before interval i to be visited, if j < i and aj /∈ L, then there exists an
interval k such that k ∈ I, k < i, aj < ak, ak ∈ L, and w(k) < w(j).

When the algorithm visits interval i, if L = ∅ or ai is greater than the maximum
element in L, then interval i does not contain any other interval of I; i.e., MK(i) is
a set of infinite weight. Otherwise, MK(i) = {k} and w(MK(i)) = w(k) where k is
the interval and that ak is the successor of ai in L. Details of the algorithm are as
follows.

Algorithm K. Find MK(i) for every interval i of I.

Input. A set I of sorted intervals and the weights of all intervals.

Output. MK(i)’s for all interval i ∈ I.

Method.

1684 MAW-SHANG CHANG

1. L = ∅;
2. for i = 1 to n do
3. if L = ∅ or ai > τ then do
4. Mark that MK(i) is a set of infinite weight;
5. else do
6. k ← interval(succ(ai));
7. MK(i) ← {k}; w(MK(i)) ← w(k);

end if else
8. if L = ∅ or ai > τ or w(i) ≤ w(interval(succ(ai))) then do
9. Insert ai into L;
10. while ai 6= δ and w(interval(pred(ai))) > w(i) do
11. remove pred(ai) from L;

end while
end if

end for

The two invariants are true initially. Then they are maintained by lines 8 to 11.
The data structure L can be implemented by using the two-level priority queue pro-
posed by van Emde Boas [7], which supports the operations of finding the minimum,
maximum, predecessor, and successor of an element, inserting and deleting an element
in O(log log n) time. Hence the running time of Algorithm K is O(n log log n). This
leads to the following lemma.

Lemma 2.12. Given a set I of sorted intervals with weights, Algorithm MTPD
computes WT (i), WIT (i), MTPD(i), and MITPD(i) for all i ∈ I in O(n log log n)
time. All MTPD(i)’s and MITPD(i)’s are stored in an O(n) space data structure.
We can obtain an MTPD(i) (respectively, MITPD(i)) from the data structure in
O(|MTPD(i)|) (respectively, O(|MITPD(i)|)) time. If MK(i)’s for all i ∈ I can be
computed in O(n) time, then the running time of Algorithm MTPD is O(n).

Let It be the set of intervals obtained by augmenting I four zero-weight intervals,
−1, 0, n + 1, and n + 2, where a−1 < a0 < b−1 < b0 < 1, and 2n < an+1 < an+2 <
bn+1 < bn+2. We can see that a subset S of I is a total dominating set of G(I) if and
only if S ∪ {−1, 0, n+ 1, n+ 2} is a total dominating set of G(It). Thus we can find a
minimum-weight total dominating set of G(I) by using Algorithm MTPD to compute
MTPD(n + 2) of G(It). Since MK(i)’s for all i ∈ I can be computed in O(n) time
if w(i) = 1 for all i ∈ I, a minimum-cardinality total dominating set of G(I) can be
found in O(n) time. Thus we have the following theorem.

Theorem 2.13. Given a set I of sorted intervals, a minimum-weight total
dominating set of G(I) can be found in O(n log log n) time and O(n) space; and a
minimum-cardinality total dominating set of G(I) can be found in O(n) time.

3. Extensions to circular-arc graphs. In this section, we shall extend the
results of the previous sections to solve the weighted domination problems on G(A)
given a set A of sorted arcs with real weights. An arc, starting from endpoint h along
clockwise direction to endpoint t, is denoted by [h, t]. We refer to endpoints h and t
as the head and tail of arc [h, t], respectively. We use “arc” to refer to a member of
A and “segment [c, d]” to refer to a continuous part of the circle that begins with an
endpoint c and ends with d in clockwise direction [34]. Arbitrarily choose an arc from
A. Starting from the head of this arc, label endpoints along clockwise direction from
1 to 2n. Arcs are numbered from 1 to n in increasing order of their tail. Denote the
head and tail of arc i by hi and ti, respectively. Note that hi can be larger than ti,
in which case arc [hi, ti] extends hi, hi + 1, . . . , 2n, 1, . . . , ti.

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1685

We first study the problem of finding a minimum-weight independent dominating
set in a circular-arc graph G(A) given a set A of sorted arcs. One observes that, for
any arc x of A, graph G(A−N(x)) is an interval graph and arc x is an isolated vertex
in G(A−N(x)). Moreover, every dominating set of G(A) contains at least one member
of N [x]. Thus we can find a minimum-weight independent dominating set of G(A) as
follows: choosing a vertex x0 of minimum degree and letting N(x0) = {x1, x2, . . . , xd}
where d is the degree of x0, we find a minimum-weight independent dominating set
of G(A − N(xk)), which is an interval graph, for each arc xk ∈ N [x0]. The one
with minimum weight is a minimum-weight independent dominating set of G(A).
Since A − N(xk) can be determined in O(n) time, a minimum-weight independent
dominating set on G(A−N(xk)) can be computed in O(n) time using the algorithm
presented in section 2.1. We have the following theorem.

Theorem 3.1. Given a set A of sorted arcs, a minimum-weight independent
dominating set of G(A) can be found in O(m+ n) time and O(n) space.

In the following three subsections, we consider the weighted domination, con-
nected domination, and total domination problems on circular-arc graphs. We con-
sider nonnegative weight only. The reasons are explained in section 1. We will give a
unified approach to solve these problems in O(n+m) time given a set of sorted arcs
with weights. We need the following notation.

For x ∈ A, define N(x) to be the set of arcs of A that either contains arc x
or is contained in arc x, and define NR(x) and NL(x) to be the sets of arcs whose
heads and tails are contained in arc x, respectively. Let AP (x) = A−N(x), AR(x) =
AP (x) − NL(x), and AL(x) = AP (x) − NR(x). It is straightforward to verify that
AR(x) and AL(x) are interval graphs. For instance, there are ten arcs shown in Figure
2; i.e., arc 1 = [17, 4], arc 2 = [2, 5], arc 3 = [1, 6], arc 4 = [19, 7], arc 5 = [3, 9],
arc 6 = [8, 12], arc 7 = [11, 13], arc 8 = [10, 16], arc 9 = [15, 18], arc 10 = [14, 20].
For arc 3, N [3] = {1, 2, 3, 4, 5}, N(3) = {2, 4}, NR(3) = {5}, NL(3) = {1}, AP (3) =
{1, 3, 5, 6, 7, 8, 9, 10}, AL(3) = {1, 3, 6, 7, 8, 9, 10}, and AR(3) = {3, 5, 6, 7, 8, 9, 10}.

The following observation plays an important role in our algorithms.

Lemma 3.2. Suppose A is an arc model and x0 is any arc of A. The following
three statements are true.

(1) There exists a minimum-weight total dominating set S of G(A) such that S
contains an arc x in N [x0] and does not contain any other arc containing arc x.

(2) There exists a minimum-weight dominating set S of G(A) such that S contains
an arc x of N [x0] and S ∩N(x) = ∅.

(3) There exists a minimum-weight connected dominating set S of G(A) such that
S contains an arc x of N [x0] and S ∩N(x) = ∅.

Proof. (1) Let S be a minimum-weight total dominating set of G(A) with mini-
mum cardinality. Clearly, S ∩N [x0] 6= ∅. There exists an arc x ∈ S ∩N [x0] such that
x is not contained in any other arc of S ∩N [x0]. Since every arc containing arc x is
a neighbor of arc x, x is not contained in any other arc of S.

(2) Let S be a minimum-weight dominating set ofG(A) with minimum cardinality.
By arguments similar to those for proving statement (1), there exists an arc x such
that x ∈ S∩N [x0] and arc x is not contained in any other arc of S. Then every arc of
S∩N(x) is contained in arc x. Thus S−N(x) is also a dominating set of G(A). Since
all weights of arcs are nonnegative, w(S − N(x)) ≤ w(S). Since |S − N(x)| < |S| if
S ∩N(x) 6= ∅, we have that S ∩N(x) = ∅. Otherwise, it contradicts the assumption
that S is a minimum-weight dominating set with minimum cardinality.

(3) This statement can be proved by arguments similar to those for proving state-
ment (2).

1686 MAW-SHANG CHANG

1

2

3

4

5

6

7

8

910

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

20

19

18

Fig. 2. A set A of ten arcs.

Following Lemma 3.2, we define the following:

D(x) = {S : S is a dominating set of G(A), x ∈ S, and S ∩N(x) = ∅},
CD(x) = {S : S is a connected dominating set of G(A), x ∈ S, and S∩N(x) = ∅},

and

TD(x) = {S : S is a total dominating set of G(A), x ∈ S, x is not contained in
any other arc of S}.

For simplicity, let MD(x) = Min(D(x)), MCD(x) = Min(CD(x)), and MTD(x)
= Min(TD(x)). By the approach similar to that for independent domination, we
can find a minimum-weight dominating set (respectively, connected dominating set,
total dominating set) of G(A) given a set A of sorted arcs with nonnegative weights as
follows: choosing an arc x0 of minimum degree and lettingN [x0] = {x0, x1, x2, . . . , xd}
where d is the minimum degree of G(A), we find an MD(xk) (respectively, MCD(x),
MTD(x)) for each arc xk of N [x0]. The one with minimum weight is a minimum-

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1687

(3)

(5)

(6)

(8)

(10)

(1)I

I

I

I

I

I

I(7) I(9)

Fig. 3. The set I(AP (3)) of intervals of the set A of arcs shown in Figure 2.

weight dominating set (respectively, connected dominating set, total dominating set)
of G(A). If MD(x) (respectively, MCD(x), MTD(x)) can be found in O(n) time,
then a minimum-weight dominating set (respectively, connected dominating set, total
dominating set) of G(A) given a set A of sorted arcs with nonnegative weights can be
found in O(n + m) time since O(n(d + 1)) = O(n + m). In subsections 3.1, 3.2, and
3.3 we show how to find MD(x), MCD(x), and MTD(x) in O(n) time, respectively.

3.1. Domination. In the following, we will give an O(n)-time algorithm to find
an MD(x). By definition, if S ∈ D(x), then S is a dominating set of G(AP (x)). In
computing MD(x), we first map AP (x) to a set of intervals. The endpoints of arcs
of AP (x) are numbered in clockwise order from 1 to 2|AP (x)| starting from the head
of arc x. Then for every arc z ∈ AR(x) we create an interval I(z) = [hz, tz]; for every
arc z ∈ NL(x) we create an interval I(z) = [hz, tz + 2|AP (x)|]. For Z, a subset of
AP (x), let I(Z) denote {I(z) : z ∈ Z}. The above mapping procedure can be done in
O(n) time since A is a set of sorted arcs. For example, for the set of ten arcs shown
in Figure 2, the set I(AP (3)) of intervals obtained by the above procedure is shown
in Figure 3.

The following lemma can be verified easily by the above procedure.

Lemma 3.3. (1) I(x) is the first interval of I(AP (x)).

(2) For two arcs y and z of AP (x), arc y overlaps arc z if I(y) overlaps I(z).

(3) For y, z ∈ AR(x), arc y overlaps arc z if and only if I(y) overlaps I(z).

(4) For y ∈ AP (x) and z ∈ A − N [x], arcs y and z overlap if and only if I(y)
overlaps I(z).

We observe that I(S) is a PD set of I(AP (x)) if S ∈ D(x). Note that PD set was
defined in section 2.

Lemma 3.4. Suppose S ⊆ AP (x). Then S ∈ D(x) if and only if I(S) ∈
PD(last(I(S))) of G(I(AP (x))) and max b(I(S)) > max a(I(A−N(x))).

Proof. Suppose I(S) ∈ PD(last(I(S))) of G(I(AP (x))) and max b(I(S)) >
max a(I(A−N(x))). By definition, I(S) dominates all intervals whose left endpoints
are less than max b(I(S)). Since max b(I(S)) > max a(I(A−N(x))), I(S) dominates
I(A−N(x)). Because I(x) is the first interval of I(AP (x)), x ∈ S by definition. By
statement (2) of Lemma 3.3, S dominates A−N(x) since I(S) dominates I(A−N(x)).
Clearly, x dominates N [x] and hence S dominates A. Thus, S ∈ D(x).

On the other hand, suppose S ∈ D(x). By definition, x ∈ S and S ⊆ AP (x).
By statement (4) of Lemma 3.3, I(S) dominates I(A − N(x)). Since I(S) does not

1688 MAW-SHANG CHANG

dominate any interval whose left endpoint is greater than max b(I(S)), max b(I(S)) >
max a(I(A − N(x)). If z ∈ NR(x), then I(z) and I(x) overlap. If z ∈ NL(x) and
aI(z) ≤ max b(I(S)), then I(z) is dominated by last(I(S)). Thus all intervals of
I(AP (x)) whose left endpoints are less than max b(I(S)) are dominated by I(S).
This proves that I(S) ∈ PD(last(I(S))).

Lemma 3.4 prompts us to find MD(x) by finding Min({MPD(i) : bi >
max a(I(A −N(x)))}) from G(I(AP (x))). By Lemma 2.6, this can be done in O(n)
time and space. Thus MD(x) of G(A) can be found an O(n) time and space. This
leads to the following theorem.

Theorem 3.5. Given a set A of sorted arcs, a minimum-weight dominating set
of G(A) can be found in O(m+ n) time and O(n) space.

3.2. Connected domination. In this section, we give an O(n)-time algorithm
for computing MCD(x). We say a set S of arcs covers the whole circle if every point
on the circle is contained in an arc of S. Thus CD(x) can be partitioned into two
parts. One part, denoted by CDH(x), is the collection of those covering the whole
circle; the other part, denoted by CDB(x), consists of those not covering the whole
circle. Let MCDH(x) = Min(CDH(x)) and MCDB(x) = Min(CDB(x)). Clearly,
MCD(x) = Min({MCDH(x),MCDB(x)}). In the following, we first show how to
compute MCDH(x) in O(n) time and space.

By arguments similar to those for proving Lemma 3.4, we have the following
lemma.

Lemma 3.6. Suppose S ⊆ AP (x) and x ∈ S. Then S ∈ CDH(x) if and only if
I(S) ∈ CPD(last(I(S))) of G(I(AP (x))) and last(I(S)) ∈ I(NL(x)).

Lemma 3.6 prompts us to find MCDH(x) by finding Min({MCPD(i) : i ∈
I(NL(x))}) from G(I(AP (x))). By Lemma 2.9, it can be found in O(n) time and
space. This leads to the following lemma.

Lemma 3.7. Given a set A of sorted arcs, an MCDH(x) of G(A) can be found
in O(n) time and space.

Next we show how to compute MCDB(x) in O(n) time and space. For a subset S
of A, where S 6= ∅ and G(S) is connected but S does not cover the whole circle, there
exist two arcs u and v of S; arcs u and v may be equivalent such that every arcs of S
is contained in segment [hu, tv] and every point on segment [hu, tv] is contained in at
least one arc of S. The head (respectively, tail) of arc u (respectively, v) is called the
head (respectively, tail) of S and is denoted by h(S) (respectively, t(S)). For example,
let S = {1, 3, 5, 6} be a subset of arcs shown in Figure 2. Clearly, G(S) is connected
and h(S) = h1, t(S) = t6. Suppose S ∈ CDB(x), h(S) = hu, and t(S) = tv.
Let SL and SR denote the sets of arcs contained in segments [hu, tx] and [hx, tv],
respectively. Both G(SR) and G(SL) are connected. Clearly, h(SR) = hx, t(SR) = tv,
h(SL) = hu, and t(SL) = tx. For arc u ∈ AL(x), define LCD(u) to be the collection
of all subsets S’s of AL(x) such that G(S) is connected, and h(S) = hu, t(S) = tx.
Similarly, for arc v ∈ AR(x), define RCD(v) to be the collection of all subset S’s
of AR(x) such that G(S) is connected, and h(S) = hx, t(S) = tv. By definition, if
S ∈ LCD(u) or S ∈ RCD(v), then x ∈ S. Let MLCD(u) = Min(LCD(u)) and
MRCD(v) = Min(RCD(v)). Note that G(AR(x)) is an interval graph and RCD(v)
is equivalent to CPD(v) defined in subsection 2.3. By Lemma 2.9, MRCD(v) can be
computed in O(n) time for all v ∈ AR(x). By symmetric property, MLCD(u) for all
u ∈ AL(x) can be computed in O(n) time too. Note that we label the endpoints of
AP (x) in clockwise order from 1 to 2|AP (x)| starting from the head of arc x. Suppose
S ∈ CDB(x), h(S) = hu, and t(S) = tv. Then, SL ∈ LCD(u), SR ∈ RCD(v), and

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1689

no arc of A is contained in segment [tv, hu]. On the other hand, suppose u ∈ AL(x),
v ∈ AR(x), hu > tv, and no arc of A is contained in segment [tv, hu]. If S1 ∈ LCD(u)
and S2 ∈ RCD(v), then S1 ∪ S2 ∈ CDB(x). For arc u ∈ AL(x), define RA(u) to
be the set of arcs of AR(x) that are contained in segment [hx, hu] if u 6= x; and
RA(u) = AR(x) otherwise. And define α(u) = max{hw : w ∈ RA(u)}. Then for
u ∈ AL − {x}, v ∈ AR(x), and tv < hu, there does not exist any arc y such that
tv < hy < ty < hu if and only if tv > α(u). For arc v ∈ AR(x), there does not exist
any arc y contained in segment [tv, hx] if and only if tv > α(x). Let CDB(x, u) = {S :
S ∈ CDB(x), h(S) = hu}. Then we can verify the following four statements easily.

(1) If u ∈ AL(x)− {x}, S1 ∈ LCD(u), and S2 ∈ RCD(v) where α(u) < tv < hu,
then S1 ∪ S2 ∈ CDB(x, u).

(2) If v ∈ AR(x), tv > α(x), and S ∈ RCD(v), then S ∈ CDB(x, u).

(3) If S ∈ CDB(x, u) and v = t(S) where u 6= x, then SL ∈ LCD(u), SR ∈
RCD(v), and α(u) < tv < hu.

(4) If S ∈ CDB(x, x) and v = t(S), then SL = {x} ∈ LCD(x), S = SR ∈
RCD(v), and α(x) < tv.

Let MCDB(x, u) = Min(CDB(x, u)). Then MCDB(x) = Min({MCDB(x, u) :
u ∈ AL(x)}). By the above four statements, it is easy to see that MCDB(x, u) =
MLCD(u) ∪ Min({MRCD(w) : w ∈ AR(x), α(u) < tw < hu}) if u 6= x; and
MCDB(x, x) = Min({MRCD(w) : w ∈ AR(x), α(x) < tw}) otherwise. Let MZ(x) =
Min({MRCD(w) : w ∈ AR(x), α(x) < tw}) and MZ(u) = Min({MRCD(w) : w ∈
AR(x), α(u) < tw < hu}) for u ∈ AL(x) − {x}. Then MCDB(x, u) = MLCD(u) ∪
MZ(u) and w(MCDB(x, u)) = w(MZ(u)) + w(MLCD(u))− w(x) for u ∈ AL(x).

In fact, the definition of α(u) is similar to that of max a(IFB(e)) defined in
subsection 2.1. Thus we can find an arc v for each arc u ∈ AL(x) such that MZ(u) =
MRCD(v) in O(n) time by an algorithm similar to Algorithm MIDS. This algorithm
scans endpoints of AP (x) in clockwise order starting from tx + 1 to 2n. It also
maintains a list L of arcs in increasing order of their tails in the same way that
Algorithm MIDS maintains a list L of intervals in increasing order of their right
endpoints. If arc v ∈ L, then α(tu) < tv < hu and MRCD(δL) = Min({MRCD(y) :
y ∈ AR(x), α(tu) < ty < hu}) right before the head of arc u is being visited. Details
of the algorithm are in the following algorithm.

Algorithm MZ. Find an arc v for each arc u ∈ AL(x) such that MZ(u) =
MRCD(v).

Input. AP (x) and w(MRCD(v)) for all v ∈ AR(x).

Method.

1. Number endpoints of AP (x) from 1 to 2|AP (x)| in clockwise order starting
from the head of arc x;
Number arcs of AP (x) from 1 to |AP (x)| in increasing
order of their tails;
L = {x};

2. for e = tx + 1 to 2|AP (x)| do
3. if e is the head of arc u then do
4. MZ(u) ←MRCD(δ) where δ is the list head of L;
5. w(MZ(u)) ← w(MRCD(δ));
6. else e is the tail of arc u do
7. Delete all elements of L whose tails are less

than hu from the list head of L one by one;
8. while L 6= ∅ and w(MRCD(τ)) > w(MRCD(u))do

1690 MAW-SHANG CHANG

9. Delete τ from L where τ is the list tail of L;
end while

10. Append u to the end of L;
end if else

end for
11. MZ(x) ←MRCD(δ);

The correctness of Algorithm MZ can be proved by arguments similar to those
for proving Algorithm MIDS shown in section 2.1. It is easy to see that the running
time of Algorithm MZ is O(n). Thus we have the following lemma.

Lemma 3.8. MCD(x) can be computed in O(n) time.

Since we can compute both MCDH(x) and MCDB(x) in O(n) time, we can
compute MCD(x) in (n) time. Thus we have the following theorem.

Theorem 3.9. Given a set A of sorted arcs, a minimum-weight connected dom-
inating set of G(A) can be found in O(m+ n) time and O(n) space.

3.3. Total domination. In the following, we will focus on how to find MTD(x)
in O(n) time given a set A of sorted arcs and an arc x ∈ A. Note that TD(x) is the
set of all total dominating sets of G(A) containing arc x but no other arc containing
arc x. Define

TD1(x) = {S : S ∈ TD(x), S ∩ (NL(x) ∪NR(x)) = ∅},
TD2(x) = {S : S ∈ TD(x), S ∩N(x) = ∅, S ∩NL(x) = ∅},
TD3(x) = {S : S ∈ TD(x), S ∩N(x) = ∅, S ∩NR(x) = ∅},
TD4(x) = {S : S ∈ TD(x), S ∩N(x) = ∅, S covers the whole circle}, and

TD5(x) = {S : S ∈ TD(x), S ∩N(x) = ∅, S ∩NR(x) 6= ∅, S ∩NL(x) 6= ∅, S does
not cover the whole circle}.

Let MTDi(x) = Min(TDi(x)) for i = 1, 2, 3, 4, and 5. Suppose S ∈ TD(x),
S ∩ (NL(x) ∪ NR(x)) 6= ∅, and S ∩ N(x) 6= ∅. By definition of TD(x), all arcs of
S ∩ N(x) are contained in arc x. Thus (S − N(x)) is still a total dominating set of
G(A) since S ∩ (NL(x) ∪NR(x)) 6= ∅. Hence, S −N(x) ∈ ∪2≤i≤5TDi(x). Note that
w(S−N(x)) ≤ w(S) since all weights are nonnegative. In other words, there exists a
set S ∈ TD(x) such that S ∈ ∪1≤i≤5TDi(x) and w(S) = w(MTD(x)). Thus we have
the following lemma.

Lemma 3.10. MTD(x) = Min({MTDi(x) : 1 ≤ i ≤ 5}).
The above lemma suggests that we find MTD(x) by finding MTDi for i =

1, . . . , 5. It is easy to verify that TD4(x) = CDH(x). Thus, MTD4(x) can be
computed in O(n) time by finding MCDH(x) which was discussed in the previ-
ous subsection. In the following, we show how to find MTDi(x) in O(n) time for
i = 1, 2, 3, 5. For the reader’s convenience, we repeat the definition of K(x) and
MK(x) for an interval x of I here: K(x) = {{y} : y ∈ I, y 6= x, y is contained in
x} and MK(x) = Min(K(x)). We will generalize its definition to an arc x of A as
follows: K(x) = {{y} : y ∈ A, y 6= x, y is contained in x} and MK(x) = Min(K(x)).
Since MK(z) for all arc z ∈ A can be found in O(n + m) time, in the following we
assume that MK(z) for all arc z ∈ A are ready for use. To find MTD1(x), we need
the following lemma.

Lemma 3.11. The following two statements are true.

(1) Suppose S is a total dominating set of G(A−N [x]) and y is an arc contained
in arc x. Then {x, y} ∪ S ∈ TD1(x).

(2) Suppose S ∈ TD1(x); then S−N [x] is a total dominating set of G(A−N [x]).

Proof. The lemma is proved by definition.

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1691

By Lemma 3.11, it is easy to see that {x} ∪MK(x) ∪ S is an MTD1(x) if S is a
minimum-weight total dominating set of G(A−N [x]). Since G(A−N [x]) is an interval
graph, by Theorem 2.13 a minimum-weight total dominating set of G(A−N [x]) can
be computed in O(n) time since MK(z)’s of all arc z ∈ A −N [x] are ready for use.
Hence MTD1(x) can be found in O(n) time.

In the following, we show how to find MTD2(x). It is easy to see that S ⊆ AR(x)
if S ∈ TD2(x). Clearly, G(AR(x)) is an interval graph. For simplicity, arcs of AR(x)
are considered as intervals in the following lemma where the head and tail of an arc
are considered as the left endpoint and right endpoint of its corresponding interval,
respectively. Note that max a(AR(x)) denotes the largest left endpoint of intervals in
AR(x). Also we can see that interval x is the first interval of AR(x).

Lemma 3.12. Suppose S ⊆ A. Then S ∈ TD2(x) if and only if S ∈ TPD(last(S))
of G(AR(x)) and blast(S) > max a(AR(x)).

Proof. Suppose S ∈ TD2(x). By definition, S ⊆ AR(x). Obviously, S is a total
dominating set of G(AR(x)) and x ∈ S. Thus, S ∈ TPD(last(S)) and blast(S) >
max a(AR(x)). On the other hand, suppose S ∈ TPD(last(S)) of G(AR(x)) and
blast(S) > max a(AR(x)). Clearly, S is a total dominating set ofG(AR(x)), S ⊆ AR(x),
and x ∈ S. Since arc x dominates N [x], S is a total dominating set of G(A). Hence
S ∈ TD2(x).

The above lemma suggests that we find MTD2(x) by finding Min({MTPD(i) :
i ∈ AR(x), bi > max a(AR(x))} from G(AR(x)). By Lemma 2.12, it can be done in
O(n) time if MK(z)’s are known in advance for all z ∈ AR(x). Thus MTD2(x) can
be found in O(n) time. By symmetric property, MTD3(x) can be found in O(n) time
in the same way.

In the following, we show how to find MTD5(x) by using the same technique for
computing MCDB(x). If S ∈ TD5(x), then there exists an arc u of S such that hu
is not contained in any other arc of S. Apparently, u 6= x. Define TD5(x, u) = {S :
S ∈ TD5(x),u ∈ S, hu is not contained in any other arc of S}. Let MTD5(x, u) =
Min(TD5(x, u)). Then, MTD5(x) = Min({MTD5(x, u) : u ∈ AL − {x}}). The defi-
nition of TD5(x, u) is similar to that of CDB(x, u) defined in the previous subsection.
For arc u ∈ AL(x) − {x}, define LTD(u) to be the collection of all subsets S’s of
AL(x) such that x, u ∈ S, G(S) has no isolated vertices, all arcs of S are contained
in segment [hu, tx], and S dominates all arcs that overlap segment [hu, tx]. Simi-
larly, for arc v ∈ AR(x) − {x}, define RTD(v) to be the collection of all subsets S’s
of AR(x) such that x, v ∈ S, G(S) has no isolated vertices, all arcs of S are con-
tained in segment [hx, tv], and S dominates all arcs that overlap segment [hx, tv]. Let
MLTD(u) = Min(LTD(u)) and MRTD(v) = Min(RTD(v)). Note that G(AR(x)) is
an interval graph and RTD(v) is equivalent TPD(v). By Lemma 2.12, MRTD(v) for
all v ∈ AR(x)−{x} can be computed in O(n) time and space. By symmetric property,
MLTD(u) for all u ∈ AL(x)−{x} can be computed in O(n) time and space too. Note
that we number the endpoints of arcs of AP (x) from 1 to 2|AP (x)| starting from the
head of arc x and number the arcs of AP (x) from 1 to |AP (x)| starting from arc x in
increasing order of their tails. Suppose S ∈ TD5(x). Since S does not cover the whole
circle, there exist two arcs u and v of S such that u ∈ AL(x)−{x}, v ∈ AR(x)−{x},
hu > tx, and all arcs of S are contained in segment [hu, tv]. Let SL(u) and SR(v) de-
note the set of arcs of S contained in segments [hu, tx] and [hx, tv], respectively. Then
we observe that SL(u) ∈ LTD(u) and SR(v) ∈ RTD(v), and α(u) < tv < hu. Note
that α(u) was defined in the previous subsection. If u ∈ AL(x)− {x}, S1 ∈ LTD(u),
v ∈ AR(x)− {x}, and S2 ∈ RTD(v) where α(u) < tv < h(u), then S1 ∪ S2 ∈ TD5(x)

1692 MAW-SHANG CHANG

Table 1

Interval graphs Circular-arc graphs
Previous results New results Previous results New results

WIDP O(n+m) O(n) O(n+m)

WDP O(n logn) or O(n+m) O(n) O(n2 logn) O(n+m)
WCDP O(n+m) O(n) O(n+m)

WTDP O(n logn) or O(n+m) O(n log logn) O(n3) O(n+m)

since S1 ∪ S2 dominates all arcs overlapping segment [hu, tv] and there does not exist
any arc y such that tv < hy < ty < h(u).

By the above discussions, we have the following lemma.
Lemma 3.13. Suppose S is a subset of A and x ∈ S. S ∈ TD5(x, u) if and

only if there exists an arc v of S such that SL(u) ∈ LCD(u), SR(v) ∈ RCD(v), and
α(u) < tv < h(u).

Following the above lemma, we have that MTD5(x, u) = MLTD(u) ∪
Min({MRTD(v) : v ∈ AR(x) − {x}, α(u) < tv < h(u)}). Let MT (u) =
Min({MRTD(v) : v ∈ AR(x) − {x}, α(u) < tv < hu}). Thus, MTD5(x, u) =
MLTD(u) ∪ MT (u) and w(MTD5(x, u)) = w(MLTD(u)) + w(MT (u)) − w(x).

We can find an arc v ∈ AR(x) such that MT (u) = MRTD(v) for all u ∈ AL(x)−
{x} in O(n) time by an algorithm similar to Algorithm MZ. We omit this algorithm
to save space. Then, w(MTD5(x, u)) for all u ∈ AL(x) can be computed in O(n)
time. Thus, MTD5(x) can be computed in O(n) time.

We have shown that MTDi(x) can be computed in O(n) time for 1 ≤ i ≤ 5
excluding the time for computing MK(z) for all z ∈ A. Note that MK(z)’s for all
z ∈ A can be computed in O(n+m) time. Thus, a minimum-weight total dominating
set of G(A) can be computed in O(dn) +O(n+m) = O(n+m) time. Hence we have
the following theorem.

Theorem 3.14. Given a set A of sorted arcs, the minimum-weight total domi-
nating set of G(A) can be found in O(m+ n) time and O(n) space.

4. Concluding remarks. In this paper we have presented efficient algorithms
to solve the minimum-weight domination problem (WDP) and its three variations,
i.e., the minimum-weight independent, connected, and total domination problems
(abbreviated by WIDP, WCDP, and WTDP, respectively), on interval and circular-
arc graphs. The results of this paper are summarized in Table 1.

It remains an open question whether we can compute a minimum weight total
dominating set for a weighted interval graph G(I) of a set of sorted intervals I in
O(n) time.

Acknowledgments. The author is grateful to the referees whose extensive com-
ments have led to tremendous improvements in the presentation of the paper.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison–Wesley, Reading, MA, 1974.

[2] T. Asano, Dynamic programming on intervals, Lecture Notes in Computer Science 557,
Springer-Verlag, New York, Berlin, 1991, pp. 199–207.

[3] A. A. Bertossi, Total domination in interval graphs, Inform. Process. Lett., 23 (1986), pp. 131–
134.

[4] A. A. Bertossi and M. A. Bonuccelli, Some parallel algorithms on interval graphs, Discrete
Appl. Math., 16 (1987), pp. 101–111.

DOMINATION OF INTERVAL AND CIRCULAR-ARC GRAPHS 1693

[5] A. A. Bertossi and A. Gori, Total domination and irredundance in weighted interval graphs,
SIAM J. Discrete Math., 1 (1988), pp. 317–327.

[6] A. A. Bertossi and S. Moretti, Parallel algorithms on circular-arc graphs, Inform. Process.
Lett., 33 (1989/1990), pp. 275–281.

[7] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space,
Inform. Process. Lett., 6 (1977), pp. 80–82.

[8] B. Bollobs and E. J. Cockayne, Graph-theoretic parameters concerning domination, inde-
pendence, and irredundance, J. Graph Theory, 3 (1979), pp. 241–249.

[9] M. A. Bonuccelli, Dominating sets and domatic number of circular-arc graphs, Discrete Appl.
Math., 12 (1985), pp. 203–213.

[10] K. S. Booth and G. S. Lueker, Testing for consecutive ones property, interval graphs and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[11] M. S. Chang, P. Nagavamsi, and C. Pandu Rangan, Weighted irredundancy in circular-arc
graphs, manuscript, 1995.

[12] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks,
7 (1977), pp. 247–261.

[13] E. M. Eschen and J. P. Spinrad, An O(n2) algorithm for circular-arc graph recognition,
in Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithm, Austin, TX, 1993,
pp. 128–137.

[14] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Dis-
crete Appl. Math., 7 (1984), pp. 115–130.

[15] H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a special case of disjoint set
union, J. Comput. System Sci., 30 (1985), pp. 209–221.

[16] Z. Galil and G. F. Italiano, Data structures and algorithms for disjoint set union problems,
ACM Comput. Surveys, 23 (1991), pp. 319–344.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.

[18] F. Gavril, Algorithms on circular-arc graphs, Networks, 4 (1974), pp. 357–369.
[19] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[20] M. C. Golumbic, Interval graphs and related topics, Discrete Math., 55 (1985), pp. 113–243.
[21] M. C. Golumbic and P. L. Hammer, Stability in circular-arc graphs, J. Algorithms, 9 (1988),

pp. 314–320.
[22] U. I. Gupta, D. T. Lee, and J. Y. T. Leung, Efficient algorithms for interval graphs and

circular-arc graphs, Networks, 12 (1982), pp. 459–467.
[23] W. L. Hsu, O(M ·N) algorithms for the recognition and isomorphism problems on circular-arc

graphs, SIAM J. Comput., 24 (1995), pp. 411–439.
[24] W. L. Hsu and T. H. Ma, Substitution decomposition on chordal graphs and applications,

Lecture Notes in Computer Science 557, Springer-Verlag, Berlin, New York, 1991, pp. 52–
60.

[25] W. L. Hsu and K. H. Tsai, Linear time algorithms on circular-arc graphs, Inform. Process.
Lett., 40 (1991), pp. 123–129.

[26] N. Korte and R. H. Möhring, An incremental linear-time algorithm for recognizing interval
graphs, SIAM J. Comput., 18 (1989), pp. 68–81.

[27] R. Laskar, J. Pfaff, S. M. Hedetniemi, and S. T. Hedetniemi, On the algorithmic com-
plexity of total domination, SIAM J. Alg. Discrete Math., 5 (1984), pp. 420–425.

[28] G. K. Manacher and T. A. Mankus, Incorporating negative weight vertices in certain vertex-
search graph algorithms, Inform. Process. Lett., 42 (1992), pp. 293–294.

[29] S. Masuda and K. Nakajima, An optimal algorithm for finding a maximum independent set
of a circular-arc graph SIAM J. Comput., 17 (1988), pp. 41–52.

[30] G. Ramalingan and C. Pandu Rangan, Total domination in interval graphs revisited, Inform.
Process. Lett., 27 (1988), pp. 17–21.

[31] G. Ramalingan and C. Pandu Rangan, A unified approach to domination problems on in-
terval graphs, Inform. Process. Lett., 27 (1988), pp. 271–274.

[32] G. Ramalingan and C. Pandu Rangan, New sequential and parallel algorithms for interval
graph recognition, Inform. Process. Lett., 34 (1990), pp. 215–219.

[33] A. Srinivasa Rao and C. Pandu Rangan, Optimal parallel algorithms on circular-arc graphs,
Inform. Process. Lett., 33 (1989/1990), pp. 147–156.

[34] W. K. Shih, T. C. Chern, and W. L. Hsu, An O(n2logn) time algorithm for the Hamiltonian
cycle problem, SIAM J. Comput., 21 (1992), pp. 1026–1046.

[35] K. Simon, A new simple linear algorithm to recognize interval graphs, Lecture Notes in Com-
puter Science 553, Springer-Verlag, Berlin, New York, 1991, pp. 289–308.

1694 MAW-SHANG CHANG

[36] A. . Sprague and K. H. Kulkarni, Optimal parallel algorithms for finding cut vertices and
bridges of interval graphs, Inform. Process. Lett., 42 (1992), pp. 229–234.

[37] R. E. Tarjan, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput.
Mach., 26 (1975), pp. 215–225.

[38] R. E. Tarjan, J. van Leeuwen, Worst-case analysis of set union algorithms, J. Assoc. Com-
put. Mach., 31 (1984), pp. 245–281.

[39] A. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput., 9 (1980), pp. 1–24.
[40] M. S. Yu and C. H. Yang, A simple optimal parallel algorithm for the minimum coloring

problem on interval graphs, Inform. Process. Lett., 48 (1993), pp. 47–51.

COMPUTING THE LOCAL CONSENSUS OF TREES∗

SAMPATH KANNAN† , TANDY WARNOW† , AND SHIBU YOOSEPH†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1695–1724, December 1998 009

Abstract. The inference of consensus from a set of evolutionary trees is a fundamental problem
in a number of fields such as biology and historical linguistics, and many models for inferring this
consensus have been proposed. In this paper we present a model for deriving what we call a local
consensus tree T from a set of trees T . The model we propose presumes a function f , called a
total local consensus function, which determines for every triple A of species, the form that the
local consensus tree should take on A. We show that all local consensus trees, when they exist,
can be constructed in polynomial time and that many fundamental problems can be solved in linear
time. We also consider partial local consensus functions and study optimization problems under this
model. We present linear time algorithms for several variations. Finally we point out that the local
consensus approach ties together many previous approaches to constructing consensus trees.

Key words. algorithms, graphs, evolutionary trees

AMS subject classifications. 05C05, 68Q25, 92-08, 92B05

PII. S0097539795287642

1. Introduction. An evolutionary tree (also called a phylogeny or phylogenetic
tree) for a species set S is a rooted tree with |S| = n leaves labeled by distinct elements
in S. Because evolutionary history is difficult to determine (it is both computationally
difficult as most optimization problems in this area are NP-hard and scientifically
difficult as well since a range of approaches appropriate to different types of data exist),
a common approach to solving this problem is to apply many different algorithms to
a given data set, or to different data sets representing the same species set, and then
look for common elements from the set of trees which are returned.

There is extensive literature about inferring consensus from ordered sets of trees,
with much attention paid to the properties of the rules for inferring the consensus. In
this paper, we will make an explicit assumption that the consensus rule be independent
of the ordering of the trees in the input; i.e., we will presume that the input to the
consensus problem is an unordered multiset of evolutionary trees, each leaf-labelled
by the elements in S. We call this input a profile, noting that in this paper the
terminology is restricted in meaning as we have indicated.

Several consensus methods are described in the literature for deriving one tree
from a profile of evolutionary trees. These methods include maximum agreement
subtrees [16, 19, 13, 24, 14], strict consensus trees [4, 9], median trees (also known
as majority trees) [5], compatibility trees [10, 11, 12], the Nelson tree [22], and the
Adams consensus [1].

The algorithms for some of these are implemented in standard packages and are
in use; most common, perhaps, are strict and majority consensus tree approaches.

∗Received by the editors June 8, 1995; accepted for publication (in revised form) September 12,
1996; published electronically June 3, 1998. The research of the first author was supported in part
by NSF grant CCR-9108969. The research of the second author was supported in part by ARO grant
DAAL03-89-0031PRI, NSF Young Investigator Award, and by generous support from Paul Angello.
The research of the third author was supported in part by ARO grant DAAL03-89-0031PRI, a
fellowship from the Institute for Research in Cognitive Science at the University of Pennsylvania,
and a fellowship from the Program in Mathematics and Molecular Biology at the University of
California at Berkeley, which is supported by NSF grant DMS-9406348.

http://www.siam.org/journals/sicomp/27-6/28764.html
†Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA

19104 (kannan@central.cis.upenn.edu, tandy@central.cis.upenn.edu, yooseph@saul.cis.upenn.edu).

1695

1696 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

One notion of the information content of an evolutionary tree is the degree of
resolution indicated by the tree; this can be quantified in a number of ways, for
example, by counting the number of internal nodes or the number of resolved triples1

in the tree. This is because the most usual interpretation of an unresolved triple in an
evolutionary tree is that the evolutionary history of that triple cannot be absolutely
inferred from the data. Thus, for example, a completely resolved tree (i.e., a binary
tree) asserts a hypothesis about the evolution of all triples of taxa, while the star
(i.e., root with all taxa children of the root) does not assert any hypothesis about
the evolution of any triple. One of the motivations for proposing this new model of
consensus tree construction is the observation that on some data sets the strict and
majority consensus trees may be fairly uninformative (i.e., be fairly unresolved).

In this paper, we propose a new model, called the local consensus. This model
is based upon functions, called local consensus functions, for inferring the rooted
topology of the homeomorphic subtree induced by triples of species. We will show
that given any local consensus function, we can determine whether a tree (called the
local consensus tree) consistent with the constraints implied by the local consensus
function can be computed in polynomial time and that many of the natural forms of
the local consensus can be computed in linear time. We also analyze optimization
problems based upon partial local consensus rules and show that many of these can
also be solved in polynomial time. We will show that this method unifies many of the
previously favored approaches while providing greater flexibility to the biologists in
the interpretation of the data. Furthermore, the local consensus trees produced are, in
most cases, significantly more informative (in the sense of more refined; see the above
discussion) than trees produced using the strict or majority consensus methods.

2. Preliminaries.

2.1. Trees. Let S = {s1, s2, . . . , sn} be a set of species. An evolutionary tree
for S (also known as a phylogenetic tree or, more simply, a phylogeny) is a rooted
tree T with n leaves each labeled by a distinct element from S. The internal nodes
denote ancestors of the species in S. For an arbitrary subset S′ ⊂ S we denote by
T|S′ the homeomorphic subtree of T induced by the leaves in S′. In particular, for a
specified triple {a, b, c} ⊂ S we denote by T|{a,b, c} the homeomorphic subtree of T
induced by the leaves labeled by a, b, and c. This topology is completely determined
by specifying the pair of species among a, b, and c whose least common ancestor (LCA)
lies farthest away from the root. If (a, b) is this pair then we denote this by ((a, b), c),
and T is said to be resolved on the triple a, b, c. If T is not binary it may happen
that all three pairs of species have the same LCA. In this case we will say that a, b, c
is unresolved in T and denote this topology by (a, b, c). In this paper, when we say
a triple a, b, c is resolved, we mean that T |{a, b, c} is one of ((a, b), c), ((a, c), b), or
((b, c), a).

For a profile P , which is defined by a multiset {T1, T2, . . . , Tk}, we let P |{a, b, c}
denote the multiset {T1|{a, b, c}, T2|{a, b, c}, . . . , Tk|{a, b, c}}.

Given a tree T containing nodes u, v, w, we let lcaT (u, v, w) denote the LCA of
u, v, and w in T . Also, we let u ≤T v denote that v is on the path from u to the root
of T .

2.2. Local consensus functions, rules, and trees. Let T (a, b, c) denote the
set of rooted subtrees on the leaf set {a, b, c} ⊆ S; thus |T (a, b, c)| = 4, with three of

1See section 2.1 for definitions of a resolved triple and an unresolved triple.

COMPUTING THE LOCAL CONSENSUS OF TREES 1697

the trees being resolved and one being the star (i.e., unresolved) tree on a, b, c.

A local consensus function is a function f which specifies the constraints for certain
(i.e., perhaps not all) triples a, b, c of species. Let A be the set of all three element
subsets of S. We define f : A→ ∪{a,b,c}∈AT (a, b, c)∪ {∗}. When f(X) = ∗, for some
X = {a, b, c} ∈ A, this indicates that the form of the triple a, b, c is unconstrained.
When f(X) 6= ∗∀X ∈ A, i.e., no triple is unconstrained, then f is said to be a total
local consensus function. Otherwise, f is said to be a partial local consensus function.

A rooted tree T (if it exists) which is leaf-labelled by elements from S and which
meets all the constraints implied by the local consensus function f is called an f-local
consensus tree.2 Note that when a triple a, b, c is set to be unconstrained by f , then
T |{a, b, c} can be any of the elements in T (a, b, c). Thus T is a tree such that for all
triples X ∈ A, T |X = f(X), if f(X) 6= ∗.

A local consensus function can be applied to a profile P . It is also possible for the
local consensus function to define the form of the output triple based upon the forms
the triple takes in the profile. Such local consensus functions are called local consensus
rules. Let M be the set of all multisets of size k, where each element of a multiset
belongs to T (a, b, c). A local consensus rule is a function f : M → T (a, b, c) ∪ {∗}.
If f(X) = ∗, for some X ∈ M, then f is said to be a partial local consensus rule;
otherwise, f is a total local consensus rule.

Given a profile P and a local consensus rule f , the f -local consensus tree (if it
exists) is a rooted tree T such that for all triples X ⊆ S, T |X = f(P |X), if f(P |X)
6= ∗.3

It is not the case that a local consensus tree necessarily exists for an arbitrary
local consensus function (or rule) applied to an arbitrary input profile. Determining
whether a local consensus tree exists, and constructing it when it does, is the subject
of this paper.

The structure of the paper is as follows. In section 3, we will describe some
general techniques for determining if a local consensus tree exists. In particular, we
will give a polynomial time algorithm (based upon the algorithm in [3]), which can
determine if a local consensus tree exists for an arbitrary local consensus function (or
rule), and construct it when it does. We will also describe a class of natural local
consensus rules and describe general techniques for constructing local consensus trees
from such natural local consensus rules when they exist. In section 4, we then describe
some specific natural local consensus rules and some fast algorithms for constructing
the local consensus trees. In section 5, we consider optimization problems related
to constructing local consensus trees and present efficient algorithms to solve some
of these optimization problems. We conclude in section 6 with a discussion and
suggestions for extensions.

3. Techniques.

3.1. General local consensus functions. For an arbitrary local consensus
function f and an arbitrary profile of trees T = {T1, T2, . . . , Tk}, we can compute
the constraint indicated by f for every triple of species a, b, c. This produces a set of
O(n3) constraints on the consensus tree we wish to construct, where each constraint
is a rooted tree for a triple on a species set a, b, c. This rooted tree may be resolved

2We will also sometimes refer to it simply as a local consensus tree.
3Note that f is defined the same on all triples X ⊆ S. As defined above, the triple labels a, b, c

serve merely as place holders. The definition of a local consensus rule can easily be changed to
accommodate a different rule for each triple.

1698 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

(i.e., it may be of the form ((a, b)c)) or it may be unresolved (i.e., of the form (a, b, c)).
If there is a tree T meeting all these constraints, then T is the local consensus tree for
f . Thus, we can reduce the problem of consensus tree construction for an arbitrary
local consensus function to the problem of determining consistency of a set of rooted
triples.

3.1.1. Rooted triple consistency. We present results related to this general
problem.

Theorem 3.1. Determining if a tree T exists which meets a set of constraints
(and constructing it if it does) can be solved in O(pn log n) time if the constraints
include unresolved triples and otherwise can be solved in O(pn) time, where p is the
number of constraints defined by f .

Proof. In [3], Aho et al. describe algorithms which determine if a family of con-
straints on LCA relations can be satisfied within a single rooted tree. We describe here
the simple algorithm they give for the case where the constraints are given as rooted
resolved triples ((x, y), z). For such input the algorithm works top-down figuring out
the clusters at the children of the root before recursing. To do this the algorithm
maintains disjoint sets. Initially all leaves are in singleton sets. For each rooted triple
((x, y), z) the algorithm unions the sets containing x and y to indicate that x and y
must lie below the same child of the root. This algorithm never unions sets unless this
is forced. Recursive calls include constraints that are on species entirely contained
in the same component discovered in the previous call. If all the species are seen to
be in the same component (either initially or during a recursive call), the algorithm
determines that the constraints cannot be simultaneously satisfied. This simple algo-
rithm has a worst-case behavior of O(pn), where there are p LCA constraints and the
underlying set S has n elements which will be leaves in the final tree.

However, we can also solve the consistency problem faster than by using the Aho
et al. algorithm. In [21], an algorithm is given for the problem addressed in [3] for the
case where all the triples are resolved. In this case a faster algorithm can be obtained.

Lemma 3.1 (Henzinger, King, and Warnow [21]). Let A be a set of p resolved
rooted triples on a leaf set S with |S| = n. We can determine in min{O(p

√
n), O(p+

n2.5)} time whether a tree T exists such that T |{a, b, c} is homeomorphic to the rooted
triple(s) in A on {a, b, c} (if such a triple exists in A).

In the context of the rooted triple consistency problem, we also refer to the work
of [8, 7], where the conditions necessary for a given set of triple constraints to define
a tree are investigated.

3.2. Constructing local consensus trees in polynomial time. As a conse-
quence of the results in the previous section, we can prove the following theorem.

Theorem 3.2. Let f be an arbitrary partial local consensus rule and T a set of
k evolutionary trees on S with |S| = n.

1. If every triple which is not set to ∗ is defined to be resolved by f , then we
can determine if the local consensus tree exists and construct it if it does in
O(kn3) time.

2. If f defines some triples (which are not set to ∗) to be unresolved, then we
can determine if the local consensus tree exists and construct it if it does in
O(kn3 + n4 log n) time.

Proof. Given f , T , and a triple A, we can determine the form of Tf |A (for those
triples A for which Tf |A is not unconstrained) in O(kn3) time. If all the triples
which are not set to unconstrained are defined to be resolved, then by Lemma 3.1 we
can determine if the partial local consensus tree exists and construct it if it does, in

COMPUTING THE LOCAL CONSENSUS OF TREES 1699

O(n2.5 + p) time, where p is the number of constraints. The total time is therefore
bounded by the cost of computing the triples. If some of the triples are unresolved then
we can use Theorem 3.1 to get an O(kn3 + n4 log n) algorithm which will determine
if the tree exists and construct it when it does.

3.2.1. Constructing local consensus trees from total local consensus
rules. While local consensus trees can be constructed in O(kn3) time from partial
local consensus rules, local consensus trees can be computed even faster when the
local consensus rule is total.

Lemma 3.2 (Kannan, Lawler, and Warnow [18]). Given an oracle O which can
answer queries of “What is the form of T |{a, b, c} for a species set {a, b, c}?”, we can
construct in O(n2) time a tree T consistent with all the oracle queries (if it exists)
and O(rn log n) time if the tree T has degree bounded by r.

Theorem 3.3. Let f be a total local consensus rule. Then given a set of k rooted
trees on n species, we can construct in O(kn2) time the f-local consensus tree Tf if it
exists. If f always returns resolved subtrees, then we can compute Tf in O(kn log n)
time.

Proof. We can implement the oracle determining the form of the homeomorphic
subtree of Tf on a triple a, b, c by first preprocessing the trees to answer LCA queries
in constant time using [20]. Then, answering a query needs only O(k) time. By [18],
we need only O(n2) queries and O(n2) additional work for a total cost of O(kn2) in
the general case. When Tf has degree bounded by r, we have total cost O(krn log n).
If f always returns resolved subtrees, then Tf will be binary, so that the total cost is
O(kn log n).

Note, however, that this algorithm does not verify that the tree constructed is the
local consensus tree; that is, it is possible that the constraints are inconsistent, so that
no local consensus tree exists for that local consensus function (or rule). When it does,
however, the tree constructed will equal the local consensus tree. Thus, when it can
be shown that the local consensus tree does exist, then this method will necessarily
produce the local consensus tree. In general, however, it will be necessary to verify
that the constructed tree is the local consensus tree.

We have described two algorithms for inferring whether a local consensus tree
exists for an arbitrary local consensus function (or rule). When the local consensus
function (or rule) is total, if the local consensus tree exists, it can be constructed
in O(kn2) time, where k is the number of trees in the profile and n is the number
of leaves in each tree. However, the tree that results then needs to be verified to
be the local consensus tree (and the fastest verification algorithm may still require
Ω(kn3) time). When the local consensus function (or rule) is partial, then a slower
O(kn3) algorithm can be used, but it simultaneously constructs and verifies that the
constructed tree is the local consensus tree.

3.3. Local consensus rules. A local consensus rule must handle essentially
three types of situations for each pattern of subtrees in the profile for a triple a, b, c
of species: profile constant on a,b,c; profile compatible on a,b,c; profile incompatible
on a,b,c. The profile of trees may agree on that set a, b, c, and thus all reflect the
same evolutionary history, or the trees may differ (in two different ways) on the triple.
Depending upon the pattern of different subtrees, the local consensus rule may elect
to constrain the form of the output or to leave the output unconstrained for that
triple. However, we will only consider a local consensus rule to be natural if it is
conservative, where by conservative we mean the following definition.

1700 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

Definition 3.1. Let P be a profile of evolutionary trees and f be a local consensus
rule. Then f is said to be conservative for every triple a, b, c, iff, f(P |{a, b, c}) =
((a, b), c), then a, b, c is not resolved as ((a, c), b) or ((b, c), a) in any of the trees in
P .

Being conservative is obviously a natural requirement, since to enforce a topolog-
ical constraint which is contradicted in the profile is clearly unmotivated.

We now describe the three general scenarios that may arise and discuss the pos-
sible constraints that may arise under natural local consensus rules.

Profile constant on a, b, c. If all the trees in the profile have the same form on a
triple a, b, c, then we say the profile is constant on a, b, c. In this case, a natural local
consensus rule should either require that the consensus tree have the same form as
the trees in the profile, or it may leave the form unconstrained.

Profile compatible on a, b, c. If all the trees in the profile that have resolved
subtrees for a, b, c have the same resolved form (i.e., no two trees in the profile resolve
a, b, c differently), then the profile is said to be compatible on a, b, c. In this case,
the natural local consensus rule may elect to leave the tree unconstrained for a, b, c;
otherwise, it should constrain the output to either be the unique resolution indicated
by the profile or should constrain it to be unresolved. In the first case, we call the
local consensus rule optimistic, and in the second case we call the local consensus rule
pessimistic.

Profile incompatible on a, b, c. The remaining case is where the profile contains
trees which have different resolutions for a, b, c. In this case, a natural local consensus
rule may elect to require the consensus tree to be unresolved, or it may select one of
the resolutions represented in the profile4 (perhaps selecting the resolution with the
plurality representation), or it may not constrain the output at all.

A local consensus rule can be defined by deciding how it will respond to each of
the different situations that can arise. Thus, for example, a natural local consensus
rule may require that when the profile is constant on a, b, c, then the output tree is
constrained to have that same form, and it may elect to be optimistic in the presence
of compatible forms on a, b, c but may leave unconstrained any triple for which the
profile is incompatible.

In all of our following discussions, we restrict ourselves to profiles of two trees.
The techniques and most observations can be generalized.

4. Specific total local consensus rules. As examples of natural local consen-
sus rules, we will define two total local consensus rules: the optimistic local consensus
(OLC) rule and the pessimistic local consensus (PLC) rule. These are not the only
natural local consensus rules that are worthy of study, but the techniques used for
constructing local consensus trees for these rules are indicative of general approaches
for greatly speeding up the construction and verification phases used in the previous
section.

When the trees are not necessarily binary, the local consensus rule may encounter
triples for which the profile is not constant but is nevertheless compatible. Because a
total local consensus rule must constrain the form of each triple for the consensus tree,
it must determine whether to require that the rooted triple be resolved or unresolved.
This decision is based upon the interpretation of an unresolved triple, which can
be made in one of two ways: any resolution of the three-way split is possible or the
unresolved triple indicates a three-way speciation event. If the local consensus rule

4In this case the conservative nature of the rule need not be maintained.

COMPUTING THE LOCAL CONSENSUS OF TREES 1701

chooses to interpret lack of resolution as being consistent with any resolution, then it
will constrain the output to be resolved according to the unique resolution present in
the profile, and otherwise it will constrain the output to be unresolved. The first type
of total local consensus rule is said to be optimistic and the second type pessimistic.

We now define these two consensus rules.

Definition 4.1. Let T1 and T2 be two rooted trees on the same leaf set S. A
rooted tree T is called the OLC of T1 and T2 iff for each triple a, b, c, T |{a, b, c} =
((a, b), c) iff Ti|{a, b, c} = ((a, b), c) and Tj |{a, b, c} = ((a, b), c) or (a, b, c) for {i, j} =
{1, 2}.

Definition 4.2. Let T1 and T2 be two rooted trees on the same leaf set S. A
rooted tree T is called the PLC of T1 and T2 iff for each triple a, b, c, T |{a, b, c} =
((a, b), c) iff T1|{a, b, c} = T2|{a, b, c} = ((a, b), c).

In the next two subsections we discuss efficient algorithms for these rules. But
first we give some basic and standard definitions.

Definition 4.3. Let T be a rooted tree with leaf set S. Given a node v ∈ V (T),
we denote by L(Tv) the set of leaves in the subtree Tv of T rooted at v. This is also
called the cluster at v and is represented by αv. The set C(T) = {αv : v ∈ V (T)} is
called the cluster encoding of T .

Every rooted tree in which the leaves are labeled by S contains all singletons and
the entire set S in C(T); these clusters are called the trivial clusters. We define a
maximal cluster to be the cluster defined by the child of the root. (Here we allow for
a maximal cluster to be defined by a leaf also.)

We also define the notion of compatibility of a set of clusters.

Definition 4.4. A set A of clusters is said to be compatible iff there exists a
tree T such that C(T) = A.

The following proposition can be found in [17].

Proposition 4.1. A set A of clusters is compatible iff ∀αi, αj ∈ A, αi ∩ αj ∈
{αi, αj , ∅}.

We now state a theorem which will be used in the later sections.

Theorem 4.1. Let T1 and T2 be two rooted trees on the same leaf set S and let
f be a conservative local consensus rule. If the f-local consensus tree T exists, then
C(T) ∪ C(T1) and C(T) ∪ C(T2) are compatible sets.

Proof. Suppose not and suppose without loss of generality that C(T) ∪ C(T1) is
not a compatible set. Then by Proposition 4.1, ∃α ∈ C(T) and β ∈ C(T1) such that
α ∩ β /∈ {α, β, ∅}. Pick a ∈ α ∩ β, b ∈ α − β and c ∈ β − α. The topology of the
triple a, b, c in T1 is ((a, c), b) while in T it is ((a, b), c). Since f is a conservative local
consensus rule, this is impossible.

4.1. OLC. In this section we look at the problem of finding the OLC tree of two
trees defined in the previous section. Note that the OLC of two trees may not exist.
See Figure 1 for an example.

4.1.1. Characterization of the OLC tree. The following lemma characterizes
the OLC tree when it exists.

Theorem 4.2. Let T1 and T2 be two rooted trees on the same species set S. If
the OLC tree Tolc exists, then C(Tolc) = A, where A = {α∗ | α∗ = α1 ∩ α2, where
α1 ∈ C(T1) and α2 ∈ C(T2), and α∗ is compatible with both C(T1) and C(T2)}.

Proof. Pick any cluster α ∈ A. If we look at any triple x, y, z with x, y ∈ α and
z /∈ α, then this triple will be resolved as ((x, y), z) in one tree and will be either
resolved the same or unresolved in the other tree. In either case, α ∈ C(Tolc).

1702 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

d c

b

a

a

bc

d
+ DOES NOT EXIST

a b c d

b c
a d

T
1

T
2

Fig. 1. Example showing that the OLC need not always exist. The trees in the box are possible
candidates, but they each fail to maintain the necessary topology for some triple.

Conversely, pick any cluster α /∈ A. There are two cases here, namely, the case
when α is not compatible with at least one of C(T1) and C(T2) and the case when α
is compatible with both C(T1) and C(T2).

Now, when α is not compatible with at least one of C(T1) and C(T2), using
Theorem 4.1, we observe that α /∈ C(Tolc).

For the second case, pick those smallest clusters α1 ∈ C(T1) and α2 ∈ C(T2) such
that α ⊆ α1 and α ⊆ α2. (Note that the nodes v and u defining the clusters α1 and
α2, respectively, are the LCAs in T1 and T2, respectively, of the species in α.) Since α1

and α2 are the smallest clusters in T1 and T2, respectively, containing α and since α
is compatible with both C(T1) and C(T2), this implies that α is the union of clusters
of at least two children of v and also the union of clusters of at least two children of
u. Moreover, ∃a, b ∈ α such that v = lcaT1

(a, b) and u = lcaT2
(a, b). Furthermore,

∃β ⊆ S, β 6= ∅, such that α1 ∩α2 = α∪β. Thus we can pick a c ∈ β and we have that
T1|{a, b, c} = T2|{a, b, c} = (a, b, c). But the topology given by having α ∈ C(Tolc) is
((a, b), c). Thus α /∈ C(Tolc).

4.1.2. Construction phase. Since the OLC rule is conservative, if the tree Tolc
exists, then C(Tolc) ∪ C(T1) is a compatible set of clusters, and hence there exists a
tree T ∗ satisfying C(T ∗) = C(T1) ∪ C(Tolc). If we can construct T ∗ by refining T1,
we can then reduce T ∗ by contracting all the unnecessary edges and thus obtain Tolc.
This is the approach we will take.

Note that this approach breaks the construction into two stages: refinement and
contraction.

Definition 4.5. We say that a tree T1 is a refinement of tree T2 if T2 can be
obtained from T1 by a sequence of edge contractions.

Refining T1. The main objective is to refine T1 so as to include all the clusters
from Tolc. Before we explain how we do this precisely, we will introduce some notation
and lemmas from previous works which enable us to do this efficiently.

COMPUTING THE LOCAL CONSENSUS OF TREES 1703

Definition 4.6. Let v be an arbitrary node in a tree T with children u1, . . . , uk.
A representative set of v is any set {x1, x2, . . . , xk} such that xi ∈ αui . We denote
by rep(v) one such representative set.

Lemma 4.1. If the OLC tree Tolc of trees T1 and T2 exists and v ∈ T1, then
Tolc|rep(v) is isomorphic to T2|rep(v).

Proof. The proof follows from the fact that T1|rep(v) is a star.

Definition 4.7. Let v be a node in a tree T with children u1, u2, . . . , uk. Then
N(v) is the subtree induced by {v, u1, u2, . . . , uk}.

We will do the refinement as follows. We will modify the tree T ∗1 , where T ∗1 is
initialized to T1. In a postorder fashion, for every v ∈ V (T1) with representative set
{x1, x2, . . . , xk}, identify v∗ = lcaT∗

1
(αv). It can be seen that v∗ also has the same

number of children as v (since the processing is done in a postorder fashion). Say
these are u1, u2, . . . , uk. Replace the subtree T (v∗), rooted at v∗ in the following
manner: we replace N(v∗) by an isomorphic copy of T2|rep(v). Next, we replace xi
by the subtree of T ∗1 rooted at ui.

Let T ∗ be the tree that is produced after considering all the nodes in T1.

Theorem 4.3. Let T1, T2 be given and suppose Tolc exists. Then the tree T ∗ that
is produced from the algorithm described in the previous paragraph satisfies C(T ∗) =
C(T1) ∪ C(Tolc).

Proof. Since C(Tolc)∪C(T1) is compatible, all we need to show is that Tolc|rep(v)
cannot be a proper refinement of T2|rep(v). If it were, then for some {a, b, c} ⊆ rep(v),
Tolc|{a, b, c} would be resolved while T2|{a, b, c} is unresolved. Since {a, b, c} ⊆ rep(v),
T1|{a, b, c} is also unresolved, forcing Tolc to be also unresolved.

Note that we have reduced the problem of constructing T ∗ to the problem of
discovering T2|rep(v) for each v ∈ T1.

To have a linear time algorithm, however, we need to be able to compute T2|rep(v)
quickly. We cite the following result from [18] which will be useful to us in this case.

Lemma 4.2 (see [18]). Given a left-to-right ordering of the leaves of a tree and
the ability to determine the topology of any triple of leaves a, b, c in constant time, we
can construct the tree in linear time.

To use this lemma we need two things:

(1) we must be able to determine the topology of any triple in T2 in O(1) time
and

(2) we must have for each node in T1 an ordered representative set, where the
ordering is consistent with the left-to-right ordering of the leaves in T2.

To accomplish (1), we first preprocess T2 for LCA queries. Then, to determine
the topology for the triple a, b, c, we simply compare the LCAs of (a, b), (b, c), and
(a, c). The second requirement is more challenging but can also be handled, as we
now show.

Computing all ordered representative sets in O(n) time.

• Initially all nodes in T1 have empty labelings.
• For each s ∈ S, taken in the left-to-right ordering of the leaves in T2, do the

following steps:
1. trace a path in T1 from the leaf for s toward the root, until encountering

either the root or a node which has already been labeled;
2. append s to the ordered set for each such node in the path traced (in-

cluding the first node encountered which has already been labeled).

Figure 2 shows an example of the computation just described.

Note that this computation takes O(n) time since each node v is visited O(deg(v))

1704 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

a b c d

e

a b c d

e

a b c d

e
(iii)

w
v

c is added to rep sets of w and v

Left-to-right ordering
a c d b ea c

d
b e

T2T1

(i)

(ii)
u

v

r

a is added to rep sets of u, v and r

(iv) After completion

rep(u) = {a,b}
rep(v) = {a,c}
rep(r) = {a,e}
rep(w) = {c,d}

Fig. 2. Example showing the computation of the representative sets of nodes in T1 based on
the left-to-right ordering of species in T2.

times and that the order produced is exactly as required. Thus, for each node v ∈
V (T1), we have defined a set of leaves such that each leaf is in a different subtree of
v, every subtree of v is represented, and the order in which these leaves appear is the
same as the left-to-right ordering in T2.

We have thus proved Lemma 4.3.

Lemma 4.3. We can compute T2|rep(u) in O(|rep(u)|) time.

We therefore have the following theorem.

Theorem 4.4. Given T1, T2, then we can construct a tree T ∗ such that C(T ∗) =
C(T1) ∪ C(Tolc) whenever Tolc exists in O(n) time.

The rest of the task of constructing Tolc is in the contraction of unneeded edges.

Contracting T . Now that T ∗ satisfies C(T ∗) = C(T1) ∪ C(Tolc), we can simply
go through each edge in T ∗ and check if it needs to be kept or must be deleted. Note
that edges that were added during the refinement phase are required and do not need
to be checked. Therefore, we need only check the original tree edges. Let (u, v) be
such an edge with v = parent(u). From our representative sets for u and v we can
easily choose three species a, b, c such that lca(a, b) = u and lca(b, c) = v. If the
topology of this triple in T2 is resolved differently than ((a, b), c), then we know that
edge (u, v) will have to be contracted; if on the other hand T2|{a, b, c} is either (a, b, c)
or ((a, b), c) then (u, v) will have to be retained in any OLC tree.

COMPUTING THE LOCAL CONSENSUS OF TREES 1705

OLC Construction Algorithm

Phase 0: Preprocessing

Make copies T ′1 and T ′2 of T1 and T2, respectively. For each node v in each tree T ′i
(i = 1, 2), compute ordered representative sets ordered by the left-to-right ordering
in the other tree. Preprocess each tree T ′i to answer lca queries for leaves as well as
internal nodes.

Phase I: Refine T ′1
Refine T ′1 in a postorder fashion so that at the end C(T ′1) = C(T1) ∪ C(Tolc) if

Tolc exists.

Phase II: Contract T ′1
Contract edges e ∈ E(T ′1) such that ce, the cluster below e, lies in C(T1)−C(Tolc).

We have thus shown the following theorem.

Theorem 4.5. The algorithm stated above constructs the OLC of two trees T1

and T2 if the OLC exists.

Analysis of Running Time

Phase 0: Preprocessing

In [20], Harel and Tarjan give an O(n) time algorithm for preprocessing trees to
answer LCA queries in constant time. We have already shown that computing the
ordered representative sets takes O(n) time. Thus the preprocessing stage takes O(n)
time.

Phase I: Refining T ′1
This stage involves local refinements of T ′1, and we have shown that the cost of

refining around node v is O(deg(v)). Summing over all nodes v we obtain O(n) time.

Phase II: Contracting edges

This stage clearly takes only O(n) time.

Theorem 4.6. Construction of the optimistic local consensus tree can be done
in linear time.

4.1.3. Verification phase. We have identified a candidate optimistic local con-
sensus tree. We now have to decide if this is really such a tree or that no such tree
exists.

Lemma 4.4. Let T be a tree on a leaf set S. Let T ∗ be obtained from T through a
sequence of refinements followed by a sequence of edge contractions. Then there exists
a function f : V (T) → V (T ∗) such that for all v ∈ V (T), there is a subset Sv of the
children of f(v) in V (T ∗) such that αv = ∪v′∈Svαv′ .

Proof. We define f(v) = lcaT∗(αv). Clearly, C(T ∗) ∪ C(T) is a compatible
set of clusters. Therefore, there is a subset Sv of the children of f(v) such that
∪v′∈Svαv′ = αv.

We take a slight detour and examine the verification of the OLC when the two
input trees are both binary. In this case no triple will be unresolved.

Definition 4.8. A caterpillar is a rooted binary tree with only one pair of sibling
leaves.

Given a leaf labeled caterpillar T ′ with root r and height h, there is a natural
ordering induced by T ′ on its leaves. Let g : S → {1, 2, . . . , h} be a function where
g(s) is the distance of s from r.

Then the species in S can be ordered in the increasing order as a1, a2, . . . , an,
where ai ∈ S such that g(a1) < g(a2) · · · < g(an−1) ≤ g(an). (Note that the pair of
sibling leaves have been arbitrarily ordered.)

1706 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

Definition 4.9. Two caterpillars X and Y on the same leaf set are said to be
oppositely oriented iff for all k, the k smallest elements of X are contained among
the k + 1 largest elements of Y and vice versa. See Figure 3.

a b

c
d

e
f

e f

d

b

c

a

T1 T2

Fig. 3. Example of oppositely oriented caterpillars.

Proposition 4.2. Let T1 and T2 be two rooted binary trees on the same leaf set
whose OLC is a star. If a, b is a sibling pair of leaves in T1, then the LCA of a and
b in T2 must be the root of T2.

Proof. Suppose Proposition 4.2 is not true. Then there is a species c such that
the LCA of (a, c) is above the LCA of (a, b) in T2. Then T1|{a, b, c} = T2|{a, b, c} and
hence the OLC of T1 and T2 cannot be a star.

Lemma 4.5. Suppose T1 and T2 are binary trees on the same leaf set and suppose
that they each have at least five leaves. If their OLC tree is a star, then T1 and T2

must be caterpillars.
Proof. Suppose for contradiction that T1 is not a caterpillar. Then it has two

pairs of sibling leaves (a, b) and (c, d). By the previous proposition each of these pairs
must have the root as their LCA in T2. Thus without loss of generality, a and c lie
in the left subtree of the root of T2, and b and d lie in the right subtree of the root of
T2.

a b c d a c
x b d

T1 T2
Fig. 4. Topologies of T1 and T2 with respect to a, b, c, d, x.

Let x be any other species besides a, b, c, and d (see Figure 4). Suppose without
loss of generality that x lies in the left subtree of the root of T2. We will consider
the following two triples: x, a, d and x, c, b. In T2 the topology of these triples will be
((x, a), d) and ((x, c), b), respectively.

COMPUTING THE LOCAL CONSENSUS OF TREES 1707

We will show that T1 agrees on at least one of these triples. There are two cases.
If x lies in the left subtree of the root of T1, then the topology of the triple x, a, d in
T1 is clearly ((x, a), d) and if x lies in the right subtree of the root of T1, then the
topology of the triple x, c, b in T1 is ((x, c), b). Thus in either case there is a triple in
T1 which agrees with a triple in T2, and the OLC cannot be a star.

Lemma 4.6. Let T1 and T2 be two caterpillars on the same leaf set. Then the
OLC of T1 and T2 is a star iff T1 and T2 are oppositely oriented caterpillars.

Proof. Suppose the two caterpillars are oppositely oriented, i.e., they satisfy the
two intersection conditions. Let x, y, z be any three leaves and let their indices in the
ordering of the leaves of T1 be i < j < k, respectively. Then the topology of x, y,
and z in T1 is (x, (y, z)). Looking at the n− j smallest elements in T2, this set must
contain y or z but cannot contain x. Consequently, the topology of the triple in T2 is
not (x, (y, z)) and the star is a valid OLC.

Conversely, suppose that the two caterpillars do not satisfy the intersection con-
ditions. Without loss of generality, suppose that there exists at least one k such that
the k smallest elements of T2 are not contained within the k + 1 largest elements of
T1. Pick the smallest such k. Say x is the leaf in T2 with rank k and x does not
belong to the set of k+1 largest elements of T1. From the pigeonhole principle, there
will exist at least two leaves of T2 which have ranks greater than k but which are con-
tained in the set of k + 1 largest elements of T1. Suppose the two leaves are y and z.
Then T1|{x, y, z} = T2|{x, y, z} = (x, (y, z)). This implies that the OLC cannot be a
star.

Corollary 4.1. The OLC for two binary trees can be verified to be a star in
linear time.

Now we return to the general case of verifying the OLC of two trees.

Lemma 4.7. Suppose T is the OLC of T1 and T2 (on a leaf set S containing at
least five species). Then T is a star iff either one of the following holds:

1. both T1 and T2 are oppositely oriented caterpillars or
2. both T1 and T2 are stars.

Proof. The “if” direction is easy to see. We now assume that the OLC, T , is a
star. If T1 contains a triple a, b, c that is unresolved, T2 must also be unresolved on
a, b, c. Conversely whenever T1 is resolved on a, b, c, T2 must be (differently) resolved
on a, b, c. Thus either both T1 and T2 are binary or both are not.

In the case that both T1 and T2 are binary, we appeal to the proofs of Lemmas
4.5 and 4.6 to argue that T1 and T2 must be oppositely oriented caterpillars.

If T1 and T2 are not binary, we will show that for any node v in T1 with children
{u1, . . . , uk}, k ≥ 3, there is a node v′ in T2 with children {u′1, . . . u′k} such that
αui = αu′

i
. Pick any three species a, b, c such that a, b, c is unresolved in T1 and let

v = lcaT1
(a, b, c). Then a, b, c must be unresolved in T2. Let v′ = lcaT2

(a, b, c). We
claim that αv = αv′ . To see why, suppose αv 6= αv′ and suppose x ∈ αv, x /∈ αv′
with x being in the same subtree under v as a. Then T1|{b, c, x} = (b, c, x), whereas
T2|{b, c, x} = ((b, c), x). This contradicts the assumption that T is a star. Thus
αv = αv′ .

Next, note that if x and y are under the same child of v in T1 but under different
children of v′ in T2, then there exists a z such that x, y, z is resolved in T1 but
unresolved in T2. This would contradict the fact the T is a star. This establishes the
claim.

This implies that if there is a nonbinary node v that is not the root of T1, we can
find two species a, b (a ≤ v, b ≤ v) and a species c, c 6≤ v such T1|{a, b, c} = T2|{a, b, c}.

1708 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

Thus the root must have three or more children in this case. But this means that if
any cluster defined by a child of the root contains two or more species, then there is
a triple on which T1 and T2 agree. Thus T1 and T2 must be stars.

The verification proceeds as follows:

Phase 0

Suppose the tree constructed by refining T1 and then contracting the edges in the
resulting tree is T . We will do the same modification on T2, i.e., refine T2 using the
information from T1 and then contract the edges in the resulting tree as before. Call
this tree T

′
. Clearly, if T is not isomorphic to T

′
, we can terminate and output that

the OLC does not exist. This is because we know that a compatible set of clusters
defines a unique tree and we know that the OLC, if it exists, is uniquely characterized.

Phase 1

If Phase 0 is successful, we then verify further. We compute an ordered rep-
resentative set for every node w in V (T). For each node w in T , do the following
steps.

1. Check if the homeomorphic subtrees of T1 and T2 induced by rep(w) are both
stars or they are both oppositely oriented caterpillars. If they are neither of
these, then terminate and output that the OLC does not exist.

2. Identify the parent of w, say w∗. Look at rep(w∗) excluding the representative
element which is below w. Call this set A. Identify the LCAs of rep(w) in
T1 and T2. Check if there is a species that belongs to A which lies below the
LCA of rep(w) in both T1 or T2. If so, terminate and output that the OLC
does not exist.

Implementation of step 1 of Phase 1. Using the left-to-right ordering of the species
in T1, compute the ordered representative set rep at each node in T as shown in the
previous section. For any u ∈ V (T), to be able to quickly compute the homeomorphic
subtree of T2 induced by the species in rep(u), we need to know the ordering of theses
species as they appear in the left-to-right ordering of T2. We associate with each u, a
new rep set, rep∗(u), which is the rearranged version of the species in rep(u) accord-
ing to their ordering in T2. We define a function, limit : S → V (T), which specifies
for each s ∈ S the node v ∈ V (T) closest to the root of T such that s ∈ rep(v).
The function limit together with the left-to-right ordering of the species in T2 help in
filling the rep∗ sets, since s will belong to the rep∗ sets of all nodes in the path from
s to limit(s). We first show how to compute limit(s)∀s ∈ S using algorithm LIMIT
and then we show how the rep∗ sets are filled.

Initialization:

limit(s) = +∞∀s ∈ S.

Procedure LIMIT

For each v ∈ V (T) visited in a top-down traversal of T ,
do {

Identify rep(v)
For each s ∈ rep(v) such that limit(s) = +∞

set limit(s) = v
}enddo

Once limit(s) has been identified for all s ∈ S, we proceed to compute rep∗(u)∀u ∈
V (T) as follows. Look at the left-to-right ordering of the species in T2. Now, for each
species s in the left-to-right order, we trace a path in T from the leaf for s toward

COMPUTING THE LOCAL CONSENSUS OF TREES 1709

the root of T and add s to the rep∗ set of each node encountered in this path. We
terminate when we reach limit(s).

Note that this process of identifying rep and rep∗ has to be done only once.

Analysis of running time. The isomorphism test in Phase 0 can be performed in
O(n) using a simple modification of the tree-isomorphism testing algorithm in [2].

There is an O(n) cost for preprocessing of T1 and T2 to answer LCA queries in
Phase 1.

Our implementation of step 1 of Phase 1 involves a one-time O(n) cost in prepro-
cessing to identify rep and rep∗ for each node in T . Then each time step 1 is called
on a node w ∈ V (T), an additional time of O(deg(rep(w))) is taken.

Exploiting that fact that T1 and T2 have been preprocessed to answer LCA
queries, it can be seen that each step 2 of Phase 1 takes O(deg(w) + deg(w∗)).

Thus the total time taken in the verification phase is O(n).

Correctness of our verification procedure. See Theorem 4.7.

Theorem 4.7. If T passes the above tests, then T is the OLC of T1 and T2.

Proof. We need only show that T handles every triple properly. Each of the
following cases is handled assuming T has passed the isomorphism test.

Case 1. If T passes the isomorphism test with T
′
, then any triple a, b, c such that

the two trees resolve a, b, c differently will be unresolved in T . This follows since T
is created by refining and then contracting both T1 and T2, and these actions cannot
take a resolved triple into a different resolution.

Case 2. This involves a triple a, b, c having the same topology ((a, b), c) in both
T1 and T2. We claim that the first step of Phase 1 will pass only if the topology of
this triple is ((a, b), c). To see why, suppose a, b, c is unresolved in T . (a, b, c cannot
be resolved as (a, (b, c)) or ((a, c), b) in T .) Look at the nodes u and v, which are the
LCAs of a, b in T1 and T2, respectively. The node w in T , which is the lca(a, b, c),
is also lca(a, b) (since a, b, c is unresolved). We infer that f(u) = w, where f is the
function as defined in Lemma 4.4. This is because any node above w will contain the
species c and any node below w will not contain either a or b. By a similar argument,
f(v) = w. Now, when we look at rep(w) and compute the homeomorphic subtrees
of T1 and T2 induced by rep(w), in both of these induced trees, there will exist three
species x, y, z such that x, y are both below u (and v) in T1 (and T2) and z is not in
the character defined by u (and v). Thus in both the induced trees, the triple x, y, z
will have the same topology ((x, y), z). That is, these induced trees will neither be
both stars nor both oppositely oriented caterpillars. Thus the verification process will
terminate and output that the OLC does not exist.

Case 3. This involves a triple a, b, c which is resolved as ((a, b), c) in one tree and
unresolved in the other. The proof of this case essentially follows the lines of the proof
of Case 2.

Case 4. This involves a triple a, b, c which is unresolved in both trees. We claim
that the second step of Phase 1 will pass only if this triple is unresolved in T . To
see why, suppose a, b, c is resolved as ((a, b), c) in T . Let lcaT (a, b, c) = x and let
lcaT (a, b) = y and also suppose without loss of generality that x is the parent of y.
Let y1 be the child of y such that a ∈ αy1

and let y2 be the child of y such that
b ∈ αy2

. Let z 6= y be the child of x such that c ∈ αz.

Let u = lcaT1
(a, b, c) and v = lcaT2

(a, b, c).

We will look at functions f1 and f2 defined by Lemma 4.4 from V (T) to V (T1)
and V (T2), respectively. Clearly f1(y) = u and f2(y) = v. Note that the cluster
defined by any child of u can have a nonempty intersection with at most one of αy1

1710 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

and αy2
. This is similar for v. Thus any representatives chosen from αy1

and αy2
,

respectively, have their LCA at u in T1 and at v in T2. However, f1(z) ≤T1
u and

f2(z) ≤T2
v. Thus any representative chosen from αz will lie below u and v in T1 and

T2, respectively, causing us to conclude that the OLC does not exist.

4.2. PLC. Recall the definition of the PLC tree: Let T1 and T2 be two rooted
trees on the same leaf set S. A rooted tree T is called the PLC of T1 and T2 iff for
each triple a, b, c, T |{a, b, c} = ((a, b), c) iff T1|{a, b, c} = T2|{a, b, c} = ((a, b), c).

Just like the OLC, the PLC tree need not always exist either.

4.2.1. Characterization. The following theorem characterizes the PLC tree of
two trees T1 and T2.

Theorem 4.8. Let T1 and T2 be two trees on the same leaf set S. If the PLC tree
Tplc of T1 and T2 exists, then it is identically equal to T , where C(T) = C(T1)∩C(T2).

Proof. Pick any cluster α ∈ C(T). Since α belongs to both the trees, if we look
at any triple x, y, z with x, y ∈ α and z /∈ α, then this triple will have to be resolved
as ((x, y), z). Thus α ∈ C(Tplc).

Conversely, pick any cluster α /∈ C(T). We have two subcases here.
1. α is not compatible with at least one of C(T1) or C(T2). In this case, from

Theorem 4.1, α /∈ C(Tplc).
2. α is compatible with both C(T1) and C(T2). In this case, pick those nodes

from T1 and T2 that define the smallest clusters containing α. We can pick
a triple a, b, c such that a ∈ α, b ∈ α, c /∈ α and this triple is unresolved in
either T1 or T2. Thus α /∈ C(Tplc).

4.3. Construction phase. By Theorem 4.8, the PLC tree, if it exists, is iden-
tically the strict consensus tree. Thus to construct the PLC tree, it suffices to use the
O(n) algorithm in [9] for the strict consensus tree.

4.3.1. Verification phase. Let T1 and T2 be the input trees, and let T be the
strict consensus tree constructed using the algorithm in [9]. We want to be able to
verify whether T is actually the PLC in the case that T is a star. If T1 or T2 is already
a star then there is nothing to verify since T is the true PLC. So assume that this is
not the case.

There are two cases which we will consider. The first is when either of T1 or T2

(say T1) has at least two children of the root which are not leaves. The second case
is when both T1 and T2 have exactly one child of the root which is not a leaf. Having
made observations about these cases, we can apply a divide and conquer strategy as
seen by the following lemma.

Lemma 4.8. Let T1 and T2 be rooted trees on the same leaf set and let α be a
cluster in their intersection. Let T be the strict consensus tree of T1 and T2. Let
e1, e2, and e be the edges in T1, T2, and T respectively, that are above the respective
internal nodes which define the cluster α. Let a be a species in α. Then T is a PLC
for T1 and T2 iff

(1) the subtree below e is a PLC for the subtrees below e1 and e2, and
(2) upon replacing the subtrees below e, e1, and e2 by a in T, T1, and T2, respec-

tively, T is a PLC for T1 and T2.
Proof. Clearly, if T is the PLC tree for T1 and T2 then conditions (1) and (2) will

hold. Conversely, if (1) and (2) hold, but T is not the PLC tree for T1 and T2, then
there is some triple a, b, c such that T incorrectly handles this triple. If all of a, b, c
are below e then by condition (1), T handles a, b, c correctly. Similarly if at least two
are above e, then by condition (2), T handles this triple correctly. It remains to show

COMPUTING THE LOCAL CONSENSUS OF TREES 1711

that T handles all triples where exactly two of a, b, c are below and one is above the
edge e. But then, since the cluster α ∈ C(T1) ∩C(T2) = C(T), in each of T1, T2, and
T , we have ((a, b)c), so that T handles this triple properly. Thus T is a PLC for T1

and T2.

Thus the verification proceeds by traversing T in a postorder fashion and at
the end of each successful verification step replacing the subtree by a single element
belonging to the cluster defined by the root of the subtree. We now discuss the details
of each verification step.

Lemma 4.9. Suppose T1 and T2 are two trees on the same leaf set S with T1

having at least two children of the root which are not leaves. Let α1, . . . , αl be the
maximal clusters of T1 and β1, . . . , βm be the maximal clusters of T2. Then T , their
PLC, is a star iff ∀i, j |αi ∩ βj | ≤ 1.

Proof. Suppose ∀i, j |αi∩βj | ≤ 1. This means that ∀x, y, if lca(x, y) in T1 is below
the root, then in T2, lca(x, y) is the root. Thus for any triple x, y, z, their topologies
in T1 and T2 do not agree. Thus T is a star.

Suppose ∃i, j |αi∩βj | > 1. Thus αi is defined by a node which is not a leaf. Look
at an αk, k 6= i, such that the node in T1 defining αk is not a leaf node. There are
two cases to handle here. Either at least one species in αk is not in βj or all species
in αk are in βj (i.e., αk ⊂ βj).

In the former case, pick that species z that is in αk but not in βj . Also pick those
two species x, y that are in αi ∩βj . Both T1 and T2 agree on the triple x, y, z; namely
this triple has topology ((x, y), z) in both the trees. Thus T cannot be a star.

In the latter case, since we know that βj 6= S, we can pick two species x, y from
αk and another species z from S − βj . In both T1 and T2, the topology of this triple
is ((x, y), z). Thus T cannot be a star.

Since each species belongs to at most one of these maximal clusters in each tree,
this test can be done in linear time.

The following lemma handles the case when both T1 and T2 have exactly one
child of the root which is not a leaf.

Lemma 4.10. Suppose T1 and T2 are two trees on the same leaf set S and T and
their PLC is a star. Suppose both T1 and T2 have exactly one child of the root each
which is not a leaf. Let s1, . . . , sk be leaves in T1 which are children of the root. Let
v be the LCA in T2 of s1, . . . , sk. Then every child of v contains at most one species
x ∈ S − {s1, . . . , sk}. Moreover, for any pair of species x, y ∈ S − {s1, . . . , sk}, the
LCA of x and y in T2 lies on the path from v to the root.

Proof. Suppose ∃ a child of v which contains at least two species from S −
{s1, . . . , sk}. Then by picking x, y such that they both lie under this child if v in T2

and picking an si out of s1, . . . sk that lies under a different child of v, we find that
both trees have the same topology for the triple x, y, si. Thus T cannot be a star.
Furthermore, if ∃x, y ∈ S − {s1, . . . , sk} such that lca(x, y) in T2 does not lie on the
path from v to the root, then the triple x, y, s1 would have identical topologies in both
trees and T wouldn’t be a star.

Definition 4.10. A rooted tree T is a millipede if the set of internal nodes of T
defines a single path from the root to a leaf. See Figure 5.

Let S1 = S − {s1, s2, . . . , sk}. We have that T2|S1 is a millipede (say, T ∗2).

Let u1, . . . , ul be the children of the root in T ∗2 , which are leaves. Look at T1|S1

(say, T ∗1). Either, T ∗1 has one nonleaf child or it has at least two nonleaf children. In
the former case, we can apply the previous lemma and infer that T ∗1 |(S1−{u1, . . . , ul})
will be a millipede. In the later case, we can apply Lemma 4.10 to check if the PLC
is a star.

1712 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

a b c

d

e f g

h i

Fig. 5. An example of a millipede.

In the following subsection we will show how to verify if T is a star when both
the input trees are millipedes.

4.3.2. Verification when both the input trees are millipedes. The proof
of the following lemma is straightforward.

Lemma 4.11. Suppose T1 and T2 are two millipedes on the same leaf set S.
Then their PLC T is a star iff there exists no triple such that both trees have the same
resolved topologies on the triple.

We now describe a linear time algorithm for verifying that T1 and T2 have no
triple on which they have the same topology.

We define an ordering on the species in T1 using the function f : S → {1, . . . , h},
where f(s) = distance of s from the root of T1 and h is the height of T1.

In T2, we can write S as the union of all the sets in the sequence S1, S2, . . . , Sk,
where k is the height of T2 and each Si contains exactly those species which are at a
distance i from the root of T2. Now, in each Si replace each species s in this set with
f(s). Call this multiset of integers Mi. We thus get a sequence M1,M2, . . . ,Mk of
multisets.

Definition 4.11. We will say a triple of integers p, q, r is special if
• p < q, p < r;
• p ∈Mj1 , q ∈Mj2 , r ∈Mj3 , with 1 ≤ j1 < j2 ≤ k and 1 ≤ j1 < j3 ≤ k.

We observe that the PLC of T1 and T2 is a star iff no special triple p, q, and r
exists.

The following CHECK PLC algorithm takes as input the sequenceM1,M2, . . . ,Mk

and returns FAIL if there exists a special triple of integers, and otherwise it returns
PASS.

CHECK PLC works by scanning the multiset Mi in the ith iteration. It makes use
of three variables global min, local min, and temp. At the start of the ith iteration,
global min stores the smallest integer seen in the first i − 1 multisets. The variable
local min is used to store the smallest integer a such that ∃b for which a < b and
a ∈ Mj , b ∈ Ml with 1 ≤ j < l < i. (local min is initialized to +∞.) The variable
temp is initialized to 0. As long as temp remains 0, local min = +∞. If temp is
nonzero, then local min stores a and temp stores some b for which the previously
mentioned relationship between a and b holds. At the ith iteration, CHECK PLC
either returns FAIL (if a special triple exists) or, if necessary, it modifies the variables
global min, local min, and temp to hold their intended values for the first i multisets
of the sequence.

COMPUTING THE LOCAL CONSENSUS OF TREES 1713

The reasoning for storing these values at the start of the ith iteration is as follows.
If ∃p in some Mj , and q, r ∈ Mi (1 ≤ j < i) such that p, q, r is a special triple, then
global min together with q, r ∈ Mi are also a special triple since global min ≤ p.
Similarly, if ∃p in some Mj , q ∈ Ml, r ∈ Mi (1 ≤ j < l < i), such that p, q, r is a
special triple, then local min, temp, and r ∈Mi are also a special triple.

We now describe CHECK PLC.
Initialization:

global min = Min(M1)
local min = +∞
temp = 0.

The procedure outputs FAIL (and terminates) if the PLC is not a star; it outputs
PASS otherwise.

Procedure CHECK PLC
For 2 ≤ i ≤ k,
do {
If temp = 0, then Step 1, else Step 2.

Step 1
do {

Scan through Mi;
Identify A = {y|y ∈Mi, global min < y};
If |A| ≥ 2, then output FAIL;
If |A| = 1, then set temp = y, where y ∈ A

local min = global min
global min = Min{global min,Min(Mi)};

If |A| = 0, then set global min = Min(Mi).

} enddo

Step 2
do {

Scan through Mi;
Identify A = {y|y ∈Mi, global min < y};
Identify B = {z|z ∈Mi, local min < z};
If either |A| ≥ 2 or |B| ≥ 1, then output FAIL;
Else

If |A| = 1 then
If global min < Min(Mi), then set local min = global min

temp = Min(Mi);
If global min > Min(Mi), then set local min = global min

temp = y, where y ∈ A
global min = Min(Mi);

If |A| = 0 then set global min = Min(Mi).

} enddo
} enddo
Output PASS

Analysis of running time. CHECK PLC runs in linear time since each Mi is
scanned only a constant number of times.

Theorem 4.9. Algorithm CHECK PLC is correct.

Proof. By induction, observe that Step 1 is executed at the ith iteration if ∀j, l, x,
where 1 ≤ j < l < i and x ∈ Ml, Min(Mj) ≥ x. It then follows that if Step
1 is executed at the ith iteration, then at the start of that iteration temp = 0,

1714 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

global min = Min(Mi−1), and local min = +∞. Thus, in this case global min stores
the smallest integer seen in the first i − 1 multisets. Now, in the first i multisets,
if any special triple p, q, r exists such that p ∈ Mj (j < i) and q, r ∈ Mi, then
CHECK PLC correctly outputs FAIL since global min ≤ p. Otherwise we have two
cases, depending upon the value of A. If |A| = 1, then the variables global min, temp,
and local min are updated so that global min holds the smallest value in the first i
multisets. Also, local min now correctly holds the smallest value a for which there
exists a b (stored in temp) for which a < b and a ∈Mj , b ∈Ml with 1 ≤ j < l < i. In
the other case |A| = 0, in which case global min is updated to hold Min(Mi) (which
is the smallest value in the first i multisets).

Observe that once temp is updated to store a nonzero value, it never stores a 0
again. Thus, once temp is set to a nonzero value in iteration i′, then from iteration
i′ + 1 to iteration k, Step 2 is executed.

Assume that Step 2 is executed in some iteration i′ and assume, inductively, that
at the start of iteration i′, global min stores the smallest value in the first i′ − 1
multisets and local min stores the smallest value a for which there exists a b (stored
in temp) such that a < b and a ∈Mj , b ∈Ml with 1 ≤ j < l < i′. Then in iteration i′,
it can be easily seen that CHECK PLC correctly outputs FAIL if there exist a special
triple p, q, r such that p ∈ Mi1 , q ∈ Mi2 (i1 < i2 < i′), r ∈ Mi′ or p ∈ Mi1 , q, r ∈ Mi′

(i1 < i′). Otherwise, for both the cases when |A| = 1 and |A| = 0, Step 2 ensures
that after iteration i′, global min stores the smallest value in the first i′ multisets and
local min stores the smallest value a for which there exists a b (stored in temp) such
that a < b and a ∈Mj , b ∈Ml with 1 ≤ j < l ≤ i′.

Using the above arguments, it can be seen that CHECK PLC gives the correct
output on any sequence of multisets.

Thus we also have the following theorem.
Theorem 4.10. Given two millipedes T1 and T2, we can check if their PLC is a

star in linear time.

4.4. Summary. We have used three general techniques in constructing local
consensus trees for these two total local consensus rules:

• we characterize the local consensus tree (that is, we define the set C(T) of
binary characters which encode the consensus tree T);

• we use the character encoding of the consensus tree if possible to construct
the tree efficiently; and

• we verify that the constructed tree is the local consensus tree.
Some comments about the construction phase are in order. When working with
conservative local consensus functions, assuming the local consensus tree T exists,
it is possible to construct the local consensus tree T in two phases: a refinement
phase in which one of the input trees Ti is refined to produce a tree T ∗ satisfying
C(T ∗) = C(Ti) ∪ C(T) and then edges are contracted in T ∗ to produce a tree T ∗∗

such that C(T ∗∗) = C(T).

5. Optimization problems.

5.1. Introduction. The local consensus rules we have seen so far are such that
the output tree satisfying the constraints of a particular local consensus rule need
not exist. Yet characterizing these rules and developing fast algorithms for them
are important because if the consensus tree exists, then we can say something very
concrete about it. The nonexistence of the consensus tree in all cases does motivate
the need to look at the optimization versions of local consensus, where solutions

COMPUTING THE LOCAL CONSENSUS OF TREES 1715

always exist. We will now describe some natural optimization problems for local
consensus tree construction. In these problems, which we call relaxed versions, we will
consider certain constraints to be absolutely required and let others be desirable but
not required. Then we seek a tree meeting all the required constraints and as many
of the desirable constraints as possible. We now define some obvious relaxed versions
but note that many other versions are equally desirable.

Recall our discussion in section 3.3 regarding a profile being constant, compatible,
and incompatible on a triple. The first optimization problem we consider is where
we insist that all triples on which the profile is incompatible or is unresolved and
constant are left unresolved, and then we seek to leave as resolved a maximal set of
triples on which the profile is constant and resolved. This is relaxed version I (RV-I).
The second problem is where we insist that all the triples, which the profile leaves as
resolved and constant, be left resolved the same, and then we seek to leave a maximal
set of the remaining triples as unresolved in the consensus tree. This is relaxed version
II (RV-II). The third problem is where we insist that all triples on which the profile
is incompatible or leaves unresolved and constant are left unresolved, and we seek to
leave as resolved a maximal set of triples on which the profile is constant and resolved
or is compatible. This is RV-III. In addition, RV-III also insists that all the resolved
triples in the consensus tree be compatible with the profile. Finally, we look at an
interesting rule LCR1, where we insist that all triples be left resolved on which the
profile is constant and resolved or is compatible. This tries to capture the optimistic
features of the OLC model. Unfortunately, the consensus tree need not always exist.
We give a counterexample to show this.

5.2. Specific relaxed versions.
Definition 5.1. Let T1 and T2 be two rooted trees (not necessarily binary) on

the same leaf set S. A rooted tree T is called an RV-I of T1 and T2 if whenever a
triple a, b, c has differing topologies on T1 and T2, or both T1 and T2 leave a, b, c as
unresolved, then that triple is unresolved in T and in addition T preserves the topology
of a maximal set of triples which are resolved identically in T1 and T2.

To prove the existence of an RV-I tree it is sufficient to show that there exists a
tree where every triple on which T1 and T2 disagree is unresolved. The set of trees
with this property can be partially ordered based on the set of triples (on which T1

and T2 agree) whose topology they preserve. Once this partial order is known to be
nonempty, we have proved the existence of an RV-I since any maximal element in this
partial order is such a consensus tree.

We note that if T has the star topology it leaves unresolved all triples on which
T1 and T2 disagree. Hence the partial order is nonempty and the RV-I tree always
exists. In section 5.3 we show that this tree is unique.

Definition 5.2. Let T1 and T2 be two rooted trees (not necessarily binary) on
the same leaf set S. A rooted tree T is called an RV-II of T1 and T2 if T preserves
the topology of all triples which are resolved identically in T1 and T2. In addition, T
should leave unresolved a maximal set of triples on which T1 and T2 disagree or which
are unresolved in both T1 and T2.

Using an argument similar to the one used to prove the existence of an RV-I tree
and noting that T1 (or T2) itself preserves the topology of all triples on which T1

and T2 agree, we conclude that the RV-II always exists. In section 5.4 we give an
algorithm to construct the RV-II tree.

Definition 5.3. Let T1 and T2 be two rooted trees on the same leaf set S. Let
T be a rooted tree on the same leaf set. Consider the following rules.

1716 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

Rule 1a. If a triple a, b, c is resolved as ((a, b), c) in one tree and as (a, (b, c)) in
the other, we require that it be unresolved.

Rule 1b. If a triple a, b, c is unresolved in both the trees, then we require that it
be unresolved.

Rule 2. If a triple a, b, c is resolved as ((a, b), c) in one tree and is either resolved as
((a, b), c) or unresolved in the other tree, then we require it to be resolved as ((a, b), c).

The tree T is called the relaxed version III (RV-III) of T1 and T2 if
1. it always satisfies Rules 1a and 1b for triples;
2. it also satisfies Rule 2 for a maximal number of triples;
3. if a triple a, b, c is resolved as ((a, b), c) in T , then it is not resolved as (a, (b, c))

or ((a, c), b) in either T1 or T2.
In section 5.5 we will show that an RV-III tree also always exists and is unique.
In the next subsections, we will look at the different relaxed versions in greater

detail.

5.3. RV-I. In this subsection we will show that the RV-I of two rooted trees T1

and T2 is actually the strict consensus of these two trees.
Theorem 5.1. If T1 and T2 are two rooted trees, then their RV-I tree T always

exists and is identically the strict consensus of T1 and T2.
Proof. The existence of the RV-I tree T , was shown in section 5.2. Now we show

that this tree is the strict consensus tree. Suppose there exists a triple a, b, c resolved
differently in T1 and T2 as, say, ((a, b), c) and (a, (b, c)) (or (a, b, c)), respectively. Say
the lcaT1

(a, b) = u and lcaT2
(b, c) = v. Clearly, neither αu nor αv is in the strict

consensus tree. Thus the strict consensus tree leaves unresolved any triple that has
different topologies in T1 and T2.

Let T ′ be a tree in which for every triple a, b, c on which T1 and T2 differ, T ′ has
an unresolved topology on this triple. Now suppose it is possible that T ′ contains a
cluster that is not in C(T1) ∩ C(T2). Let α be this cluster and suppose without loss
of generality that α is not a cluster of T1. In T ′, for any pair of species x, y ∈ α and
species z 6∈ α the topology has to be ((x, y), z). However, if this is also the case in
T1, then T1 must also possess the cluster α contradicting our assumption. Thus there
must exist a pair of species x, y ∈ α and a species z 6∈ α such that in T1 their topology
is not ((x, y), z). But this implies that T ′ cannot be an RV-I. Hence any candidate T ′

for an RV-I can only contain the clusters in the intersection of the cluster sets of T1

and T2.
If T ′ contains a proper subset of the clusters in the intersection of the sets of

clusters of T1 and T2, then there exists a triple a, b, c on which T ′ has an unresolved
topology while the strict consensus tree has a resolved topology that agrees with the
topologies of T1 and T2. Hence the strict consensus of T1 and T2 is the RV-I tree of
T1 and T2.

As a consequence, the RV-I can be constructed in O(n) time using the algorithm
in [9], and there is no need to verify that the tree constructed is correct.

5.4. RV-II. In the RV-II problem we require that any triple on which the trees
T1 and T2 agree must have its topology preserved in the consensus tree T . Further T
should leave unresolved a maximal set of triples on which T1 and T2 disagree or both
leave unresolved.

Previously we showed that the RV-II exists. We note that the RV-II tree is
not unique. The construction of the RV-II can be accomplished by defining the set
A = {((a, b), c) : T1|{a, b, c} = T2|{a, b, c} = ((a, b)c)}. This set of rooted triples can
then be passed to the algorithm of Aho et al. [3], which computes a tree (if it exists)

COMPUTING THE LOCAL CONSENSUS OF TREES 1717

having the required form on every triple in the set and also leaving a maximal set of
additional triples outside that set unresolved. The algorithm in [3] takes O(pn) time
where p = |A|. Recall the proof of Theorem 3.1 for a description of the algorithm.
Since in our case p ∈ O(n3), the use of the algorithm of [3] would result in a running
time of O(n4). We will obtain a speedup to an O(n2) algorithm (which includes the
verification) for the construction of the RV-II tree by using the fact that the tree
necessarily exists.

5.4.1. An improved algorithm for RV-II. We will now describe an O(n2)
time algorithm to construct an RV-II tree. We start by making a few observations
about the RV-II tree T constructed by the algorithm of [3].

We will use α’s to denote the clusters in T1 and β’s to denote the clusters in
T2. Suppose α and β are maximal clusters in T1 and T2, respectively, and suppose
α ∪ β 6= S. Then we claim that α ∩ β (if nonempty) will be a maximal cluster in T .
This is because ∃a ∈ S−(α∩β) such that ∀x, y ∈ (α∩β), T1|{x, y, a} = T2|{x, y, a} =
((x, y), a) and thus the elements of (α ∩ β) all belong to one component of the graph
which is constructed in the execution of the algorithm of [3]. Furthermore, (α ∩ β) is
exactly equal to one component of this graph since the algorithm never adds an edge
between two nodes in the graph unless it is forced to and it can be seen that no element
x in (α∩β) is such that ∃y, a ∈ S−(α∩β) with T1|{x, y, a} = T2|{x, y, a} = ((x, y), a).

Thus, if α∪ β 6= S, then α∩ β (if nonempty) is a maximal cluster in T . The case
where α∪ β = S, α∩ β 6= ∅, can occur for at most one child of the root of T1 and one
child of the root of T2 as the following lemma shows.

Lemma 5.1. Let T1 and T2 be two trees on the same leaf set S. Let α1, . . . , αk
be the maximal clusters of T1 and β1, . . . , βl be the maximal clusters of T2. Then the
case where αi ∪ βj = S, αi ∩ βj 6= ∅ can occur for at most one i and one j.

Proof. Suppose not. Let αi∪βj = S, αi∩βj 6= ∅, αi∗∪βj∗ = S, and αi∗∩βj∗ 6= ∅,
perforce with i 6= i∗ and j 6= j∗. Since αi ∩αi∗ = ∅, we have that αi ⊆ βj∗ . But since
αi ∩ βj 6= ∅, this implies that βj ∩ βj∗ 6= ∅. This is a contradiction since βj and βj∗
are clusters defined by the children of the root and hence should be disjoint.

Recall that the maximal clusters form a partition of the species set S (in each of
T1, T2, and T). Also, from the above discussions we have that (i) α ∪ β 6= S implies
that α ∩ β is a maximal cluster in T and (ii) there can be at most one case for which
α ∪ β = S. These observations imply that in the case when α ∪ β = S, then α ∩ β is
the union of some maximal clusters of T .

With the above characterization a high-level description of the algorithm to con-
struct T can be given as follows.

RV-II Construction Algorithm
1. For each pair of maximal clusters α ∈ C(T1) and β ∈ C(T2) such that α∩β 6= ∅

and α ∪ β 6= S, recursively compute the tree on α ∩ β and make its root a
child of the root of T .

2. If there are maximal clusters α and β such that α ∪ β = S but α ∩ β 6=
∅, compute the partition of α ∩ β; recursively compute the tree for each
component of the partition and make the roots of these trees children of the
root of T .

Computing the partition of α ∩ β in step 2 is described together with the imple-
mentation details.

Implementation details and running time analysis. Note that this algorithm does
not require an explicit verification of the constructed tree, since in fact we know that
the tree exists and we are simply computing it by mimicking efficiently what the
algorithm in [3] would create.

1718 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

There are at most n recursive stages. We will show that each stage can be
implemented in O(n) time thereby proving the O(n2) bound.

To handle case 1 it is important not to waste time on empty intersections. So
we consider each species in turn and label the intersection in which that this species
lies. Thus we will identify at most n nonempty intersections. Let α ∩ β be one such
intersection. To recurse, we need to find homeomorphic subtrees of T1 and T2 that
have α ∩ β as the leaf set. We will show how to do this in time proportional to the
number of leaves in α ∩ β.

Assume that T1 and T2 have been preprocessed for LCA queries. Also note that
we know the left-to-right ordering of all leaves of T1 as well as of T2. Given the leaves
in α∩β, their left-to-right ordering is also known and is the one induced by the overall
left-to-right ordering. By Lemma 4.2 we can reconstruct the topology of the tree in
linear time.

Thus case 1 can be handled in O(n) time.
We now describe how to handle case 2 also in O(n) time. We will construct a

graph G = (V,E) such that V (G) = α ∩ β. The edges will be added so that, finally,
each component in G corresponds to a maximal cluster in the RV-II tree.

Node defining cluster β

Node defining cluster α
T 1

T2

v

u

Fig. 6. Figure showing nodes v and u.

Identify the LCA, say, u, of the species in S−α in T2 and similarly the LCA, say,
v, of the species in S − β in T1. In T2, u will be a descendent of the node defining β,
and in T1, v will be a descendent of the node defining α. See Figure 6. In T1 let v1

through vp be the nodes in the path from the root to v, where v1 = root and vp = v.
Similarly, in T2, let u1 through uq be the nodes in the path from the root to u, where

COMPUTING THE LOCAL CONSENSUS OF TREES 1719

u1 = root and uq = u. We will say that δ is a special cluster if for some vi, 1 ≤ i ≤ p
(or some uj , 1 ≤ j ≤ q), δ is a cluster defined by a child of vi (or uj) that is not on
the path from the root to v (or u).

Let δ1, . . . , δl be the special clusters in T1 and let γ1, . . . , γm be the special clusters
in T2. A pair of species x, y ∈ (α ∩ β) will be in the same component of the graph G
if ∃z such that T1|{x, y, z} = T2|{x, y, z} = ((x, y), z). There are two cases depending
on whether z ∈ (α ∩ β) or not. We will now describe how to handle these two cases:
Cases 2a and 2b.

Case 2a [z /∈ (α∩ β)]. In this case, it suffices to look at all α∩ γi and β ∩ δj , and
for each intersection put its elements in the same component of G. This is evident
from the following lemma.

Lemma 5.2. Let α, β be maximal clusters of T1 and T2, respectively, such that
α ∪ β = S and let x, y ∈ (α ∩ β). Then ∃z ∈ S − (α ∩ β) such that T1|{x, y, z} =
T2|{x, y, z} = ((x, y), z) iff both x and y belong to some α ∩ γi or β ∩ δj.

Proof. Suppose ∃z ∈ S− (α∩β) such that T1|{x, y, z} = T2|{x, y, z} = ((x, y), z).
Since α ∪ β = S, the only cases we have to consider are when z is in exactly one of α
or β. So suppose z ∈ α, z ∈ S − β (the other case can be handled similarly). Then
z belongs to a special cluster δi, which is defined by some child of the node v in T1.
(Recall that node v is the LCA of S − β in T1.) Since T1|{x, y, z} = ((x, y), z), we
have that either both x, y belong to δi or neither belongs to δi. If both x, y ∈ δi, then
clearly x, y ∈ (β ∩ δi). For the case when neither x nor y is in δi, we can conclude
that both x, y are in some special cluster δj (since T1|{x, y, z} = ((x, y), z)). Thus we
have that x, y ∈ (β ∩ δj).

Suppose x, y belong to some α∩ γi or β ∩ δj ; specifically, say x, y belong to some
β ∩ δj . There are two cases to handle. The first case is if the node v′ defining the
special cluster is not a child of the node v. In this case, we can pick a species z ∈ S−β
such that T1|{x, y, z} = T2|{x, y, z} = ((x, y), z). The second case is when the node
v′ is a child of the node v. In this case, pick a species z ∈ S − β from the special
cluster which is defined by a node v′′ (where v′ 6= v′′) and v′′ is below v. We have
that T1|{x, y, z} = T2|{x, y, z} = ((x, y), z). Thus in both the cases we have that there
exists such a z with z ∈ S − (α ∩ β).

Thus, for each i, connect all vertices in α ∩ γi (in G) by a path and do the same
for each j and the vertices in β ∩ δj . Note that this can be done in O(n) by using the
same idea as in Case 1.

Case 2b [z ∈ (α ∩ β)]. Note that we are only interested in identifying x, y such
that lca(x, y) in T1 is a node that is on the path from the root of T1 to the node v,
and the lca(x, y) in T2 is a node that is on the path from the root of T2 to the node
u. To see why, if, say, lcaT1

(x, y) 6= vi∀1 ≤ i ≤ p, then ∃a ∈ S − β (i.e., a /∈ (α ∩ β))
such that T1|{x, y, a} = T2|{x, y, a} = ((x, y), a), and thus x and y will be in the same
component after Case 2a is handled.

From the preceding discussion, it suffices to convert the trees T1 and T2, both
defined on the leaf set (α∩ β), into millipedes T ′1 and T ′2, respectively. T ′1 is obtained
from T1 by contracting all edges above internal nodes not in the set {v1, v2, . . . , vp}.
T ′2 is obtained from T2 similarly. Thus, we have to solve the following problem now:
we are given two millipedes T ′1 and T ′2 on the same leaf set S′ = (α∩β), where T ′1 has
internal nodes labeled v′1 (root of T ′1) through v′p, and each v′i has leaves corresponding
to all the species in the special clusters of vi in T1; T

′
2 has internal nodes labeled u′1

(root of T ′2) through u′q and is defined similarly. Our aim is to construct a graph
G′ = (V ′, E′) where V ′ = S′ such that if ∃x, y, z ∈ (α ∩ β) such that both T ′1 and

1720 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

T ′2 resolve this triple as ((x, y), z) then x and y will be in the same component of
G′. Once G′ is known, we add the edges of G′ to the edge set of G, and then the
components in G will give the maximal clusters we seek.

We will show how G′ can be constructed in O(n) time. Consider a node v′i−1

in T ′1 and let A be the set of leaves of v′i−1. Let u′j−1 be the node in T ′2 which is
closest to u′1 and is the parent of some species in A. Then, clearly, in G′ all species in
(αv′

i
∩ βu′

j
) need to be in one component. For every v′i−1 (2 ≤ i ≤ p), we will denote

this intersection by the pair (v′i, u
′
j). Further, observe that if (v′i, u

′
j) and (v′i′ , u

′
j′) are

such that v′i′ is not above v′i and u′j′ is not above u′j , then (αv′
i′
∩ βu′

j′
) ⊆ (αv′

i
∩ βu′

j
).

Thus, when constructing the graph G′, we need only look at all the intersections
of the form (v′i, u

′
j), where for every pair of intersections (v′i′ , u

′
j′) and (v′i, u

′
j), v

′
i is

closer to v′1 than v′i′ is, iff u′j′ is closer to u′1 than u′j is.

Let (v∗1 , u
∗
1), (v

∗
2 , u

∗
2), . . . , (v

∗
r , u

∗
r) be the intersections we are interested in, where

v∗i is closer to v′1 than v∗i+1 is (1 ≤ i ≤ (r − 1)), and u∗j+1 is closer to u′1 than u∗j is
(1 ≤ j ≤ (r − 1)). Note that v∗1 = v′2. This node and the given T ′1 and T ′2, uniquely
determine these intersections.

In T ′1, we define the nearest parent of a species x to be the first v∗i to appear on
the path from x to the root of T ′1. Similarly, we can define the nearest parent of a
species in T ′2. The nearest parents of all the species can be computed in O(n) by doing
a simple traversal of T ′1 and T ′2. Using the nearest parents of the species in T ′1, we
partition the species set into r sets Sv∗1 , . . . , Sv∗r where Sv∗

i
contains all species which

have nearest parent as v∗i .
Observe that if any two intersections (v∗i , u

∗
i) and (v∗i′ , u

∗
i′) contain at least one

species in common, then all the species in the two intersections need to be in the same
component in G′. Inductively, if there are intersections (v∗i , u

∗
i), . . . , (v

∗
j , u

∗
j) such that

the species in these intersections need to be in one component in G′ and if there is an
intersection (v∗k, u

∗
k) which has a species x in common with one of these intersections,

then all the species in the intersection (v∗k, u
∗
k) need to be in the same component as

the species in the intersections (v∗i , u
∗
i), . . . , (v

∗
j , u

∗
j). The algorithm CONSTRUCT G′

we present now keeps track of such an x using the variable missing link, which is
initialized to an x ∈ (v∗r , u

∗
r) such that the nearest parent of x in T ′2 (say u∗j) is

farthest from the root (as compared with the nearest parents of the other species in
(v∗r , u

∗
r)). We will also use two additional variables: np missing link which stores u∗j

and upper limit which stores v∗j .
Procedure CONSTRUCT G′

For i = r down to 1,
do{

Identify y ∈ Sv∗
i

such that the nearest parent of y in T ′2 is
farthest away from u′1 (i.e., root of T ′2)
Let u∗k be the nearest parent of y in T ′2; Set z = v∗k
Connect all x ∈ Sv∗

i
to y

If upper limit is not below v∗i ,
then

connect y to missing link
else if (upper limit is below v∗i) or (upper limit is below v∗k)

then
set missing link = y

np missing link = u∗k
upper limit = z

}enddo

COMPUTING THE LOCAL CONSENSUS OF TREES 1721

Once we have constructed G′, we can update G by setting E(G) = E(G) ∪
E(G′). The components in G will be the maximal clusters of the RV-II. Finding the
components takes O(n). To recurse, we find the homeomorphic subtrees of T1 and T2

induced by the species in each of the maximal clusters. This can be done in O(n) as
previously described.

Thus the RV-II can be constructed in O(n2).

5.5. RV-III.

Lemma 5.3. The RV-III tree T of two trees T1 and T2 always exists and is unique.
Further C(T) = A, where A = {γ|γ = α ∩ β, α ∈ C(T1), β ∈ C(T2), γ compatible with
C(Ti), i = 1, 2}.

Proof. We will first show that A as defined above is a compatible set. The
uniqueness will then follow from the uniqueness of a set of compatible clusters [17].

Pick two clusters γ1 = α1 ∩ β1 and γ2 = α2 ∩ β2 such that γi ∈ A;α1, α2 ∈
C(T1);β1, β2 ∈ C(T2). We will show that γ1 ∩ γ2 ∈ {∅, γ1, γ2}. Now, since γi is
compatible with C(T1) and C(T2), we have γ1 ∩ α2 ∈ {∅, γ1, α2}. Also, we have
γ1 ∩ β2 ∈ {∅, γ1, β2}. There are several cases to handle. The first case is when
γ1 ⊆ α2, γ1 ⊆ β2. In this case, γ1 ⊆ (α2 ∩ β2) or γ1 ∩ γ2 = γ1. The second case is
when γ1 ⊇ α2, γ1 ⊇ β2. In this case, (α2 ∩ β2) ⊆ γ1 or γ1 ∩ γ2 = γ2. The third case is
when γ1 ⊆ α2, γ1 ⊇ β2. In this case, (α2 ∩ β2) ⊆ γ1 and thus γ1 ∩ γ2 = γ2. Hence, A
is a compatible set of clusters.

Now we will show that any tree T satisfying the RV-III rules will have its cluster
encoding equal to A. From the third requirement for RV-III,5 all the clusters in C(T)
are compatible with both C(T1) and C(T2). Now suppose we can pick a γ ∈ C(T)−A.
This means that γ 6= αi ∩ βj∀αi ∈ C(T1), βj ∈ C(T2). Let α1 and β1 be the minimal
clusters in T1 and T2, respectively, containing γ. Clearly, α1 ∩β1 ⊃ γ. Let u and v be
the nodes in T1 and T2, respectively, which define the clusters α1 and β1. Since γ is
compatible with C(T1) and C(T2), it follows that we can pick three species a, b, c such
that lcaT1

(a, b) = lcaT1
(a, c) = lcaT1

(b, c) = u, lcaT2
(a, b) = lcaT2

(a, c) = lcaT2
(b, c) =

v, and a, b ∈ γ, c ∈ (α1 ∩ β1) − γ. In both T1 and T2, the triple a, b, c is unresolved,
but it is resolved as ((a, b), c) in T , thus contradicting the assumption that T ′ satifies
the rules defined by RV-III. Thus we have that C(T) ⊆ A. Now suppose C(T) ⊂ A.
Then it can be seen that we can pick a triple a, b, c which is resolved in T1 and is
either resolved the same in T2 or is unresolved in T2 but that a, b, c is unresolved in
T . This contradicts the assumption that T satisfies the rules defined by RV-III since
it does not satisfy the second (see definition of RV-III) for a maximal set of triples.
Thus C(T) = A.

Lemma 5.4. The RV-III tree T of two rooted trees can be computed in O(n3).

Proof. We can compute C(T) in O(n3) as follows. The set X = {γ|γ = α∩β, α ∈
C(T1), β ∈ C(T2)} can be computed in O(n3), since there are O(n2) pairs to look
at and each α ∩ β can be computed in O(n). The set Y = {γ|γ ∈ X, γ compatible
with C(Ti)} can be computed from X in O(n3), since each of the O(n2) clusters in X
can be checked for compatibility with C(Ti) in O(n). Finally, T can be constructed
from Y using the O(n2) algorithm mentioned in [17]. Thus the total time taken is
O(n3).

We now briefly discuss another local consensus rule that looks interesting but
unfortunately does not always exist. We define LCR1 as a rule which requires that if

5If a triple a, b, c is resolved as ((a, b), c) in T , then it is not resolved as (a, (b, c)) or ((a, c), b) in
either T1 or T2.

1722 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

a triple a, b, c is resolved as (a, (b, c)) in one tree and is either resolved as (a, (b, c)) or
unresolved in the second tree, then it is resolved as (a, (b, c)) in the consensus tree.

Although the above rule tries to capture the optimistic features of the input
trees and at the same time is not a total local consensus rule, it is the case that
the consensus tree defined by LCR1 need not exist. See Figure 7 for an example
showing that LCR2 need not necessarily produce a tree. Figure 7(iii) shows the
graph constructed by the algorithm in [3]. Since the graph is connected, it follows
that the set of triple constraints does not define a tree.

j d h d ae a g f h f e g j

(i) (ii)

g
j

e
a

d

h

f
(iii)

Fig. 7. Example showing that consensus tree defined by LCR1 need not exist.

6. Discussion and conclusions. Several approaches have been taken to handle
the problem of resolving multiple solutions. One approach has been to find a maximum
subset S0 ⊆ S inducing homeomorphic subtrees; this subtree is then called a maximum
agreement subtree [19, 13, 24, 14]. The primary disadvantage of this approach is that
it does not return an evolutionary tree on the entire species set.

The other approach which we take here requires that the resolution of the incon-
sistencies be represented in a single evolutionary tree for the entire species set. A
classical problem in this area is the tree compatibility problem (also called the cladistic
character compatibility problem) [10, 11, 12]. The tree compatibility problem says
that the set T of trees is compatible if a tree T exists such that C(T) = ∪Ti∈T C(Ti).
Equivalently, if a tree T exists such that for every triple A ⊆ S, T resolves A iff
T |A = Ti|A for every Ti ∈ T which resolves A. This problem can be solved in linear
time [17, 25]. The weakness of this approach is that in practice many data sets are
incompatible, and it is therefore necessary to be able to handle the case where some
pairs of trees resolve triples differently.

Some other approaches of this type are the strict consensus [4, 9] and the median
tree [5] problems. These models are stated in terms of unrooted trees, so that instead
of clusters, characters (i.e., bipartitions) on the species set are used to represent the

COMPUTING THE LOCAL CONSENSUS OF TREES 1723

trees. Using the character encoding of the consensus tree as a measure of fitness to the
input, the strict consensus seeks a tree with only those characters that appear in every
tree in the input. The median tree, on the other hand, is defined by a metric d(T1, T2)
between rooted trees which is defined to be the cardinality of the symmetric difference
of the character sets of T1 and T2. Given input trees T1, . . . , Tk, T is the median tree
if it minimizes

∑
i d(T, Ti). The median tree can be computed in polynomial time

and has a nice characterization in terms of the character encoding [5, 23, 9]. Both
the above notions are related to versions of the local consensus problem (for example,
the relaxed versions RV-I and RV-III), and the relevant local consensus trees in many
cases contain at least as much “information” as these trees.

The work represented in this paper can be extended in several directions. As we
have noted, for all local consensus functions the local consensus tree of a set of k trees
can be computed in time polynomial in k and n = |S|. Many of these local consensus
trees can be constructed in O(kn) time.

REFERENCES

[1] E. Adams III, N-trees as nestings: Complexity, similarity, and consensus, J. Classification, 3
(1986), pp. 299–317.

[2] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Addison–Wesley, Reading, MA, 1974.

[3] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions, SIAM
J. Comput., 10 (1981), pp. 405–421.

[4] J. Barthélemy and F. Janowitz, A formal theory of consensus, SIAM J. Discrete Math., 3
(1991), pp. 305–322.

[5] J. Barthélemy and F. McMorris, The median procedure for n-Trees, J. Classification, 3
(1986), pp. 329–334.

[6] W. Brown, E. M. Prager, A. Wang, and A. C. Wilson, Mitochondrial DNA sequences of
primates: Tempo and mode of evolution, J. Mol. Evol., 18 (1982), pp. 225–239.

[7] D. Bryant and M. Steel, Extension operations on sets of leaf-labelled trees, Research report
118, Department of Mathematics and Statistics, University of Canterbury, Christchurch,
New Zealand, 1994.

[8] H. Colonius and H. H. Schulze, Tree structures for proximity data, British J. Math. Statist.
Psych., 34 (1981), pp. 167–180.

[9] W. H. E. Day, Optimal algorithms for comparing trees with labeled leaves, J. Classification, 2
(1985), pp. 7–28.

[10] G. F. Estabrook, C. S. Johnson, Jr., and F. R. McMorris, An idealized concept of the true
cladistic character, Math. Biosci., 23 (1975), pp. 263–272.

[11] G. F. Estabrook, C. S. Johnson, Jr., and F. R. McMorris, An algebraic analysis of cladistic
characters, Discrete Math., 16 (1976), pp. 141–147.

[12] G. F. Estabrook, C. S. Johnson, Jr., and F. R. McMorris, A mathematical foundation for
the analysis of cladistic character compatibility, Math. Biosci., 29 (1976), pp. 181–187.

[13] M. Farach and M. Thorup, Optimal evolutionary tree comparison by sparse dynamic pro-
gramming, in Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Piscataway, NJ, November 1994, pp. 770–779.

[14] M. Farach, T. Przytycka, and M. Thorup, On the agreement of many trees, Inform. Process.
Lett., 55 (1995), pp. 297–301.

[15] J. Felsenstein, Numerical methods for inferring evolutionary trees, Quart. Review of Biology,
57 (1982), pp. 379–404.

[16] C. R. Finden and A. D. Gordon, Obtaining common pruned trees, J. Classification, 2 (1985),
pp. 225–276.

[17] D. Gusfield, Efficient algorithms for inferring evolutionary trees, Networks, 21 (1991), pp. 19–
28.

[18] S. Kannan, E. Lawler, and T. Warnow, Determining the evolutionary tree using experi-
ments, J. Algorithms, 21 (1996), pp. 26–50.

[19] D. Keselman and A. Amir, Maximum agreement subtree in a set of evolutionary trees—
Metrics and efficient algorithms, in Proc. 35th Annual Symposium on Foundations of Com-

1724 SAMPATH KANNAN, TANDY WARNOW, AND SHIBU YOOSEPH

puter Science, IEEE Computer Society Press, Piscataway, NJ, November 1996, pp. 758–769.
[20] D. Harel and R. Tarjan, Fast algorithm for finding nearest common ancestors, SIAM J.

Comput., 13 (1984), pp. 338–355.
[21] M. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic subtrees,

with applications to computational evolutionary biology, in Proc. 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, ACM/SIAM, January 28–30, 1996, pp. 333–340.

[22] G. Nelson, Cladistic analysis and synthesis: Principles and definitions, with a historical note
on Adanson’s Famille des Plantes (1763–1764), Systematic Zoology, 28 (1979), pp. 1–21.

[23] F. McMorris and M. Steel, The complexity of the median procedure for binary trees, in Proc.
4th Conference of the International Federation of Classification Societies, Paris, 1993; Stud.
Classification Data Anal. Knowledge Organ., by Springer-Verlag, to appear.

[24] M. Steel and T. Warnow, Kaikoura tree theorems: Computing the maximum agreement
subtree, Inform. Process. Lett., 48 (1993), pp. 77–82.

[25] T. Warnow, Tree compatibility and inferring evolutionary history, J. Algorithms, 16 (1994),
pp. 388–407.

PARALLEL ALGORITHMS WITH OPTIMAL SPEEDUP FOR
BOUNDED TREEWIDTH∗

HANS L. BODLAENDER† AND TORBEN HAGERUP‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1725–1746, December 1998 010

Abstract. We describe the first parallel algorithm with optimal speedup for constructing
minimum-width tree decompositions of graphs of bounded treewidth. On n-vertex input graphs,
the algorithm works in O((logn)2) time using O(n) operations on the EREW PRAM. We also give
faster parallel algorithms with optimal speedup for the problem of deciding whether the treewidth of
an input graph is bounded by a given constant and for a variety of problems on graphs of bounded
treewidth, including all decision problems expressible in monadic second-order logic. On n-vertex
input graphs, the algorithms use O(n) operations together with O(logn log∗n) time on the EREW
PRAM, or O(logn) time on the CRCW PRAM.

Key words. graph algorithms, parallel algorithms, treewidth, tree decomposition, monadic
second-order logic, graph reduction, derandomization, pathwidth, partial k-trees

AMS subject classifications. 68Q20, 68Q22, 68Q25, 68R10, 05C05, 05C85

PII. S0097539795289859

1. Introduction. The concept of treewidth has proved to be a useful tool in
the design of graph algorithms: many important classes of graphs have bounded
treewidth, and many important graph problems that are otherwise quite hard can
be solved efficiently on graphs of bounded treewidth. A tree decomposition of an
undirected graph G = (V,E) is a pair (T,U), where T = (X,F) is a tree and U =
{Ux | x ∈ X} is a family of subsets of V called bags, one for each node in T , such
that

(i)
⋃
x∈X Ux = V (every vertex in G occurs in some bag);

(ii) for all (v, w) ∈ E, there exists an x ∈ X such that {v, w} ⊆ Ux (every edge
in G is “internal” to some bag);

(iii) for all x, y, z ∈ X, if y is on the path from x to z in T , then Ux ∩ Uz ⊆ Uy
(every vertex in G occurs in the bags in a connected part of T , i.e., in a subtree).

The width of a tree decomposition (T, {Ux | x ∈ X}) is maxx∈X |Ux| − 1. The
treewidth of a graph G, denoted tw(G), is the smallest treewidth of any tree decom-
position of G. Path decompositions and pathwidth are defined analogously, with the
tree T restricted to be a path.

As mentioned above, many well-known classes of graphs are of bounded treewidth;
i.e., for each class there is a uniform upper bound on the treewidth of all graphs in the
class. Such classes include those of trees, forests, outerplanar graphs, k-outerplanar
graphs (for every fixed k ≥ 1), Halin graphs, series-parallel graphs, graphs that avoid
a planar graph H as a minor (for every fixed H), and graphs of bounded bandwidth.
For an overview, see [11].

∗Received by the editors August 2, 1995; accepted for publication (in revised form) September 20,
1996; published electronically June 3, 1998. This research was partially supported by the ESPRIT
Basic Research Actions Program of the EU under contract 7141 (project ALCOM II). A preliminary
version of this paper was presented at the 22nd International Colloquium on Automata, Languages
and Programming (ICALP) in July 1995.

http://www.siam.org/journals/sicomp/27-6/28985.html
†Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the

Netherlands (hansb@cs.ruu.nl).
‡Max-Planck-Institut für Informatik, Im Stadtwald, D–66123 Saarbrücken, Germany (torben@

mpi-sb.mpg.de).

1725

1726 HANS L. BODLAENDER AND TORBEN HAGERUP

The majority of efficient algorithms for graphs of bounded treewidth depend not
only on a guarantee that the treewidth of an input graph is small, but in fact on the
availability of a minimum-width tree decomposition of the input graph, so that the
construction of minimum-width tree decompositions for graphs of bounded treewidth
is a key problem. A quest for the fastest possible algorithm for this problem [5, 43,
22, 10, 38, 35, 42, 8] led to the linear-time algorithm of [8], which eliminated the
bottleneck in a large number of algorithms for bounded treewidth.

In the setting of parallel computation, the situation is similar. Many otherwise
difficult graph problems can be solved in NC (i.e., in polylogarithmic time with a
polynomial amount of hardware) on graphs of bounded treewidth, and again the need
for a minimum-width tree decomposition is a serious bottleneck. The best parallel
algorithms for computing tree decompositions of width k of graphs of treewidth k, for
fixed k, run on the CRCW PRAM using O((log n)2) time and O(n2k+5) processors [15,
16] or O(log n) time and O(n3k+4) processors [7]. Although these algorithms are fast,
they are extremely wasteful in terms of processors, in view of the linear-time sequential
algorithm. For the cases k = 2 and k = 3, somewhat more efficient algorithms using
O((log n)2) time and O(nk+1) processors were described by Granot and Skorin-Kapov
[27]. A related result was obtained by Wanke [45], who showed that the problem of
deciding whether the treewidth of an input graph is bounded by a constant k belongs
to the complexity class LOGCFL; this result also does not seem to lead to parallel
algorithms that are efficient from the point of view of processor utilization. If we relax
the requirements by allowing tree decompositions of widthO(k), rather than exactly k,
more algorithms come into play: Lagergren [35] finds a decomposition of width ≤
8k+7 in O((log n)3) time using O(n) processors, and we believe that Reed’s sequential
O(n log n)-time algorithm [42] for obtaining a decomposition of width ≤ 4k + 3 can
be parallelized (using an algorithm of Khuller and Schieber [33] to solve a central
path-finding problem) to yield an algorithm that works in O((log n)2) time using
O(nα(n)/log n) processors, where α is a very slowly growing “inverse Ackermann”
function. The parallel version of Reed’s algorithm uses O(nα(n) log n) operations,
i.e., has a time-processor product of O(nα(n) log n), and is the most efficient of the
parallel algorithms discussed above. Still, since the problem can be solved in linear
sequential time, the algorithm does not have optimal speedup, which requires a time-
processor product of O(n).

We describe an EREW PRAM algorithm for constructing minimum-width tree
decompositions for graphs of bounded treewidth in O((log n)2) time using O(n) op-
erations. The algorithm achieves optimal speedup and is the first parallel algorithm
to do so. Moreover, the new algorithm is second in speed only to Bodlaender’s al-
gorithm [7] but uses a weaker model of computation (the EREW PRAM versus the
CRCW PRAM), on which Bodlaender’s algorithm can be simulated only in the same
time of O((log n)2). The new result immediately implies that a large number of prob-
lems on graphs of bounded treewidth can now be solved by parallel algorithms with
optimal speedup.

A subroutine used in the construction algorithm but of independent interest is
a parallel version of an algorithm due to Bodlaender and Kloks [13]. The algorithm
takes as input a tree decomposition of bounded width of a graph G and outputs a
minimum-width tree decomposition of G, thus blurring the distinction between the
“exact” and the “approximate” construction algorithms discussed above. The new
algorithm runs in O(log n) time using O(n) operations on the EREW PRAM.

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1727

While we cannot compute tree decompositions faster than in O((log n)2) time,
it turns out that we can give faster algorithms for the related problem of deciding
whether the treewidth of an input graph is bounded by a given constant k. The
algorithms have optimal speedup (i.e., use O(n) operations) and run in O(log n log∗n)
time on the EREW PRAM, or in O(log n) time on the CRCW PRAM. We achieve
the same resource bounds for a number of problems on graphs of bounded treewidth,
including all problems expressible in monadic second-order logic. These algorithms
operate without an explicit tree decomposition and so bypass the (time) bottleneck
of our construction algorithm. Furthermore, we achieve the same results for path
decompositions and pathwidth as for tree decompositions and treewidth.

The paper combines several different techniques of wide applicability. The graph-
reduction technique consists in repeatedly replacing parts of the graph at hand by
simpler parts until a trivial graph results. The problem of interest is then solved for
the trivial graph, and the solution is “carried along” while the changes to the graph
are undone in reverse order. This technique pervades the paper and is used in the
construction algorithm as well as in the decision algorithms (and also in the width-
minimizing algorithm, provided that tree contraction is viewed as a special case of
graph reduction).

Another technique used in the derivation of the CRCW PRAM decision algorithm
from the corresponding EREW PRAM algorithm is that of derandomization. The
basic idea of derandomization is that instead of letting random coin tosses select one
algorithm to be executed from a collection of deterministic algorithms, we execute all
deterministic algorithms in the collection and pick the best output. Because of the
need to simulate several possible executions, derandomization is often associated with
a price in the form of increased resource requirements. Here we use derandomization
to derive a parallel algorithm with optimal speedup; i.e., we pay no price.

A third technique of less general applicability but nonetheless independent interest
is that of bounded adjacency-list search, which tries to circumvent the difficulties
caused by high-degree vertices in parallel algorithms for sparse graphs by letting
each neighbor of a high-degree vertex v inspect only a piece of constant size of the
adjacency list of v near its own entry, rather than the whole adjacency list. The
bounded adjacency-list search technique was used previously (although not named)
in [28]; there, as here, the technique serves to eliminate the need for both concurrent
reading and writing and for superlinear space.

Unlike certain related results, most of our algorithms are explicit and do not
rely on nonconstructive arguments. Only the results of Theorems 5.1 and 6.1 are
nonconstructive, but can be made constructive in many concrete cases, as discussed
near the end of section 5. On the other hand, it should be noted that large constant
factors prevent our algorithms from being practical.

All graphs in this paper are undirected, loopless, and without multiple edges. We
assume that all graphs, not excluding trees, are represented according to an adjacency-
list representation: each vertex v in an n-vertex graph G is represented by an integer
name of size O(n) and has a pointer to a doubly linked adjacency list with an entry
for each neighbor of v in G. For each neighbor w of v, the entry of w in v’s adjacency
list contains the name of w as well as a cross pointer to the entry of v in w’s adjacency
list.

2. Minimizing decomposition width. In this section we show how to obtain
a minimum-width tree decomposition of a graph G from any tree decomposition of
G of bounded width. We begin with an observation that allows us to assume that

1728 HANS L. BODLAENDER AND TORBEN HAGERUP

tree decompositions are rooted, binary, and of logarithmic depth whenever this is
convenient. In representation terms, every nonroot node in a rooted tree knows its
parent, and a rooted tree is binary if no node has more than two children.

We appeal twice to the tree-contraction technique introduced by Miller and Reif
[39], which we therefore describe in generic terms. Applied to an n-node binary
input tree T = (V,E), a tree-contraction algorithm produces a sequence T = T0 =
(V0, E0), T1 = (V1, E1), . . . , Tr = (Vr, Er) of O(log n) trees, ending with a one-node
tree Tr, such that each tree Ti, for i = 1, . . . , r, is obtained from its predecessor Ti−1 in
the sequence by contracting a set of edges Fi−1 ⊆ Ei−1 with the following properties:

(i) Fi−1 spans a matching (i.e., no node in Vi−1 is incident to more than one
edge in Fi−1);

(ii) each edge in Fi−1 has at least one endpoint with at most one child in Ti−1.

A sequence T0, . . . , Tr with these properties, called a contraction sequence for T , can
be computed in O(log n) time on an EREW PRAM using O(n) operations and O(n)
space [1, 18, 24, 25, 34] (the connection to our generic description of tree contraction
is easiest to establish in the case of the simple and elegant algorithm of [1, 34]). The
second property mentioned above implies that each tree in the sequence is binary.

Let X =
⋃r
i=0 Vi. We can define a rooted, binary tree T ′ on the node set X, called

the contraction tree corresponding to the sequence T0, . . . , Tr, in the following way:
the nodes in V , which will be called base nodes, are the leaves of T ′, and whenever a
node x ∈ X results from the contraction of an edge (y, z), we make x the parent of y
and z in T ′. For all x, y ∈ X, we will say that x contains y if x is an ancestor of y
in T ′. The base nodes contained in any node in X span a connected subgraph of the
input tree T . For i = 1, . . . , r, we root Ti at the node in Vi containing the root of T .

For i = 0, . . . , r, call two base nodes v and w i-neighbors if (v, w) ∈ E and v and
w are not contained in the same node in Vi. For each x ∈ Vi, the i-neighbors of base
nodes contained in x are contained in distinct neighbors of x in Ti. For all x ∈ X, we
define the border of x as the set of base nodes contained in x and adjacent in T to one
or more base nodes not contained in x. For i = 0, . . . , r, if x ∈ Vi, then a base node
contained in x belongs to the border of x precisely if it has at least one i-neighbor; in
particular, the border of x contains at most three nodes.

Lemmas 2.1 and 2.2 below slightly improve a result of [7] by employing a more
efficient subroutine; the same improvement was observed in [31].

Lemma 2.1. The following problem can be solved on an EREW PRAM using
O(log n) time, O(n) operations, and O(n) space: given an n-node rooted, binary tree
T , compute a rooted, binary tree decomposition of T of depth O(log n) and width at
most 2.

Proof. Begin by using tree contraction to compute a contraction sequence T =
T0 = (V0, E0), T1 = (V1, E1), . . . , Tr = (Vr, Er) for the input tree T = (V,E) and
construct the corresponding contraction tree T ′ = (X,F).

Observe that if e and e′ are the edges incident on a node v of degree 2 in some tree
H, then the tree obtained from H by contracting e is the same as the tree obtained
from H by contracting e′ (the contraction can be “flipped” to the other side of v).
Because of this, we can assume without loss of generality that when an edge between
a node v of degree 2 and a node w of degree 3 is contracted in the transition from
Ti−1 to Ti, for some i with 1 ≤ i ≤ r, then v is the parent of w in Ti−1. To see
this, first note that all edge contractions that violate the assumption—we will call
these (3, 2)-contractions—can be carried out separately (i.e., we replace the one-step
transition from Ti−1 to Ti by a two-step process, thereby doubling r). Now each (3, 2)-

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1729

contraction can be “flipped,” as described above, without changing the resulting tree;
note that the edge set of the “flipped” contractions still spans a matching.

For all x ∈ X, denote the border of x by B(x). We next show that no border
contains three distinct vertices.

Claim 1. For all x ∈ X, |B(x)| ≤ 2.

Proof. Suppose that for some i with 1 ≤ i ≤ r, some base node v ∈ V has two
i-neighbors and belongs to B(x) for some x ∈ Vi with |B(x)| ≥ 2. Then neither of
the two i-neighbors of v is its parent in T . To see why this is true, let j be minimal
such that v belongs to B(y) for some y ∈ Vj with |B(y)| ≥ 2. It can be seen that
then y must, in fact, result from the contraction of an edge (v, z), where z ∈ Vj−1 is
of degree 2 in Tj−1. But then, by the absence of (3, 2)-contractions, z must be the
parent of v in Tj−1, which implies that the parent of v in T is not an i-neighbor of v
for any i ≥ j.

Since the claim |B(x)| ≤ 2 is trivially true for all base nodes x, assume by induc-
tion that it is true for all x ∈ Vi−1, for some i with 1 ≤ i ≤ r, and consider a node
x ∈ Vi resulting from the contraction of an edge (y, z), where y, z ∈ Vi−1. Since |B(x)|
is bounded by the degree of x in Ti, which is two less than the sum of the degrees
of y and z in Ti−1, we can assume that y is of degree 3 and that z is of degree 2
in Ti−1. We will show that only one node in each of B(y) and B(z) also belongs to
B(x), from which |B(x)| ≤ 2 follows immediately. In the case of B(z), this is easy to
see: the nodes in B(z) have a total of two (i − 1)-neighbors, and one of these is not
an i-neighbor. Similarly, the nodes in B(y) lose one of their three (i − 1)-neighbors.
We must show that the two remaining (i − 1)-neighbors, which are also i-neighbors,
are adjacent to the same node in B(y). But if this is not the case, then |B(y)| = 2
and B(y) contains a node v with two (i− 1)-neighbors, one of which belongs to B(z).
By what was shown above, neither of the (i − 1)-neighbors of v is its parent in T .
But this contradicts the fact that z must be the parent of y in Ti−1 by the absence of
(3, 2)-contractions. This ends the proof of the claim.

The sets B(x), where x ∈ X, can be computed as follows: successively, for i =
0, . . . , r, we compute B(x), along with the set of i-neighbors of all nodes in B(x), for
all x ∈ Vi. This is trivial for i = 0, and if, for some i with 1 ≤ i ≤ r, a node x ∈ Vi is
obtained by contracting an edge (y, z), where y, z ∈ Vi−1, then B(x) ⊆ B(y) ∪ B(z),
and an (i − 1)-neighbor of a base node v ∈ B(y) ∪ B(z) is also an i-neighbor of v
exactly if it does not belong to B(y) ∪ B(z), so that the information pertaining to x
can easily be derived from the information pertaining to y and z.

We now associate a set Ux ⊆ V with each x ∈ X as follows: if x is a base node, i.e.,
a leaf in T ′, we take Ux = {x}. Otherwise, if x has the children y and z in T ′, we take
Ux = B(y)∪B(z). We will show that (T ′, {Ux | x ∈ X}) is a tree decomposition of T .
First, because of the convention regarding leaves of T ′, the condition

⋃
x∈X Ux = V is

trivially satisfied. Second, for every edge (v, w) in E, it is easy to see that {v, w} ⊆ Ux,
where x is the lowest common ancestor of v and w in T ′. And, third, the set of nodes
whose bags contain a base node v form an initial part of the path in T ′ from v to the
root of T ′, and hence span a connected subgraph of T ′.

The width of the tree decomposition defined above is bounded by one less than
twice the maximum size of a border. By the claim shown above, this means that
the width is at most 3. We now describe how to reduce the width to at most 2.
Suppose that x ∈ X is a node in T ′ whose associated bag Ux is of size 4, let y and
z be the children of x in T ′, and take B(y) = {v1, v2} and B(z) = {v3, v4}, so that
Ux = {v1, v2, v3, v4}. As follows easily from arguments used to bound the sizes of

1730 HANS L. BODLAENDER AND TORBEN HAGERUP

v1 v2 v3 v4

Uy Uz

v1 v2 v4

Uy v2 v3 v4

Uz

⇒

Fig. 1. Transforming from width 3 to width 2.

all bags by 2, B(x) “inherits” exactly one element of each of B(y) and B(z), so that
we can assume that B(x) = {v1, v4}. Then v2 and v3 do not occur in the bag of the
parent of x in T ′, if any. Moreover, (v2, v3) ∈ E and hence (v1, v3) 6∈ E. It is now easy
to see that the transformation illustrated in Figure 1 preserves the defining properties
of a tree decomposition. Applied at all nodes with bags of size 4, it produces a new
tree decomposition of T of width at most 2. The depth increases by a factor of at
most 2 and hence remains O(log n), as desired.

Starting from the sequence T0, . . . , Tr, the algorithm constructs the tree T ′, then
computes the sets B(x) and Ux for all x ∈ X, and finally carries out the transformation
of T ′ described above. Each of these steps can easily be done in O(log n) time using
O(n) operations and O(n) space.

In the lemma below as well as in several later results, the input parameter k is
qualified as being a constant, the meaning of which is that k can be any positive
integer but that the O(· · ·) of the result may (and will) hide factors that depend on k.

Lemma 2.2. For all constants k ≥ 1 and all integers n ≥ 2, the following problem
can be solved on an EREW PRAM using O(log n) time, O(n) operations, and O(n)
space: given a tree decomposition with n nodes and of width k of a graph G, compute
a rooted, binary tree decomposition of G of depth O(log n) and width at most 3k+2.

Proof. We begin by replacing each node of degree m ≥ 4 and with associated
bag U in the given tree decomposition by a path of m − 2 nodes, each of degree 3
and with associated bag U , which obviously preserves the defining properties of a tree
decomposition. Then we construct an Euler tour of the modified tree (see [44]) and
root the tree by breaking the Euler tour at an arbitrary node of degree at most 2,
declared to be the root, computing the distance from each node to the root along the
Euler tour by means of list ranking [17, 4], and determining the parent of each nonroot
node as the neighbor with a smaller distance to the root. After these preliminary steps,
which can easily be carried out within the stated resource bounds, we can assume that
the input is a tree decomposition (T,U), where T = (V,E) is rooted and binary.

Now use the algorithm of Lemma 2.1 to obtain a rooted, binary tree decomposition
(T ′,Q) of T of width at most 2 and depth O(log n). Replacing each node in a bag in Q
by the vertices of G in its own associated bag, we obtain the desired tree decomposition
of G. More precisely, write U = {Uv | v ∈ V }, T ′ = (X,F), and Q = {Qx | x ∈
X} and take Rx =

⋃
v∈Qx

Uv for all x ∈ X. Then (T ′, {Rx | x ∈ X}) is a tree
decomposition of G. For if a vertex u of G occurs in Uv, with v ∈ V , and v ∈ Qx,
with x ∈ X, then u ∈ Rx. Similarly, both endpoints of each edge in G occur in some
bag Uv, with v ∈ V , and therefore also in some bag Rx, with x ∈ X. Finally, each

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1731

vertex u of G occurs in the bags Uv in a subtree of T , and two adjacent nodes in this
subtree occur in the bags Qx in overlapping subtrees of T ′, so that, altogether, u occurs
in the bags Rx in a connected subgraph of T ′. The width of the tree decomposition
(T ′, {Rx | x ∈ X}) is at most (2 + 1)(k + 1)− 1 = 3k + 2.

We will use the phrase “balancing a tree decomposition” to describe an application
of the algorithm implicit in the preceding lemma. The remaining goal in the present
section is to prove the result below.

Theorem 2.3. For all constants k ≥ 1 and all integers n ≥ 2, the following
problem can be solved on an EREW PRAM using O(log n) time, O(n) operations,
and O(n) space: given a tree decomposition with n nodes and of width k of a graph
G, construct a minimum-width tree decomposition of G.

The corresponding decision problem (is tw(G) ≤ l?, for some given l) can be
solved by a straightforward parallelization of the decision algorithm of [13]. The
latter algorithm consists of a pass from the leaves to the root of a tree decomposition
of the input graph, which, in light of Lemma 2.2, can be taken to be binary and of
logarithmic depth. The processing of each node takes constant time, and all nodes
on the same level in the tree can be processed in parallel. If the nodes in the tree
decomposition are first sorted by their levels, which can be done in O(log n) time using
O(n) operations [41, Lemma 3.1], it is easy to process the whole tree in O(log n) time
using O(n) operations. The sequential construction (as opposed to decision) algorithm
processes the tree decomposition in three passes. In one of these, the processing of a
node no longer necessarily takes constant time, so that an amortization argument is
used in [13] to bound the total running time by O(n). Since this appears to stand in
the way of a direct parallelization, we choose a somewhat different approach.

Suppose that the input graph is G = (V,E). Close inspection of the algorithm of
[13] (we omit the details, some of which were hinted at above) reveals that O(log n)
time and O(n) operations suffice to compute a certain implicit representation of the
desired tree decomposition (T = (X,F), {Ux | x ∈ X}) consisting of the binary tree T
(without the bags Ux) together with, for each v ∈ V , a collection Pv of disjoint simple
paths in T whose union contains a node x ∈ X if and only if v ∈ Ux. Rather than
directly specifying the set of vertices contained in each bag, the implicit representation
thus presents the set of bags containing each vertex in the form of a collection of
disjoint paths. For each v ∈ V , a path in Pv with endpoints x and y is represented
by marking both x and y with the triple (x, y, v); a node may be marked with several
triples but, of course, with at most k + 1 triples. We clearly have |X| = O(n), since
the size of the tree T cannot exceed the number of operations used to compute it.

By the preceding discussion, proving Theorem 2.3 boils down to showing the
following lemma.

Lemma 2.4. For all constants k ≥ 1 and all integers n ≥ 2, the following problem
can be solved on an EREW PRAM using O(log n) time, O(n) operations, and O(n)
space: given a rooted, binary n-node tree T and a collection P of simple paths in T ,
each of which is labeled by an integer and represented, at each of its endpoints, by
a triple specifying its endpoints and label, such that no node in T belongs to more
than k + 1 paths in P, mark each node x in T with the set of all labels of paths in P
containing x.

Proof. Since duplicates are easily eliminated, we can assume that no two paths
in P have both the same endpoints and the same label, so that we can identify each
path with the triple marking its endpoints. We will also assume that the endpoints
of each path are distinct, since paths consisting of a single node are trivial to handle.

1732 HANS L. BODLAENDER AND TORBEN HAGERUP

We begin by using tree contraction to obtain a contraction sequence T = T0 =
(V0, E0), . . . , Tr = (Vr, Er) for the input tree T = (V,E). We will process the sequence
twice, first in the order of increasing indices (the up phase), and then in the order of
decreasing indices (the down phase).

Let X =
⋃r
i=0 Vi. During the up phase, we associate a set S(x) with each node

x ∈ X. For x ∈ V , S(x) is the set of paths in P with x as an endpoint. For i = 1, . . . , r,
if a node x ∈ Vi results from the contraction of an edge (v, w), where v, w ∈ Vi−1, we
compute S(x) as (S(v) ∪ S(w))\(S(v) ∩ S(w)); it is easy to see by induction that for
all x ∈ X, S(x) will be the set of paths in P with exactly one endpoint contained in x.
During the down phase, for i = r, . . . , 1, we modify S(v) for all v ∈ Vi−1\Vi as follows:
suppose that v and another node w ∈ Vi−1 are both contained in x ∈ Vi. Then, for
each pair (y, z) of neighbors of x in Ti such that some node in Vi−1 contained in y is
separated in Ti−1 from some node in Vi−1 contained in z by the removal of v (i.e., v
is “between” y and z), add to S(v) all paths in S(y) ∩ S(z). Again, it is not difficult
to see by backward induction on i that the final value of S(x), for all x ∈ X, will
be the set of paths in P comprising at least one node contained in x and at least
one node not contained in x. In particular, the values S(v), where v ∈ V , precisely
constitute the desired output. Since the number of paths containing a given node in
V is bounded by a constant, and since each path in S(x) must contain at least one of
the at most three border nodes of x, for all x ∈ X, each set S(x) is of constant size,
and the whole computation can be carried out in O(log n) time using O(n) operations
and O(n) space.

With a similar (but, in fact, easier) argument one can also show the result below.

Theorem 2.5. For all constants k, l ≥ 1 and all integers n ≥ 2, the following
problem can be solved on an EREW PRAM using O(log n) time, O(n) operations,
and O(n) space: given a tree decomposition with n nodes and of width k of a graph G,
decide whether the pathwidth of G is at most l and, if so, construct a minimum-width
path decomposition of G.

3. A structural lemma. In this section we provide the basis for showing that
any sufficiently large connected graph of bounded treewidth admits a large number of
reductions of certain types. Moreover, given any adjacency-list representation of the
graph, a large fraction of these reductions can be identified efficiently.

A well-known fact that we shall use below is that every n-vertex graph of treewidth
≤ k contains at most kn edges for all positive integers n and k. We provide a brief
proof. Since removing a vertex from a graph of treewidth≤ k with at least two vertices
leaves a graph of treewidth ≤ k, it suffices to show that every graph G of treewidth
≤ k contains a vertex of degree ≤ k. To this end consider a tree decomposition
(T = (X,F), {Ux | x ∈ X}) of G of width ≤ k with a minimal number of nodes (i.e.,
|X| is minimal over all such tree decompositions) and pick a node x ∈ X of degree
≤ 1 in T . Ux contains at least one vertex v that does not occur in any other bag
(otherwise x would be superfluous), and v has at most k neighbors, as desired (they
all belong to Ux).

The boundary of a subgraph H of a graph G is the set of those vertices in G that
have at least one neighbor in H but do not themselves belong to H. Let d, k, nmin,
and nmax be positive integers to be characterized more closely in the following. A
vertex will be called small if its degree is bounded by d, and large otherwise. Given a
graph G of treewidth at most k, we are essentially looking for connected subgraphs of
G consisting of between nmin and nmax small vertices and with a boundary of size at
most 2(k + 1). It turns out that such subgraphs may not occur in G at all, for which

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1733

reason we have to replace the connectedness condition by a weaker, more complicated
condition described below after the introduction of additional terminology.

Two vertices are said to be twins if they have the same set of neighbors. By
analogy, two subgraphs of a common graph are called twins if they have the same
boundary. A weakly connected component of a subgraph H of a graph G is a connected
component of the graph obtained from H by the introduction of an edge between
each pair of nonadjacent vertices in H with a common small neighbor in G; a weakly
connected component of H may thus comprise several (usual) connected components
of H, linked indirectly via small common neighbors in the boundary of H. A subgraph
that consists of a single weakly connected component is weakly connected. Given an
adjacency-list representation of a graph G, two disjoint subgraphs H1 and H2 of G
are said to be acquainted if the intersection of their boundaries contains a vertex
in whose adjacency list some entry of a vertex in H1 is separated from some entry
of a vertex in H2 by a distance of at most d. This definition, which embodies the
bounded adjacency-list search technique, reflects the fact that H1 can “discover” H2

by searching through a piece of length at most 2d+ 1 of the adjacency list of each of
its boundary vertices.

We can now define the objects of interest and state the main result of the section.
A valley in a graph G is a weakly connected subgraph of G induced by a set of at
most nmax small vertices and with a boundary of size at most 2(k + 1). A plain
(or (d, k, nmin, nmax)-plain, for emphasis) in G (relative to a particular adjacency-
list representation of G) is a subgraph of G, induced by a set of at least nmin and
at most nmax vertices, whose weakly connected components are pairwise acquainted
twin valleys.

Lemma 3.1. For all integer constants k, nmin ≥ 1, there are constants d, nmax ≥ 1
and c > 0 such that every connected graph with n > nmax vertices and treewidth at
most k contains at least cn disjoint (d, k, nmin, nmax)-plains (relative to any adjacency-
list representation).

Proof. Take b = 3(k + 1)(nmin + 1). We will prove the lemma with nmax = 3b
and d = 2k+4 nmin nmax. Let G = (V,E) be a connected graph with n > nmax

vertices and treewidth at most k and fix a particular adjacency-list representation of
G and a particular maximal collection P of disjoint (d, k, nmin, nmax)-plains in G (the
complexity of computing such a collection is not an issue here, since we are concerned
with an assertion of mere existence). We will show that |P| ≥ cn for a suitably chosen
constant c > 0.

Let (T,U) be a tree decomposition of G of width at most k and write T = (X,F)
and U = {Ux | x ∈ X}. We view T as rooted at an arbitrary node. Using the
same standard transformation as in the beginning of the proof of Lemma 2.2, we can
assume without loss of generality that T is binary. On two occasions in the proof we
will use the fact that if v ∈ V , then the subgraph Tv of T induced by the node set
{x ∈ X | v ∈ Ux} is a tree, whose root can therefore be reached from any node in Tv
by going from a child node to a parent node zero or more times; we will refer to this
as the root-seeking principle.

We begin by showing that the set X of tree nodes can be partitioned into disjoint
clusters C1, . . . , Cs such that for i = 1, . . . , s the following conditions hold:

1. Ci induces a subtree of T ;
2. |⋃x∈Ci

Ux| ≤ nmax;
3. if Ci does not contain the root of T , then |⋃x∈Ci

Ux| ≥ b.

The partition C1, . . . , Cs can be constructed by a simple procedure that processes T

1734 HANS L. BODLAENDER AND TORBEN HAGERUP

in inverse topological order; i.e., every node is processed after all of its children. The
processing of a node y computes the set C consisting of y itself and all descendants
of y that have not yet been assigned to clusters. If |⋃x∈C Ux| ≥ b or y is the root of
T , then C is made into a new cluster; otherwise the processing continues to the next
node.

It is easy to see that the set of nodes assigned to a cluster always induces a
connected subgraph of T ; i.e., condition 1 above is satisfied. Condition 3 is satisfied
by construction. As for condition 2, observe that if a cluster C is formed during the
processing at a node y, then C receives a contribution of at most b− 1 vertices from
each of the at most two children of y and of at most k + 1 vertices from y itself, a
total of at most 2b + k − 1 ≤ nmax vertices. This establishes properties 1–3 of the
cluster partition.

For i = 1, . . . , s, let C ′
i be the set of those nodes in Ci that are adjacent in T to a

node not in Ci, take Zi =
⋃
x∈C′

i
Ux, and let Hi be the graph induced by the vertices

in (
⋃
x∈Ci

Ux)\Zi. By the properties of tree decompositions, the graphs H1, . . . , Hs

are disjoint, and the boundary of Hi is contained in Zi for i = 1, . . . , s.

For i = 1, . . . , s, we will call Hi a kernel if |C ′
i| ≤ 2 and Ci is not the cluster

containing the root of T (we exclude the latter cluster because of its special status).
We next establish a lower bound on the number of kernels.

Claim 2. The number of kernels is at least 1
2n/nmax.

Proof. By property 2 of the cluster partition and the fact that
⋃s
i=1

⋃
x∈Ci

Ux = V ,
the number s of clusters is at least n/nmax. The clusters form a cluster tree in a natural
fashion: two clusters are adjacent if one contains a node adjacent in T to a node in
the other cluster, and the degree of a cluster Ci is at least |C ′

i| (it exceeds |C ′
i| if some

node in C ′
i has more than one neighbor outside of Ci). In general, a tree with m

nodes contains m− 1 edges. Hence if h denotes the number of nodes of degree ≥ 3 in
an m-node tree and m ≥ 2, we have 3h+ (m− h) ≤ 2(m− 1) and thus h ≤ m/2− 1.
Applying this to the cluster tree, with at least n/nmax > 1 nodes, only one of which
contains the root of T , shows that the number of clusters of degree ≤ 2 is at least
1 + 1

2n/nmax, and hence that the number of kernels is at least 1
2n/nmax.

The boundary of a kernel H contains at most 2(k+1) vertices and, by property 2
of the cluster partition, H contains no more than nmax vertices. In particular, since
d ≥ nmax+2(k+1), all vertices in H are small. It follows that every weakly connected
component of H is a valley. We will call a valley of this kind good if it intersects a plain
in P, and bad otherwise. Note that a bad valley contains fewer than nmin vertices
(otherwise it would be a plain, contradicting the maximality of P). A bad valley with
boundary B will be called a B-valley.

We classify the bad valleys into three types depending on their boundaries. Con-
sider a bad valley L with boundary B. If B contains one or more small vertices, L
is of type a. If B contains only large vertices and B 6⊆ Ux for all x ∈ X, L is of
type b. If B contains only large vertices and B ⊆ Ux for some x ∈ X, finally, L is
of type c. We next bound the number of valleys of type a per kernel, the number of
kernels containing valleys of type b, and the total number of valleys of type c.

Claim 3. The number of valleys of type a (B contains a small vertex) in any
fixed kernel is bounded by 2(k + 1).

Proof. Every valley of type a “uses up” one or more of the at most 2(k + 1)
boundary vertices of its kernel. Here we use the fact that valleys need only be weakly
connected: two vertices in the same kernel and with a common small neighbor belong
to the same valley.

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1735

We now consider the B-valleys for which B contains only large vertices. Given
such a B-valley L, choose v ∈ B such that the root rv of the subtree Tv of T induced
by the node set {x ∈ X | v ∈ Ux} is of maximal depth, call v the low point of L, and
assign L (for the purpose of accounting) to its low point. We here use the fact that
G is connected, which ensures that B 6= Ø.

Claim 4. The total number of kernels containing one or more valleys of type b
(B 6⊆ Ux for all x ∈ X) is bounded by (2k/d) · n.

Proof. Let L be a bad valley and let B and v be its boundary and its low point,
respectively. We can conclude from the root-seeking principle that rv lies within the
cluster C containing L; otherwise B would be contained in Ux, where x is the node in
C of minimal depth in T . Since v is large, the number of clusters containing valleys of
type b is therefore bounded by the number of large vertices. Because G has at most
kn edges, the latter number in turn is bounded by (2k/d) · n.

Claim 5. The total number of valleys of type c (B ⊆ Ux for some x ∈ X) is
bounded by (2k+2k · nmin/d) · n.

Proof. Let v be a large vertex in V and let B be a subset of V . By definition,
all B-valleys are twins. Thus no d consecutive entries in the adjacency list of v can
contain entries of vertices in nmin or more different B-valleys, since then all of these
(bad) B-valleys would be acquainted, and some of them (with a suitable total size)
would form a plain, contradicting the maximality of P. We may conclude that at
most ddeg(v)/de · nmin ≤ 2 deg(v) · nmin/d B-valleys are assigned to v, where deg(v)
denotes the degree of v and the inequality follows from the fact that deg(v) > d.

The valleys assigned to v may not all be twins. However, the root-seeking principle
ensures that if a B-valley is assigned to v and B is contained in some (single) bag,
then B ⊆ Urv . Thus the valleys of type c assigned to v have at most 2k different
boundaries (all such boundaries are subsets of a fixed set of at most k + 1 vertices,
and all contain v). It follows that the total number of valleys of type c assigned to v
is bounded by 2k+1 deg(v) · nmin/d. Again since the total number of edges is at most
kn, this sums over all vertices v to at most (2k+2k · nmin/d) · n.

Since a bad valley contains fewer than nmin vertices and a kernel contains at least
b− 2(k+ 1) vertices, each kernel containing only bad valleys decomposes into at least
(b− 2(k + 1))/nmin ≥ 3(k + 1) bad valleys. At most 2(k + 1) of these are of type a
(Claim 3). Hence if a kernel contains only bad valleys, then either one or more of these
are of type b, or at least k+ 1 of them are of type c. The first condition applies to at
most (2k/d) ·n ≤ 1

8n/nmax kernels (Claim 4), and because the total number of valleys
of type c is bounded by (2k+2k · nmin/d) · n (Claim 5), the second condition applies
to at most (2k+2k · nmin/(d(k + 1))) · n ≤ 1

4n/nmax kernels. Since the total number
of kernels is at least 1

2n/nmax (Claim 2), at least (1
2 − 1

4 − 1
8) · n/nmax = 1

8n/nmax

kernels contain one or more good valleys. At most nmax disjoint valleys can intersect
the same plain, so the number of plains in P is at least cn if we take c = 1/(8 · n2

max).
This ends the proof of Lemma 3.1.

4. Constructing tree decompositions. In this section we show that mini-
mum-width tree decompositions of n-vertex graphs of bounded treewidth can be con-
structed on an EREW PRAM using O((log n)2) time and O(n) operations. More
precisely, given an n-vertex graph G and a constant k, our algorithm outputs ei-
ther a tree decomposition of G of treewidth tw(G) or an indication of the fact that
tw(G) > k.

The algorithm is based on the graph-reduction technique: a connected input
graph of treewidth ≤ k is successively replaced by smaller and smaller graphs in a

1736 HANS L. BODLAENDER AND TORBEN HAGERUP

series of reductions until a constant-size graph results. Starting from a minimum-
width tree decomposition of the final constant-size graph, the reductions are then
undone one by one in the reverse order of their application, where, in undoing a
reduction that originally replaced a graph G′ by a smaller graph G′′, a minimum-
width tree decomposition of G′ is derived from one of G′′. At the end of this process
we obtain a minimum-width tree decomposition of the input graph.

Suppose that v and w are vertices in a graph G′ that are either adjacent or twins
and let G′′ be the graph obtained from G′ by removing v and its incident edges after
first inserting an edge between w and each neighbor of v that was not previously a
neighbor of w; we will call v and w reduction partners and say that G′′ is obtained
from G′ by reduction on the pair {v, w}. A tree decomposition of G′′ can be obtained
from any tree decomposition of G′ by replacing each occurrence of v in a bag by w
if v and w are adjacent in G′ and by removing all occurrences of v if v and w are
twins in G′; hence tw(G′′) ≤ tw(G′). On the other hand, tw(G′) ≤ tw(G′′) + 1, since
a tree decomposition of G′ can be obtained from any tree decomposition of G′′ by
replacing each occurrence of w in a bag by occurrences of both v and w—we will say
that w is expanded. If G′ is of bounded treewidth, we can therefore undo the reduction
transforming G′ into G′′ by applying the width-minimizing procedure of Theorem 2.3
to derive a minimum-width tree decomposition of G′ from one of G′′.

For a fast parallel algorithm it clearly does not suffice to remove vertices one by
one. It is easy to see, however, that the scheme described in the preceding paragraph
remains valid if, rather than reducing on a single pair of vertices, we reduce simulta-
neously on an arbitrary collection of pairs that are sufficiently far apart in the graph
not to interfere with each other. The only difference is that the treewidth of G′ may
now be as much as twice that of G′′, plus one (each vertex in a bag may need to be
expanded into two vertices), which is still fine for the width-minimizing procedure.

Theorem 4.1. For all constants k ≥ 1 and all integers n ≥ 2, the following
problem can be solved on an EREW PRAM using O((log n)2) time, O(n) operations,
and O(n) space: given an n-vertex graph G, construct a minimum-width tree decom-
position of G or decide (correctly) that tw(G) > k.

Proof. For the time being assume that G is connected and of treewidth at most
k. We will apply Lemma 3.1 to G with nmin = 2. Hence let the constants c and d
be as in the lemma and define the concepts small and acquainted accordingly. The
lemma implies that G contains at least cn/2 distinct pairs {v, w} of small vertices
such that v and w are either adjacent or acquainted twins; to see this, note that each
of the cn disjoint plains whose existence is guaranteed by the lemma contains either a
valley of at least two vertices, hence a small vertex with a small neighbor (either the
small neighbor also belongs to the plain or it is one of its boundary vertices), or two
or more acquainted twin valleys of one vertex each. Furthermore, the set R of all such
pairs can be computed in constant time using O(n) operations, since it suffices to let
each small vertex inspect all its neighbors and all vertices with which it is acquainted;
with some care, this can be done without concurrent reading.

We cannot necessarily execute all reductions corresponding to pairs in R, since
vertices in distinct pairs may coincide, be adjacent, or have adjacent entries in some
adjacency list, which hinders the simultaneous execution of the associated reductions.
In order to deal with this complication, we construct a conflict graph with a vertex
for each pair in R and an edge between two vertices if the corresponding reductions
exclude each other for one of the reasons mentioned above. It is easy to see that the
conflict graph is of bounded degree and can be constructed in constant time using

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1737

O(n) operations. Following [21], we define a fractional independent set in an m-
vertex graph H as an independent vertex set in H of size at least εm, where ε is an
(unspecified) positive constant. We proceed to compute a fractional independent set
in the conflict graph, which can be done in O(log n) time using O(n) operations [28,
Lemma 7(b)]. Finally we execute the reductions on the pairs in the independent set,
which takes constant time and uses O(n) operations.

The reductions described above change G into a smaller graph G′. Let us now
see that we can undo the reductions in the sense of deriving a minimum-width tree
decomposition of G from one of G′. We already observed that all that is involved
is to expand certain vertices into the corresponding pair of reduction partners, after
which we can finish using the width-minimizing procedure of Theorem 2.3. Allowing
concurrent reading, the task would be trivial—processors collectively inspecting the
whole tree decomposition could simply expand each such vertex after looking up its
partner in a table. In order to avoid concurrent reading from the table, we begin
by balancing the given tree decomposition of G′ (Lemma 2.2); this may increase its
width but only by a constant factor. We then process the resulting balanced tree
decomposition (T = (X,F), {Ux | x ∈ X}) in topological order; i.e., each node is
processed before all of its children. The processing of a node x in T expands all
vertices in Ux that need to be expanded. If x is the root of T , this is easy. If not,
the identity of the reduction partner of each relevant vertex v ∈ Ux can be passed to
x from its parent y, except if v occurs in Ux for the first time (i.e., if v 6∈ Uy). For
each vertex v the latter happens only at a single tree node x, however, so that in this
case we can use table lookup to find the reduction partner of v without any risk of
concurrent reading. The balanced tree decomposition can be processed as described
in O(log n) time using O(n) operations.

The graph G′ derived from G is connected and of treewidth at most k, so that
a new batch of reductions can be applied to G′. Since G′ is smaller than G by a
constant factor, as measured by the number of vertices, O(log n) successive stages
of simultaneous reductions suffice to reduce the input graph to a graph of constant
size. Provided that the representation of the graph at hand is compacted after each
stage by means of prefix summation, the number of operations and the space needed
decrease geometrically over the stages, so that the whole process uses O((log n)2) time,
O(n) operations, and O(n) space. Undoing the reductions is no more expensive. This
proves Theorem 4.1 for connected input graphs of treewidth at most k.

Suppose now that the input graph G is of treewidth at most k but not connected.
Our approach will be to apply the algorithm developed above not to G but to an
auxiliary connected graph H obtained from G by introducing a new vertex r and an
edge between r and a single vertex in each connected component of G. Except in
the trivial case in which G has no edges, G and H have the same treewidth, so that
a minimum-width tree decomposition of G can be obtained from a minimum-width
tree decomposition of H by removing the occurrences of r from all bags. In order to
select a vertex from each connected component of G, we can apply the first part of
the reduction algorithm to G in a preprocessing phase: each connected component
of G, being of treewidth at most k, is reduced to constant size, at which point the
selection is easy, and the component can be removed (since its size may not decrease
any further, keeping it around might make subsequent stages too expensive).

If the treewidth of the input graph G is larger than k, one or more of its connected
components may fail to be reduced to constant size within the time bound established
for graphs of treewidth at most k, in which case the algorithm can stop and announce

1738 HANS L. BODLAENDER AND TORBEN HAGERUP

⊕ =

Fig. 2. Combination of two terminal graphs using ⊕.

that tw(G) > k. It is easy to see from the description of the algorithm that even
if tw(G) > k, the algorithm never performs an illegal action such as concurrent
reading, and any output produced by the algorithm is a correct minimum-width tree
decomposition of G.

By applying first the algorithm of Theorem 4.1 and then that of Theorem 2.5, we
obtain the result below.

Corollary 4.2. For all constants k ≥ 1 and all integers n ≥ 2, the following
problem can be solved on an EREW PRAM using O((log n)2) time, O(n) operations,
and O(n) space: given an n-vertex graph G, construct a minimum-width path decom-
position of G or decide (correctly) that the pathwidth of G is larger than k.

5. Deciding treewidth on the EREW PRAM. An important bottleneck
for the running time of the algorithm in the previous section is the repeated appli-
cation of the algorithm of Theorem 2.3 while undoing the reductions. When we aim
for a decision algorithm only, we can follow a different approach: we will not undo
reductions, but instead make sure that all reductions preserve treewidth. We actually
describe a generic algorithm, whose instantiations solve various decision problems on
graphs of bounded treewidth; in the more general setting, reductions must not affect
membership in the class of graphs to be recognized.

Our algorithm can be viewed as a parallelization of a linear-time sequential algo-
rithm due to Arnborg et al. [6]. A first parallel version of this algorithm was given in
[9]. The algorithm described there is randomized, works only for graphs of bounded
degree, and uses O(log n) expected time and O(n log n) expected operations on n-
vertex input graphs. The algorithm given in this section works for arbitrary graphs,
uses O(n) operations, and is deterministic but at a cost of an extra factor of O(log∗n)
in the running time. The algorithm of [6] uses an amount of space bounded by a
polynomial but a polynomial whose degree is large and unspecified. We reduce this
to O(n) by means of the bounded adjacency-list search technique.

A terminal graph is a triple G = (V,E,Z), where (V,E) is a graph and Z ⊆ V is
an ordered set of distinguished vertices in G. The vertices in Z and those in V \Z are
called the terminals and the internal vertices of G, respectively. A terminal graph
is open if there are no edges between terminals. For l ≥ 0, an l-terminal graph is a
terminal graph with exactly l terminals. Let Hl denote the class of l-terminal graphs
for l ≥ 0.

Given two l-terminal graphs G1 and G2 for some l ≥ 0, we define G1 ⊕G2 as the
graph obtained by taking the disjoint union of G1 and G2 and then identifying the
ith terminals in G1 and G2 for i = 1, . . . , l. An example is shown in Figure 2. When
there is an edge between a pair of terminals in both G1 and G2, we take just a single
edge between these in G1 ⊕G2.

Let G be a class of graphs. We define an equivalence relation ∼G on the set of
terminal graphs as follows: G1 ∼G G2 if and only if for some l, G1 and G2 both have

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1739

⇒

Fig. 3. A reduction that preserves (non)membership in C2.

l terminals, and for all H ∈ Hl, we have G1 ⊕ H ∈ G if and only if G2 ⊕ H ∈ G.
Informally, G1 and G2 are equivalent under ∼G if any occurrence of G1 in a bigger
graph can be replaced by an occurrence of G2 without affecting membership of the
bigger graph in G. We say that a class G and its defining property P (i.e., G ∈ G if
and only if P (G)) are of finite index if, for every l ≥ 0, Hl splits into a finite number
of equivalence classes under ∼G . (Graph properties of finite index are also known as
being regular or of finite state.) Many important properties are known to be of finite
index.

We illustrate the concepts introduced above through a simple example, in which
P denotes the property of being a simple cycle of even length and G is the class
C2 of graphs with the property P . H2, the class of 2-terminal graphs, splits into

seven equivalence classes H(0)
2 , . . . ,H(6)

2 under the relation ∼C2 . H(0)
2 is the class of

2-terminal graphs without edges and without internal vertices. H(1)
2 , H(2)

2 , and H(3)
2

are classes of 2-terminal graphs consisting of a simple path between the two terminals.

The length of this path is 1 in the case of H(1)
2 , is even for H(2)

2 , and is odd and at

least 3 for H(3)
2 . H(4)

2 and H(5)
2 are classes of 2-terminal graphs that are cycles of even

length. The two terminals are adjacent in graphs in H(4)
2 but not in those in H(5)

2 .

H(6)
2 , finally, is the class of all remaining 2-terminal graphs, such as those containing

a vertex of degree 3 or more. The reader may want to determine the set A of those

pairs (l1, l2) ∈ {0, . . . , 6}2 such that if G1 ∈ H(l1)
2 and G2 ∈ H(l2)

2 , then G1⊕G2 ∈ C2.
E.g., (2, 2) ∈ A, but (2, 3) 6∈ A.

The two 2-terminal graphs shown in Figure 3 are equivalent under the relation

∼C2 (both belong to H(2)
2). Thus if a graph G′ is obtained from another graph G by

replacing an occurrence of the left-hand graph in Figure 3 by an occurrence of the
right-hand graph, we know that G′ ∈ C2 if and only if G ∈ C2. This reduction allows
us to recognize the graphs in C2: when G ∈ C2, we can apply the reduction repeatedly
until we are left with a cycle of constant size. The recognition can also be carried out
in parallel by applying many reductions simultaneously.

As we will now show, the ideas developed in the previous paragraph extend to
any situation in which a graph class of interest can be characterized by an assertion
of the form P (G)∧ (tw(G) ≤ k), where P is a graph property of finite index and k is
a fixed integer (in the example above, any k ≥ 2 will do).

Theorem 5.1. For every graph property P of finite index and for all constants
k ≥ 1 and all integers n ≥ 2, the problem of deciding whether P (G)∧ (tw(G) ≤ k) for
an n-vertex input graph G can be solved on an EREW PRAM using O(log n log∗n)
time, O(n) operations, and O(n) space.

Proof. Assume first that P (G) implies that G is connected. It was shown in
[36] that the class of graphs of treewidth at most k is of finite index, and one easily
observes that the conjunction of two properties of finite index is again of finite index

1740 HANS L. BODLAENDER AND TORBEN HAGERUP

(see, e.g., [14]). Hence G = {G | P (G) ∧ (tw(G) ≤ k)} is of finite index. Let R
be a finite set of open terminal graphs that contains at least one element of each
equivalence class of ∼G comprising one or more open terminal graphs with at most
2(k + 1) terminals, and take nmin as one more than the largest number of vertices of
any graph in R. By Lemma 3.1, we can choose constants d, nmax ≥ 1 and c > 0 such
that if G has more than nmax vertices and G ∈ G, then G contains at least cn disjoint
(d, k, nmin, nmax)-plains (for any adjacency-list representation of G).

The significance of nmin is that any open terminal graph with at least nmin vertices
and at most 2(k + 1) terminals has a smaller equivalent terminal graph in R. In
particular, each plain H together with its boundary B and all edges joining a vertex
in H and a vertex in B, with the vertices in B considered as terminals (call this
an extended plain), is such an open terminal graph, so that it can be replaced by a
smaller terminal graph in R. Considering isomorphic graphs as identical, there is only
a finite number of different extended plains, all of which can therefore be mapped to
equivalent smaller open terminal graphs by means of a finite table T . Each entry in
T corresponds to a reduction in a natural way.

The algorithm proceeds in a number of phases. In each phase, each vertex deter-
mines whether it belongs to a plain and, if so, looks up a corresponding reduction in
T . This can be done in constant time: it suffices to let each vertex u inspect those ver-
tices and edges that lie on a path of length at most 2nmax from u such that the entries
of any two consecutive edges (v, w) and (w, x) on the path are separated by a distance
of at most d in the adjacency list of w; this can be done without concurrent reading.
The reductions found by two distinct vertices may not be simultaneously executable:
the plain containing one vertex may intersect the plain containing the other vertex or
its boundary, or two vertices, one from each plain, may have adjacent entries in some
common boundary vertex. Because we only replace open terminal graphs by other
open terminal graphs, however, these are the only ways in which two reductions can
interfere with each other. As in section 4, we construct a conflict graph of bounded
degree on the vertices belonging to plains, compute a fractional independent set in
the conflict graph, and execute the corresponding reductions, which reduces the size
of the graph by at least a constant factor. After O(log n) stages, either we are left
with a graph of constant size, whose membership in G can be decided directly, or the
input graph did not belong to G.

The only part of a stage that takes more than constant time with a linear number
of processors is the computation of a fractional independent set in the conflict graph.
For this, we employ in the first O(log∗n) stages the algorithm of [28, Lemma 7(b)],
which uses O(logm) time and O(m) operations, where m is the number of vertices
in the conflict graph. In the remaining phases, we use the algorithm of [26, The-
orem 4], which needs O(log∗n) time and O(m log∗n) operations. The total time is
O(log n log∗n), and a simple simulation argument that schedules compactions of the
representation conveniently (see [30, section 4]) shows that the algorithm can be car-
ried out using O(n) operations.

Dropping the assumption that P (G) implies that G is connected, we can still
proceed as described above, provided that we remove and save each connected com-
ponent with fewer than nmin vertices as soon as it arises. After O(log n) stages, either
the input graph has been reduced to an equivalent collection of connected graphs,
each of which contains fewer than nmin vertices, or it did not belong to G. Assume
the former. In constant time, a single processor can combine two graphs in the col-
lection, i.e., replace them by a single graph equivalent to their union and containing

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1741

fewer than nmin vertices. By means of a tree-structured combination process that
uses O(log n) time and O(n) operations, we can therefore reduce the input graph to
a single equivalent graph with fewer than nmin vertices, for which membership in G
can be decided directly.

The theorem implies, in particular, that the problem of deciding whether the
treewidth of a given graph is at most k, for constant k, can be solved in O(log n log∗n)
time with O(n) operations. Moreover, the same result can be shown to hold for
pathwidth. Many well-known graph properties are of finite index. For instance, this
is true of all properties that can be expressed in monadic second-order logic, such as
Hamiltonicity and l-colorability. This was first shown by Courcelle [20]; see [14] for a
possibly more accessible proof.

Theorem 5.1 is nonconstructive: an algorithm with the stated properties is merely
shown to exist. To actually exhibit the algorithm, we must be able to compute the
number nmin and to construct the table T . If we have a terminating algorithm that
decides whether two given terminal graphs are equivalent under ∼G or under some
refinement (subdivision) of ∼G that still has a finite number of equivalence classes,
this can be done by a method described in [6] (in a general algebraic setting). For
the case in which G is the class of all graphs of treewidth at most k, such an explicit
decision algorithm was exhibited in [36]. If G is the set of those graphs of treewidth at
most k that satisfies a property P expressed in monadic second-order logic, then an
algorithm that decides a subdivision of ∼G with a finite number of equivalence classes
can be obtained by combining results implicit in [14, 20, 36].

It is also possible to apply the parallel reduction techniques to problems that
are of finite integer index, in the sense of [9]. This allows deciding on the size of
a maximum independent set, minimum vertex cover, minimum dominating set, and
others on graphs of bounded treewidth in O(log n log∗n) time using O(n) operations
on an EREW PRAM. Using the technique of [9, section 6.1], it is also possible to
construct corresponding solutions for some of these problems. With this technique
and a more refined analysis, Bodlaender and de Fluiter obtained algorithms that work
on an EREW PRAM using O(log n log∗n) time and O(n) operations for the problems
of recognizing and building a parse tree of series-parallel graphs and of constructing
a minimum-width tree decomposition of graphs of treewidth 2 [12, 23].

6. Deciding treewidth on the CRCW PRAM. In this section we show how
the running time of O(log n log∗n) of the algorithm in the previous section can be
reduced to O(log n) if we move to the stronger CRCW PRAM. Among the many
variants of the CRCW PRAM, we employ one that allows m processors to compute
the or of m bits in constant time using O(m) space for all integers m ≥ 1; this
requirement excludes none of the CRCW PRAM variants commonly considered. We
assume an instruction set that includes unit-time binary left and right shifts of words
of O(log n) bits by amounts specified in a second word.

As concerns its running time, the EREW PRAM algorithm has two bottlenecks:
first, as dictated by efficiency considerations, the representation of the graph at hand
is compacted Θ(log∗n) times, with each compaction taking logarithmic time. Second,
in each of Θ(logn) stages a fractional independent set is found in a conflict graph of
bounded degree for which we spend Θ(log∗n) time per stage. Moving to the CRCW
PRAM, we can easily eliminate the first bottleneck, since in this model compaction
can be done in Θ(logn/log log n) time [19] rather than the Θ(logn) time for the
EREW PRAM. Before attacking the second bottleneck, let us observe that we can
execute Θ(log n/log∗n) stages of the EREW PRAM algorithm without exceeding a

1742 HANS L. BODLAENDER AND TORBEN HAGERUP

time bound of O(log n). After compacting once, we can then associate 2Ω(log n/log∗n)

processors with each remaining vertex in the graph, We will express this by saying
that we have a processor advantage of 2Ω(log n/log∗n), which is much more than what
we need in the following.

The remaining problem is to finish the computation in O(log n) time making use
of the large processor advantage mentioned above, which we will do by means of
derandomization. The task is, for a positive integer m ≤ n, to compute a fractional
independent set I in an m-vertex graph of bounded degree in constant time. Observe
that there is a very simple randomized algorithm for obtaining I: each vertex picks a
random bit uniformly from {0, 1} and independently of other vertices and then steps
into I exactly if it picked a 1 while each of its neighbors picked a 0. Although this
formulation assumes that the vertices make independent choices, it is easy to see that
much less will also do. If each vertex v has at least a constant probability of stepping
into I, then the expected size of I is Ω(m), so that, obviously, at least one possible
execution of the randomized algorithm will result in |I| = Ω(m). Whether v steps into
I, however, is a function only of the random bits picked by v and by its neighbors; i.e.,
it suffices to guarantee d-wise independence, where d is one more than the maximum
degree of the graph. In the case of perfect d-wise independence, the probability that
v steps into I is at least 2−d. Since we can allow any positive constant here instead
of 2−d, however, we can relax the requirements even more. For ε > 0, random bits
X1, . . . , Xm are said to be (ε, d)-independent [3] if, for all positive integers l ≤ d,
all distinct integers i1, . . . , il with 1 ≤ i1, . . . , il ≤ m and all b1, . . . , bl ∈ {0, 1}, the
probability of the event Xi1 = b1, Xi2 = b2, . . . , Xil = bl deviates from 2−l by at
most ε (d-wise independence is the special case ε = 0). It is easy to see that (ε, d)-
independent random bits, where ε = 2−d−1, suffice for our purpose. We now appeal
to Theorem 2 of [3], which promises that m (2−d−1, d)-independent random bits can
be drawn from a sample space of size (logm)O(1) (where the exponent depends on d);
we argue separately in Lemma 6.2 below that the computation of the m bits can be
carried out in constant time with m processors.

Since our processor advantage is much bigger than polylogarithmic in n, we can
use the limited-randomness algorithm developed above and simulate all (logm)O(1) =
(log n)O(1) possible executions of it in parallel. We know that at least one execution
will be good, in the sense that it will lead to an independent set I of size Ω(m). We
would like simply to pick a good execution, but this is not entirely trivial, since we
have only constant time per stage, which is not sufficient for computing the size of
I. Using the deterministic approximate-summation algorithm of [29, Theorem 3], we
can compute the size of I, up to a constant factor (which is sufficiently accurate),
in O((log logn)3) time. While this is fast, it is not fast enough. We overcome this
using a technique of [29], namely to simulate all possible executions of the randomized
algorithm not just for one stage at a time but for Θ((log logn)3) consecutive stages,
after which we can spend O((log logn)3) time determining a good execution without
violating our time bound (as much time is then spent on graph reduction as on

counting). Doing this increases the size of the sample space to (log n)O((log log n)3) =

2O((log log n)4), which is still sufficiently small, in view of our larger processor advantage.

Theorem 6.1. For every graph property P of finite index and for all constants
k ≥ 1 and all integers n ≥ 2, the problem of deciding whether P (G) ∧ (tw(G) ≤ k)
for an n-vertex input graph G can be solved on a CRCW PRAM using O(log n) time,
O(n) operations, and O(n) space.

As in the case of Theorem 5.1, Theorem 6.1 is nonconstructive; see the discussion

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1743

near the end of section 5. In order to complete the proof of Theorem 6.1, we still have
to show the following.

Lemma 6.2. For all given integers m,K ≥ 2 with K = (logm)O(1) and all
constant integers d ≥ 2, m (1/K, d)-independent random bits can be computed in
constant time on a CRCW PRAM using m processors, O(m) space, and a single
random integer drawn from the uniform distribution over a range of size (logm)O(1).

Proof. Our construction, described below, is an elaboration of one given in [3,
Theorem 2].

Without loss of generality assume that d is odd, say, d = 2t + 1. Let r be the
smallest number of the form 2 · 3i no smaller than log(m + 1), where i is an integer,
and take p as the smallest prime no smaller than (2K(1 + rt))2.

Let F be the set of all bit vectors of length r and denote by φ : {0, . . . , 2r−1} → F
the function that maps each integer to its standard r-bit binary representation. As-
sume that F is organized into a field by means of suitable addition and multiplication
operations; details will be given below.

Now choose a random integer h from the uniform distribution over {0, . . . , p− 1}
and compute the bit vector y of length 1 + rt whose (i+ 1)st bit, for i = 0, . . . , rt, is
0 exactly if i+ h ≡ s2 (mod p) for some s ∈ {1, . . . , p− 1} (i.e., if h+ i is a quadratic
residue modulo p). Finally, for i = 1, . . . ,m, compute the ith output bit as the inner
product modulo 2 of y with a bit vector xi of length 1 + rt constructed as follows:
the first bit of xi is 1, the next r bits are those of φ(i), the next r bits are those of
(φ(i))3, where the powering is done according to the multiplication in F , the next r
bits are those of (φ(i))5, etc., until the last r bits, which are those of (φ(i))2t−1.

It is proved in [3, Proposition 2] that the inner product modulo 2 of y with any
fixed nonzero bit vector of length 1+rt is ε-biased [3], where ε = rt/

√
p+(1 + rt)/p ≤

2(1 + rt)/
√
p ≤ 1/K; i.e., it takes on the values 0 and 1 with probabilities differing

by at most ε. It then follows from [3, Lemma 2] and [2, Proposition 6.5] that the m
bits output by the algorithm are indeed (1/K, d)-independent (a requirement of [3,
Lemma 2] to the effect that the size of a sample space called Smn must be a power of 2
is not satisfied in the present application, where this size is the prime p, but is in fact
superfluous). What remains is to bound the resources needed by the computation.

Obviously, r = O(logm) and, by Bertrand’s postulate (see, e.g., [32, Theo-
rem 418]), which asserts the existence of a prime in the range {s, . . . , 2s} for every
positive integer s, we obtain that p = (logm)O(1), so that the random integer h is in-
deed chosen from a range as small as claimed in the lemma. In order to compute r and
p in constant time, we proceed as follows: first, comparing the powers 21, 22, 23, . . .
with m+ 1 in parallel, we obtain dlog(m+ 1)e. It is then easy to compute an integer
g with g ≥ p, but g = (logm)O(1). The remaining computation uses g2 processors.
Using trial division by all smaller numbers in the set S = {2, . . . , g}, we determine
the set of primes in S. Subsequently, using trial division by all smaller primes, we
determine the set of powers of 3 in S, after which it is easy to select first r and then p;
each is the smallest number in S satisfying a property that can be tested in constant
time by one processor. The vector y is obtained similarly by first computing the set
of quadratic residues modulo p.

In order to construct the vectors x1, . . . , xm, we need to implement the field opera-
tions of F . We define the product of the vectors (ar−1, ar−2, . . . , a0) and (br−1, br−2, . . . ,

b0) as (cr−1, cr−2, . . . , c0), where
∑r−1

i=0 cix
i is the remainder polynomial obtained

by dividing the product (
∑r−1

i=0 aix
i)(
∑r−1

i=0 bix
i) by the fixed polynomial f(x) =

xr + xr/2 + 1 over the 2-element field Z2. Since f(x) is irreducible over Z2 [37,

1744 HANS L. BODLAENDER AND TORBEN HAGERUP

Exercise 3.96], it is well-known that this multiplication operation together with com-
ponentwise addition over Z2 indeed turns F into a field.

Compute q as a positive integer with q ≤ (logm)/5, but q = Ω(logm). We can
implement addition and multiplication over Z2 of polynomials of degree less than q,
represented by bit vectors in the obvious way, by means of table lookup. In each case,
we need a (2q − 1) × (2q − 1) table with entries in the range {0, . . . , 22q−1 − 1}. In
constructing the tables, we can therefore, for each table entry and each integer in the
range {0, . . . , 22q−1 − 1}, dedicate a team of Ω(m1/5) processors to testing whether
the integer is the correct value of the entry under consideration, in which case the
team will fill in that table entry. In the case of addition, the testing is trivial to do in
constant time with just q processors, each of which takes care of one bit position. For
multiplication, the problem reduces to computing the parities of 2q− 1 bit sequences,
each of length at most q. Since the parity of q bits can be computed in constant time
with O(mδ) processors, for arbitrary constant δ > 0 (see, e.g., [40, lemma, p. 375]),
we have enough processors in this case as well.

Because r = O(q), addition and multiplication over Z2 of polynomials of degree
less than r reduces to a constant number of additions and multiplications over Z2

of polynomials of degree less than q, so that both operations can be carried out
in constant time by one processor using the tables constructed above. In order to
complete the implementation of multiplication over F , we need to describe how to
compute the remainder over Z2 of a polynomial a(x) =

∑l
i=0 aix

i modulo f(x), where
r ≤ l ≤ 2r − 2. But since none of the powers xr−1, . . . , x(r/2)+1 occur in f(x), the

polynomial a(x)−(
∑l

i=r aix
i−r)f(x), which obviously has the same remainder modulo

f(x) as a(x), is of degree at most max{l − r/2, r − 1}, so that constant time suffices
to reduce the degree of the input polynomial by at least r/2 or below r. Doing this
twice completes the computation.

The final operation that must be supported is forming the inner product modulo 2
of two bit vectors, each of length O(r). This operation can easily be carried out in
constant time by one processor using a table that maps each bit sequence of q bits to its
parity. Before the table can be used, it is necessary to convert y from a representation
with one bit per word to one with q bits per word. Again, this can be done in constant
time by trying out all possibilities in parallel.

Acknowledgments. We thank Jordan Gergov and Rajeev Raman for helpful
discussions related to the proof of Lemma 6.2.

REFERENCES

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka, A simple parallel tree
contraction algorithm, J. Algorithms, 10 (1989), pp. 287–302.

[2] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–583.

[3] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, Simple constructions of almost k-wise
independent random variables, Random Structures Algorithms, 3 (1992), pp. 289–304.

[4] R. J. Anderson and G. L. Miller, Deterministic parallel list ranking, Algorithmica, 6 (1991),
pp. 859–868.

[5] S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embeddings in a
k-tree, SIAM J. Alg. Discrete Methods, 8 (1987), pp. 277–284.

[6] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese, An algebraic theory of graph
reduction, J. Assoc. Comput. Mach., 40 (1993), pp. 1134–1164.

[7] H. L. Bodlaender, NC-algorithms for graphs with small treewidth, in Proc. 14th International
Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer
Science 344, J. van Leeuwen, ed., Springer-Verlag, Berlin, 1989, pp. 1–10.

PARALLEL ALGORITHMS FOR BOUNDED TREEWIDTH 1745

[8] H. L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth,
SIAM J. Comput., 25 (1996), pp. 1305–1317.

[9] H. L. Bodlaender, On reduction algorithms for graphs with small treewidth, in Proc. 19th
International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science 790, J. van Leeuwen, ed., Springer-Verlag, Berlin, 1994, pp. 45–56.

[10] H. L. Bodlaender, Improved self-reduction algorithms for graphs with bounded treewidth,
Discrete Appl. Math., 54 (1994), pp. 101–115.

[11] H. L. Bodlaender, A Partial k-Arboretum of Graphs with Bounded Treewidth, Tech. Re-
port UU–CS–1996–02, Department of Computer Science, Utrecht University, Utrecht, the
Netherlands, 1996; Theoret. Comput. Sci., to appear.

[12] H. L. Bodlaender and B. de Fluiter, Parallel algorithms for series parallel graphs, in Proc.
4th Annual European Symposium on Algorithms, Lecture Notes in Computer Science 1136,
J. Diaz and M. Serna, eds., Springer-Verlag, Berlin, 1996, pp. 277–289.

[13] H. L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the pathwidth and
treewidth of graphs, J. Algorithms, 21 (1996), pp. 358–402.

[14] R. B. Borie, R. G. Parker, and C. A. Tovey, Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families,
Algorithmica, 7 (1992), pp. 555–581.

[15] N. Chandrasekharan, Fast Parallel Algorithms and Enumeration Techniques for Partial k-
Trees, Ph.D. thesis, Clemson University, Clemson, SC, 1989.

[16] N. Chandrasekharan and S. T. Hedetniemi, Fast parallel algorithms for tree decomposing
and parsing partial k-trees, in Proc. 26th Annual Allerton Conference on Communication,
Control, and Computing, Urbana-Champaign, IL, 1988, pp. 283–292.

[17] R. Cole and U. Vishkin, Approximate parallel scheduling. Part I: The basic technique with
applications to optimal parallel list ranking in logarithmic time, SIAM J. Comput., 17
(1988), pp. 128–142.

[18] R. Cole and U. Vishkin, The accelerated centroid decomposition technique for optimal parallel
tree evaluation in logarithmic time, Algorithmica, 3 (1988), pp. 329–346.

[19] R. Cole and U. Vishkin, Faster optimal parallel prefix sums and list ranking, Inform. and
Comput., 81 (1989), pp. 334–352.

[20] B. Courcelle, The monadic second-order logic of graphs I. Recognizable sets of finite graphs,
Inform. and Comput., 85 (1990), pp. 12–75.

[21] N. Dadoun and D. G. Kirkpatrick, Parallel construction of subdivision hierarchies, J. Com-
put. System Sci., 39 (1989), pp. 153–165.

[22] M. R. Fellows and M. A. Langston, On search, decision, and the efficiency of polynomial-
time algorithms, J. Comput. System Sci., 49 (1994), pp. 769–779.

[23] B. de Fluiter and H. L. Bodlaender, Parallel algorithms for treewidth two, in Proc. 23rd
International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science 1335, R. H. Möhring, ed., Springer-Verlag, Berlin, 1997, pp. 157–170.

[24] H. Gazit, G. L. Miller, and S.-H. Teng, Optimal tree contraction in an EREW model, in
Concurrent Computations: Algorithms, Architecture, and Technology, S. K. Tewksbury,
B. W. Dickinson, and S. C. Schwartz, eds., Plenum Press, New York, 1988, pp. 139–156.

[25] A. Gibbons and W. Rytter, Optimal parallel algorithms for dynamic expression evaluation
and context-free recognition, Inform. and Comput., 81 (1989), pp. 32–45.

[26] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon, Parallel symmetry-breaking in sparse
graphs, SIAM J. Discrete Math., 1 (1988), pp. 434–446.

[27] D. Granot and D. Skorin–Kapov, NC algorithms for recognizing partial 2-trees and 3-trees,
SIAM J. Discrete Math., 4 (1991), pp. 342–354.

[28] T. Hagerup, Optimal parallel algorithms on planar graphs, Inform. and Comput., 84 (1990),
pp. 71–96.

[29] T. Hagerup, Fast deterministic processor allocation, J. Algorithms, 18 (1995), pp. 629–649.
[30] T. Hagerup, M. Chrobak, and K. Diks, Optimal parallel 5-colouring of planar graphs, SIAM

J. Comput., 18 (1989), pp. 288–300.
[31] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde, Characterizations of k-terminal

flow networks and computing network flows in partial k-trees, in Proc. 6th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1995, pp. 641–649; J. Comput. System Sci., to
appear.

[32] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford
University Press, Oxford, 1979.

[33] S. Khuller and B. Schieber, Efficient parallel algorithms for testing k-connectivity and find-
ing disjoint s-t paths in graphs, SIAM J. Comput., 20 (1991), pp. 352–375.

1746 HANS L. BODLAENDER AND TORBEN HAGERUP

[34] S. R. Kosaraju and A. L. Delcher, Optimal parallel evaluation of tree-structured computa-
tions by raking, in Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer
Science 319, J. H. Reif, ed., Springer-Verlag, Berlin, 1988, pp. 101–110.

[35] J. Lagergren, Efficient parallel algorithms for graphs of bounded tree-width, J. Algorithms,
20 (1996), pp. 20–44.

[36] J. Lagergren and S. Arnborg, Finding minimal forbidden minors using a finite congru-
ence, in Proc. 18th International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 510, J. Leach Albert, M. Rodŕıguez Artalejo, and
B. Monien, eds., Springer-Verlag, Berlin, 1991, pp. 532–543.

[37] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge
University Press, Cambridge, 1986.

[38] J. Matous̆ek and R. Thomas, Algorithms finding tree-decompositions of graphs, J. Algorithms,
12 (1991), pp. 1–22.

[39] G. L. Miller and J. H. Reif, Parallel tree contraction and its application, in Proc. 26th
Annual Symposium on Foundations of Computer Science, 1985, pp. 478–489.

[40] P. Ragde, The parallel simplicity of compaction and chaining, J. Algorithms, 14 (1993),
pp. 371–380.

[41] S. Rajasekaran and J. H. Reif, Optimal and sublogarithmic time randomized parallel sorting
algorithms, SIAM J. Comput., 18 (1989), pp. 594–607.

[42] B. A. Reed, Finding approximate separators and computing tree width quickly, in Proc. 24th
Annual ACM Symposium on the Theory of Computing, 1992, pp. 221–228.

[43] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Com-
bin. Theory Ser. B., 63 (1995), pp. 65–110.

[44] R. E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, SIAM J. Comput.,
14 (1985), pp. 862–874.

[45] E. Wanke, Bounded tree-width and LOGCFL, J. Algorithms, 16 (1994), pp. 470–491.

FIRST-ORDER QUERIES ON FINITE STRUCTURES OVER THE
REALS∗

JAN PAREDAENS† , JAN VAN DEN BUSSCHE‡ , AND DIRK VAN GUCHT§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1747–1763, December 1998 011

Abstract. We investigate properties of finite relational structures over the reals expressed by
first-order sentences whose predicates are the relations of the structure plus arbitrary polynomial
inequalities, and whose quantifiers can range over the whole set of reals. In constraint programming
terminology, this corresponds to Boolean real polynomial constraint queries on finite structures.
The fact that quantifiers range over all reals seems crucial; however, we observe that each sentence
in the first-order theory of the reals can be evaluated by letting each quantifier range over only a
finite set of real numbers without changing its truth value. Inspired by this observation, we then
show that when all polynomials used are linear, each query can be expressed uniformly on all finite
structures by a sentence of which the quantifiers range only over the finite domain of the structure.
In other words, linear constraint programming on finite structures can be reduced to ordinary query
evaluation as usual in finite model theory and databases. Moreover, if only “generic” queries are
taken into consideration, we show that this can be reduced even further by proving that such queries
can be expressed by sentences using as polynomial inequalities only those of the simple form x < y.

Key words. first-order logic, linear arithmetic, relational databases, constraint programming

AMS subject classifications. Primary, 68P15; Secondary, 03C07, 03C10, 03C13

PII. S009753979629766

1. Introduction. In this paper we are motivated by two fields of computer sci-
ence which heavily rely on logic: relational databases and constraint programming.
We will look at the latter from the perspective of the former.

In classical relational database theory [1], a database is modeled as a relational
structure. The domain of this structure is some fixed universe U of possible data
elements (such as all strings, or all natural numbers), and is typically infinite. The
relations of the structure, in contrast, are always finite, as they model finite tables
holding data. As a consequence, the active domain of the database, consisting of all
data elements actually occurring in one or more of the relations, is finite as well.

A (Boolean) query is a mapping from databases (over some fixed relational sig-
nature) to true or false. A basic way of expressing a query is by a first-order sentence
over the relational signature. For example, on a database containing information
on children and hobbies, the query “does each parent have at least all hobbies of
his children?” is expressed by the sentence (∀p)(∀c)(∀h)(Child(p, c) ∧ Hobby(c, h) →
Hobby(p, h)).

Since the domain of each database is U, the quantifiers in a sentence expressing a
query will naturally range over the whole infinite U. However, Aylamazyan et al. [5]
showed that in order to obtain the result of the query it suffices to let the quantifiers
range over the active domain augmented with a finite set of q additional data elements,
where q is the number of quantified variables in the formula expressing the query. The

∗ Received by the editors February 5, 1996; accepted for publication (in revised form) October 9,
1996; published electronically June 3, 1998.

http://www.siam.org/journals/sicomp/27-6/29796.html
† Department of Mathematics and Computer Science, University of Antwerp (UIA), Universiteit-

splein 1, B-2610 Antwerp, Belgium (pareda@uia.ac.be).
‡ Department WNI, University of Limburg (LUC), B-3590 Diepenbeek, Belgium (vdbuss@

luc.ac.be).
§ Computer Science Department, Indiana University, Bloomington, IN 47405-4101 (vgucht@cs.

indiana.edu).

1747

1748 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

intuition behind this result is that all data elements outside the active domain of a
given database are alike with respect to that database.

Alternatively, we can choose to let the quantifiers range over the active domain
only, thus obtaining a semantics which is quite different from the natural interpreta-
tion. For example, consider databases over the single unary relation symbol P . Then
the sentence (∀x)P (x) will always be false under the natural interpretation, while un-
der the active-domain interpretation it will always be true. In fact, it is not obvious
that each query expressible under the natural interpretation is also expressible under
the active-domain interpretation. Hull and Su [15] established that the implication
indeed holds. (The converse implication holds as well, since the active-domain in-
terpretation can easily be simulated under the natural interpretation using bounded
quantification.)

In recent years, much attention has been paid to “constraint programming lan-
guages” (e.g., [9]). In particular, in 1990, Kanellakis, Kuper, and Revesz demonstrated
that the idea of constraint programming also applies to database query languages by
introducing the framework of “constraint query languages” [16]. An important in-
stance of this framework is that of real polynomial constraints. Here, the universe
U of data elements is the field R of real numbers. Databases, then, are relational
structures over R, but the database relations need no longer be finite; it suffices that
they are definable as finite Boolean combinations of polynomial inequalities. In other
words, each k-ary relation of the structure must be a semi-algebraic subset of Rk [10].

A basic way of querying real polynomial constraint databases is again by first-
order sentences, which can now contain polynomial inequalities in addition to the
predicate symbols of the relational signature. For example, if the database holds a set
S of points in R2, the query “do all points in S lie on a common circle?” is expressed
by (∃x0)(∃y0)(∃r)(∀x)(∀y)(S(x, y) → (x−x0)

2+(y−y0)
2 = r2). Note that quantifiers

are naturally interpreted as ranging over the whole of R. In order to evaluate such
a sentence on a database, we replace each predicate symbol in the formula by the
polynomial definition of the corresponding database relation, and obtain a sentence
in the pure first-order theory of the reals. As is well known, this theory is decidable
[22]; the truth value of the obtained sentence yields the result of the query. So, real
polynomial constraint queries are effectively computable.

Finite relations are semi-algebraic, so that finite relational databases over the
reals form an important special case of real polynomial constraint databases. For
example, if we want to model a database holding a finite number of rectangles, we
can either choose to store the full extents of the rectangles, resulting in the infinite
set of all points on the rectangles (represented in terms of linear inequalities in the
obvious way), or we can choose to store only the corner points of each rectangle,
resulting in a finite relation.

In the present paper, we investigate whether the results by Aylamazyan et al.
[5] and by Hull and Su [15], mentioned in the beginning of this Introduction, carry
over from classical first-order queries on relational databases to polynomial constraint
queries on finite databases over the reals. Indeed, as in the classical case, one can
give an alternative active-domain semantics to constraint sentences and again ask
whether this is without loss of expressive power. Note, however, that active-domain
quantification defies the very nature of constraint programming as a means to reason
about intentionally defined, potentially infinite, ranges of values. Hence, it is not
obvious that the results just mentioned might carry over at all.

Nonetheless, we have found a natural analog of the Aylamazyan et al. theorem,

FIRST-ORDER QUERIES OVER THE REALS 1749

and we have been able to establish the verbatim analog of the Hull–Su theorem in
the case when only linear polynomials are used. This is often the case in practice.
Our result might be paraphrased by saying that on finite structures, first-order linear
constraint programming can be reduced to ordinary query evaluation as usual in finite
model theory and databases.

Our development is based upon the following observation. Consider a prenex
normal form sentence (Q1x1) . . . (Qnxn)M(x1, . . . , xn) in the first-order theory of the
reals. For any finite set D0 of real numbers, there exists a sequence D0 ⊆ D1 ⊆
· · · ⊆ Dn of finite sets of reals such that the sentence can be evaluated by letting
each quantifier Qi range over Di only (rather than over the whole of R) without
changing the sentence’s truth value. By taking D0 to be the active domain of a given
finite database over the reals, we get the analog in the real case of the Aylamazyan
et al. theorem.

The reader familiar with Collins’s method for quantifier elimination in real-closed
fields through cylindrical algebraic decomposition (cad) [3, 4, 12] will not be surprised
by the above observation. Indeed, it follows more or less directly from an obvious
adaptation of the cad construction. However, we give an alternative, self-contained
proof from first principles which abstracts away the purely algorithmical aspects of the
cad construction and focuses on the logic behind it. Importantly, this proof provides
us with a basis to show how, in the case of linear polynomials, the construction of
the sequence D1 ⊆ · · · ⊆ Dn departing from the active domain D0 can be simulated
using a linear constraint formula. As a result, we obtain the analog in the real case
of the Hull–Su theorem.

In a final section of this paper, we look at queries that are “generic,” i.e., that
do not distinguish between isomorphic databases. Genericity is a natural criterion in
the context of classical relational databases [2, 11]. Perhaps this is a little less so for
databases over the reals; in other work [19] we have proposed alternative, “spatial”
genericity criterions based on geometrical intuitions. Nevertheless, it remains inter-
esting to investigate which classically generic queries can be expressed using linear
constraint sentences.

Sentences that do not contain any polynomial inequalities always express generic
queries, but from the moment a sentence even contains only simple inequalities of the
form x < y it can already be nongeneric. Furthermore, examples are known (e.g.,
[1, Exercise 17.27]) of generic queries expressible with such simple inequalities but
not without. In other words, simple inequalities, though inherently nongeneric when
viewed in isolation, help to express more generic queries. The natural question now
is whether general linear polynomial inequalities help even more. We will answer this
question negatively.1

This paper is organized as follows. We start with a rather general section 2 in
which we introduce the notion of domain sequence on which much of our development
will hinge. In section 3 we then introduce the subject of queries on real databases. In
section 4 we focus on the linear case. In section 5 we discuss generic queries.

Since we presented the original ideas contained in the present paper at a confer-
ence [20], several researchers have been able to generalize our results. We provide a
brief summary of these generalizations in section 6.

1 We thus provide a partial rectification of Kuper’s original intuitions [17] (which are incorrect as
stated).

1750 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

2. Domain sequences. We will use the basic terminology from mathematical
logic [13]. Let A be a structure over a finite relational vocabulary L. The domain
of A is denoted by A. Let Φ(x1, . . . , xk) be a first-order formula over L written in
prenex normal form

(∗) (Qk+1xk+1) . . . (Qnxn)M(x1, . . . , xn),

with each Qi either ∃ or ∀ and M quantifier-free. If k = 0 then Φ is a sentence; if
k = n then Φ is quantifier-free. If ā = a1, . . . , ak ∈ A is a tuple of elements in A then
the truth of Φ in A with ai substituted for xi is denoted by A |= Φ[ā].

If Dk+1, . . . , Dn are subsets of A, then we write

(A;Dk+1, . . . , Dn) |= Φ[ā]

if Φ[ā] evaluates to true in A when we let each quantifier Qi range over Di only rather
than over the whole of A.

Example 2.1. Let A consist of the integers together with the predicate y =
x2, and let Φ be the sentence (∀x)(∃y)y = x2. Then (A; {−1, 2}, {1, 4}) |= Φ, but
(A; {−1, 2}, {1, 3}) 6|= Φ.

In this section, we prove the following theorem.
Theorem 2.2. Let Φ be a sentence (Q1x1) . . . (Qnxn)M(x1, . . . , xn), and let D0

be a finite subset of A. Then there exists an increasing sequence D0 ⊆ D1 ⊆ · · · ⊆ Dn

of finite subsets of A such that

A |= Φ ⇐⇒ (A;D1, . . . , Dn) |= Φ.

Example 2.3. As a trivial illustration, let A consist of the integers together with
the predicate x = y2, and let Φ be the sentence (∀x1)(∃x2)x2 = (x1)

2. Let D0 be the
empty set. We have A |= Φ, and indeed, for D1 = {−1, 2} and D2 = {−1, 2, 1, 4}, we
have (A;D1, D2) |= Φ.

To prove Theorem 2.2 we introduce various auxiliary notions on which we will
also rely in later sections.

We will use the following natural equivalence relation on An.
Definition 2.4. Two points ā and b̄ in An are called equivalent, denoted ā ≡ b̄,

if for each atomic formula F (x1, . . . , xn) we have A |= F [ā] iff A |= F [b̄]. In model-
theoretic terminology, ā and b̄ are equivalent if they are of the same basic type in
A.

Example 2.5. Let A consist of the reals together with the predicates C(x, y) θ
0, L1(x, y) θ 0, and L2(x, y) θ 0, where θ is <, =, or >, and C, L1, and L2 are
polynomials describing the circle and two lines depicted in Figure 1. The same figure
shows that there are 19 equivalence classes in A2: {a}, {b, c}, {d, e}, A, B ∪D, C, E,
F ∪H, G, I, J ∪ L, K, α, β, γ, δ ∪ λ, ε, η, and κ.

We now extend this equivalence relation inductively to lower dimensions such
that the equivalence classes at each dimension are “cylindrical” over the equivalence
classes at the next lower dimension.

Definition 2.6. Let i < n and assume ≡ is already defined on Ai+1. Then for
ā, b̄ ∈ Ai we say ā ≡ b̄ if for each ai+1 ∈ A there is a bi+1 ∈ A such that (ā, ai+1) ≡
(b̄, bi+1) and conversely, for each bi+1 there is an ai+1 such that (b̄, bi+1) ≡ (ā, ai+1).

Example 2.7. In Figure 2 there are 12 equivalence classes in A: {p}, {q}, {r},
{s}, {t}, {u}, P , Q ∪ V , R, S, T , and U .

FIRST-ORDER QUERIES OVER THE REALS 1751

Fig. 1. Equivalence classes in the plane induced by a circle and two lines.

Fig. 2. From equivalence classes in A2 (Example 2.5) to equivalence classes in A.

We note the following lemma for further use.
Lemma 2.8. For each i, ≡ is of finite index on Ai.
Proof. The proof is by downward induction on i. The base case i = n is trivial

since the number of atomic formulas F (x1, . . . , xn) is finite (we assumed a finite
relational vocabulary). So assume i < n. For ā ∈ Ai, let κ(ā) be the set of equivalence
classes in Ai+1 intersecting the “vertical line through ā” {(ā, ai+1) | ai+1 ∈ A}.
Clearly, for ā, b̄ ∈ Ai, ā 6≡ b̄ implies κ(ā) 6= κ(b̄). Since, by induction, ≡ is of finite
index on Ai+1, κ can have only a finite number of possible values and hence ≡ is of
finite index on Ai as well.

The relevance of the equivalence relations just defined is demonstrated by the
following lemma. We use the following notation: let Φ(x̄) be as in (∗) above. For
k ≤ i ≤ n, Φ|i stands for the formula

(Qi+1xi+1) . . . (Qnxn)M(x1, . . . , xn).

So, Φ|k equals Φ and Φ|n equals M .

1752 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

Fig. 3. Equivalent points and formula satisfaction.

Lemma 2.9. Let k ≤ i ≤ n, and let ā ≡ b̄ be equivalent points in Ai. Then

A |= Φ|i[ā] ⇐⇒ A |= Φ|i[b̄].

Proof. The proof is a straightforward downward induction on i. The base case,
i = n and Φ|n being quantifier-free, is obvious. Now let k ≤ i < n. We have
Φ|i = (Qi+1xi+1)Φ|i+1. We first consider the case Qi+1 = ∃. Note that we only have
to prove the implication from left to right; the other direction follows by symmetry.
If A |= Φ|i[ā] then there exists ai+1 ∈ A such that A |= Φ|i+1[ā, ai+1]. Since ā ≡ b̄,
there exists bi+1 ∈ A such that (ā, ai+1) ≡ (b̄, bi+1). By the induction hypothesis, it
follows that A |= Φ|i+1[b̄, bi+1] and hence A |= Φ|i[b̄].

The case Qi+1 = ∀ is similar. If A |= Φ|i[ā] then for each ai+1 ∈ A we have
A |= Φ|i+1[ā, ai+1]. Since ā ≡ b̄, for each bi+1 ∈ A there exists an ai+1 ∈ A such
that [b̄, bi+1] ≡ [ā, ai+1]. By the induction hypothesis, it follows that for each bi+1,
A |= Φ|i+1[b̄, bi+1] and hence A |= Φ|i[b̄].

Example 2.10. Continuing Examples 2.5 and 2.7, let C(x, y) = x2+y2−20x+75,
L1(x, y) = x+y−5, and L2(x, y) = y−14. Let Φ be the sentence (∀x1)(∃x2)(x1+x2−
5 = 0∧(x2−14 > 0∨(x1)

2+(x2)
2−20x1+75 < 0)). This is illustrated in Figure 3. We

have Φ|0 = Φ, Φ|1 = (∃x2)(x1+x2−5 = 0∧(x2−14 > 0∨(x1)
2+(x2)

2−20x1+75 < 0)),
and Φ|2 = x1 + x2 − 5 = 0 ∧ (x2 − 14 > 0 ∨ (x1)

2 + (x2)
2 − 20x1 + 75 < 0). As

can be deduced from Example 2.7 the equivalence classes in A are (−∞,−9), [−9],
(−9,−5)∪ (5,∞), [−5], (−5,−3), [−3], (−3, 0), [0], (0, 3), [3], (3, 5), and [5]. We have
A |= Φ|1[a] for each a ∈ (−∞,−9) ∪ (−5,−3) ∪ [−3] ∪ (−3, 0].

The notion of domain sequence is defined next.
Definition 2.11. A sequence Dk ⊆ Dk+1 ⊆ · · · ⊆ Dn of finite subsets of A is

called a domain sequence if for each k ≤ i < n:

∀ā ∈ (Di)
i, ∀ai+1 ∈ A, ∃a′i+1 ∈ Di+1 : (ā, ai+1) ≡ (ā, a′i+1).

FIRST-ORDER QUERIES OVER THE REALS 1753

Fig. 4. Domain sequence construction.

Example 2.12. Continuing Example 2.10, from Figure 4 we see that (D0, D1, D2),
with

D0 = {0},
D1 = {−10,−9,−7,−5,−4,−3,−2, 0, 1, 3, 4, 5}, and

D2 = D1 ∪ {7, 14, 14.5, 15},
is a domain sequence.

Since ≡ is of finite index (Lemma 2.8), we know the following.

Lemma 2.13. For any given finite Dk ⊆ A, there exists a domain sequence
starting from Dk.

The following technical lemma now directly implies Theorem 2.2.

Lemma 2.14. Let

• Dk ⊆ Dk+1 ⊆ · · · ⊆ Dn be a domain sequence;
• a1, . . . , ak ∈ Dk;
• k ≤ i ≤ n; and
• aj ∈ Dj for k < j ≤ i.

Then

A |= Φ|i[a1, . . . , ai] ⇐⇒ (A;Di+1, . . . , Dn) |= Φ|i[a1, . . . , ai].

Proof. The proof is by downward induction on i. Denote (a1, . . . , ai) by ā. The
case i = n is trivial. So assume i < n. We have Φ|i = (Qi+1xi+1)Φ|i+1. Consider first
the case Qi+1 = ∃. For the implication from left to right, assume A |= Φ|i[ā]. Then
there exists ai+1 ∈ A such that A |= Φ|i+1[ā, ai+1]. According to Definition 2.11,
there exists a′i+1 ∈ Di+1 such that (ā, ai+1) ≡ (ā, a′i+1). By Lemma 2.9, we also have
A |= Φ|i+1[ā, a

′
i+1]. By induction, (A;Di+2, . . . , Dn) |= Φ|i+1[ā, a

′
i+1]. We can thus

conclude that (A;Di+1, . . . , Dn) |= Φ|i[ā].

1754 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

For the implication from right to left, assume (A;Di+1, . . . , Dn) |= Φ|i[ā]. Then
there exists ai+1 ∈ Di+1 such that (Di+2, . . . , Dn) |= Φ|i+1[ā, ai+1]. By induction,
we have A |= Φi+1[ā, ai+1]. Since ai+1 is trivially in A, we can thus conclude that
A |= Φ|i[ā].

Next consider the case Qi+1 = ∀. For the implication from left to right, assume
A |= Φ|i[ā]. Then for each ai+1 ∈ A we have A |= Φ|i+1[ā, ai+1]. In particular,
this holds for each ai+1 ∈ Di+1, and by induction, we have (A;Di+2, . . . , Dn) |=
Φ|i+1[ā, ai+1]. We can thus conclude that (A;Di+1, . . . , Dn) |= Φ|i[ā].

For the implication from right to left, assume (A;Di+1, . . . , Dn) |= Φ|i[ā]. Then
for each α ∈ Di+1 we have (A;Di+2, . . . , Dn) |= Φ|i+1[ā, α], and thus, by induction,
also A |= Φ|i+1[ā, α]. Now take an arbitrary ai+1 ∈ A. According to Definition 2.11,
there exists a′i+1 ∈ Di+1 such that (ā, ai+1) ≡ (ā, a′i+1). By Lemma 2.9, since A |=
Φ|i+1[ā, a

′
i+1], we also have A |= Φ|i+1[ā, ai+1]. We can thus conclude that A |= Φi[ā].

Corollary 2.15. Let Φ be a sentence (Q1x1) . . . (Qnxn)M(x1, . . . , xn), and let
D0 ⊆ D1 ⊆ · · · ⊆ Dn be a domain sequence. Then

A |= Φ ⇐⇒ (A;D1, . . . , Dn) |= Φ.

Proof. Set i = k = 0 in Lemma 2.14.

3. Queries on real databases. Fix a relational vocabulary σ consisting of a
finite number of relation symbols S with associated arity. A real database B is a
structure of type σ having the set R of real numbers as domain, assigning to each
relation symbol S of arity a in σ a finite relation SB of rank a on R.2 The active
domain of B, denoted by adom(B), is the (finite) set of all real numbers appearing in
one or more relations in B.

A query is a mapping from databases of type σ to true or false. A basic way
of expressing queries is by query formulas, which are standard first-order formulas
built using Boolean connectives and quantification from atomic formulas of one of the
following two forms:

• p > 0, with p a multivariate polynomial with real coefficients;
• S(p1, . . . , pa), with S a relation symbol in σ of arity a, and each pi a polyno-

mial as in the previous item.
If Φ(x̄) is a query formula and B is a database, then the truth of Φ in B, denoted by
B |= Φ[ā], is defined in the standard way. In particular, if Φ is a sentence, it expresses
the query yielding true on an input database B iff B |= Φ.

Example 3.1. Assume σ = {S} with α(S) = 2. The query “do all points in S lie
on a common circle?” can be expressed as

(∃x0)(∃y0)(∃r)(∀x)(∀y)(S(x, y) → (x− x0)
2 + (y − y0)

2 = r2).

(Conditions of the form p = 0 are expressible in terms of conditions of the form p > 0
as ¬(p > 0) ∧ ¬(−p > 0).)

The query “is there a point in S whose coordinates are greater than or equal
to 1?” can be expressed as (∃x)(∃y)S(x2 + 1, y2 + 1). Note that the quantifiers are
naturally interpreted as ranging over the whole of R.

Formulas that do not mention any of the relation names in σ are called real
formulas. Let Ψ be a real formula and let all variables occurring in Ψ be among

2 Formally, SB ⊆ R× · · · ×R (a times).

FIRST-ORDER QUERIES OVER THE REALS 1755

x1, . . . , xn. Let Π be the set of all polynomials p for which the inequality p > 0
occurs in Ψ. For such a set Π of polynomials over the variables x1, . . . , xn we have
the following definition.

Definition 3.2. The structure RΠ is the structure having as domain the set R of
real numbers, and having as relations the n-ary relations {(r1, . . . , rn) | p(r1, . . . , rn) >
0} for each p ∈ Π. If Π comes from a formula Ψ, as above, we will also refer to RΠ

as RΨ. Note that Ψ can be naturally evaluated in the structure RΨ.
If Φ is a query sentence and B is a database, then we can produce a real sentence

ΦB in a very natural way as follows. Let S(p1, . . . , pa) be an atomic subformula of Φ,
with S a relation symbol in σ. We know that SB is a finite relation consisting of, say,
the m tuples {(e11, . . . , e1a), . . . , (em1, . . . , ema)}. Then replace S(p1, . . . , pa) in Φ by∨m
i=1 p1 = ei1 ∧ . . . ∧ pa = eia. It is obvious that

B |= Φ ⇐⇒ RΦB |= ΦB.

Now assume the query sentence Φ is in prenex normal form:

(†) (Q1x1) . . . (Qnxn)M(x1, . . . , xn).

If B is a database and D1, . . . , Dn are subsets of R, then we say that Φ is satisfied on
(B;D1, . . . , Dn), written (B;D1, . . . , Dn) |= Φ, if Φ evaluates to true on B when we
let each quantifier Qi range over Di only, rather than over the whole of R.

Corollary 2.15 immediately implies the following.
Theorem 3.3. Let Φ be a query sentence as in (†) above and let B be a real

database. For each domain sequence D0 ⊆ D1 ⊆ · · · ⊆ Dn in the context of the
structure RΦB ,

B |= Φ ⇐⇒ (B;D1, . . . , Dn) |= Φ.

When we choose D0 = adom(B), this theorem can be viewed as the analog in the
real case of the Aylamazyan et al. theorem [5] mentioned in the Introduction.

4. The linear case. In this section, we focus on linear queries, expressed by
query sentences in which all occurring polynomials are linear. We prove that each
linear query is expressible by a linear query sentence wherein the quantifiers range
over the active domain of the input database only. Thereto, we introduce a particular
way to construct a domain sequence starting with the active domain of a database,
based on Gaussian elimination. We then show that this construction can be simulated
in a uniform (i.e., database-independent) way by a linear query formula.

Let Π be a set of linear polynomials on the variables x1, . . . , xn. Recall Defini-
tion 3.2 of the structure RΠ. Within the context of this structure we can consider
equivalence of points in Ri, for i ≤ n, as defined in Definitions 2.4 and 2.6.

Each polynomial p ∈ Π is of the form cp0 +
∑n

j=1 c
p
jxj . We define a sequence

Πn, . . . ,Π1 of linear polynomials inductively as follows.
Definition 4.1. Πn = Π, and for i < n,

Πi = {p ∈ Πi+1 | cpi+1 = 0} ∪ {p · cqi+1 − q · cpi+1 | p, q ∈ Πi+1, c
p
i+1 6= 0 6= cqi+1}.

In other words, each Πi is a set of linear polynomials over x1, . . . , xi obtained from
Πi+1 by Gaussian elimination.

1756 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

In the next proposition, equivalence of points in Ri with respect to RΠ will be
characterized in terms of the polynomials in Πi. Thereto we need an easy-to-prove
lemma.

Lemma 4.2. Let α1, α2, β1, and β2 be elements from some densely ordered
domain. The following are equivalent.

1. For (i, j) ∈ {(1, 2), (2, 1)},
αi > αj ⇔ βi > βj .

2. For each α there exists β such that for i = 1, 2,

αi > α ⇔ βi > β,

and conversely, for each β there exists α such that the same holds.
Proposition 4.3. Let 1 ≤ i ≤ n and let ā, b̄ ∈ Ri. Then ā and b̄ are equivalent

with respect to RΠ if and only if for each polynomial p in Πi,

p(ā) > 0 ⇔ p(b̄) > 0.

Proof. The proof is by downward induction on i. The case i = n is just the
definition of equivalence of n-tuples. So assume i < n. Let ā ≡ b̄. Then for each
ai+1 there is a bi+1 such that (ā, ai+1) ≡ (b̄, bi+1) (and conversely). Equivalently,
by induction, for each ai+1 there is a bi+1 such that for each polynomial p in Πi+1,
p(ā, ai+1) > 0 ⇔ p(b̄, bi+1) > 0. If cpi+1 = 0 then p ∈ Πi and we get p(ā) > 0 ⇔ p(b̄) >
0; this deals with the first kind of elements of Πi.

For the other kind of elements of Πi, consider p, q ∈ Πi+1 with cpi+1 6= 0 6= cqi+1.
From the above, for each ai+1 there is a bi+1 such that

cp0 +
i∑

j=1

cpjaj

 /cpi+1 > −ai+1 ⇔

cp0 +

i∑
j=1

cpj bj

 /cpi+1 > −bi+1

and
cq0 +

i∑
j=1

cqjaj

 /cqi+1 > −ai+1 ⇔

cq0 +

i∑
j=1

cqjbj

 /cqi+1 > −bi+1.

Conversely, for each bi+1 there is an ai+1 such that the same holds. By Lemma 4.2
we thus deduce

cp0 +
i∑

j=1

cpjaj

 /cpi+1 >

cq0 +

i∑
j=1

cqjaj

 /cqi+1

⇔

cp0 +

i∑
j=1

cpj bj

 /cpi+1 >

cq0 +

i∑
j=1

cqjbj

 /cqi+1

and hence
cp0 +

i∑
j=1

cpjaj

 · cqi+1 >

cq0 +

i∑
j=1

cqjaj

 · cpi+1

⇔

cp0 +

i∑
j=1

cpj bj

 · cqi+1 >

cq0 +

i∑
j=1

cqjbj

 · cpi+1

FIRST-ORDER QUERIES OVER THE REALS 1757

or

(p · cqi+1 − q · cpi+1)(ā) > 0 ⇔ (p · cqi+1 − q · cpi+1)(b̄) > 0,

which, by the definition of Πi, is what had to be proven. This argument for the
“only-if” implication can simply be reversed to prove the “if” implication.

Now let Φ be a linear query sentence (Q1x1) . . . (Qnxn)M in prenex normal form,
and let B be a database. Recall the definition of the real formula ΦB described in the
previous section; note that since Φ is linear, ΦB is linear as well.

Definition 4.4. Fix Π to be the set of all polynomials occurring in ΦB plus
all those of the form pi − e, where pi occurs in some atomic formula S(p1, . . . , pa)
of Φ and e ∈ adom(B). We can then consider the sequence Π = Πn, . . . ,Π1 as in
Definition 4.1. For what follows it is important to note that, since Π contains at
least all polynomials occurring in ΦB, equivalence of points with respect to RΠ implies
equivalence with respect to the structure RΦB mentioned in Theorem 3.3.

Example 4.5. Let Φ = (∀x1)(∃x2)(S(x1 + x2 + 1) ∧ (x1 + 2x2 + 2 = 0)). Then
Π = Π2 = {1− e+x1 +x2 | e ∈ adom(B)}∪ {2 +x1 + 2x2} and Π1 = {−2e+x1 | e ∈
adom(B)}.

We observe the following.
Lemma 4.6. Let 1 ≤ i ≤ n. Then Πi is a finite union of sets of the form

c0 +

2(n−i)∑
j=1

djej +
i∑

j=1

cjxj | e1, . . . , e2(n−i) ∈ adom(B)

 .

Neither the number of these sets nor the coefficients ci and di for each set depend on
the particular database B.

Proof. The proof is by downward induction on i. The base case i = n is clear
since Πn = Π is clearly of the good form. So assume i < n. By definition, Πi is a
union of two sets:

{p ∈ Πi+1 | cpi+1 = 0}
and

{p · cqi+1 − q · cpi+1 | p, q ∈ Πi+1, c
p
i+1 6= 0 6= cqi+1}.

By the induction hypothesis, the first set is clearly of the good form. Also, by the
induction hypothesis, the second set is a finite union of sets of the form

c′i+1

c0 +

2(n−i−1)∑
j=1

djej +

i+1∑
j=1

cjxj

− ci+1

c′0 +

2(n−i−1)∑
j=1

d′je
′
j +

i+1∑
j=1

c′jxj

 |

1, . . . , e2(n−i−1) , e′1, . . . , e
′
2(n−i−1) ∈ adom(B)

 .

After simplification, this is readily seen to be of the good form also.
We are now in a position to define a particular domain sequence with respect to

the structure RΦB , based on the sequence Π1, . . . ,Πn. The sequence is inductively
constructed: D0 is empty and Di (i > 0) is constructed as follows. First consider the
set Ei of all the ith coordinates of the i-dimensional points that are in a hyperplane

1758 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

of Πi and whose first i− 1 coordinates are in Di−1. Add Di−1 to Ei, resulting in D′
i.

Finally, to be sure to obtain a point in every equivalence class, we add the mean value
of every pair of elements of D′

i, as well as every element increased by one and every
element decreased by one, resulting in Di. Formally, we make the following definition.

Definition 4.7. The linear sequence on B with respect to Φ is the sequence
∅ = D0 ⊆ D1 ⊆ · · · ⊆ Dn inductively defined as follows: for 1 ≤ i ≤ n, Di equals

D′
i ∪
{
y | (∃y1, y2) ∈ D′

i : y =
y1 + y2

2
∨ y = y1 − 1 ∨ y = y1 + 1

}
,

where D′
i is Di−1 ∪ Ei with

Ei =

−c0/ci −

2(n−i)∑
j=1

(dj/ci)ej −
i−1∑
j=1

(cj/ci)yj | c0 +
2(n−i)∑
j=1

djej +
i∑

j=1

cjxj ∈ Πi,

ci 6= 0, y1, . . . , yi−1 ∈ Di−1, e1, . . . , e2(n−i) ∈ adom(B)

 .

Example 4.8. In Example 4.5 we have

D′
1 = {2e1 | e1 ∈ adom(B)},

D1 = {2e1 + η | η ∈ {−1, 0, 1}},
and

E2 = {−1 + e3 − (2e1 + η),

−1 + e3 − (e1 + e2),

−1− (2e1 + η)/2,

−1− (e1 + e2)/2 |
e1, e2, e3 ∈ adom(B), η ∈ {−1, 0, 1}}.

Proposition 4.9. The linear sequence on B with respect to Φ is a domain
sequence with respect to RΦB .

Proof. According to Definition 2.11, we must show for each 1 ≤ i ≤ n that

∀ā ∈ (Di−1)
i−1, ∀ai ∈ R, ∃a′i ∈ Di : (ā, ai) ≡ (ā, a′i).

So, let ā ∈ (Di−1)
i−1 and assume ai 6∈ Di. Consider the definition of Di in terms of

D′
i = Di−1 ∪ Ei from Definition 4.7 above. We distinguish the following possibilities

for ai.
1. ai < min(Ei); then put a′i := min(Ei)− 1.
2. ai > max(Ei); then put a′i := max(Ei) + 1.
3. min(Ei) < ai < max(Ei); then put a′i := (e1 +e2)/2, where e1 is the maximal

element in Ei such that e1 < ai, and e2 is the minimal element such that
ai < e2.

FIRST-ORDER QUERIES OVER THE REALS 1759

It is obvious that a′i ∈ Di; moreover, we invite readers to convince themselves that
from the way Ei is defined, it follows that all polynomials in Πi have the same sign
on (ā, ai) and (ā, a′i). Hence, by Proposition 4.3, the proposition follows.

After one final lemma we will be able to state and prove the main result of this
section.

Lemma 4.10. For each 0 ≤ i ≤ n there exists a finite set P of linear polynomials
such that for each database B, the ith member Di of the linear sequence on B with
respect to Φ equals {p(y1, . . . , yz) | y1, . . . , yz ∈ adom(B)∧ p ∈ P}, with z independent
of B.

Proof. The proof is by induction on i. The case i = 0 is trivial since D0 = ∅
(put P := ∅). So assume i > 0. The definition of Di in terms of D′

i in Definition 4.7
is clearly of the form Di = {p(y1, y2) | y1, y2 ∈ D′

i ∧ p ∈ P ′} where P ′ consists of
the four polynomials (y1 + y2)/2, y1 − 1, y1 + 1, and y1. We have D′

i = Di−1 ∪ Ei,
where Ei is clearly of the form {p(y1, . . . , yi−1, e1, . . . , e2(n−i)) | y1, . . . , yi−1 ∈ Di−1 ∧
e1, . . . , e2(n−i) ∈ adom(B) ∧ p ∈ P ′′} for some P ′′, and by induction, Di−1 is of the
form {p(y1, . . . , yz) | y1, . . . , yz ∈ adom(B) ∧ p ∈ P ′′′} for some P ′′′. By combining
these expressions using a tedious but straightforward substitution process, we obtain
the desired form for Di.

Theorem 4.11. For each linear query sentence Φ there is a linear query sentence
Ψ, which can be effectively constructed from Φ, such that for each database B, B |= Φ
if and only if B |=adom Ψ, where |=adom denotes that the quantifiers in Ψ range over
the active domain of the database only.

Proof. Let ∅ ⊆ D1 ⊆ · · · ⊆ Dn be the linear sequence on B with respect to Φ. By
Theorem 3.3 and Proposition 4.9, we know that B |= Φ iff (B;D1, . . . , Dn) |= Φ. We
can write the latter explicitly as B |= (Q1x1 ∈ D1) . . . (Qnxn ∈ Dn)M(x1, . . . , xn).
From Lemma 4.10 we know that D1 can be written as {p(y1, . . . , yz) | y1, . . . , yz ∈
adom(B) ∧ p ∈ P}. If Q1 is ∃, we can rewrite the above formula as

B |= (∃y1) . . . (∃yz)
∨
p∈P

(Q2x2 ∈ D2) . . . (Qnxn ∈ Dn)M(p(y1, . . . , yz), x2, . . . , xn),

where each (∃yi) ranges only over adom(B). If Q1 is ∀ we have

B |= (∀y1) . . . (∀yz)
∧
p∈P

(Q2x2 ∈ D2) . . . (Qnxn ∈ Dn)M(p(y1, . . . , yz), x2, . . . , xn).

By replacing Q2, . . . , Qn in a similar manner, we obtain the desired sentence Ψ.
If adom(B) is empty then the above strategy will not work. However, the sentence

Ψ obtained above can be modified so as to test for this special case, and if this test
succeeds, a fixed truth value can be returned. This fixed truth value is the result
of evaluating (B∅ |= Φ), where B∅ denotes the database with empty active domain.3

5. Generic queries. Two databases B and B′ over the same relational signature
σ are called isomorphic if there is a bijection ρ : adom(B) → adom(B′) such that
ρ(SB) = SB

′
for each relation symbol S in σ. A query which yields the same result

on isomorphic databases is called generic.

3 An exception occurs when the signature σ contains relation symbols of arity zero. In this case,
there is no unique B∅, but rather a fixed finite number of them. The sentence can test which one it
is dealing with and return the appropriate truth value.

1760 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

For example, assume that σ consists of a single binary relation symbol S. Data-
bases of type σ can be viewed as finite directed graphs whose nodes are real numbers.
Of course, any query expressed in the language L of pure first-order sentences over σ
(i.e., not containing any polynomial inequalities) is generic. Other examples of generic
queries are “is the graph connected?” or “is the number of edges even?”.

In the language L< consisting of those query sentences where all inequalities are
of the simple form x < y (with x and y variables),4 nongeneric queries can easily
be expressed, such as (∀x)(∀y)S(x, y) → x < y. As pointed out in the Introduction,
however, there are generic queries expressible in L< but not in L. We have been able
to prove that there is no similar gain in expressiveness when moving from L< to full
linear query sentences.

Theorem 5.1. For each linear query sentence Φ expressing a generic query there
is a query sentence Ψ in L<, which can be effectively constructed from Φ, such that
for each database B, B |=adom Φ if and only if B |=adom Ψ.

As in Theorem 4.11, |=adom denotes that quantifiers range over the active domain
only; we know by Theorem 4.11 that this active-domain interpretation is without loss
of generality.

We next present an elementary proof of Theorem 5.1 based on three lemmas and
one auxiliary definition.

The following fact is easy to prove.
Lemma 5.2. Let q(x) =

∑d
i=0 aix

i be a polynomial with real coefficients, in one
variable, of degree d (ad 6= 0). Let

r > d · max0≤i≤d |ai|
min 0≤j≤d

aj 6=0
|aj | .

Then q(r) has the same sign as ad.
We make the following definition.
Definition 5.3. Let p(x1, . . . , xn) =

∑n
i=1 bixi + b0 be a linear polynomial with

real coefficients in n variables. We associate with p a function Ξp : Rn → R as
follows. Consider ȳ = (y1, . . . , yn) ∈ Rn. Associate a “weight” W ȳ

p (yi) with each yi
by

W ȳ
p (yi) :=

∑
1≤j≤n
yj=yi

bj .

If all weights are zero, define Ξp(y1, . . . , yn) := b0. Otherwise, define

Ξp(y1, . . . , yn) := W ȳ
p (yM),

where yM is maximal with nonzero weight ; i.e., ym = max{yi | 1 ≤ i ≤ n, W ȳ
p (yi) 6=

0}.
Example 5.4. We illustrate the above definition with three examples.
1. Let p(x1, x2, x3) = x1 − 5x2 + 3x3 − 8. Then

• Ξp(7, 3, 9) = 3;
• Ξp(7, 9, 3) = −5.

4 As an aside, we would like the reader to note that Theorem 4.11 specializes to query sentences
in L<. This follows from general results in [8], but can also be proven in a direct way using an
argument similar to our proof of Theorem 4.11.

FIRST-ORDER QUERIES OVER THE REALS 1761

2. Let p(x1, x2) = 2x1 − 2x2 + 5. Then Ξp(5, 5) = 5.
3. Let p(x1, . . . , x7) = 3x1 − 3x2 + 6x3 − 6x4 + 5x5 + x6 − 6x7. Then

• Ξp(4, 4, 2, 2, 2, 2, 2) = 0;
• Ξp(5, 5, 4, 4, 3, 2, 1) = 5;
• Ξp(5, 5, 4, 4, 1, 2, 3) = −6.

The relevance of Ξp stems from the following observation.

Lemma 5.5. Let p(x1, . . . , xn) =
∑n

i=1 bixi + b0 and let s > 0 be a natural
number. Then there exists a number αp such that for all β > αp and for any sequence
of integers z̄ = z1, . . . , zn ∈ {0, . . . , s},

p(βz1 , . . . , βzn) > 0 ⇐⇒ Ξp(z1, . . . , zn) > 0.

Proof. Note that

p(βz1 , . . . , βzn) =
n∑
i=1

biβ
zi + b0 =

∑
j

W z̄
p (zj)β

zj + b0,

where j in the latter sum ranges over a set of indices consisting of one j for each
distinct value zj . Hence, the value p(βz1 , . . . , βzn) can be viewed as the value of a
univariate polynomial q in β. The highest-degree coefficient of q is Ξp(z1, . . . , zn).
The degree of q is maxj zj . Hence, if we take

αp = s · maxB |B|
min|B|6=0 |B| ,

where B ranges over all partial sums of bi’s, then any β > αp satisfies the condition
of Lemma 5.2 and thus, for such β, p(βz1 , . . . , βzn) = q(β) has the same sign as
Ξp(z1, . . . , zn).

As a last lemma towards the proof of Theorem 5.1 we note the following.

Lemma 5.6. For a fixed polynomial p as above, the predicate Ξp(y1, . . . , yn) > 0
can be expressed by a formula ξp(y1, . . . , yn) in L<.

Proof. The crucial observation is that the value of Ξp(y1, . . . , yn) depends not on
the actual values of the yi’s but only on their relative positions (in model-theoretic
terms, the order type of y1, . . . , yn). The number of possible order types (n being
fixed) is finite, so the formula ξp simply consists of the disjunction of those order
types for which the value Ξp(y1, . . . , yn) is positive.

Example 5.7. Let p(x1, x2) = 2x1 − 2x2 + 5. Then Ξp(y1, y2) > 0 is expressed by
y1 = y2 ∨ y1 > y2.

Proof of Theorem 5.1. Replace in Φ every inequality p(x1, . . . , xn) > 0 by the
formula ξp(x1, . . . , xn) > 0 of Lemma 5.6. In this way we obtain a query sentence Ψ
in L<. We still have to show that B |=adom Φ iff B |=adom Ψ. Let s be the cardinality
of adom(B). Each polynomial p occurring in Φ has an associated lower bound αp of
Lemma 5.5. Let β be larger than any of these αp’s and let ρ be an order-preserving
(i.e., monotone) bijection from adom(B) to {β, β2, . . . , βs}. Then

B |=adom Φ ⇔ ρ(B) |=adom Φ

⇔ ρ(B) |=adom Ψ

⇔ B |=adom Ψ.

1762 PAREDAENS, VAN DEN BUSSCHE, AND VAN GUCHT

The first equivalence holds since Φ is generic, the second holds by Lemma 5.5, and
the third holds since ρ is monotone and Ψ is a formula in L<; the truth of formulas
in L< is preserved under order-preserving isomorphisms.

Inspection of the above proof shows that Theorem 5.1 can be sharpened a little bit.
Indeed, of the given that Φ expresses a generic query, we actually use only that this
query yields the same result on databases that are isomorphic via an order-preserving,
rather than an arbitrary, bijection.

We can conclude that all generic queries that are not expressible in L< are not
expressible as a linear query either (by Theorem 4.11, under both the active-domain
interpretation and the natural interpretation). In particular, this holds for the queries,
already mentioned at the beginning of this section, of testing for connectivity or even
cardinality of a finite graph over the reals.

Corollary 5.8. Graph connectivity and even cardinality are not expressible by
linear query sentences.

Proof. By the above it suffices to show that these queries are not expressible in
L< with quantification on the active domain. But this is well known [1].

Grumbach, Su, and Tollu [14] have also obtained inexpressibility results for linear
queries, using complexity arguments. In particular, they showed that in the context
of the rationals Q rather than the reals R, linear queries are in the complexity class
AC0, while even cardinality and connectivity are not. We would like to point out (as
is readily verified) that our technical development applies equally well to the rationals.

6. Concluding remarks. Since we presented the original ideas contained in the
present paper at a conference [20], several researchers have been able to generalize
our results:

• In this paper we have considered databases and queries over the structure R
of the reals. One can do the same for any arbitrary fixed infinite “universe-
structure.” Using the Ehrenfeucht–Mostowski theorem on first-order indis-
cernibles, Otto and Van den Bussche [18] have shown that Theorem 5.1 gen-
eralizes from R to any arbitrary fixed infinite structure.

• Benedikt et al. [7] have generalized Theorem 5.1 in two senses: again, to more
universes than just the reals, and more importantly, to quantification on the
whole universe rather than on the active domain only. One consequence of
the results in [7] is a generalization of our Corollary 5.8: graph connectivity
and even cardinality are not expressible by any (not necessarily linear) real
query sentence, under both the natural interpretation and the active-domain
interpretation.

• Belegradek, Stolboushkin, and Taitslin [21, 6] have generalized Theorem 5.1
in another sense: instead of finite databases they considered possibly infinite
databases definable by real formulas involving only simple inequalities.

• Benedikt and Libkin [8] have shown that Theorem 4.11 holds in any densely
ordered structure that satisfies the property of o-minimality and admits elim-
ination of quantifiers. In particular, their result implies that Theorem 4.11
generalizes to the nonlinear case (since the structure of the reals with addition
and multiplication admits elimination of quantifiers).

In constrast to the proofs of these generalizations, the proofs of our results as given
in the present paper are elementary and constructive (the results in [21] are also
constructive).

Acknowledgment. We are grateful to Bart Kuijpers for his careful reading of
earlier drafts of the material presented in this paper, to Alex Stolboushkin for helpful

FIRST-ORDER QUERIES OVER THE REALS 1763

comments on a first presentation of our results, and to an anonymous referee for
pointing out a mistake in the submitted draft of this paper.

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Reading,
MA, 1994.

[2] A. Aho and J. Ullman, Universality of data retrieval languages, in Proc. ACM Symposium
on Principles of Programming Languages, ACM Press, New York, 1979, pp. 110–120.

[3] D. Arnon, Geometric reasoning with logic and algebra, Artificial Intelligence, 37 (1988), pp. 37–
60.

[4] D. Arnon, G. Collins, and S. McCallum, Cylindrical algebraic decomposition, I: The basic
algorithm, SIAM J. Comput., 13 (1984), pp. 865–877.

[5] A. Aylamazyan, M. Gilula, A. Stolboushkin, and G. Schwartz, Reducation of the rela-
tional model with infinite domains to the case of finite domains, Dokl. Akad. Nauk SSSR,
286 (1986), pp. 308–311. (In Russian.)

[6] O. Belegradek, A. Stolboushkin, and M. Taitslin, On Order-Generic Queries, Tech. Re-
port 96-01, DIMACS, Rutgers University, New Brunswick, NJ, 1996.

[7] M. Benedikt, G. Dong, L. Libkin, and L. Wong, Relational expressive power of constraint
query languages, in Proc. 15th ACM Symposium on Principles of Database Systems, ACM
Press, New York, 1996, pp. 5–16.

[8] M. Benedikt and L. Libkin, On the structure of queries in constraint query languages, in Proc.
11th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1996, pp. 25–34.

[9] F. Benhamon and A. Colmerauer, eds., Constraint Logic Programming: Selected Research,
MIT Press, Cambridge, MA, 1993.

[10] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, Berlin,
1987.

[11] A. Chandra and D. Harel, Computable queries for relational data bases, J. Comput. System
Sci., 21 (1980), pp. 156–178.

[12] G. Collins, Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposi-
tion, Lecture Notes in Computer Science 33, Springer-Verlag, New York, 1975, pp. 134–183.

[13] H. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.
[14] S. Grumbach, J. Su, and C. Tollu, Linear constraint query languages: Expressive power

and complexity, in Logic and Computational Complexity, D. Leivant, ed., Lecture Notes
in Computer Science 960, Springer-Verlag, New York, 1995, pp. 426–446.

[15] R. Hull and J. Su, Domain independence and the relational calculus, Acta Inform., 31 (1994),
pp. 513–524.

[16] P. Kanellakis, G. Kuper, and P. Revesz, Constraint query languages, J. Comput. System
Sci., 51 (1995), pp. 26–52.

[17] G. Kuper, On the expressive power of the relational calculus with arithmetic constraints, in
ICDT’90, Lecture Notes in Computer Science 470, S. Abiteboul and P. Kanellakis, eds.,
Springer-Verlag, New York, 1990, pp. 202–214.

[18] M. Otto and J. Van den Bussche, First-order queries on databases embedded in an infinite
structure, Inform. Process. Lett., 60 (1996), pp. 37–41.

[19] J. Paredaens, J. Van den Bussche, and D. Van Gucht, Towards a theory of spatial database
queries, in Proc. 13th ACM Symposium on Principles of Database Systems, ACM Press,
New York, 1994, pp. 279–288.

[20] J. Paredaens, J. Van den Bussche, and D. Van Gucht, First-order queries on finite struc-
tures over the reals (extended abstract), in Proc. 10th IEEE Symposium on Logic in Com-
puter Science, IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 79–87.

[21] A. Stolboushkin and M. Taitslin, Linear vs. order constraints over rational databases, in
Proc. 15th ACM Symposium on Principles of Database Systems, ACM Press, New York,
1996, pp. 17–27.

[22] L. Van Den Dries, Alfred Tarski’s elimination theory for real closed fields, J. Symbol. Logic,
53 (1988), pp. 7–19.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS∗

GIUSEPPE DI BATTISTA† , GIUSEPPE LIOTTA‡ , AND FRANCESCO VARGIU§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1764–1811, December 1998 012

Abstract. We deal with the problem of constructing the orthogonal drawing of a graph with
the minimum number of bends along the edges. The problem has been recently shown to be NP-
complete in the general case. In this paper we introduce and study the new concept of spirality, which
is a measure of how an orthogonal drawing is “rolled up,” and develop a theory on the interplay
between spirality and number of bends of orthogonal drawings. We exploit this theory to present
polynomial time algorithms for two significant classes of graphs: series-parallel graphs and 3-planar
graphs. Series-parallel graphs arise in a variety of problems such as scheduling, electrical networks,
data-flow analysis, database logic programs, and circuit layout. Also, they play a central role in
planarity problems. Furthermore, drawings of 3-planar graphs are a classical field of investigation.

Key words. graph drawing, orthogonal representation, planar embedding, bend minimization

AMS subject classifications. 05C85, 90B10, 90C27

PII. S0097539794262847

1. Introduction. A graph drawing algorithm receives as input a graph and pro-
duces as output a drawing that nicely represents such a graph; several references on
the subject of graph drawing can be found in [23, 7]. Most graph drawing algorithms
can be roughly split into the following two main steps.

1. A planar embedding of the given graph is found by a planarization algorithm,
possibly by inserting dummy vertices for crossings. The planar embedding is
usually described by the cyclic ordering of the edges incident at each vertex.
Planarization algorithms are implemented by using variations of the classical
planarity testing algorithms (see, e.g., [12]).

2. Once a planar embedding has been found, a representation algorithm is ap-
plied to produce the final drawing. Such an algorithm is selected depending
on the requirements of the application and on the graphic standard. It can
be targeted to minimize the global area of the drawing, to have as few bends
as possible along the edges, to emphasize symmetries, etc.

The representation algorithm produces a drawing within the planar embedding
computed by the planarization algorithm. However, the choice of the planar embed-
ding can deeply affect the results obtained by the representation algorithm. In Fig. 1
we show two different planar embeddings of the same graph. Besides each planar
embedding we show the orthogonal drawing (edges are mapped to polygonal chains
of horizontal and vertical segments) with the minimum number of bends that can be

∗ Received by the editors February 4, 1994; accepted for publication (in revised form) October 15,
1996; published electronically June 3, 1998. This research was partially supported by CNR under
grant CTB 94.00023.07, by NATO-CNR Advanced Fellowship Programme, the National Science
Foundation under grant CCR-9423847, the EC ESPRIT Long Term Research Project ALCOM-IT
under contract 20244, and the U.S. Army Research Office under grant DAAH04–96–1–0013.

http://www.siam.org/journals/sicomp/27-6/26284.html
† Dipartimento di Informatica e Automazione, Università di Roma Tre, via della Vasca Navale

84, I-00146 Roma, Italia (dibattista@iasi.rm.cnr.it).
‡ Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” via Salaria 113,

I-00198 Roma, Italia (liotta@dis.uniroma1.it). Part of this research was done while the author was
with the Center of Geometric Computing at the Department of Computer Science, Brown University.

§ Autorità per l’Informatica nella Pubblica Amministrazione, piazzale Kennedy 20, I-00144 Roma,
Italia (vargiu@aipa.it).

1764

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1765

constructed preserving that embedding. In the drawing of Fig. 1a we have n/3 − 2
bends (where n is the number of vertices); in the one of Fig. 1b we have no bends.

(a)

(b)

Fig. 1. The choice of the embedding deeply affects the number of bends in the orthogonal drawing.

Thus, it naturally raises the problem of choosing, in the planarization algorithm,
the “best” embedding from the representation algorithm point of view. Although the
problem is quite natural there are only a few contributions on this topic; observe that
a planar graph has (in general) an exponential number of embeddings. To give an
example, the problem of constructing straight-line upward drawings of series-parallel
digraphs without a fixed embedding has been addressed in [2] (an upward drawing
is such that all the edges follow monotonically the vertical axis); in [2] it is shown
that fixed-embedding drawing strategies can lead to straight-line upward drawings of
series-parallel digraphs with exponential area, and variable-embedding algorithms are
needed to achieve optimal area.

In this paper we deal with the classical problem of constructing orthogonal draw-
ings with the minimum number of bends along the edges. Valiant [29] showed that a
graph has an orthogonal drawing if and only if it is 4-planar (a graph is k-planar if it is
planar and each vertex has degree at most k). Tamassia [21] proposed a very elegant
representation algorithm that solves the problem in polynomial time for graphs with
a fixed embedding. The algorithm is based on a combinatorial characterization that

1766 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

allows to map the problem into a min-cost flow one. The result of Tamassia disproves
a conjecture of Storer [19] that the problem is NP-hard. Linear time heuristics for
the same problem were proposed by Tamassia and Tollis [24, 25], Liu, Morgana, and
Simeone [16], Kant [13], Biedl and Kant [3], and Papakostas and Tollis [18]. Tamas-
sia, Tollis, and Vitter [26, 27] gave lower bounds for the problem and the first parallel
algorithm. A brief survey of orthogonal drawings can be found in [22].

However, all the above papers deal with fixed-embedding graphs. The problem of
finding the planar embedding that leads to the minimum number of bends has been
recently shown to be NP-complete [11]. In this paper we show that the problem can
be solved by polynomial time algorithms for two significant classes of graphs. A list
of the main results of the paper follows.

• We introduce and study the new concept of spirality, that is, a measure of
how an orthogonal drawing is “rolled up.”

• We develop a theory on the interplay between spirality and the number of
bends in orthogonal drawings.

• We apply the above theory to show that the problem of finding a planar
embedding that leads to an orthogonal drawing with the minimum number
of bends can be solved in polynomial time for 3-planar graphs and for series-
parallel graphs.

Also, we show how the time bound for series-parallel graphs can be reduced in
the case when the graph is 3-planar.

Series-parallel graphs arise in a variety of problems such as scheduling, electrical
networks, data-flow analysis, database logic programs, and circuit layout. Also, they
play a central role in planarity problems [20, 28, 5, 6]. In Fig. 2 we show two different
planar embeddings of the same series-parallel graph. Besides each planar embedding
we show the orthogonal drawing with the minimum number of bends that can be
constructed preserving that embedding. In the drawing of Fig. 2a we have almost
twice the number of bends as in that of Fig. 2b. Also, drawings of 3-planar graphs
are a classical field of investigation (see, e.g., [13]). Observe that the graph of Fig. 1
is 3-planar.

Our algorithms exploit the properties of spirality, min-cost flow techniques, and a
variation of the SPQR trees [5, 6], a data structure that implicitly represents all the
planar embeddings of a planar graph. Observe that a different concept of spirality
has already been introduced in the literature for studying the properties of polygons.
(See, e.g., [9].)

The paper is organized as follows. Preliminaries are in section 2. The general
approach of the paper is briefly described in section 3. The concept of spirality of an
orthogonal drawing and the relationships between spirality and number of bends are
studied in section 4. In sections 5 and 6 we present polynomial time algorithms and
a new data structure for computing optimal orthogonal drawings of 3-planar graphs.
The algorithms presented in those sections are detailed enough to be implemented
with limited effort. The results of sections 5 and 6 are extended to series-parallel
graphs in section 7. Finally, open problems are listed in section 8. Some of the proofs
that are conceptually straightforward but involve tedious case analyses are omitted
and can be found in [4].

2. Preliminaries. First, we briefly review some definitions of connectivity and
planarity [8, 17]; second, we give some properties of orthogonal drawings and orthog-
onal representations; third, we define SPQ∗R trees; and finally, we reiterate basic
definitions of flow networks.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1767

(a) (b)

Fig. 2. Two embeddings of a series-parallel graph that give rise to two optimal orthogonal
drawings with different numbers of bends.

Several terms are defined throughout the remainder of the paper, after these
preliminaries. For the reader’s convenience we list all such terms in the appendix.

2.1. Connectivity and planarity. A separating k-set of a graph G is a set
of k vertices whose removal increases the number of connected components of G.
Separating 1-sets (2-sets) are called cutvertices (separation pairs). A connected graph
with no cutvertices is a 2-connected graph.

Let Γ be a planar drawing of a graph G. Γ maps each vertex of G to a distinct
point of the plane, and each edge (u, v) to a simple Jordan curve with endpoints u and
v; no two edges intersect, except at common endpoints. A planar drawing Γ divides
the plane into topologically connected regions called faces of Γ; each face is identified
by the circular list of the vertices and the edges of its boundary. The unbounded
region is referred to as the external face of Γ. A graph is planar if it has a planar
drawing. A planar graph is k-planar if its vertices have degree at most k.

A series-parallel graph is recursively defined as follows. A simple cycle with
three edges is a series-parallel graph. The graph obtained by splitting an edge of
a series-parallel graph into two edges is a series-parallel graph. The graph obtained
by inserting an edge between a separation pair {u,w} of a series-parallel graph is a
series-parallel graph. It is trivial to see that series-parallel graphs defined in this way
are 2-connected and planar.

Two planar drawings Γ′ and Γ′′ of a planar graph are equivalent when, for each
vertex v, (1) Γ′ and Γ′′ have the same circular clockwise ordering of the edges incident
on v and of the faces around v; (2) Γ′ and Γ′′ have the same external face. In this
way the planar drawings of a planar graph are grouped into equivalence classes. An
embedding of a planar graph G corresponds to an equivalence class of planar drawings
of G.

A planar graph G with a given embedding Ψ is an embedded graph. A circular
list of edges and vertices of G that corresponds to a face of any drawing of Ψ is a
face of G. The face of G that corresponds to the external face of any drawing of Ψ is
the external face of G. The adjacency list of each vertex v of an embedded graph is a
clockwise ordered sequence of the alternate faces and edges around v.

1768 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

2.2. Decomposition trees. A split pair of G is either a separation pair of G
or a pair of adjacent vertices. A split component of a split pair {u,w} is either an
edge (u,w) or a maximal subgraph Guw of G such that {u,w} is not a split pair of
Guw. Vertices u and w are the poles of the split component. In the following we often
denote by Guw a split component whose poles are u and w.

Let G be an embedded graph and Guw ⊂ G be a split component of G. The
edges of G that are incident on a pole v (v = u,w) of Guw and that belong (do not
belong) to Guw are called internal edges (external edges) of v with respect to Guw;
the number of such edges is called internal degree (external degree) of v with respect
to Guw. Let f ′ and f ′′ be the two faces such that (i) f ′ and f ′′ do not belong to Guw;
(ii) f ′ (f ′′) shares with Guw a path P ′uw (P ′′uw) from u to w; (iii) when going around
f ′ in the positive direction, P ′uw is traversed from u to w. Face f ′ is called the right
face of Guw and face f ′′ is called the left face of Guw. Nodes u and w divide a face fe
of Guw into two simple paths. The right path is the one traversed from u to w when
going around fe in the positive direction; the left path is the other one.

Let G be a planar 2-connected graph and let (s, t) be an edge of G called the
reference edge. An SPQ∗R tree T of G (a simple variation of the SPQR trees in-
troduced in [5]) is a tree describing a recursive decomposition of G with respect to
its split pairs, and it is used to synthetically represent all the embeddings of G with
(s, t) on the external face (we always assume, unless stated otherwise, that (s, t) is on
the external face). Nodes of T are of four types: S, P,Q∗, and R. Each node µ has
an associated graph called the skeleton of µ and denoted by skeleton(µ). Nonroot
nodes of T are called internal nodes. Starting from the reference edge, T is recursively
defined as follows.

Chain case: If G consists of a simple path from s to t then T is a single Q∗-node µ
whose skeleton is G itself.

Series case: If G is 1-connected, let c1,. . . , ck−1 (k ≥ 2) be the cutvertices of G
such that no cutvertex has degree less than 3; let c1,. . . , ck−1 partition G into graphs
G1,. . . , Gk. The root of T is an S-node µ. Graph skeleton(µ) is the chain e1, . . . , ek,
where edge ei goes from ci−1 to ci, c0 = s, and ck = t.

Parallel case: If s and t are a split pair for G with split components G1,. . . , Gk

(k ≥ 2), the root of T is a P -node µ. Graph skeleton(µ) consists of k parallel edges
from s to t, denoted e1, . . . , ek.

Rigid case: If none of the above cases applies, let {s1, t1}, . . . , {sk, tk} be the
maximal split pairs of G (k ≤ 1), and for i = 1, . . . , k, let Gi be the union of all the
split components of {si, ti}. The root of T is an R-node µ. Graph skeleton(µ) is
obtained from G by replacing each subgraph Gi with edge ei from si to ti.

We call the pertinent graph of µ the graph whose decomposition tree is the subtree
rooted at µ. Also, the virtual edge of µ is the edge representing the pertinent graph
of µ in the skeleton of its parent.

Let G be a planar 2-connected graph; we define an SPQ∗R tree T of G such that:

• the root of T is a P -node with two children, one of which is the reference
edge (s, t);

• each internal P -node of T has children R-, S-, or Q∗-nodes;

• each S-node of T has two children.

We call T the canonical decomposition tree of G. An example of a canonical
decomposition tree is given in Fig. 3, where the skeleton of an internal R-node is in
evidence; the reference edge is (1, 10). ξ-labels associated with some of the nodes will

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1769

be used later in the paper. It is easily proved that such a decomposition tree always
exists for a 2-connected graph.

Since in the following we refer only to canonical decomposition trees, we briefly
call them decomposition trees. Also, Hµ denotes an orthogonal representation of the
pertinent graph of µ.

9

4

3

1

8

10

6

7

5

2

P

Q*

R

S

1,10

Q *

9,10

Q*

7,8

Q*

1,2

Q*

Q*

2,3

SQ*

1,6

Q*

2,7

2

6

1

9

Q *

6,8

Q*

8,9

Q*

6,7

5,9

Q* Q*

3,5

P

3,4

8
7

4,5

S

ξ
1

ξ2

ξ
3

ξ4

Fig. 3. A canonical decomposition tree.

Property 2.1. The decomposition tree of a series-parallel graph can only contain
S-nodes, P -nodes, and Q∗-nodes.

The following property can be easily proved by using arguments based on the
degree of the vertices.

Property 2.2. Let T be the decomposition tree of a 3-planar graph and let µ be
an internal node of T .

1. If µ is an S-node and one of its children is either an R-node or a P -node,
then the other child of µ can be either a Q∗-node or an S-node.

2. If µ is a P -node, then it has two children.

3. If µ is a P -node or an R-node, then its children are Q∗-nodes or S-nodes.

2.3. Orthogonal drawings and orthogonal representations. A planar draw-
ing of a planar graph G such that all edges of G are mapped to polygonal chains of
horizontal and vertical segments is an orthogonal drawing of G. Examples of orthog-
onal drawings are in Fig. 4. A planar graph has a orthogonal drawing if and only if
it is 4-planar [29].

Two equivalent orthogonal drawings of an embedded graph are shape-equivalent
when (1) for each vertex v, consecutive edges in the adjacency list of v form the same
angle in the two drawings; and (2) for each edge (u, v), following from u to v the

1770 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

polygonal chain representing (u, v), we have the same (possibly empty) sequence of
left and right turns in the two drawings. For example, the orthogonal drawings of
Fig. 4 are shape-equivalent.

A labeled embedded graph H is an embedded graph defined as follows. (1) Each
edge e is associated to a (possibly empty) sequence of L- and R-symbols. When
walking along e = (u, v), such a sequence is read in two different ways depending on
the chosen direction. Suppose, when walking from u to v, that such a sequence is read
σ; then when walking from v to u it is read σ′, where σ′ is obtained by reversing σ
and by exchanging L- and R-symbols. (2) Each face f in the adjacency list of vertex
v has (possibly) a label in {R, L, LL}.

An orthogonal graph H is a labeled embedded graph that describes a class of
shape-equivalent orthogonal drawings; it is defined as follows.

• Each edge (u, v) of H is associated with a (possibly empty) sequence of L-
and R-symbols, each specifying a left or right turn that is found following
(u, v) from u to v.

• For each vertex v of H, the label associated with each face f in the adjacency
list of v specifies what happens when we go through v, walking around f
in the positive direction (i.e., having f at one’s right) in any drawing of the
shape-equivalent class. Namely, (1) f is labeled L if we turn left; (2) f is
labeled R if we turn right; (3) f is labeled LL when v has degree 1 and we
have to come back (“two turns left are enough to come back”); (4) f is not
labeled when we go straight.

11

14
12

10

9 8 13

5

1

6

7

4 3 2

16

15

11

14
12

10

9 8 13
6 5

17

4 3 2

16

15

Fig. 4. Two shape-equivalent orthogonal drawings of the same graph.

In Fig. 5 we show the orthogonal graph that describes the orthogonal drawings
of Fig. 4; besides each edge we report both the sequences that are read by walking on
the edge in the two possible directions.

We denote by deg(v) the degree of vertex v. The following property characterizes
the orthogonal graphs; it has been proved in [21].

Property 2.3. A labeled embedded graph H is an orthogonal graph if and only
if the following two conditions hold.

1. For each vertex v of H, let |Rv| (|Lv|) be the number of R-symbols (L-symbols)
of the labels associated with the faces that appear in the adjacency list of v.
Then,

|Rv| − |Lv| = 2 deg(v)− 4.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1771

14

13

12

9

10

11

8

7

1

2

3

4

5

6

RR

RR

RR
LL

R

R

R

R R

R
R

R

R

R

RR

R

R

R

R

R

R
R

R
R

L

L

L

L
R

L

L

L

L

L

L

R L

LR

15

16

LL

R
R

Fig. 5. The orthogonal graph describing the orthogonal drawings of Fig. 4.

2. For each face f of H suppose we walk around f in the positive direction. Let
|Re| (|Le|) be the total number of R-symbols (L-symbols) that are encountered
by traversing the edges of f . Let |Rf | (|Lf |) be the number of R-symbols (L-
symbols) of the labels associated with f in the adjacency lists of vertices of f .
Then

|Re|+ |Rf | − |Le| − |Lf | = ±4,

where the plus sign holds if f is an internal face, and the minus sign, if f is
the external face.

Proof. For the sake of completeness we briefly sketch the proof (see [21]). Part 1
is proved by observing that |Rv| (|Lv|) is the number of π/2 (3π/2) angles around v
and that such angles sum up to 2π. Part 2 is proved by observing that |Re| (|Le|) is
the number of π/2 (−π/2) angles along the edges of f , that |Rf | (|Lf |) is the number
of π/2 (−π/2) angles on the vertices of f , and that such angles sum up to ±2π,
depending on whether we consider the interior or the exterior part of the face.

The above property can be easily verified on the graph of Fig. 5. For example,
it is easy to see that Condition 1 holds for vertex 1; namely, it has degree 4 and the
labels of the faces that appear in its adjacency list are R-symbols.

From Property 2.3 it directly descends the following property.
Property 2.4. Let C be a simple cycle of an orthogonal graph. The number of

right turns minus the number of left turns encountered by walking clockwise around
C is four.

For example, the cycle composed by vertices 1, 2, 3, 4, 7, 6, 5 of Fig. 5 verifies
Property 2.4.

An orthogonal representation of a graph G is an orthogonal graph with the same
vertices and edges of G. The cost of an orthogonal representation is the number of its

1772 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

bends. An optimal orthogonal representation of G is an orthogonal representation of G
with the minimum cost. An optimal orthogonal drawing of G is an orthogonal drawing
of the shape-equivalence class described by an optimal orthogonal representation of G.

Orthogonal graphs have also been studied by Vijayan and Wigderson in [30].

2.4. The min-cost flow problem. We briefly recall some definitions of flow
networks. A network N consists of (1) a finite set of nodes including exactly one
source node s and one sink node t; (2) a set of oriented edges (in what follows, arcs),
labeled with a nonnegative capacity, a nonnegative lower bound, and a nonnegative
cost function.

A flow x in N associates to each arc a a nonnegative number x(a); flow x(a)
cannot exceed the capacity of a and cannot be less than the lower bound of a. Also,
for each node v 6= s, t of N , the sum of the flows of the incoming arcs is equal to the
sum of the flows of the outgoing arcs. Let ca be the cost function of arc a; the cost
of the flow in a is ca(x(a)). The cost of the flow x in N is the sum of the costs of
the flow in the arcs of N . The value of the flow in N is the sum of the flows of the
outgoing arcs of s. A min-cost flow problem is stated as follows: given a network N
and a positive number z, find a flow x in N such that the value of x is z and the cost
of the flow is minimum. The min-cost flow problem has been intensively studied in
the literature (see, e.g., [10, 15, 1]).

3. The general approach. The general approach underlying the paper can be
summarized as follows. Let us concentrate on the case of 3-planar 2-connected graphs.
We shall see that the results on such graphs can be easily extended to general 3-planar
graphs and to 4-planar series-parallel graphs.

To compute an optimal orthogonal representation of a 3-planar 2-connected graph
G, the first step is to construct a decomposition tree T of G. The optimal orthogonal
representation of G is then built by visiting T from bottom to top. In fact, we show
that the optimal orthogonal representation of the pertinent graph of a node µ of T
can be constructed by considering and composing a limited set of orthogonal repre-
sentations (not necessarily optimal) of the pertinent graphs of the children µ1, . . . , µk
of µ; we call such limited sets of orthogonal representations optimal sets.

If µ is an S-node or a P -node, then an optimal orthogonal representation of the
pertinent graph of µ can be built in polynomial time in two steps. In the first step one
orthogonal representation for each of the optimal sets of µ1, . . . , µk is suitably selected.
In the second step the selected representations are assembled into a representation of
the pertinent graph of µ.

Otherwise (µ is an R-node), the optimal orthogonal representation of µ can be
computed with a network-flow technique; this is done in polynomial time by exploiting
certain convexity properties that hold for the optimal sets of µ1, . . . , µk.

Thus, for 2-connected 3-planar graphs we have algorithms that, from bottom to
top, compute in polynomial time the optimal sets of all the nodes of T .

The conceptual tool that is used to select, among the infinite possible orthogonal
representations of the pertinent graphs of the nodes of T , those that are needed in the
optimal sets is the spirality. As we said in the introduction, the spirality measures
how much an orthogonal representation is “rolled up.” In particular, we exploit two
basic properties of the spirality that can be roughly stated as follows.

• The split components of an optimal orthogonal representation cannot be
rolled up too much. Intuitively, if too many turns are done, then too many
bends are spent.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1773

• Two orthogonal representations of the same split component and with the
same spirality can replace each other into an orthogonal representation of G.

4. Spines and spirality. In this section we define and study an invariant, called
spirality, of the equivalence class of drawings described by a component of an orthog-
onal graph. Unless stated otherwise we suppose that all the graphs mentioned from
now on are 2-connected.

4.1. Spines. Let H be an orthogonal graph and Huw ⊂ H be a split component
of H. A pole v (v = u or v = w) of Huw is called a bridge pole when its internal
degree with respect to Huw is 1; v is called a nonbridge pole when its internal degree
with respect to Huw is greater than 1.

In order to define the spirality of Huw we add to H some dummy vertices called
alias vertices of the poles u,w. Three cases are possible.

1. Let v be a bridge pole of Huw; the alias vertex v′ of v coincides with v.

2. Let v be a nonbridge pole of Huw with external degree 1; the alias vertex v′

of v is defined as follows. Let eout = (x, v) be the external edge of v with
respect to Huw; eout is substituted by a new vertex v′ and two new edges
(x, v′), (v′, v). The labeling of (x, v′) is the same as that of eout, (v′, v) has
no labels, and the two faces around v′ have no labels in the adjacency list of
v′. Intuitively, we have cut the first segment of the drawing of eout into two
pieces.

3. Let v be a nonbridge pole of Huw with external degree 2, and let e′out and e′′out
be the external edges of v; the alias vertices of v are a pair v′, v′′ of dummy
vertices obtained by cutting e′out and e′′out, respectively. They are defined as
above.

In Fig. 6 we show an orthogonal drawing of an orthogonal graph with, in evidence,
a split component Huw; vertices w′ and w′′ are the alias vertices of w, and vertex u′

is the alias vertex of u.

u'

w w''

w'

u

Fig. 6. Adding alias vertices.

1774 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

Definition 4.1. Let H be an orthogonal graph and let Huw ⊂ H be a split
component of H. Let u′ be an alias vertex of u and let w′ be an alias vertex of w. Let
Puw be a simple path in Huw from u to w. A spine Su′w′ of Huw is the simple path
obtained by concatenating edge (u′, u), path Puw, and edge (w,w′).

In Figs. 7a and 7b we show two spines of the split component from the example
of Fig. 6.

Let v1 and v2 be two vertices of H, and Pv1v2 be a simple path between v1 and
v2. We associate with Pv1v2 an integer n(Pv1v2) defined as the number of right turns
minus the number of left turns found when going along Pv1v2 from v1 to v2. In Fig. 7a
we have n(Su′w′) = 2; in Fig. 7b, n(Su′w′′) = 3.

Lemma 4.1. Let H be an orthogonal graph and let Huw ⊂ H be a split component
of H. Let u′ be an alias vertex of u and let w′ be an alias vertex of w. Let S′u′w′ and
S′′u′w′ be two spines of Huw; we have n(S′u′w′) = n(S′′u′w′).

Proof. Let Pu′w′ be a simple path in H that joins u′ and w′, such that no edge of
Pu′w′ belongs to Huw. Let C ′ and C ′′ be two simple cycles such that C ′ is composed
by S′u′w′ and P ′u′w′ and C ′′ is composed by S′′u′w′ and P ′u′w′ . By Property 2.4 applied
to C ′ we have n(S′u′w′)−n(P ′u′w′)+a = 4, where a is the number of right turns minus
the number of left turns encountered at u′ and w′, when going clockwise around C ′;
observe that a can be different from 0 only when the poles are bridge poles. By
applying the same argument to C ′′ it follows that n(S′′u′w′) = n(S′u′w′).

(a) (b)

u'

w w''

w'

u

u'

w w''

w'

u

S u'w' S u'w"

Fig. 7. Two spines of the split component highlighted in Fig. 6.

4.2. Spirality.

Definition 4.2. Let H be an orthogonal graph and Huw ⊂ H be a split compo-
nent of H. The spirality σHuw of Huw is defined as follows. Three cases are possible,
depending on the number of alias vertices of u and w.

1. Both u and w have just one alias vertex, u′ and w′, respectively. Let Su′w′ be
a spine of Huw; σHuw

= n(Su′w′).

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1775

2. Pole u has just one alias vertex u′; w has two alias vertices w′ and w′′. Let
Su′w′ and Su′w′′ be two spines of Huw; σHuw

= (n(Su′w′) + n(Su′w′′))/2.

3. Pole u has two alias vertices u′ and u′′; w has two alias vertices w′ and w′′.
Suppose u′ and w′ are on the same face of H. Let Su′w′ and Su′′w′′ be two
spines of Huw; σHuw

= (n(Su′w′) + n(Su′′w′′))/2.

For example, the spirality of the split component in evidence in Fig. 6 is σHuw =
5/2 (see also Figs. 7a and 7b).

Property 4.1. If the poles of Huw satisfy case 2 of Definition 4.2, then 2σHuw

is an odd integer number ; if the poles of Huw satisfy either case 1 or case 3 of Defi-
nition 4.2, then σHuw

is an integer number.
Proof. We prove the first case; the proof of the second case is analogous. Let u′

be the alias vertex of u and let w′, w′′ be the alias vertices of w. Let Pu,w be a simple
path of Huw from u to w. Let Su′w′ be a simple path composed by edge (u′, u), path
Pu,w, and edge (w,w′); let Su′w′′ be a simple path composed by edge (u′, u), path
Pu,w, and edge (w,w′′); Su′w′ and Su′w′′ are two spines of Huw that differ only for
one turn at vertex w. Thus, n(Su′w′) + n(Su′w′′) is an odd integer.

The following property shows that the spirality of a split component Huw depends
only on the shape of Huw and, possibly, on the labels associated with the right and
left faces in the adjacency lists of the poles.

Property 4.2. Let H and H ′ be two orthogonal graphs that are orthogonal
representations of the same graph G; let Guw be a split component of G. Suppose that
(1) the orthogonal representation Huw of Guw is the same in H and in H ′; (2) the
label associated with the right (left) face of Huw in the adjacency list of each pole of
Huw that is not a bridge pole is the same in H and in H ′. The spirality σHuw

is the
same in H and in H ′.

Proof. From Definition 4.1 any spine S of Huw is composed by a simple path
Puw of Huw from u to w, and two edges (v, v′) where v is a pole of Huw and v′ is
an alias vertex of that pole (v ≡ v′ if v is a bridge pole). Since each edge (v, v′)
has no bends, to evaluate n(S) we need n(Puw) and information about possible turns
encountered at poles when going along S; but this information is univocally given by
the labels associated with the right and left faces of Huw in the adjacency lists of the
poles.

4.3. Spirality of a series. Let H be an orthogonal graph and T be the decom-
position tree of H.

Let µ be an internal S-node of T , with children µ1 and µ2; let Hµ ⊂ H be the
pertinent orthogonal graph of µ and let Hµi ⊂ Hµ be the pertinent orthogonal graph
of µi (i = 1, 2). In Fig. 8 we show the series of the two components in the subgraph
in evidence in Fig. 6.

Lemma 4.2. The spirality σHµ
of Hµ is related to the spiralities σHµi

of the Hµi

(i = 1, 2) by

σHµ = σHµ1
+ σHµ2

.

Proof. The proof is illustrated in Fig. 9. Let u,w be the poles of Hµ, let u1, w1

be the poles of Hµ1
, and let u2, w2 be the poles of Hµ2

. Assume u1 ≡ u, w1 ≡ u2,
and w2 ≡ w.

Several cases are possible, according to the different types of poles of Hµ1 and
Hµ2 and according to the external degree of the poles of Hµ.

1776 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

u'

w w''

w'

u

v

v

v'

Fig. 8. The series of two split components of the subgraph highlighted in Fig. 6.

1. Pole w1 is a nonbridge pole in Hµ1
and pole u2 is a bridge pole in Hµ2

. Since
u2 is a bridge pole in Hµ2

, the alias vertex of u2 is the pole itself. Also, let w′1
be the alias vertex of w1 on the edge of Hµ2

incident on w1. We distinguish
two subcases, according to the external degree of u and w in Hµ.

(a) u1 ≡ u and w2 ≡ w are bridge poles or they have external degree 1
in Hµ (see Fig. 9a). In this case just one spine is needed to evaluate
the spirality of Hµ, Hµ1

, and Hµ2
. Let u′1 be the alias vertex of u1

with respect to Hµ1 , and let w′2 be the alias vertex of w2 with respect
to Hµ2 ; u′1 and w′2 coincide with the alias vertices of u and w with
respect to Hµ. Let Su′

1w
′
1

be a spine of Hµ1
, and let Su2w′

2
be a spine

of Hµ2
. Let Pw′

1w
′
2

be the subpath of Su2w′
2

from w′1 to w′2; note that
n(Pw′

1w
′
2
) = n(Su2w′

2
) from the definition of alias vertices. Let Su′

1w
′
2

be a path in Hµ composed by spine Su′
1w

′
1

and path Pw′
1w

′
2
. Su′

1w
′
2

is
a spine of Hµ and n(Su′

1w
′
2
) = n(Su′

1w
′
1
) + n(Pw′

1w
′
2
). It follows that

σHµ = σHµ1
+ σHµ2

.

(b) w2 ≡ w is a nonbridge pole with external degree 2 in Hµ (see Figs. 9b
and 9c). In this case two spines are requested to evaluate the spirality
of Hµ. With analogous reasoning as in case (a), we can define the spines
of Hµ starting from the spines of Hµ1 and Hµ2 ; the rest of the proof is
a simple variation of the previous case.

2. w1 is a nonbridge pole in Hµ1
and u2 is a nonbridge pole in Hµ2

(the total
degree of w1 ≡ u2 is four). Let w′1, w

′′
1 be the alias vertices of w1 with respect

to Hµ1 , and let u′2, u
′′
2 be the alias vertices of u2 with respect to Hµ2 such that

w′1 and u′2 are in the same face of H, say, the right face of Hµ. We distinguish
two subcases, according to the external degree of u and w in Hµ.

(a) Both u1 ≡ u and w2 ≡ w are bridge poles or they have external degree 1
in Hµ (see Fig. 9d). Let u′1 be the alias vertex of u1 with respect to Hµ1

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1777

and let w′2 be the alias vertex of w2 with respect to Hµ2
. Note that u′1, w

′
2

are alias vertices of u,w with respect to Hµ. Let Su′
1w

′
1

and Su′
1w

′′
1

be two
spines of Hµ1

, and let Su′
2w

′
2

and Su′′
2w

′
2

be two spines of Hµ2
whose edges

and vertices belong to either the left or the right face of Hµ. Let f ′ be
the right face of Hµ (w′1 and u′2 belong to f ′) and let f ′′ be the left face
of Hµ (w′′1 and u′′2 belong to f ′′). Let Pu′

1u
′
2

be a subpath of Su′
1w

′
1

from
u′1 to u′2 and let Pu′

1u
′′
2

be a subpath of Su′
1w

′′
1

from u′1 to u′′2 . Observing
that face f ′ and f ′′ are R-labeled in the adjacency list of w1 ≡ u2, we
have n(Pu′

1u
′
2
) = n(Su′

1w
′
1
)− 1 and n(Pu′

1u
′′
2
) = n(Su′

1w
′′
1
) + 1. Let S′u′

1w
′
2

be a path in Hµ composed by Pu′
1u

′
2

and Su′
2w

′
2
; let S′′u′

1w
′
2

be a path in Hµ

composed by Pu′
1u

′′
2

and Su′′
2w

′
2
. Thus, n(S′u′

1w
′
2
) = n(Pu′

1u
′
2
) + n(Su′

2w
′
2
)

and n(S′′u′
1w

′
2
) = n(Pu′

1u
′′
2
) + n(Su′′

2w
′
2
). Since both S′u′

1w
′
2

and S′′u′
1w

′
2

are

spines of Hµ, σHµ
can be written as (n(S′u′

1w
′
2
) + n(S′′u′

1w
′
2
))/2.

(b) u1 ≡ u is a nonbridge pole with external degree 2 in Hµ (see Figs. 9e
and 9f). In this case the spirality of Hµ is evaluated by means of two
spines. With analogous reasoning as in the above case, we can define the
two spines of Hµ starting from the spines of Hµ1

and Hµ2
. The proof is

a simple variation of the one given above.

4.4. Spirality of a parallel. Let H be an orthogonal graph and T be the de-
composition tree of H. We first consider the case of an internal P -node of T , then
the special case of the root.

Let µ be an internal P -node of T with children µ1, . . . , µk, let Hµ ⊂ H be the
pertinent orthogonal graph of µ with poles u and w, and let Hµi ⊂ Hµ be the pertinent
orthogonal graph of µi (i = 1, . . . , k). Since the vertices of H have degree at most
4, µ has two or three children. We relate the spirality of Hµ to the spirality of its
components by distinguishing the case where µ has three children from the case where
µ has two children.

Suppose first that µ has three children. Let ei be the edge of Hµi (i = 1, 2, 3)
incident on pole u, and let eout be the external edge of u with respect to Hµ. In the
following lemma we suppose that edges eout, e3, e2, and e1 appear in this order in the
adjacency list of u. See, for example, Fig. 10.

Lemma 4.3. The spirality σHµ
of Hµ is related to the spiralities σHµi

of Hµi

(i = 1, 2, 3) by

σHµ = σHµ1
+ 2 = σHµ2

= σHµ3
− 2.

Proof. Poles u,w are nonbridge poles with external degree 1 in Hµ and bridge
poles in Hµi . Let u′, w′ be the alias vertices of poles u,w with respect to Hµ, respec-
tively. Let S2 be a spine of Hµ2

; consider the path S composed by edge (u′, u), S2,
and edge (w,w′). Observe that S is a spine of Hµ. Since, when going along S from
u′ to w′, we go straight at vertex u and at vertex w, n(S) = n(S2). Let S1 be a spine
of Hµ1 ; consider the path S′ composed by edge (u′, u), S1, and edge (w,w′); clearly,
S′ is a spine of Hµ. Since, when going along S′ from u′ to w′, we turn right at vertex
u and at vertex w, n(S′) = n(S1) + 2. Analogous reasoning applies when a spine of
Hµ is defined starting from a spine of Hµ3

.
Consider now that the case µ has two children. Let f1 and f2 be the right face and

the left face of Hµ, respectively. Suppose that the vertices and edges of Hµ belonging
to f1 are also vertices and edges of Hµ1

. We denote with αiv the number of R-symbols

1778 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

(a) (b)

(c) (d)

(e) (f)

u u 1≡

w 1 u 2≡

w w2≡ ≡ w'
2

u'
1

w'
1

Hµ1

H µ2

u'1

w w
2≡w'2

u"1

u u
1≡

w
1 u2≡w'

1

Hµ1

Hµ2

u1
'

w w
2

≡

w
2'

w2"

u u1≡

w1 u2≡'w
1

H µ1

Hµ2

w'
1

w"1

u'
2

u"2

u'1

w w
2

≡w'
2

u u
1

≡

w1 u2≡

Hµ1

Hµ2

w'
1

w"
1

u'
2

u"
2

w w
2

≡

w'2

w"2

u u1
≡

w
1 u 2≡

Hµ1

H µ2
w'

1

w"1

u'2

u"
2

u'1

w w 2≡w'2

u u 1≡

w
1

u
2≡

Hµ1

Hµ2

1
u"

u"
1

u'1

1
u"

Fig. 9. Different cases in the proof of Lemma 4.2.

minus the number of L-symbols of the label associated with face fi (i = 1, 2) in the
adjacency list of pole v (v = u,w). For example, in Fig. 11 we have α1

u = 1, α2
u = 1,

α1
w = 0, and α2

w = 1. Also, we denote with extdegµ(v) the external degree of v with
respect to the pertinent graph of µ and with intdegµ(v) the internal degree of v with
respect to the pertinent graph of µ. The proof of the following lemma can be found
in [4].

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1779

u

u'

e
out

e

e

e

3

1

2

w

w'

Fig. 10. Example of a parallel of three components.

u

w

f1
f
2

R R

R

Fig. 11. Example of a parallel of two components.

Lemma 4.4. The spirality σHµ of Hµ is related to the spiralities σHµi
of the Hµi

(i = 1, 2) by

σHµ
= σHµ1

+ ku · α1
u + kw · α1

w,

σHµ
= σHµ2

− ku · α2
u − kw · α2

w,

where kv(v = u,w) =

{
1 if extdegµ(v) = 1 and intdegµi(v) = 1,
1/2 if extdegµ(v) = 2 or extdegµi(v) = 2.

Let µ be the root of T , and let µ1 and µ2 be the children of µ such that the
pertinent graph of µ2 is the reference edge (s, t). Let Hµ1

⊂ H be the orthogonal
pertinent graph of µ1 and let Hst ⊂ H be the orthogonal representation of edge (s, t).
Let f be the internal face of H containing (s, t) and let αv be the number of R-symbols
minus the number of L-symbols of the label associated to f in the adjacency list of
pole v (v = s, t). The proof of the following lemma can be found in [4].

Lemma 4.5. The spirality σHµ1
of Hµ1

and the spirality σHst
of Hst are related

by

σHµ1
− σHst

+ ks · αs + kt · αt = 4

if edge (s, t) is traversed from t to s, going around f in the positive direction, and by

−σHµ1
+ σHst

+ ks · αs + kt · αt = 4

if edge (s, t) is traversed from s to t, going around f in the positive direction, where

ks (kt) =

{
1 if s(t) is a bridge pole in Hµ1 ,
0 otherwise.

1780 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

4.5. Substituting orthogonal representations with the same spirality.
Let G and G′ be two embedded graphs describing two different embeddings of the
same graph. If they are different only in the embedding of one split component
they are said to be split-different. More precisely, let Guw ⊂ G and G′uw ⊂ G′ be
two different embedded subgraphs describing two different embeddings of the same
split component. For each vertex v that is not in the split component, the clockwise
ordering of the edges in the adjacency list of v is the same in G and in G′. For each
vertex that is in the split component except poles u and w, the clockwise ordering of
the incident edges may be different according to the different embeddings of Guw and
G′uw. For poles u and w the clockwise ordering of the external edges is the same in G
and G′, while the clockwise ordering of the internal edges may be different according
to the embedding of Guw and G′uw. Observe that the external faces of G and G′ may
be different.

Let H and H ′ be two orthogonal graphs that are orthogonal representations of
G and G′, respectively, and let Huw ⊂ H and H ′

uw ⊂ H ′ be the orthogonal graphs
that are orthogonal representations of Guw and G′uw. Suppose that the labels that
(possibly) appear between the external edges of u and w stay the same in H and
in H ′. Orthogonal graphs H and H ′ are said to be split-different. Two orthogonal
drawings of two split-different orthogonal graphs are shown in Figs. 12a and 12b; they
are split-different for the split component in evidence.

Let H and H ′ be two split-different orthogonal graphs that are orthogonal repre-
sentations of the same graph G. Suppose they are split-different in a split component
with poles u and w, such that deg(u) ≥ 3 and deg(w) ≥ 3. Let Huw and H ′

uw be the
orthogonal representations of such a split component in H and in H ′, respectively.
Suppose σHuw

= σH′
uw

. The operation of substitution in H of subgraph Huw with
subgraph H ′

uw gives as a result a labeled embedded graph H ′′, defined as follows.

1. H ′′ has the same vertices and edges of G.

2. Each vertex of H ′′ that is not in the above split component has the same
adjacency list it has in H.

3. If u (w) is a bridge pole, then it has in H ′′ the adjacency list it has in H.

4. If u (w) is a nonbridge pole, then it has in H ′′ the adjacency list it has in H ′.
5. Any other vertex of H ′′ has the same adjacency list it has in H ′.

Roughly speaking, the operation of substitution consists of replacing in H sub-
graph Huw with H ′

uw. As an example, if we substitute the split component with poles
4 and 15 of Fig. 12a with the one of Fig. 12b, we obtain the orthogonal graph of
Fig. 12c. The following theorem proves that the obtained graph is orthogonal.

Theorem 4.1. Let H and H ′ be two orthogonal 2-connected graphs that are
split-different in a split component with poles u and w, such that deg(u) ≥ 3 and
deg(w) ≥ 3. Let Huw and H ′

uw be such a split component in H and in H ′, respectively.
Suppose σHuw

= σH′
uw

. Let H ′′ be a labeled embedded graph obtained by substituting
in H subgraph Huw with subgraph H ′

uw. H ′′ is an orthogonal graph.

Proof. We denote by H ′′
uw the split component of H ′′ involved in the operation

of substitution. In order to show that H ′′ is an orthogonal graph, we have to prove
that conditions of Property 2.3 are satisfied. Condition 1 of Property 2.3 is trivially
satisfied by all vertices of H ′′ (by the definition of substitution, vertices have the same
adjacency list they have in either H or H ′). Condition 2 of Property 2.3 is trivially
true for each internal face of H ′′

uw and for each face of H ′′ that is not the left or the
right face of H ′′

uw. We show that the condition holds for the right face; the proof for
the left face is analogous.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1781

15

16

17 18

19

20

59

78

6

10

14

12

11

13
3 2

4

1

3 2

4

5
6

78

9
10

11

12

13 14

15

1
2

3

4

59

78

6

10

14

12

15

16 20

17 18

19

11

13

116

17 18

19

20

(a) (b)

(c)

Fig. 12. An example of substitution.

Let fH and fH′′ be the right faces of Huw and H ′′
uw, respectively. Let u′H , w

′
H

be the alias vertices of poles u,w in H that belong to face fH . Vertices u′H and w′H
identify two distinct paths SH and PH in fH . Path SH from u′H to w′H is composed
by edge (u′H , u), the right path of Huw, and edge (w,w′H); path PH is the other path
from w′H to u′H . Let u′H′′ , w′H′′ be the alias vertices of poles u,w in H ′′ that belong to
face fH′′ . Analogously, u′H′′ and w′H′′ identify two distinct paths SH′′ and PH′′ in face
fH′′ . Observe that SH′′ is a spine of H ′′

uw in H ′′, SH is a spine of Huw in H, and PH′′

coincides with PH . By applying Property 2.3 to H, we have n(SH)+n(PH)+a = ±4,
where a is the number of R-symbols minus the number of L-symbols of the label
associated with face fH in the adjacency lists of u′H and w′H . The plus sign holds if
fH is an internal face, the minus sign, if fH is the external face.

Consider fH′′ . Since both SH and SH′′ have their endpoints on the right faces of
their split components, and since Huw and H ′′

uw have the same spirality by hypothesis,
n(SH) = n(SH′′). Thus, since n(PH) = n(PH′′) and the value of a stays the same
after the substitution, Condition 2 of Property 2.3 holds for fH′′ .

4.6. An upper bound to the spirality. We study now the properties of split
components of optimal orthogonal representations.

Let G be a graph and let Guw ⊂ G be a split component of G. Let H be an
orthogonal representation of G and let Huw ⊂ H be the orthogonal representation of

1782 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

Guw. First, we observe that the orthogonal subgraph Huw may not be optimal even if
H is optimal. In Fig. 13 two orthogonal representations of the same graph are shown
with a subgraph Huw in evidence; in Fig. 13a the orthogonal representation H is
optimal while Huw is not optimal; Fig. 13b shows the best orthogonal representation
that can be found if Huw is constrained to be optimal.

Huw
Huw

(a) (b)

u w

u w

Fig. 13. (a) H is optimal and Huw is not optimal ; (b) H is not optimal and Huw is optimal.

Let H ′ and H ′′ be two orthogonal graphs, such that H ′ and H ′′ are split-different
in the same split component with poles u and w. Let H ′

uw and H ′′
uw be such split

components in H ′ and in H ′′, respectively. The orthogonal graph H ′
uw is optimal

within the spirality σH′
uw

if no H ′′
uw exists with spirality σH′

uw
and fewer bends than

H ′′
uw.

Theorem 4.2. Let G be a 2-connected graph and let H be an optimal orthogonal
representation of G; each split component of H is optimal within its spirality.

Proof. Let Huw ⊂ H be the orthogonal representation of a split component
of H. Suppose, for a contradiction, that Huw is not optimal within σHuw

. Then,
there exists an orthogonal representation H ′ of G such that (1) H and H ′ are split-
different in the above split component; (2) the orthogonal representation H ′

uw ⊂ H ′

of the split component in H ′ has spirality σHuw
and fewer bends than Huw. Thus,

by Theorem 4.1, it is possible to substitute in H subgraph Huw with H ′
uw obtaining

an orthogonal representation of G with fewer bends than H. This is a contradic-
tion.

With analogous reasoning we can prove the following theorem.

Theorem 4.3. Let G be a 2-connected graph and let Guw ⊂ G be a split compo-
nent of G. Let Huw be an orthogonal representation of Guw optimal within spirality
σHuw . All the split components of Huw are optimal within their spiralities.

The next theorem gives an upper bound to the spirality of the split components
in an optimal orthogonal representation.

Theorem 4.4. Let G be a 2-connected graph with n vertices and let H be an
optimal orthogonal representation of G; let Huw ⊂ H be the orthogonal representation
of a split component of G, |σHµ | ≤ 3n− 2.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1783

Proof. Let S be a spine of Hµ. Since S is a simple path, it has at most n−1 edges
and n vertices. For each pair of consecutive edges of S there is at most one turn at
the common endpoint; also, since H is optimal, H has at most 2n− 2 bends [26, 27].
In the worst case, such bends of H are all right turns or they are all left turns along
S; thus |n(S)| ≤ 2n− 2 + n.

The split component Guw of G is odd if one of its poles is a bridge pole or it has
external degree 1, while the other pole is a nonbridge pole with external degree 2 (the
total number of alias vertices of u and w with respect to Guw is odd); else Guw is
even (the total number of alias vertices of u and w with respect to Guw is even). For
example, the split component in evidence in Fig. 6 is odd, while the one in evidence
in Fig. 13 is even.

Consider now the orthogonal representation Huw ⊂ H of Guw. Suppose Guw is
odd; Huw satisfies case 2 of Definition 4.2 and, according to Property 4.1, its spirality
is a fractional number. Otherwise, suppose Guw even; in this case Huw satisfies either
case 1 or case 3 of Definition 4.2 and, according to Property 4.1, its spirality is an
integer number.

Property 4.3. Let k be any integer number. If Guw is odd, there always exists
an orthogonal representation H of G such that the orthogonal representation Huw ⊂ H
of Guw has spirality (2k + 1)/2. If Guw is even, there always exists an orthogonal
representation H of G such that the orthogonal representation Huw ⊂ H of Guw has
spirality k.

Combining Theorem 4.4 and Property 4.3, the following corollary descends.
Corollary 4.1. Let G be a graph with n vertices and let Guw ⊂ G be a split

component of G. Let H be an optimal orthogonal representation of G, and let Huw ⊂
H be the orthogonal representation of Guw. If Guw is odd, the spirality of Huw is a
number (2k + 1)/2 such that −3n + 2 ≤ k ≤ 3n − 3. If Guw is even, the spirality of
Huw is an integer k such that −3n+ 2 ≤ k ≤ 3n− 2.

4.7. Spirality and cost functions. The cost function of a split component
associates to each value σ of spirality the cost (number of bends) of an orthogonal
representation of the component optimal within spirality σ.

The following property can be trivially proved.
Property 4.4. The cost function of a split component is piecewise linear and it is

symmetric with respect to the cost axis (vertical axis corresponding to zero spirality).
Given an embedding of a split component, a fixed-embedding cost function as-

sociates with each value σ of spirality the cost of an orthogonal representation with
spirality σ, which has the given embedding and the minimum number of bends among
all the orthogonal representations of the component with spirality σ and the given
embedding.

Property 4.5. The cost function of a split component is the lower envelope of
all the fixed-embedding cost functions of the component.

We show that the cost functions of the components of 4-planar graphs can have
quite complicated behavior. Namely, they are, in general, neither monotone nor
convex. Even for a series-parallel graph a cost function can have a linear number of
local minima. This closes the possibility of devising polynomial time algorithms for
4-planar series-parallel graphs based on convexity properties of the cost functions.

Intuitively, one would expect that the number of bends of a split component
monotonically increases when the spirality of such a component is augmented. Sur-
prisingly, this is not the behavior for general 4-planar graphs. To give an example,

1784 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

in Fig. 14 we show the cost function of a series composition that has two minima for
σ = 0 and for σ = 2. The following lemma shows that the behavior of a cost function
can be even worse.

σ

c

Guw

u

w

u

u

u

u

w

w

w

w

Fig. 14. An example of nonmonotone cost function.

Lemma 4.6. There exists a split component of a series-parallel graph whose cost
function is neither convex nor monotone.

Proof. Consider the split component of Fig. 15.
However, the cost function of the split component of Fig. 15a has only one non-

convexity. Now we show an infinite family of split components constructed by only
using series and parallel compositions whose cost functions ripple a linear number of
times. Let Gn be the split component recursively defined as follows: G1 is the split
component of Lemma 4.6; Gn (n > 1) is the series composition of G1, one edge, and
Gn−1 (see Fig. 15b). Observe that Gn has 14n vertices.

Lemma 4.7. The cost function of Gn is zero for σ = ±2k (k = 0, . . . , n) and is
greater than zero for all the remaining values of σ.

Proof. For the symmetry of the cost functions (see Property 4.4) we can restrict
our attention to nonnegative values of spirality. The proof is by induction on n. We
prove first that the cost function of G1 has value 0 only for spirality 0 and 2.

Let G0 be the split component of Fig. 14. The split component G1 is the series
composition of two copies of G0 separated by one edge e0. The cost function of e0 is
a linear function with slope 1. The cost function of G0 has value 0 only for spirality
1. Namely, for every value of spirality less than 4, the cost function has the behavior
depicted in Fig. 14. Since any orthogonal representation of G0 has a spine S with
three vertices, for values of spirality greater than or equal to 4, such an orthogonal

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1785

u w

Guw

c

σ
u

w

u

w

u

w

u
w

(b)(a)

G1

u1 w1

Gn−1

un wn

Fig. 15. (a) An example of nonconvex cost function; (b) the series composition Gn.

representation has at least one bend on S. From Lemma 4.2, the spirality of an
orthogonal representation of G1 is the sum of the spiralities of its components. It
follows that an orthogonal representation of G1 has at least one bend except when
the spirality of e0 is 0 and the spiralities of the orthogonal representations of G0 are
either 1 or −1. Thus, the cost function of G1 has value 0 only for spirality 0 and 2.

Suppose now the lemma holds for Gn−1. We prove the lemma for Gn. Gn is
the series of Gn−1, one edge e, and G1. Again, from Lemma 4.2, the spirality of an
orthogonal representation of Gn is the sum of the spiralities of its components. It
follows that an orthogonal representation of Gn has at least one bend except when
the spirality of e is 0 and the spiralities of the orthogonal representations of Gn−1

and G1 are such that the corresponding cost functions have value 0. Thus the cost
function of Gn has value 0 only for σ = 2k (k = 0, . . . , n).

The following theorem summarizes the results of this section.

Theorem 4.5. There exists an infinite family of 4-planar split components con-
structed by using only series and parallel compositions whose cost functions are neither
convex nor monotone.

5. Cost functions of 3-planar graphs. The results of this section are the basis
of a polynomial time algorithm for optimal orthogonal drawings of 3-planar graphs.
Namely, let µ be a node of the decomposition tree of a 3-planar graph and let Gµ be
its pertinent graph. In section 5.1 we show that the cost function of Gµ is always not
decreasing. The contribution of section 5.2 is as follows. First, if µ is a Q∗-node we
show that the cost function of Gµ is convex. Second, if µ is an S-node or a P -node,
then we show that the convexity of the cost functions of all the children of µ implies
the convexity of the cost function of Gµ. Unfortunately, we are not able to prove an
analogous property if µ is an R-node. Third, we give more sophisticated tools that

1786 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

allow us to deal with this case. Namely, we show that the cost functions of all the
children of an R-node are convex.

5.1. Not decreasing cost functions. We start by giving a few definitions that
will be of use in the rest of the paper.

Let H be an orthogonal 3-planar graph. Let e be an edge of H and let f1 and f2

be the faces sharing e. Edge e is an access edge from the starting face f1 to the target
face f2 if at least one R-symbol is found when traversing e having f1 on the left side.

Let v be a vertex of H. Two cases are possible.

1. There are two faces f1 and f2 in the adjacency list of v, and either f1 has no
labels or it is labeled with an R-symbol; v is an access vertex from starting
face f1 to target face f2.

2. There are three faces f1, f2, and f3 in the adjacency list of v and face f1 has
no label; v is an access vertex from starting face f1 to target faces f2 and f3.

An access of H is either an access vertex or an access edge of H. For example, in
Fig. 16, v1, v2, and e are accesses. The starting face of v1 is f3 and its target face is
f4; the starting face of v2 is f3 and its target faces are f1 and f2; the starting face of
e is fe and its target face is f1.

u

w

e

v
1

v2

fe

f1 f2

f3

f4

Fig. 16. An example of accesses.

Let Γ1 and Γ2 be two orthogonal drawings of H, and let C1 and C2 be two oriented
closed simple curves drawn onto Γ1 and Γ2, respectively (curves like C1 and C2 have
been studied in [21, 26, 27]). Curves C1 and C2 are equivalent curves if they traverse
the same set of edges, vertices, and faces in the same order. In this way the oriented
closed simple curves that can be drawn onto the orthogonal drawings of an orthogonal
3-planar graph H are grouped into equivalence classes. A class of equivalent curves is
described by a circular oriented list of faces, vertices and edges of H, called the ring
of H.

A nonincreasing ring of H is a ring R such that:

• the reference edge (s, t) belongs to R;

• the external face of H belongs to R and appears immediately after (s, t) in
R;

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1787

• every edge or vertex of R, except (s, t), is an access a of H. For each sublist
f1, a, f2 of R, a is an access from f1 to f2.

An example of a curve described by a nonincreasing ring is given in Fig. 17a.

t

s

t

s

(a) (b)

C

e

1 2

3
4

5

e
1

2

3

4

5

Fig. 17. (a) A curve C of a nonincreasing ring; (b) the elementary transformation defined by C.

Lemma 5.1. Let G be a graph and let Gst be the split component of G in parallel
with the reference edge (s, t). Let H be an orthogonal representation of G, Hst ⊂ H
the orthogonal representation of Gst, and R a nonincreasing ring on H. Suppose
σHst > 0. There exists an orthogonal representation H ′ of G with the same embedding
of H such that σH′

st
= σHst−1 and H ′

st has no more bends than Hst, where H ′
st ⊂ H ′

is the orthogonal representation of Gst.
Proof. The proof easily follows from a result in [26, 27]. Let Γ be an orthogonal

drawing of H. Let C be an oriented closed simple curve drawn onto Γ and such that:
(i) C belongs to the class of equivalent curves represented by R; (ii) the intersection
between C and (s, t) is not on a bend; and (iii) any other crossing between an edge e
of Γ and C is on a bend and is such that C enters from the face where the bend forms
a concave angle (this can always be done because e is an access). Curve C defines an
elementary transformation of the type described in [26, 27]. Such a transformation
can be used to modify Γ into a new orthogonal drawing Γ′ with one more bend on
edge (s, t) (one more left turn when going along (s, t) from s to t) and fewer or as
many bends in the rest of the drawing. An example of elementary transformation
is shown in Fig. 17, where Figs. 17a and 17b show a drawing before and after the
transformation, respectively. In this case the portion of drawing inside C is “rotated”
90 degrees clockwise. Namely, e is straightened, 2 is moved below 1, 4 is moved
below 3, 3 is moved to the left of 5, and (s, t) has one more bend. Let H ′ be the
orthogonal graph describing Γ′. Since (s, t) has in H ′ one more left turn than in H,
from Lemma 4.5, the spirality of H ′

st is equal to σHst − 1.
We are now in a position to prove the following lemma.
Lemma 5.2. The cost function of a split component of a 3-planar graph is not

decreasing for nonnegative values of spirality.
Proof. Let T be a decomposition tree of a 3-planar graph and let µ be an internal

node of T . Let H ′
µ and H ′′

µ be two orthogonal representations of the pertinent graph

1788 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

of µ such that H ′
µ is optimal within the spirality σ′ > 0 and H ′′

µ is optimal within the
spirality σ′′ = σ′− 1. To prove the lemma we need to show that the number of bends
of H ′′

µ is less than or equal to the number of bends of H ′
µ.

We first observe that it is sufficient to prove the lemma in a fixed embedding
setting. In fact, (1) for Property 4.5 the cost function in the variable embedding
setting is the lower envelope of all the fixed embedding cost functions, and (2) the
lower envelope of not decreasing functions is itself not decreasing.

If µ is a Q∗-node the proof is trivial. If µ is an S-node and the statement of the
lemma holds for each component of the series, then the statement also holds for the
entire series (it follows from Lemma 4.2). Thus, we can restrict our attention to the
case where µ is either a P -node or an R-node; in both these cases the external degree
of the poles of µ is 1.

We show that it is always possible to define a nonincreasing ring for every split
component of an orthogonal representation of a 3-planar graph, optimal within a given
positive value of spirality. According to Lemma 5.1, the nonincreasing ring allows us
to decrease the spirality of the component without increasing its cost. To do that we
give a constructive proof. Namely, we give a procedure to compute a nonincreasing
ring, and we prove the correctness of such a procedure.

Let H∗ be the orthogonal representation obtained by adding edge (u,w) to H ′
µ

in such a way that (u,w) is the right path of H∗ and the spirality of H ′
µ ⊂ H∗ is σ′.

Let fuw be the face sharing edge (u,w) with the external face fe of H∗. Let u′ and
w′ be the alias vertices of u and w, respectively.

Procedure ComputeRing

Step 1: Labeling

Let S be the spine of Hµ′ containing the left path of H∗.
repeat

• Let a be the first access of S such that the starting face f1 is on the
left side of S, when going along S from u′ to w′.
• Let f1 be the starting face of a.

• Select a face f2 according to the following rules: (1) if a is an access
edge or an access vertex of degree 2, then f2 is the only target face of
a; (2) if a is an access vertex of degree 3, let e = (v′, a) be the edge of
S traversed from v′ to a; then f2 is the target face of a that contains e
(see, for example, Fig. 18a).

• Label access a with the ordered pair f1, f2.

• Let v1 (v2) be the first (last) encountered vertex of f2 when going
along S from u′ to w′. Let PS be the subpath of S with endpoints v1

and v2 and let P be the path joining v1 and v2 along f2 such that P
shares with S only its endpoints.

• Replace path PS of S with path P . (See, for example, Fig. 18b.)

until a is an access with target face fuw
Label access a with the ordered pair f1, fuw, where f1 is the starting face of
a; also, label edge (u,w) with fuw, fe.

Step 2: Construction

Construct the ring R containing fu,w such that for each f1, a, f2 of R, access
a has been labeled f1, f2 in Step 1.

end procedure.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1789

Procedure ComputeRing correctly constructs a nonincreasing ring. Observe first
that any spine S of Hµ′ has at least one access, because σ′ is positive and S has at
least one right turn; also, there exists at least one spine with an access having target
face fuw (consider, as an example of such a spine, the spine containing the right path
of Hµ′).

u

w

a

w'

u'
v'

e

f
1

f
2

u

w

a

w'

u'
v'

e

f
1

f
2

(a) (b)

Fig. 18. An example of choice of the access in the proof of Lemma 5.2.

Consider now the repeat cycle of the labeling step (Step 1) of the procedure. At
each iteration a new spine is computed, by replacing a subpath PS of the current spine
S with a path P sharing with S only its endpoints. Namely, let P1 be the subpath
of S joining u′ to v1 and P2 be the subpath of S from v2 to w′. Paths P1 and P2

are simple and disjoint by definition. Path P computed in the while cycle is a simple
path that intersects P1 only in v1 and P2 only in v2. Thus, the concatenation of P1,
P , and P2 is a spine.

Observe that the number of faces between the spine and the left path of H∗

increases at each iteration. Intuitively, the spine sweeps from the left path of H∗

towards the right path by eating some faces on the right of S (between S and the
right path of H∗). No face can be eaten twice, since an eaten face moves from the
right to the left of the current spine.

An access with target face fuw is found after a finite number of iterations because
the cardinality of the set of faces on the right of the current spine decreases at each
iteration.

Concerning the construction step (Step 2) of the procedure, we have that an
increasing ring R exists. In fact, if R contains face f , then there is a labeled access
a having f as target face and labeled with the pair f1, f . But, since a is a labeled
access, a belongs to a spine S having the starting face f1 at its left. Now, either face
f1 is the face fe and we are done, or the spine S has been obtained from a previous

1790 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

spine by eating face f1. This means that f1 is the target face of some previously
labeled access and we can repeat the argument.

5.2. Convexity properties of the cost functions. A cost function c(σ) of a
split component is an elbow-shaped function when there exists a pair σ, k such that
c(σ) = k for −σ ≤ σ ≤ σ and c(σ) = |σ|+ k − σ for σ ≤ σ.

Theorem 5.1. Let G be a 3-planar 2-connected graph and let T be its decompo-
sition tree. Let µ be a node of T and let Gµ be its pertinent graph.

1. If µ is a Q∗-node or an S-node, then the cost function of Gµ is elbow-shaped.

2. If µ is a P -node, then the cost function of Gµ is convex.

3. If µ is an R-node, then the cost functions of the pertinent graphs of the
children of µ are elbow-shaped.

The proof of Theorem 5.1 is based on inductive arguments and will be given in
section 5.2.3. The following Lemmas 5.3, 5.4, 5.5, and 5.6 are the main tools of the
induction.

Lemma 5.3. Let µ be a Q∗-node whose pertinent graph Gµ has m edges. The
cost function of Gµ is an elbow-shaped function such that k = 0 and σ = m− 1.

Proof. Suppose that σ ≥ 0; the proof is analogous for σ < 0. For σ = 0 an
orthogonal drawing of Gµ can be easily constructed by putting all the vertices on
the same straight line. For each increase of the spirality of one unit, we can bend
the drawing at one of the m − 1 internal vertices that did not bend before, without
introducing any extra cost until σ = m− 1. For σ > m− 1 we need to add σ−m+ 1
bends, and this can be done along a distinguished edge.

Lemma 5.4. Let µ be an S-node whose pertinent graph is Gµ; let µ1 and µ2 be the
children of µ and let Gµ1 and Gµ2 be the pertinent graphs of µ1 and µ2, respectively.
If the cost function of Gµ1 is convex and the cost function of Gµ2 is elbow-shaped,
then the cost function of Gµ is elbow-shaped.

Proof. Let c(σ), c1(σ), and c2(σ) be the cost functions of Gµ, Gµ1 , and Gµ2 ,
respectively. For Property 4.4, it is sufficient to show that c(σ) is elbow-shaped for
nonnegative values of spirality.

Since, for Lemma 5.2, c1(σ) is not decreasing when σ ≥ 0 and since c2(σ) is elbow-
shaped, an increase of one unit of spirality for the whole series causes an increase of
at most one unit on the overall number of bends. In fact, one can conveniently
increase by one unit the spirality on the whole series by bending the component
for which the increase on the cost function is the least expensive. Observe that
c(0) = c1(0) + c2(0). Let σ1 and σ2 be the maximum values of spirality for which
c1(σ) = c1(0) and c2(σ) = c2(0), respectively. Now, because of Lemma 4.2, one can
have no cost increase for all values of spirality 0 ≤ σ ≤ σ1 + σ2. For σ > σ1 + σ2, for
the convexity of c1(σ) and c2(σ), c(σ) has a positive slope. A unit slope for c(σ) can
be obtained by fixing c(σ) = c1(σ1) + c2(σ − σ1).

Lemma 5.5. Let µ be a P -node whose pertinent graph is Gµ; let µ1 and µ2 be the
children of µ and let Gµ1 and Gµ2 be the pertinent graphs of µ1 and µ2, respectively.
If the cost functions of Gµ1

and Gµ2
are elbow-shaped, then the cost function of Gµ

is convex.
Proof. Let c(σ), c1(σ), and c2(σ) be the cost functions of Gµ, Gµ1 , and Gµ2 ,

respectively. Consider any triplet of consecutive, nonnegative values of σ, say σ − 1,
σ, and σ + 1. Let Hµ, H ′

µ, and H ′′
µ be the orthogonal representations of Gµ optimal

within spiralities σ − 1, σ, and σ + 1, respectively.
For Lemma 5.2 the cost function c(σ) is not decreasing for σ ≥ 0. Also, for Prop-

erty 4.4, c(σ) is symmetric with respect to the y-axis. Thus, to prove the convexity

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1791

of c(σ) it is sufficient to show that

c(σ + 1)− c(σ) ≥ c(σ)− c(σ − 1).

We distinguish two cases.

1. The relative position of the two components of the parallel does not change
in Hµ, H ′

µ, and H ′′
µ (i.e., the right path of the parallel belongs to the same

split component in Hµ, H ′
µ, and H ′′

µ). Suppose, w.l.o.g., that the right path
of Gµ belongs to Gµ1

.

From Lemma 4.4, we have

c(σ) = min(c1(σ − α1
u − α1

w) + c2(σ + α2
u + α2

w)),

where the minimum is over all the possible values of the parameters α1
u, α

1
w,

α2
u, α

2
w. Since c1(σ) and c2(σ) are elbow-shaped, if σ − 1 ≥ 2, the above

minimum gives rise to the following equalities, where α1
u = α1

w = 1 and
α2
u = α2

w = 0:

c(σ − 1) = c1(σ − 3) + c2(σ − 1),

c(σ) = c1(σ − 2) + c2(σ),

c(σ + 1) = c1(σ − 1) + c2(σ + 1).

If σ − 1 < 2, the values of parameters α1
u, α

1
w, α2

u, α
2
w that minimize the

above formulas might change, but the reasoning of the proof is the same. We
prove the lemma for σ − 1 ≥ 2.

By using the above equations we derive

c(σ + 1)− c(σ) = c1(σ − 1) + c2(σ + 1)− c1(σ − 2)− c2(σ)

and

c(σ)− c(σ − 1) = c1(σ − 2) + c2(σ)− c1(σ − 3)− c2(σ − 1).

Because of the elbow-shape of c1(σ) and c2(σ), we have c1(σ−1)−c1(σ−2) ≥
c1(σ − 2) − c1(σ − 3) and c2(σ + 1) − c2(σ) ≥ c2(σ) − c2(σ − 1). The thesis
easily follows.

2. The relative position of the two components of the parallel changes in Hµ,
H ′
µ, and H ′′

µ .

Let cA(σ) and cB(σ) be the two fixed-embedding cost functions obtained by
considering the two possible relative positions of Gµ1 and Gµ2 . Functions
cA(σ) and cB(σ) are clearly convex from what was given above. Since the
relative position of the components of the parallel changes with the spirality,
cA(σ) and cB(σ) cross between σ− 1 and σ+1. We show that this is not the
case. Again, we restrict our attention to the case σ − 1 ≥ 2. The proof for
σ − 1 < 2 is analogous.

1792 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

Suppose, w.l.o.g., that cA(σ − 1) < cB(σ − 1) and cA(σ + 1) > cB(σ + 1).
Given the considerations stated in case 1, this implies that

cA(σ − 1) = c1(σ − 3) + c2(σ − 1),

cA(σ + 1) = c1(σ − 1) + c2(σ + 1),

cB(σ − 1) = c1(σ − 1) + c2(σ − 3),

cB(σ + 1) = c1(σ + 1) + c2(σ − 1).

It follows that

c1(σ + 1)− c1(σ − 1) < c2(σ + 1)− c2(σ − 1)(1)

and that

c1(σ − 1)− c1(σ − 3) > c2(σ − 1)− c2(σ − 3).(2)

Since c1(σ) is an elbow-shaped function, from inequality (2), 1 ≤ c1(σ −
1) − c1(σ − 3) ≤ 2 that can be rewritten as 1 ≤ c1(σ − 1) − c1(σ − 2) +
c1(σ − 2)− c1(σ − 3) ≤ 2; thus, we have that c1(σ − 1)− c1(σ − 2) = 1, and
c1(σ + 1)− c1(σ − 1) = 2.

But, from inequality (1), c1(σ + 1) − c1(σ − 1) ≤ 1. This is a contradiction.

To deal with R-nodes we need more sophisticated tools and introduce the concept
of fixed-ordering cost function, defined as follows. Given an R-node µ with pertinent
graph Gµ of a 3-planar graph, with poles u and w, the possible orderings for the edges
of Gµ around u and w are exactly two; one can be obtained from the other by flipping
the component around the poles. Call such orderings ordering A and ordering B.
Suppose ordering A is given. For each value σ of spirality there is an orthogonal
representation of the component that has spirality σ, the minimum number of bends,
and ordering A. We call such an orthogonal representation optimal within spirality σ
and ordering A. It is worth noticing that an orthogonal representation optimal within
spirality σ and ordering A is computed by considering all the possible embeddings
for the components of Gµ; only the ordering of the edges around u and w is fixed.
A fixed-ordering cost function describes the cost of orthogonal representations of the
pertinent graphs of R-nodes that are optimal within given values of spirality and
ordering. Note that a fixed-ordering cost function is, in general, nonsymmetric with
respect to the cost axis. In what follows we denote with cA(σ) and with cB(σ) the
fixed-ordering cost functions relative to ordering A and ordering B, respectively.

Lemma 5.6. Let µ be an R-node whose pertinent graph is Gµ. If the cost functions
of the pertinent graphs of the children of µ are elbow-shaped, then the two fixed-
ordering cost functions of Gµ are convex.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1793

The proof of Lemma 5.6 will be given in sections 5.2.1 and 5.2.2. It is based on
the study of the fixed-ordering cost function associated to the pertinent graph Gµ, in
terms of the analysis of the flow variation in a min-cost flow network. This exploits
a technique already introduced by Tamassia [21]. In the next subsection we describe
the flow model.

5.2.1. The flow network. Let T be a decomposition tree of a 3-planar graph
and let µ be an R-node of T with poles u and w. Let Gµ be the pertinent graph of µ
and let the two possible orderings for the edges of Gµ around poles u and w be given.

Let skeletonA(µ) (skeletonB(µ)) be the embedded graph obtained by adding
(u,w) to skeleton(µ) and such that (1) (u,w) is on the external face, (2) (u,w) is the
right path, and (3) the edges of skeletonA(µ) incident on u and w correspond to split
components of Gµ that respect ordering A (ordering B).

We associate to µ, σ, and ordering A a network Nµ(σ,A) defined as follows.

• Nodes:

—There is a node (vertex-node) for each vertex of skeletonA(µ).

—There is a node (face-node) for each face of skeletonA(µ).

—There are two extra nodes: a source node s and a sink node t.

• Arcs:

—There are two arcs (f ′, f ′′) and (f ′′, f ′) for each pair of faces sharing at
least one edge. The arcs have capacity, lower bound, and cost assigned
with the following rules. (i) If faces f ′ and f ′′ share (u,w), and f ′′ is
the external face of skeletonA(µ), then arcs (f ′, f ′′) and (f ′′, f ′) have
zero cost; if σ ≤ 4 then arc (f ′, f ′′) has lower bound and capacity equal
to 4 − σ, and arc (f ′′, f ′) has zero capacity; if σ > 4 then arc (f ′′, f ′)
has lower bound and capacity with value σ − 4, and arc (f ′, f ′′) has
zero capacity. (ii) If faces f ′ and f ′′ share an edge e, then arcs (f ′, f ′′)
and (f ′′, f ′) have infinite capacity, lower bound zero, and cost defined
by the cost function of the corresponding split component of Gµ with
the endpoints of e as poles.

—There is one arc (v, f) where v is a vertex that belongs to face f . Arc
(v, f) has infinite capacity and zero lower bound and cost.

—There is one arc (s, f) for each internal face f composed by fewer than
four edges. Arc (s, f) has capacity 4 minus the number of edges belong-
ing to the face and zero lower bound and cost.

—There is one arc (s, v) for each vertex v. Arc (s, v) has capacity equal
to 4− deg(v) and zero lower bound and cost.

—There is one arc (f, t) for each internal face f composed by more than
four edges. Arc (f, t) has capacity equal to the number of edges belonging
to the face minus 4 and zero lower bound and cost.

—There is one arc (fe, t) for the external face fe. Arc (fe, t) has capacity
equal to 4 plus the number of edges belonging to the face and zero lower
bound and cost.

An example of a network is shown in Fig. 19. In this figure we represent only
vertex-nodes, face-nodes, and arcs between adjacent faces. For two arcs we also draw
(in the circles) the corresponding cost functions.

Similarly, a network Nµ(σ,B) is associated with µ, σ, and ordering B.

The flow value z in Nµ(σ,A) is constrained equal to the sum of the capacities of
the arcs’ outgoing node s.

1794 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

2

6

1

9

8

7

Fig. 19. Part of the network associated with the skeleton of the R-node of Fig. 3.

The intuitive interpretation of network Nµ(σ,A) is the following. Each unit of flow
in the network represents an angle of 90 degrees; for each pair (f ′, f ′′) and (f ′′, f ′)
linking two face-nodes, their difference of flow represents the spirality of the split
components whose virtual edge is the edge separating f ′ and f ′′ in skeletonA(µ); the
cost of the flow represents the number of bends of the orthogonal representation of
Gµ (observe that it is not the cost of an orthogonal representation of skeletonA(µ)).
Furthermore, the lower bound of the dual arc of (u,w) constrains edge (u,w) to have
the given spirality.

Observe that all the components of 3-planar graphs are even and, by Property 4.3,
their possible values of spirality are integer numbers. The proofs of the next two
lemmas can be found in [4].

Lemma 5.7. Let Hµ be an orthogonal representation of Gµ optimal within spi-
rality σ and ordering A (ordering B) and let cA (cB) be the number of bends of Hµ.
Then there exists an integer flow in Nµ(σ,A) (Nµ(σ,B)) with value zA (zB) and cost
cA (cB).

Lemma 5.8. Let x be a minimum cost integer flow of value zA (zB) in Nµ(σ,A)
(Nµ(σ,B)) and cost cA(x) (cB(x)). There exists an orthogonal representation Hµ of
Gµ optimal within spirality σ and ordering A (ordering B) whose number of bends is
cA(x) (cB(x)).

The following lemma summarizes the results of this subsection.

Lemma 5.9. For each orthogonal representation optimal within spirality σ and or-
dering A (ordering B) there exists a minimum cost integer flow in Nµ(σ,A) (Nµ(σ,B)).
Furthermore, an orthogonal representation optimal within spirality σ and ordering A
(ordering B) can be computed from the minimum cost integer flow in Nµ(σ,A) (Nµ(σ,B)).

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1795

5.2.2. Proof of Lemma 5.6.
Proof. We first show that the fixed-ordering cost functions of the pertinent graph

Gµ of µ are convex. Let cA(σ) and cB(σ) be the two fixed-ordering cost functions of
Gµ. We prove the convexity of cA(σ); the proof for cB(σ) is analogous. Namely, we
show that for each triplet of consecutive values of σ, say σ− 1, σ, and σ+ 1, we have

cA(σ + 1)− cA(σ) ≥ cA(σ)− cA(σ − 1).(3)

Inequality (3), together with Lemma 5.2, proves the convexity of cA(σ).
Let u,w be the poles of Gµ and let fuw be the internal face of skeletonA(µ) sharing

edge (u,w) with the external face fe. Let Nµ(σ−1, A), Nµ(σ,A), and Nµ(σ+1, A) be
the networks associated with µ for the values of spirality σ− 1, σ, σ+ 1, respectively.
Such networks differ only for the values of capacity and lower bound of the pair of
arcs between fe and fuw. For example, consider Nµ(σ − 1, A) and Nµ(σ,A). If
σ − 1 < 4, then Nµ(σ,A) can be obtained from Nµ(σ − 1, A) by decreasing by one
unit the capacity and the lower bound of arc (fe, fuw); otherwise it can be obtained
by increasing by one unit the capacity and the lower bound of (fuw, fe). We consider
the case when the capacity and the lower bound of (fe, fuw) decrease. The proof is
analogous when the capacity and the lower bound of (fuw, fe) increase.

Let Hµ be an orthogonal representation of Gµ optimal within spirality σ − 1
and ordering A; let x be the flow in Nµ(σ − 1, A) that, according to Lemma 5.9,
corresponds to Hµ.

We remind the reader that for arc (fe, fuw) the capacity and the lower bound
coincide and that (fe, fuw) is a saturated arc in Nµ(σ − 1, A) when the flow is x.
Thus, an optimal flow x′ in Nµ(σ,A) can be computed starting from flow x and by
decreasing the flow in the arc (fe, fuw) by means of a minimum cost augmenting path
P ′ connecting fe and fuw (see also [1]). The objective function (i.e., the cost function
cA(σ) of Gµ) changes by an amount d(P ′), that is, the cost of the chosen augmenting
path P ′ (in the rest of the proof we denote by d(P) the cost of an augmenting path
P). Let H ′

µ be the orthogonal representation of Gµ computed from Nµ(σ,A) and x′.
From Lemma 5.9, H ′

µ is optimal within spirality σ and ordering A. Also, the number
of bends in H ′

µ is cA(σ − 1) + d(P ′).
Consider now network Nµ(σ+1, A). Again, an optimal flow x′′ for Nµ(σ+1, A) is

computed starting from x′, by means of a minimum cost augmenting path P ′′ from fe
to fuw. The corresponding orthogonal representation H ′′

µ is optimal within spirality
σ + 1 and ordering A and has cA(σ − 1) + d(P ′) + d(P ′′) bends.

It follows that inequality (3) can be rewritten as d(P ′′) ≥ d(P ′). Suppose, for a
contradiction, that d(P ′′) < d(P ′). Three cases are possible.

1. P ′ and P ′′ do not share common edges. In this case P ′ is not the mini-
mum cost augmenting path when computing flow x′ from flow x. This is a
contradiction.

2. P ′ and P ′′ share edge e = (p, q) traversed in the same direction in both P ′ and
P ′′ (see Fig. 20a). In other words, the flow along e is increased or decreased
in both P ′ and P ′′. In both cases, since the cost function of e is convex, the
variation d′(e) of the cost along e in P ′ is not greater than the variation d′′(e)
of the cost along e in P ′′. Path P ′ is the concatenation of three subpaths, P ′1,
edge e, and P ′2. Analogously, P ′′ is the concatenation of subpaths P ′′1 , edge
e, and P ′′2 . Inequality d(P ′′) < d(P ′) can be rewritten as follows.

d(P ′′1) + d′′(e) + d(P ′′2) < d(P ′1) + d′(e) + d(P ′2).(4)

1796 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

Since path P ′1eP
′
2 is chosen as a minimum cost augmenting path in network

Nµ(σ,A), we have that d(P ′) is not greater than the cost of the paths P ′1eP
′′
2

and P ′′1 eP
′
2 (if a path is not an augmenting path its cost is infinite). Thus,

the following inequalities also hold:

d(P ′1) + d′(e) + d(P ′2) ≤ d(P ′1) + d′(e) + d(P ′′2),

d(P ′1) + d′(e) + d(P ′2) ≤ d(P ′′1) + d′(e) + d(P ′2),

which imply

d(P ′2) ≤ d(P ′′2),

d(P ′1) ≤ d(P ′′1).

The last two inequalities, together with d′′(e) ≤ d′(e) contradict inequal-
ity (4).

3. P ′ and P ′′ share edge e, with endpoints p and q, traversed in the opposite
direction in P ′ and in P ′′ (see Fig. 20b). The variation d′(e) of the cost along
e in P ′ is equal to the variation −d′′(e) of the cost along e in P ′′. P ′ is the
concatenation of three subpaths, P ′1 from fe to p, edge (p, q), and P ′2 from q
to fuw. Analogously, P ′′ is the concatenation of subpaths P ′′1 from fe to q,
edge (q, p), and P ′′2 from p to fuw.
Inequality d(P ′′) < d(P ′) can be rewritten as follows:

d(P ′′1)− d′(e) + d(P ′′2) < d(P ′1) + d′(e) + d(P ′2).(5)

Since path P ′ is chosen as a minimum cost augmenting path in network
Nµ(σ,A), we have that d(P ′) is not greater than the cost of the paths P ′1P

′′
2

and P ′2P
′′
1 . Thus

d(P ′1) + d′(e) + d(P ′2) ≤ d(P ′1) + d(P ′′2),

d(P ′1) + d′(e) + d(P ′2) ≤ d(P ′2) + d(P ′′1),

which imply

d′(e) + d(P ′2) ≤ d(P ′′2),

d(P ′1) + d′(e) ≤ d(P ′′1).

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1797

The last two inequalities contradict inequality (5). In fact, we can write

d(P ′1) + d′(e)− d′(e) + d′(e) + d(P ′2) < d(P ′1) + d′(e) + d(P ′2),

d(P ′1) + d(P ′2) < d(P ′1) + d(P ′2).

q

(a)

P''
1

P''
2

P'2P'1 pf e f
uw

P''

p q

(b)

P''2

P''1

P'
1

P'2

f e

f uw

Fig. 20. (a) Illustration for case 2 in the proof of Lemma 5.6; (b) illustration for case 3 in the
proof of Lemma 5.6.

5.2.3. Proof of Theorem 5.1.
Proof. The proof is by induction on the height of the subtree Tµ rooted at µ.
Base case. If Tµ has height 0, then by the definition of decomposition tree µ is a

Q∗-node; the thesis follows by Lemma 5.3. If Tµ has height 1, then by the definition of
decomposition tree, the children of µ are Q∗-nodes; the thesis follows from Lemmas 5.3
and 5.5.

Inductive case. Suppose Tµ has height k > 1. Three cases are possible: µ is an
R-node, a P -node, or an S-node.

If µ is an R-node or a P -node, then by Property 2.2 its children are either S-nodes
or Q∗-nodes. Hence, the pertinent graphs of the children of µ have elbow-shaped cost
functions because of the inductive hypothesis. If µ is an R-node, then this is enough to
prove the theorem. If µ is a P -node, then the thesis follows from the above discussion
and from Lemma 5.5.

If µ is an S-node and none of its children is an R-node or a P -node, the theorem
follows from the inductive hypothesis and from Lemma 5.4.

If µ is an S-node and one of its children is a P -node, from Property 2.2 the
other child of µ can be either an S-node or a Q∗-node. The theorem follows from the
inductive hypothesis and from Lemma 5.4.

Suppose now that µ is an S-node with children µ1 and µ2, and one of its children,
say µ1, is an R-node. Because of Property 2.2, the children of µ1 are either S-nodes or
Q∗-nodes. So, for the inductive hypothesis on the children of µ1 and for Lemma 5.6,
both the fixed-ordering cost functions cA(σ) and cB(σ) of the pertinent graph Gµ1

of µ1 are not decreasing and convex; note that cA(σ) and cB(σ) coincide for σ = 0.
By Property 2.2, µ2 is either a Q∗-node or an S-node and its pertinent graph Gµ2

has an elbow-shaped cost-function by induction. Because of the elbow-shape of the
cost function of Gµ2

and of the convexity of cA(σ) and cB(σ), an increase of one unit
of spirality for the whole series causes an increase of at most one unit of the overall
number of bends. These arguments imply that the two cost functions, (1) of the series
of Gµ2

and Gµ1
with ordering A, and (2) of the series of Gµ2

and Gµ1
with ordering B,

are elbow-shaped functions and have the same value for σ = 0. The cost function

1798 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

of the whole series is the lower envelope of the two cost functions above; the lower
envelope of two elbow-shaped functions that coincide for σ = 0 is an elbow-shaped
function.

6. Optimal orthogonal drawings of 3-planar graphs. The target of this
section is to provide a polynomial time algorithm for computing the optimal orthogo-
nal drawing of a 3-planar graph G. We first deal with the 2-connected case. The basic
idea is to incrementally construct an optimal orthogonal drawing of G by compos-
ing orthogonal representations of its split components that are optimal within given
values of spirality. To do that, we compute a decomposition tree T of G for each
possible reference edge and equip the nodes of T with a data structure devised to de-
scribe optimal orthogonal representations of the split components of G. The optimal
orthogonal drawing of G is selected among the set of optimal orthogonal drawings,
each computed using one of the above decomposition trees.

In section 6.1 we present the data structure; in section 6.2 we show how to use
T to compute optimal orthogonal drawings of 3-planar graphs. The management of
several decomposition trees is shown in section 6.3. In section 6.4 we extend the
algorithm to general 3-planar graphs.

6.1. Optimal sets. Let G be a 3-planar graph with n vertices, let T be a de-
composition tree of G, and let µ be an internal node of T . Let Gµ be the pertinent
graph of µ.

(a) (b)

w

u

w

u

Fig. 21. Feasible (a) and not feasible (b) orthogonal representation of the split component
highlighted in Fig. 6.

An orthogonal representation Hµ of Gµ is feasible if there exists an orthogonal
representation of G having Hµ as a subgraph. As an example, in Fig. 21 two or-
thogonal representations of the split component in evidence in Fig. 6 are shown; the
one in Fig. 21a is feasible while the one in Fig. 21b is not feasible. Notice that the
feasibility of an orthogonal representation can be checked by looking at the labels in
the adjacency lists of the poles and at their external degree.

Let Hµ be a feasible orthogonal representation of Gµ; let H be the infinite class of
orthogonal representations of G such that (1) each element of H has Hµ as a subgraph;
(2) the labels associated with the right (left) face of Hµ in the adjacency lists of its
poles are the same for each element of H. We say that H is a fitting class of Hµ.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1799

Let u and w be the poles of Hµ. Let {λu, ρu, λw, ρw} be a set of labels in {R, L}.
The set {λu, ρu, λw, ρw} is sound for Hµ if there exists a fitting class H of Hµ such
that for each element of H the labels associated with the left (right) face of Hµ in the
adjacency lists of u and w are λu (ρu) and λw (ρw).

Observe that a feasible orthogonal representation Hµ and a set of labels that are
sound for Hµ identify a fitting class of Hµ. Also, by Property 4.2, Hµ and a set of
labels that are sound for Hµ univocally determine the spirality of Hµ.

An optimal 7-tuple of µ is a 7-tuple 〈Hµ, σHµ
, cHµ

, λu, ρu, λw, ρw〉 such that

1. Hµ is a feasible orthogonal representation of Gµ, optimal within spirality σHµ ;

2. cHµ
is the cost of Hµ;

3. {λu, ρu, λw, ρw} is a set of labels that is sound for Hµ.

We equip each node µ of T with an optimal set. An optimal set is a set of optimal
7-tuples of µ with the following properties.

1. For each value of spirality the set contains at most one optimal 7-tuple.

2. Let 〈Hµ, σHµ , cHµ , λu, ρu, λw, ρw〉 be an optimal 7-tuple of the optimal set.
Then, for each node ν of the subtree of T rooted at µ (including µ), the
orthogonal representation Hν ⊆ Hµ of the pertinent graph of ν has spirality
in the range stated by Theorem 4.4.

Note that, by Corollary 4.1, the cardinality of an optimal set is at most 2(3n−2)+1
if Gµ is even, and at most 2(3n− 2) if Gµ is odd.

Lemma 6.1. There exists an optimal orthogonal representation H of G such that
the split components of H belong to the optimal sets of the nodes of T .

Proof. Let H ′ be any optimal orthogonal representation of G, and let H ′
µ ⊂ H ′

be the orthogonal representation of the pertinent graph of an internal node µ of T .
We show how to compute H starting from H ′.

Let σH′
µ

be the spirality of H ′
µ. By Theorem 4.4, |σH′

µ
| ≤ 3n − 2; also, by

definition, there is an orthogonal representation H ′′
µ that belongs to the optimal set of

µ and is optimal within spirality σH′
µ
. Let H ′′ be an orthogonal representation in the

fitting class of H ′′
µ such that H ′ and H ′′ are split-different for the split components

H ′
µ and H ′′

µ . We apply Theorem 4.1 to H ′ and H ′′, substituting H ′
µ with H ′′

µ in H ′.
Since H ′′

µ is optimal within the spirality σH′
µ
, the orthogonal representation obtained

with the substitution is still an optimal orthogonal representation of G. The optimal
orthogonal representation H is obtained by iterating such a procedure for each split
component of H ′.

6.2. Computing the optimal sets of 3-planar graphs. We consider sepa-
rately the different types of internal nodes of a decomposition tree of a 3-planar graph
G with n vertices and show how to compute the optimal sets of such nodes.

6.2.1. Computing the optimal set of a Q∗-node. Let µ be a Q∗-node of T ,
and let Gµ ⊂ G be the pertinent graph of µ with poles u and w. An optimal set of
µ is computed by the following procedure. Intuitively, while increasing the spirality
of a chain with k + 1 vertices, we avoid bending the edges until spirality k − 1; after
that value we add one bend for each increasing unit of spirality.

Procedure Q∗-OptimalSet(µ)
for each integer σ between −3n+ 2 and 3n− 2, compute the 7-tuple
〈Hµ, σHµ

, cHµ
, λu, ρu, λw, ρw〉 as follows and put it in the optimal set of µ:

Let k be the number of edges of Gµ.

if |σ| < k then Hµ has no bends and cHµ = 0

1800 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

else Hµ has |σ| − k + 1 bends and cHµ
= |σ| − k + 1.

σHµ = σ; labels λu, ρu, λw, ρw are undefined.

end procedure.

As an example, some 7-tuples of the optimal set of node ξ1 of Fig. 3 computed
by Procedure Q∗-OptimalSet are shown in Fig. 22a.

Since µ is a Q∗-node, an efficient way to encode Hµ is to store in each 7-tuple
only the number of turns that appear in Hµ. By Corollary 4.1 and since each optimal
7 tuple is computed in O(1) time, we have the following lemma.

Lemma 6.2. Procedure Q∗-OptimalSet computes an optimal set of a Q∗-node in
O(n) time.

6.2.2. Computing the optimal set of an S-node. Let µ be an S-node of T ,
and let Gµ ⊂ G be the pertinent graph of µ with poles u and w. Let µ1 and µ2 be the
two children of µ. Let Gµ1

be the pertinent graph of µ1 with poles u1 ≡ u and w1;
let Gµ2

be the pertinent graph of µ2 with poles u2 ≡ w1 and w2 ≡ w. An optimal set
of µ is computed by the following procedure. Intuitively, for each value of spirality
stated by Corollary 4.1, we look into the optimal sets of µ1 and µ2 searching for the
minimum cost 7-tuples that satisfy Lemma 4.2.

Procedure S-OptimalSet(µ)

for each value of spirality stated by Corollary 4.1, compute the 7-tuple
〈Hµ, σHµ

, cHµ
, λu, ρu, λw, ρw〉 by performing the following steps and, if such

a tuple exists, put it in the optimal set of µ:

Step 1: Find two 7-tuples t1 and t2 in the optimal sets of µ1 and µ2

such that:

(1) t1 = 〈Hµ1 , σHµ1
, cHµ1

, λu1 , ρu1 , λw1 , ρw1〉;
(2) t2 = 〈Hµ2

, σHµ2
, cHµ2

, λu2
, ρu2

, λw2
, ρw2

〉;
(3) σHµ1

+ σHµ2
= σ (see Lemma 4.2); and

(4) cHµ1
+ cHµ2

is the lowest among all the possible choices of such
7-tuples.

if such 7-tuples do not exist then skip the next two steps.

Step 2: Define Hµ as follows.

• Hµ has the same vertices and edges of Gµ.

• Associate with each vertex of Hµ but w1 ≡ u2 the same adjacency
list it has in Hµ1

or in Hµ2
.

• Compose the adjacency list L of w1 ≡ u2 as follows. Let L1

(L2) be the adjacency list of w1 in Hµ1
(u2 in Hµ2

). Cut L1 and
L2 in correspondence with fe, deleting fe. Build the new list L as
the concatenation of L1, fe, L2, and fe. Associate with the first
(second) occurrence of fe the label λw1 (ρw1) of t1 if u2 is a bridge
pole in Gµ2 , substitute the label λu2 (ρu2) of t2 otherwise. Make L
circular by linking its first element to its last element.

Step 3: λu = λu1 , ρu = ρu1 , λw = λw2 , ρw = ρw2 . cHµ = cHµ1
+ cHµ2

.

end procedure.

As an example, some 7-tuples of the optimal set of node ξ2 of Fig. 3 computed
by Procedure S-OptimalSet are shown in Fig. 22b.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1801

43 5

43 5 ,

4

3

5

4

3

5

4

3

5

, , , , ,0 0 _ _ _ _

, , , , , ,1 0 _ _ _ _

, , , , , ,2 1 _ _ _ _

, , , , , ,3 2 _ _ _ _

4

3 52

43

5

2

43

5

2

4

3

5

2

, , , , , ,1/2 1 φ R _ R

, , , , , ,3/2 1 _ R _ R

, , , , , ,5/2 1 _ R _ R

φ

φ φ

φ φ

4

3 5

43

5

43

5

4

3

5

4

3

5

, , , , , ,1 1 _ R _ R

, , , , , ,2 1 _ R _ R

, , , , , ,3 3 _ R _ R

, , , , , ,0 1 R _ _ Rφ φ

φ φ

φ φ

φ φ

9
4

3

1

86

7

5
2

43

5

2

1

7

9

8

6

43

5

2

1

7

9

8

6

4

3

5

2 1

7

9

8

6

, , , , , ,0 2 R _ _ R

, , , , , ,1 2 _ R _ R

, , , , , ,2 2 _ R _ R

φ φ

φ φ

φ φ

(a) (b)

(c) (d)

Fig. 22. Some optimal 7-tuples of the nodes: (a) ξ1, (b) ξ2, (c) ξ3, and (d) ξ4 of the decompo-
sition tree of Fig. 3.

1802 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

Lemma 6.3. Procedure S-OptimalSet computes an optimal set of an internal
S-node µ in O(n2) time.

Proof. We concentrate on each computed 7-tuple.

We first prove that Hµ is a feasible orthogonal representation of Gµ. We have
that Hµ is an orthogonal representation by construction. Also, since poles u and w
coincide with poles u1 and w2 and both Hµ1

and Hµ2
are feasible, Hµ is feasible.

Second, supposeHµ is not optimal within spirality σHµ
; then there exists a feasible

orthogonal representation H ′
µ of Gµ with fewer bends than Hµ and spirality σHµ

, and
such that, by Lemma 6.1, all the split components of H ′

µ are in the 7-tuples of the
optimal sets of the children of node µ. Since for each value of spirality Procedure
S-OptimalSet considers all the possible pairs of 7-tuples in the optimal sets of the
children of µ, we have a contradiction.

Third, we observe that since the labels of t1 and t2 are sound, labels λu, λw, ρu,
and ρw are sound for Hµ.

To complete the proof of correctness, it remains to prove that the set defined
by Procedure S-OptimalSet is an optimal set of µ. This easily follows from the
construction strategy and from the fact that the procedure considers optimal sets of
µ1 and µ2.

Concerning the complexity, since µ is an S-node, an efficient way to encode Hµ

in the 7-tuple is to store two pointers to t1 and t2 plus the labels of the faces around
the poles of Hµ. Thus, the computation of an optimal 7-tuple can be performed in
linear time by using sorted structures for the optimal sets of the children of µ. So, we
have that Steps 1–3 compute an optimal 7-tuple of an S-node µ for a given value σ of
spirality in O(n) time. The overall time complexity follows from Corollary 4.1.

6.2.3. Computing the optimal set of a P -node. If µ is a P -node, from
Property 2.2 it has two children. We give a procedure to compute an optimal set of
µ. The procedure exploits the result of Lemma 4.4. Namely, we consider all possible
values of parameters αiv (v = u,w) in any orthogonal representation of G containing
Hµ; α1

v and α2
v can be either 0 or 1, but they cannot both be 0.

Procedure P -OptimalSet(µ)

for each value of spirality stated by Corollary 4.1, compute the 7-tuple
〈Hµ, σHµ

, cHµ
, λu, ρu, λw, ρw〉 by performing the following steps and, if such

a tuple exists, put it in the optimal set of µ:

Step 1: Find a 7-tuple in the optimal set of µ1, and a 7-tuple in the
optimal set of µ2 such that:

(1) the spiralities in each one of the two selected 7-tuples satisfy formula
of Lemma 4.4 with an admissible value for αiv;

(2) the sum of the costs is the lowest among all the possible choices of
the two 7-tuples.

if such two 7-tuples do not exist then skip the next two steps.

Step 2: Let t1 = 〈H1, σH1
, cH1

, λu1
, ρu1

, λw1
, ρw1

〉 and t2 = 〈H2, σH2
,

cH2 , λu2 , ρu2 , λw2 , ρw2〉 be the 7-tuples chosen in Step 1. Let σHµ =
σH1 +α1

u+α1
w and σHµ = σH2 +α2

u+α2
w, (observe that we have removed

parameters ku and kw in the formula of Lemma 4.4, since the degree of
poles u and w is 3).
Define Hµ as follows (see Fig. 23).

• Hµ has the same vertices and edges of Gµ.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1803

• Associate to each vertex of Hµ but u and w the same adjacency
list it has in either H1 or H2.

• Let e and e′ be the edges of H1 and of H2 that are incident on pole
u, respectively. Define the adjacency list of u as edge e and edge e′.
Similarly, define the adjacency list of w. Let f be the face of Hµ

composed by vertices and edges of H1 and H2. Assign an R-label
to f in the adjacency list of v if α1

v + α2
v = 1 (v = u,w); assign no

label to f otherwise. Assign an L-label to the external face fe in the
adjacency list of v if α1

v + α2
v = 1; assign no label to fe otherwise.

Step 3: if α1
v = 1, then assign an R-symbol to λv (v = u,w), else

assign no symbol to λv. if α2
v = 1, then assign an R-symbol to ρv, else

assign no symbol to ρv. cHµ
= cH1

+ cH2
.

end procedure.

H 2

e'

H 1

e

w

H 2

H 1

f

e'e

u

Fig. 23. Illustration for Procedure P -OptimalSet.

As an example, some 7-tuples of the optimal set of node ξ3 of Fig. 3 computed
by Procedure P -OptimalSet are shown in Fig. 22c.

Lemma 6.4. Procedure P -OptimalSet computes an optimal set of an internal
P -node µ with two children in O(n) time.

Proof. We concentrate on each computed 7-tuple.
We first prove that Hµ is a feasible orthogonal representation of Gµ. We need

to prove that the conditions of Property 2.3 hold. Condition 1 is trivially true by
construction. Condition 2 is trivially true for all faces but f and the external face.
Consider f . Its boundary is composed by a spine S1 of H1, and a spine S2 of H2.
Also, by construction, an R-label is assigned to f in the adjacency list of v (w) if
α1
v + α2

v = 1 (α1
w + α2

w = 1).
Thus, writing the number of R-labels on both the poles as 2−α1

u−α2
u+2−α1

w−α2
w

and using Lemma 4.4, the number of right turns minus the number of left turns
encountered when going around f in the positive direction is n(S2)−n(S1)+2−α1

u−
α2
u + 2−α1

w −α2
w = α1

u +α2
u +α1

w +α2
w + 2−α1

u−α2
u + 2−α1

w −α2
w = 4. Analogous

reasoning for the external face.
Since the external degree of both the poles is 1 and the external face has no R-

labels in the adjacency lists of the poles, Hµ is feasible. λv and ρv (v = u,w) are
sound for Hµ since by construction they cannot both correspond to no label.

Hµ is optimal within spirality σHµ
: the proof is analogous to that of Lemma 6.3.

With analogous reasoning as in Lemma 6.3, it can be proved that the set defined
by Procedure P -OptimalSet is an optimal set of µ.

Concerning the complexity, since µ is a P -node, an efficient way to encode Hµ is
to store only two pointers to the 7-tuples that have been chosen as well as the labels

1804 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

of the faces around the poles of Hµ. Thus, the computation of an optimal 7-tuple can
be performed in constant time by using sorted structures for the optimal sets of the
children of µ. So, we have that Steps 1–3 compute an optimal 7-tuple of a P -node
µ with two children for a given value σ of spirality in O(1) time. The overall time
complexity follows from Corollary 4.1.

6.2.4. Computing the optimal set of an R-node. Let µ be an R-node of T
and let Gµ ⊂ G be the pertinent graph of µ with poles u and w. An optimal set of
µ is computed by the following procedure. Intuitively, for each value of spirality, (1)
we compute the two flow networks associated with ordering A and ordering B, (2)
we solve the two corresponding min-cost flow problems, (3) we choose the minimum
cost solution between them, and (4) we construct the 7-tuple corresponding to the
selected solution.

Procedure R-OptimalSet (µ)

Define ordering A and ordering B of Gµ.

for each value of spirality stated by Corollary 4.1, compute the 7-tuple
〈Hµ, σHµ , cHµ

, λu, ρu, λw, ρw〉 by performing the following steps and, if such
a tuple exists, put it in the optimal set of µ:

Step 1:

• Construct Nµ(σHµ
, A) and Nµ(σHµ , B).

• Solve the min-cost flow problem onNµ(σHµ
, A) and onNµ(σHµ

, B).
Choose the network whose solution has the minimum cost.

• Let ν be a child of µ in T , whose pertinent graph is Gν . Check
if it is possible to construct an orthogonal representation Hµ of
Gµ by applying the technique of Lemma 5.8 and by using for each
component Gν only the orthogonal representations in the optimal
set of ν.

if the construction fails then skip the next step.

Step 2:

Let H ′
µ be the orthogonal representation of skeleton(µ) constructed by

the network chosen in Step 1. (See Lemma 5.8.)

Let fuw be the face of H ′
µ sharing (u,w) with the external face fe.

• Assign to λu and ρu the labels of fe and fuw, respectively, in the
adjacency list of u in H ′

µ.

• Assign to λw and ρw the labels of fe and fuw, respectively, in the
adjacency list of w in H ′

µ.

• Assign to cHµ
the cost of the flow.

end procedure.

As an example, some 7-tuples of the optimal set of node ξ4 of Fig. 3 computed
by Procedure R-OptimalSet are shown in Fig. 22d.

Lemma 6.5. Procedure R-OptimalSet computes an optimal set of an R-node in
O(n3 log n) time.

Proof. We concentrate on each computed 7-tuple.

The proof that Hµ is a feasible orthogonal representation of Gµ, optimal within
spirality σHµ

, directly descends from Lemma 5.8.

Labels λu, λw, ρu, and ρw are sound for Hµ by construction.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1805

To complete the proof of correctness, it remains to prove that the set defined
by Procedure S-OptimalSet is an optimal set of µ. This easily follows from the
construction strategy and from the fact that the procedure considers only optimal
sets of the children of µ.

Concerning the complexity, since the cost functions of the arcs of the network
are elbow-shaped functions (see Theorem 5.1), it is possible to solve the min-cost
flow problem by means of the Out-of-Kilter algorithm [15] whose time complexity is
O(n2 log n). The construction of Hµ from the flow network can be easily performed
in linear time. The overall time complexity follows from Corollary 4.1.

6.3. The drawing algorithm. In this section we show that it is possible to
compute in polynomial time the optimal sets of the internal nodes of a decomposition
tree of a 3-planar graph. Then, we give an algorithm that computes an optimal
orthogonal drawing of a 3-planar graph by considering all its possible embeddings.

Let G be a 3-planar graph with n vertices, and let T be a decomposition tree of
G. The following procedure equips each internal node of T with an optimal set, by
means of a bottom-up visit of T .

Procedure Equip-T (µ)
Consider with a bottom-up visit each nonroot node µ of T

case (µ) of

Q∗-node: apply Procedure Q∗-OptimalSet(µ),

P -node: apply Procedure P -OptimalSet(µ),

S-node: apply Procedure S-OptimalSet(µ),

R-node: apply Procedure R-OptimalSet(µ),
end procedure.

Lemma 6.6. Procedure Equip-T equips the internal nodes of T with optimal sets
in O(|P |n+ |Q|n+ |S|n2 + |R|n3 log n) time, where |P |, |Q|, |S|, and |R| denote the
number of internal P -nodes, Q∗-nodes, S-nodes, and R-nodes of T , respectively.

Proof. The proof directly descends from Lemmas 6.2, 6.3, 6.4, and 6.5.
We are now at a mature stage for computing an optimal orthogonal representation

of G. The next procedure exploits the result of Lemma 4.5. Namely, we consider all
possible values of the parameter αv (v = s, t) in an orthogonal representation of G.
Such possible values depend on the degree of v: if deg(v) = 3 the value of αv can be
either 0 or 1; otherwise, if deg(v) = 2, the value of αv can be −1, 0, or 1.

Procedure H-from-T
Let µ be the root of T , let µ1 and µ2 be the children of µ; the pertinent graph
of µ2 is the reference edge (s, t).

Step 1: Apply Procedure Equip-T (µ).

Step 2: Find two 7-tuples t1 and t2 in the optimal sets of µ1 and µ2 such
that:

(1) t1 = 〈Hµ1
, σHµ1

, cHµ1
, λu1

, ρu1
, λw1

, ρw1
〉;

(2) t2 = 〈Hµ2 , σHµ2
, cHµ2

, λu2 , ρu2 , λw2 , ρw2〉;
(3) σHµ1

and σHµ2
satisfy Lemma 4.5; and

(4) cHµ1
+ cHµ2

is the lowest among all the possible choices of such 7-tuples.

Step 3: Define H as follows.

• Associate with each vertex of H but s and t the same adjacency list
it has in Hµ1 .

1806 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

• Associate with edge (s, t) the same sequence of L- and R-symbols it
has in Hµ2

. Let e1 and e2 be the (possibly coincident) edges of Hµ1

incident on s. Associate with s in H the same adjacency list it has in
Hµ1 ; insert edge (s, t) in the adjacency list of s between e1 and e2. Do
analogously for vertex t. Let fe be the external face of H and let f be
the internal face of H that contains (s, t). Associate labels to fe and to
f in the adjacency list of pole v (v = s, t) with the following rule.
if deg(v) = 2, then

if αv = −1 then assign an R-label to fe and an L-label to f

if αv = 0 then assign no label to either fe or f

if αv = 1 then assign an L-label to fe and an R-label to f

else assign λv1 to fe and ρv1 to f .
end procedure.

Lemma 6.7. Procedure H-from-T computes an optimal orthogonal representation
of G in O(|P |n+ |Q|n+ |S|n2 + |R|n3 log n) time, where |P |, |Q|, |S|, and |R| denote
the number of P -nodes, Q∗-nodes, S-nodes, and R-nodes of T , respectively.

Proof. The proof that H is an orthogonal representation of G can be done with
reasoning analogous to that in the proof of Lemma 7.1.

Also, Hµ is optimal since Procedure H-from-T considers all the possible pairs of
7-tuples in the optimal set of µ1 and µ2 (see also Lemma 6.1).

Concerning the complexity, note that (1) Step 1 requires O(|P |n+ |Q|n+ |S|n2 +
|R|n3 log n) (see Lemma 6.6), (2) Step 2 requires O(n), and (3) Step 3 requires O(n)
to construct H; namely, since the orthogonal representations are stored in the optimal
sets by means of pointers, the procedure has to decode such information in order to
construct H. This task can be performed in linear time. The bound on the time
complexity follows.

We now give the algorithm for optimal orthogonal drawing 2-connected 3-planar
graphs; G denotes the input graph.

Algorithm Optimal Orthogonal Drawing
Step 1: for each edge (u,w) of G:

• Compute a decomposition tree T of G with reference edge (u,w).

• Compute an orthogonal representation applying Procedure H-from-T .

Step 2: Choose, among the ones computed in the first step, the orthogo-
nal representation H with minimum cost, and construct from H an optimal
drawing of G.

end Algorithm.

Theorem 6.1. Algorithm Optimal Orthogonal Drawing computes an optimal
orthogonal drawing of a 2-connected 3-planar graph with n vertices in O(n5 log n)
time.

Proof. For each possible choice of the reference edge (s, t), the algorithm computes
an optimal orthogonal representation by implicitly considering all possible embeddings
with (s, t) on the external face (Lemma 6.7). This makes the algorithm consider all
the embeddings of G.

Concerning the time complexity of Step 1 of the algorithm observe that (1) the
computation of a decomposition tree requires O(n) time [5] and (2) Procedure H-
from-T requires O(n4 log n) time (Lemma 6.7). Finally, Step 2 can be performed
in O(n) time by using the compaction algorithm presented in [21, 25]. The time
complexity bound follows.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1807

6.4. Extension to general 3-planar graphs. It is easy to extend to general
3-planar graphs the result of Theorem 6.1. Namely, we can give the following theorem.

Theorem 6.2. There exists an algorithm that computes an optimal orthogonal
drawing of a 3-planar graph with n vertices in O(n5 log n) time.

Proof. We exploit the technique illustrated in [14] (section 11.2.3) that is based
on (1) computing a block tree TBC that describes a decomposition of a 1-connected
graph into its blocks (2-connected components), and (2) assembling the orthogonal
representations of such blocks by bottom-up following the structure of TBC . The
theorem follows from the properties of the block trees and from the following fact
that can be used for each block.

Let v be a degree-2 vertex of the external face f of an optimal orthogonal drawing
of a 3-planar 2-connected graph and let (u, v) and (v, w) be the two edges incident
on v. The label associated with v in f cannot be an R. In other words, the angle
between (u, v) and (v, w) on f is not convex.

This fact is easily proved by using Lemma 5.2 on the split components identified
by the separation pair u,w.

7. Extension to optimal orthogonal drawings of series-parallel graphs.
In this section we extend the above results on 3-planar graphs to (4-planar) series-
parallel graphs. Let G be a series-parallel graph and let T be the decomposition tree
of G. Clearly, the computation of the optimal sets of the Q∗-nodes and of the S-nodes
of T can be performed with the procedures of the previous section. Concerning P -
nodes, if they have two children and both the poles have degree 3, then we can apply
Procedure P -OptimalSet; otherwise we have to use a slightly different technique. Of
course, because of [11], it is unlikely that the computation of the optimal sets of
R-nodes of 4-planar graphs can be performed in polynomial time.

Let µ be an internal P -node of T and let Gµ ⊂ G be the pertinent graph of µ
with poles u and w. Let µi (i = 1 . . . k) be the children of µ. An optimal set of µ
can be computed extending Procedure P -OptimalSet by exploiting both Lemmas 4.3
and 4.4. The extensions are the following.

• If k = 2 and u (or w) has degree 4, then when constructing Hµ (see Step 2
of P -OptimalSet) the adjacency list of u is defined as follows. Let e1 and e2
be the edges (possibly coincident) of H1 incident on pole u such that, when
going around the external face of H1 in the positive direction, e1, u, and e2
appear consecutively. Let e′1 and e′2 be the edges (possibly coincident) of H2

incident on pole u such that, when going around the external face of H2 in
the positive direction, e′1, u, and e′2 appear consecutively. Edges e1, e2, e

′
1,

and e′2 are assigned with this clockwise order around u in Hµ. Let fa be the
face of Hµ composed by vertices and edges of H1 and H2. Assign an R-label
to fa in the adjacency list of v, if deg(v) = 4, or deg(v) = 3 and α1

v + α2
v = 1

(v = u,w); assign no label to fa otherwise. Assign an L-label to the external
face fe in the adjacency list of v if α1

v + α2
v = 1 or if the external degree of v

in Gµ is 2; assign no label to fe otherwise.

• If k = 3, then we use Lemma 4.3 for selecting the optimal 7-tuples (see Step 1
of P -OptimalSet). The construction of Hµ is similar to the one above.

The proof of the following lemma is a variation of the one of Lemma 6.4.
Lemma 7.1. There exists a procedure that computes an optimal set of an internal

P -node µ in O(n) time.
By using the drawing algorithm of the previous section and the above lemma, we

have the following theorem. The time bound can be proved with a technique similar
to that of Theorem 6.1.

1808 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

Theorem 7.1. There exists an algorithm that computes an optimal orthogonal
drawing of a 4-planar series-parallel graph with n vertices in O(n4) time.

It is worth noting that the bound of Theorem 7.1 can be improved when the input
graph is a 3-planar series-parallel graph. The proof of the following theorem can be
found in [4].

Theorem 7.2. There exists an algorithm for computing an optimal orthogonal
drawing of a 3-planar series-parallel graph with n vertices in O(n3) time.

8. Conclusions and open problems. In this paper we have given a general
theory of the interplay between spirality and orthogonal drawings and we have shown
that the problem of finding the embedding of a graph that underlies its optimal
orthogonal drawing can be solved in polynomial time for series-parallel graphs and
3-planar graphs.

Although the problem for general graphs is NP-complete [11], several questions
are open.

• Devise an algorithm for optimal orthogonal drawings of 4-planar graphs whose
time complexity is exponential in the number of vertices of degree 4.

• The emphasis of this paper is on the existence of polynomial time algorithms.
However, the time complexity of the algorithms presented in the paper could
perhaps be improved. For example, one can think of applying techniques
similar to those of [20].

• Several of the algorithms presented in the paper can be easily parallelized
by using standard techniques. However, the bound that can be achieved
with such techniques is not optimal. The problem of finding efficient parallel
algorithms still exists.

Fig. 24. A problem in extending Theorem 6.2 to series-parallel graphs.

• Extend our results on series-parallel graphs to the non-2-connected case. Ex-
ploiting the technique of [14] seems to be harder in this case than in Theo-
rem 6.2. Figure 24 shows an optimal orthogonal drawing of a 2-connected

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1809

series-parallel graph that contains a vertex (the white one) of degree 3 whose
angle on the external face is convex. If that vertex is a cutvertex of a non-2-
connected series-parallel graph, then the technique of [14] cannot be directly
applied.

Appendix. List of defined terms.

We list, in order of appearance, the main terms not defined in the preliminaries.
Beside each term we give the section where it is defined.

Term Section
bridge pole 4.1
nonbridge pole 4.1
alias vertex 4.1
spine 4.1
spirality 4.2
split-different 4.5
substitution 4.5
optimality within a given spirality 4.6
odd split component 4.6
even split component 4.6
cost function of a split component 4.7
fixed-embedding cost function of a split component 4.7
access edge 5.1
starting face 5.1
target face 5.1
access vertex 5.1
access 5.1
equivalent curves 5.1
ring 5.1
nonincreasing ring 5.1
elbow-shaped function 5.2
fixed-ordering cost function 5.2
ordering A 5.2
ordering B 5.2
feasibility of an orthogonal representation 6.1
fitting class 6.1
optimal 7-tuple 6.1
optimal set 6.1

Acknowledgments. We thank Roberto Tamassia for his helpful comments and
suggestions. We thank an anonymous referee and Goos Kant for suggesting to us the
extension to 1-connected 3-planar graphs. We also thank the anonymous referee for
all the suggestions given to improve the readability of the paper.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows Theory, Algorithms, and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

1810 G. DI BATTISTA, G. LIOTTA, AND F. VARGIU

[2] P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis, How to draw
a series-parallel digraph, in Proc. 3rd Scandinavian Workshop on Algorithm Theory, 1992,
pp. 272–283; Internat. J. Comput. Geom. Appl., 4 (1994), pp. 385–402.

[3] T. Biedl and G. Kant, A better heuristic for orthogonal graph drawings, in Algorithms -
ESA’94, Second Annual European Symposium, Utrecht, 1994, J. van Leeuwen, ed., Lecture
Notes in Comput. Sci. 855, Springer-Verlag, New York, 1994, pp. 24–35.

[4] G. Di Battista, G. Liotta, and F. Vargiu, Spirality and Optimal Orthogonal Drawings,
Tech. Report 07.94, Dipartimento di Informatica e Sistemistica, Universita’ di Roma “La
Sapienza,” 1994.

[5] G. Di Battista and R. Tamassia, Incremental planarity testing, in Proc. 30th IEEE Symp. on
Foundations of Computer Science, IEEE, Piscataway, NJ, 1989, pp. 436–441.

[6] G. Di Battista and R. Tamassia, On Line Planarity Testing, Tech. Report CS-89-31, Dept.
of Computer Science, Brown Univ., Providence, RI, 1989.

[7] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for automatic graph
Drawing: An annotated bibliography, Comput. Geom. Theory Appl., 4 (1994), pp. 235–282.

[8] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[9] H. Everett and D. G. Corneil, Recognizing visibility graphs of spiral polygons, J. Algorithms,
11 (1990), pp. 1–26.

[10] D. R. Fulkerson, An out-of-kilter method for minimal cost flow problems, SIAM J. Appl.
Math., 9 (1961), pp. 18–27.

[11] A. Garg and R. Tamassia, On the computational complexity of upward and rectilinear pla-
narity testing, in Graph Drawing, Dimacs Internat. Workshop, GD’94, Princeton, NJ, 1994,
R. Tamassia and I. G. Tollis, eds., Lecture Notes in Comput. Sci. 894, Springer-Verlag, New
York, 1994, pp. 286–297.

[12] J. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach., 21
(1974), pp. 549–568.

[13] G. Kant, Drawing planar graphs using the canonical-ordering, in Proc. IEEE Symp. on Foun-
dations of Computer Science, Pittsburgh, IEEE, Piscataway, NJ, 1992, pp. 101–110.

[14] G. Kant, Algorithms for Drawing Planar Graphs, Ph.D. Thesis, Dept. Computer Science,
Univ. of Utrecht, the Netherlands, 1993.

[15] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-
ston, New York, 1976.

[16] Y. Liu, A. Morgana, and B. Simeone, A Linear Algorithm for 3-Bend Embeddings of Planar
Graphs in the Grid, manuscript, 1993.

[17] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, Ann. Discrete Math. 32,
North-Holland, Amsterdam, 1988.

[18] A. Papakostas and I. G. Tollis, Improved algorithms and bounds for orthogonal drawings,
in Graph Drawing, Dimacs Internat. Workshop, GD’94, Princeton, NJ, 1994, R. Tamassia
and I. G. Tollis, eds., Lecture Notes in Comput. Sci. 894, Springer-Verlag, New York, 1994,
pp. 40–51.

[19] J. A. Storer, On minimal node-cost planar embeddings, Networks, 14 (1984), pp. 181–212.

[20] K. Takamizawa, T. Nishizeki, and N. Saito, Linear-time computability of combinatorial
problems on series-parallel graphs, J. Assoc. Comput. Mach., 29 (1982), pp. 623–641.

[21] R. Tamassia, On embedding a graph in the grid with the minimum number of bends, SIAM J.
Comput., 16 (1987), pp. 421–444.

[22] R. Tamassia, Planar orthogonal drawings of graphs, in Proc. IEEE Internat. Symp. on Circuits
and Systems, IEEE, Piscataway, NJ, 1990, pp. 319–322.

[23] R. Tamassia, G. Di Battista, and C. Batini, Automatic graph drawing and readability of
diagrams, IEEE Trans. Systems, Man Cybernet., SMC-18 (1988), pp. 61–79.

[24] R. Tamassia and I. G. Tollis, Efficient embedding of planar graphs in linear time, in Proc.
IEEE Internat. Symp. on Circuits and Systems, Philadelphia, IEEE, Piscataway, NJ, 1987,
pp. 495–498.

[25] R. Tamassia and I. G. Tollis, Planar grid embedding in linear time, IEEE Trans. Circuits
Systems, CAS-36 (1989), pp. 1230–1234.

[26] R. Tamassia, I. G. Tollis, and J. S. Vitter, Lower bounds and parallel algorithms for planar
orthogonal grid drawings, in Proc. IEEE Symp. on Parallel and Distributed Processing,
IEEE, Piscataway, NJ, 1991, pp. 386-393.

[27] R. Tamassia, I. G. Tollis, and J. S. Vitter, Lower bounds for planar orthogonal drawings
of graphs, Inform. Process. Lett., 39 (1991), pp. 35–40.

SPIRALITY AND OPTIMAL ORTHOGONAL DRAWINGS 1811

[28] J. Valdes, R. E. Tarjan, and E. L. Lawler, The recognition of series parallel digraphs, SIAM
J. Comput., 11 (1982), pp. 298–313.

[29] L. Valiant, Universality considerations in VLSI circuits, IEEE Trans. Computers, C-30
(1981), pp. 135–140.

[30] G. Vijayan and A. Wigderson, Rectilinear graphs and their embeddings, SIAM J. Comput.,
14 (1985), pp. 355–372.

	SMJCAT_V27_i1_p0001
	SMJCAT_V27_i1_p0048
	SMJCAT_V27_i1_p0065
	SMJCAT_V27_i1_p0090
	SMJCAT_V27_i1_p0107
	SMJCAT_V27_i1_p0120
	SMJCAT_V27_i1_p0132
	SMJCAT_V27_i1_p0170
	SMJCAT_V27_i1_p0202
	SMJCAT_V27_i1_p0230
	SMJCAT_V27_i1_p0247
	SMJCAT_V27_i1_p0291
	SMJCAT_V27_i1_p0302
	SMJCAT_V27_i1_p0317
	SMJCAT_V27_i2_p0319
	SMJCAT_V27_i2_p0341
	SMJCAT_V27_i2_p0356
	SMJCAT_V27_i2_p0401
	SMJCAT_V27_i2_p0414
	SMJCAT_V27_i2_p0423
	SMJCAT_V27_i2_p0448
	SMJCAT_V27_i2_p0466
	SMJCAT_V27_i2_p0491
	SMJCAT_V27_i2_p0506
	SMJCAT_V27_i2_p0545
	SMJCAT_V27_i2_p0557
	SMJCAT_V27_i2_p0583
	SMJCAT_V27_i3_p0605
	SMJCAT_V27_i3_p0614
	SMJCAT_V27_i3_p0637
	SMJCAT_V27_i3_p0654
	SMJCAT_V27_i3_p0668
	SMJCAT_V27_i3_p0682
	SMJCAT_V27_i3_p0694
	SMJCAT_V27_i3_p0702
	SMJCAT_V27_i3_p0713
	SMJCAT_V27_i3_p0737
	SMJCAT_V27_i3_p0739
	SMJCAT_V27_i3_p0763
	SMJCAT_V27_i3_p0804
	SMJCAT_V27_i4_p0917
	SMJCAT_V27_i4_p0942
	SMJCAT_V27_i4_p0960
	SMJCAT_V27_i4_p0972
	SMJCAT_V27_i4_p0993
	SMJCAT_V27_i4_p1016
	SMJCAT_V27_i4_p1036
	SMJCAT_V27_i4_p1073
	SMJCAT_V27_i4_p1083
	SMJCAT_V27_i4_p1099
	SMJCAT_V27_i4_p1116
	SMJCAT_V27_i4_p1142
	SMJCAT_V27_i4_p1168
	SMJCAT_V27_i4_p1190
	SMJCAT_V27_i4_p1203
	SMJCAT_V27_i5_p1221
	SMJCAT_V27_i5_p1237
	SMJCAT_V27_i5_p1262
	SMJCAT_V27_i5_p1273
	SMJCAT_V27_i5_p1283
	SMJCAT_V27_i5_p1295
	SMJCAT_V27_i5_p1303
	SMJCAT_V27_i5_p1334
	SMJCAT_V27_i5_p1348
	SMJCAT_V27_i5_p1376
	SMJCAT_V27_i5_p1420
	SMJCAT_V27_i5_p1430
	SMJCAT_V27_i5_p1438
	SMJCAT_V27_i5_p1457
	SMJCAT_V27_i5_p1492
	SMJCAT_V27_i6_p1515
	SMJCAT_V27_i6_p1531
	SMJCAT_V27_i6_p1550
	SMJCAT_V27_i6_p1564
	SMJCAT_V27_i6_p1592
	SMJCAT_V27_i6_p1617
	SMJCAT_V27_i6_p1637
	SMJCAT_V27_i6_p1671
	SMJCAT_V27_i6_p1695
	SMJCAT_V27_i6_p1725
	SMJCAT_V27_i6_p1747
	SMJCAT_V27_i6_p1764

